modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 18:33:19
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 18:33:14
card
stringlengths
11
1.01M
AndrewR/distilgpt2-finetuned-imdb-lm
AndrewR
2022-11-02T16:17:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-28T15:55:08Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-imdb-lm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-imdb-lm This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.9577 | 1.0 | 7315 | 3.8818 | | 3.8965 | 2.0 | 14630 | 3.8570 | | 3.8561 | 3.0 | 21945 | 3.8512 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
adit94/sentenceTest_kbert2
adit94
2022-11-02T15:25:56Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-02T15:25:44Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3185 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5} ``` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
north/fine_North_large_8bit
north
2022-11-02T15:07:25Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "no", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-02T10:13:36Z
--- language: - en - no tags: - text2text-generation license: apache-2.0 ---
beankid/hellow
beankid
2022-11-02T14:25:33Z
0
0
null
[ "region:us" ]
null
2022-11-02T14:21:06Z
import gradio as gr def greet(name): return "Hello " + name + "!!" iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch()
ivanzidov/setfit-product-review-regression
ivanzidov
2022-11-02T13:57:36Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-02T13:24:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 80 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 80, "warmup_steps": 8, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
troesy/distil-added-voca
troesy
2022-11-02T13:46:18Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-02T13:35:41Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distil-added-voca results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distil-added-voca This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2515 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 174 | 0.2577 | | No log | 2.0 | 348 | 0.2488 | | 0.2546 | 3.0 | 522 | 0.2515 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
shuaifan/SentiWSP-base
shuaifan
2022-11-02T12:39:37Z
7
1
transformers
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-02T12:30:32Z
# SentiWSP ## For paper: Sentiment-Aware Word and Sentence Level Pre-training for Sentiment Analysis We propose **SentiWSP**, a novel **Senti**ment-aware pre-trained language model with combined **W**ord-level and **S**entence-level **P**re-training tasks. The word level pre-training task detects replaced sentiment words, via a generator-discriminator framework, to enhance the PLM's knowledge about sentiment words. The sentence level pre-training task further strengthens the discriminator via a contrastive learning framework, with similar sentences as negative samples, to encode sentiments in a sentence. ## Fine-tunning You can also load our model in huggingface ([https://huggingface.co/shuaifan/SentiWSP-base](https://huggingface.co/shuaifan/SentiWSP-base)) to fine-tunning in sentiment analysis tasks: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch tokenizer = AutoTokenizer.from_pretrained("shuaifan/SentiWSP-base") model = AutoModelForSequenceClassification.from_pretrained("shuaifan/SentiWSP-base") ```
jayantapaul888/smalldata-twitter-data-microsoft-deberta-base-mnli-eng-only-sentiment-single-finetuned-memes
jayantapaul888
2022-11-02T12:16:51Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-02T11:28:35Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: smalldata-twitter-data-microsoft-deberta-base-mnli-eng-only-sentiment-single-finetuned-memes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smalldata-twitter-data-microsoft-deberta-base-mnli-eng-only-sentiment-single-finetuned-memes This model is a fine-tuned version of [jayantapaul888/twitter-data-microsoft-deberta-base-mnli-sentiment-finetuned-memes](https://huggingface.co/jayantapaul888/twitter-data-microsoft-deberta-base-mnli-sentiment-finetuned-memes) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6927 - Accuracy: 0.8816 - Precision: 0.8934 - Recall: 0.8938 - F1: 0.8936 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 378 | 0.3240 | 0.8675 | 0.8860 | 0.8799 | 0.8798 | | 0.327 | 2.0 | 756 | 0.2935 | 0.8831 | 0.8953 | 0.8944 | 0.8946 | | 0.1692 | 3.0 | 1134 | 0.4000 | 0.8838 | 0.8946 | 0.8959 | 0.8952 | | 0.0811 | 4.0 | 1512 | 0.5134 | 0.8824 | 0.8940 | 0.8945 | 0.8942 | | 0.0811 | 5.0 | 1890 | 0.5875 | 0.8824 | 0.8933 | 0.8945 | 0.8939 | | 0.0313 | 6.0 | 2268 | 0.6927 | 0.8816 | 0.8934 | 0.8938 | 0.8936 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
pig4431/amazonPolarity_ALBERT_5E
pig4431
2022-11-02T12:01:45Z
105
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "dataset:amazon_polarity", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-02T12:01:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_polarity metrics: - accuracy model-index: - name: amazonPolarity_ALBERT_5E results: - task: name: Text Classification type: text-classification dataset: name: amazon_polarity type: amazon_polarity config: amazon_polarity split: train args: amazon_polarity metrics: - name: Accuracy type: accuracy value: 0.9533333333333334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazonPolarity_ALBERT_5E This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the amazon_polarity dataset. It achieves the following results on the evaluation set: - Loss: 0.2404 - Accuracy: 0.9533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.43 | 0.05 | 50 | 0.4090 | 0.8467 | | 0.2597 | 0.11 | 100 | 0.3132 | 0.8933 | | 0.2517 | 0.16 | 150 | 0.2642 | 0.9 | | 0.2218 | 0.21 | 200 | 0.1973 | 0.9333 | | 0.21 | 0.27 | 250 | 0.2880 | 0.88 | | 0.2076 | 0.32 | 300 | 0.2646 | 0.8933 | | 0.2219 | 0.37 | 350 | 0.2053 | 0.94 | | 0.2086 | 0.43 | 400 | 0.2122 | 0.92 | | 0.1725 | 0.48 | 450 | 0.2145 | 0.92 | | 0.2074 | 0.53 | 500 | 0.2174 | 0.9267 | | 0.1966 | 0.59 | 550 | 0.2013 | 0.9467 | | 0.1777 | 0.64 | 600 | 0.2352 | 0.9133 | | 0.1695 | 0.69 | 650 | 0.2965 | 0.9133 | | 0.177 | 0.75 | 700 | 0.2204 | 0.94 | | 0.187 | 0.8 | 750 | 0.2328 | 0.9133 | | 0.1721 | 0.85 | 800 | 0.1713 | 0.9267 | | 0.1747 | 0.91 | 850 | 0.2365 | 0.9 | | 0.1627 | 0.96 | 900 | 0.2202 | 0.9267 | | 0.1421 | 1.01 | 950 | 0.2681 | 0.9133 | | 0.1516 | 1.07 | 1000 | 0.2116 | 0.9333 | | 0.1196 | 1.12 | 1050 | 0.1885 | 0.94 | | 0.1444 | 1.17 | 1100 | 0.2121 | 0.9267 | | 0.1198 | 1.23 | 1150 | 0.2335 | 0.9333 | | 0.1474 | 1.28 | 1200 | 0.2348 | 0.9067 | | 0.125 | 1.33 | 1250 | 0.2401 | 0.9267 | | 0.117 | 1.39 | 1300 | 0.2041 | 0.9467 | | 0.114 | 1.44 | 1350 | 0.1985 | 0.9467 | | 0.1293 | 1.49 | 1400 | 0.1891 | 0.9533 | | 0.1231 | 1.55 | 1450 | 0.2168 | 0.9467 | | 0.1306 | 1.6 | 1500 | 0.2097 | 0.94 | | 0.1449 | 1.65 | 1550 | 0.1790 | 0.9333 | | 0.132 | 1.71 | 1600 | 0.1838 | 0.9333 | | 0.124 | 1.76 | 1650 | 0.1890 | 0.94 | | 0.1419 | 1.81 | 1700 | 0.1575 | 0.9533 | | 0.139 | 1.87 | 1750 | 0.1794 | 0.94 | | 0.1171 | 1.92 | 1800 | 0.1981 | 0.9533 | | 0.1343 | 1.97 | 1850 | 0.1539 | 0.96 | | 0.0924 | 2.03 | 1900 | 0.1875 | 0.9533 | | 0.0662 | 2.08 | 1950 | 0.2658 | 0.9467 | | 0.1024 | 2.13 | 2000 | 0.1869 | 0.9467 | | 0.1051 | 2.19 | 2050 | 0.1967 | 0.94 | | 0.1047 | 2.24 | 2100 | 0.1625 | 0.9533 | | 0.0972 | 2.29 | 2150 | 0.1754 | 0.9533 | | 0.0885 | 2.35 | 2200 | 0.1831 | 0.94 | | 0.0999 | 2.4 | 2250 | 0.1830 | 0.9533 | | 0.0628 | 2.45 | 2300 | 0.1663 | 0.96 | | 0.0957 | 2.51 | 2350 | 0.1708 | 0.9467 | | 0.0864 | 2.56 | 2400 | 0.1977 | 0.9467 | | 0.0752 | 2.61 | 2450 | 0.2427 | 0.9467 | | 0.0913 | 2.67 | 2500 | 0.2325 | 0.94 | | 0.139 | 2.72 | 2550 | 0.1470 | 0.96 | | 0.0839 | 2.77 | 2600 | 0.2193 | 0.94 | | 0.1045 | 2.83 | 2650 | 0.1672 | 0.9533 | | 0.0775 | 2.88 | 2700 | 0.1782 | 0.96 | | 0.0909 | 2.93 | 2750 | 0.2241 | 0.94 | | 0.1182 | 2.99 | 2800 | 0.1942 | 0.9533 | | 0.0721 | 3.04 | 2850 | 0.1774 | 0.9533 | | 0.0562 | 3.09 | 2900 | 0.1877 | 0.9467 | | 0.0613 | 3.14 | 2950 | 0.1576 | 0.96 | | 0.0433 | 3.2 | 3000 | 0.2294 | 0.9467 | | 0.0743 | 3.25 | 3050 | 0.2050 | 0.9533 | | 0.0568 | 3.3 | 3100 | 0.1770 | 0.9667 | | 0.0785 | 3.36 | 3150 | 0.1732 | 0.96 | | 0.0434 | 3.41 | 3200 | 0.2130 | 0.9533 | | 0.0534 | 3.46 | 3250 | 0.1902 | 0.9667 | | 0.0748 | 3.52 | 3300 | 0.2082 | 0.9333 | | 0.0691 | 3.57 | 3350 | 0.1820 | 0.96 | | 0.0493 | 3.62 | 3400 | 0.1933 | 0.9533 | | 0.0388 | 3.68 | 3450 | 0.2319 | 0.94 | | 0.0649 | 3.73 | 3500 | 0.2071 | 0.94 | | 0.0369 | 3.78 | 3550 | 0.2092 | 0.9533 | | 0.0381 | 3.84 | 3600 | 0.2171 | 0.9533 | | 0.0461 | 3.89 | 3650 | 0.2430 | 0.9467 | | 0.0682 | 3.94 | 3700 | 0.2372 | 0.9467 | | 0.0438 | 4.0 | 3750 | 0.2335 | 0.9467 | | 0.0293 | 4.05 | 3800 | 0.2337 | 0.9533 | | 0.0313 | 4.1 | 3850 | 0.2349 | 0.9467 | | 0.0467 | 4.16 | 3900 | 0.2806 | 0.94 | | 0.0243 | 4.21 | 3950 | 0.2493 | 0.94 | | 0.0409 | 4.26 | 4000 | 0.2460 | 0.9533 | | 0.041 | 4.32 | 4050 | 0.2550 | 0.9533 | | 0.0319 | 4.37 | 4100 | 0.2438 | 0.9533 | | 0.0457 | 4.42 | 4150 | 0.2469 | 0.9533 | | 0.0343 | 4.48 | 4200 | 0.2298 | 0.9533 | | 0.0464 | 4.53 | 4250 | 0.2555 | 0.9467 | | 0.0289 | 4.58 | 4300 | 0.2486 | 0.9533 | | 0.0416 | 4.64 | 4350 | 0.2539 | 0.9533 | | 0.0422 | 4.69 | 4400 | 0.2534 | 0.9533 | | 0.037 | 4.74 | 4450 | 0.2492 | 0.9467 | | 0.0387 | 4.8 | 4500 | 0.2406 | 0.9533 | | 0.0472 | 4.85 | 4550 | 0.2411 | 0.9533 | | 0.0404 | 4.9 | 4600 | 0.2419 | 0.9533 | | 0.0267 | 4.96 | 4650 | 0.2404 | 0.9533 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
Pablo94/roberta-base-bne-finetuned-detests-02-11-2022
Pablo94
2022-11-02T11:52:49Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-02T11:36:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: roberta-base-bne-finetuned-detests-02-11-2022 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-detests-02-11-2022 This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8124 - F1: 0.6381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.379 | 0.64 | 25 | 0.4136 | 0.0 | | 0.315 | 1.28 | 50 | 0.3663 | 0.6343 | | 0.3228 | 1.92 | 75 | 0.3424 | 0.6386 | | 0.1657 | 2.56 | 100 | 0.5133 | 0.5385 | | 0.108 | 3.21 | 125 | 0.4766 | 0.6452 | | 0.0631 | 3.85 | 150 | 0.6063 | 0.6083 | | 0.0083 | 4.49 | 175 | 0.6200 | 0.6198 | | 0.0032 | 5.13 | 200 | 0.6508 | 0.6335 | | 0.0047 | 5.77 | 225 | 0.6877 | 0.6269 | | 0.0018 | 6.41 | 250 | 0.7745 | 0.6148 | | 0.0014 | 7.05 | 275 | 0.7741 | 0.6299 | | 0.001 | 7.69 | 300 | 0.7896 | 0.6381 | | 0.0011 | 8.33 | 325 | 0.8008 | 0.6381 | | 0.0008 | 8.97 | 350 | 0.8086 | 0.6381 | | 0.0009 | 9.62 | 375 | 0.8124 | 0.6381 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
lmvasque/readability-es-benchmark-bertin-es-sentences-2class
lmvasque
2022-11-02T11:42:14Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T16:32:36Z
--- license: cc-by-4.0 --- ## Readability benchmark (ES): bertin-es-sentences-2class This project is part of a series of models from the paper "A Benchmark for Neural Readability Assessment of Texts in Spanish". You can find more details about the project in our [GitHub](https://github.com/lmvasque/readability-es-benchmark). ## Models Our models were fine-tuned in multiple settings, including readability assessment in 2-class (simple/complex) and 3-class (basic/intermediate/advanced) for sentences and paragraph datasets. You can find more details in our [paper](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link). These are the available models you can use (current model page in bold): | Model | Granularity | # classes | |-----------------------------------------------------------------------------------------------------------|----------------|:---------:| | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-2class) | paragraphs | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-2class) | paragraphs | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-paragraphs-3class) | paragraphs | 3 | | **[BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-2class)** | **sentences** | **2** | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-3class) | sentences | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-2class) | sentences | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-3class) | sentences | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-sentences-3class) | sentences | 3 | For the zero-shot setting, we used the original models [BERTIN](bertin-project/bertin-roberta-base-spanish) and [mBERT](https://huggingface.co/bert-base-multilingual-uncased) with no further training. ## Results These are our results for all the readability models in different settings. Please select your model based on the desired performance: | Granularity | Model | F1 Score (2-class) | Precision (2-class) | Recall (2-class) | F1 Score (3-class) | Precision (3-class) | Recall (3-class) | |-------------|---------------|:-------------------:|:---------------------:|:------------------:|:--------------------:|:---------------------:|:------------------:| | Paragraph | Baseline (TF-IDF+LR) | 0.829 | 0.832 | 0.827 | 0.556 | 0.563 | 0.550 | | Paragraph | BERTIN (Zero) | 0.308 | 0.222 | 0.500 | 0.227 | 0.284 | 0.338 | | Paragraph | BERTIN (ES) | 0.924 | 0.923 | 0.925 | 0.772 | 0.776 | 0.768 | | Paragraph | mBERT (Zero) | 0.308 | 0.222 | 0.500 | 0.253 | 0.312 | 0.368 | | Paragraph | mBERT (EN) | - | - | - | 0.505 | 0.560 | 0.552 | | Paragraph | mBERT (ES) | **0.933** | **0.932** | **0.936** | 0.776 | 0.777 | 0.778 | | Paragraph | mBERT (EN+ES) | - | - | - | **0.779** | **0.783** | **0.779** | | Sentence | Baseline (TF-IDF+LR) | 0.811 | 0.814 | 0.808 | 0.525 | 0.531 | 0.521 | | Sentence | BERTIN (Zero) | 0.367 | 0.290 | 0.500 | 0.188 | 0.232 | 0.335 | | Sentence | BERTIN (ES) | **0.900** | **0.900** | **0.900** | **0.699** | **0.701** | **0.698** | | Sentence | mBERT (Zero) | 0.367 | 0.290 | 0.500 | 0.278 | 0.329 | 0.351 | | Sentence | mBERT (EN) | - | - | - | 0.521 | 0.565 | 0.539 | | Sentence | mBERT (ES) | 0.893 | 0.891 | 0.896 | 0.688 | 0.686 | 0.691 | | Sentence | mBERT (EN+ES) | - | - | - | 0.679 | 0.676 | 0.682 | ## Citation If you use our results and scripts in your research, please cite our work: "[A Benchmark for Neural Readability Assessment of Texts in Spanish](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link)" (to be published) ``` @inproceedings{vasquez-rodriguez-etal-2022-benchmarking, title = "A Benchmark for Neural Readability Assessment of Texts in Spanish", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Cuenca-Jim{\'\e}nez, Pedro-Manuel and Morales-Esquivel, Sergio Esteban and Alva-Manchego, Fernando", booktitle = "Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
lmvasque/readability-es-benchmark-bertin-es-paragraphs-2class
lmvasque
2022-11-02T11:41:35Z
9
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T12:04:27Z
--- license: cc-by-4.0 --- ## Readability benchmark (ES): bertin-es-paragraphs-2class This project is part of a series of models from the paper "A Benchmark for Neural Readability Assessment of Texts in Spanish". You can find more details about the project in our [GitHub](https://github.com/lmvasque/readability-es-benchmark). ## Models Our models were fine-tuned in multiple settings, including readability assessment in 2-class (simple/complex) and 3-class (basic/intermediate/advanced) for sentences and paragraph datasets. You can find more details in our [paper](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link). These are the available models you can use (current model page in bold): | Model | Granularity | # classes | |-----------------------------------------------------------------------------------------------------------|----------------|:---------:| | **[BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-2class)** | **paragraphs** | **2** | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-2class) | paragraphs | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-paragraphs-3class) | paragraphs | 3 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-2class) | sentences | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-3class) | sentences | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-2class) | sentences | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-3class) | sentences | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-sentences-3class) | sentences | 3 | For the zero-shot setting, we used the original models [BERTIN](bertin-project/bertin-roberta-base-spanish) and [mBERT](https://huggingface.co/bert-base-multilingual-uncased) with no further training. ## Results These are our results for all the readability models in different settings. Please select your model based on the desired performance: | Granularity | Model | F1 Score (2-class) | Precision (2-class) | Recall (2-class) | F1 Score (3-class) | Precision (3-class) | Recall (3-class) | |-------------|---------------|:-------------------:|:---------------------:|:------------------:|:--------------------:|:---------------------:|:------------------:| | Paragraph | Baseline (TF-IDF+LR) | 0.829 | 0.832 | 0.827 | 0.556 | 0.563 | 0.550 | | Paragraph | BERTIN (Zero) | 0.308 | 0.222 | 0.500 | 0.227 | 0.284 | 0.338 | | Paragraph | BERTIN (ES) | 0.924 | 0.923 | 0.925 | 0.772 | 0.776 | 0.768 | | Paragraph | mBERT (Zero) | 0.308 | 0.222 | 0.500 | 0.253 | 0.312 | 0.368 | | Paragraph | mBERT (EN) | - | - | - | 0.505 | 0.560 | 0.552 | | Paragraph | mBERT (ES) | **0.933** | **0.932** | **0.936** | 0.776 | 0.777 | 0.778 | | Paragraph | mBERT (EN+ES) | - | - | - | **0.779** | **0.783** | **0.779** | | Sentence | Baseline (TF-IDF+LR) | 0.811 | 0.814 | 0.808 | 0.525 | 0.531 | 0.521 | | Sentence | BERTIN (Zero) | 0.367 | 0.290 | 0.500 | 0.188 | 0.232 | 0.335 | | Sentence | BERTIN (ES) | **0.900** | **0.900** | **0.900** | **0.699** | **0.701** | **0.698** | | Sentence | mBERT (Zero) | 0.367 | 0.290 | 0.500 | 0.278 | 0.329 | 0.351 | | Sentence | mBERT (EN) | - | - | - | 0.521 | 0.565 | 0.539 | | Sentence | mBERT (ES) | 0.893 | 0.891 | 0.896 | 0.688 | 0.686 | 0.691 | | Sentence | mBERT (EN+ES) | - | - | - | 0.679 | 0.676 | 0.682 | ## Citation If you use our results and scripts in your research, please cite our work: "[A Benchmark for Neural Readability Assessment of Texts in Spanish](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link)" (to be published) ``` @inproceedings{vasquez-rodriguez-etal-2022-benchmarking, title = "A Benchmark for Neural Readability Assessment of Texts in Spanish", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Cuenca-Jim{\'\e}nez, Pedro-Manuel and Morales-Esquivel, Sergio Esteban and Alva-Manchego, Fernando", booktitle = "Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
lmvasque/readability-es-benchmark-mbert-en-es-paragraphs-3class
lmvasque
2022-11-02T11:41:13Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T18:11:26Z
--- license: cc-by-4.0 --- ## Readability benchmark (ES): mbert-en-es-paragraphs-3class This project is part of a series of models from the paper "A Benchmark for Neural Readability Assessment of Texts in Spanish". You can find more details about the project in our [GitHub](https://github.com/lmvasque/readability-es-benchmark). ## Models Our models were fine-tuned in multiple settings, including readability assessment in 2-class (simple/complex) and 3-class (basic/intermediate/advanced) for sentences and paragraph datasets. You can find more details in our [paper](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link). These are the available models you can use (current model page in bold): | Model | Granularity | # classes | |-------------------------------------------------------------------------------------------------------------|----------------|:---------:| | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-2class) | paragraphs | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-2class) | paragraphs | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-3class) | paragraphs | 3 | | **[mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-paragraphs-3class)** | **paragraphs** | **3** | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-2class) | sentences | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-3class) | sentences | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-2class) | sentences | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-3class) | sentences | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-sentences-3class) | sentences | 3 | For the zero-shot setting, we used the original models [BERTIN](bertin-project/bertin-roberta-base-spanish) and [mBERT](https://huggingface.co/bert-base-multilingual-uncased) with no further training. ## Results These are our results for all the readability models in different settings. Please select your model based on the desired performance: | Granularity | Model | F1 Score (2-class) | Precision (2-class) | Recall (2-class) | F1 Score (3-class) | Precision (3-class) | Recall (3-class) | |-------------|---------------|:-------------------:|:---------------------:|:------------------:|:--------------------:|:---------------------:|:------------------:| | Paragraph | Baseline (TF-IDF+LR) | 0.829 | 0.832 | 0.827 | 0.556 | 0.563 | 0.550 | | Paragraph | BERTIN (Zero) | 0.308 | 0.222 | 0.500 | 0.227 | 0.284 | 0.338 | | Paragraph | BERTIN (ES) | 0.924 | 0.923 | 0.925 | 0.772 | 0.776 | 0.768 | | Paragraph | mBERT (Zero) | 0.308 | 0.222 | 0.500 | 0.253 | 0.312 | 0.368 | | Paragraph | mBERT (EN) | - | - | - | 0.505 | 0.560 | 0.552 | | Paragraph | mBERT (ES) | **0.933** | **0.932** | **0.936** | 0.776 | 0.777 | 0.778 | | Paragraph | mBERT (EN+ES) | - | - | - | **0.779** | **0.783** | **0.779** | | Sentence | Baseline (TF-IDF+LR) | 0.811 | 0.814 | 0.808 | 0.525 | 0.531 | 0.521 | | Sentence | BERTIN (Zero) | 0.367 | 0.290 | 0.500 | 0.188 | 0.232 | 0.335 | | Sentence | BERTIN (ES) | **0.900** | **0.900** | **0.900** | **0.699** | **0.701** | **0.698** | | Sentence | mBERT (Zero) | 0.367 | 0.290 | 0.500 | 0.278 | 0.329 | 0.351 | | Sentence | mBERT (EN) | - | - | - | 0.521 | 0.565 | 0.539 | | Sentence | mBERT (ES) | 0.893 | 0.891 | 0.896 | 0.688 | 0.686 | 0.691 | | Sentence | mBERT (EN+ES) | - | - | - | 0.679 | 0.676 | 0.682 | ## Citation If you use our results and scripts in your research, please cite our work: "[A Benchmark for Neural Readability Assessment of Texts in Spanish](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link)" (to be published) ``` @inproceedings{vasquez-rodriguez-etal-2022-benchmarking, title = "A Benchmark for Neural Readability Assessment of Texts in Spanish", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Cuenca-Jim{\'\e}nez, Pedro-Manuel and Morales-Esquivel, Sergio Esteban and Alva-Manchego, Fernando", booktitle = "Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
lmvasque/readability-es-benchmark-mbert-es-paragraphs-2class
lmvasque
2022-11-02T11:40:28Z
7
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T15:38:56Z
--- license: cc-by-4.0 --- ## Readability benchmark (ES): mbert-es-paragraphs-2class This project is part of a series of models from the paper "A Benchmark for Neural Readability Assessment of Texts in Spanish". You can find more details about the project in our [GitHub](https://github.com/lmvasque/readability-es-benchmark). ## Models Our models were fine-tuned in multiple settings, including readability assessment in 2-class (simple/complex) and 3-class (basic/intermediate/advanced) for sentences and paragraph datasets. You can find more details in our [paper](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link). These are the available models you can use (current model page in bold): | Model | Granularity | # classes | |-----------------------------------------------------------------------------------------------------------|----------------|:---------:| | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-2class) | paragraphs | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-3class) | paragraphs | 3 | | **[mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-2class)** | **paragraphs** | **2** | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-paragraphs-3class) | paragraphs | 3 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-2class) | sentences | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-3class) | sentences | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-2class) | sentences | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-3class) | sentences | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-sentences-3class) | sentences | 3 | For the zero-shot setting, we used the original models [BERTIN](bertin-project/bertin-roberta-base-spanish) and [mBERT](https://huggingface.co/bert-base-multilingual-uncased) with no further training. ## Results These are our results for all the readability models in different settings. Please select your model based on the desired performance: | Granularity | Model | F1 Score (2-class) | Precision (2-class) | Recall (2-class) | F1 Score (3-class) | Precision (3-class) | Recall (3-class) | |-------------|---------------|:-------------------:|:---------------------:|:------------------:|:--------------------:|:---------------------:|:------------------:| | Paragraph | Baseline (TF-IDF+LR) | 0.829 | 0.832 | 0.827 | 0.556 | 0.563 | 0.550 | | Paragraph | BERTIN (Zero) | 0.308 | 0.222 | 0.500 | 0.227 | 0.284 | 0.338 | | Paragraph | BERTIN (ES) | 0.924 | 0.923 | 0.925 | 0.772 | 0.776 | 0.768 | | Paragraph | mBERT (Zero) | 0.308 | 0.222 | 0.500 | 0.253 | 0.312 | 0.368 | | Paragraph | mBERT (EN) | - | - | - | 0.505 | 0.560 | 0.552 | | Paragraph | mBERT (ES) | **0.933** | **0.932** | **0.936** | 0.776 | 0.777 | 0.778 | | Paragraph | mBERT (EN+ES) | - | - | - | **0.779** | **0.783** | **0.779** | | Sentence | Baseline (TF-IDF+LR) | 0.811 | 0.814 | 0.808 | 0.525 | 0.531 | 0.521 | | Sentence | BERTIN (Zero) | 0.367 | 0.290 | 0.500 | 0.188 | 0.232 | 0.335 | | Sentence | BERTIN (ES) | **0.900** | **0.900** | **0.900** | **0.699** | **0.701** | **0.698** | | Sentence | mBERT (Zero) | 0.367 | 0.290 | 0.500 | 0.278 | 0.329 | 0.351 | | Sentence | mBERT (EN) | - | - | - | 0.521 | 0.565 | 0.539 | | Sentence | mBERT (ES) | 0.893 | 0.891 | 0.896 | 0.688 | 0.686 | 0.691 | | Sentence | mBERT (EN+ES) | - | - | - | 0.679 | 0.676 | 0.682 | ## Citation If you use our results and scripts in your research, please cite our work: "[A Benchmark for Neural Readability Assessment of Texts in Spanish](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link)" (to be published) ``` @inproceedings{vasquez-rodriguez-etal-2022-benchmarking, title = "A Benchmark for Neural Readability Assessment of Texts in Spanish", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Cuenca-Jim{\'\e}nez, Pedro-Manuel and Morales-Esquivel, Sergio Esteban and Alva-Manchego, Fernando", booktitle = "Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
lmvasque/readability-es-benchmark-mbert-en-es-sentences-3class
lmvasque
2022-11-02T11:40:09Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T18:13:26Z
--- license: cc-by-4.0 --- ## Readability benchmark (ES): mbert-en-es-sentences-3class This project is part of a series of models from the paper "A Benchmark for Neural Readability Assessment of Texts in Spanish". You can find more details about the project in our [GitHub](https://github.com/lmvasque/readability-es-benchmark). ## Models Our models were fine-tuned in multiple settings, including readability assessment in 2-class (simple/complex) and 3-class (basic/intermediate/advanced) for sentences and paragraph datasets. You can find more details in our [paper](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link). These are the available models you can use (current model page in bold): | Model | Granularity | # classes | |-----------------------------------------------------------------------------------------------------------|----------------|:---------:| | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-2class) | paragraphs | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-2class) | paragraphs | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-paragraphs-3class) | paragraphs | 3 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-2class) | sentences | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-3class) | sentences | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-2class) | sentences | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-3class) | sentences | 3 | | **[mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-sentences-3class)** | **sentences** | **3** | For the zero-shot setting, we used the original models [BERTIN](bertin-project/bertin-roberta-base-spanish) and [mBERT](https://huggingface.co/bert-base-multilingual-uncased) with no further training. ## Results These are our results for all the readability models in different settings. Please select your model based on the desired performance: | Granularity | Model | F1 Score (2-class) | Precision (2-class) | Recall (2-class) | F1 Score (3-class) | Precision (3-class) | Recall (3-class) | |-------------|---------------|:-------------------:|:---------------------:|:------------------:|:--------------------:|:---------------------:|:------------------:| | Paragraph | Baseline (TF-IDF+LR) | 0.829 | 0.832 | 0.827 | 0.556 | 0.563 | 0.550 | | Paragraph | BERTIN (Zero) | 0.308 | 0.222 | 0.500 | 0.227 | 0.284 | 0.338 | | Paragraph | BERTIN (ES) | 0.924 | 0.923 | 0.925 | 0.772 | 0.776 | 0.768 | | Paragraph | mBERT (Zero) | 0.308 | 0.222 | 0.500 | 0.253 | 0.312 | 0.368 | | Paragraph | mBERT (EN) | - | - | - | 0.505 | 0.560 | 0.552 | | Paragraph | mBERT (ES) | **0.933** | **0.932** | **0.936** | 0.776 | 0.777 | 0.778 | | Paragraph | mBERT (EN+ES) | - | - | - | **0.779** | **0.783** | **0.779** | | Sentence | Baseline (TF-IDF+LR) | 0.811 | 0.814 | 0.808 | 0.525 | 0.531 | 0.521 | | Sentence | BERTIN (Zero) | 0.367 | 0.290 | 0.500 | 0.188 | 0.232 | 0.335 | | Sentence | BERTIN (ES) | **0.900** | **0.900** | **0.900** | **0.699** | **0.701** | **0.698** | | Sentence | mBERT (Zero) | 0.367 | 0.290 | 0.500 | 0.278 | 0.329 | 0.351 | | Sentence | mBERT (EN) | - | - | - | 0.521 | 0.565 | 0.539 | | Sentence | mBERT (ES) | 0.893 | 0.891 | 0.896 | 0.688 | 0.686 | 0.691 | | Sentence | mBERT (EN+ES) | - | - | - | 0.679 | 0.676 | 0.682 | ## Citation If you use our results and scripts in your research, please cite our work: "[A Benchmark for Neural Readability Assessment of Texts in Spanish](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link)" (to be published) ``` @inproceedings{vasquez-rodriguez-etal-2022-benchmarking, title = "A Benchmark for Neural Readability Assessment of Texts in Spanish", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Cuenca-Jim{\'\e}nez, Pedro-Manuel and Morales-Esquivel, Sergio Esteban and Alva-Manchego, Fernando", booktitle = "Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
lmvasque/readability-es-benchmark-bertin-es-paragraphs-3class
lmvasque
2022-11-02T11:39:45Z
10
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T13:18:41Z
--- license: cc-by-4.0 --- ## Readability benchmark (ES): bertin-es-paragraphs-3class This project is part of a series of models from the paper "A Benchmark for Neural Readability Assessment of Texts in Spanish". You can find more details about the project in our [GitHub](https://github.com/lmvasque/readability-es-benchmark). ## Models Our models were fine-tuned in multiple settings, including readability assessment in 2-class (simple/complex) and 3-class (basic/intermediate/advanced) for sentences and paragraph datasets. You can find more details in our [paper](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link). These are the available models you can use (current model page in bold): | Model | Granularity | # classes | |-----------------------------------------------------------------------------------------------------------|----------------|:---------:| | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-2class) | paragraphs | 2 | | **[BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-3class)** | **paragraphs** | **3** | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-2class) | paragraphs | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-paragraphs-3class) | paragraphs | 3 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-2class) | sentences | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-3class) | sentences | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-2class) | sentences | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-3class) | sentences | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-sentences-3class) | sentences | 3 | For the zero-shot setting, we used the original models [BERTIN](bertin-project/bertin-roberta-base-spanish) and [mBERT](https://huggingface.co/bert-base-multilingual-uncased) with no further training. ## Results These are our results for all the readability models in different settings. Please select your model based on the desired performance: | Granularity | Model | F1 Score (2-class) | Precision (2-class) | Recall (2-class) | F1 Score (3-class) | Precision (3-class) | Recall (3-class) | |-------------|---------------|:-------------------:|:---------------------:|:------------------:|:--------------------:|:---------------------:|:------------------:| | Paragraph | Baseline (TF-IDF+LR) | 0.829 | 0.832 | 0.827 | 0.556 | 0.563 | 0.550 | | Paragraph | BERTIN (Zero) | 0.308 | 0.222 | 0.500 | 0.227 | 0.284 | 0.338 | | Paragraph | BERTIN (ES) | 0.924 | 0.923 | 0.925 | 0.772 | 0.776 | 0.768 | | Paragraph | mBERT (Zero) | 0.308 | 0.222 | 0.500 | 0.253 | 0.312 | 0.368 | | Paragraph | mBERT (EN) | - | - | - | 0.505 | 0.560 | 0.552 | | Paragraph | mBERT (ES) | **0.933** | **0.932** | **0.936** | 0.776 | 0.777 | 0.778 | | Paragraph | mBERT (EN+ES) | - | - | - | **0.779** | **0.783** | **0.779** | | Sentence | Baseline (TF-IDF+LR) | 0.811 | 0.814 | 0.808 | 0.525 | 0.531 | 0.521 | | Sentence | BERTIN (Zero) | 0.367 | 0.290 | 0.500 | 0.188 | 0.232 | 0.335 | | Sentence | BERTIN (ES) | **0.900** | **0.900** | **0.900** | **0.699** | **0.701** | **0.698** | | Sentence | mBERT (Zero) | 0.367 | 0.290 | 0.500 | 0.278 | 0.329 | 0.351 | | Sentence | mBERT (EN) | - | - | - | 0.521 | 0.565 | 0.539 | | Sentence | mBERT (ES) | 0.893 | 0.891 | 0.896 | 0.688 | 0.686 | 0.691 | | Sentence | mBERT (EN+ES) | - | - | - | 0.679 | 0.676 | 0.682 | ## Citation If you use our results and scripts in your research, please cite our work: "[A Benchmark for Neural Readability Assessment of Texts in Spanish](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link)" (to be published) ``` @inproceedings{vasquez-rodriguez-etal-2022-benchmarking, title = "A Benchmark for Neural Readability Assessment of Texts in Spanish", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Cuenca-Jim{\'\e}nez, Pedro-Manuel and Morales-Esquivel, Sergio Esteban and Alva-Manchego, Fernando", booktitle = "Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
lmvasque/readability-es-benchmark-mbert-es-paragraphs-3class
lmvasque
2022-11-02T11:39:01Z
31
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T15:59:33Z
--- license: cc-by-4.0 --- ## Readability benchmark (ES): mbert-es-paragraphs-3class This project is part of a series of models from the paper "A Benchmark for Neural Readability Assessment of Texts in Spanish". You can find more details about the project in our [GitHub](https://github.com/lmvasque/readability-es-benchmark). ## Models Our models were fine-tuned in multiple settings, including readability assessment in 2-class (simple/complex) and 3-class (basic/intermediate/advanced) for sentences and paragraph datasets. You can find more details in our [paper](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link). These are the available models you can use (current model page in bold): | Model | Granularity | # classes | |-----------------------------------------------------------------------------------------------------------|----------------|:---------:| | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-2class) | paragraphs | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-2class) | paragraphs | 2 | | **[mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-3class)** | **paragraphs** | **3** | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-paragraphs-3class) | paragraphs | 3 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-2class) | sentences | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-3class) | sentences | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-2class) | sentences | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-3class) | sentences | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-sentences-3class) | sentences | 3 | For the zero-shot setting, we used the original models [BERTIN](bertin-project/bertin-roberta-base-spanish) and [mBERT](https://huggingface.co/bert-base-multilingual-uncased) with no further training. ## Results These are our results for all the readability models in different settings. Please select your model based on the desired performance: | Granularity | Model | F1 Score (2-class) | Precision (2-class) | Recall (2-class) | F1 Score (3-class) | Precision (3-class) | Recall (3-class) | |-------------|---------------|:-------------------:|:---------------------:|:------------------:|:--------------------:|:---------------------:|:------------------:| | Paragraph | Baseline (TF-IDF+LR) | 0.829 | 0.832 | 0.827 | 0.556 | 0.563 | 0.550 | | Paragraph | BERTIN (Zero) | 0.308 | 0.222 | 0.500 | 0.227 | 0.284 | 0.338 | | Paragraph | BERTIN (ES) | 0.924 | 0.923 | 0.925 | 0.772 | 0.776 | 0.768 | | Paragraph | mBERT (Zero) | 0.308 | 0.222 | 0.500 | 0.253 | 0.312 | 0.368 | | Paragraph | mBERT (EN) | - | - | - | 0.505 | 0.560 | 0.552 | | Paragraph | mBERT (ES) | **0.933** | **0.932** | **0.936** | 0.776 | 0.777 | 0.778 | | Paragraph | mBERT (EN+ES) | - | - | - | **0.779** | **0.783** | **0.779** | | Sentence | Baseline (TF-IDF+LR) | 0.811 | 0.814 | 0.808 | 0.525 | 0.531 | 0.521 | | Sentence | BERTIN (Zero) | 0.367 | 0.290 | 0.500 | 0.188 | 0.232 | 0.335 | | Sentence | BERTIN (ES) | **0.900** | **0.900** | **0.900** | **0.699** | **0.701** | **0.698** | | Sentence | mBERT (Zero) | 0.367 | 0.290 | 0.500 | 0.278 | 0.329 | 0.351 | | Sentence | mBERT (EN) | - | - | - | 0.521 | 0.565 | 0.539 | | Sentence | mBERT (ES) | 0.893 | 0.891 | 0.896 | 0.688 | 0.686 | 0.691 | | Sentence | mBERT (EN+ES) | - | - | - | 0.679 | 0.676 | 0.682 | ## Citation If you use our results and scripts in your research, please cite our work: "[A Benchmark for Neural Readability Assessment of Texts in Spanish](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link)" (to be published) ``` @inproceedings{vasquez-rodriguez-etal-2022-benchmarking, title = "A Benchmark for Neural Readability Assessment of Texts in Spanish", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Cuenca-Jim{\'\e}nez, Pedro-Manuel and Morales-Esquivel, Sergio Esteban and Alva-Manchego, Fernando", booktitle = "Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
lmvasque/readability-es-benchmark-mbert-es-sentences-3class
lmvasque
2022-11-02T11:38:41Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T17:06:41Z
--- license: cc-by-4.0 --- ## Readability benchmark (ES): mbert-es-sentences-3class This project is part of a series of models from the paper "A Benchmark for Neural Readability Assessment of Texts in Spanish". You can find more details about the project in our [GitHub](https://github.com/lmvasque/readability-es-benchmark). ## Models Our models were fine-tuned in multiple settings, including readability assessment in 2-class (simple/complex) and 3-class (basic/intermediate/advanced) for sentences and paragraph datasets. You can find more details in our [paper](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link). These are the available models you can use (current model page in bold): | Model | Granularity | # classes | |-----------------------------------------------------------------------------------------------------------|----------------|:---------:| | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-2class) | paragraphs | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-2class) | paragraphs | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-paragraphs-3class) | paragraphs | 3 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-2class) | sentences | 2 | | **[mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-3class)** | **sentences** | **3** | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-2class) | sentences | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-3class) | sentences | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-sentences-3class) | sentences | 3 | For the zero-shot setting, we used the original models [BERTIN](bertin-project/bertin-roberta-base-spanish) and [mBERT](https://huggingface.co/bert-base-multilingual-uncased) with no further training. ## Results These are our results for all the readability models in different settings. Please select your model based on the desired performance: | Granularity | Model | F1 Score (2-class) | Precision (2-class) | Recall (2-class) | F1 Score (3-class) | Precision (3-class) | Recall (3-class) | |-------------|---------------|:-------------------:|:---------------------:|:------------------:|:--------------------:|:---------------------:|:------------------:| | Paragraph | Baseline (TF-IDF+LR) | 0.829 | 0.832 | 0.827 | 0.556 | 0.563 | 0.550 | | Paragraph | BERTIN (Zero) | 0.308 | 0.222 | 0.500 | 0.227 | 0.284 | 0.338 | | Paragraph | BERTIN (ES) | 0.924 | 0.923 | 0.925 | 0.772 | 0.776 | 0.768 | | Paragraph | mBERT (Zero) | 0.308 | 0.222 | 0.500 | 0.253 | 0.312 | 0.368 | | Paragraph | mBERT (EN) | - | - | - | 0.505 | 0.560 | 0.552 | | Paragraph | mBERT (ES) | **0.933** | **0.932** | **0.936** | 0.776 | 0.777 | 0.778 | | Paragraph | mBERT (EN+ES) | - | - | - | **0.779** | **0.783** | **0.779** | | Sentence | Baseline (TF-IDF+LR) | 0.811 | 0.814 | 0.808 | 0.525 | 0.531 | 0.521 | | Sentence | BERTIN (Zero) | 0.367 | 0.290 | 0.500 | 0.188 | 0.232 | 0.335 | | Sentence | BERTIN (ES) | **0.900** | **0.900** | **0.900** | **0.699** | **0.701** | **0.698** | | Sentence | mBERT (Zero) | 0.367 | 0.290 | 0.500 | 0.278 | 0.329 | 0.351 | | Sentence | mBERT (EN) | - | - | - | 0.521 | 0.565 | 0.539 | | Sentence | mBERT (ES) | 0.893 | 0.891 | 0.896 | 0.688 | 0.686 | 0.691 | | Sentence | mBERT (EN+ES) | - | - | - | 0.679 | 0.676 | 0.682 | ## Citation If you use our results and scripts in your research, please cite our work: "[A Benchmark for Neural Readability Assessment of Texts in Spanish](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link)" (to be published) ``` @inproceedings{vasquez-rodriguez-etal-2022-benchmarking, title = "A Benchmark for Neural Readability Assessment of Texts in Spanish", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Cuenca-Jim{\'\e}nez, Pedro-Manuel and Morales-Esquivel, Sergio Esteban and Alva-Manchego, Fernando", booktitle = "Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
debbiesoon/summarise_v11
debbiesoon
2022-11-02T11:08:52Z
101
1
transformers
[ "transformers", "pytorch", "tensorboard", "led", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-02T10:13:48Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: summarise_v11 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # summarise_v11 This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6322 - Rouge1 Precision: 0.6059 - Rouge1 Recall: 0.6233 - Rouge1 Fmeasure: 0.5895 - Rouge2 Precision: 0.4192 - Rouge2 Recall: 0.4512 - Rouge2 Fmeasure: 0.4176 - Rougel Precision: 0.4622 - Rougel Recall: 0.4946 - Rougel Fmeasure: 0.4566 - Rougelsum Precision: 0.4622 - Rougelsum Recall: 0.4946 - Rougelsum Fmeasure: 0.4566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 Precision | Rouge1 Recall | Rouge1 Fmeasure | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | Rougel Precision | Rougel Recall | Rougel Fmeasure | Rougelsum Precision | Rougelsum Recall | Rougelsum Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:-------------------:|:----------------:|:------------------:| | 1.6201 | 0.45 | 10 | 1.4875 | 0.3203 | 0.64 | 0.3932 | 0.197 | 0.3839 | 0.2385 | 0.1952 | 0.4051 | 0.2454 | 0.1952 | 0.4051 | 0.2454 | | 0.9172 | 0.91 | 20 | 1.4404 | 0.4917 | 0.5134 | 0.4699 | 0.288 | 0.3095 | 0.276 | 0.3371 | 0.3594 | 0.3277 | 0.3371 | 0.3594 | 0.3277 | | 1.0923 | 1.36 | 30 | 1.3575 | 0.519 | 0.5505 | 0.4936 | 0.3114 | 0.3237 | 0.2958 | 0.3569 | 0.3702 | 0.3364 | 0.3569 | 0.3702 | 0.3364 | | 1.1287 | 1.82 | 40 | 1.3269 | 0.4913 | 0.5997 | 0.5068 | 0.3108 | 0.3964 | 0.3269 | 0.3355 | 0.427 | 0.3521 | 0.3355 | 0.427 | 0.3521 | | 0.9938 | 2.27 | 50 | 1.3189 | 0.5339 | 0.5781 | 0.4973 | 0.3555 | 0.3883 | 0.3345 | 0.3914 | 0.4289 | 0.3678 | 0.3914 | 0.4289 | 0.3678 | | 0.8659 | 2.73 | 60 | 1.3241 | 0.525 | 0.638 | 0.5165 | 0.3556 | 0.4349 | 0.3535 | 0.3914 | 0.4793 | 0.3886 | 0.3914 | 0.4793 | 0.3886 | | 0.6187 | 3.18 | 70 | 1.3360 | 0.5875 | 0.5864 | 0.5416 | 0.4005 | 0.4045 | 0.3701 | 0.4485 | 0.4556 | 0.414 | 0.4485 | 0.4556 | 0.414 | | 0.3941 | 3.64 | 80 | 1.4176 | 0.5373 | 0.6415 | 0.5328 | 0.3576 | 0.446 | 0.3642 | 0.3787 | 0.4586 | 0.3781 | 0.3787 | 0.4586 | 0.3781 | | 0.4145 | 4.09 | 90 | 1.3936 | 0.4127 | 0.6553 | 0.4568 | 0.2568 | 0.4498 | 0.2988 | 0.2918 | 0.4933 | 0.328 | 0.2918 | 0.4933 | 0.328 | | 0.4203 | 4.55 | 100 | 1.4703 | 0.6545 | 0.601 | 0.5981 | 0.4789 | 0.4373 | 0.438 | 0.5251 | 0.4851 | 0.4818 | 0.5251 | 0.4851 | 0.4818 | | 0.687 | 5.0 | 110 | 1.4304 | 0.5566 | 0.6357 | 0.5637 | 0.3734 | 0.4186 | 0.3748 | 0.4251 | 0.4825 | 0.4286 | 0.4251 | 0.4825 | 0.4286 | | 0.4006 | 5.45 | 120 | 1.5399 | 0.5994 | 0.5794 | 0.5515 | 0.4215 | 0.4218 | 0.398 | 0.4359 | 0.4369 | 0.4084 | 0.4359 | 0.4369 | 0.4084 | | 0.2536 | 5.91 | 130 | 1.5098 | 0.5074 | 0.6254 | 0.4874 | 0.3369 | 0.4189 | 0.3256 | 0.3802 | 0.4738 | 0.3664 | 0.3802 | 0.4738 | 0.3664 | | 0.2218 | 6.36 | 140 | 1.5278 | 0.5713 | 0.6059 | 0.5688 | 0.3887 | 0.4233 | 0.3916 | 0.4414 | 0.4795 | 0.4457 | 0.4414 | 0.4795 | 0.4457 | | 0.2577 | 6.82 | 150 | 1.5469 | 0.5148 | 0.5941 | 0.5175 | 0.3284 | 0.3856 | 0.3335 | 0.3616 | 0.4268 | 0.3681 | 0.3616 | 0.4268 | 0.3681 | | 0.1548 | 7.27 | 160 | 1.5986 | 0.5983 | 0.657 | 0.5862 | 0.4322 | 0.4877 | 0.4287 | 0.4466 | 0.5167 | 0.4482 | 0.4466 | 0.5167 | 0.4482 | | 0.1535 | 7.73 | 170 | 1.5796 | 0.5609 | 0.641 | 0.5616 | 0.3856 | 0.4428 | 0.3892 | 0.4238 | 0.4921 | 0.4263 | 0.4238 | 0.4921 | 0.4263 | | 0.1568 | 8.18 | 180 | 1.6052 | 0.5669 | 0.617 | 0.5679 | 0.3911 | 0.4382 | 0.3969 | 0.4363 | 0.4877 | 0.4417 | 0.4363 | 0.4877 | 0.4417 | | 0.2038 | 8.64 | 190 | 1.6191 | 0.5466 | 0.5973 | 0.5313 | 0.3543 | 0.4114 | 0.3531 | 0.4061 | 0.4666 | 0.404 | 0.4061 | 0.4666 | 0.404 | | 0.1808 | 9.09 | 200 | 1.6165 | 0.5751 | 0.5919 | 0.5587 | 0.3831 | 0.4097 | 0.3817 | 0.4482 | 0.4728 | 0.4405 | 0.4482 | 0.4728 | 0.4405 | | 0.1021 | 9.55 | 210 | 1.6316 | 0.5316 | 0.6315 | 0.535 | 0.3588 | 0.4563 | 0.3697 | 0.405 | 0.502 | 0.4126 | 0.405 | 0.502 | 0.4126 | | 0.1407 | 10.0 | 220 | 1.6322 | 0.6059 | 0.6233 | 0.5895 | 0.4192 | 0.4512 | 0.4176 | 0.4622 | 0.4946 | 0.4566 | 0.4622 | 0.4946 | 0.4566 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 1.2.1 - Tokenizers 0.12.1
fusing/latent-diffusion-text2im-large
fusing
2022-11-02T10:57:57Z
22
6
transformers
[ "transformers", "pytorch", "ldmbert", "diffusion", "arxiv:2112.10752", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-06-09T22:56:15Z
--- tags: - diffusion license: mit --- Latent Diffusion **Paper**: [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) **Abstract**: By decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image data and beyond. Additionally, their formulation allows for a guiding mechanism to control the image generation process without retraining. However, since these models typically operate directly in pixel space, optimization of powerful DMs often consumes hundreds of GPU days and inference is expensive due to sequential evaluations. To enable DM training on limited computational resources while retaining their quality and flexibility, we apply them in the latent space of powerful pretrained autoencoders. In contrast to previous work, training diffusion models on such a representation allows for the first time to reach a near-optimal point between complexity reduction and detail preservation, greatly boosting visual fidelity. By introducing cross-attention layers into the model architecture, we turn diffusion models into powerful and flexible generators for general conditioning inputs such as text or bounding boxes and high-resolution synthesis becomes possible in a convolutional manner. Our latent diffusion models (LDMs) achieve a new state of the art for image inpainting and highly competitive performance on various tasks, including unconditional image generation, semantic scene synthesis, and super-resolution, while significantly reducing computational requirements compared to pixel-based DMs. Code is available at this https URL. ## Usage ```python from diffusers import DiffusionPipeline ldm = DiffusionPipeline.from_pretrained("fusing/latent-diffusion-text2im-large") generator = torch.manual_seed(42) prompt = "A painting of a squirrel eating a burger" image = ldm([prompt], generator=generator, eta=0.3, guidance_scale=6.0, num_inference_steps=50) image_processed = image.cpu().permute(0, 2, 3, 1) image_processed = image_processed * 255. image_processed = image_processed.numpy().astype(np.uint8) image_pil = PIL.Image.fromarray(image_processed[0]) # save image image_pil.save("test.png") ``` ## Samples 1. "A street sign that reads Huggingface." ![sample_1](https://huggingface.co/datasets/valhalla/images/resolve/main/ldm-1.png) 2."A painting of a squirrel eating a burger" ![sample_2](https://huggingface.co/datasets/valhalla/images/resolve/main/ldm-2.png)
Pablo94/bert-base-uncased-finetuned-detests-02-11-2022
Pablo94
2022-11-02T10:54:53Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-02T10:09:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-base-uncased-finetuned-detests-02-11-2022 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-detests-02-11-2022 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0794 - F1: 0.5455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.014 | 0.64 | 25 | 0.6229 | 0.5536 | | 0.0698 | 1.28 | 50 | 0.6996 | 0.5907 | | 0.0173 | 1.92 | 75 | 0.7531 | 0.5882 | | 0.0032 | 2.56 | 100 | 0.8054 | 0.4928 | | 0.0087 | 3.21 | 125 | 0.9557 | 0.5735 | | 0.0028 | 3.85 | 150 | 0.8859 | 0.5352 | | 0.013 | 4.49 | 175 | 0.9674 | 0.5536 | | 0.0031 | 5.13 | 200 | 0.9073 | 0.5691 | | 0.0032 | 5.77 | 225 | 0.9253 | 0.5439 | | 0.0483 | 6.41 | 250 | 0.9705 | 0.5837 | | 0.0323 | 7.05 | 275 | 1.0368 | 0.5824 | | 0.0019 | 7.69 | 300 | 1.0221 | 0.5520 | | 0.0256 | 8.33 | 325 | 1.0419 | 0.5523 | | 0.0319 | 8.97 | 350 | 1.0764 | 0.5425 | | 0.0125 | 9.62 | 375 | 1.0794 | 0.5455 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Voicelab/sbert-base-cased-pl
Voicelab
2022-11-02T10:44:31Z
30,091
8
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "pl", "dataset:Wikipedia", "arxiv:1908.10084", "license:cc-by-4.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-04-11T06:57:47Z
--- license: cc-by-4.0 language: - pl datasets: - Wikipedia pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity widget: - source_sentence: "Uczenie maszynowe jest konsekwencją rozwoju idei sztucznej inteligencji i metod jej wdrażania praktycznego." sentences: - "Głębokie uczenie maszynowe jest sktukiem wdrażania praktycznego metod sztucznej inteligencji oraz jej rozwoju." - "Kasparow zarzucił firmie IBM oszustwo, kiedy odmówiła mu dostępu do historii wcześniejszych gier Deep Blue. " - "Samica o długości ciała 10–11 mm, szczoteczki na tylnych nogach służące do zbierania pyłku oraz włoski na końcu odwłoka jaskrawo pomarańczowoczerwone. " example_title: "Uczenie maszynowe" --- <img src="https://public.3.basecamp.com/p/rs5XqmAuF1iEuW6U7nMHcZeY/upload/download/VL-NLP-short.png" alt="logo voicelab nlp" style="width:300px;"/> # SHerbert - Polish SentenceBERT SentenceBERT is a modification of the pretrained BERT network that use siamese and triplet network structures to derive semantically meaningful sentence embeddings that can be compared using cosine-similarity. Training was based on the original paper [Siamese BERT models for the task of semantic textual similarity (STS)](https://arxiv.org/abs/1908.10084) with a slight modification of how the training data was used. The goal of the model is to generate different embeddings based on the semantic and topic similarity of the given text. > Semantic textual similarity analyzes how similar two pieces of texts are. Read more about how the model was prepared in our [blog post](https://voicelab.ai/blog/). The base trained model is a Polish HerBERT. HerBERT is a BERT-based Language Model. For more details, please refer to: "HerBERT: Efficiently Pretrained Transformer-based Language Model for Polish". # Corpus Te model was trained solely on [Wikipedia](https://dumps.wikimedia.org/). # Tokenizer As in the original HerBERT implementation, the training dataset was tokenized into subwords using a character level byte-pair encoding (CharBPETokenizer) with a vocabulary size of 50k tokens. The tokenizer itself was trained with a tokenizers library. We kindly encourage you to use the Fast version of the tokenizer, namely HerbertTokenizerFast. # Usage ```python from transformers import AutoTokenizer, AutoModel from sklearn.metrics import pairwise sbert = AutoModel.from_pretrained("Voicelab/sbert-base-cased-pl") tokenizer = AutoTokenizer.from_pretrained("Voicelab/sbert-base-cased-pl") s0 = "Uczenie maszynowe jest konsekwencją rozwoju idei sztucznej inteligencji i metod jej wdrażania praktycznego." s1 = "Głębokie uczenie maszynowe jest sktukiem wdrażania praktycznego metod sztucznej inteligencji oraz jej rozwoju." s2 = "Kasparow zarzucił firmie IBM oszustwo, kiedy odmówiła mu dostępu do historii wcześniejszych gier Deep Blue. " tokens = tokenizer([s0, s1, s2], padding=True, truncation=True, return_tensors='pt') x = sbert(tokens["input_ids"], tokens["attention_mask"]).pooler_output # similarity between sentences s0 and s1 print(pairwise.cosine_similarity(x[0], x[1])) # Result: 0.7952354 # similarity between sentences s0 and s2 print(pairwise.cosine_similarity(x[0], x[2])) # Result: 0.42359722 ``` # Results | Model | Accuracy | Source | |--------------------------|------------|---------------------------------------------------------| | SBERT-WikiSec-base (EN) | 80.42% | https://arxiv.org/abs/1908.10084 | | SBERT-WikiSec-large (EN) | 80.78% | https://arxiv.org/abs/1908.10084 | | **sbert-base-cased-pl** | **82.31%** | **https://huggingface.co/Voicelab/sbert-base-cased-pl** | | sbert-large-cased-pl | 84.42% | https://huggingface.co/Voicelab/sbert-large-cased-pl | # License CC BY 4.0 # Citation If you use this model, please cite the following paper: # Authors The model was trained by NLP Research Team at Voicelab.ai. You can contact us [here](https://voicelab.ai/contact/).
debbiesoon/summarise_v9
debbiesoon
2022-11-02T09:56:01Z
100
0
transformers
[ "transformers", "pytorch", "tensorboard", "led", "text2text-generation", "generated_from_trainer", "dataset:multi_news", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-31T11:53:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - multi_news model-index: - name: summarise_v9 results: [] --- ![SGH logo.png](https://s3.amazonaws.com/moonup/production/uploads/1667382308985-631feef1124782a19eff4243.png) This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the multi_news dataset. It achieves the following results on the evaluation set: - Loss: 2.3650 - Rouge1 Precision: 0.4673 - Rouge1 Recall: 0.4135 - Rouge1 Fmeasure: 0.4263 - Rouge2 Precision: 0.1579 - Rouge2 Recall: 0.1426 - Rouge2 Fmeasure: 0.1458 - Rougel Precision: 0.2245 - Rougel Recall: 0.2008 - Rougel Fmeasure: 0.2061 - Rougelsum Precision: 0.2245 - Rougelsum Recall: 0.2008 - Rougelsum Fmeasure: 0.2061 ## Model description This model was created to generate summaries of news articles. ## Intended uses & limitations The model takes up to maximum article length of 3072 tokens and generates a summary of maximum length of 512 tokens, and minimum length of 100 tokens. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 Precision | Rouge1 Recall | Rouge1 Fmeasure | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | Rougel Precision | Rougel Recall | Rougel Fmeasure | Rougelsum Precision | Rougelsum Recall | Rougelsum Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:-------------------:|:----------------:|:------------------:| | 2.8095 | 0.16 | 10 | 2.5393 | 0.287 | 0.5358 | 0.3674 | 0.1023 | 0.1917 | 0.1311 | 0.1374 | 0.2615 | 0.1771 | 0.1374 | 0.2615 | 0.1771 | | 2.6056 | 0.32 | 20 | 2.4752 | 0.5005 | 0.3264 | 0.3811 | 0.1663 | 0.1054 | 0.1249 | 0.2582 | 0.1667 | 0.1957 | 0.2582 | 0.1667 | 0.1957 | | 2.5943 | 0.48 | 30 | 2.4422 | 0.4615 | 0.3833 | 0.4047 | 0.1473 | 0.1273 | 0.1321 | 0.2242 | 0.1885 | 0.1981 | 0.2242 | 0.1885 | 0.1981 | | 2.4842 | 0.64 | 40 | 2.4186 | 0.4675 | 0.3829 | 0.4081 | 0.1581 | 0.1294 | 0.1384 | 0.2286 | 0.187 | 0.1995 | 0.2286 | 0.187 | 0.1995 | | 2.4454 | 0.8 | 50 | 2.3990 | 0.467 | 0.408 | 0.4222 | 0.1633 | 0.1429 | 0.1477 | 0.2294 | 0.2008 | 0.2076 | 0.2294 | 0.2008 | 0.2076 | | 2.3622 | 0.96 | 60 | 2.3857 | 0.4567 | 0.3898 | 0.41 | 0.1433 | 0.1233 | 0.1295 | 0.2205 | 0.1876 | 0.1976 | 0.2205 | 0.1876 | 0.1976 | | 2.4034 | 1.13 | 70 | 2.3835 | 0.4515 | 0.4304 | 0.4294 | 0.1526 | 0.1479 | 0.1459 | 0.2183 | 0.209 | 0.2078 | 0.2183 | 0.209 | 0.2078 | | 2.2612 | 1.29 | 80 | 2.3804 | 0.455 | 0.4193 | 0.4236 | 0.1518 | 0.1429 | 0.1427 | 0.2177 | 0.2025 | 0.2037 | 0.2177 | 0.2025 | 0.2037 | | 2.2563 | 1.45 | 90 | 2.3768 | 0.4821 | 0.391 | 0.4196 | 0.1652 | 0.1357 | 0.144 | 0.2385 | 0.1929 | 0.2069 | 0.2385 | 0.1929 | 0.2069 | | 2.243 | 1.61 | 100 | 2.3768 | 0.4546 | 0.4093 | 0.4161 | 0.1552 | 0.1402 | 0.1422 | 0.2248 | 0.2016 | 0.2052 | 0.2248 | 0.2016 | 0.2052 | | 2.2505 | 1.77 | 110 | 2.3670 | 0.4625 | 0.4189 | 0.4262 | 0.1606 | 0.1485 | 0.1493 | 0.2301 | 0.2098 | 0.2119 | 0.2301 | 0.2098 | 0.2119 | | 2.2453 | 1.93 | 120 | 2.3650 | 0.4673 | 0.4135 | 0.4263 | 0.1579 | 0.1426 | 0.1458 | 0.2245 | 0.2008 | 0.2061 | 0.2245 | 0.2008 | 0.2061 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.6.2.dev0 - Tokenizers 0.12.1
shed-e/scipaper-summary
shed-e
2022-11-02T09:42:23Z
4
2
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:scitldr", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-02T07:17:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - scitldr metrics: - rouge model-index: - name: paper-summary results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scitldr type: scitldr config: Abstract split: train args: Abstract metrics: - name: Rouge1 type: rouge value: 0.3484 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # paper-summary This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the scitldr dataset. It achieves the following results on the evaluation set: - Loss: 2.8631 - Rouge1: 0.3484 - Rouge2: 0.1596 - Rougel: 0.2971 - Rougelsum: 0.3047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 3.0545 | 1.0 | 63 | 2.9939 | 0.3387 | 0.1538 | 0.2887 | 0.2957 | | 2.7871 | 2.0 | 126 | 2.9360 | 0.3448 | 0.1577 | 0.2947 | 0.3019 | | 2.7188 | 3.0 | 189 | 2.8977 | 0.3477 | 0.1585 | 0.2967 | 0.3035 | | 2.6493 | 4.0 | 252 | 2.8837 | 0.3488 | 0.1597 | 0.2973 | 0.3046 | | 2.6207 | 5.0 | 315 | 2.8690 | 0.3472 | 0.1566 | 0.2958 | 0.3033 | | 2.5893 | 6.0 | 378 | 2.8668 | 0.3493 | 0.1592 | 0.2972 | 0.305 | | 2.5494 | 7.0 | 441 | 2.8657 | 0.3486 | 0.1595 | 0.2976 | 0.3053 | | 2.5554 | 8.0 | 504 | 2.8631 | 0.3484 | 0.1596 | 0.2971 | 0.3047 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
pig4431/amazonPolarity_ELECTRA_5E
pig4431
2022-11-02T09:31:24Z
103
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "generated_from_trainer", "dataset:amazon_polarity", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-02T09:30:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_polarity metrics: - accuracy model-index: - name: amazonPolarity_ELECTRA_5E results: - task: name: Text Classification type: text-classification dataset: name: amazon_polarity type: amazon_polarity config: amazon_polarity split: train args: amazon_polarity metrics: - name: Accuracy type: accuracy value: 0.9333333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazonPolarity_ELECTRA_5E This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the amazon_polarity dataset. It achieves the following results on the evaluation set: - Loss: 0.3512 - Accuracy: 0.9333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6705 | 0.03 | 50 | 0.5768 | 0.8867 | | 0.4054 | 0.05 | 100 | 0.2968 | 0.8933 | | 0.2461 | 0.08 | 150 | 0.2233 | 0.92 | | 0.1795 | 0.11 | 200 | 0.2265 | 0.9333 | | 0.2293 | 0.13 | 250 | 0.2329 | 0.9267 | | 0.1541 | 0.16 | 300 | 0.2240 | 0.94 | | 0.2006 | 0.19 | 350 | 0.2779 | 0.92 | | 0.1826 | 0.21 | 400 | 0.2765 | 0.9133 | | 0.1935 | 0.24 | 450 | 0.2346 | 0.9333 | | 0.1887 | 0.27 | 500 | 0.2085 | 0.94 | | 0.1688 | 0.29 | 550 | 0.2193 | 0.94 | | 0.1884 | 0.32 | 600 | 0.1982 | 0.9467 | | 0.189 | 0.35 | 650 | 0.1873 | 0.94 | | 0.1564 | 0.37 | 700 | 0.2226 | 0.94 | | 0.1733 | 0.4 | 750 | 0.2462 | 0.9333 | | 0.1436 | 0.43 | 800 | 0.2328 | 0.94 | | 0.1517 | 0.45 | 850 | 0.2128 | 0.9533 | | 0.1922 | 0.48 | 900 | 0.1626 | 0.9467 | | 0.1401 | 0.51 | 950 | 0.2391 | 0.94 | | 0.1606 | 0.53 | 1000 | 0.2001 | 0.94 | | 0.1597 | 0.56 | 1050 | 0.1788 | 0.9467 | | 0.184 | 0.59 | 1100 | 0.1656 | 0.9467 | | 0.1448 | 0.61 | 1150 | 0.1752 | 0.96 | | 0.1575 | 0.64 | 1200 | 0.1878 | 0.9533 | | 0.1836 | 0.67 | 1250 | 0.1416 | 0.9533 | | 0.1378 | 0.69 | 1300 | 0.1866 | 0.9467 | | 0.1901 | 0.72 | 1350 | 0.1654 | 0.9533 | | 0.1697 | 0.75 | 1400 | 0.1720 | 0.9533 | | 0.1624 | 0.77 | 1450 | 0.1700 | 0.9467 | | 0.1487 | 0.8 | 1500 | 0.1786 | 0.94 | | 0.1367 | 0.83 | 1550 | 0.1974 | 0.9267 | | 0.1535 | 0.85 | 1600 | 0.1823 | 0.9267 | | 0.1366 | 0.88 | 1650 | 0.1515 | 0.94 | | 0.1505 | 0.91 | 1700 | 0.1527 | 0.94 | | 0.1554 | 0.93 | 1750 | 0.1855 | 0.9467 | | 0.1478 | 0.96 | 1800 | 0.1885 | 0.9333 | | 0.1603 | 0.99 | 1850 | 0.1990 | 0.9467 | | 0.1637 | 1.01 | 1900 | 0.1901 | 0.9467 | | 0.1074 | 1.04 | 1950 | 0.1886 | 0.9533 | | 0.0874 | 1.07 | 2000 | 0.2399 | 0.94 | | 0.1245 | 1.09 | 2050 | 0.2107 | 0.9467 | | 0.1175 | 1.12 | 2100 | 0.2226 | 0.94 | | 0.1279 | 1.15 | 2150 | 0.2267 | 0.94 | | 0.0947 | 1.17 | 2200 | 0.2342 | 0.94 | | 0.0837 | 1.2 | 2250 | 0.2519 | 0.9467 | | 0.1091 | 1.23 | 2300 | 0.2531 | 0.94 | | 0.0867 | 1.25 | 2350 | 0.2519 | 0.94 | | 0.0845 | 1.28 | 2400 | 0.2431 | 0.9467 | | 0.0836 | 1.31 | 2450 | 0.1936 | 0.9533 | | 0.1633 | 1.33 | 2500 | 0.1875 | 0.9333 | | 0.1029 | 1.36 | 2550 | 0.2345 | 0.94 | | 0.0755 | 1.39 | 2600 | 0.3028 | 0.94 | | 0.1539 | 1.41 | 2650 | 0.2497 | 0.94 | | 0.1055 | 1.44 | 2700 | 0.2002 | 0.9467 | | 0.1234 | 1.47 | 2750 | 0.1763 | 0.9533 | | 0.1312 | 1.49 | 2800 | 0.1998 | 0.94 | | 0.1067 | 1.52 | 2850 | 0.1820 | 0.96 | | 0.1092 | 1.55 | 2900 | 0.1903 | 0.9467 | | 0.1209 | 1.57 | 2950 | 0.1912 | 0.9467 | | 0.0627 | 1.6 | 3000 | 0.2208 | 0.9467 | | 0.1121 | 1.63 | 3050 | 0.2607 | 0.9333 | | 0.1106 | 1.65 | 3100 | 0.1852 | 0.9533 | | 0.0724 | 1.68 | 3150 | 0.2122 | 0.9533 | | 0.1247 | 1.71 | 3200 | 0.2112 | 0.9467 | | 0.1247 | 1.73 | 3250 | 0.2021 | 0.9533 | | 0.096 | 1.76 | 3300 | 0.2340 | 0.9467 | | 0.1056 | 1.79 | 3350 | 0.2165 | 0.94 | | 0.1055 | 1.81 | 3400 | 0.2563 | 0.94 | | 0.1199 | 1.84 | 3450 | 0.2251 | 0.9467 | | 0.0899 | 1.87 | 3500 | 0.1996 | 0.9533 | | 0.109 | 1.89 | 3550 | 0.1924 | 0.9533 | | 0.13 | 1.92 | 3600 | 0.1769 | 0.9467 | | 0.1037 | 1.95 | 3650 | 0.2003 | 0.9533 | | 0.0934 | 1.97 | 3700 | 0.2325 | 0.94 | | 0.1254 | 2.0 | 3750 | 0.2037 | 0.9467 | | 0.0619 | 2.03 | 3800 | 0.2252 | 0.9533 | | 0.093 | 2.05 | 3850 | 0.2145 | 0.9533 | | 0.0827 | 2.08 | 3900 | 0.2237 | 0.9533 | | 0.0679 | 2.11 | 3950 | 0.2643 | 0.9467 | | 0.076 | 2.13 | 4000 | 0.2287 | 0.9533 | | 0.0526 | 2.16 | 4050 | 0.3210 | 0.9267 | | 0.0354 | 2.19 | 4100 | 0.3259 | 0.9333 | | 0.026 | 2.21 | 4150 | 0.3448 | 0.9333 | | 0.0466 | 2.24 | 4200 | 0.3751 | 0.9333 | | 0.043 | 2.27 | 4250 | 0.3122 | 0.9333 | | 0.0521 | 2.29 | 4300 | 0.3155 | 0.9333 | | 0.1018 | 2.32 | 4350 | 0.3066 | 0.94 | | 0.0572 | 2.35 | 4400 | 0.2848 | 0.94 | | 0.0903 | 2.37 | 4450 | 0.2289 | 0.9467 | | 0.0718 | 2.4 | 4500 | 0.2661 | 0.9467 | | 0.0689 | 2.43 | 4550 | 0.2544 | 0.9467 | | 0.0829 | 2.45 | 4600 | 0.2816 | 0.9333 | | 0.0909 | 2.48 | 4650 | 0.2244 | 0.94 | | 0.0888 | 2.51 | 4700 | 0.2620 | 0.94 | | 0.0998 | 2.53 | 4750 | 0.2773 | 0.94 | | 0.0604 | 2.56 | 4800 | 0.2344 | 0.94 | | 0.0619 | 2.59 | 4850 | 0.2551 | 0.9467 | | 0.056 | 2.61 | 4900 | 0.2787 | 0.94 | | 0.1037 | 2.64 | 4950 | 0.2388 | 0.9467 | | 0.0858 | 2.67 | 5000 | 0.2213 | 0.94 | | 0.0674 | 2.69 | 5050 | 0.2339 | 0.9467 | | 0.0438 | 2.72 | 5100 | 0.2759 | 0.9467 | | 0.0615 | 2.75 | 5150 | 0.2739 | 0.9467 | | 0.064 | 2.77 | 5200 | 0.2488 | 0.9467 | | 0.0824 | 2.8 | 5250 | 0.2590 | 0.9467 | | 0.074 | 2.83 | 5300 | 0.2314 | 0.9467 | | 0.1077 | 2.85 | 5350 | 0.2571 | 0.9467 | | 0.0482 | 2.88 | 5400 | 0.2678 | 0.9467 | | 0.0732 | 2.91 | 5450 | 0.2626 | 0.9333 | | 0.0564 | 2.93 | 5500 | 0.2586 | 0.94 | | 0.1019 | 2.96 | 5550 | 0.2706 | 0.9333 | | 0.0675 | 2.99 | 5600 | 0.2568 | 0.9267 | | 0.056 | 3.01 | 5650 | 0.2881 | 0.9333 | | 0.0266 | 3.04 | 5700 | 0.2789 | 0.9467 | | 0.0207 | 3.07 | 5750 | 0.2535 | 0.9467 | | 0.0246 | 3.09 | 5800 | 0.2597 | 0.9467 | | 0.0631 | 3.12 | 5850 | 0.2403 | 0.9533 | | 0.0627 | 3.15 | 5900 | 0.2336 | 0.9533 | | 0.1061 | 3.17 | 5950 | 0.2773 | 0.94 | | 0.0257 | 3.2 | 6000 | 0.2587 | 0.9467 | | 0.0375 | 3.23 | 6050 | 0.2560 | 0.9467 | | 0.0404 | 3.25 | 6100 | 0.2851 | 0.94 | | 0.0748 | 3.28 | 6150 | 0.3005 | 0.94 | | 0.0384 | 3.31 | 6200 | 0.2442 | 0.9533 | | 0.0426 | 3.33 | 6250 | 0.2618 | 0.9533 | | 0.0611 | 3.36 | 6300 | 0.2710 | 0.9467 | | 0.0282 | 3.39 | 6350 | 0.3200 | 0.94 | | 0.0449 | 3.41 | 6400 | 0.3203 | 0.94 | | 0.0508 | 3.44 | 6450 | 0.3197 | 0.94 | | 0.0385 | 3.47 | 6500 | 0.3391 | 0.9333 | | 0.0458 | 3.49 | 6550 | 0.3450 | 0.9333 | | 0.0245 | 3.52 | 6600 | 0.3737 | 0.9333 | | 0.0547 | 3.55 | 6650 | 0.2889 | 0.94 | | 0.0398 | 3.57 | 6700 | 0.3751 | 0.9333 | | 0.0497 | 3.6 | 6750 | 0.2748 | 0.9467 | | 0.0466 | 3.63 | 6800 | 0.3438 | 0.9333 | | 0.0241 | 3.65 | 6850 | 0.3279 | 0.9267 | | 0.0631 | 3.68 | 6900 | 0.2921 | 0.94 | | 0.0256 | 3.71 | 6950 | 0.3595 | 0.9267 | | 0.0615 | 3.73 | 7000 | 0.3190 | 0.9333 | | 0.0495 | 3.76 | 7050 | 0.3451 | 0.9267 | | 0.0519 | 3.79 | 7100 | 0.3303 | 0.9333 | | 0.0243 | 3.81 | 7150 | 0.3344 | 0.9333 | | 0.0348 | 3.84 | 7200 | 0.3609 | 0.9333 | | 0.0542 | 3.87 | 7250 | 0.2797 | 0.9333 | | 0.0791 | 3.89 | 7300 | 0.2504 | 0.94 | | 0.0272 | 3.92 | 7350 | 0.3165 | 0.9333 | | 0.0701 | 3.95 | 7400 | 0.3039 | 0.9333 | | 0.0866 | 3.97 | 7450 | 0.3233 | 0.9267 | | 0.0461 | 4.0 | 7500 | 0.3114 | 0.9267 | | 0.0486 | 4.03 | 7550 | 0.2995 | 0.94 | | 0.0052 | 4.05 | 7600 | 0.3128 | 0.94 | | 0.0312 | 4.08 | 7650 | 0.3723 | 0.9333 | | 0.0277 | 4.11 | 7700 | 0.3158 | 0.94 | | 0.0407 | 4.13 | 7750 | 0.3187 | 0.94 | | 0.0224 | 4.16 | 7800 | 0.3258 | 0.9333 | | 0.0335 | 4.19 | 7850 | 0.3539 | 0.9333 | | 0.0425 | 4.21 | 7900 | 0.3391 | 0.9333 | | 0.0394 | 4.24 | 7950 | 0.3470 | 0.9333 | | 0.015 | 4.27 | 8000 | 0.3680 | 0.9333 | | 0.0166 | 4.29 | 8050 | 0.3689 | 0.9333 | | 0.0358 | 4.32 | 8100 | 0.3281 | 0.94 | | 0.0152 | 4.35 | 8150 | 0.3391 | 0.9333 | | 0.0235 | 4.37 | 8200 | 0.3506 | 0.94 | | 0.0357 | 4.4 | 8250 | 0.3549 | 0.94 | | 0.0153 | 4.43 | 8300 | 0.3564 | 0.94 | | 0.0366 | 4.45 | 8350 | 0.3836 | 0.9333 | | 0.0381 | 4.48 | 8400 | 0.3428 | 0.9333 | | 0.0349 | 4.51 | 8450 | 0.3600 | 0.94 | | 0.028 | 4.53 | 8500 | 0.3592 | 0.9333 | | 0.0322 | 4.56 | 8550 | 0.3478 | 0.9333 | | 0.0237 | 4.59 | 8600 | 0.3636 | 0.94 | | 0.0398 | 4.61 | 8650 | 0.3433 | 0.9333 | | 0.062 | 4.64 | 8700 | 0.3158 | 0.94 | | 0.0148 | 4.67 | 8750 | 0.3435 | 0.9333 | | 0.0197 | 4.69 | 8800 | 0.3394 | 0.9333 | | 0.0594 | 4.72 | 8850 | 0.3336 | 0.9333 | | 0.0426 | 4.75 | 8900 | 0.3351 | 0.9333 | | 0.003 | 4.77 | 8950 | 0.3479 | 0.9333 | | 0.0268 | 4.8 | 9000 | 0.3479 | 0.9333 | | 0.0524 | 4.83 | 9050 | 0.3485 | 0.9333 | | 0.0259 | 4.85 | 9100 | 0.3501 | 0.9333 | | 0.0326 | 4.88 | 9150 | 0.3498 | 0.9333 | | 0.0236 | 4.91 | 9200 | 0.3482 | 0.9333 | | 0.0209 | 4.93 | 9250 | 0.3504 | 0.9333 | | 0.0366 | 4.96 | 9300 | 0.3503 | 0.9333 | | 0.0246 | 4.99 | 9350 | 0.3512 | 0.9333 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
Swty/distilbert-base-uncased-finetuned-squad
Swty
2022-11-02T09:07:23Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-02T09:04:41Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.5266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 7 | 5.3892 | | No log | 2.0 | 14 | 4.7949 | | No log | 3.0 | 21 | 4.5266 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.10.1+cu102 - Datasets 2.6.1 - Tokenizers 0.12.1
musika/musika-anime-songs
musika
2022-11-02T06:37:19Z
0
0
null
[ "audio", "music", "generation", "tensorflow", "arxiv:2208.08706", "license:mit", "region:us" ]
null
2022-11-02T06:37:08Z
--- license: mit tags: - audio - music - generation - tensorflow --- # Musika Model: musika_anime_songs ## Model provided by: djquma Pretrained musika_anime_songs model for the [Musika system](https://github.com/marcoppasini/musika) for fast infinite waveform music generation. Introduced in [this paper](https://arxiv.org/abs/2208.08706). ## How to use You can generate music from this pretrained musika_anime_songs model using the notebook available [here](https://colab.research.google.com/drive/1HJWliBXPi-Xlx3gY8cjFI5-xaZgrTD7r). ### Model description This pretrained GAN system consists of a ResNet-style generator and discriminator. During training, stability is controlled by adapting the strength of gradient penalty regularization on-the-fly. The gradient penalty weighting term is contained in *switch.npy*. The generator is conditioned on a latent coordinate system to produce samples of arbitrary length. The latent representations produced by the generator are then passed to a decoder which converts them into waveform audio. The generator has a context window of about 12 seconds of audio.
Vandita/distilroberta-base-SarcojiComplEmojisMLM
Vandita
2022-11-02T06:28:26Z
162
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-02T06:10:12Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-distilroberta-base-finetuned-SarcojiComplEmojisDistilRobertaMLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-distilroberta-base-finetuned-SarcojiComplEmojisDistilRobertaMLM This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8538 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 191 | 2.9461 | | No log | 2.0 | 382 | 2.8536 | | 3.0333 | 3.0 | 573 | 2.8745 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Harmony22/Sjjsjw
Harmony22
2022-11-02T06:16:42Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-11-02T06:16:42Z
--- license: bigscience-bloom-rail-1.0 ---
GItaf/gpt2-gpt2-mc-weight0.25-epoch15-new-nosharing
GItaf
2022-11-02T05:46:30Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-01T07:46:59Z
--- tags: - generated_from_trainer model-index: - name: gpt2-gpt2-mc-weight0.25-epoch15-new-nosharing results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-gpt2-mc-weight0.25-epoch15-new-nosharing This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.6937 - Cls loss: 2.9228 - Lm loss: 3.9625 - Cls Accuracy: 0.6046 - Cls F1: 0.5997 - Cls Precision: 0.6013 - Cls Recall: 0.6046 - Perplexity: 52.59 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------:|:------------:|:------:|:-------------:|:----------:|:----------:| | 4.6729 | 1.0 | 3470 | 4.4248 | 1.5425 | 4.0392 | 0.5689 | 0.5448 | 0.5732 | 0.5689 | 56.78 | | 4.3854 | 2.0 | 6940 | 4.3672 | 1.4634 | 4.0012 | 0.6121 | 0.6023 | 0.6288 | 0.6121 | 54.66 | | 4.2559 | 3.0 | 10410 | 4.3660 | 1.5252 | 3.9844 | 0.6133 | 0.6086 | 0.6428 | 0.6133 | 53.75 | | 4.1479 | 4.0 | 13880 | 4.4069 | 1.7167 | 3.9774 | 0.6075 | 0.6023 | 0.6134 | 0.6075 | 53.38 | | 4.0501 | 5.0 | 17350 | 4.4152 | 1.7953 | 3.9661 | 0.6023 | 0.5971 | 0.6063 | 0.6023 | 52.78 | | 3.964 | 6.0 | 20820 | 4.4789 | 2.0438 | 3.9676 | 0.6086 | 0.6035 | 0.6198 | 0.6086 | 52.86 | | 3.8964 | 7.0 | 24290 | 4.5107 | 2.1849 | 3.9641 | 0.6052 | 0.5990 | 0.6096 | 0.6052 | 52.67 | | 3.8441 | 8.0 | 27760 | 4.5674 | 2.4206 | 3.9618 | 0.6104 | 0.6043 | 0.6137 | 0.6104 | 52.55 | | 3.8043 | 9.0 | 31230 | 4.5939 | 2.5361 | 3.9594 | 0.5954 | 0.5911 | 0.5980 | 0.5954 | 52.43 | | 3.7743 | 10.0 | 34700 | 4.6247 | 2.6479 | 3.9623 | 0.5937 | 0.5906 | 0.5932 | 0.5937 | 52.58 | | 3.7484 | 11.0 | 38170 | 4.6686 | 2.8241 | 3.9622 | 0.5983 | 0.5924 | 0.6000 | 0.5983 | 52.57 | | 3.7305 | 12.0 | 41640 | 4.6729 | 2.8435 | 3.9616 | 0.6 | 0.5949 | 0.5958 | 0.6 | 52.54 | | 3.7149 | 13.0 | 45110 | 4.6809 | 2.8759 | 3.9614 | 0.5931 | 0.5875 | 0.5899 | 0.5931 | 52.53 | | 3.7047 | 14.0 | 48580 | 4.6895 | 2.9094 | 3.9617 | 0.5983 | 0.5928 | 0.5955 | 0.5983 | 52.55 | | 3.6973 | 15.0 | 52050 | 4.6937 | 2.9228 | 3.9625 | 0.6046 | 0.5997 | 0.6013 | 0.6046 | 52.59 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
GItaf/gpt2-gpt2-mc-weight0.25-epoch15-new
GItaf
2022-11-02T05:46:01Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-01T07:43:22Z
--- tags: - generated_from_trainer model-index: - name: gpt2-gpt2-mc-weight0.25-epoch15-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-gpt2-mc-weight0.25-epoch15-new This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.7276 - Cls loss: 3.0579 - Lm loss: 3.9626 - Cls Accuracy: 0.6110 - Cls F1: 0.6054 - Cls Precision: 0.6054 - Cls Recall: 0.6110 - Perplexity: 52.59 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------:|:------------:|:------:|:-------------:|:----------:|:----------:| | 4.674 | 1.0 | 3470 | 4.4372 | 1.5961 | 4.0380 | 0.5487 | 0.5279 | 0.5643 | 0.5487 | 56.71 | | 4.3809 | 2.0 | 6940 | 4.3629 | 1.4483 | 4.0006 | 0.6023 | 0.5950 | 0.6174 | 0.6023 | 54.63 | | 4.2522 | 3.0 | 10410 | 4.3721 | 1.5476 | 3.9849 | 0.6012 | 0.5981 | 0.6186 | 0.6012 | 53.78 | | 4.1478 | 4.0 | 13880 | 4.3892 | 1.6429 | 3.9782 | 0.6081 | 0.6019 | 0.6128 | 0.6081 | 53.42 | | 4.0491 | 5.0 | 17350 | 4.4182 | 1.8093 | 3.9656 | 0.6156 | 0.6091 | 0.6163 | 0.6156 | 52.75 | | 3.9624 | 6.0 | 20820 | 4.4757 | 2.0348 | 3.9666 | 0.6121 | 0.6048 | 0.6189 | 0.6121 | 52.81 | | 3.8954 | 7.0 | 24290 | 4.4969 | 2.1327 | 3.9634 | 0.6092 | 0.6028 | 0.6087 | 0.6092 | 52.64 | | 3.846 | 8.0 | 27760 | 4.5632 | 2.4063 | 3.9613 | 0.6017 | 0.5972 | 0.6014 | 0.6017 | 52.52 | | 3.8036 | 9.0 | 31230 | 4.6068 | 2.5888 | 3.9592 | 0.6052 | 0.5988 | 0.6026 | 0.6052 | 52.41 | | 3.7724 | 10.0 | 34700 | 4.6175 | 2.6197 | 3.9621 | 0.6052 | 0.6006 | 0.6009 | 0.6052 | 52.57 | | 3.7484 | 11.0 | 38170 | 4.6745 | 2.8470 | 3.9622 | 0.6046 | 0.5996 | 0.6034 | 0.6046 | 52.57 | | 3.7291 | 12.0 | 41640 | 4.6854 | 2.8950 | 3.9611 | 0.6110 | 0.6056 | 0.6049 | 0.6110 | 52.52 | | 3.7148 | 13.0 | 45110 | 4.7103 | 2.9919 | 3.9618 | 0.6063 | 0.6002 | 0.6029 | 0.6063 | 52.55 | | 3.703 | 14.0 | 48580 | 4.7226 | 3.0417 | 3.9616 | 0.6081 | 0.6027 | 0.6021 | 0.6081 | 52.54 | | 3.6968 | 15.0 | 52050 | 4.7276 | 3.0579 | 3.9626 | 0.6110 | 0.6054 | 0.6054 | 0.6110 | 52.59 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Chloecakee/finetuning-sentiment-model-imdb
Chloecakee
2022-11-02T04:30:05Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-26T16:32:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2095 - Accuracy: 0.943 - F1: 0.9420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/callmecarsonyt-jerma985-vgdunkey
huggingtweets
2022-11-02T03:39:39Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-02T03:38:15Z
--- language: en thumbnail: http://www.huggingtweets.com/callmecarsonyt-jerma985-vgdunkey/1667360374615/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/803601382943162368/F36Z7ypy_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/676614171849453568/AZd1Bh-s_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1580752812476071936/E0qU4suK_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jerma & dunkey & Carson</div> <div style="text-align: center; font-size: 14px;">@callmecarsonyt-jerma985-vgdunkey</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jerma & dunkey & Carson. | Data | Jerma | dunkey | Carson | | --- | --- | --- | --- | | Tweets downloaded | 2719 | 1309 | 3220 | | Retweets | 108 | 151 | 6 | | Short tweets | 286 | 331 | 793 | | Tweets kept | 2325 | 827 | 2421 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/mqcymy6y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @callmecarsonyt-jerma985-vgdunkey's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3oq9dor5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3oq9dor5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/callmecarsonyt-jerma985-vgdunkey') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
PublicPrompts/CALARTS
PublicPrompts
2022-11-02T03:28:08Z
0
10
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-02T00:41:00Z
--- license: creativeml-openrail-m --- Stable Diffusion model to create Cal Arts style characters, trained using DreamBooth not a perfect model, but a fun one :) Trigger word: CALARTS More models on my site: https://publicprompts.art/ ![00206-3007328448-snoop dogg, full body, cartoon character, in CALARTS style.png](https://s3.amazonaws.com/moonup/production/uploads/1667359423177-63507e5e18a4f616c9dfba19.png) ![00149-490341794-captain america, full body, cartoon character, in CALARTS style.png](https://s3.amazonaws.com/moonup/production/uploads/1667359443521-63507e5e18a4f616c9dfba19.png) ![00226-3605587144-Princess Leia, full body, cartoon character, in CALARTS style.png](https://s3.amazonaws.com/moonup/production/uploads/1667359443670-63507e5e18a4f616c9dfba19.png) ![00064-4002381889-Danny deVito, full body, cartoon character, in CALARTS style.png](https://s3.amazonaws.com/moonup/production/uploads/1667359442458-63507e5e18a4f616c9dfba19.png) ![00085-3678686754-superman, full body, cartoon character, in CALARTS style.png](https://s3.amazonaws.com/moonup/production/uploads/1667359443435-63507e5e18a4f616c9dfba19.png) ![00105-1169077312-walter white, full body, cartoon character, in CALARTS style.png](https://s3.amazonaws.com/moonup/production/uploads/1667359441802-63507e5e18a4f616c9dfba19.png) ![00127-1266261337-harry potter, full body, cartoon character, in CALARTS style.png](https://s3.amazonaws.com/moonup/production/uploads/1667359443033-63507e5e18a4f616c9dfba19.png)
huggingtweets/angelfacepeanu3
huggingtweets
2022-11-02T03:25:44Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-02T03:15:45Z
--- language: en thumbnail: http://www.huggingtweets.com/angelfacepeanu3/1667359236720/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1562022684699115520/l8kHBaYp_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">angelfacepeanut</div> <div style="text-align: center; font-size: 14px;">@angelfacepeanu3</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from angelfacepeanut. | Data | angelfacepeanut | | --- | --- | | Tweets downloaded | 1911 | | Retweets | 206 | | Short tweets | 192 | | Tweets kept | 1513 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ohpuc3p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @angelfacepeanu3's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3t4kb5xs) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3t4kb5xs/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/angelfacepeanu3') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
egumasa/en_engagement_RoBERTa_combined
egumasa
2022-11-02T01:56:39Z
6
1
spacy
[ "spacy", "token-classification", "en", "doi:10.57967/hf/0082", "model-index", "region:us" ]
token-classification
2022-11-02T01:53:35Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_engagement_RoBERTa_combined results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.0 - name: NER Recall type: recall value: 0.0 - name: NER F Score type: f_score value: 0.0 - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.0 - task: name: LEMMA type: token-classification metrics: - name: Lemma Accuracy type: accuracy value: 0.0 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.0 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.0 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.9764065336 --- | Feature | Description | | --- | --- | | **Name** | `en_engagement_RoBERTa_combined` | | **Version** | `AtoI_0.1.85` | | **spaCy** | `>=3.3.0,<3.4.0` | | **Default Pipeline** | `transformer`, `tagger`, `parser`, `ner`, `trainable_transformer`, `span_finder`, `spancat` | | **Components** | `transformer`, `tagger`, `parser`, `ner`, `trainable_transformer`, `span_finder`, `spancat` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (124 labels for 4 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` | | **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` | | **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` | | **`spancat`** | `MONOGLOSS`, `ATTRIBUTE`, `JUSTIFY`, `COUNTER`, `CITATION`, `ENTERTAIN`, `ENDORSE`, `DENY`, `CONCUR`, `PRONOUNCE`, `TEMPORAL`, `CONTRAST` | </details> ### Accuracy | Type | Score | | --- | --- | | `TAG_ACC` | 0.00 | | `DEP_UAS` | 0.00 | | `DEP_LAS` | 0.00 | | `DEP_LAS_PER_TYPE` | 0.00 | | `SENTS_P` | 96.76 | | `SENTS_R` | 98.53 | | `SENTS_F` | 97.64 | | `ENTS_F` | 0.00 | | `ENTS_P` | 0.00 | | `ENTS_R` | 0.00 | | `SPAN_FINDER_SPAN_CANDIDATES_F` | 50.09 | | `SPAN_FINDER_SPAN_CANDIDATES_P` | 35.70 | | `SPAN_FINDER_SPAN_CANDIDATES_R` | 83.94 | | `SPANS_SC_F` | 76.49 | | `SPANS_SC_P` | 75.89 | | `SPANS_SC_R` | 77.11 | | `LEMMA_ACC` | 0.00 | | `TRAINABLE_TRANSFORMER_LOSS` | 1535.39 | | `SPAN_FINDER_LOSS` | 20411.83 | | `SPANCAT_LOSS` | 24075.13 |
VanessaSchenkel/padrao-mbart-vanessa-finetuned-handscrafted
VanessaSchenkel
2022-11-02T00:49:49Z
70
0
transformers
[ "transformers", "tf", "tensorboard", "mbart", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-02T00:40:07Z
--- tags: - generated_from_keras_callback model-index: - name: VanessaSchenkel/padrao-mbart-vanessa-finetuned-handscrafted results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # VanessaSchenkel/padrao-mbart-vanessa-finetuned-handscrafted This model is a fine-tuned version of [VanessaSchenkel/padrao-mbart-finetuned-news_commentary](https://huggingface.co/VanessaSchenkel/padrao-mbart-finetuned-news_commentary) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4976 - Validation Loss: 0.4371 - Train Bleu: 72.0476 - Train Gen Len: 12.3125 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Bleu | Train Gen Len | Epoch | |:----------:|:---------------:|:----------:|:-------------:|:-----:| | 0.4976 | 0.4371 | 72.0476 | 12.3125 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1
scjones/xlm-roberta-base-finetuned-panx-de
scjones
2022-11-02T00:43:43Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-02T00:19:09Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
sergiocannata/convnext-tiny-224-finetuned-brs2
sergiocannata
2022-11-02T00:15:25Z
26
0
transformers
[ "transformers", "pytorch", "tensorboard", "convnext", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-01T23:03:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 model-index: - name: convnext-tiny-224-finetuned-brs2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7924528301886793 - name: F1 type: f1 value: 0.7555555555555556 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-224-finetuned-brs2 This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2502 - Accuracy: 0.7925 - F1: 0.7556 - Precision (ppv): 0.8095 - Recall (sensitivity): 0.7083 - Specificity: 0.8621 - Npv: 0.7812 - Auc: 0.7852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision (ppv) | Recall (sensitivity) | Specificity | Npv | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------------:|:--------------------:|:-----------:|:------:|:------:| | 0.6884 | 1.89 | 100 | 0.6907 | 0.5472 | 0.4286 | 0.5 | 0.375 | 0.6897 | 0.5714 | 0.5323 | | 0.5868 | 3.77 | 200 | 0.6604 | 0.6415 | 0.4242 | 0.7778 | 0.2917 | 0.9310 | 0.6136 | 0.6114 | | 0.4759 | 5.66 | 300 | 0.6273 | 0.6604 | 0.5 | 0.75 | 0.375 | 0.8966 | 0.6341 | 0.6358 | | 0.3599 | 7.55 | 400 | 0.6520 | 0.6604 | 0.5 | 0.75 | 0.375 | 0.8966 | 0.6341 | 0.6358 | | 0.3248 | 9.43 | 500 | 0.9115 | 0.6415 | 0.4571 | 0.7273 | 0.3333 | 0.8966 | 0.6190 | 0.6149 | | 0.3117 | 11.32 | 600 | 0.8608 | 0.6604 | 0.5263 | 0.7143 | 0.4167 | 0.8621 | 0.6410 | 0.6394 | | 0.4208 | 13.21 | 700 | 0.8774 | 0.6792 | 0.5641 | 0.7333 | 0.4583 | 0.8621 | 0.6579 | 0.6602 | | 0.5267 | 15.09 | 800 | 1.0131 | 0.6792 | 0.5405 | 0.7692 | 0.4167 | 0.8966 | 0.65 | 0.6566 | | 0.234 | 16.98 | 900 | 1.1498 | 0.6981 | 0.5556 | 0.8333 | 0.4167 | 0.9310 | 0.6585 | 0.6739 | | 0.7581 | 18.87 | 1000 | 1.0952 | 0.7170 | 0.6154 | 0.8 | 0.5 | 0.8966 | 0.6842 | 0.6983 | | 0.1689 | 20.75 | 1100 | 1.1653 | 0.6981 | 0.5789 | 0.7857 | 0.4583 | 0.8966 | 0.6667 | 0.6774 | | 0.0765 | 22.64 | 1200 | 1.1245 | 0.7170 | 0.6667 | 0.7143 | 0.625 | 0.7931 | 0.7188 | 0.7091 | | 0.6287 | 24.53 | 1300 | 1.2222 | 0.6981 | 0.6 | 0.75 | 0.5 | 0.8621 | 0.6757 | 0.6810 | | 0.0527 | 26.42 | 1400 | 1.2350 | 0.7358 | 0.6818 | 0.75 | 0.625 | 0.8276 | 0.7273 | 0.7263 | | 0.3622 | 28.3 | 1500 | 1.1022 | 0.7547 | 0.6667 | 0.8667 | 0.5417 | 0.9310 | 0.7105 | 0.7364 | | 0.3227 | 30.19 | 1600 | 1.1541 | 0.7170 | 0.6154 | 0.8 | 0.5 | 0.8966 | 0.6842 | 0.6983 | | 0.3849 | 32.08 | 1700 | 1.2818 | 0.7170 | 0.6154 | 0.8 | 0.5 | 0.8966 | 0.6842 | 0.6983 | | 0.4528 | 33.96 | 1800 | 1.3213 | 0.6981 | 0.5789 | 0.7857 | 0.4583 | 0.8966 | 0.6667 | 0.6774 | | 0.1824 | 35.85 | 1900 | 1.3171 | 0.7170 | 0.6512 | 0.7368 | 0.5833 | 0.8276 | 0.7059 | 0.7055 | | 0.0367 | 37.74 | 2000 | 1.4484 | 0.7170 | 0.6154 | 0.8 | 0.5 | 0.8966 | 0.6842 | 0.6983 | | 0.07 | 39.62 | 2100 | 1.3521 | 0.7547 | 0.6977 | 0.7895 | 0.625 | 0.8621 | 0.7353 | 0.7435 | | 0.0696 | 41.51 | 2200 | 1.2636 | 0.7358 | 0.65 | 0.8125 | 0.5417 | 0.8966 | 0.7027 | 0.7191 | | 0.1554 | 43.4 | 2300 | 1.2225 | 0.7358 | 0.6667 | 0.7778 | 0.5833 | 0.8621 | 0.7143 | 0.7227 | | 0.2346 | 45.28 | 2400 | 1.2627 | 0.7547 | 0.6829 | 0.8235 | 0.5833 | 0.8966 | 0.7222 | 0.7399 | | 0.097 | 47.17 | 2500 | 1.4892 | 0.7170 | 0.6667 | 0.7143 | 0.625 | 0.7931 | 0.7188 | 0.7091 | | 0.2494 | 49.06 | 2600 | 1.5282 | 0.7170 | 0.6512 | 0.7368 | 0.5833 | 0.8276 | 0.7059 | 0.7055 | | 0.0734 | 50.94 | 2700 | 1.3989 | 0.7170 | 0.6341 | 0.7647 | 0.5417 | 0.8621 | 0.6944 | 0.7019 | | 0.1077 | 52.83 | 2800 | 1.5155 | 0.6792 | 0.5641 | 0.7333 | 0.4583 | 0.8621 | 0.6579 | 0.6602 | | 0.2456 | 54.72 | 2900 | 1.4400 | 0.7170 | 0.6512 | 0.7368 | 0.5833 | 0.8276 | 0.7059 | 0.7055 | | 0.0823 | 56.6 | 3000 | 1.4511 | 0.7358 | 0.65 | 0.8125 | 0.5417 | 0.8966 | 0.7027 | 0.7191 | | 0.0471 | 58.49 | 3100 | 1.5114 | 0.7547 | 0.6829 | 0.8235 | 0.5833 | 0.8966 | 0.7222 | 0.7399 | | 0.0144 | 60.38 | 3200 | 1.4412 | 0.7925 | 0.7317 | 0.8824 | 0.625 | 0.9310 | 0.75 | 0.7780 | | 0.1235 | 62.26 | 3300 | 1.2029 | 0.7547 | 0.6977 | 0.7895 | 0.625 | 0.8621 | 0.7353 | 0.7435 | | 0.0121 | 64.15 | 3400 | 1.4925 | 0.7358 | 0.6667 | 0.7778 | 0.5833 | 0.8621 | 0.7143 | 0.7227 | | 0.2126 | 66.04 | 3500 | 1.3614 | 0.7547 | 0.6667 | 0.8667 | 0.5417 | 0.9310 | 0.7105 | 0.7364 | | 0.0496 | 67.92 | 3600 | 1.2960 | 0.7736 | 0.7143 | 0.8333 | 0.625 | 0.8966 | 0.7429 | 0.7608 | | 0.1145 | 69.81 | 3700 | 1.3763 | 0.7547 | 0.6829 | 0.8235 | 0.5833 | 0.8966 | 0.7222 | 0.7399 | | 0.1272 | 71.7 | 3800 | 1.6328 | 0.7170 | 0.5946 | 0.8462 | 0.4583 | 0.9310 | 0.675 | 0.6947 | | 0.0007 | 73.58 | 3900 | 1.5622 | 0.7547 | 0.6977 | 0.7895 | 0.625 | 0.8621 | 0.7353 | 0.7435 | | 0.0101 | 75.47 | 4000 | 1.1811 | 0.7925 | 0.7442 | 0.8421 | 0.6667 | 0.8966 | 0.7647 | 0.7816 | | 0.0002 | 77.36 | 4100 | 1.8533 | 0.6981 | 0.5789 | 0.7857 | 0.4583 | 0.8966 | 0.6667 | 0.6774 | | 0.0423 | 79.25 | 4200 | 1.2510 | 0.7547 | 0.6977 | 0.7895 | 0.625 | 0.8621 | 0.7353 | 0.7435 | | 0.0036 | 81.13 | 4300 | 1.3443 | 0.7547 | 0.6829 | 0.8235 | 0.5833 | 0.8966 | 0.7222 | 0.7399 | | 0.0432 | 83.02 | 4400 | 1.2864 | 0.7736 | 0.7273 | 0.8 | 0.6667 | 0.8621 | 0.7576 | 0.7644 | | 0.0021 | 84.91 | 4500 | 0.8999 | 0.7925 | 0.7755 | 0.76 | 0.7917 | 0.7931 | 0.8214 | 0.7924 | | 0.0002 | 86.79 | 4600 | 1.3634 | 0.7925 | 0.7442 | 0.8421 | 0.6667 | 0.8966 | 0.7647 | 0.7816 | | 0.0044 | 88.68 | 4700 | 1.7830 | 0.7358 | 0.65 | 0.8125 | 0.5417 | 0.8966 | 0.7027 | 0.7191 | | 0.0003 | 90.57 | 4800 | 1.2640 | 0.7736 | 0.7273 | 0.8 | 0.6667 | 0.8621 | 0.7576 | 0.7644 | | 0.0253 | 92.45 | 4900 | 1.2649 | 0.7925 | 0.7442 | 0.8421 | 0.6667 | 0.8966 | 0.7647 | 0.7816 | | 0.0278 | 94.34 | 5000 | 1.7485 | 0.7170 | 0.6512 | 0.7368 | 0.5833 | 0.8276 | 0.7059 | 0.7055 | | 0.1608 | 96.23 | 5100 | 1.2641 | 0.8113 | 0.7727 | 0.85 | 0.7083 | 0.8966 | 0.7879 | 0.8024 | | 0.0017 | 98.11 | 5200 | 1.6380 | 0.7170 | 0.6667 | 0.7143 | 0.625 | 0.7931 | 0.7188 | 0.7091 | | 0.001 | 100.0 | 5300 | 1.2502 | 0.7925 | 0.7556 | 0.8095 | 0.7083 | 0.8621 | 0.7812 | 0.7852 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
pig4431/amazonPolarity_XLNET_5E
pig4431
2022-11-01T23:26:13Z
89
0
transformers
[ "transformers", "pytorch", "xlnet", "text-classification", "generated_from_trainer", "dataset:amazon_polarity", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T23:17:18Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_polarity metrics: - accuracy model-index: - name: amazonPolarity_XLNET_5E results: - task: name: Text Classification type: text-classification dataset: name: amazon_polarity type: amazon_polarity config: amazon_polarity split: train args: amazon_polarity metrics: - name: Accuracy type: accuracy value: 0.9266666666666666 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazonPolarity_XLNET_5E This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the amazon_polarity dataset. It achieves the following results on the evaluation set: - Loss: 0.4490 - Accuracy: 0.9267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6238 | 0.01 | 50 | 0.3703 | 0.86 | | 0.3149 | 0.03 | 100 | 0.3715 | 0.9 | | 0.3849 | 0.04 | 150 | 0.4125 | 0.8867 | | 0.4051 | 0.05 | 200 | 0.4958 | 0.8933 | | 0.3345 | 0.07 | 250 | 0.4258 | 0.9067 | | 0.439 | 0.08 | 300 | 0.2650 | 0.9067 | | 0.2248 | 0.09 | 350 | 0.3314 | 0.9267 | | 0.2849 | 0.11 | 400 | 0.3097 | 0.8933 | | 0.3468 | 0.12 | 450 | 0.3060 | 0.9067 | | 0.3216 | 0.13 | 500 | 0.3826 | 0.9067 | | 0.3462 | 0.15 | 550 | 0.2207 | 0.94 | | 0.3632 | 0.16 | 600 | 0.1864 | 0.94 | | 0.2483 | 0.17 | 650 | 0.3069 | 0.9267 | | 0.3709 | 0.19 | 700 | 0.2859 | 0.9333 | | 0.2953 | 0.2 | 750 | 0.3010 | 0.9333 | | 0.3222 | 0.21 | 800 | 0.2668 | 0.9133 | | 0.3142 | 0.23 | 850 | 0.3545 | 0.8667 | | 0.2637 | 0.24 | 900 | 0.1922 | 0.9467 | | 0.3929 | 0.25 | 950 | 0.2712 | 0.92 | | 0.2918 | 0.27 | 1000 | 0.2516 | 0.9333 | | 0.2269 | 0.28 | 1050 | 0.4227 | 0.8933 | | 0.239 | 0.29 | 1100 | 0.3639 | 0.9133 | | 0.2439 | 0.31 | 1150 | 0.3430 | 0.9133 | | 0.2417 | 0.32 | 1200 | 0.2920 | 0.94 | | 0.3223 | 0.33 | 1250 | 0.3426 | 0.9067 | | 0.2775 | 0.35 | 1300 | 0.3752 | 0.8867 | | 0.2733 | 0.36 | 1350 | 0.3015 | 0.9333 | | 0.3737 | 0.37 | 1400 | 0.2875 | 0.9267 | | 0.2907 | 0.39 | 1450 | 0.4926 | 0.8933 | | 0.316 | 0.4 | 1500 | 0.2948 | 0.9333 | | 0.2472 | 0.41 | 1550 | 0.4003 | 0.8933 | | 0.2607 | 0.43 | 1600 | 0.3608 | 0.92 | | 0.2848 | 0.44 | 1650 | 0.3332 | 0.9133 | | 0.2708 | 0.45 | 1700 | 0.3424 | 0.92 | | 0.3721 | 0.47 | 1750 | 0.2384 | 0.9267 | | 0.2925 | 0.48 | 1800 | 0.4472 | 0.88 | | 0.3619 | 0.49 | 1850 | 0.3824 | 0.9 | | 0.1994 | 0.51 | 1900 | 0.4160 | 0.9133 | | 0.3586 | 0.52 | 1950 | 0.3198 | 0.8867 | | 0.2455 | 0.53 | 2000 | 0.3119 | 0.92 | | 0.2683 | 0.55 | 2050 | 0.4262 | 0.8867 | | 0.2983 | 0.56 | 2100 | 0.3552 | 0.9067 | | 0.2973 | 0.57 | 2150 | 0.2966 | 0.8933 | | 0.2299 | 0.59 | 2200 | 0.2972 | 0.92 | | 0.295 | 0.6 | 2250 | 0.3122 | 0.9067 | | 0.2716 | 0.61 | 2300 | 0.2556 | 0.9267 | | 0.2842 | 0.63 | 2350 | 0.3317 | 0.92 | | 0.2723 | 0.64 | 2400 | 0.4409 | 0.8933 | | 0.2492 | 0.65 | 2450 | 0.3871 | 0.88 | | 0.2297 | 0.67 | 2500 | 0.3526 | 0.9133 | | 0.2125 | 0.68 | 2550 | 0.4597 | 0.9067 | | 0.3003 | 0.69 | 2600 | 0.3374 | 0.8933 | | 0.2622 | 0.71 | 2650 | 0.3492 | 0.9267 | | 0.2436 | 0.72 | 2700 | 0.3438 | 0.9267 | | 0.2599 | 0.73 | 2750 | 0.3725 | 0.9133 | | 0.2759 | 0.75 | 2800 | 0.3260 | 0.9333 | | 0.1841 | 0.76 | 2850 | 0.4218 | 0.9067 | | 0.252 | 0.77 | 2900 | 0.2730 | 0.92 | | 0.248 | 0.79 | 2950 | 0.3628 | 0.92 | | 0.2356 | 0.8 | 3000 | 0.4012 | 0.9067 | | 0.191 | 0.81 | 3050 | 0.3500 | 0.9267 | | 0.2351 | 0.83 | 3100 | 0.4038 | 0.9133 | | 0.2758 | 0.84 | 3150 | 0.3361 | 0.9067 | | 0.2952 | 0.85 | 3200 | 0.2301 | 0.9267 | | 0.2137 | 0.87 | 3250 | 0.3837 | 0.9133 | | 0.2386 | 0.88 | 3300 | 0.2739 | 0.94 | | 0.2786 | 0.89 | 3350 | 0.2820 | 0.9333 | | 0.2284 | 0.91 | 3400 | 0.2557 | 0.9333 | | 0.2546 | 0.92 | 3450 | 0.2744 | 0.9267 | | 0.2514 | 0.93 | 3500 | 0.2908 | 0.94 | | 0.3052 | 0.95 | 3550 | 0.2362 | 0.9333 | | 0.2366 | 0.96 | 3600 | 0.3047 | 0.9333 | | 0.2147 | 0.97 | 3650 | 0.3375 | 0.9333 | | 0.3347 | 0.99 | 3700 | 0.2669 | 0.9267 | | 0.3076 | 1.0 | 3750 | 0.2453 | 0.94 | | 0.1685 | 1.01 | 3800 | 0.4117 | 0.9133 | | 0.1954 | 1.03 | 3850 | 0.3074 | 0.9333 | | 0.2512 | 1.04 | 3900 | 0.3942 | 0.9133 | | 0.1365 | 1.05 | 3950 | 0.3211 | 0.92 | | 0.1985 | 1.07 | 4000 | 0.4188 | 0.9133 | | 0.1585 | 1.08 | 4050 | 0.4177 | 0.9133 | | 0.1798 | 1.09 | 4100 | 0.3298 | 0.9333 | | 0.1458 | 1.11 | 4150 | 0.5283 | 0.9 | | 0.1831 | 1.12 | 4200 | 0.3884 | 0.92 | | 0.1452 | 1.13 | 4250 | 0.4130 | 0.9133 | | 0.1679 | 1.15 | 4300 | 0.3678 | 0.9267 | | 0.1688 | 1.16 | 4350 | 0.3268 | 0.9333 | | 0.1175 | 1.17 | 4400 | 0.4722 | 0.92 | | 0.1661 | 1.19 | 4450 | 0.3899 | 0.9133 | | 0.1688 | 1.2 | 4500 | 0.4050 | 0.9133 | | 0.228 | 1.21 | 4550 | 0.4608 | 0.9 | | 0.1946 | 1.23 | 4600 | 0.5080 | 0.9 | | 0.1849 | 1.24 | 4650 | 0.4340 | 0.9067 | | 0.1365 | 1.25 | 4700 | 0.4592 | 0.9133 | | 0.2432 | 1.27 | 4750 | 0.3683 | 0.92 | | 0.1679 | 1.28 | 4800 | 0.4604 | 0.9 | | 0.2107 | 1.29 | 4850 | 0.3952 | 0.9 | | 0.1499 | 1.31 | 4900 | 0.4275 | 0.92 | | 0.1504 | 1.32 | 4950 | 0.3370 | 0.9333 | | 0.1013 | 1.33 | 5000 | 0.3723 | 0.92 | | 0.1303 | 1.35 | 5050 | 0.2925 | 0.9333 | | 0.1205 | 1.36 | 5100 | 0.3452 | 0.9267 | | 0.1427 | 1.37 | 5150 | 0.3080 | 0.94 | | 0.1518 | 1.39 | 5200 | 0.3190 | 0.94 | | 0.1885 | 1.4 | 5250 | 0.2726 | 0.9467 | | 0.1264 | 1.41 | 5300 | 0.3466 | 0.9333 | | 0.1939 | 1.43 | 5350 | 0.3957 | 0.9133 | | 0.1939 | 1.44 | 5400 | 0.4007 | 0.9 | | 0.1239 | 1.45 | 5450 | 0.2924 | 0.9333 | | 0.1588 | 1.47 | 5500 | 0.2687 | 0.9333 | | 0.1516 | 1.48 | 5550 | 0.3668 | 0.92 | | 0.1623 | 1.49 | 5600 | 0.3141 | 0.94 | | 0.2632 | 1.51 | 5650 | 0.2714 | 0.9333 | | 0.1674 | 1.52 | 5700 | 0.3188 | 0.94 | | 0.1854 | 1.53 | 5750 | 0.2818 | 0.9267 | | 0.1282 | 1.55 | 5800 | 0.2918 | 0.9333 | | 0.228 | 1.56 | 5850 | 0.2802 | 0.9133 | | 0.2349 | 1.57 | 5900 | 0.1803 | 0.9467 | | 0.1608 | 1.59 | 5950 | 0.3112 | 0.92 | | 0.1493 | 1.6 | 6000 | 0.3018 | 0.9267 | | 0.2182 | 1.61 | 6050 | 0.3419 | 0.9333 | | 0.2408 | 1.63 | 6100 | 0.2887 | 0.9267 | | 0.1872 | 1.64 | 6150 | 0.2408 | 0.9267 | | 0.1246 | 1.65 | 6200 | 0.3752 | 0.9 | | 0.2098 | 1.67 | 6250 | 0.2622 | 0.9333 | | 0.1916 | 1.68 | 6300 | 0.2245 | 0.9467 | | 0.2069 | 1.69 | 6350 | 0.2151 | 0.9467 | | 0.1446 | 1.71 | 6400 | 0.2186 | 0.9533 | | 0.1528 | 1.72 | 6450 | 0.1863 | 0.9533 | | 0.1352 | 1.73 | 6500 | 0.2660 | 0.9467 | | 0.2398 | 1.75 | 6550 | 0.1912 | 0.9533 | | 0.1485 | 1.76 | 6600 | 0.2492 | 0.9467 | | 0.2006 | 1.77 | 6650 | 0.2495 | 0.9267 | | 0.2036 | 1.79 | 6700 | 0.3885 | 0.9067 | | 0.1725 | 1.8 | 6750 | 0.2359 | 0.9533 | | 0.1864 | 1.81 | 6800 | 0.2271 | 0.9533 | | 0.1465 | 1.83 | 6850 | 0.2669 | 0.9333 | | 0.197 | 1.84 | 6900 | 0.2290 | 0.96 | | 0.1382 | 1.85 | 6950 | 0.2322 | 0.9467 | | 0.1206 | 1.87 | 7000 | 0.3117 | 0.9333 | | 0.157 | 1.88 | 7050 | 0.2163 | 0.9533 | | 0.1686 | 1.89 | 7100 | 0.2239 | 0.9533 | | 0.1953 | 1.91 | 7150 | 0.3064 | 0.9333 | | 0.1638 | 1.92 | 7200 | 0.2821 | 0.9533 | | 0.1605 | 1.93 | 7250 | 0.2413 | 0.9467 | | 0.1736 | 1.95 | 7300 | 0.2430 | 0.94 | | 0.2372 | 1.96 | 7350 | 0.2306 | 0.94 | | 0.1549 | 1.97 | 7400 | 0.2730 | 0.94 | | 0.1824 | 1.99 | 7450 | 0.3443 | 0.94 | | 0.2263 | 2.0 | 7500 | 0.2695 | 0.9267 | | 0.088 | 2.01 | 7550 | 0.2305 | 0.96 | | 0.0376 | 2.03 | 7600 | 0.3380 | 0.94 | | 0.072 | 2.04 | 7650 | 0.3349 | 0.9467 | | 0.0491 | 2.05 | 7700 | 0.3397 | 0.94 | | 0.0509 | 2.07 | 7750 | 0.3496 | 0.9467 | | 0.1033 | 2.08 | 7800 | 0.3364 | 0.94 | | 0.0549 | 2.09 | 7850 | 0.3520 | 0.94 | | 0.0627 | 2.11 | 7900 | 0.4510 | 0.9267 | | 0.0283 | 2.12 | 7950 | 0.3733 | 0.94 | | 0.1215 | 2.13 | 8000 | 0.3892 | 0.9267 | | 0.0856 | 2.15 | 8050 | 0.3114 | 0.9533 | | 0.0945 | 2.16 | 8100 | 0.3626 | 0.9333 | | 0.0901 | 2.17 | 8150 | 0.3116 | 0.94 | | 0.0688 | 2.19 | 8200 | 0.3515 | 0.9267 | | 0.1286 | 2.2 | 8250 | 0.3255 | 0.9333 | | 0.1043 | 2.21 | 8300 | 0.4395 | 0.9133 | | 0.1199 | 2.23 | 8350 | 0.3307 | 0.94 | | 0.0608 | 2.24 | 8400 | 0.2992 | 0.9533 | | 0.0827 | 2.25 | 8450 | 0.3500 | 0.94 | | 0.047 | 2.27 | 8500 | 0.3982 | 0.94 | | 0.1154 | 2.28 | 8550 | 0.3851 | 0.94 | | 0.1158 | 2.29 | 8600 | 0.3820 | 0.9133 | | 0.1053 | 2.31 | 8650 | 0.4414 | 0.92 | | 0.1336 | 2.32 | 8700 | 0.3680 | 0.92 | | 0.0853 | 2.33 | 8750 | 0.3732 | 0.9333 | | 0.0496 | 2.35 | 8800 | 0.3450 | 0.94 | | 0.0552 | 2.36 | 8850 | 0.4310 | 0.9267 | | 0.1054 | 2.37 | 8900 | 0.4174 | 0.92 | | 0.0951 | 2.39 | 8950 | 0.3815 | 0.9333 | | 0.1235 | 2.4 | 9000 | 0.4119 | 0.9267 | | 0.1094 | 2.41 | 9050 | 0.4282 | 0.9133 | | 0.0897 | 2.43 | 9100 | 0.4766 | 0.9133 | | 0.0925 | 2.44 | 9150 | 0.3303 | 0.94 | | 0.1487 | 2.45 | 9200 | 0.2948 | 0.94 | | 0.0963 | 2.47 | 9250 | 0.2911 | 0.94 | | 0.0836 | 2.48 | 9300 | 0.3379 | 0.94 | | 0.1594 | 2.49 | 9350 | 0.3841 | 0.9267 | | 0.0846 | 2.51 | 9400 | 0.4128 | 0.9267 | | 0.0984 | 2.52 | 9450 | 0.4131 | 0.9333 | | 0.1042 | 2.53 | 9500 | 0.4048 | 0.9267 | | 0.0633 | 2.55 | 9550 | 0.3776 | 0.94 | | 0.1266 | 2.56 | 9600 | 0.3247 | 0.9333 | | 0.1084 | 2.57 | 9650 | 0.3174 | 0.9467 | | 0.0714 | 2.59 | 9700 | 0.3597 | 0.94 | | 0.0826 | 2.6 | 9750 | 0.3261 | 0.9467 | | 0.1527 | 2.61 | 9800 | 0.2531 | 0.9533 | | 0.0506 | 2.63 | 9850 | 0.2994 | 0.9533 | | 0.1043 | 2.64 | 9900 | 0.3345 | 0.9467 | | 0.0229 | 2.65 | 9950 | 0.4318 | 0.9333 | | 0.1247 | 2.67 | 10000 | 0.2951 | 0.9533 | | 0.1285 | 2.68 | 10050 | 0.3036 | 0.9533 | | 0.081 | 2.69 | 10100 | 0.3541 | 0.94 | | 0.0829 | 2.71 | 10150 | 0.3757 | 0.9467 | | 0.0702 | 2.72 | 10200 | 0.3307 | 0.9533 | | 0.07 | 2.73 | 10250 | 0.3638 | 0.94 | | 0.1563 | 2.75 | 10300 | 0.3283 | 0.94 | | 0.1223 | 2.76 | 10350 | 0.3441 | 0.92 | | 0.0954 | 2.77 | 10400 | 0.3049 | 0.94 | | 0.0438 | 2.79 | 10450 | 0.3675 | 0.9467 | | 0.0796 | 2.8 | 10500 | 0.3364 | 0.94 | | 0.0803 | 2.81 | 10550 | 0.2970 | 0.94 | | 0.0324 | 2.83 | 10600 | 0.3941 | 0.9267 | | 0.083 | 2.84 | 10650 | 0.3439 | 0.94 | | 0.1263 | 2.85 | 10700 | 0.3759 | 0.9267 | | 0.1044 | 2.87 | 10750 | 1.0700 | 0.58 | | 0.1182 | 2.88 | 10800 | 0.4409 | 0.9333 | | 0.126 | 2.89 | 10850 | 0.6467 | 0.5933 | | 0.094 | 2.91 | 10900 | 0.3741 | 0.9333 | | 0.1405 | 2.92 | 10950 | 0.3458 | 0.9267 | | 0.1024 | 2.93 | 11000 | 0.2946 | 0.9333 | | 0.0812 | 2.95 | 11050 | 0.2850 | 0.9333 | | 0.1132 | 2.96 | 11100 | 0.3093 | 0.9267 | | 0.0775 | 2.97 | 11150 | 0.3938 | 0.9067 | | 0.1179 | 2.99 | 11200 | 0.3528 | 0.9267 | | 0.1413 | 3.0 | 11250 | 0.2984 | 0.9333 | | 0.0528 | 3.01 | 11300 | 0.3387 | 0.9333 | | 0.0214 | 3.03 | 11350 | 0.4108 | 0.92 | | 0.0408 | 3.04 | 11400 | 0.4174 | 0.9267 | | 0.0808 | 3.05 | 11450 | 0.4283 | 0.9267 | | 0.0535 | 3.07 | 11500 | 0.3719 | 0.9333 | | 0.0344 | 3.08 | 11550 | 0.4382 | 0.9333 | | 0.0364 | 3.09 | 11600 | 0.4195 | 0.9333 | | 0.0524 | 3.11 | 11650 | 0.4607 | 0.92 | | 0.0682 | 3.12 | 11700 | 0.4503 | 0.92 | | 0.0554 | 3.13 | 11750 | 0.4563 | 0.92 | | 0.0401 | 3.15 | 11800 | 0.4668 | 0.9133 | | 0.0782 | 3.16 | 11850 | 0.4468 | 0.9133 | | 0.0605 | 3.17 | 11900 | 0.4239 | 0.92 | | 0.0599 | 3.19 | 11950 | 0.4019 | 0.92 | | 0.0364 | 3.2 | 12000 | 0.3988 | 0.9267 | | 0.0357 | 3.21 | 12050 | 0.4168 | 0.9267 | | 0.072 | 3.23 | 12100 | 0.3889 | 0.9333 | | 0.0931 | 3.24 | 12150 | 0.3368 | 0.9333 | | 0.0724 | 3.25 | 12200 | 0.3209 | 0.9333 | | 0.0653 | 3.27 | 12250 | 0.3615 | 0.9333 | | 0.0173 | 3.28 | 12300 | 0.3946 | 0.9333 | | 0.0537 | 3.29 | 12350 | 0.3876 | 0.9333 | | 0.0373 | 3.31 | 12400 | 0.4079 | 0.9267 | | 0.0322 | 3.32 | 12450 | 0.3553 | 0.94 | | 0.0585 | 3.33 | 12500 | 0.4276 | 0.92 | | 0.0315 | 3.35 | 12550 | 0.4092 | 0.9267 | | 0.0317 | 3.36 | 12600 | 0.4107 | 0.9267 | | 0.082 | 3.37 | 12650 | 0.4170 | 0.9267 | | 0.1101 | 3.39 | 12700 | 0.3801 | 0.9333 | | 0.0392 | 3.4 | 12750 | 0.3802 | 0.9333 | | 0.0382 | 3.41 | 12800 | 0.4194 | 0.9267 | | 0.048 | 3.43 | 12850 | 0.3794 | 0.9333 | | 0.0896 | 3.44 | 12900 | 0.3961 | 0.9267 | | 0.0966 | 3.45 | 12950 | 0.3982 | 0.92 | | 0.0165 | 3.47 | 13000 | 0.3819 | 0.92 | | 0.0701 | 3.48 | 13050 | 0.3440 | 0.94 | | 0.0104 | 3.49 | 13100 | 0.4132 | 0.9267 | | 0.0991 | 3.51 | 13150 | 0.3477 | 0.9333 | | 0.0554 | 3.52 | 13200 | 0.3255 | 0.94 | | 0.0476 | 3.53 | 13250 | 0.4343 | 0.92 | | 0.0213 | 3.55 | 13300 | 0.4601 | 0.92 | | 0.0465 | 3.56 | 13350 | 0.4141 | 0.9267 | | 0.1246 | 3.57 | 13400 | 0.3473 | 0.94 | | 0.1112 | 3.59 | 13450 | 0.3679 | 0.92 | | 0.0323 | 3.6 | 13500 | 0.3508 | 0.9267 | | 0.0423 | 3.61 | 13550 | 0.3475 | 0.94 | | 0.0498 | 3.63 | 13600 | 0.4095 | 0.92 | | 0.0531 | 3.64 | 13650 | 0.3544 | 0.9333 | | 0.0365 | 3.65 | 13700 | 0.4403 | 0.9133 | | 0.058 | 3.67 | 13750 | 0.4284 | 0.9133 | | 0.0191 | 3.68 | 13800 | 0.4466 | 0.92 | | 0.0838 | 3.69 | 13850 | 0.5128 | 0.9067 | | 0.1561 | 3.71 | 13900 | 0.3588 | 0.9267 | | 0.0464 | 3.72 | 13950 | 0.3867 | 0.92 | | 0.037 | 3.73 | 14000 | 0.3961 | 0.92 | | 0.0288 | 3.75 | 14050 | 0.4274 | 0.92 | | 0.0928 | 3.76 | 14100 | 0.3524 | 0.94 | | 0.0696 | 3.77 | 14150 | 0.3555 | 0.9333 | | 0.0318 | 3.79 | 14200 | 0.3457 | 0.9467 | | 0.0417 | 3.8 | 14250 | 0.3412 | 0.94 | | 0.0283 | 3.81 | 14300 | 0.3845 | 0.9333 | | 0.058 | 3.83 | 14350 | 0.3765 | 0.9333 | | 0.0589 | 3.84 | 14400 | 0.4085 | 0.9267 | | 0.0432 | 3.85 | 14450 | 0.4103 | 0.9267 | | 0.0365 | 3.87 | 14500 | 0.4000 | 0.9267 | | 0.0858 | 3.88 | 14550 | 0.3905 | 0.9267 | | 0.0494 | 3.89 | 14600 | 0.3739 | 0.9267 | | 0.0503 | 3.91 | 14650 | 0.3203 | 0.94 | | 0.0349 | 3.92 | 14700 | 0.3268 | 0.9467 | | 0.0328 | 3.93 | 14750 | 0.3259 | 0.9467 | | 0.0347 | 3.95 | 14800 | 0.3588 | 0.94 | | 0.0233 | 3.96 | 14850 | 0.3456 | 0.9467 | | 0.0602 | 3.97 | 14900 | 0.3819 | 0.94 | | 0.0766 | 3.99 | 14950 | 0.3813 | 0.9333 | | 0.0562 | 4.0 | 15000 | 0.3669 | 0.9333 | | 0.0163 | 4.01 | 15050 | 0.4176 | 0.92 | | 0.007 | 4.03 | 15100 | 0.3694 | 0.9333 | | 0.0005 | 4.04 | 15150 | 0.3915 | 0.9333 | | 0.021 | 4.05 | 15200 | 0.4334 | 0.9333 | | 0.0823 | 4.07 | 15250 | 0.4155 | 0.9333 | | 0.0509 | 4.08 | 15300 | 0.4056 | 0.9333 | | 0.0381 | 4.09 | 15350 | 0.3729 | 0.94 | | 0.045 | 4.11 | 15400 | 0.3940 | 0.9333 | | 0.0379 | 4.12 | 15450 | 0.4276 | 0.9267 | | 0.0661 | 4.13 | 15500 | 0.3797 | 0.94 | | 0.0522 | 4.15 | 15550 | 0.4029 | 0.9333 | | 0.0189 | 4.16 | 15600 | 0.4424 | 0.9267 | | 0.0191 | 4.17 | 15650 | 0.4711 | 0.92 | | 0.031 | 4.19 | 15700 | 0.4344 | 0.9333 | | 0.0837 | 4.2 | 15750 | 0.3703 | 0.94 | | 0.0397 | 4.21 | 15800 | 0.3976 | 0.9333 | | 0.034 | 4.23 | 15850 | 0.4021 | 0.9333 | | 0.0199 | 4.24 | 15900 | 0.4015 | 0.9333 | | 0.0315 | 4.25 | 15950 | 0.3652 | 0.94 | | 0.076 | 4.27 | 16000 | 0.3421 | 0.94 | | 0.0478 | 4.28 | 16050 | 0.3122 | 0.9533 | | 0.0203 | 4.29 | 16100 | 0.3436 | 0.9467 | | 0.0706 | 4.31 | 16150 | 0.3544 | 0.94 | | 0.0086 | 4.32 | 16200 | 0.3730 | 0.94 | | 0.05 | 4.33 | 16250 | 0.3761 | 0.94 | | 0.048 | 4.35 | 16300 | 0.3583 | 0.94 | | 0.0715 | 4.36 | 16350 | 0.3459 | 0.94 | | 0.0316 | 4.37 | 16400 | 0.3355 | 0.94 | | 0.0356 | 4.39 | 16450 | 0.3278 | 0.9467 | | 0.0176 | 4.4 | 16500 | 0.3177 | 0.9467 | | 0.0817 | 4.41 | 16550 | 0.3705 | 0.9333 | | 0.0414 | 4.43 | 16600 | 0.3919 | 0.9333 | | 0.0198 | 4.44 | 16650 | 0.3435 | 0.9467 | | 0.0203 | 4.45 | 16700 | 0.3708 | 0.94 | | 0.0391 | 4.47 | 16750 | 0.3615 | 0.94 | | 0.0132 | 4.48 | 16800 | 0.3827 | 0.94 | | 0.0385 | 4.49 | 16850 | 0.3837 | 0.94 | | 0.0366 | 4.51 | 16900 | 0.3633 | 0.94 | | 0.0779 | 4.52 | 16950 | 0.3403 | 0.9467 | | 0.0168 | 4.53 | 17000 | 0.4592 | 0.92 | | 0.0517 | 4.55 | 17050 | 0.4063 | 0.9333 | | 0.0138 | 4.56 | 17100 | 0.4335 | 0.9267 | | 0.0123 | 4.57 | 17150 | 0.3777 | 0.9333 | | 0.0324 | 4.59 | 17200 | 0.4657 | 0.92 | | 0.0202 | 4.6 | 17250 | 0.4791 | 0.92 | | 0.001 | 4.61 | 17300 | 0.4761 | 0.92 | | 0.0364 | 4.63 | 17350 | 0.4663 | 0.92 | | 0.0154 | 4.64 | 17400 | 0.4611 | 0.92 | | 0.0184 | 4.65 | 17450 | 0.4616 | 0.92 | | 0.0004 | 4.67 | 17500 | 0.4650 | 0.92 | | 0.0192 | 4.68 | 17550 | 0.4649 | 0.92 | | 0.0185 | 4.69 | 17600 | 0.4654 | 0.92 | | 0.0196 | 4.71 | 17650 | 0.4643 | 0.92 | | 0.0386 | 4.72 | 17700 | 0.4660 | 0.92 | | 0.0236 | 4.73 | 17750 | 0.4499 | 0.9267 | | 0.0383 | 4.75 | 17800 | 0.4479 | 0.9267 | | 0.0398 | 4.76 | 17850 | 0.4483 | 0.9267 | | 0.0004 | 4.77 | 17900 | 0.4541 | 0.9267 | | 0.023 | 4.79 | 17950 | 0.4387 | 0.9267 | | 0.0361 | 4.8 | 18000 | 0.4409 | 0.9267 | | 0.0409 | 4.81 | 18050 | 0.4384 | 0.9267 | | 0.0004 | 4.83 | 18100 | 0.4376 | 0.9267 | | 0.0171 | 4.84 | 18150 | 0.4421 | 0.9267 | | 0.0589 | 4.85 | 18200 | 0.4373 | 0.9267 | | 0.0004 | 4.87 | 18250 | 0.4492 | 0.9267 | | 0.0142 | 4.88 | 18300 | 0.4585 | 0.9267 | | 0.0561 | 4.89 | 18350 | 0.4681 | 0.9267 | | 0.0204 | 4.91 | 18400 | 0.4608 | 0.9267 | | 0.0248 | 4.92 | 18450 | 0.4641 | 0.9267 | | 0.0404 | 4.93 | 18500 | 0.4567 | 0.9267 | | 0.0608 | 4.95 | 18550 | 0.4518 | 0.9267 | | 0.0412 | 4.96 | 18600 | 0.4510 | 0.9267 | | 0.0183 | 4.97 | 18650 | 0.4522 | 0.9267 | | 0.0567 | 4.99 | 18700 | 0.4492 | 0.9267 | | 0.0173 | 5.0 | 18750 | 0.4490 | 0.9267 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
dumitrescustefan/mt5-large-romanian
dumitrescustefan
2022-11-01T22:31:01Z
24
3
transformers
[ "transformers", "pytorch", "jax", "mt5", "text2text-generation", "ro", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text2text-generation
2022-10-19T11:35:51Z
--- language: ro inference: false license: apache-2.0 --- This is a pretrained [MT5](https://github.com/google-research/multilingual-t5) large model (**973M** parameters). Training was performed with the span corruption task on a clean 80GB Romanian text corpus for 4M total steps with these [scripts](https://github.com/dumitrescustefan/t5x_models), starting from the 1M public mt5x-large checkpoint. The model was trained with an encoder and decoder sequence length of 512, and has the same mt5x vocabulary as the 1M multilingual checkpoint. **!! IMPORTANT !!** This model was pretrained on the span corruption MLM task, meaning this model is **not usable** in any downstream task **without finetuning** first! ### How to load an mt5x model ```python from transformers import MT5Model, T5Tokenizer model = MT5Model.from_pretrained('dumitrescustefan/mt5-large-romanian') tokenizer = T5Tokenizer.from_pretrained('dumitrescustefan/mt5-large-romanian') input_text = "Acesta este un test." target_text = "Acesta este" inputs = tokenizer(input_text, return_tensors="pt") labels = tokenizer(text_target=target_text, return_tensors="pt") outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"]) hidden_states = outputs.last_hidden_state print(hidden_states.shape) # this will print [1, 4, 1024] ``` Remember to always sanitize your text! Replace ``ş`` and ``ţ`` cedilla-letters to comma-letters with : ```python text = text.replace("ţ", "ț").replace("ş", "ș").replace("Ţ", "Ț").replace("Ş", "Ș") ``` because the model was **not** trained on cedilla ``ş`` and ``ţ``s. If you don't, you will have decreased performance due to ``<UNK>``s and increased number of tokens per word. ### Acknowledgements We'd like to thank [TPU Research Cloud](https://sites.research.google/trc/about/) for providing the TPUv4 cores we used to train these models! ### Authors Yours truly, _[Stefan Dumitrescu](https://github.com/dumitrescustefan), [Mihai Ilie](https://github.com/iliemihai) and [Per Egil Kummervold](https://huggingface.co/north)_
dumitrescustefan/mt5-base-romanian
dumitrescustefan
2022-11-01T22:30:41Z
95
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "ro", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2022-10-19T11:35:37Z
--- language: ro inference: false license: apache-2.0 --- This is a pretrained [MT5](https://github.com/google-research/multilingual-t5) base model (**390M** parameters). Training was performed with the span corruption task on a clean 80GB Romanian text corpus for 4M total steps with these [scripts](https://github.com/dumitrescustefan/t5x_models), starting from the 1M public mt5x-base checkpoint. The model was trained with an encoder sequence length of 512 and a decoder sequence length of 256; it has the same mt5x vocabulary as the 1M multilingual checkpoint. **!! IMPORTANT !!** This model was pretrained on the span corruption MLM task, meaning this model is **not usable** in any downstream task **without finetuning** first! ### How to load an mt5x model ```python from transformers import MT5Model, T5Tokenizer model = MT5Model.from_pretrained('dumitrescustefan/mt5-base-romanian') tokenizer = T5Tokenizer.from_pretrained('dumitrescustefan/mt5-base-romanian') input_text = "Acesta este un test." target_text = "Acesta este" inputs = tokenizer(input_text, return_tensors="pt") labels = tokenizer(text_target=target_text, return_tensors="pt") outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"]) hidden_states = outputs.last_hidden_state print(hidden_states.shape) # this will print [1, 4, 768] ``` Remember to always sanitize your text! Replace ``ş`` and ``ţ`` cedilla-letters to comma-letters with : ```python text = text.replace("ţ", "ț").replace("ş", "ș").replace("Ţ", "Ț").replace("Ş", "Ș") ``` because the model was **not** trained on cedilla ``ş`` and ``ţ``s. If you don't, you will have decreased performance due to ``<UNK>``s and increased number of tokens per word. ### Acknowledgements We'd like to thank [TPU Research Cloud](https://sites.research.google/trc/about/) for providing the TPUv4 cores we used to train these models! ### Authors Yours truly, _[Stefan Dumitrescu](https://github.com/dumitrescustefan), [Mihai Ilie](https://github.com/iliemihai) and [Per Egil Kummervold](https://huggingface.co/north)_
dumitrescustefan/t5-v1_1-large-romanian
dumitrescustefan
2022-11-01T22:29:19Z
21
1
transformers
[ "transformers", "pytorch", "jax", "mt5", "text2text-generation", "ro", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text2text-generation
2022-11-01T22:00:14Z
--- language: ro inference: false license: apache-2.0 --- This is a pretrained-from-scratch **T5v1.1 large** model (**783M** parameters) on the [t5x](https://github.com/google-research/t5x) platform. Training was performed on a clean 80GB Romanian text corpus for 4M steps with these [scripts](https://github.com/dumitrescustefan/t5x_models). The model was trained with an encoder and decoder sequence length of 512. **!! IMPORTANT !!** This model was pretrained on the span corruption MLM task, meaning this model is **not usable** in any downstream task **without finetuning** first! ### How to load a t5x model ```python from transformers import T5Tokenizer, T5Model tokenizer = T5Tokenizer.from_pretrained('dumitrescustefan/t5-v1_1-large-romanian') model = T5Model.from_pretrained('dumitrescustefan/t5-v1_1-large-romanian') input_ids = tokenizer("Acesta este un test", return_tensors="pt").input_ids # Batch size 1 decoder_input_ids = tokenizer("Acesta este", return_tensors="pt").input_ids # Batch size 1 # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model. # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg. decoder_input_ids = model._shift_right(decoder_input_ids) # forward pass outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) last_hidden_states = outputs.last_hidden_state print(last_hidden_states.shape) # this will print [1, 3, 1024] ``` Remember to always sanitize your text! Replace ``ş`` and ``ţ`` cedilla-letters to comma-letters with : ```python text = text.replace("ţ", "ț").replace("ş", "ș").replace("Ţ", "Ț").replace("Ş", "Ș") ``` because the model was **not** trained on cedilla ``ş`` and ``ţ``s. If you don't, you will have decreased performance due to ``<UNK>``s and increased number of tokens per word. ### Acknowledgements We'd like to thank [TPU Research Cloud](https://sites.research.google/trc/about/) for providing the TPUv4 cores we used to train these models! ### Authors Yours truly, _[Stefan Dumitrescu](https://github.com/dumitrescustefan), [Mihai Ilie](https://github.com/iliemihai) and [Per Egil Kummervold](https://huggingface.co/north)_
kaejo98/t5_base_question_generation
kaejo98
2022-11-01T22:03:50Z
8
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-01T16:06:00Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5_base_question_generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_base_question_generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an SQUAD dataset for QA. ## Model description More information needed ## Intended uses The model takes context as an input sequence, and will generate a full question sentence as an output sequence. The max sequence length is 512 tokens. Inputs should be organised into the following format: \<generate_questions\> paragraph: context text here' The input sequence can then be encoded and passed as the input_ids argument in the model's generate() method. ## limitations The model was trained on only a limited amount of data hence questions might be poor quality. In addition the questions generated have style similar to that of the training data. ## Training and evaluation data The model takes as input a passage to generate questions answerable by the passage. The dataset used to train the model comprises 80k passage-question pairs sampled randomly from the SQUAD training data. For the evaluation we sampled 10k passage-question pairs from the SQUAD development set. ## Training procedure The model was trained for 5 epochs over the training set with a learning rate of 5e-05 with EarlyStopping. The batch size was only 10 due to GPU memory limitations ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.21 - num_epochs: 5 ### Framework versions - Transformers 4.23.1 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
rikkar/dsd_futurism
rikkar
2022-11-01T21:59:19Z
0
0
null
[ "license:cc0-1.0", "region:us" ]
null
2022-11-01T13:51:42Z
--- license: cc0-1.0 --- Stable Diffusion model trained for 5k steps on the art style "futurism". Invoke the style with "in the style of futtt". Play with weights, it's a strong style so prompt accordingly. Sample images: ![20221101103331_00000_78550141.png](https://s3.amazonaws.com/moonup/production/uploads/1667339716454-62ad05306bc70f4a0ce27214.png) ![20221031150530_00000_4006546038.png](https://s3.amazonaws.com/moonup/production/uploads/1667339752250-62ad05306bc70f4a0ce27214.png) ![20221031151001_00007_222715945.png](https://s3.amazonaws.com/moonup/production/uploads/1667339780164-62ad05306bc70f4a0ce27214.png) Sample training images: ![futtt_(4).jpg](https://s3.amazonaws.com/moonup/production/uploads/1667315842086-62ad05306bc70f4a0ce27214.jpeg) ![futtt_(8).jpg](https://s3.amazonaws.com/moonup/production/uploads/1667315860265-62ad05306bc70f4a0ce27214.jpeg) ![futtt_(16).jpg](https://s3.amazonaws.com/moonup/production/uploads/1667315873761-62ad05306bc70f4a0ce27214.jpeg) ![futtt_(36).jpg](https://s3.amazonaws.com/moonup/production/uploads/1667315883690-62ad05306bc70f4a0ce27214.jpeg) ![futtt_(50).jpg](https://s3.amazonaws.com/moonup/production/uploads/1667315890969-62ad05306bc70f4a0ce27214.jpeg)
AlekseyKorshuk/retriever-coding-guru-adapted
AlekseyKorshuk
2022-11-01T21:53:11Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-01T21:42:16Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # AlekseyKorshuk/retriever-coding-guru-adapted This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('AlekseyKorshuk/retriever-coding-guru-adapted') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('AlekseyKorshuk/retriever-coding-guru-adapted') model = AutoModel.from_pretrained('AlekseyKorshuk/retriever-coding-guru-adapted') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=AlekseyKorshuk/retriever-coding-guru-adapted) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 317 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 31, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
troesy/spanbert-base-cased-LAT-True-added-tokenizer
troesy
2022-11-01T21:19:53Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-01T20:55:41Z
--- tags: - generated_from_trainer model-index: - name: spanbert-base-cased-LAT-True-added-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-LAT-True-added-tokenizer This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 174 | 0.3422 | | No log | 2.0 | 348 | 0.2893 | | 0.3406 | 3.0 | 522 | 0.2767 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
pig4431/amazonPolarity_roBERTa_5E
pig4431
2022-11-01T21:13:15Z
7
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_polarity", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T21:12:18Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_polarity metrics: - accuracy model-index: - name: amazonPolarity_roBERTa_5E results: - task: name: Text Classification type: text-classification dataset: name: amazon_polarity type: amazon_polarity config: amazon_polarity split: train args: amazon_polarity metrics: - name: Accuracy type: accuracy value: 0.96 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazonPolarity_roBERTa_5E This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the amazon_polarity dataset. It achieves the following results on the evaluation set: - Loss: 0.2201 - Accuracy: 0.96 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5785 | 0.05 | 50 | 0.2706 | 0.9133 | | 0.2731 | 0.11 | 100 | 0.2379 | 0.9267 | | 0.2223 | 0.16 | 150 | 0.1731 | 0.92 | | 0.1887 | 0.21 | 200 | 0.1672 | 0.9267 | | 0.1915 | 0.27 | 250 | 0.2946 | 0.9067 | | 0.1981 | 0.32 | 300 | 0.1744 | 0.9267 | | 0.1617 | 0.37 | 350 | 0.2349 | 0.92 | | 0.1919 | 0.43 | 400 | 0.1605 | 0.9333 | | 0.1713 | 0.48 | 450 | 0.1626 | 0.94 | | 0.1961 | 0.53 | 500 | 0.1555 | 0.9467 | | 0.1652 | 0.59 | 550 | 0.1996 | 0.94 | | 0.1719 | 0.64 | 600 | 0.1848 | 0.9333 | | 0.159 | 0.69 | 650 | 0.1783 | 0.9467 | | 0.1533 | 0.75 | 700 | 0.2016 | 0.9467 | | 0.1749 | 0.8 | 750 | 0.3943 | 0.8733 | | 0.1675 | 0.85 | 800 | 0.1948 | 0.9133 | | 0.1601 | 0.91 | 850 | 0.2044 | 0.92 | | 0.1424 | 0.96 | 900 | 0.1061 | 0.9533 | | 0.1447 | 1.01 | 950 | 0.2195 | 0.9267 | | 0.0997 | 1.07 | 1000 | 0.2102 | 0.9333 | | 0.1454 | 1.12 | 1050 | 0.1648 | 0.9467 | | 0.1326 | 1.17 | 1100 | 0.2774 | 0.9 | | 0.1192 | 1.23 | 1150 | 0.1337 | 0.96 | | 0.1429 | 1.28 | 1200 | 0.1451 | 0.96 | | 0.1227 | 1.33 | 1250 | 0.1995 | 0.94 | | 0.1343 | 1.39 | 1300 | 0.2115 | 0.92 | | 0.1208 | 1.44 | 1350 | 0.1832 | 0.9467 | | 0.1314 | 1.49 | 1400 | 0.1298 | 0.96 | | 0.1069 | 1.55 | 1450 | 0.1778 | 0.94 | | 0.126 | 1.6 | 1500 | 0.1205 | 0.9667 | | 0.1162 | 1.65 | 1550 | 0.1569 | 0.9533 | | 0.0961 | 1.71 | 1600 | 0.1865 | 0.9467 | | 0.13 | 1.76 | 1650 | 0.1458 | 0.96 | | 0.1206 | 1.81 | 1700 | 0.1648 | 0.96 | | 0.1096 | 1.87 | 1750 | 0.2221 | 0.9333 | | 0.1138 | 1.92 | 1800 | 0.1727 | 0.9533 | | 0.1258 | 1.97 | 1850 | 0.2036 | 0.9467 | | 0.1032 | 2.03 | 1900 | 0.1710 | 0.9667 | | 0.082 | 2.08 | 1950 | 0.2380 | 0.9467 | | 0.101 | 2.13 | 2000 | 0.1868 | 0.9533 | | 0.0913 | 2.19 | 2050 | 0.2934 | 0.9267 | | 0.0859 | 2.24 | 2100 | 0.2385 | 0.9333 | | 0.1019 | 2.29 | 2150 | 0.1697 | 0.9667 | | 0.1069 | 2.35 | 2200 | 0.1815 | 0.94 | | 0.0805 | 2.4 | 2250 | 0.2185 | 0.9467 | | 0.0906 | 2.45 | 2300 | 0.1923 | 0.96 | | 0.105 | 2.51 | 2350 | 0.1720 | 0.96 | | 0.0866 | 2.56 | 2400 | 0.1710 | 0.96 | | 0.0821 | 2.61 | 2450 | 0.2267 | 0.9533 | | 0.107 | 2.67 | 2500 | 0.2203 | 0.9467 | | 0.0841 | 2.72 | 2550 | 0.1621 | 0.9533 | | 0.0811 | 2.77 | 2600 | 0.1954 | 0.9533 | | 0.1077 | 2.83 | 2650 | 0.2107 | 0.9533 | | 0.0771 | 2.88 | 2700 | 0.2398 | 0.9467 | | 0.08 | 2.93 | 2750 | 0.1816 | 0.96 | | 0.0827 | 2.99 | 2800 | 0.2311 | 0.9467 | | 0.1118 | 3.04 | 2850 | 0.1825 | 0.96 | | 0.0626 | 3.09 | 2900 | 0.2876 | 0.9333 | | 0.0733 | 3.14 | 2950 | 0.2045 | 0.9467 | | 0.0554 | 3.2 | 3000 | 0.1775 | 0.96 | | 0.0569 | 3.25 | 3050 | 0.2208 | 0.9467 | | 0.0566 | 3.3 | 3100 | 0.2113 | 0.9533 | | 0.063 | 3.36 | 3150 | 0.2013 | 0.96 | | 0.056 | 3.41 | 3200 | 0.2229 | 0.96 | | 0.0791 | 3.46 | 3250 | 0.2472 | 0.9467 | | 0.0867 | 3.52 | 3300 | 0.1630 | 0.9667 | | 0.0749 | 3.57 | 3350 | 0.2066 | 0.9533 | | 0.0653 | 3.62 | 3400 | 0.2085 | 0.96 | | 0.0784 | 3.68 | 3450 | 0.2068 | 0.9467 | | 0.074 | 3.73 | 3500 | 0.1976 | 0.96 | | 0.076 | 3.78 | 3550 | 0.1953 | 0.9533 | | 0.0807 | 3.84 | 3600 | 0.2246 | 0.9467 | | 0.077 | 3.89 | 3650 | 0.1867 | 0.9533 | | 0.0771 | 3.94 | 3700 | 0.2035 | 0.9533 | | 0.0658 | 4.0 | 3750 | 0.1754 | 0.9667 | | 0.0711 | 4.05 | 3800 | 0.1977 | 0.9667 | | 0.066 | 4.1 | 3850 | 0.1806 | 0.9667 | | 0.0627 | 4.16 | 3900 | 0.1819 | 0.96 | | 0.0671 | 4.21 | 3950 | 0.2247 | 0.9533 | | 0.0245 | 4.26 | 4000 | 0.2482 | 0.9467 | | 0.0372 | 4.32 | 4050 | 0.2201 | 0.96 | | 0.0607 | 4.37 | 4100 | 0.2381 | 0.9467 | | 0.0689 | 4.42 | 4150 | 0.2159 | 0.96 | | 0.0383 | 4.48 | 4200 | 0.2278 | 0.9533 | | 0.0382 | 4.53 | 4250 | 0.2277 | 0.96 | | 0.0626 | 4.58 | 4300 | 0.2325 | 0.96 | | 0.0595 | 4.64 | 4350 | 0.2315 | 0.96 | | 0.0578 | 4.69 | 4400 | 0.2284 | 0.96 | | 0.0324 | 4.74 | 4450 | 0.2297 | 0.96 | | 0.0476 | 4.8 | 4500 | 0.2154 | 0.96 | | 0.0309 | 4.85 | 4550 | 0.2258 | 0.96 | | 0.0748 | 4.9 | 4600 | 0.2131 | 0.96 | | 0.0731 | 4.96 | 4650 | 0.2201 | 0.96 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
bguan/dqn-SpaceInvadersNoFrameskip-v4
bguan
2022-11-01T20:51:00Z
5
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-01T20:50:19Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 674.50 +/- 229.13 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga bguan -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga bguan -f logs/ rl_zoo3 enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga bguan ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
ssharoff/genres-distill
ssharoff
2022-11-01T20:21:35Z
8
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "TextClassificationPipeline", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-31T16:45:19Z
--- license: cc-by-sa-4.0 tags: - TextClassificationPipeline --- # Model description: This is a simple model aimed at predicting the genres of an arbitrary Web text. It should be integrateable into the standard pipelines. For example: ``` from transformers import pipeline classifier = pipeline("text-classification",model='ssharoff/genres-distill') print(classifier("Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do: once or twice she had peeped into the book her sister was reading, but it had no pictures or conversations in it. `And what is the use of a book,' thought Alice `without pictures or conversation? So she was considering in her own mind (as well as she could, for the hot day made her feel very sleepy and stupid), whether the pleasure of making a daisy-chain would be worth the trouble of getting up and picking the daisies, when suddenly a White Rabbit with pink eyes ran close by her. There was nothing so very remarkable in that; nor did Alice think it so very much out of the way to hear the Rabbit say to itself, `Oh dear! Oh dear! I shall be late!' (when she thought it over afterwards, it occurred to her that she ought to have wondered at this, but at the time it all seemed quite natural); but when the Rabbit actually took a watch out of its waistcoat-pocket, and looked at it, and then hurried on, Alice started to her feet, for it flashed across her mind that she had never before seen a rabbit with either a waistcoat-pocket, or a watch to take out of it, and burning with curiosity, she ran across the field after it, and fortunately was just in time to see it pop down a large rabbit-hole under the hedge. In another moment down went Alice after it, never once considering how in the world she was to get out again. The rabbit-hole went straight on like a tunnel for some way, and then dipped suddenly down, so suddenly that Alice had not a moment to think about stopping herself before she found herself falling down a very deep well.", top_k=2)) print(classifier("The gratitude of every home in our Island, in our Empire, and indeed throughout the world, except in the abodes of the guilty, goes out to the British airmen who, undaunted by odds, unwearied in their constant challenge and mortal danger, are turning the tide of the World War by their prowess and by their devotion. Never in the field of human conflict was so much owed by so many to so few. ", top_k=2)) ``` | Code | Label | Question to be answered | Prototypes | Comments | |------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------| | A1 | argum | To what extent does the text argue to persuade the reader to support an opinion or a point of view? | argumentative blogs, editorials or opinion pieces | | | A4 | fictive | To what extent is the text's content fictional? | novels, poetry, myths, film plot summaries | | | A7 | instruct | To what extent does the text aim at teaching the reader how something works or at giving advice? | tutorials or FAQs | This also includes a list of questions themselves. | | A8 | reporting | To what extent does the text appear to be an informative report of events recent at the time of writing? | Reporting news story | Information about future events can be considered as reporting too. \`None' if a news article only discusses a state of affairs | | A9 | legal | To what extent does the text specify a set of regulations? | Laws, contracts, copyright notices, terms&conditions. | | | A11 | personal | To what extent does the text report a first-person story? | Diary entries, travel blogs | | | A12 | commercial | To what extent does the text promote a product or service? | Adverts, spam | | | A14 | academic | To what extent does the text report academic research? | Academic research papers | | | A16 | info | To what extent does the text provide reference information to define the topic of this text? | Encyclopedic articles, dictionary definitions, specifications | | | A17 | reviews | To what extent does the text evaluate a specific entity by endorsing or criticising it? | Reviews of a product, location or performance | | The system of categories for predictions follows: ``` @Article{sharoff18genres, author = {Serge Sharoff}, title = {Functional Text Dimensions for the annotation of {Web} corpora}, journal = {Corpora}, volume = {13}, number = {1}, pages = {65--95}, year = {2018} } ``` [http://corpus.leeds.ac.uk/serge/publications/2018-ftd.pdf]
jayantapaul888/xlm-roberta-base-eng-only-sentiment-single-finetuned-memes
jayantapaul888
2022-11-01T20:15:39Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T19:34:41Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: xlm-roberta-base-eng-only-sentiment-single-finetuned-memes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-eng-only-sentiment-single-finetuned-memes This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5629 - Accuracy: 0.8652 - Precision: 0.8794 - Recall: 0.8786 - F1: 0.8789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 378 | 0.3506 | 0.8459 | 0.8647 | 0.8584 | 0.8605 | | 0.4424 | 2.0 | 756 | 0.3264 | 0.8563 | 0.8818 | 0.8696 | 0.8689 | | 0.2888 | 3.0 | 1134 | 0.3563 | 0.8578 | 0.8759 | 0.8701 | 0.8714 | | 0.1889 | 4.0 | 1512 | 0.3939 | 0.8585 | 0.8733 | 0.8729 | 0.8730 | | 0.1889 | 5.0 | 1890 | 0.4698 | 0.8622 | 0.8765 | 0.8761 | 0.8763 | | 0.1136 | 6.0 | 2268 | 0.5629 | 0.8652 | 0.8794 | 0.8786 | 0.8789 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
troesy/spanbert-base-cased-LAT-True
troesy
2022-11-01T20:09:57Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-01T19:29:56Z
--- tags: - generated_from_trainer model-index: - name: spanbert-base-cased-LAT-True results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-LAT-True This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 174 | 0.2898 | | No log | 2.0 | 348 | 0.2713 | | 0.19 | 3.0 | 522 | 0.2809 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
loremipsum3658/jur-v5-fsl-tuned-cla-assun
loremipsum3658
2022-11-01T19:27:51Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-01T19:14:38Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1099 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1099, "warmup_steps": 110, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
sudheer997/distilbert-base-uncased-finetuned-emotion
sudheer997
2022-11-01T19:11:29Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T18:13:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9275 - name: F1 type: f1 value: 0.9274873662190433 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2264 - Accuracy: 0.9275 - F1: 0.9275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8546 | 1.0 | 250 | 0.3415 | 0.902 | 0.8975 | | 0.2647 | 2.0 | 500 | 0.2264 | 0.9275 | 0.9275 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
motmono/Reinforcement-CartPole-v1
motmono
2022-11-01T18:56:16Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-11-01T18:56:00Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforcement-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
anilbs/segmentation
anilbs
2022-11-01T18:54:22Z
34
2
pyannote-audio
[ "pyannote-audio", "pytorch", "pyannote", "pyannote-audio-model", "audio", "voice", "speech", "speaker", "speaker-segmentation", "voice-activity-detection", "overlapped-speech-detection", "resegmentation", "dataset:ami", "dataset:dihard", "dataset:voxconverse", "arxiv:2104.04045", "license:mit", "region:us" ]
voice-activity-detection
2022-11-01T18:42:13Z
--- tags: - pyannote - pyannote-audio - pyannote-audio-model - audio - voice - speech - speaker - speaker-segmentation - voice-activity-detection - overlapped-speech-detection - resegmentation datasets: - ami - dihard - voxconverse license: mit inference: false --- # 🎹 Speaker segmentation ![Example](example.png) Model from *[End-to-end speaker segmentation for overlap-aware resegmentation](http://arxiv.org/abs/2104.04045)*, by Hervé Bredin and Antoine Laurent. [Online demo](https://huggingface.co/spaces/pyannote/pretrained-pipelines) is available as a Hugging Face Space. ## Support For commercial enquiries and scientific consulting, please contact [me](mailto:herve@niderb.fr). For [technical questions](https://github.com/pyannote/pyannote-audio/discussions) and [bug reports](https://github.com/pyannote/pyannote-audio/issues), please check [pyannote.audio](https://github.com/pyannote/pyannote-audio) Github repository. ## Usage Relies on pyannote.audio 2.0 currently in development: see [installation instructions](https://github.com/pyannote/pyannote-audio/tree/develop#installation). ### Voice activity detection ```python from pyannote.audio.pipelines import VoiceActivityDetection pipeline = VoiceActivityDetection(segmentation="anilbs/segmentation") HYPER_PARAMETERS = { # onset/offset activation thresholds "onset": 0.5, "offset": 0.5, # remove speech regions shorter than that many seconds. "min_duration_on": 0.0, # fill non-speech regions shorter than that many seconds. "min_duration_off": 0.0 } pipeline.instantiate(HYPER_PARAMETERS) vad = pipeline("audio.wav") # `vad` is a pyannote.core.Annotation instance containing speech regions ``` ### Overlapped speech detection ```python from pyannote.audio.pipelines import OverlappedSpeechDetection pipeline = OverlappedSpeechDetection(segmentation="pyannote/segmentation") pipeline.instantiate(HYPER_PARAMETERS) osd = pipeline("audio.wav") # `osd` is a pyannote.core.Annotation instance containing overlapped speech regions ``` ### Resegmentation ```python from pyannote.audio.pipelines import Resegmentation pipeline = Resegmentation(segmentation="pyannote/segmentation", diarization="baseline") pipeline.instantiate(HYPER_PARAMETERS) resegmented_baseline = pipeline({"audio": "audio.wav", "baseline": baseline}) # where `baseline` should be provided as a pyannote.core.Annotation instance ``` ### Raw scores ```python from pyannote.audio import Inference inference = Inference("pyannote/segmentation") segmentation = inference("audio.wav") # `segmentation` is a pyannote.core.SlidingWindowFeature # instance containing raw segmentation scores like the # one pictured above (output) ``` ## Reproducible research In order to reproduce the results of the paper ["End-to-end speaker segmentation for overlap-aware resegmentation "](https://arxiv.org/abs/2104.04045), use `pyannote/segmentation@Interspeech2021` with the following hyper-parameters: | Voice activity detection | `onset` | `offset` | `min_duration_on` | `min_duration_off` | | ------------------------ | ------- | -------- | ----------------- | ------------------ | | AMI Mix-Headset | 0.684 | 0.577 | 0.181 | 0.037 | | DIHARD3 | 0.767 | 0.377 | 0.136 | 0.067 | | VoxConverse | 0.767 | 0.713 | 0.182 | 0.501 | | Overlapped speech detection | `onset` | `offset` | `min_duration_on` | `min_duration_off` | | --------------------------- | ------- | -------- | ----------------- | ------------------ | | AMI Mix-Headset | 0.448 | 0.362 | 0.116 | 0.187 | | DIHARD3 | 0.430 | 0.320 | 0.091 | 0.144 | | VoxConverse | 0.587 | 0.426 | 0.337 | 0.112 | | Resegmentation of VBx | `onset` | `offset` | `min_duration_on` | `min_duration_off` | | --------------------- | ------- | -------- | ----------------- | ------------------ | | AMI Mix-Headset | 0.542 | 0.527 | 0.044 | 0.705 | | DIHARD3 | 0.592 | 0.489 | 0.163 | 0.182 | | VoxConverse | 0.537 | 0.724 | 0.410 | 0.563 | Expected outputs (and VBx baseline) are also provided in the `/reproducible_research` sub-directories. ## Citation ```bibtex @inproceedings{Bredin2021, Title = {{End-to-end speaker segmentation for overlap-aware resegmentation}}, Author = {{Bredin}, Herv{\'e} and {Laurent}, Antoine}, Booktitle = {Proc. Interspeech 2021}, Address = {Brno, Czech Republic}, Month = {August}, Year = {2021}, ``` ```bibtex @inproceedings{Bredin2020, Title = {{pyannote.audio: neural building blocks for speaker diarization}}, Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe}, Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing}, Address = {Barcelona, Spain}, Month = {May}, Year = {2020}, } ```
asadnai/finetuning-sentiment-model-3000-samples
asadnai
2022-11-01T18:00:22Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T15:29:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8633333333333333 - name: F1 type: f1 value: 0.8646864686468646 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3097 - Accuracy: 0.8633 - F1: 0.8647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Hrimurr/bert-base-multilingual-cased-finetuned-multibert
Hrimurr
2022-11-01T17:59:23Z
61
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-01T17:16:20Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Hrimurr/bert-base-multilingual-cased-finetuned-multibert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Hrimurr/bert-base-multilingual-cased-finetuned-multibert This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.8092 - Validation Loss: 1.5697 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.8092 | 1.5697 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1
SiddharthaM/twitter-data-bert-base-multilingual-uncased-hindi-only-memes
SiddharthaM
2022-11-01T17:43:39Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T17:18:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-data-bert-base-multilingual-uncased-hindi-only-memes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-data-bert-base-multilingual-uncased-hindi-only-memes This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5614 - Accuracy: 0.9031 - Precision: 0.9064 - Recall: 0.9057 - F1: 0.9060 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5408 | 1.0 | 511 | 0.4798 | 0.7974 | 0.8447 | 0.8049 | 0.7940 | | 0.3117 | 2.0 | 1022 | 0.3576 | 0.8844 | 0.8875 | 0.8882 | 0.8869 | | 0.2019 | 3.0 | 1533 | 0.3401 | 0.9020 | 0.9076 | 0.9047 | 0.9052 | | 0.1364 | 4.0 | 2044 | 0.4519 | 0.8888 | 0.8936 | 0.8921 | 0.8923 | | 0.0767 | 5.0 | 2555 | 0.5251 | 0.8987 | 0.9024 | 0.9016 | 0.9019 | | 0.0433 | 6.0 | 3066 | 0.5614 | 0.9031 | 0.9064 | 0.9057 | 0.9060 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
pig4431/IMDB_ALBERT_5E
pig4431
2022-11-01T17:39:50Z
106
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T17:39:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: IMDB_ALBERT_5E results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9466666666666667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IMDB_ALBERT_5E This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2220 - Accuracy: 0.9467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5285 | 0.06 | 50 | 0.2692 | 0.9133 | | 0.3515 | 0.13 | 100 | 0.2054 | 0.9267 | | 0.2314 | 0.19 | 150 | 0.1669 | 0.94 | | 0.2147 | 0.26 | 200 | 0.1660 | 0.92 | | 0.2053 | 0.32 | 250 | 0.1546 | 0.94 | | 0.2143 | 0.38 | 300 | 0.1636 | 0.9267 | | 0.1943 | 0.45 | 350 | 0.2068 | 0.9467 | | 0.2107 | 0.51 | 400 | 0.1655 | 0.9333 | | 0.2059 | 0.58 | 450 | 0.1782 | 0.94 | | 0.1839 | 0.64 | 500 | 0.1695 | 0.94 | | 0.2014 | 0.7 | 550 | 0.1481 | 0.9333 | | 0.2215 | 0.77 | 600 | 0.1588 | 0.9267 | | 0.1837 | 0.83 | 650 | 0.1352 | 0.9333 | | 0.1938 | 0.9 | 700 | 0.1389 | 0.94 | | 0.221 | 0.96 | 750 | 0.1193 | 0.9467 | | 0.1843 | 1.02 | 800 | 0.1294 | 0.9467 | | 0.1293 | 1.09 | 850 | 0.1585 | 0.9467 | | 0.1517 | 1.15 | 900 | 0.1353 | 0.9467 | | 0.137 | 1.21 | 950 | 0.1391 | 0.9467 | | 0.1858 | 1.28 | 1000 | 0.1547 | 0.9333 | | 0.1478 | 1.34 | 1050 | 0.1019 | 0.9533 | | 0.155 | 1.41 | 1100 | 0.1154 | 0.9667 | | 0.1439 | 1.47 | 1150 | 0.1306 | 0.9467 | | 0.1476 | 1.53 | 1200 | 0.2085 | 0.92 | | 0.1702 | 1.6 | 1250 | 0.1190 | 0.9467 | | 0.1517 | 1.66 | 1300 | 0.1303 | 0.9533 | | 0.1551 | 1.73 | 1350 | 0.1200 | 0.9467 | | 0.1554 | 1.79 | 1400 | 0.1297 | 0.9533 | | 0.1543 | 1.85 | 1450 | 0.1222 | 0.96 | | 0.1242 | 1.92 | 1500 | 0.1418 | 0.9467 | | 0.1312 | 1.98 | 1550 | 0.1279 | 0.9467 | | 0.1292 | 2.05 | 1600 | 0.1255 | 0.9533 | | 0.0948 | 2.11 | 1650 | 0.1305 | 0.9667 | | 0.088 | 2.17 | 1700 | 0.1912 | 0.9333 | | 0.0949 | 2.24 | 1750 | 0.1594 | 0.9333 | | 0.1094 | 2.3 | 1800 | 0.1958 | 0.9467 | | 0.1179 | 2.37 | 1850 | 0.1427 | 0.94 | | 0.1116 | 2.43 | 1900 | 0.1551 | 0.9333 | | 0.0742 | 2.49 | 1950 | 0.1743 | 0.94 | | 0.1016 | 2.56 | 2000 | 0.1603 | 0.9533 | | 0.0835 | 2.62 | 2050 | 0.1866 | 0.9333 | | 0.0882 | 2.69 | 2100 | 0.1191 | 0.9467 | | 0.1032 | 2.75 | 2150 | 0.1420 | 0.96 | | 0.0957 | 2.81 | 2200 | 0.1403 | 0.96 | | 0.1234 | 2.88 | 2250 | 0.1232 | 0.96 | | 0.0669 | 2.94 | 2300 | 0.1557 | 0.9467 | | 0.0994 | 3.01 | 2350 | 0.1270 | 0.9533 | | 0.0583 | 3.07 | 2400 | 0.1520 | 0.9533 | | 0.0651 | 3.13 | 2450 | 0.1641 | 0.9467 | | 0.0384 | 3.2 | 2500 | 0.2165 | 0.94 | | 0.0839 | 3.26 | 2550 | 0.1755 | 0.9467 | | 0.0546 | 3.32 | 2600 | 0.1782 | 0.9333 | | 0.0703 | 3.39 | 2650 | 0.1945 | 0.94 | | 0.0734 | 3.45 | 2700 | 0.2139 | 0.9467 | | 0.0629 | 3.52 | 2750 | 0.1445 | 0.9467 | | 0.0513 | 3.58 | 2800 | 0.1613 | 0.9667 | | 0.0794 | 3.64 | 2850 | 0.1742 | 0.9333 | | 0.0537 | 3.71 | 2900 | 0.1745 | 0.9467 | | 0.0553 | 3.77 | 2950 | 0.1724 | 0.96 | | 0.0483 | 3.84 | 3000 | 0.1638 | 0.9533 | | 0.0647 | 3.9 | 3050 | 0.1986 | 0.9467 | | 0.0443 | 3.96 | 3100 | 0.1926 | 0.9533 | | 0.0418 | 4.03 | 3150 | 0.1879 | 0.94 | | 0.0466 | 4.09 | 3200 | 0.2058 | 0.9333 | | 0.0491 | 4.16 | 3250 | 0.2017 | 0.9467 | | 0.0287 | 4.22 | 3300 | 0.2020 | 0.9533 | | 0.0272 | 4.28 | 3350 | 0.1974 | 0.9533 | | 0.0359 | 4.35 | 3400 | 0.2242 | 0.9333 | | 0.0405 | 4.41 | 3450 | 0.2157 | 0.94 | | 0.0309 | 4.48 | 3500 | 0.2142 | 0.9467 | | 0.033 | 4.54 | 3550 | 0.2163 | 0.94 | | 0.0408 | 4.6 | 3600 | 0.2368 | 0.94 | | 0.0336 | 4.67 | 3650 | 0.2173 | 0.94 | | 0.0356 | 4.73 | 3700 | 0.2230 | 0.94 | | 0.0548 | 4.8 | 3750 | 0.2181 | 0.9533 | | 0.042 | 4.86 | 3800 | 0.2240 | 0.9333 | | 0.0292 | 4.92 | 3850 | 0.2259 | 0.9267 | | 0.0196 | 4.99 | 3900 | 0.2220 | 0.9467 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/repmtg
huggingtweets
2022-11-01T17:02:46Z
106
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-18T23:54:59Z
--- language: en thumbnail: http://www.huggingtweets.com/repmtg/1667322161718/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1549758722989334529/v73AhyQ5_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Rep. Marjorie Taylor Greene🇺🇸</div> <div style="text-align: center; font-size: 14px;">@repmtg</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Rep. Marjorie Taylor Greene🇺🇸. | Data | Rep. Marjorie Taylor Greene🇺🇸 | | --- | --- | | Tweets downloaded | 2649 | | Retweets | 429 | | Short tweets | 134 | | Tweets kept | 2086 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2so8cwe3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @repmtg's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ttt3ccj7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ttt3ccj7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/repmtg') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Lucapro/test-model
Lucapro
2022-11-01T15:42:45Z
7
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "en", "ro", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-01T15:34:21Z
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: tst-translation results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 13.3161 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tst-translation This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 1.5889 - Bleu: 13.3161 - Gen Len: 42.493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
musika/musika-irish-jigs
musika
2022-11-01T15:03:23Z
0
1
null
[ "audio", "music", "generation", "tensorflow", "arxiv:2208.08706", "license:mit", "region:us" ]
null
2022-11-01T15:03:05Z
--- license: mit tags: - audio - music - generation - tensorflow --- # Musika Model: musika_irish_jigs ## Model provided by: rjadr Pretrained musika_irish_jigs model for the [Musika system](https://github.com/marcoppasini/musika) for fast infinite waveform music generation. Introduced in [this paper](https://arxiv.org/abs/2208.08706). ## How to use You can generate music from this pretrained musika_irish_jigs model using the notebook available [here](https://colab.research.google.com/drive/1HJWliBXPi-Xlx3gY8cjFI5-xaZgrTD7r). ### Model description This pretrained GAN system consists of a ResNet-style generator and discriminator. During training, stability is controlled by adapting the strength of gradient penalty regularization on-the-fly. The gradient penalty weighting term is contained in *switch.npy*. The generator is conditioned on a latent coordinate system to produce samples of arbitrary length. The latent representations produced by the generator are then passed to a decoder which converts them into waveform audio. The generator has a context window of about 12 seconds of audio.
goharava/bart-large-fine-tuned-large_
goharava
2022-11-01T14:13:45Z
103
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-01T13:00:32Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-finetuned-large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-finetuned-large This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6397 - Rouge1: 88.2870 - Rouge2: 26.4705 - Rougel: 88.1924 - Rougelsum: 88.3415 - Gen Len: 6.0323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 121 | 0.8676 | 67.7680 | 19.6386 | 67.5697 | 67.5758 | 6.2774 | | No log | 2.0 | 242 | 0.6661 | 73.6309 | 21.6079 | 73.2496 | 73.5335 | 5.3957 | | No log | 3.0 | 363 | 0.6649 | 82.6362 | 21.4663 | 82.3944 | 82.6107 | 5.6624 | | No log | 4.0 | 484 | 0.6598 | 86.4811 | 25.3580 | 86.1949 | 86.3580 | 5.7914 | | 0.5135 | 5.0 | 605 | 0.8032 | 86.0334 | 25.1510 | 85.8895 | 85.9038 | 6.5634 | | 0.5135 | 6.0 | 726 | 0.6981 | 88.0139 | 25.6152 | 87.9025 | 87.9932 | 6.3591 | | 0.5135 | 7.0 | 847 | 0.6991 | 88.7421 | 25.6469 | 88.5959 | 88.7255 | 6.3376 | | 0.5135 | 8.0 | 968 | 0.5995 | 88.9180 | 26.9917 | 88.6984 | 88.8878 | 5.8538 | | 0.1613 | 9.0 | 1089 | 0.5973 | 88.5923 | 26.7081 | 88.4593 | 88.6287 | 5.8387 | | 0.1613 | 10.0 | 1210 | 0.6397 | 88.2870 | 26.4705 | 88.1924 | 88.3415 | 6.0323 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
gislei/meu
gislei
2022-11-01T14:13:15Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-11-01T14:10:45Z
--- license: bigscience-openrail-m ---
emrevarol/dz_finetuning-medium-distillbert-95K
emrevarol
2022-11-01T13:40:20Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T13:17:56Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: dz_finetuning-medium-distillbert-95K results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dz_finetuning-medium-distillbert-95K This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0047 - Accuracy: 0.9991 - F1: 0.9991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
rufimelo/Legal-BERTimbau-large-TSDAE-v4
rufimelo
2022-11-01T13:12:56Z
5
1
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "tsdae", "pt", "dataset:rufimelo/PortugueseLegalSentences-v1", "license:mit", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-01T01:00:28Z
--- language: - pt thumbnail: "Portugues BERT for the Legal Domain" tags: - bert - pytorch - tsdae datasets: - rufimelo/PortugueseLegalSentences-v1 license: "mit" widget: - text: "O advogado apresentou [MASK] ao juíz." --- # Legal_BERTimbau ## Introduction Legal_BERTimbau Large is a fine-tuned BERT model based on [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) Large. "BERTimbau Base is a pretrained BERT model for Brazilian Portuguese that achieves state-of-the-art performances on three downstream NLP tasks: Named Entity Recognition, Sentence Textual Similarity and Recognizing Textual Entailment. It is available in two sizes: Base and Large. For further information or requests, please go to [BERTimbau repository](https://github.com/neuralmind-ai/portuguese-bert/)." The performance of Language Models can change drastically when there is a domain shift between training and test data. In order create a Portuguese Language Model adapted to a Legal domain, the original BERTimbau model was submitted to a fine-tuning stage where it was performed 1 "PreTraining" epoch over 200000 cleaned documents (lr: 1e-5, using TSDAE technique) ## Available models | Model | Arch. | #Layers | #Params | | ---------------------------------------- | ---------- | ------- | ------- | |`rufimelo/Legal-BERTimbau-base` |BERT-Base |12 |110M| | `rufimelo/Legal-BERTimbau-large` | BERT-Large | 24 | 335M | ## Usage ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE-v3") model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE") ``` ### Masked language modeling prediction example ```python from transformers import pipeline from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE-v3") model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE-v3") pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer) pipe('O advogado apresentou [MASK] para o juíz') # [{'score': 0.5034703612327576, #'token': 8190, #'token_str': 'recurso', #'sequence': 'O advogado apresentou recurso para o juíz'}, #{'score': 0.07347951829433441, #'token': 21973, #'token_str': 'petição', #'sequence': 'O advogado apresentou petição para o juíz'}, #{'score': 0.05165359005331993, #'token': 4299, #'token_str': 'resposta', #'sequence': 'O advogado apresentou resposta para o juíz'}, #{'score': 0.04611917585134506, #'token': 5265, #'token_str': 'exposição', #'sequence': 'O advogado apresentou exposição para o juíz'}, #{'score': 0.04068068787455559, #'token': 19737, 'token_str': #'alegações', #'sequence': 'O advogado apresentou alegações para o juíz'}] ``` ### For BERT embeddings ```python import torch from transformers import AutoModel model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-large-TSDAE') input_ids = tokenizer.encode('O advogado apresentou recurso para o juíz', return_tensors='pt') with torch.no_grad(): outs = model(input_ids) encoded = outs[0][0, 1:-1] #tensor([[ 0.0328, -0.4292, -0.6230, ..., -0.3048, -0.5674, 0.0157], #[-0.3569, 0.3326, 0.7013, ..., -0.7778, 0.2646, 1.1310], #[ 0.3169, 0.4333, 0.2026, ..., 1.0517, -0.1951, 0.7050], #..., #[-0.3648, -0.8137, -0.4764, ..., -0.2725, -0.4879, 0.6264], #[-0.2264, -0.1821, -0.3011, ..., -0.5428, 0.1429, 0.0509], #[-1.4617, 0.6281, -0.0625, ..., -1.2774, -0.4491, 0.3131]]) ``` ## Citation If you use this work, please cite BERTimbau's work: ```bibtex @inproceedings{souza2020bertimbau, author = {F{\'a}bio Souza and Rodrigo Nogueira and Roberto Lotufo}, title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, year = {2020} } ```
SiddharthaM/twitter-prosusai-finbert-sentiment-finetuned-memes-final
SiddharthaM
2022-11-01T13:05:59Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T12:52:16Z
--- tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-prosusai-finbert-sentiment-finetuned-memes-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-prosusai-finbert-sentiment-finetuned-memes-final This model is a fine-tuned version of [jayantapaul888/twitter-data-prosusai-finbert-sentiment-finetuned-memes](https://huggingface.co/jayantapaul888/twitter-data-prosusai-finbert-sentiment-finetuned-memes) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9363 - Accuracy: 0.8163 - Precision: 0.8166 - Recall: 0.8163 - F1: 0.8164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 294 | 0.3954 | 0.8198 | 0.8215 | 0.8198 | 0.8200 | | 0.4754 | 2.0 | 588 | 0.4318 | 0.8203 | 0.8270 | 0.8203 | 0.8204 | | 0.4754 | 3.0 | 882 | 0.5372 | 0.8230 | 0.8230 | 0.8230 | 0.8230 | | 0.192 | 4.0 | 1176 | 0.7378 | 0.8196 | 0.8198 | 0.8196 | 0.8195 | | 0.192 | 5.0 | 1470 | 0.8747 | 0.8168 | 0.8176 | 0.8168 | 0.8170 | | 0.0726 | 6.0 | 1764 | 0.9363 | 0.8163 | 0.8166 | 0.8163 | 0.8164 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
emrevarol/dz_finetuning_distilbert-base-uncased-finetuned-sst-2-english
emrevarol
2022-11-01T13:03:58Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T12:54:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: dz_finetuning_distilbert-base-uncased-finetuned-sst-2-english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dz_finetuning_distilbert-base-uncased-finetuned-sst-2-english This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0363 - Accuracy: 0.9933 - F1: 0.9938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
kzk-kbys/distilbert-base-uncased-finetuned-emotion
kzk-kbys
2022-11-01T12:49:13Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-31T14:34:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.94 - name: F1 type: f1 value: 0.940059296063194 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1895 - Accuracy: 0.94 - F1: 0.9401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4628 | 1.0 | 2000 | 0.2334 | 0.9315 | 0.9312 | | 0.1579 | 2.0 | 4000 | 0.1895 | 0.94 | 0.9401 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.1
memento/ddpm-butterflies-128
memento
2022-11-01T12:35:06Z
3
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-01T11:20:13Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/memento/ddpm-butterflies-128/tensorboard?#scalars)
emrevarol/dz_finetuning-sentiment-model-3000-samples
emrevarol
2022-11-01T12:18:37Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T12:05:17Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: dz_finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dz_finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0553 - Accuracy: 0.99 - F1: 0.9908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/manjhunathravi
huggingtweets
2022-11-01T11:48:44Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-01T11:47:34Z
--- language: en thumbnail: http://www.huggingtweets.com/manjhunathravi/1667303320061/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1550071946041102336/7TWTKpfv_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Manjhunath Ravi 🚀</div> <div style="text-align: center; font-size: 14px;">@manjhunathravi</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Manjhunath Ravi 🚀. | Data | Manjhunath Ravi 🚀 | | --- | --- | | Tweets downloaded | 3218 | | Retweets | 2 | | Short tweets | 287 | | Tweets kept | 2929 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/r8x1jof9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @manjhunathravi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mmrw5vmz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mmrw5vmz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/manjhunathravi') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gabrielgmendonca/bert-base-portuguese-cased-finetuned-enjoei
gabrielgmendonca
2022-11-01T11:41:39Z
105
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "bert", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-01T01:14:08Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: gabrielgmendonca/bert-base-portuguese-cased-finetuned-enjoei results: [] --- # gabrielgmendonca/bert-base-portuguese-cased-finetuned-enjoei This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on a teaching dataset extracted from https://www.enjoei.com.br/. It achieves the following results on the evaluation set: - Train Loss: 6.0784 - Validation Loss: 5.2882 - Epoch: 2 ## Intended uses & limitations This model is intended for **educational purposes**. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -985, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 6.3618 | 5.7723 | 0 | | 6.3353 | 5.4076 | 1 | | 6.0784 | 5.2882 | 2 | ### Framework versions - Transformers 4.23.1 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1
dary/11_k
dary
2022-11-01T11:34:01Z
0
1
null
[ "en", "exbert", "translation", "translation1", "chinese", "dataset:bookcorpus", "dataset:wikipedia", "license:apache-2.0", "region:us" ]
translation
2022-11-01T08:24:28Z
--- tags: - en - exbert - translation - translation1 - chinese license: apache-2.0 datasets: - bookcorpus - wikipedia ---
ayyuce/my_solar_model
ayyuce
2022-11-01T11:04:54Z
0
1
sklearn
[ "sklearn", "skops", "tabular-regression", "license:mit", "region:us" ]
tabular-regression
2022-11-01T11:04:25Z
--- license: mit library_name: sklearn tags: - sklearn - skops - tabular-regression widget: structuredData: AMBIENT_TEMPERATURE: - 21.4322062 - 27.322759933333337 - 25.56246340000001 DAILY_YIELD: - 0.0 - 996.4285714 - 685.0 DC_POWER: - 0.0 - 8358.285714 - 6741.285714 IRRADIATION: - 0.0 - 0.6465474886666664 - 0.498367802 MODULE_TEMPERATURE: - 19.826896066666663 - 45.7407144 - 38.252356133333336 TOTAL_YIELD: - 7218223.0 - 6366043.429 - 6372656.0 --- # Model description This is a LinearRegression model trained on Solar Power Generation Data. ## Intended uses & limitations This model is not ready to be used in production. ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |------------------|------------| | alpha | 1.0 | | copy_X | True | | fit_intercept | True | | l1_ratio | 0.5 | | max_iter | 1000 | | normalize | deprecated | | positive | False | | precompute | False | | random_state | 0 | | selection | cyclic | | tol | 0.0001 | | warm_start | False | </details> ### Model Plot The model plot is below. <style>#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b {color: black;background-color: white;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b pre{padding: 0;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-toggleable {background-color: white;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-estimator:hover {background-color: #d4ebff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-item {z-index: 1;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item:only-child::after {width: 0;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-container {display: inline-block;position: relative;}</style><div id="sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b" class"sk-top-container"><div class="sk-container"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="d20384ee-8f34-4e73-b4a5-b15dfd56af7a" type="checkbox" checked><label class="sk-toggleable__label" for="d20384ee-8f34-4e73-b4a5-b15dfd56af7a">ElasticNet</label><div class="sk-toggleable__content"><pre>ElasticNet(random_state=0)</pre></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|---------| | accuracy | 99.9994 | # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python import pickle with open(dtc_pkl_filename, 'rb') as file: clf = pickle.load(file) ``` </details> # Model Card Authors This model card is written by following authors: ayyuce demirbas # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` bibtex @inproceedings{...,year={2022}} ```
GyuBeen/distilbert-base-uncased-finetuned-squad
GyuBeen
2022-11-01T08:15:40Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-31T07:59:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1543 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2119 | 1.0 | 5533 | 1.1532 | | 0.9427 | 2.0 | 11066 | 1.1100 | | 0.7477 | 3.0 | 16599 | 1.1543 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
pig4431/IMDB_roBERTa_5E
pig4431
2022-11-01T08:01:43Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:imdb", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T08:00:15Z
--- license: mit tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: IMDB_roBERTa_5E results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9466666666666667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IMDB_roBERTa_5E This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2383 - Accuracy: 0.9467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5851 | 0.06 | 50 | 0.1789 | 0.94 | | 0.2612 | 0.13 | 100 | 0.1520 | 0.9533 | | 0.2339 | 0.19 | 150 | 0.1997 | 0.9267 | | 0.2349 | 0.26 | 200 | 0.1702 | 0.92 | | 0.207 | 0.32 | 250 | 0.1515 | 0.9333 | | 0.2222 | 0.38 | 300 | 0.1522 | 0.9467 | | 0.1916 | 0.45 | 350 | 0.1328 | 0.94 | | 0.1559 | 0.51 | 400 | 0.1676 | 0.94 | | 0.1621 | 0.58 | 450 | 0.1363 | 0.9467 | | 0.1663 | 0.64 | 500 | 0.1327 | 0.9533 | | 0.1841 | 0.7 | 550 | 0.1347 | 0.9467 | | 0.1742 | 0.77 | 600 | 0.1127 | 0.9533 | | 0.1559 | 0.83 | 650 | 0.1119 | 0.9467 | | 0.172 | 0.9 | 700 | 0.1123 | 0.9467 | | 0.1644 | 0.96 | 750 | 0.1326 | 0.96 | | 0.1524 | 1.02 | 800 | 0.1718 | 0.9467 | | 0.1456 | 1.09 | 850 | 0.1464 | 0.9467 | | 0.1271 | 1.15 | 900 | 0.1190 | 0.9533 | | 0.1412 | 1.21 | 950 | 0.1323 | 0.9533 | | 0.1114 | 1.28 | 1000 | 0.1475 | 0.9467 | | 0.1222 | 1.34 | 1050 | 0.1592 | 0.9467 | | 0.1164 | 1.41 | 1100 | 0.1345 | 0.96 | | 0.1126 | 1.47 | 1150 | 0.1325 | 0.9533 | | 0.1237 | 1.53 | 1200 | 0.1561 | 0.9533 | | 0.1385 | 1.6 | 1250 | 0.1225 | 0.9467 | | 0.1522 | 1.66 | 1300 | 0.1119 | 0.9533 | | 0.1154 | 1.73 | 1350 | 0.1231 | 0.96 | | 0.1182 | 1.79 | 1400 | 0.1366 | 0.96 | | 0.1415 | 1.85 | 1450 | 0.0972 | 0.96 | | 0.124 | 1.92 | 1500 | 0.1082 | 0.96 | | 0.1584 | 1.98 | 1550 | 0.1770 | 0.96 | | 0.0927 | 2.05 | 1600 | 0.1821 | 0.9533 | | 0.1065 | 2.11 | 1650 | 0.0999 | 0.9733 | | 0.0974 | 2.17 | 1700 | 0.1365 | 0.9533 | | 0.079 | 2.24 | 1750 | 0.1694 | 0.9467 | | 0.1217 | 2.3 | 1800 | 0.1564 | 0.9533 | | 0.0676 | 2.37 | 1850 | 0.2116 | 0.9467 | | 0.0832 | 2.43 | 1900 | 0.1779 | 0.9533 | | 0.0899 | 2.49 | 1950 | 0.0999 | 0.9667 | | 0.0898 | 2.56 | 2000 | 0.1502 | 0.9467 | | 0.0955 | 2.62 | 2050 | 0.1776 | 0.9467 | | 0.0989 | 2.69 | 2100 | 0.1279 | 0.9533 | | 0.102 | 2.75 | 2150 | 0.1005 | 0.9667 | | 0.0957 | 2.81 | 2200 | 0.1070 | 0.9667 | | 0.0786 | 2.88 | 2250 | 0.1881 | 0.9467 | | 0.0897 | 2.94 | 2300 | 0.1951 | 0.9533 | | 0.0801 | 3.01 | 2350 | 0.1827 | 0.9467 | | 0.0829 | 3.07 | 2400 | 0.1854 | 0.96 | | 0.0665 | 3.13 | 2450 | 0.1775 | 0.9533 | | 0.0838 | 3.2 | 2500 | 0.1700 | 0.96 | | 0.0441 | 3.26 | 2550 | 0.1810 | 0.96 | | 0.071 | 3.32 | 2600 | 0.2083 | 0.9533 | | 0.0655 | 3.39 | 2650 | 0.1943 | 0.96 | | 0.0565 | 3.45 | 2700 | 0.2486 | 0.9533 | | 0.0669 | 3.52 | 2750 | 0.2540 | 0.9533 | | 0.0671 | 3.58 | 2800 | 0.2140 | 0.9467 | | 0.0857 | 3.64 | 2850 | 0.1609 | 0.9533 | | 0.0585 | 3.71 | 2900 | 0.2067 | 0.9467 | | 0.0597 | 3.77 | 2950 | 0.2380 | 0.9467 | | 0.0932 | 3.84 | 3000 | 0.1727 | 0.9533 | | 0.0744 | 3.9 | 3050 | 0.2099 | 0.9467 | | 0.0679 | 3.96 | 3100 | 0.2034 | 0.9467 | | 0.0447 | 4.03 | 3150 | 0.2461 | 0.9533 | | 0.0486 | 4.09 | 3200 | 0.2032 | 0.9533 | | 0.0409 | 4.16 | 3250 | 0.2468 | 0.9467 | | 0.0605 | 4.22 | 3300 | 0.2422 | 0.9467 | | 0.0319 | 4.28 | 3350 | 0.2681 | 0.9467 | | 0.0483 | 4.35 | 3400 | 0.2222 | 0.9533 | | 0.0801 | 4.41 | 3450 | 0.2247 | 0.9533 | | 0.0333 | 4.48 | 3500 | 0.2190 | 0.9533 | | 0.0432 | 4.54 | 3550 | 0.2167 | 0.9533 | | 0.0381 | 4.6 | 3600 | 0.2507 | 0.9467 | | 0.0647 | 4.67 | 3650 | 0.2410 | 0.9533 | | 0.0427 | 4.73 | 3700 | 0.2447 | 0.9467 | | 0.0627 | 4.8 | 3750 | 0.2332 | 0.9533 | | 0.0569 | 4.86 | 3800 | 0.2358 | 0.9533 | | 0.069 | 4.92 | 3850 | 0.2379 | 0.9533 | | 0.0474 | 4.99 | 3900 | 0.2383 | 0.9467 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
hdc-labs/outputs
hdc-labs
2022-11-01T07:55:10Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-01T07:39:34Z
--- tags: - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: outputs results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice config: tr split: train+validation args: tr metrics: - name: Wer type: wer value: 0.35818608926565215 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # outputs This model was trained from scratch on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3878 - Wer: 0.3582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7391 | 0.92 | 100 | 3.5760 | 1.0 | | 2.927 | 1.83 | 200 | 3.0796 | 0.9999 | | 0.9009 | 2.75 | 300 | 0.9278 | 0.8226 | | 0.6529 | 3.67 | 400 | 0.5926 | 0.6367 | | 0.3623 | 4.59 | 500 | 0.5372 | 0.5692 | | 0.2888 | 5.5 | 600 | 0.4407 | 0.4838 | | 0.285 | 6.42 | 700 | 0.4341 | 0.4694 | | 0.0842 | 7.34 | 800 | 0.4153 | 0.4302 | | 0.1415 | 8.26 | 900 | 0.4317 | 0.4136 | | 0.1552 | 9.17 | 1000 | 0.4145 | 0.4013 | | 0.1184 | 10.09 | 1100 | 0.4115 | 0.3844 | | 0.0556 | 11.01 | 1200 | 0.4182 | 0.3862 | | 0.0851 | 11.93 | 1300 | 0.3985 | 0.3688 | | 0.0961 | 12.84 | 1400 | 0.4030 | 0.3665 | | 0.0596 | 13.76 | 1500 | 0.3880 | 0.3631 | | 0.0917 | 14.68 | 1600 | 0.3878 | 0.3582 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
adit94/sentenceTest1
adit94
2022-11-01T07:31:16Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-01T07:30:33Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2500 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 750, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
kit-nlp/bert-base-japanese-sentiment-cyberbullying
kit-nlp
2022-11-01T07:18:05Z
52
4
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-09T02:16:34Z
--- language: ja license: cc-by-sa-4.0 --- # electra-base-cyberbullying This is a BERT Base model for the Japanese language finetuned for automatic cyberbullying detection. The model was based on [daigo's BERT Base for Japanese sentiment analysis](https://huggingface.co/daigo/bert-base-japanese-sentiment), and later finetuned on a balanced dataset created by unifying two datasets, namely "Harmful BBS Japanese comments dataset" and "Twitter Japanese cyberbullying dataset". ## Licenses The finetuned model with all attached files is licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/), or Creative Commons Attribution-ShareAlike 4.0 International License. <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a> ## Citations Please, cite this model using the following citation. ``` @inproceedings{tanabe2022bert-base-cyberbullying, title={北見工業大学 テキスト情報処理研究室 BERT Base ネットいじめ検出モデル (Daigo ver.)}, author={田邊 威裕 and プタシンスキ ミハウ and エロネン ユーソ and 桝井 文人}, publisher={HuggingFace}, year={2022}, url = "https://huggingface.co/kit-nlp/bert-base-japanese-sentiment-cyberbullying" } ```
kit-nlp/electra-small-japanese-discriminator-cyberbullying
kit-nlp
2022-11-01T07:14:15Z
9
2
transformers
[ "transformers", "pytorch", "electra", "text-classification", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-09T02:43:59Z
--- language: ja license: cc-by-sa-4.0 --- # electra-base-cyberbullying This is an [ELECTRA](https://github.com/google-research/electra) Small model for the Japanese language finetuned for automatic cyberbullying detection. The model was based on [Izumi Lab ELECTRA small Japanese discriminator](https://huggingface.co/izumi-lab/electra-small-japanese-discriminator), and later finetuned on a balanced dataset created by unifying two datasets, namely "Harmful BBS Japanese comments dataset" and "Twitter Japanese cyberbullying dataset". ## Licenses The finetuned model with all attached files is licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/), or Creative Commons Attribution-ShareAlike 4.0 International License. <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a> ## Citations Please, cite this model using the following citation. ``` @inproceedings{tanabe2022electra-small-cyberbullying, title={北見工業大学 テキスト情報処理研究室 ELECTRA Small ネットいじめ検出モデル (Izumi Lab ver.)}, author={田邊 威裕 and プタシンスキ ミハウ and エロネン ユーソ and 桝井 文人}, publisher={HuggingFace}, year={2022}, url = "https://huggingface.co/kit-nlp/electra-small-japanese-discriminator-cyberbullying" } ```
wuxinbit/sd-v1-4-azuki
wuxinbit
2022-11-01T06:35:01Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-11-01T06:35:01Z
--- license: creativeml-openrail-m ---
salascorp/categorizacion_comercios_v_0.0.4
salascorp
2022-11-01T05:01:23Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T04:49:40Z
--- license: apache-2.0 tags: - text-classification - generated_from_trainer metrics: - accuracy model-index: - name: categorizacion_comercios_v_0.0.4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # categorizacion_comercios_v_0.0.4 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the datasetX dataset. It achieves the following results on the evaluation set: - Loss: 0.4303 - Accuracy: 0.8786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.13.0+cpu - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/codeinecucumber-fienddddddd
huggingtweets
2022-11-01T04:00:04Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-01T03:59:23Z
--- language: en thumbnail: http://www.huggingtweets.com/codeinecucumber-fienddddddd/1667275198553/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1579203041764442116/RSLookYD_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1429983882741489668/TQAnTzje_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Gutted & Golden Boy Noah</div> <div style="text-align: center; font-size: 14px;">@codeinecucumber-fienddddddd</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Gutted & Golden Boy Noah. | Data | Gutted | Golden Boy Noah | | --- | --- | --- | | Tweets downloaded | 1588 | 163 | | Retweets | 234 | 30 | | Short tweets | 298 | 12 | | Tweets kept | 1056 | 121 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1jm5zshq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @codeinecucumber-fienddddddd's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1wp79eh4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1wp79eh4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/codeinecucumber-fienddddddd') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/_electricviews_
huggingtweets
2022-11-01T02:44:52Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-01T02:43:58Z
--- language: en thumbnail: http://www.huggingtweets.com/_electricviews_/1667270688148/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1585640841099743233/NrT5Y7dh_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ElectricViews</div> <div style="text-align: center; font-size: 14px;">@_electricviews_</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ElectricViews. | Data | ElectricViews | | --- | --- | | Tweets downloaded | 863 | | Retweets | 79 | | Short tweets | 121 | | Tweets kept | 663 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/jeu1b88j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @_electricviews_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1mrestz4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1mrestz4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/_electricviews_') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
BigSalmon/InformalToFormalLincoln88Paraphrase
BigSalmon
2022-11-01T02:39:29Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-31T03:30:39Z
data: https://github.com/BigSalmon2/InformalToFormalDataset Text Generation Informal Formal ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln88Paraphrase") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln88Paraphrase") ``` ``` Demo: https://huggingface.co/spaces/BigSalmon/FormalInformalConciseWordy ``` ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" input_ids = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(input_ids=input_ids, max_length=10 + len(prompt), temperature=1.0, top_k=50, top_p=0.95, do_sample=True, num_return_sequences=5, early_stopping=True) for i in range(5): print(tokenizer.decode(outputs[i])) ``` Most likely outputs (Disclaimer: I highly recommend using this over just generating): ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" text = tokenizer.encode(prompt) myinput, past_key_values = torch.tensor([text]), None myinput = myinput myinput= myinput.to(device) logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False) logits = logits[0,-1] probabilities = torch.nn.functional.softmax(logits) best_logits, best_indices = logits.topk(250) best_words = [tokenizer.decode([idx.item()]) for idx in best_indices] text.append(best_indices[0].item()) best_probabilities = probabilities[best_indices].tolist() words = [] print(best_words) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` original: microsoft word's [MASK] pricing invites competition. Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition. *** original: the library’s quiet atmosphere encourages visitors to [blank] in their work. Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work. ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - nebraska - unicamerical legislature - different from federal house and senate text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate. *** - penny has practically no value - should be taken out of circulation - just as other coins have been in us history - lost use - value not enough - to make environmental consequences worthy text: all but valueless, the penny should be retired. as with other coins in american history, it has become defunct. too minute to warrant the environmental consequences of its production, it has outlived its usefulness. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence. ``` ngos are characterized by: □ voluntary citizens' group that is organized on a local, national or international level □ encourage political participation □ often serve humanitarian functions □ work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? □ noise □ parking □ traffic □ security □ strangers *** ``` ``` original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung. adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung. *** original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark. adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark. *** original: ``` ``` original: had trouble deciding. translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation. *** original: ``` ``` input: not loyal 1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ). *** input: ``` ``` first: ( was complicit in / was involved in ). antonym: ( was blameless / was not an accomplice to / had no hand in / was uninvolved in ). *** first: ( have no qualms about / see no issue with ). antonym: ( are deeply troubled by / harbor grave reservations about / have a visceral aversion to / take ( umbrage at / exception to ) / are wary of ). *** first: ( do not see eye to eye / disagree often ). antonym: ( are in sync / are united / have excellent rapport / are like-minded / are in step / are of one mind / are in lockstep / operate in perfect harmony / march in lockstep ). *** first: ``` ``` stiff with competition, law school {A} is the launching pad for countless careers, {B} is a crowded field, {C} ranks among the most sought-after professional degrees, {D} is a professional proving ground. *** languishing in viewership, saturday night live {A} is due for a creative renaissance, {B} is no longer a ratings juggernaut, {C} has been eclipsed by its imitators, {C} can still find its mojo. *** dubbed the "manhattan of the south," atlanta {A} is a bustling metropolis, {B} is known for its vibrant downtown, {C} is a city of rich history, {D} is the pride of georgia. *** embattled by scandal, harvard {A} is feeling the heat, {B} cannot escape the media glare, {C} is facing its most intense scrutiny yet, {D} is in the spotlight for all the wrong reasons. ``` Infill / Infilling / Masking / Phrase Masking (Works pretty decently actually, especially when you use logprobs code from above): ``` his contention [blank] by the evidence [sep] was refuted [answer] *** few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep] synonymous with [answer] *** when rick won the lottery, all of his distant relatives [blank] his winnings [sep] clamored for [answer] *** the library’s quiet atmosphere encourages visitors to [blank] in their work [sep] immerse themselves [answer] *** the joy of sport is that no two games are alike. for every exhilarating experience, however, there is an interminable one. the national pastime, unfortunately, has a penchant for the latter. what begins as a summer evening at the ballpark can quickly devolve into a game of tedium. the primary culprit is the [blank] of play. from batters readjusting their gloves to fielders spitting on their mitts, the action is [blank] unnecessary interruptions. the sport's future is [blank] if these tendencies are not addressed [sep] plodding pace [answer] riddled with [answer] bleak [answer] *** microsoft word's [blank] pricing [blank] competition [sep] unconscionable [answer] invites [answer] *** ``` ``` original: microsoft word's [MASK] pricing invites competition. Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition. *** original: the library’s quiet atmosphere encourages visitors to [blank] in their work. Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work. ``` Backwards ``` Essay Intro (National Parks): text: tourists are at ease in the national parks, ( swept up in the beauty of their natural splendor ). *** Essay Intro (D.C. Statehood): washington, d.c. is a city of outsize significance, ( ground zero for the nation's political life / center stage for the nation's political machinations ). ``` ``` topic: the Golden State Warriors. characterization 1: the reigning kings of the NBA. characterization 2: possessed of a remarkable cohesion. characterization 3: helmed by superstar Stephen Curry. characterization 4: perched atop the league’s hierarchy. characterization 5: boasting a litany of hall-of-famers. *** topic: emojis. characterization 1: shorthand for a digital generation. characterization 2: more versatile than words. characterization 3: the latest frontier in language. characterization 4: a form of self-expression. characterization 5: quintessentially millennial. characterization 6: reflective of a tech-centric world. *** topic: ``` ``` regular: illinois went against the census' population-loss prediction by getting more residents. VBG: defying the census' prediction of population loss, illinois experienced growth. *** regular: microsoft word’s high pricing increases the likelihood of competition. VBG: extortionately priced, microsoft word is inviting competition. *** regular: ``` ``` source: badminton should be more popular in the US. QUERY: Based on the given topic, can you develop a story outline? target: (1) games played with racquets are popular, (2) just look at tennis and ping pong, (3) but badminton underappreciated, (4) fun, fast-paced, competitive, (5) needs to be marketed more text: the sporting arena is dominated by games that are played with racquets. tennis and ping pong, in particular, are immensely popular. somewhat curiously, however, badminton is absent from this pantheon. exciting, fast-paced, and competitive, it is an underappreciated pastime. all that it lacks is more effective marketing. *** source: movies in theaters should be free. QUERY: Based on the given topic, can you develop a story outline? target: (1) movies provide vital life lessons, (2) many venues charge admission, (3) those without much money text: the lessons that movies impart are far from trivial. the vast catalogue of cinematic classics is replete with inspiring sagas of friendship, bravery, and tenacity. it is regrettable, then, that admission to theaters is not free. in their current form, the doors of this most vital of institutions are closed to those who lack the means to pay. *** source: ``` ``` in the private sector, { transparency } is vital to the business’s credibility. the { disclosure of information } can be the difference between success and failure. *** the labor market is changing, with { remote work } now the norm. this { flexible employment } allows the individual to design their own schedule. *** the { cubicle } is the locus of countless grievances. many complain that the { enclosed workspace } restricts their freedom of movement. *** ``` ``` it would be natural to assume that americans, as a people whose ancestors { immigrated to this country }, would be sympathetic to those seeking to do likewise. question: what does “do likewise” mean in the above context? (a) make the same journey (b) share in the promise of the american dream (c) start anew in the land of opportunity (d) make landfall on the united states *** in the private sector, { transparency } is vital to the business’s credibility. this orientation can be the difference between success and failure. question: what does “this orientation” mean in the above context? (a) visible business practices (b) candor with the public (c) open, honest communication (d) culture of accountability ``` ``` example: suppose you are a teacher. further suppose you want to tell an accurate telling of history. then suppose a parent takes offense. they do so in the name of name of their kid. this happens a lot. text: educators' responsibility to remain true to the historical record often clashes with the parent's desire to shelter their child from uncomfortable realities. *** example: suppose you are a student at college. now suppose you have to buy textbooks. that is going to be worth hundreds of dollars. given how much you already spend on tuition, that is going to hard cost to bear. text: the exorbitant cost of textbooks, which often reaches hundreds of dollars, imposes a sizable financial burden on the already-strapped college student. ``` ``` <Prefix> the atlanta hawks may attribute <Prefix> <Suffix> trae young <Suffix> <Middle> their robust season to <Middle> *** <Prefix> the nobel prize in literature <Prefix> <Suffix> honor <Suffix> <Middle> is a singularly prestigious <Middle> ``` ``` accustomed to having its name uttered ______, harvard university is weathering a rare spell of reputational tumult (a) in reverential tones (b) with great affection (c) in adulatory fashion (d) in glowing terms ``` ``` clarify: international ( {working together} / cooperation ) is called for when ( {issue go beyond lots of borders} / an issue transcends borders / a given matter has transnational implications ). ``` ``` description: when someone thinks that their view is the only right one. synonyms: intolerant, opinionated, narrow-minded, insular, self-righteous. *** description: when you put something off. synonyms: shelve, defer, table, postpone. ``` ``` organic sentence: crowdfunding is about winner of best ideas and it can test an entrepreneur’s idea. rewrite phrases: meritocratic, viability, vision rewritten with phrases: the meritocratic nature of crowdfunding empowers entrepreneurs to test their vision's viability. ``` *Note* Of all the masking techniques, this one works the best. ``` <Prefix> the atlanta hawks may attribute <Prefix> <Suffix> trae young <Suffix> <Middle> their robust season to <Middle> *** <Prefix> the nobel prize in literature <Prefix> <Suffix> honor <Suffix> <Middle> is a singularly prestigious <Middle> ``` ``` essence: when someone's views are keeping within reasonable. refine: the senator's voting record is ( moderate / centrist / pragmatic / balanced / fair-minded / even-handed ). *** essence: when things are worked through in a petty way. refine: the propensity of the u.s. congress to settle every dispute by way of ( mudslinging / bickering / demagoguery / name-calling / finger-pointing / vilification ) is appalling. ``` ``` description: when someone thinks that their view is the only right one. synonyms: intolerant, opinionated, narrow-minded, insular, self-righteous. *** description: when you put something off. synonyms: shelve, defer, table, postpone. ``` ``` organic sentence: crowdfunding is about winner of best ideas and it can test an entrepreneur’s idea. rewrite phrases: meritocratic, viability, vision rewritten with phrases: the meritocratic nature of crowdfunding empowers entrepreneurs to test their vision's viability. ``` ``` music before bedtime [makes for being able to relax] -> is a recipe for relaxation. ``` ``` [people wanting entertainment love traveling new york city] -> travelers flock to new york city in droves, drawn to its iconic entertainment scene. [cannot blame them] -> one cannot fault them [broadway so fun] -> when it is home to such thrilling fare as Broadway. ``` ``` in their ( ‖ when you are rushing because you want to get there on time ‖ / haste to arrive punctually / mad dash to be timely ), morning commuters are too rushed to whip up their own meal. *** politicians prefer to author vague plans rather than ( ‖ when you can make a plan without many unknowns ‖ / actionable policies / concrete solutions ). ``` ``` Q: What is whistleblower protection? A: Whistleblower protection is a form of legal immunity granted to employees who expose the unethical practices of their employer. Q: Why are whistleblower protections important? A: Absent whistleblower protections, employees would be deterred from exposing their employer’s wrongdoing for fear of retribution. Q: Why would an employer engage in retribution? A: An employer who has acted unethically stands to suffer severe financial and reputational damage were their transgressions to become public. To safeguard themselves from these consequences, they might seek to dissuade employees from exposing their wrongdoing. ``` ``` original: the meritocratic nature of crowdfunding [MASK] into their vision's viability. infill: the meritocratic nature of crowdfunding [gives investors idea of how successful] -> ( offers entrepreneurs a window ) into their vision's viability. ```
rufimelo/Legal-BERTimbau-base-TSDAE-sts
rufimelo
2022-11-01T01:31:11Z
3
1
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "pt", "dataset:assin", "dataset:assin2", "dataset:stsb_multi_mt", "dataset:rufimelo/PortugueseLegalSentences-v1", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-29T17:36:41Z
--- language: - pt thumbnail: "Portuguese BERT for the Legal Domain" pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - transformers datasets: - assin - assin2 - stsb_multi_mt - rufimelo/PortugueseLegalSentences-v1 widget: - source_sentence: "O advogado apresentou as provas ao juíz." sentences: - "O juíz leu as provas." - "O juíz leu o recurso." - "O juíz atirou uma pedra." example_title: "Example 1" model-index: - name: BERTimbau results: - task: name: STS type: STS metrics: - name: Pearson Correlation - assin Dataset type: Pearson Correlation value: 0.78814 - name: Pearson Correlation - assin2 Dataset type: Pearson Correlation value: 0.81380 - name: Pearson Correlation - stsb_multi_mt pt Dataset type: Pearson Correlation value: 0.75777 --- # rufimelo/Legal-BERTimbau-base-TSDAE-sts This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. rufimelo/Legal-BERTimbau-base-TSDAE-sts is based on Legal-BERTimbau-large which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) large. It is adapted to the Portuguese legal domain and trained for STS on portuguese datasets. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Isto é um exemplo", "Isto é um outro exemplo"] model = SentenceTransformer('rufimelo/Legal-BERTimbau-base-TSDAE-sts') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-BERTimbau-base-TSDAE-sts') model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-base-TSDAE-sts') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results STS | Model| Assin | Assin2|stsb_multi_mt pt| avg| | ---------------------------------------- | ---------- | ---------- |---------- |---------- | | Legal-BERTimbau-sts-base| 0.71457| 0.73545 | 0.72383|0.72462| | Legal-BERTimbau-sts-base-ma| 0.74874 | 0.79532|0.82254 |0.78886| | Legal-BERTimbau-sts-base-ma-v2| 0.75481 | 0.80262|0.82178|0.79307| | Legal-BERTimbau-base-TSDAE-sts|0.78814 |0.81380 |0.75777|0.78657| | Legal-BERTimbau-sts-large| 0.76629| 0.82357 | 0.79120|0.79369| | Legal-BERTimbau-sts-large-v2| 0.76299 | 0.81121|0.81726 |0.79715| | Legal-BERTimbau-sts-large-ma| 0.76195| 0.81622 | 0.82608|0.80142| | Legal-BERTimbau-sts-large-ma-v2| 0.7836| 0.8462| 0.8261| 0.81863| | Legal-BERTimbau-sts-large-ma-v3| 0.7749| **0.8470**| 0.8364| **0.81943**| | Legal-BERTimbau-large-v2-sts| 0.71665| 0.80106| 0.73724| 0.75165| | Legal-BERTimbau-large-TSDAE-sts| 0.72376| 0.79261| 0.73635| 0.75090| | Legal-BERTimbau-large-TSDAE-sts-v2| 0.81326| 0.83130| 0.786314| 0.81029| | Legal-BERTimbau-large-TSDAE-sts-v3|0.80703 |0.82270 |0.77638 |0.80204 | | ---------------------------------------- | ---------- |---------- |---------- |---------- | | BERTimbau base Fine-tuned for STS|**0.78455** | 0.80626|0.82841|0.80640| | BERTimbau large Fine-tuned for STS|0.78193 | 0.81758|0.83784|0.81245| | ---------------------------------------- | ---------- |---------- |---------- |---------- | | paraphrase-multilingual-mpnet-base-v2| 0.71457| 0.79831 |0.83999 |0.78429| | paraphrase-multilingual-mpnet-base-v2 Fine-tuned with assin(s)| 0.77641|0.79831 |**0.84575**|0.80682| ## Training rufimelo/Legal-BERTimbau-base-TSDAE-sts is based on rufimelo/Legal-BERTimbau-base-TSDAE which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) large. rufimelo/Legal-BERTimbau-base-TSDAE was trained with TSDAE: 50000 cleaned documents (https://huggingface.co/datasets/rufimelo/PortugueseLegalSentences-v1) 'lr': 1e-5 It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin), [assin2](https://huggingface.co/datasets/assin2) and [stsb_multi_mt pt](https://huggingface.co/datasets/stsb_multi_mt) datasets. 'lr': 1e-5 ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ## Citing & Authors If you use this work, please cite: ```bibtex @inproceedings{souza2020bertimbau, author = {F{\'a}bio Souza and Rodrigo Nogueira and Roberto Lotufo}, title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, year = {2020} } @inproceedings{fonseca2016assin, title={ASSIN: Avaliacao de similaridade semantica e inferencia textual}, author={Fonseca, E and Santos, L and Criscuolo, Marcelo and Aluisio, S}, booktitle={Computational Processing of the Portuguese Language-12th International Conference, Tomar, Portugal}, pages={13--15}, year={2016} } @inproceedings{real2020assin, title={The assin 2 shared task: a quick overview}, author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo}, booktitle={International Conference on Computational Processing of the Portuguese Language}, pages={406--412}, year={2020}, organization={Springer} } @InProceedings{huggingface:dataset:stsb_multi_mt, title = {Machine translated multilingual STS benchmark dataset.}, author={Philip May}, year={2021}, url={https://github.com/PhilipMay/stsb-multi-mt} } ```
rufimelo/Legal-BERTimbau-large-v2-sts
rufimelo
2022-11-01T01:30:36Z
5
1
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "pt", "dataset:assin", "dataset:assin2", "dataset:stsb_multi_mt", "dataset:rufimelo/PortugueseLegalSentences-v0", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-24T01:45:06Z
--- language: - pt thumbnail: "Portugues BERT for the Legal Domain" pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - transformers datasets: - assin - assin2 - stsb_multi_mt - rufimelo/PortugueseLegalSentences-v0 widget: - source_sentence: "O advogado apresentou as provas ao juíz." sentences: - "O juíz leu as provas." - "O juíz leu o recurso." - "O juíz atirou uma pedra." example_title: "Example 1" model-index: - name: BERTimbau results: - task: name: STS type: STS metrics: - name: Pearson Correlation - assin Dataset type: Pearson Correlation value: 0.71665 - name: Pearson Correlation - assin2 Dataset type: Pearson Correlation value: 0.80106 - name: Pearson Correlation - stsb_multi_mt pt Dataset type: Pearson Correlation value: 0.73724 --- # rufimelo/Legal-BERTimbau-sts-large-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. rufimelo/Legal-BERTimbau-sts-v2-large is based on Legal-BERTimbau-large which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) alrge. It is adapted to the Portuguese legal domain and trained for STS on portuguese datasets. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Isto é um exemplo", "Isto é um outro exemplo"] model = SentenceTransformer('rufimelo/Legal-BERTimbau-sts-v2-large') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-BERTimbau-sts-v2-large') model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-sts-v2-large') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results STS | Model| Assin | Assin2|stsb_multi_mt pt| avg| | ---------------------------------------- | ---------- | ---------- |---------- |---------- | | Legal-BERTimbau-sts-base| 0.71457| 0.73545 | 0.72383|0.72462| | Legal-BERTimbau-sts-base-ma| 0.74874 | 0.79532|0.82254 |0.78886| | Legal-BERTimbau-sts-base-ma-v2| 0.75481 | 0.80262|0.82178|0.79307| | Legal-BERTimbau-base-TSDAE-sts|0.78814 |0.81380 |0.75777|0.78657| | Legal-BERTimbau-sts-large| 0.76629| 0.82357 | 0.79120|0.79369| | Legal-BERTimbau-sts-large-v2| 0.76299 | 0.81121|0.81726 |0.79715| | Legal-BERTimbau-sts-large-ma| 0.76195| 0.81622 | 0.82608|0.80142| | Legal-BERTimbau-sts-large-ma-v2| 0.7836| 0.8462| 0.8261| 0.81863| | Legal-BERTimbau-sts-large-ma-v3| 0.7749| **0.8470**| 0.8364| **0.81943**| | Legal-BERTimbau-large-v2-sts| 0.71665| 0.80106| 0.73724| 0.75165| | Legal-BERTimbau-large-TSDAE-sts| 0.72376| 0.79261| 0.73635| 0.75090| | Legal-BERTimbau-large-TSDAE-sts-v2| 0.81326| 0.83130| 0.786314| 0.81029| | Legal-BERTimbau-large-TSDAE-sts-v3|0.80703 |0.82270 |0.77638 |0.80204 | | ---------------------------------------- | ---------- |---------- |---------- |---------- | | BERTimbau base Fine-tuned for STS|**0.78455** | 0.80626|0.82841|0.80640| | BERTimbau large Fine-tuned for STS|0.78193 | 0.81758|0.83784|0.81245| | ---------------------------------------- | ---------- |---------- |---------- |---------- | | paraphrase-multilingual-mpnet-base-v2| 0.71457| 0.79831 |0.83999 |0.78429| | paraphrase-multilingual-mpnet-base-v2 Fine-tuned with assin(s)| 0.77641|0.79831 |**0.84575**|0.80682| ## Training rufimelo/Legal-BERTimbau-large-v2-sts is based on Legal-BERTimbau-large-v2 which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) large. It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin), [assin2](https://huggingface.co/datasets/assin2) and [stsb_multi_mt pt](https://huggingface.co/datasets/stsb_multi_mt) datasets. ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ## Citing & Authors If you use this work, please cite: ```bibtex @inproceedings{souza2020bertimbau, author = {F{\'a}bio Souza and Rodrigo Nogueira and Roberto Lotufo}, title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, year = {2020} } @inproceedings{fonseca2016assin, title={ASSIN: Avaliacao de similaridade semantica e inferencia textual}, author={Fonseca, E and Santos, L and Criscuolo, Marcelo and Aluisio, S}, booktitle={Computational Processing of the Portuguese Language-12th International Conference, Tomar, Portugal}, pages={13--15}, year={2016} } @inproceedings{real2020assin, title={The assin 2 shared task: a quick overview}, author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo}, booktitle={International Conference on Computational Processing of the Portuguese Language}, pages={406--412}, year={2020}, organization={Springer} } @InProceedings{huggingface:dataset:stsb_multi_mt, title = {Machine translated multilingual STS benchmark dataset.}, author={Philip May}, year={2021}, url={https://github.com/PhilipMay/stsb-multi-mt} } ```
jayantapaul888/twitter-data-xlm-roberta-base-sentiment-finetuned-memes
jayantapaul888
2022-11-01T00:57:33Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-31T21:33:03Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-data-xlm-roberta-base-sentiment-finetuned-memes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-data-xlm-roberta-base-sentiment-finetuned-memes This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2455 - Accuracy: 0.9327 - Precision: 0.9333 - Recall: 0.9327 - F1: 0.9328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3851 | 1.0 | 1783 | 0.3286 | 0.8998 | 0.9005 | 0.8998 | 0.8997 | | 0.2812 | 2.0 | 3566 | 0.2624 | 0.9217 | 0.9224 | 0.9217 | 0.9216 | | 0.2501 | 3.0 | 5349 | 0.2550 | 0.9227 | 0.9252 | 0.9227 | 0.9231 | | 0.2272 | 4.0 | 7132 | 0.2458 | 0.9268 | 0.9269 | 0.9268 | 0.9265 | | 0.2101 | 5.0 | 8915 | 0.2441 | 0.9327 | 0.9334 | 0.9327 | 0.9327 | | 0.1966 | 6.0 | 10698 | 0.2367 | 0.9311 | 0.9312 | 0.9311 | 0.9309 | | 0.1822 | 7.0 | 12481 | 0.2346 | 0.9329 | 0.9334 | 0.9329 | 0.9329 | | 0.1702 | 8.0 | 14264 | 0.2319 | 0.9343 | 0.9351 | 0.9343 | 0.9344 | | 0.1615 | 9.0 | 16047 | 0.2426 | 0.9328 | 0.9336 | 0.9328 | 0.9329 | | 0.1536 | 10.0 | 17830 | 0.2455 | 0.9327 | 0.9333 | 0.9327 | 0.9328 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
sokemon/photobook-dna
sokemon
2022-10-31T23:46:15Z
30
0
diffusers
[ "diffusers", "license:mit", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-10-31T23:42:20Z
--- license: mit --- ### photobook_dna on Stable Diffusion via Dreambooth #### model by sokemon This your the Stable Diffusion model fine-tuned the photobook_dna concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: [underscore]photobook_dna[underscore] You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/sokemon/photobook-dna/resolve/main/concept_images/unet) ![image 1](https://huggingface.co/sokemon/photobook-dna/resolve/main/concept_images/model_index.json) ![image 2](https://huggingface.co/sokemon/photobook-dna/resolve/main/concept_images/text_encoder) ![image 3](https://huggingface.co/sokemon/photobook-dna/resolve/main/concept_images/feature_extractor) ![image 4](https://huggingface.co/sokemon/photobook-dna/resolve/main/concept_images/safety_checker) ![image 5](https://huggingface.co/sokemon/photobook-dna/resolve/main/concept_images/vae) ![image 6](https://huggingface.co/sokemon/photobook-dna/resolve/main/concept_images/tokenizer) ![image 7](https://huggingface.co/sokemon/photobook-dna/resolve/main/concept_images/scheduler)
LeKazuha/Tf-base
LeKazuha
2022-10-31T23:32:43Z
62
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-31T23:27:29Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Tf-base results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Tf-base This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.7.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Sangeetha/fineTunedCategory
Sangeetha
2022-10-31T23:21:49Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-31T23:21:34Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 183 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 183, "warmup_steps": 19, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
sd-concepts-library/car-toy-rk
sd-concepts-library
2022-10-31T22:21:18Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-31T22:21:07Z
--- license: mit --- ### Car-toy-rk on Stable Diffusion This is the `<car-toy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<car-toy> 0](https://huggingface.co/sd-concepts-library/car-toy-rk/resolve/main/concept_images/2.jpeg) ![<car-toy> 1](https://huggingface.co/sd-concepts-library/car-toy-rk/resolve/main/concept_images/3.jpeg) ![<car-toy> 2](https://huggingface.co/sd-concepts-library/car-toy-rk/resolve/main/concept_images/7.jpeg) ![<car-toy> 3](https://huggingface.co/sd-concepts-library/car-toy-rk/resolve/main/concept_images/9.jpeg) ![<car-toy> 4](https://huggingface.co/sd-concepts-library/car-toy-rk/resolve/main/concept_images/0.jpeg) ![<car-toy> 5](https://huggingface.co/sd-concepts-library/car-toy-rk/resolve/main/concept_images/5.jpeg) ![<car-toy> 6](https://huggingface.co/sd-concepts-library/car-toy-rk/resolve/main/concept_images/8.jpeg) ![<car-toy> 7](https://huggingface.co/sd-concepts-library/car-toy-rk/resolve/main/concept_images/1.jpeg) ![<car-toy> 8](https://huggingface.co/sd-concepts-library/car-toy-rk/resolve/main/concept_images/10.jpeg) ![<car-toy> 9](https://huggingface.co/sd-concepts-library/car-toy-rk/resolve/main/concept_images/4.jpeg) ![<car-toy> 10](https://huggingface.co/sd-concepts-library/car-toy-rk/resolve/main/concept_images/11.jpeg) ![<car-toy> 11](https://huggingface.co/sd-concepts-library/car-toy-rk/resolve/main/concept_images/6.jpeg)
sd-concepts-library/degodsheavy
sd-concepts-library
2022-10-31T22:14:24Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-10-31T22:14:13Z
--- license: mit --- ### DeGodsHeavy on Stable Diffusion This is the `<degods-heavy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<degods-heavy> 0](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/19.jpeg) ![<degods-heavy> 1](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/16.jpeg) ![<degods-heavy> 2](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/21.jpeg) ![<degods-heavy> 3](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/5.jpeg) ![<degods-heavy> 4](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/13.jpeg) ![<degods-heavy> 5](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/9.jpeg) ![<degods-heavy> 6](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/10.jpeg) ![<degods-heavy> 7](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/20.jpeg) ![<degods-heavy> 8](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/6.jpeg) ![<degods-heavy> 9](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/17.jpeg) ![<degods-heavy> 10](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/4.jpeg) ![<degods-heavy> 11](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/1.jpeg) ![<degods-heavy> 12](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/3.jpeg) ![<degods-heavy> 13](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/12.jpeg) ![<degods-heavy> 14](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/2.jpeg) ![<degods-heavy> 15](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/0.jpeg) ![<degods-heavy> 16](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/7.jpeg) ![<degods-heavy> 17](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/8.jpeg) ![<degods-heavy> 18](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/15.jpeg) ![<degods-heavy> 19](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/22.jpeg) ![<degods-heavy> 20](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/18.jpeg) ![<degods-heavy> 21](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/11.jpeg) ![<degods-heavy> 22](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/14.jpeg)
LeKazuha/distilbert-base-uncased-finetuned-squad
LeKazuha
2022-10-31T22:03:59Z
11
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-18T21:31:52Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: LeKazuha/distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # LeKazuha/distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1946 - Train End Logits Accuracy: 0.6778 - Train Start Logits Accuracy: 0.6365 - Validation Loss: 1.1272 - Validation End Logits Accuracy: 0.6948 - Validation Start Logits Accuracy: 0.6569 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.1946 | 0.6778 | 0.6365 | 1.1272 | 0.6948 | 0.6569 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.7.0 - Datasets 2.1.0 - Tokenizers 0.12.1
miwink/bert-base-swedish-cased-finetuned-squad
miwink
2022-10-31T21:50:06Z
103
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:swequad", "endpoints_compatible", "region:us" ]
question-answering
2022-10-31T21:35:27Z
--- tags: - generated_from_trainer datasets: - swequad model-index: - name: bert-base-swedish-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-swedish-cased-finetuned-squad This model is a fine-tuned version of [KBLab/bert-base-swedish-cased](https://huggingface.co/KBLab/bert-base-swedish-cased) on the swequad dataset. It achieves the following results on the evaluation set: - Loss: 2.0221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 123 | 2.8759 | | No log | 2.0 | 246 | 2.0496 | | No log | 3.0 | 369 | 2.0221 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
SiddharthaM/twitter-data-distilbert-base-uncased-sentiment-finetuned-memes-test
SiddharthaM
2022-10-31T21:14:21Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-31T16:48:38Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-data-distilbert-base-uncased-sentiment-finetuned-memes-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-data-distilbert-base-uncased-sentiment-finetuned-memes-test This model is a fine-tuned version of [jayantapaul888/twitter-data-distilbert-base-uncased-sentiment-finetuned-memes](https://huggingface.co/jayantapaul888/twitter-data-distilbert-base-uncased-sentiment-finetuned-memes) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6985 - Accuracy: 0.8218 - Precision: 0.8225 - Recall: 0.8218 - F1: 0.8221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 294 | 0.4189 | 0.8124 | 0.8151 | 0.8124 | 0.8136 | | 0.4351 | 2.0 | 588 | 0.4057 | 0.8258 | 0.8275 | 0.8258 | 0.8263 | | 0.4351 | 3.0 | 882 | 0.4628 | 0.8220 | 0.8244 | 0.8220 | 0.8224 | | 0.2248 | 4.0 | 1176 | 0.5336 | 0.8250 | 0.8258 | 0.8250 | 0.8253 | | 0.2248 | 5.0 | 1470 | 0.6466 | 0.8208 | 0.8217 | 0.8208 | 0.8212 | | 0.1158 | 6.0 | 1764 | 0.6985 | 0.8218 | 0.8225 | 0.8218 | 0.8221 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
sd-concepts-library/dishonored-portrait-styles
sd-concepts-library
2022-10-31T20:20:54Z
0
32
null
[ "license:mit", "region:us" ]
null
2022-10-31T20:20:49Z
--- license: mit --- ### dishonored portrait styles on Stable Diffusion This is the `<portrait-style-dishonored>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<portrait-style-dishonored> 0](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/2.jpeg) ![<portrait-style-dishonored> 1](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/12.jpeg) ![<portrait-style-dishonored> 2](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/19.jpeg) ![<portrait-style-dishonored> 3](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/15.jpeg) ![<portrait-style-dishonored> 4](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/3.jpeg) ![<portrait-style-dishonored> 5](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/13.jpeg) ![<portrait-style-dishonored> 6](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/7.jpeg) ![<portrait-style-dishonored> 7](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/9.jpeg) ![<portrait-style-dishonored> 8](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/0.jpeg) ![<portrait-style-dishonored> 9](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/5.jpeg) ![<portrait-style-dishonored> 10](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/8.jpeg) ![<portrait-style-dishonored> 11](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/1.jpeg) ![<portrait-style-dishonored> 12](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/18.jpeg) ![<portrait-style-dishonored> 13](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/10.jpeg) ![<portrait-style-dishonored> 14](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/16.jpeg) ![<portrait-style-dishonored> 15](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/4.jpeg) ![<portrait-style-dishonored> 16](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/11.jpeg) ![<portrait-style-dishonored> 17](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/14.jpeg) ![<portrait-style-dishonored> 18](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/17.jpeg) ![<portrait-style-dishonored> 19](https://huggingface.co/sd-concepts-library/dishonored-portrait-styles/resolve/main/concept_images/6.jpeg)
theojolliffe/T5-model-1-feedback-3110
theojolliffe
2022-10-31T20:00:50Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-31T19:04:23Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: T5-model-1-feedback-3110 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-model-1-feedback-3110 This model is a fine-tuned version of [theojolliffe/T5-model-1-feedback-1109](https://huggingface.co/theojolliffe/T5-model-1-feedback-1109) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1605 - Rouge1: 91.3604 - Rouge2: 86.1024 - Rougel: 90.6798 - Rougelsum: 90.7011 - Gen Len: 15.7167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.2711 | 1.0 | 2279 | 0.2176 | 90.3305 | 83.9311 | 89.4476 | 89.4573 | 15.7 | | 0.1709 | 2.0 | 4558 | 0.1759 | 91.3226 | 85.9979 | 90.7558 | 90.7395 | 15.5667 | | 0.1644 | 3.0 | 6837 | 0.1641 | 91.8385 | 86.7529 | 91.1621 | 91.1492 | 15.6792 | | 0.1606 | 4.0 | 9116 | 0.1605 | 91.3604 | 86.1024 | 90.6798 | 90.7011 | 15.7167 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1