modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-13 00:37:47
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-13 00:35:18
card
stringlengths
11
1.01M
lewtun/setfit-ethos-multilabel-example
lewtun
2022-11-02T17:03:41Z
1,614
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-02T17:03:33Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 228 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 228, "warmup_steps": 23, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
henilp105/wav2vec2-base-ASR-telugu
henilp105
2022-11-02T16:50:41Z
0
0
null
[ "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning", "te", "license:apache-2.0", "model-index", "region:us" ]
automatic-speech-recognition
2022-10-29T12:15:01Z
--- language: te metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning license: apache-2.0 model-index: - name: Henil Panchal Facebook XLSR Wav2Vec2 Large 53 Telugu results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test WER type: wer value: 41.90 --- # Wav2Vec2-Large-XLSR-53-Telugu Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Telugu using the ASR IIIT-H dataset. When using this model, make sure that your speech input is sampled at 16kHz. **Test Result**: 41.90% ## Training 70% of the O part of ASR IIIT-H Telugu dataset was used for training.
safoinme/zenml-mnist
safoinme
2022-11-02T16:42:56Z
2
0
tf-keras
[ "tf-keras", "vision", "image-classification", "dataset:mnist", "license:apache-2.0", "region:us" ]
image-classification
2022-10-24T13:41:35Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - mnist --- # ZenML Community Hour Demo This model is deployed using zenml framework, it goes from local deployment with mlflow to huggingface deployment! ## Model description This is a mnist datatset trained using keras framework ## Intended uses & limitations More information needed
adit94/sentenceTest_kbert2
adit94
2022-11-02T15:25:56Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-02T15:25:44Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3185 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5} ``` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
svo2/roberta-finetuned-facility
svo2
2022-11-02T15:13:27Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-11-02T14:55:58Z
--- license: cc-by-4.0 tags: - generated_from_trainer model-index: - name: roberta-finetuned-facility results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-facility This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
north/fine_North_large_8bit
north
2022-11-02T15:07:25Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "no", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-02T10:13:36Z
--- language: - en - no tags: - text2text-generation license: apache-2.0 ---
Watwat100/my-awesome-setfit-model
Watwat100
2022-11-02T14:54:52Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-02T14:54:31Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 2, "warmup_steps": 1, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
lewtun/distilhubert-finetuned-music-genres
lewtun
2022-11-02T14:52:06Z
9
1
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-11-02T12:41:26Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilhubert-finetuned-music-genres results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-music-genres This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6982 - Accuracy: 0.458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 187 | 2.1291 | 0.312 | | 2.2402 | 2.0 | 374 | 1.9922 | 0.388 | | 2.2402 | 3.0 | 561 | 1.7594 | 0.444 | | 1.6793 | 4.0 | 748 | 1.7164 | 0.447 | | 1.6793 | 5.0 | 935 | 1.6982 | 0.458 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.11.0 - Datasets 2.6.1 - Tokenizers 0.11.6
adit94/sentenceTest_kbert
adit94
2022-11-02T14:16:39Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-02T14:16:00Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3185 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5} ``` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 956, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
troesy/distil-added-voca
troesy
2022-11-02T13:46:18Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-02T13:35:41Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distil-added-voca results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distil-added-voca This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2515 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 174 | 0.2577 | | No log | 2.0 | 348 | 0.2488 | | 0.2546 | 3.0 | 522 | 0.2515 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
jbk1/ddpm-butterflies-128
jbk1
2022-11-02T12:39:23Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:jbk", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-02T11:56:14Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: jbk metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `jbk` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/jbk1/ddpm-butterflies-128/tensorboard?#scalars)
pig4431/amazonPolarity_ALBERT_5E
pig4431
2022-11-02T12:01:45Z
105
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "dataset:amazon_polarity", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-02T12:01:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_polarity metrics: - accuracy model-index: - name: amazonPolarity_ALBERT_5E results: - task: name: Text Classification type: text-classification dataset: name: amazon_polarity type: amazon_polarity config: amazon_polarity split: train args: amazon_polarity metrics: - name: Accuracy type: accuracy value: 0.9533333333333334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazonPolarity_ALBERT_5E This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the amazon_polarity dataset. It achieves the following results on the evaluation set: - Loss: 0.2404 - Accuracy: 0.9533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.43 | 0.05 | 50 | 0.4090 | 0.8467 | | 0.2597 | 0.11 | 100 | 0.3132 | 0.8933 | | 0.2517 | 0.16 | 150 | 0.2642 | 0.9 | | 0.2218 | 0.21 | 200 | 0.1973 | 0.9333 | | 0.21 | 0.27 | 250 | 0.2880 | 0.88 | | 0.2076 | 0.32 | 300 | 0.2646 | 0.8933 | | 0.2219 | 0.37 | 350 | 0.2053 | 0.94 | | 0.2086 | 0.43 | 400 | 0.2122 | 0.92 | | 0.1725 | 0.48 | 450 | 0.2145 | 0.92 | | 0.2074 | 0.53 | 500 | 0.2174 | 0.9267 | | 0.1966 | 0.59 | 550 | 0.2013 | 0.9467 | | 0.1777 | 0.64 | 600 | 0.2352 | 0.9133 | | 0.1695 | 0.69 | 650 | 0.2965 | 0.9133 | | 0.177 | 0.75 | 700 | 0.2204 | 0.94 | | 0.187 | 0.8 | 750 | 0.2328 | 0.9133 | | 0.1721 | 0.85 | 800 | 0.1713 | 0.9267 | | 0.1747 | 0.91 | 850 | 0.2365 | 0.9 | | 0.1627 | 0.96 | 900 | 0.2202 | 0.9267 | | 0.1421 | 1.01 | 950 | 0.2681 | 0.9133 | | 0.1516 | 1.07 | 1000 | 0.2116 | 0.9333 | | 0.1196 | 1.12 | 1050 | 0.1885 | 0.94 | | 0.1444 | 1.17 | 1100 | 0.2121 | 0.9267 | | 0.1198 | 1.23 | 1150 | 0.2335 | 0.9333 | | 0.1474 | 1.28 | 1200 | 0.2348 | 0.9067 | | 0.125 | 1.33 | 1250 | 0.2401 | 0.9267 | | 0.117 | 1.39 | 1300 | 0.2041 | 0.9467 | | 0.114 | 1.44 | 1350 | 0.1985 | 0.9467 | | 0.1293 | 1.49 | 1400 | 0.1891 | 0.9533 | | 0.1231 | 1.55 | 1450 | 0.2168 | 0.9467 | | 0.1306 | 1.6 | 1500 | 0.2097 | 0.94 | | 0.1449 | 1.65 | 1550 | 0.1790 | 0.9333 | | 0.132 | 1.71 | 1600 | 0.1838 | 0.9333 | | 0.124 | 1.76 | 1650 | 0.1890 | 0.94 | | 0.1419 | 1.81 | 1700 | 0.1575 | 0.9533 | | 0.139 | 1.87 | 1750 | 0.1794 | 0.94 | | 0.1171 | 1.92 | 1800 | 0.1981 | 0.9533 | | 0.1343 | 1.97 | 1850 | 0.1539 | 0.96 | | 0.0924 | 2.03 | 1900 | 0.1875 | 0.9533 | | 0.0662 | 2.08 | 1950 | 0.2658 | 0.9467 | | 0.1024 | 2.13 | 2000 | 0.1869 | 0.9467 | | 0.1051 | 2.19 | 2050 | 0.1967 | 0.94 | | 0.1047 | 2.24 | 2100 | 0.1625 | 0.9533 | | 0.0972 | 2.29 | 2150 | 0.1754 | 0.9533 | | 0.0885 | 2.35 | 2200 | 0.1831 | 0.94 | | 0.0999 | 2.4 | 2250 | 0.1830 | 0.9533 | | 0.0628 | 2.45 | 2300 | 0.1663 | 0.96 | | 0.0957 | 2.51 | 2350 | 0.1708 | 0.9467 | | 0.0864 | 2.56 | 2400 | 0.1977 | 0.9467 | | 0.0752 | 2.61 | 2450 | 0.2427 | 0.9467 | | 0.0913 | 2.67 | 2500 | 0.2325 | 0.94 | | 0.139 | 2.72 | 2550 | 0.1470 | 0.96 | | 0.0839 | 2.77 | 2600 | 0.2193 | 0.94 | | 0.1045 | 2.83 | 2650 | 0.1672 | 0.9533 | | 0.0775 | 2.88 | 2700 | 0.1782 | 0.96 | | 0.0909 | 2.93 | 2750 | 0.2241 | 0.94 | | 0.1182 | 2.99 | 2800 | 0.1942 | 0.9533 | | 0.0721 | 3.04 | 2850 | 0.1774 | 0.9533 | | 0.0562 | 3.09 | 2900 | 0.1877 | 0.9467 | | 0.0613 | 3.14 | 2950 | 0.1576 | 0.96 | | 0.0433 | 3.2 | 3000 | 0.2294 | 0.9467 | | 0.0743 | 3.25 | 3050 | 0.2050 | 0.9533 | | 0.0568 | 3.3 | 3100 | 0.1770 | 0.9667 | | 0.0785 | 3.36 | 3150 | 0.1732 | 0.96 | | 0.0434 | 3.41 | 3200 | 0.2130 | 0.9533 | | 0.0534 | 3.46 | 3250 | 0.1902 | 0.9667 | | 0.0748 | 3.52 | 3300 | 0.2082 | 0.9333 | | 0.0691 | 3.57 | 3350 | 0.1820 | 0.96 | | 0.0493 | 3.62 | 3400 | 0.1933 | 0.9533 | | 0.0388 | 3.68 | 3450 | 0.2319 | 0.94 | | 0.0649 | 3.73 | 3500 | 0.2071 | 0.94 | | 0.0369 | 3.78 | 3550 | 0.2092 | 0.9533 | | 0.0381 | 3.84 | 3600 | 0.2171 | 0.9533 | | 0.0461 | 3.89 | 3650 | 0.2430 | 0.9467 | | 0.0682 | 3.94 | 3700 | 0.2372 | 0.9467 | | 0.0438 | 4.0 | 3750 | 0.2335 | 0.9467 | | 0.0293 | 4.05 | 3800 | 0.2337 | 0.9533 | | 0.0313 | 4.1 | 3850 | 0.2349 | 0.9467 | | 0.0467 | 4.16 | 3900 | 0.2806 | 0.94 | | 0.0243 | 4.21 | 3950 | 0.2493 | 0.94 | | 0.0409 | 4.26 | 4000 | 0.2460 | 0.9533 | | 0.041 | 4.32 | 4050 | 0.2550 | 0.9533 | | 0.0319 | 4.37 | 4100 | 0.2438 | 0.9533 | | 0.0457 | 4.42 | 4150 | 0.2469 | 0.9533 | | 0.0343 | 4.48 | 4200 | 0.2298 | 0.9533 | | 0.0464 | 4.53 | 4250 | 0.2555 | 0.9467 | | 0.0289 | 4.58 | 4300 | 0.2486 | 0.9533 | | 0.0416 | 4.64 | 4350 | 0.2539 | 0.9533 | | 0.0422 | 4.69 | 4400 | 0.2534 | 0.9533 | | 0.037 | 4.74 | 4450 | 0.2492 | 0.9467 | | 0.0387 | 4.8 | 4500 | 0.2406 | 0.9533 | | 0.0472 | 4.85 | 4550 | 0.2411 | 0.9533 | | 0.0404 | 4.9 | 4600 | 0.2419 | 0.9533 | | 0.0267 | 4.96 | 4650 | 0.2404 | 0.9533 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
lmvasque/readability-es-benchmark-bertin-es-sentences-2class
lmvasque
2022-11-02T11:42:14Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T16:32:36Z
--- license: cc-by-4.0 --- ## Readability benchmark (ES): bertin-es-sentences-2class This project is part of a series of models from the paper "A Benchmark for Neural Readability Assessment of Texts in Spanish". You can find more details about the project in our [GitHub](https://github.com/lmvasque/readability-es-benchmark). ## Models Our models were fine-tuned in multiple settings, including readability assessment in 2-class (simple/complex) and 3-class (basic/intermediate/advanced) for sentences and paragraph datasets. You can find more details in our [paper](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link). These are the available models you can use (current model page in bold): | Model | Granularity | # classes | |-----------------------------------------------------------------------------------------------------------|----------------|:---------:| | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-2class) | paragraphs | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-2class) | paragraphs | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-paragraphs-3class) | paragraphs | 3 | | **[BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-2class)** | **sentences** | **2** | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-3class) | sentences | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-2class) | sentences | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-3class) | sentences | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-sentences-3class) | sentences | 3 | For the zero-shot setting, we used the original models [BERTIN](bertin-project/bertin-roberta-base-spanish) and [mBERT](https://huggingface.co/bert-base-multilingual-uncased) with no further training. ## Results These are our results for all the readability models in different settings. Please select your model based on the desired performance: | Granularity | Model | F1 Score (2-class) | Precision (2-class) | Recall (2-class) | F1 Score (3-class) | Precision (3-class) | Recall (3-class) | |-------------|---------------|:-------------------:|:---------------------:|:------------------:|:--------------------:|:---------------------:|:------------------:| | Paragraph | Baseline (TF-IDF+LR) | 0.829 | 0.832 | 0.827 | 0.556 | 0.563 | 0.550 | | Paragraph | BERTIN (Zero) | 0.308 | 0.222 | 0.500 | 0.227 | 0.284 | 0.338 | | Paragraph | BERTIN (ES) | 0.924 | 0.923 | 0.925 | 0.772 | 0.776 | 0.768 | | Paragraph | mBERT (Zero) | 0.308 | 0.222 | 0.500 | 0.253 | 0.312 | 0.368 | | Paragraph | mBERT (EN) | - | - | - | 0.505 | 0.560 | 0.552 | | Paragraph | mBERT (ES) | **0.933** | **0.932** | **0.936** | 0.776 | 0.777 | 0.778 | | Paragraph | mBERT (EN+ES) | - | - | - | **0.779** | **0.783** | **0.779** | | Sentence | Baseline (TF-IDF+LR) | 0.811 | 0.814 | 0.808 | 0.525 | 0.531 | 0.521 | | Sentence | BERTIN (Zero) | 0.367 | 0.290 | 0.500 | 0.188 | 0.232 | 0.335 | | Sentence | BERTIN (ES) | **0.900** | **0.900** | **0.900** | **0.699** | **0.701** | **0.698** | | Sentence | mBERT (Zero) | 0.367 | 0.290 | 0.500 | 0.278 | 0.329 | 0.351 | | Sentence | mBERT (EN) | - | - | - | 0.521 | 0.565 | 0.539 | | Sentence | mBERT (ES) | 0.893 | 0.891 | 0.896 | 0.688 | 0.686 | 0.691 | | Sentence | mBERT (EN+ES) | - | - | - | 0.679 | 0.676 | 0.682 | ## Citation If you use our results and scripts in your research, please cite our work: "[A Benchmark for Neural Readability Assessment of Texts in Spanish](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link)" (to be published) ``` @inproceedings{vasquez-rodriguez-etal-2022-benchmarking, title = "A Benchmark for Neural Readability Assessment of Texts in Spanish", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Cuenca-Jim{\'\e}nez, Pedro-Manuel and Morales-Esquivel, Sergio Esteban and Alva-Manchego, Fernando", booktitle = "Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
lmvasque/readability-es-benchmark-bertin-es-paragraphs-2class
lmvasque
2022-11-02T11:41:35Z
9
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T12:04:27Z
--- license: cc-by-4.0 --- ## Readability benchmark (ES): bertin-es-paragraphs-2class This project is part of a series of models from the paper "A Benchmark for Neural Readability Assessment of Texts in Spanish". You can find more details about the project in our [GitHub](https://github.com/lmvasque/readability-es-benchmark). ## Models Our models were fine-tuned in multiple settings, including readability assessment in 2-class (simple/complex) and 3-class (basic/intermediate/advanced) for sentences and paragraph datasets. You can find more details in our [paper](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link). These are the available models you can use (current model page in bold): | Model | Granularity | # classes | |-----------------------------------------------------------------------------------------------------------|----------------|:---------:| | **[BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-2class)** | **paragraphs** | **2** | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-2class) | paragraphs | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-paragraphs-3class) | paragraphs | 3 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-2class) | sentences | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-3class) | sentences | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-2class) | sentences | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-3class) | sentences | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-sentences-3class) | sentences | 3 | For the zero-shot setting, we used the original models [BERTIN](bertin-project/bertin-roberta-base-spanish) and [mBERT](https://huggingface.co/bert-base-multilingual-uncased) with no further training. ## Results These are our results for all the readability models in different settings. Please select your model based on the desired performance: | Granularity | Model | F1 Score (2-class) | Precision (2-class) | Recall (2-class) | F1 Score (3-class) | Precision (3-class) | Recall (3-class) | |-------------|---------------|:-------------------:|:---------------------:|:------------------:|:--------------------:|:---------------------:|:------------------:| | Paragraph | Baseline (TF-IDF+LR) | 0.829 | 0.832 | 0.827 | 0.556 | 0.563 | 0.550 | | Paragraph | BERTIN (Zero) | 0.308 | 0.222 | 0.500 | 0.227 | 0.284 | 0.338 | | Paragraph | BERTIN (ES) | 0.924 | 0.923 | 0.925 | 0.772 | 0.776 | 0.768 | | Paragraph | mBERT (Zero) | 0.308 | 0.222 | 0.500 | 0.253 | 0.312 | 0.368 | | Paragraph | mBERT (EN) | - | - | - | 0.505 | 0.560 | 0.552 | | Paragraph | mBERT (ES) | **0.933** | **0.932** | **0.936** | 0.776 | 0.777 | 0.778 | | Paragraph | mBERT (EN+ES) | - | - | - | **0.779** | **0.783** | **0.779** | | Sentence | Baseline (TF-IDF+LR) | 0.811 | 0.814 | 0.808 | 0.525 | 0.531 | 0.521 | | Sentence | BERTIN (Zero) | 0.367 | 0.290 | 0.500 | 0.188 | 0.232 | 0.335 | | Sentence | BERTIN (ES) | **0.900** | **0.900** | **0.900** | **0.699** | **0.701** | **0.698** | | Sentence | mBERT (Zero) | 0.367 | 0.290 | 0.500 | 0.278 | 0.329 | 0.351 | | Sentence | mBERT (EN) | - | - | - | 0.521 | 0.565 | 0.539 | | Sentence | mBERT (ES) | 0.893 | 0.891 | 0.896 | 0.688 | 0.686 | 0.691 | | Sentence | mBERT (EN+ES) | - | - | - | 0.679 | 0.676 | 0.682 | ## Citation If you use our results and scripts in your research, please cite our work: "[A Benchmark for Neural Readability Assessment of Texts in Spanish](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link)" (to be published) ``` @inproceedings{vasquez-rodriguez-etal-2022-benchmarking, title = "A Benchmark for Neural Readability Assessment of Texts in Spanish", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Cuenca-Jim{\'\e}nez, Pedro-Manuel and Morales-Esquivel, Sergio Esteban and Alva-Manchego, Fernando", booktitle = "Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
lmvasque/readability-es-benchmark-mbert-en-es-paragraphs-3class
lmvasque
2022-11-02T11:41:13Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T18:11:26Z
--- license: cc-by-4.0 --- ## Readability benchmark (ES): mbert-en-es-paragraphs-3class This project is part of a series of models from the paper "A Benchmark for Neural Readability Assessment of Texts in Spanish". You can find more details about the project in our [GitHub](https://github.com/lmvasque/readability-es-benchmark). ## Models Our models were fine-tuned in multiple settings, including readability assessment in 2-class (simple/complex) and 3-class (basic/intermediate/advanced) for sentences and paragraph datasets. You can find more details in our [paper](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link). These are the available models you can use (current model page in bold): | Model | Granularity | # classes | |-------------------------------------------------------------------------------------------------------------|----------------|:---------:| | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-2class) | paragraphs | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-2class) | paragraphs | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-3class) | paragraphs | 3 | | **[mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-paragraphs-3class)** | **paragraphs** | **3** | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-2class) | sentences | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-3class) | sentences | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-2class) | sentences | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-3class) | sentences | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-sentences-3class) | sentences | 3 | For the zero-shot setting, we used the original models [BERTIN](bertin-project/bertin-roberta-base-spanish) and [mBERT](https://huggingface.co/bert-base-multilingual-uncased) with no further training. ## Results These are our results for all the readability models in different settings. Please select your model based on the desired performance: | Granularity | Model | F1 Score (2-class) | Precision (2-class) | Recall (2-class) | F1 Score (3-class) | Precision (3-class) | Recall (3-class) | |-------------|---------------|:-------------------:|:---------------------:|:------------------:|:--------------------:|:---------------------:|:------------------:| | Paragraph | Baseline (TF-IDF+LR) | 0.829 | 0.832 | 0.827 | 0.556 | 0.563 | 0.550 | | Paragraph | BERTIN (Zero) | 0.308 | 0.222 | 0.500 | 0.227 | 0.284 | 0.338 | | Paragraph | BERTIN (ES) | 0.924 | 0.923 | 0.925 | 0.772 | 0.776 | 0.768 | | Paragraph | mBERT (Zero) | 0.308 | 0.222 | 0.500 | 0.253 | 0.312 | 0.368 | | Paragraph | mBERT (EN) | - | - | - | 0.505 | 0.560 | 0.552 | | Paragraph | mBERT (ES) | **0.933** | **0.932** | **0.936** | 0.776 | 0.777 | 0.778 | | Paragraph | mBERT (EN+ES) | - | - | - | **0.779** | **0.783** | **0.779** | | Sentence | Baseline (TF-IDF+LR) | 0.811 | 0.814 | 0.808 | 0.525 | 0.531 | 0.521 | | Sentence | BERTIN (Zero) | 0.367 | 0.290 | 0.500 | 0.188 | 0.232 | 0.335 | | Sentence | BERTIN (ES) | **0.900** | **0.900** | **0.900** | **0.699** | **0.701** | **0.698** | | Sentence | mBERT (Zero) | 0.367 | 0.290 | 0.500 | 0.278 | 0.329 | 0.351 | | Sentence | mBERT (EN) | - | - | - | 0.521 | 0.565 | 0.539 | | Sentence | mBERT (ES) | 0.893 | 0.891 | 0.896 | 0.688 | 0.686 | 0.691 | | Sentence | mBERT (EN+ES) | - | - | - | 0.679 | 0.676 | 0.682 | ## Citation If you use our results and scripts in your research, please cite our work: "[A Benchmark for Neural Readability Assessment of Texts in Spanish](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link)" (to be published) ``` @inproceedings{vasquez-rodriguez-etal-2022-benchmarking, title = "A Benchmark for Neural Readability Assessment of Texts in Spanish", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Cuenca-Jim{\'\e}nez, Pedro-Manuel and Morales-Esquivel, Sergio Esteban and Alva-Manchego, Fernando", booktitle = "Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
lmvasque/readability-es-benchmark-mbert-es-sentences-2class
lmvasque
2022-11-02T11:40:54Z
104
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T17:00:06Z
--- license: cc-by-4.0 --- ## Readability benchmark (ES): mbert-es-sentences-2class This project is part of a series of models from the paper "A Benchmark for Neural Readability Assessment of Texts in Spanish". You can find more details about the project in our [GitHub](https://github.com/lmvasque/readability-es-benchmark). ## Models Our models were fine-tuned in multiple settings, including readability assessment in 2-class (simple/complex) and 3-class (basic/intermediate/advanced) for sentences and paragraph datasets. You can find more details in our [paper](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link). These are the available models you can use (current model page in bold): | Model | Granularity | # classes | |-----------------------------------------------------------------------------------------------------------|----------------|:---------:| | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-2class) | paragraphs | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-2class) | paragraphs | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-paragraphs-3class) | paragraphs | 3 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-2class) | sentences | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-3class) | sentences | 3 | | **[mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-2class)** | **sentences** | **2** | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-3class) | sentences | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-sentences-3class) | sentences | 3 | For the zero-shot setting, we used the original models [BERTIN](bertin-project/bertin-roberta-base-spanish) and [mBERT](https://huggingface.co/bert-base-multilingual-uncased) with no further training. ## Results These are our results for all the readability models in different settings. Please select your model based on the desired performance: | Granularity | Model | F1 Score (2-class) | Precision (2-class) | Recall (2-class) | F1 Score (3-class) | Precision (3-class) | Recall (3-class) | |-------------|---------------|:-------------------:|:---------------------:|:------------------:|:--------------------:|:---------------------:|:------------------:| | Paragraph | Baseline (TF-IDF+LR) | 0.829 | 0.832 | 0.827 | 0.556 | 0.563 | 0.550 | | Paragraph | BERTIN (Zero) | 0.308 | 0.222 | 0.500 | 0.227 | 0.284 | 0.338 | | Paragraph | BERTIN (ES) | 0.924 | 0.923 | 0.925 | 0.772 | 0.776 | 0.768 | | Paragraph | mBERT (Zero) | 0.308 | 0.222 | 0.500 | 0.253 | 0.312 | 0.368 | | Paragraph | mBERT (EN) | - | - | - | 0.505 | 0.560 | 0.552 | | Paragraph | mBERT (ES) | **0.933** | **0.932** | **0.936** | 0.776 | 0.777 | 0.778 | | Paragraph | mBERT (EN+ES) | - | - | - | **0.779** | **0.783** | **0.779** | | Sentence | Baseline (TF-IDF+LR) | 0.811 | 0.814 | 0.808 | 0.525 | 0.531 | 0.521 | | Sentence | BERTIN (Zero) | 0.367 | 0.290 | 0.500 | 0.188 | 0.232 | 0.335 | | Sentence | BERTIN (ES) | **0.900** | **0.900** | **0.900** | **0.699** | **0.701** | **0.698** | | Sentence | mBERT (Zero) | 0.367 | 0.290 | 0.500 | 0.278 | 0.329 | 0.351 | | Sentence | mBERT (EN) | - | - | - | 0.521 | 0.565 | 0.539 | | Sentence | mBERT (ES) | 0.893 | 0.891 | 0.896 | 0.688 | 0.686 | 0.691 | | Sentence | mBERT (EN+ES) | - | - | - | 0.679 | 0.676 | 0.682 | ## Citation If you use our results and scripts in your research, please cite our work: "[A Benchmark for Neural Readability Assessment of Texts in Spanish](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link)" (to be published) ``` @inproceedings{vasquez-rodriguez-etal-2022-benchmarking, title = "A Benchmark for Neural Readability Assessment of Texts in Spanish", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Cuenca-Jim{\'\e}nez, Pedro-Manuel and Morales-Esquivel, Sergio Esteban and Alva-Manchego, Fernando", booktitle = "Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
lmvasque/readability-es-benchmark-mbert-en-es-sentences-3class
lmvasque
2022-11-02T11:40:09Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T18:13:26Z
--- license: cc-by-4.0 --- ## Readability benchmark (ES): mbert-en-es-sentences-3class This project is part of a series of models from the paper "A Benchmark for Neural Readability Assessment of Texts in Spanish". You can find more details about the project in our [GitHub](https://github.com/lmvasque/readability-es-benchmark). ## Models Our models were fine-tuned in multiple settings, including readability assessment in 2-class (simple/complex) and 3-class (basic/intermediate/advanced) for sentences and paragraph datasets. You can find more details in our [paper](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link). These are the available models you can use (current model page in bold): | Model | Granularity | # classes | |-----------------------------------------------------------------------------------------------------------|----------------|:---------:| | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-2class) | paragraphs | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-2class) | paragraphs | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-paragraphs-3class) | paragraphs | 3 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-2class) | sentences | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-3class) | sentences | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-2class) | sentences | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-3class) | sentences | 3 | | **[mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-sentences-3class)** | **sentences** | **3** | For the zero-shot setting, we used the original models [BERTIN](bertin-project/bertin-roberta-base-spanish) and [mBERT](https://huggingface.co/bert-base-multilingual-uncased) with no further training. ## Results These are our results for all the readability models in different settings. Please select your model based on the desired performance: | Granularity | Model | F1 Score (2-class) | Precision (2-class) | Recall (2-class) | F1 Score (3-class) | Precision (3-class) | Recall (3-class) | |-------------|---------------|:-------------------:|:---------------------:|:------------------:|:--------------------:|:---------------------:|:------------------:| | Paragraph | Baseline (TF-IDF+LR) | 0.829 | 0.832 | 0.827 | 0.556 | 0.563 | 0.550 | | Paragraph | BERTIN (Zero) | 0.308 | 0.222 | 0.500 | 0.227 | 0.284 | 0.338 | | Paragraph | BERTIN (ES) | 0.924 | 0.923 | 0.925 | 0.772 | 0.776 | 0.768 | | Paragraph | mBERT (Zero) | 0.308 | 0.222 | 0.500 | 0.253 | 0.312 | 0.368 | | Paragraph | mBERT (EN) | - | - | - | 0.505 | 0.560 | 0.552 | | Paragraph | mBERT (ES) | **0.933** | **0.932** | **0.936** | 0.776 | 0.777 | 0.778 | | Paragraph | mBERT (EN+ES) | - | - | - | **0.779** | **0.783** | **0.779** | | Sentence | Baseline (TF-IDF+LR) | 0.811 | 0.814 | 0.808 | 0.525 | 0.531 | 0.521 | | Sentence | BERTIN (Zero) | 0.367 | 0.290 | 0.500 | 0.188 | 0.232 | 0.335 | | Sentence | BERTIN (ES) | **0.900** | **0.900** | **0.900** | **0.699** | **0.701** | **0.698** | | Sentence | mBERT (Zero) | 0.367 | 0.290 | 0.500 | 0.278 | 0.329 | 0.351 | | Sentence | mBERT (EN) | - | - | - | 0.521 | 0.565 | 0.539 | | Sentence | mBERT (ES) | 0.893 | 0.891 | 0.896 | 0.688 | 0.686 | 0.691 | | Sentence | mBERT (EN+ES) | - | - | - | 0.679 | 0.676 | 0.682 | ## Citation If you use our results and scripts in your research, please cite our work: "[A Benchmark for Neural Readability Assessment of Texts in Spanish](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link)" (to be published) ``` @inproceedings{vasquez-rodriguez-etal-2022-benchmarking, title = "A Benchmark for Neural Readability Assessment of Texts in Spanish", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Cuenca-Jim{\'\e}nez, Pedro-Manuel and Morales-Esquivel, Sergio Esteban and Alva-Manchego, Fernando", booktitle = "Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
lmvasque/readability-es-benchmark-bertin-es-paragraphs-3class
lmvasque
2022-11-02T11:39:45Z
10
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T13:18:41Z
--- license: cc-by-4.0 --- ## Readability benchmark (ES): bertin-es-paragraphs-3class This project is part of a series of models from the paper "A Benchmark for Neural Readability Assessment of Texts in Spanish". You can find more details about the project in our [GitHub](https://github.com/lmvasque/readability-es-benchmark). ## Models Our models were fine-tuned in multiple settings, including readability assessment in 2-class (simple/complex) and 3-class (basic/intermediate/advanced) for sentences and paragraph datasets. You can find more details in our [paper](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link). These are the available models you can use (current model page in bold): | Model | Granularity | # classes | |-----------------------------------------------------------------------------------------------------------|----------------|:---------:| | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-2class) | paragraphs | 2 | | **[BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-3class)** | **paragraphs** | **3** | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-2class) | paragraphs | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-paragraphs-3class) | paragraphs | 3 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-2class) | sentences | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-3class) | sentences | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-2class) | sentences | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-3class) | sentences | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-sentences-3class) | sentences | 3 | For the zero-shot setting, we used the original models [BERTIN](bertin-project/bertin-roberta-base-spanish) and [mBERT](https://huggingface.co/bert-base-multilingual-uncased) with no further training. ## Results These are our results for all the readability models in different settings. Please select your model based on the desired performance: | Granularity | Model | F1 Score (2-class) | Precision (2-class) | Recall (2-class) | F1 Score (3-class) | Precision (3-class) | Recall (3-class) | |-------------|---------------|:-------------------:|:---------------------:|:------------------:|:--------------------:|:---------------------:|:------------------:| | Paragraph | Baseline (TF-IDF+LR) | 0.829 | 0.832 | 0.827 | 0.556 | 0.563 | 0.550 | | Paragraph | BERTIN (Zero) | 0.308 | 0.222 | 0.500 | 0.227 | 0.284 | 0.338 | | Paragraph | BERTIN (ES) | 0.924 | 0.923 | 0.925 | 0.772 | 0.776 | 0.768 | | Paragraph | mBERT (Zero) | 0.308 | 0.222 | 0.500 | 0.253 | 0.312 | 0.368 | | Paragraph | mBERT (EN) | - | - | - | 0.505 | 0.560 | 0.552 | | Paragraph | mBERT (ES) | **0.933** | **0.932** | **0.936** | 0.776 | 0.777 | 0.778 | | Paragraph | mBERT (EN+ES) | - | - | - | **0.779** | **0.783** | **0.779** | | Sentence | Baseline (TF-IDF+LR) | 0.811 | 0.814 | 0.808 | 0.525 | 0.531 | 0.521 | | Sentence | BERTIN (Zero) | 0.367 | 0.290 | 0.500 | 0.188 | 0.232 | 0.335 | | Sentence | BERTIN (ES) | **0.900** | **0.900** | **0.900** | **0.699** | **0.701** | **0.698** | | Sentence | mBERT (Zero) | 0.367 | 0.290 | 0.500 | 0.278 | 0.329 | 0.351 | | Sentence | mBERT (EN) | - | - | - | 0.521 | 0.565 | 0.539 | | Sentence | mBERT (ES) | 0.893 | 0.891 | 0.896 | 0.688 | 0.686 | 0.691 | | Sentence | mBERT (EN+ES) | - | - | - | 0.679 | 0.676 | 0.682 | ## Citation If you use our results and scripts in your research, please cite our work: "[A Benchmark for Neural Readability Assessment of Texts in Spanish](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link)" (to be published) ``` @inproceedings{vasquez-rodriguez-etal-2022-benchmarking, title = "A Benchmark for Neural Readability Assessment of Texts in Spanish", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Cuenca-Jim{\'\e}nez, Pedro-Manuel and Morales-Esquivel, Sergio Esteban and Alva-Manchego, Fernando", booktitle = "Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
lmvasque/readability-es-benchmark-bertin-es-sentences-3class
lmvasque
2022-11-02T11:39:21Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T16:51:26Z
--- license: cc-by-4.0 --- ## Readability benchmark (ES): bertin-es-sentences-3class This project is part of a series of models from the paper "A Benchmark for Neural Readability Assessment of Texts in Spanish". You can find more details about the project in our [GitHub](https://github.com/lmvasque/readability-es-benchmark). ## Models Our models were fine-tuned in multiple settings, including readability assessment in 2-class (simple/complex) and 3-class (basic/intermediate/advanced) for sentences and paragraph datasets. You can find more details in our [paper](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link). These are the available models you can use (current model page in bold): | Model | Granularity | # classes | |-----------------------------------------------------------------------------------------------------------|----------------|:---------:| | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-2class) | paragraphs | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-2class) | paragraphs | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-paragraphs-3class) | paragraphs | 3 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-2class) | sentences | 2 | | **[BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-3class)** | **sentences** | **3** | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-2class) | sentences | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-3class) | sentences | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-sentences-3class) | sentences | 3 | For the zero-shot setting, we used the original models [BERTIN](bertin-project/bertin-roberta-base-spanish) and [mBERT](https://huggingface.co/bert-base-multilingual-uncased) with no further training. ## Results These are our results for all the readability models in different settings. Please select your model based on the desired performance: | Granularity | Model | F1 Score (2-class) | Precision (2-class) | Recall (2-class) | F1 Score (3-class) | Precision (3-class) | Recall (3-class) | |-------------|---------------|:-------------------:|:---------------------:|:------------------:|:--------------------:|:---------------------:|:------------------:| | Paragraph | Baseline (TF-IDF+LR) | 0.829 | 0.832 | 0.827 | 0.556 | 0.563 | 0.550 | | Paragraph | BERTIN (Zero) | 0.308 | 0.222 | 0.500 | 0.227 | 0.284 | 0.338 | | Paragraph | BERTIN (ES) | 0.924 | 0.923 | 0.925 | 0.772 | 0.776 | 0.768 | | Paragraph | mBERT (Zero) | 0.308 | 0.222 | 0.500 | 0.253 | 0.312 | 0.368 | | Paragraph | mBERT (EN) | - | - | - | 0.505 | 0.560 | 0.552 | | Paragraph | mBERT (ES) | **0.933** | **0.932** | **0.936** | 0.776 | 0.777 | 0.778 | | Paragraph | mBERT (EN+ES) | - | - | - | **0.779** | **0.783** | **0.779** | | Sentence | Baseline (TF-IDF+LR) | 0.811 | 0.814 | 0.808 | 0.525 | 0.531 | 0.521 | | Sentence | BERTIN (Zero) | 0.367 | 0.290 | 0.500 | 0.188 | 0.232 | 0.335 | | Sentence | BERTIN (ES) | **0.900** | **0.900** | **0.900** | **0.699** | **0.701** | **0.698** | | Sentence | mBERT (Zero) | 0.367 | 0.290 | 0.500 | 0.278 | 0.329 | 0.351 | | Sentence | mBERT (EN) | - | - | - | 0.521 | 0.565 | 0.539 | | Sentence | mBERT (ES) | 0.893 | 0.891 | 0.896 | 0.688 | 0.686 | 0.691 | | Sentence | mBERT (EN+ES) | - | - | - | 0.679 | 0.676 | 0.682 | ## Citation If you use our results and scripts in your research, please cite our work: "[A Benchmark for Neural Readability Assessment of Texts in Spanish](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link)" (to be published) ``` @inproceedings{vasquez-rodriguez-etal-2022-benchmarking, title = "A Benchmark for Neural Readability Assessment of Texts in Spanish", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Cuenca-Jim{\'\e}nez, Pedro-Manuel and Morales-Esquivel, Sergio Esteban and Alva-Manchego, Fernando", booktitle = "Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
lmvasque/readability-es-benchmark-mbert-es-sentences-3class
lmvasque
2022-11-02T11:38:41Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T17:06:41Z
--- license: cc-by-4.0 --- ## Readability benchmark (ES): mbert-es-sentences-3class This project is part of a series of models from the paper "A Benchmark for Neural Readability Assessment of Texts in Spanish". You can find more details about the project in our [GitHub](https://github.com/lmvasque/readability-es-benchmark). ## Models Our models were fine-tuned in multiple settings, including readability assessment in 2-class (simple/complex) and 3-class (basic/intermediate/advanced) for sentences and paragraph datasets. You can find more details in our [paper](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link). These are the available models you can use (current model page in bold): | Model | Granularity | # classes | |-----------------------------------------------------------------------------------------------------------|----------------|:---------:| | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-2class) | paragraphs | 2 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-2class) | paragraphs | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-paragraphs-3class) | paragraphs | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-paragraphs-3class) | paragraphs | 3 | | [BERTIN (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-bertin-es-sentences-2class) | sentences | 2 | | **[mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-3class)** | **sentences** | **3** | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-2class) | sentences | 2 | | [mBERT (ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-es-sentences-3class) | sentences | 3 | | [mBERT (EN+ES)](https://huggingface.co/lmvasque/readability-es-benchmark-mbert-en-es-sentences-3class) | sentences | 3 | For the zero-shot setting, we used the original models [BERTIN](bertin-project/bertin-roberta-base-spanish) and [mBERT](https://huggingface.co/bert-base-multilingual-uncased) with no further training. ## Results These are our results for all the readability models in different settings. Please select your model based on the desired performance: | Granularity | Model | F1 Score (2-class) | Precision (2-class) | Recall (2-class) | F1 Score (3-class) | Precision (3-class) | Recall (3-class) | |-------------|---------------|:-------------------:|:---------------------:|:------------------:|:--------------------:|:---------------------:|:------------------:| | Paragraph | Baseline (TF-IDF+LR) | 0.829 | 0.832 | 0.827 | 0.556 | 0.563 | 0.550 | | Paragraph | BERTIN (Zero) | 0.308 | 0.222 | 0.500 | 0.227 | 0.284 | 0.338 | | Paragraph | BERTIN (ES) | 0.924 | 0.923 | 0.925 | 0.772 | 0.776 | 0.768 | | Paragraph | mBERT (Zero) | 0.308 | 0.222 | 0.500 | 0.253 | 0.312 | 0.368 | | Paragraph | mBERT (EN) | - | - | - | 0.505 | 0.560 | 0.552 | | Paragraph | mBERT (ES) | **0.933** | **0.932** | **0.936** | 0.776 | 0.777 | 0.778 | | Paragraph | mBERT (EN+ES) | - | - | - | **0.779** | **0.783** | **0.779** | | Sentence | Baseline (TF-IDF+LR) | 0.811 | 0.814 | 0.808 | 0.525 | 0.531 | 0.521 | | Sentence | BERTIN (Zero) | 0.367 | 0.290 | 0.500 | 0.188 | 0.232 | 0.335 | | Sentence | BERTIN (ES) | **0.900** | **0.900** | **0.900** | **0.699** | **0.701** | **0.698** | | Sentence | mBERT (Zero) | 0.367 | 0.290 | 0.500 | 0.278 | 0.329 | 0.351 | | Sentence | mBERT (EN) | - | - | - | 0.521 | 0.565 | 0.539 | | Sentence | mBERT (ES) | 0.893 | 0.891 | 0.896 | 0.688 | 0.686 | 0.691 | | Sentence | mBERT (EN+ES) | - | - | - | 0.679 | 0.676 | 0.682 | ## Citation If you use our results and scripts in your research, please cite our work: "[A Benchmark for Neural Readability Assessment of Texts in Spanish](https://drive.google.com/file/d/1KdwvqrjX8MWYRDGBKeHmiR1NCzDcVizo/view?usp=share_link)" (to be published) ``` @inproceedings{vasquez-rodriguez-etal-2022-benchmarking, title = "A Benchmark for Neural Readability Assessment of Texts in Spanish", author = "V{\'a}squez-Rodr{\'\i}guez, Laura and Cuenca-Jim{\'\e}nez, Pedro-Manuel and Morales-Esquivel, Sergio Esteban and Alva-Manchego, Fernando", booktitle = "Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), EMNLP 2022", month = dec, year = "2022", } ```
Pablo94/racism-finetuned-detests-02-11-2022
Pablo94
2022-11-02T11:27:28Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:cc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-02T11:11:28Z
--- license: cc tags: - generated_from_trainer metrics: - f1 model-index: - name: racism-finetuned-detests-02-11-2022 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # racism-finetuned-detests-02-11-2022 This model is a fine-tuned version of [davidmasip/racism](https://huggingface.co/davidmasip/racism) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8819 - F1: 0.6199 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3032 | 0.64 | 25 | 0.3482 | 0.6434 | | 0.1132 | 1.28 | 50 | 0.3707 | 0.6218 | | 0.1253 | 1.92 | 75 | 0.4004 | 0.6286 | | 0.0064 | 2.56 | 100 | 0.6223 | 0.6254 | | 0.0007 | 3.21 | 125 | 0.7347 | 0.6032 | | 0.0006 | 3.85 | 150 | 0.7705 | 0.6312 | | 0.0004 | 4.49 | 175 | 0.7988 | 0.6304 | | 0.0003 | 5.13 | 200 | 0.8206 | 0.6255 | | 0.0003 | 5.77 | 225 | 0.8371 | 0.6097 | | 0.0003 | 6.41 | 250 | 0.8503 | 0.6148 | | 0.0003 | 7.05 | 275 | 0.8610 | 0.6148 | | 0.0002 | 7.69 | 300 | 0.8693 | 0.6199 | | 0.0002 | 8.33 | 325 | 0.8755 | 0.6199 | | 0.0002 | 8.97 | 350 | 0.8797 | 0.6199 | | 0.0002 | 9.62 | 375 | 0.8819 | 0.6199 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
debbiesoon/summarise_v11
debbiesoon
2022-11-02T11:08:52Z
101
1
transformers
[ "transformers", "pytorch", "tensorboard", "led", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-02T10:13:48Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: summarise_v11 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # summarise_v11 This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6322 - Rouge1 Precision: 0.6059 - Rouge1 Recall: 0.6233 - Rouge1 Fmeasure: 0.5895 - Rouge2 Precision: 0.4192 - Rouge2 Recall: 0.4512 - Rouge2 Fmeasure: 0.4176 - Rougel Precision: 0.4622 - Rougel Recall: 0.4946 - Rougel Fmeasure: 0.4566 - Rougelsum Precision: 0.4622 - Rougelsum Recall: 0.4946 - Rougelsum Fmeasure: 0.4566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 Precision | Rouge1 Recall | Rouge1 Fmeasure | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | Rougel Precision | Rougel Recall | Rougel Fmeasure | Rougelsum Precision | Rougelsum Recall | Rougelsum Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:-------------------:|:----------------:|:------------------:| | 1.6201 | 0.45 | 10 | 1.4875 | 0.3203 | 0.64 | 0.3932 | 0.197 | 0.3839 | 0.2385 | 0.1952 | 0.4051 | 0.2454 | 0.1952 | 0.4051 | 0.2454 | | 0.9172 | 0.91 | 20 | 1.4404 | 0.4917 | 0.5134 | 0.4699 | 0.288 | 0.3095 | 0.276 | 0.3371 | 0.3594 | 0.3277 | 0.3371 | 0.3594 | 0.3277 | | 1.0923 | 1.36 | 30 | 1.3575 | 0.519 | 0.5505 | 0.4936 | 0.3114 | 0.3237 | 0.2958 | 0.3569 | 0.3702 | 0.3364 | 0.3569 | 0.3702 | 0.3364 | | 1.1287 | 1.82 | 40 | 1.3269 | 0.4913 | 0.5997 | 0.5068 | 0.3108 | 0.3964 | 0.3269 | 0.3355 | 0.427 | 0.3521 | 0.3355 | 0.427 | 0.3521 | | 0.9938 | 2.27 | 50 | 1.3189 | 0.5339 | 0.5781 | 0.4973 | 0.3555 | 0.3883 | 0.3345 | 0.3914 | 0.4289 | 0.3678 | 0.3914 | 0.4289 | 0.3678 | | 0.8659 | 2.73 | 60 | 1.3241 | 0.525 | 0.638 | 0.5165 | 0.3556 | 0.4349 | 0.3535 | 0.3914 | 0.4793 | 0.3886 | 0.3914 | 0.4793 | 0.3886 | | 0.6187 | 3.18 | 70 | 1.3360 | 0.5875 | 0.5864 | 0.5416 | 0.4005 | 0.4045 | 0.3701 | 0.4485 | 0.4556 | 0.414 | 0.4485 | 0.4556 | 0.414 | | 0.3941 | 3.64 | 80 | 1.4176 | 0.5373 | 0.6415 | 0.5328 | 0.3576 | 0.446 | 0.3642 | 0.3787 | 0.4586 | 0.3781 | 0.3787 | 0.4586 | 0.3781 | | 0.4145 | 4.09 | 90 | 1.3936 | 0.4127 | 0.6553 | 0.4568 | 0.2568 | 0.4498 | 0.2988 | 0.2918 | 0.4933 | 0.328 | 0.2918 | 0.4933 | 0.328 | | 0.4203 | 4.55 | 100 | 1.4703 | 0.6545 | 0.601 | 0.5981 | 0.4789 | 0.4373 | 0.438 | 0.5251 | 0.4851 | 0.4818 | 0.5251 | 0.4851 | 0.4818 | | 0.687 | 5.0 | 110 | 1.4304 | 0.5566 | 0.6357 | 0.5637 | 0.3734 | 0.4186 | 0.3748 | 0.4251 | 0.4825 | 0.4286 | 0.4251 | 0.4825 | 0.4286 | | 0.4006 | 5.45 | 120 | 1.5399 | 0.5994 | 0.5794 | 0.5515 | 0.4215 | 0.4218 | 0.398 | 0.4359 | 0.4369 | 0.4084 | 0.4359 | 0.4369 | 0.4084 | | 0.2536 | 5.91 | 130 | 1.5098 | 0.5074 | 0.6254 | 0.4874 | 0.3369 | 0.4189 | 0.3256 | 0.3802 | 0.4738 | 0.3664 | 0.3802 | 0.4738 | 0.3664 | | 0.2218 | 6.36 | 140 | 1.5278 | 0.5713 | 0.6059 | 0.5688 | 0.3887 | 0.4233 | 0.3916 | 0.4414 | 0.4795 | 0.4457 | 0.4414 | 0.4795 | 0.4457 | | 0.2577 | 6.82 | 150 | 1.5469 | 0.5148 | 0.5941 | 0.5175 | 0.3284 | 0.3856 | 0.3335 | 0.3616 | 0.4268 | 0.3681 | 0.3616 | 0.4268 | 0.3681 | | 0.1548 | 7.27 | 160 | 1.5986 | 0.5983 | 0.657 | 0.5862 | 0.4322 | 0.4877 | 0.4287 | 0.4466 | 0.5167 | 0.4482 | 0.4466 | 0.5167 | 0.4482 | | 0.1535 | 7.73 | 170 | 1.5796 | 0.5609 | 0.641 | 0.5616 | 0.3856 | 0.4428 | 0.3892 | 0.4238 | 0.4921 | 0.4263 | 0.4238 | 0.4921 | 0.4263 | | 0.1568 | 8.18 | 180 | 1.6052 | 0.5669 | 0.617 | 0.5679 | 0.3911 | 0.4382 | 0.3969 | 0.4363 | 0.4877 | 0.4417 | 0.4363 | 0.4877 | 0.4417 | | 0.2038 | 8.64 | 190 | 1.6191 | 0.5466 | 0.5973 | 0.5313 | 0.3543 | 0.4114 | 0.3531 | 0.4061 | 0.4666 | 0.404 | 0.4061 | 0.4666 | 0.404 | | 0.1808 | 9.09 | 200 | 1.6165 | 0.5751 | 0.5919 | 0.5587 | 0.3831 | 0.4097 | 0.3817 | 0.4482 | 0.4728 | 0.4405 | 0.4482 | 0.4728 | 0.4405 | | 0.1021 | 9.55 | 210 | 1.6316 | 0.5316 | 0.6315 | 0.535 | 0.3588 | 0.4563 | 0.3697 | 0.405 | 0.502 | 0.4126 | 0.405 | 0.502 | 0.4126 | | 0.1407 | 10.0 | 220 | 1.6322 | 0.6059 | 0.6233 | 0.5895 | 0.4192 | 0.4512 | 0.4176 | 0.4622 | 0.4946 | 0.4566 | 0.4622 | 0.4946 | 0.4566 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 1.2.1 - Tokenizers 0.12.1
jayantapaul888/twitter-data-xlm-roberta-base-eng-only-sentiment-finetuned-memes
jayantapaul888
2022-11-02T10:58:36Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-02T10:26:12Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-data-xlm-roberta-base-eng-only-sentiment-finetuned-memes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-data-xlm-roberta-base-eng-only-sentiment-finetuned-memes This model is a fine-tuned version of [jayantapaul888/twitter-data-xlm-roberta-base-sentiment-finetuned-memes](https://huggingface.co/jayantapaul888/twitter-data-xlm-roberta-base-sentiment-finetuned-memes) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6286 - Accuracy: 0.8660 - Precision: 0.8796 - Recall: 0.8795 - F1: 0.8795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 378 | 0.3421 | 0.8407 | 0.8636 | 0.8543 | 0.8553 | | 0.396 | 2.0 | 756 | 0.3445 | 0.8496 | 0.8726 | 0.8634 | 0.8631 | | 0.2498 | 3.0 | 1134 | 0.3656 | 0.8585 | 0.8764 | 0.8727 | 0.8723 | | 0.1543 | 4.0 | 1512 | 0.4549 | 0.8600 | 0.8742 | 0.8740 | 0.8741 | | 0.1543 | 5.0 | 1890 | 0.5932 | 0.8645 | 0.8783 | 0.8780 | 0.8780 | | 0.0815 | 6.0 | 2268 | 0.6286 | 0.8660 | 0.8796 | 0.8795 | 0.8795 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
Pablo94/bert-base-uncased-finetuned-detests-02-11-2022
Pablo94
2022-11-02T10:54:53Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-02T10:09:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-base-uncased-finetuned-detests-02-11-2022 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-detests-02-11-2022 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0794 - F1: 0.5455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.014 | 0.64 | 25 | 0.6229 | 0.5536 | | 0.0698 | 1.28 | 50 | 0.6996 | 0.5907 | | 0.0173 | 1.92 | 75 | 0.7531 | 0.5882 | | 0.0032 | 2.56 | 100 | 0.8054 | 0.4928 | | 0.0087 | 3.21 | 125 | 0.9557 | 0.5735 | | 0.0028 | 3.85 | 150 | 0.8859 | 0.5352 | | 0.013 | 4.49 | 175 | 0.9674 | 0.5536 | | 0.0031 | 5.13 | 200 | 0.9073 | 0.5691 | | 0.0032 | 5.77 | 225 | 0.9253 | 0.5439 | | 0.0483 | 6.41 | 250 | 0.9705 | 0.5837 | | 0.0323 | 7.05 | 275 | 1.0368 | 0.5824 | | 0.0019 | 7.69 | 300 | 1.0221 | 0.5520 | | 0.0256 | 8.33 | 325 | 1.0419 | 0.5523 | | 0.0319 | 8.97 | 350 | 1.0764 | 0.5425 | | 0.0125 | 9.62 | 375 | 1.0794 | 0.5455 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
Voicelab/sbert-base-cased-pl
Voicelab
2022-11-02T10:44:31Z
30,091
8
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "pl", "dataset:Wikipedia", "arxiv:1908.10084", "license:cc-by-4.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-04-11T06:57:47Z
--- license: cc-by-4.0 language: - pl datasets: - Wikipedia pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity widget: - source_sentence: "Uczenie maszynowe jest konsekwencją rozwoju idei sztucznej inteligencji i metod jej wdrażania praktycznego." sentences: - "Głębokie uczenie maszynowe jest sktukiem wdrażania praktycznego metod sztucznej inteligencji oraz jej rozwoju." - "Kasparow zarzucił firmie IBM oszustwo, kiedy odmówiła mu dostępu do historii wcześniejszych gier Deep Blue. " - "Samica o długości ciała 10–11 mm, szczoteczki na tylnych nogach służące do zbierania pyłku oraz włoski na końcu odwłoka jaskrawo pomarańczowoczerwone. " example_title: "Uczenie maszynowe" --- <img src="https://public.3.basecamp.com/p/rs5XqmAuF1iEuW6U7nMHcZeY/upload/download/VL-NLP-short.png" alt="logo voicelab nlp" style="width:300px;"/> # SHerbert - Polish SentenceBERT SentenceBERT is a modification of the pretrained BERT network that use siamese and triplet network structures to derive semantically meaningful sentence embeddings that can be compared using cosine-similarity. Training was based on the original paper [Siamese BERT models for the task of semantic textual similarity (STS)](https://arxiv.org/abs/1908.10084) with a slight modification of how the training data was used. The goal of the model is to generate different embeddings based on the semantic and topic similarity of the given text. > Semantic textual similarity analyzes how similar two pieces of texts are. Read more about how the model was prepared in our [blog post](https://voicelab.ai/blog/). The base trained model is a Polish HerBERT. HerBERT is a BERT-based Language Model. For more details, please refer to: "HerBERT: Efficiently Pretrained Transformer-based Language Model for Polish". # Corpus Te model was trained solely on [Wikipedia](https://dumps.wikimedia.org/). # Tokenizer As in the original HerBERT implementation, the training dataset was tokenized into subwords using a character level byte-pair encoding (CharBPETokenizer) with a vocabulary size of 50k tokens. The tokenizer itself was trained with a tokenizers library. We kindly encourage you to use the Fast version of the tokenizer, namely HerbertTokenizerFast. # Usage ```python from transformers import AutoTokenizer, AutoModel from sklearn.metrics import pairwise sbert = AutoModel.from_pretrained("Voicelab/sbert-base-cased-pl") tokenizer = AutoTokenizer.from_pretrained("Voicelab/sbert-base-cased-pl") s0 = "Uczenie maszynowe jest konsekwencją rozwoju idei sztucznej inteligencji i metod jej wdrażania praktycznego." s1 = "Głębokie uczenie maszynowe jest sktukiem wdrażania praktycznego metod sztucznej inteligencji oraz jej rozwoju." s2 = "Kasparow zarzucił firmie IBM oszustwo, kiedy odmówiła mu dostępu do historii wcześniejszych gier Deep Blue. " tokens = tokenizer([s0, s1, s2], padding=True, truncation=True, return_tensors='pt') x = sbert(tokens["input_ids"], tokens["attention_mask"]).pooler_output # similarity between sentences s0 and s1 print(pairwise.cosine_similarity(x[0], x[1])) # Result: 0.7952354 # similarity between sentences s0 and s2 print(pairwise.cosine_similarity(x[0], x[2])) # Result: 0.42359722 ``` # Results | Model | Accuracy | Source | |--------------------------|------------|---------------------------------------------------------| | SBERT-WikiSec-base (EN) | 80.42% | https://arxiv.org/abs/1908.10084 | | SBERT-WikiSec-large (EN) | 80.78% | https://arxiv.org/abs/1908.10084 | | **sbert-base-cased-pl** | **82.31%** | **https://huggingface.co/Voicelab/sbert-base-cased-pl** | | sbert-large-cased-pl | 84.42% | https://huggingface.co/Voicelab/sbert-large-cased-pl | # License CC BY 4.0 # Citation If you use this model, please cite the following paper: # Authors The model was trained by NLP Research Team at Voicelab.ai. You can contact us [here](https://voicelab.ai/contact/).
Voicelab/sbert-large-cased-pl
Voicelab
2022-11-02T10:44:13Z
554
7
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "pl", "dataset:Wikipedia", "arxiv:1908.10084", "license:cc-by-4.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-04-13T07:33:36Z
--- license: cc-by-4.0 language: - pl datasets: - Wikipedia pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity widget: - source_sentence: "Uczenie maszynowe jest konsekwencją rozwoju idei sztucznej inteligencji i metod jej wdrażania praktycznego." sentences: - "Głębokie uczenie maszynowe jest sktukiem wdrażania praktycznego metod sztucznej inteligencji oraz jej rozwoju." - "Kasparow zarzucił firmie IBM oszustwo, kiedy odmówiła mu dostępu do historii wcześniejszych gier Deep Blue. " - "Samica o długości ciała 10–11 mm, szczoteczki na tylnych nogach służące do zbierania pyłku oraz włoski na końcu odwłoka jaskrawo pomarańczowoczerwone. " example_title: "Uczenie maszynowe" --- <img src="https://public.3.basecamp.com/p/rs5XqmAuF1iEuW6U7nMHcZeY/upload/download/VL-NLP-short.png" alt="logo voicelab nlp" style="width:300px;"/> # SHerbert large - Polish SentenceBERT SentenceBERT is a modification of the pretrained BERT network that use siamese and triplet network structures to derive semantically meaningful sentence embeddings that can be compared using cosine-similarity. Training was based on the original paper [Siamese BERT models for the task of semantic textual similarity (STS)](https://arxiv.org/abs/1908.10084) with a slight modification of how the training data was used. The goal of the model is to generate different embeddings based on the semantic and topic similarity of the given text. > Semantic textual similarity analyzes how similar two pieces of texts are. Read more about how the model was prepared in our [blog post](https://voicelab.ai/blog/). The base trained model is a Polish HerBERT. HerBERT is a BERT-based Language Model. For more details, please refer to: "HerBERT: Efficiently Pretrained Transformer-based Language Model for Polish". # Corpus Te model was trained solely on [Wikipedia](https://dumps.wikimedia.org/). # Tokenizer As in the original HerBERT implementation, the training dataset was tokenized into subwords using a character level byte-pair encoding (CharBPETokenizer) with a vocabulary size of 50k tokens. The tokenizer itself was trained with a tokenizers library. We kindly encourage you to use the Fast version of the tokenizer, namely HerbertTokenizerFast. # Usage ```python from transformers import AutoTokenizer, AutoModel from sklearn.metrics import pairwise sbert = AutoModel.from_pretrained("Voicelab/sbert-large-cased-pl") tokenizer = AutoTokenizer.from_pretrained("Voicelab/sbert-large-cased-pl") s0 = "Uczenie maszynowe jest konsekwencją rozwoju idei sztucznej inteligencji i metod jej wdrażania praktycznego." s1 = "Głębokie uczenie maszynowe jest sktukiem wdrażania praktycznego metod sztucznej inteligencji oraz jej rozwoju." s2 = "Kasparow zarzucił firmie IBM oszustwo, kiedy odmówiła mu dostępu do historii wcześniejszych gier Deep Blue. " tokens = tokenizer([s0, s1, s2], padding=True, truncation=True, return_tensors='pt') x = sbert(tokens["input_ids"], tokens["attention_mask"]).pooler_output # similarity between sentences s0 and s1 print(pairwise.cosine_similarity(x[0], x[1])) # Result: 0.8011128 # similarity between sentences s0 and s2 print(pairwise.cosine_similarity(x[0], x[2])) # Result: 0.58822715 ``` # Results | Model | Accuracy | Source | |--------------------------|------------|----------------------------------------------------------| | SBERT-WikiSec-base (EN) | 80.42% | https://arxiv.org/abs/1908.10084 | | SBERT-WikiSec-large (EN) | 80.78% | https://arxiv.org/abs/1908.10084 | | sbert-base-cased-pl | 82.31% | https://huggingface.co/Voicelab/sbert-base-cased-pl | | **sbert-large-cased-pl** | **84.42%** | **https://huggingface.co/Voicelab/sbert-large-cased-pl** | # License CC BY 4.0 # Citation If you use this model, please cite the following paper: # Authors The model was trained by NLP Research Team at Voicelab.ai. You can contact us [here](https://voicelab.ai/contact/).
shed-e/scipaper-summary
shed-e
2022-11-02T09:42:23Z
4
2
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:scitldr", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-02T07:17:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - scitldr metrics: - rouge model-index: - name: paper-summary results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scitldr type: scitldr config: Abstract split: train args: Abstract metrics: - name: Rouge1 type: rouge value: 0.3484 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # paper-summary This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the scitldr dataset. It achieves the following results on the evaluation set: - Loss: 2.8631 - Rouge1: 0.3484 - Rouge2: 0.1596 - Rougel: 0.2971 - Rougelsum: 0.3047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 3.0545 | 1.0 | 63 | 2.9939 | 0.3387 | 0.1538 | 0.2887 | 0.2957 | | 2.7871 | 2.0 | 126 | 2.9360 | 0.3448 | 0.1577 | 0.2947 | 0.3019 | | 2.7188 | 3.0 | 189 | 2.8977 | 0.3477 | 0.1585 | 0.2967 | 0.3035 | | 2.6493 | 4.0 | 252 | 2.8837 | 0.3488 | 0.1597 | 0.2973 | 0.3046 | | 2.6207 | 5.0 | 315 | 2.8690 | 0.3472 | 0.1566 | 0.2958 | 0.3033 | | 2.5893 | 6.0 | 378 | 2.8668 | 0.3493 | 0.1592 | 0.2972 | 0.305 | | 2.5494 | 7.0 | 441 | 2.8657 | 0.3486 | 0.1595 | 0.2976 | 0.3053 | | 2.5554 | 8.0 | 504 | 2.8631 | 0.3484 | 0.1596 | 0.2971 | 0.3047 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
pig4431/amazonPolarity_ELECTRA_5E
pig4431
2022-11-02T09:31:24Z
103
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "generated_from_trainer", "dataset:amazon_polarity", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-02T09:30:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_polarity metrics: - accuracy model-index: - name: amazonPolarity_ELECTRA_5E results: - task: name: Text Classification type: text-classification dataset: name: amazon_polarity type: amazon_polarity config: amazon_polarity split: train args: amazon_polarity metrics: - name: Accuracy type: accuracy value: 0.9333333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazonPolarity_ELECTRA_5E This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the amazon_polarity dataset. It achieves the following results on the evaluation set: - Loss: 0.3512 - Accuracy: 0.9333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6705 | 0.03 | 50 | 0.5768 | 0.8867 | | 0.4054 | 0.05 | 100 | 0.2968 | 0.8933 | | 0.2461 | 0.08 | 150 | 0.2233 | 0.92 | | 0.1795 | 0.11 | 200 | 0.2265 | 0.9333 | | 0.2293 | 0.13 | 250 | 0.2329 | 0.9267 | | 0.1541 | 0.16 | 300 | 0.2240 | 0.94 | | 0.2006 | 0.19 | 350 | 0.2779 | 0.92 | | 0.1826 | 0.21 | 400 | 0.2765 | 0.9133 | | 0.1935 | 0.24 | 450 | 0.2346 | 0.9333 | | 0.1887 | 0.27 | 500 | 0.2085 | 0.94 | | 0.1688 | 0.29 | 550 | 0.2193 | 0.94 | | 0.1884 | 0.32 | 600 | 0.1982 | 0.9467 | | 0.189 | 0.35 | 650 | 0.1873 | 0.94 | | 0.1564 | 0.37 | 700 | 0.2226 | 0.94 | | 0.1733 | 0.4 | 750 | 0.2462 | 0.9333 | | 0.1436 | 0.43 | 800 | 0.2328 | 0.94 | | 0.1517 | 0.45 | 850 | 0.2128 | 0.9533 | | 0.1922 | 0.48 | 900 | 0.1626 | 0.9467 | | 0.1401 | 0.51 | 950 | 0.2391 | 0.94 | | 0.1606 | 0.53 | 1000 | 0.2001 | 0.94 | | 0.1597 | 0.56 | 1050 | 0.1788 | 0.9467 | | 0.184 | 0.59 | 1100 | 0.1656 | 0.9467 | | 0.1448 | 0.61 | 1150 | 0.1752 | 0.96 | | 0.1575 | 0.64 | 1200 | 0.1878 | 0.9533 | | 0.1836 | 0.67 | 1250 | 0.1416 | 0.9533 | | 0.1378 | 0.69 | 1300 | 0.1866 | 0.9467 | | 0.1901 | 0.72 | 1350 | 0.1654 | 0.9533 | | 0.1697 | 0.75 | 1400 | 0.1720 | 0.9533 | | 0.1624 | 0.77 | 1450 | 0.1700 | 0.9467 | | 0.1487 | 0.8 | 1500 | 0.1786 | 0.94 | | 0.1367 | 0.83 | 1550 | 0.1974 | 0.9267 | | 0.1535 | 0.85 | 1600 | 0.1823 | 0.9267 | | 0.1366 | 0.88 | 1650 | 0.1515 | 0.94 | | 0.1505 | 0.91 | 1700 | 0.1527 | 0.94 | | 0.1554 | 0.93 | 1750 | 0.1855 | 0.9467 | | 0.1478 | 0.96 | 1800 | 0.1885 | 0.9333 | | 0.1603 | 0.99 | 1850 | 0.1990 | 0.9467 | | 0.1637 | 1.01 | 1900 | 0.1901 | 0.9467 | | 0.1074 | 1.04 | 1950 | 0.1886 | 0.9533 | | 0.0874 | 1.07 | 2000 | 0.2399 | 0.94 | | 0.1245 | 1.09 | 2050 | 0.2107 | 0.9467 | | 0.1175 | 1.12 | 2100 | 0.2226 | 0.94 | | 0.1279 | 1.15 | 2150 | 0.2267 | 0.94 | | 0.0947 | 1.17 | 2200 | 0.2342 | 0.94 | | 0.0837 | 1.2 | 2250 | 0.2519 | 0.9467 | | 0.1091 | 1.23 | 2300 | 0.2531 | 0.94 | | 0.0867 | 1.25 | 2350 | 0.2519 | 0.94 | | 0.0845 | 1.28 | 2400 | 0.2431 | 0.9467 | | 0.0836 | 1.31 | 2450 | 0.1936 | 0.9533 | | 0.1633 | 1.33 | 2500 | 0.1875 | 0.9333 | | 0.1029 | 1.36 | 2550 | 0.2345 | 0.94 | | 0.0755 | 1.39 | 2600 | 0.3028 | 0.94 | | 0.1539 | 1.41 | 2650 | 0.2497 | 0.94 | | 0.1055 | 1.44 | 2700 | 0.2002 | 0.9467 | | 0.1234 | 1.47 | 2750 | 0.1763 | 0.9533 | | 0.1312 | 1.49 | 2800 | 0.1998 | 0.94 | | 0.1067 | 1.52 | 2850 | 0.1820 | 0.96 | | 0.1092 | 1.55 | 2900 | 0.1903 | 0.9467 | | 0.1209 | 1.57 | 2950 | 0.1912 | 0.9467 | | 0.0627 | 1.6 | 3000 | 0.2208 | 0.9467 | | 0.1121 | 1.63 | 3050 | 0.2607 | 0.9333 | | 0.1106 | 1.65 | 3100 | 0.1852 | 0.9533 | | 0.0724 | 1.68 | 3150 | 0.2122 | 0.9533 | | 0.1247 | 1.71 | 3200 | 0.2112 | 0.9467 | | 0.1247 | 1.73 | 3250 | 0.2021 | 0.9533 | | 0.096 | 1.76 | 3300 | 0.2340 | 0.9467 | | 0.1056 | 1.79 | 3350 | 0.2165 | 0.94 | | 0.1055 | 1.81 | 3400 | 0.2563 | 0.94 | | 0.1199 | 1.84 | 3450 | 0.2251 | 0.9467 | | 0.0899 | 1.87 | 3500 | 0.1996 | 0.9533 | | 0.109 | 1.89 | 3550 | 0.1924 | 0.9533 | | 0.13 | 1.92 | 3600 | 0.1769 | 0.9467 | | 0.1037 | 1.95 | 3650 | 0.2003 | 0.9533 | | 0.0934 | 1.97 | 3700 | 0.2325 | 0.94 | | 0.1254 | 2.0 | 3750 | 0.2037 | 0.9467 | | 0.0619 | 2.03 | 3800 | 0.2252 | 0.9533 | | 0.093 | 2.05 | 3850 | 0.2145 | 0.9533 | | 0.0827 | 2.08 | 3900 | 0.2237 | 0.9533 | | 0.0679 | 2.11 | 3950 | 0.2643 | 0.9467 | | 0.076 | 2.13 | 4000 | 0.2287 | 0.9533 | | 0.0526 | 2.16 | 4050 | 0.3210 | 0.9267 | | 0.0354 | 2.19 | 4100 | 0.3259 | 0.9333 | | 0.026 | 2.21 | 4150 | 0.3448 | 0.9333 | | 0.0466 | 2.24 | 4200 | 0.3751 | 0.9333 | | 0.043 | 2.27 | 4250 | 0.3122 | 0.9333 | | 0.0521 | 2.29 | 4300 | 0.3155 | 0.9333 | | 0.1018 | 2.32 | 4350 | 0.3066 | 0.94 | | 0.0572 | 2.35 | 4400 | 0.2848 | 0.94 | | 0.0903 | 2.37 | 4450 | 0.2289 | 0.9467 | | 0.0718 | 2.4 | 4500 | 0.2661 | 0.9467 | | 0.0689 | 2.43 | 4550 | 0.2544 | 0.9467 | | 0.0829 | 2.45 | 4600 | 0.2816 | 0.9333 | | 0.0909 | 2.48 | 4650 | 0.2244 | 0.94 | | 0.0888 | 2.51 | 4700 | 0.2620 | 0.94 | | 0.0998 | 2.53 | 4750 | 0.2773 | 0.94 | | 0.0604 | 2.56 | 4800 | 0.2344 | 0.94 | | 0.0619 | 2.59 | 4850 | 0.2551 | 0.9467 | | 0.056 | 2.61 | 4900 | 0.2787 | 0.94 | | 0.1037 | 2.64 | 4950 | 0.2388 | 0.9467 | | 0.0858 | 2.67 | 5000 | 0.2213 | 0.94 | | 0.0674 | 2.69 | 5050 | 0.2339 | 0.9467 | | 0.0438 | 2.72 | 5100 | 0.2759 | 0.9467 | | 0.0615 | 2.75 | 5150 | 0.2739 | 0.9467 | | 0.064 | 2.77 | 5200 | 0.2488 | 0.9467 | | 0.0824 | 2.8 | 5250 | 0.2590 | 0.9467 | | 0.074 | 2.83 | 5300 | 0.2314 | 0.9467 | | 0.1077 | 2.85 | 5350 | 0.2571 | 0.9467 | | 0.0482 | 2.88 | 5400 | 0.2678 | 0.9467 | | 0.0732 | 2.91 | 5450 | 0.2626 | 0.9333 | | 0.0564 | 2.93 | 5500 | 0.2586 | 0.94 | | 0.1019 | 2.96 | 5550 | 0.2706 | 0.9333 | | 0.0675 | 2.99 | 5600 | 0.2568 | 0.9267 | | 0.056 | 3.01 | 5650 | 0.2881 | 0.9333 | | 0.0266 | 3.04 | 5700 | 0.2789 | 0.9467 | | 0.0207 | 3.07 | 5750 | 0.2535 | 0.9467 | | 0.0246 | 3.09 | 5800 | 0.2597 | 0.9467 | | 0.0631 | 3.12 | 5850 | 0.2403 | 0.9533 | | 0.0627 | 3.15 | 5900 | 0.2336 | 0.9533 | | 0.1061 | 3.17 | 5950 | 0.2773 | 0.94 | | 0.0257 | 3.2 | 6000 | 0.2587 | 0.9467 | | 0.0375 | 3.23 | 6050 | 0.2560 | 0.9467 | | 0.0404 | 3.25 | 6100 | 0.2851 | 0.94 | | 0.0748 | 3.28 | 6150 | 0.3005 | 0.94 | | 0.0384 | 3.31 | 6200 | 0.2442 | 0.9533 | | 0.0426 | 3.33 | 6250 | 0.2618 | 0.9533 | | 0.0611 | 3.36 | 6300 | 0.2710 | 0.9467 | | 0.0282 | 3.39 | 6350 | 0.3200 | 0.94 | | 0.0449 | 3.41 | 6400 | 0.3203 | 0.94 | | 0.0508 | 3.44 | 6450 | 0.3197 | 0.94 | | 0.0385 | 3.47 | 6500 | 0.3391 | 0.9333 | | 0.0458 | 3.49 | 6550 | 0.3450 | 0.9333 | | 0.0245 | 3.52 | 6600 | 0.3737 | 0.9333 | | 0.0547 | 3.55 | 6650 | 0.2889 | 0.94 | | 0.0398 | 3.57 | 6700 | 0.3751 | 0.9333 | | 0.0497 | 3.6 | 6750 | 0.2748 | 0.9467 | | 0.0466 | 3.63 | 6800 | 0.3438 | 0.9333 | | 0.0241 | 3.65 | 6850 | 0.3279 | 0.9267 | | 0.0631 | 3.68 | 6900 | 0.2921 | 0.94 | | 0.0256 | 3.71 | 6950 | 0.3595 | 0.9267 | | 0.0615 | 3.73 | 7000 | 0.3190 | 0.9333 | | 0.0495 | 3.76 | 7050 | 0.3451 | 0.9267 | | 0.0519 | 3.79 | 7100 | 0.3303 | 0.9333 | | 0.0243 | 3.81 | 7150 | 0.3344 | 0.9333 | | 0.0348 | 3.84 | 7200 | 0.3609 | 0.9333 | | 0.0542 | 3.87 | 7250 | 0.2797 | 0.9333 | | 0.0791 | 3.89 | 7300 | 0.2504 | 0.94 | | 0.0272 | 3.92 | 7350 | 0.3165 | 0.9333 | | 0.0701 | 3.95 | 7400 | 0.3039 | 0.9333 | | 0.0866 | 3.97 | 7450 | 0.3233 | 0.9267 | | 0.0461 | 4.0 | 7500 | 0.3114 | 0.9267 | | 0.0486 | 4.03 | 7550 | 0.2995 | 0.94 | | 0.0052 | 4.05 | 7600 | 0.3128 | 0.94 | | 0.0312 | 4.08 | 7650 | 0.3723 | 0.9333 | | 0.0277 | 4.11 | 7700 | 0.3158 | 0.94 | | 0.0407 | 4.13 | 7750 | 0.3187 | 0.94 | | 0.0224 | 4.16 | 7800 | 0.3258 | 0.9333 | | 0.0335 | 4.19 | 7850 | 0.3539 | 0.9333 | | 0.0425 | 4.21 | 7900 | 0.3391 | 0.9333 | | 0.0394 | 4.24 | 7950 | 0.3470 | 0.9333 | | 0.015 | 4.27 | 8000 | 0.3680 | 0.9333 | | 0.0166 | 4.29 | 8050 | 0.3689 | 0.9333 | | 0.0358 | 4.32 | 8100 | 0.3281 | 0.94 | | 0.0152 | 4.35 | 8150 | 0.3391 | 0.9333 | | 0.0235 | 4.37 | 8200 | 0.3506 | 0.94 | | 0.0357 | 4.4 | 8250 | 0.3549 | 0.94 | | 0.0153 | 4.43 | 8300 | 0.3564 | 0.94 | | 0.0366 | 4.45 | 8350 | 0.3836 | 0.9333 | | 0.0381 | 4.48 | 8400 | 0.3428 | 0.9333 | | 0.0349 | 4.51 | 8450 | 0.3600 | 0.94 | | 0.028 | 4.53 | 8500 | 0.3592 | 0.9333 | | 0.0322 | 4.56 | 8550 | 0.3478 | 0.9333 | | 0.0237 | 4.59 | 8600 | 0.3636 | 0.94 | | 0.0398 | 4.61 | 8650 | 0.3433 | 0.9333 | | 0.062 | 4.64 | 8700 | 0.3158 | 0.94 | | 0.0148 | 4.67 | 8750 | 0.3435 | 0.9333 | | 0.0197 | 4.69 | 8800 | 0.3394 | 0.9333 | | 0.0594 | 4.72 | 8850 | 0.3336 | 0.9333 | | 0.0426 | 4.75 | 8900 | 0.3351 | 0.9333 | | 0.003 | 4.77 | 8950 | 0.3479 | 0.9333 | | 0.0268 | 4.8 | 9000 | 0.3479 | 0.9333 | | 0.0524 | 4.83 | 9050 | 0.3485 | 0.9333 | | 0.0259 | 4.85 | 9100 | 0.3501 | 0.9333 | | 0.0326 | 4.88 | 9150 | 0.3498 | 0.9333 | | 0.0236 | 4.91 | 9200 | 0.3482 | 0.9333 | | 0.0209 | 4.93 | 9250 | 0.3504 | 0.9333 | | 0.0366 | 4.96 | 9300 | 0.3503 | 0.9333 | | 0.0246 | 4.99 | 9350 | 0.3512 | 0.9333 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
Galeros/testpyramidsrnd
Galeros
2022-11-02T08:21:19Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-11-02T08:20:27Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: Galeros/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
HankyStyle/Multi-ling-BERT
HankyStyle
2022-11-02T07:21:01Z
105
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-04-23T13:02:08Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Multi-ling-BERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Multi-ling-BERT This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. ## Usage ### In Transformers ```python from transformers import pipeline,AutoTokenizer model_name = "distilbert-base-uncased-finetuned-sst-2-english" tokenizer = AutoTokenizer.from_pretrained(model_name) text = "I feel happy today!" inputs = tokenizer(text,return_tensors="pt",padding=True, truncation=True) { 'input_ids': tensor([[ 101, 1045, 2514, 3407, 2651, 999, 102]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1]]) } tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) ['[CLS]', 'i', 'feel', 'happy', 'today', '!', '[SEP]'] tokenizer.decode(inputs["input_ids"][0]) [CLS] i feel happy today! [SEP] text = "This is the question" query = "This is the context with lots of information. Some useless. The answer is here some more words." inputs = tokenizer(text,query,return_tensors="pt",padding=True, truncation=True) { 'input_ids': tensor([ 101, 2023, 2003, 1996, 3160, 102, 2023, 2003, 1996, 6123, 2007, 7167, 1997, 2592, 1012, 2070, 11809, 1012, 1996, 3437, 2003, 2182, 2070, 2062, 2616, 1012, 102]) } tokenizer.decode(inputs ["input_ids"][0]) text = "I feel happy today!" # BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained(model_name) inputs_for_BertTokenizer = tokenizer(text, return_tensors="pt",padding=False, truncation=True, max_length=512, stride=256) { 'input_ids': tensor([[ 101, 100, 11297, 9200, 11262, 106, 102]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1]]) } # BartTokenizerFast tokenizer = BartTokenizerFast.from_pretrained("facebook/bart-base") inputs_for_BartTokenizerFast= tokenizer(text, return_tensors="pt",padding=False, truncation=True, max_length=512, stride=256) { 'input_ids': tensor([[ 0, 100, 619, 1372, 452, 328, 2]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1]]) } # Model from transformers import AutoModel model_name = "distilbert-base-uncased-finetuned-sst-2-english" model = AutoModel.from_pretrained(model_name) outputs = model(**inputs) print(outputs.last_hidden_state.shape) { torch.Size([1, 7, 768]) } from transformers import AutoModelForSequenceClassification model_name = "distilbert-base-uncased-finetuned-sst-2-english" model = AutoModelForSequenceClassification.from_pretrained(model_name) outputs = model(**inputs) print(outputs.logits) { tensor([[-4.3450, 4.6878]], grad_fn=<AddmmBackward0>) } import torch predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) print(predictions) { tensor([[1.1942e-04, 9.9988e-01]], grad_fn=<SoftmaxBackward0>) } ```
GItaf/gpt2-gpt2-mc-weight0.25-epoch15-new-nosharing
GItaf
2022-11-02T05:46:30Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-01T07:46:59Z
--- tags: - generated_from_trainer model-index: - name: gpt2-gpt2-mc-weight0.25-epoch15-new-nosharing results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-gpt2-mc-weight0.25-epoch15-new-nosharing This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.6937 - Cls loss: 2.9228 - Lm loss: 3.9625 - Cls Accuracy: 0.6046 - Cls F1: 0.5997 - Cls Precision: 0.6013 - Cls Recall: 0.6046 - Perplexity: 52.59 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------:|:------------:|:------:|:-------------:|:----------:|:----------:| | 4.6729 | 1.0 | 3470 | 4.4248 | 1.5425 | 4.0392 | 0.5689 | 0.5448 | 0.5732 | 0.5689 | 56.78 | | 4.3854 | 2.0 | 6940 | 4.3672 | 1.4634 | 4.0012 | 0.6121 | 0.6023 | 0.6288 | 0.6121 | 54.66 | | 4.2559 | 3.0 | 10410 | 4.3660 | 1.5252 | 3.9844 | 0.6133 | 0.6086 | 0.6428 | 0.6133 | 53.75 | | 4.1479 | 4.0 | 13880 | 4.4069 | 1.7167 | 3.9774 | 0.6075 | 0.6023 | 0.6134 | 0.6075 | 53.38 | | 4.0501 | 5.0 | 17350 | 4.4152 | 1.7953 | 3.9661 | 0.6023 | 0.5971 | 0.6063 | 0.6023 | 52.78 | | 3.964 | 6.0 | 20820 | 4.4789 | 2.0438 | 3.9676 | 0.6086 | 0.6035 | 0.6198 | 0.6086 | 52.86 | | 3.8964 | 7.0 | 24290 | 4.5107 | 2.1849 | 3.9641 | 0.6052 | 0.5990 | 0.6096 | 0.6052 | 52.67 | | 3.8441 | 8.0 | 27760 | 4.5674 | 2.4206 | 3.9618 | 0.6104 | 0.6043 | 0.6137 | 0.6104 | 52.55 | | 3.8043 | 9.0 | 31230 | 4.5939 | 2.5361 | 3.9594 | 0.5954 | 0.5911 | 0.5980 | 0.5954 | 52.43 | | 3.7743 | 10.0 | 34700 | 4.6247 | 2.6479 | 3.9623 | 0.5937 | 0.5906 | 0.5932 | 0.5937 | 52.58 | | 3.7484 | 11.0 | 38170 | 4.6686 | 2.8241 | 3.9622 | 0.5983 | 0.5924 | 0.6000 | 0.5983 | 52.57 | | 3.7305 | 12.0 | 41640 | 4.6729 | 2.8435 | 3.9616 | 0.6 | 0.5949 | 0.5958 | 0.6 | 52.54 | | 3.7149 | 13.0 | 45110 | 4.6809 | 2.8759 | 3.9614 | 0.5931 | 0.5875 | 0.5899 | 0.5931 | 52.53 | | 3.7047 | 14.0 | 48580 | 4.6895 | 2.9094 | 3.9617 | 0.5983 | 0.5928 | 0.5955 | 0.5983 | 52.55 | | 3.6973 | 15.0 | 52050 | 4.6937 | 2.9228 | 3.9625 | 0.6046 | 0.5997 | 0.6013 | 0.6046 | 52.59 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
GItaf/gpt2-gpt2-mc-weight0.25-epoch15-new
GItaf
2022-11-02T05:46:01Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-01T07:43:22Z
--- tags: - generated_from_trainer model-index: - name: gpt2-gpt2-mc-weight0.25-epoch15-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-gpt2-mc-weight0.25-epoch15-new This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.7276 - Cls loss: 3.0579 - Lm loss: 3.9626 - Cls Accuracy: 0.6110 - Cls F1: 0.6054 - Cls Precision: 0.6054 - Cls Recall: 0.6110 - Perplexity: 52.59 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cls loss | Lm loss | Cls Accuracy | Cls F1 | Cls Precision | Cls Recall | Perplexity | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------:|:------------:|:------:|:-------------:|:----------:|:----------:| | 4.674 | 1.0 | 3470 | 4.4372 | 1.5961 | 4.0380 | 0.5487 | 0.5279 | 0.5643 | 0.5487 | 56.71 | | 4.3809 | 2.0 | 6940 | 4.3629 | 1.4483 | 4.0006 | 0.6023 | 0.5950 | 0.6174 | 0.6023 | 54.63 | | 4.2522 | 3.0 | 10410 | 4.3721 | 1.5476 | 3.9849 | 0.6012 | 0.5981 | 0.6186 | 0.6012 | 53.78 | | 4.1478 | 4.0 | 13880 | 4.3892 | 1.6429 | 3.9782 | 0.6081 | 0.6019 | 0.6128 | 0.6081 | 53.42 | | 4.0491 | 5.0 | 17350 | 4.4182 | 1.8093 | 3.9656 | 0.6156 | 0.6091 | 0.6163 | 0.6156 | 52.75 | | 3.9624 | 6.0 | 20820 | 4.4757 | 2.0348 | 3.9666 | 0.6121 | 0.6048 | 0.6189 | 0.6121 | 52.81 | | 3.8954 | 7.0 | 24290 | 4.4969 | 2.1327 | 3.9634 | 0.6092 | 0.6028 | 0.6087 | 0.6092 | 52.64 | | 3.846 | 8.0 | 27760 | 4.5632 | 2.4063 | 3.9613 | 0.6017 | 0.5972 | 0.6014 | 0.6017 | 52.52 | | 3.8036 | 9.0 | 31230 | 4.6068 | 2.5888 | 3.9592 | 0.6052 | 0.5988 | 0.6026 | 0.6052 | 52.41 | | 3.7724 | 10.0 | 34700 | 4.6175 | 2.6197 | 3.9621 | 0.6052 | 0.6006 | 0.6009 | 0.6052 | 52.57 | | 3.7484 | 11.0 | 38170 | 4.6745 | 2.8470 | 3.9622 | 0.6046 | 0.5996 | 0.6034 | 0.6046 | 52.57 | | 3.7291 | 12.0 | 41640 | 4.6854 | 2.8950 | 3.9611 | 0.6110 | 0.6056 | 0.6049 | 0.6110 | 52.52 | | 3.7148 | 13.0 | 45110 | 4.7103 | 2.9919 | 3.9618 | 0.6063 | 0.6002 | 0.6029 | 0.6063 | 52.55 | | 3.703 | 14.0 | 48580 | 4.7226 | 3.0417 | 3.9616 | 0.6081 | 0.6027 | 0.6021 | 0.6081 | 52.54 | | 3.6968 | 15.0 | 52050 | 4.7276 | 3.0579 | 3.9626 | 0.6110 | 0.6054 | 0.6054 | 0.6110 | 52.59 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Chloecakee/finetuning-sentiment-model-imdb
Chloecakee
2022-11-02T04:30:05Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-26T16:32:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2095 - Accuracy: 0.943 - F1: 0.9420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
pepperjirakit/Daimond_Price
pepperjirakit
2022-11-02T03:57:26Z
0
0
null
[ "joblib", "license:cc-by-3.0", "region:us" ]
null
2022-10-26T12:50:54Z
--- title: Daimond_Price emoji: 💩 colorFrom: blue colorTo: green sdk: streamlit sdk_version: 1.10.0 app_file: app.py pinned: false license: cc-by-3.0 --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
huggingtweets/callmecarsonyt-jerma985-vgdunkey
huggingtweets
2022-11-02T03:39:39Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-02T03:38:15Z
--- language: en thumbnail: http://www.huggingtweets.com/callmecarsonyt-jerma985-vgdunkey/1667360374615/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/803601382943162368/F36Z7ypy_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/676614171849453568/AZd1Bh-s_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1580752812476071936/E0qU4suK_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jerma & dunkey & Carson</div> <div style="text-align: center; font-size: 14px;">@callmecarsonyt-jerma985-vgdunkey</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jerma & dunkey & Carson. | Data | Jerma | dunkey | Carson | | --- | --- | --- | --- | | Tweets downloaded | 2719 | 1309 | 3220 | | Retweets | 108 | 151 | 6 | | Short tweets | 286 | 331 | 793 | | Tweets kept | 2325 | 827 | 2421 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/mqcymy6y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @callmecarsonyt-jerma985-vgdunkey's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3oq9dor5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3oq9dor5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/callmecarsonyt-jerma985-vgdunkey') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
salascorp/categorizacion_comercios_v_0.0.5
salascorp
2022-11-02T03:05:01Z
104
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-02T02:47:13Z
--- license: apache-2.0 tags: - text-classification - generated_from_trainer metrics: - accuracy model-index: - name: categorizacion_comercios_v_0.0.5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # categorizacion_comercios_v_0.0.5 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the datasetX dataset. It achieves the following results on the evaluation set: - Loss: 0.2025 - Accuracy: 0.9466 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.13.0+cpu - Datasets 2.6.1 - Tokenizers 0.13.1
egumasa/en_engagement_RoBERTa_combined
egumasa
2022-11-02T01:56:39Z
6
1
spacy
[ "spacy", "token-classification", "en", "doi:10.57967/hf/0082", "model-index", "region:us" ]
token-classification
2022-11-02T01:53:35Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_engagement_RoBERTa_combined results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.0 - name: NER Recall type: recall value: 0.0 - name: NER F Score type: f_score value: 0.0 - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.0 - task: name: LEMMA type: token-classification metrics: - name: Lemma Accuracy type: accuracy value: 0.0 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.0 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.0 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.9764065336 --- | Feature | Description | | --- | --- | | **Name** | `en_engagement_RoBERTa_combined` | | **Version** | `AtoI_0.1.85` | | **spaCy** | `>=3.3.0,<3.4.0` | | **Default Pipeline** | `transformer`, `tagger`, `parser`, `ner`, `trainable_transformer`, `span_finder`, `spancat` | | **Components** | `transformer`, `tagger`, `parser`, `ner`, `trainable_transformer`, `span_finder`, `spancat` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (124 labels for 4 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` | | **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` | | **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` | | **`spancat`** | `MONOGLOSS`, `ATTRIBUTE`, `JUSTIFY`, `COUNTER`, `CITATION`, `ENTERTAIN`, `ENDORSE`, `DENY`, `CONCUR`, `PRONOUNCE`, `TEMPORAL`, `CONTRAST` | </details> ### Accuracy | Type | Score | | --- | --- | | `TAG_ACC` | 0.00 | | `DEP_UAS` | 0.00 | | `DEP_LAS` | 0.00 | | `DEP_LAS_PER_TYPE` | 0.00 | | `SENTS_P` | 96.76 | | `SENTS_R` | 98.53 | | `SENTS_F` | 97.64 | | `ENTS_F` | 0.00 | | `ENTS_P` | 0.00 | | `ENTS_R` | 0.00 | | `SPAN_FINDER_SPAN_CANDIDATES_F` | 50.09 | | `SPAN_FINDER_SPAN_CANDIDATES_P` | 35.70 | | `SPAN_FINDER_SPAN_CANDIDATES_R` | 83.94 | | `SPANS_SC_F` | 76.49 | | `SPANS_SC_P` | 75.89 | | `SPANS_SC_R` | 77.11 | | `LEMMA_ACC` | 0.00 | | `TRAINABLE_TRANSFORMER_LOSS` | 1535.39 | | `SPAN_FINDER_LOSS` | 20411.83 | | `SPANCAT_LOSS` | 24075.13 |
crescendonow/pwa_ner
crescendonow
2022-11-02T01:03:30Z
10
0
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-02T00:57:00Z
--- license: apache-2.0 --- Finetune from WangchanBERTa use for Provincial Waterworks Autority of Thailand.
scjones/xlm-roberta-base-finetuned-panx-de
scjones
2022-11-02T00:43:43Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-02T00:19:09Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/liverightananda
huggingtweets
2022-11-02T00:41:28Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-02T00:40:55Z
--- language: en thumbnail: http://www.huggingtweets.com/liverightananda/1667349684656/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1486406479938793473/yG_E0wx-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">nanda</div> <div style="text-align: center; font-size: 14px;">@liverightananda</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from nanda. | Data | nanda | | --- | --- | | Tweets downloaded | 900 | | Retweets | 30 | | Short tweets | 121 | | Tweets kept | 749 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/908ty3ha/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @liverightananda's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3mtd8cgk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3mtd8cgk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/liverightananda') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/trashfil
huggingtweets
2022-11-02T00:30:34Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-02T00:29:17Z
--- language: en thumbnail: http://www.huggingtweets.com/trashfil/1667349030665/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1530748346935148544/J8kNSD8f_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">💌</div> <div style="text-align: center; font-size: 14px;">@trashfil</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 💌. | Data | 💌 | | --- | --- | | Tweets downloaded | 467 | | Retweets | 32 | | Short tweets | 106 | | Tweets kept | 329 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3arew141/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @trashfil's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34h0nac5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34h0nac5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/trashfil') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sergiocannata/convnext-tiny-224-finetuned-brs2
sergiocannata
2022-11-02T00:15:25Z
26
0
transformers
[ "transformers", "pytorch", "tensorboard", "convnext", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-01T23:03:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 model-index: - name: convnext-tiny-224-finetuned-brs2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7924528301886793 - name: F1 type: f1 value: 0.7555555555555556 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-224-finetuned-brs2 This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2502 - Accuracy: 0.7925 - F1: 0.7556 - Precision (ppv): 0.8095 - Recall (sensitivity): 0.7083 - Specificity: 0.8621 - Npv: 0.7812 - Auc: 0.7852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision (ppv) | Recall (sensitivity) | Specificity | Npv | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------------:|:--------------------:|:-----------:|:------:|:------:| | 0.6884 | 1.89 | 100 | 0.6907 | 0.5472 | 0.4286 | 0.5 | 0.375 | 0.6897 | 0.5714 | 0.5323 | | 0.5868 | 3.77 | 200 | 0.6604 | 0.6415 | 0.4242 | 0.7778 | 0.2917 | 0.9310 | 0.6136 | 0.6114 | | 0.4759 | 5.66 | 300 | 0.6273 | 0.6604 | 0.5 | 0.75 | 0.375 | 0.8966 | 0.6341 | 0.6358 | | 0.3599 | 7.55 | 400 | 0.6520 | 0.6604 | 0.5 | 0.75 | 0.375 | 0.8966 | 0.6341 | 0.6358 | | 0.3248 | 9.43 | 500 | 0.9115 | 0.6415 | 0.4571 | 0.7273 | 0.3333 | 0.8966 | 0.6190 | 0.6149 | | 0.3117 | 11.32 | 600 | 0.8608 | 0.6604 | 0.5263 | 0.7143 | 0.4167 | 0.8621 | 0.6410 | 0.6394 | | 0.4208 | 13.21 | 700 | 0.8774 | 0.6792 | 0.5641 | 0.7333 | 0.4583 | 0.8621 | 0.6579 | 0.6602 | | 0.5267 | 15.09 | 800 | 1.0131 | 0.6792 | 0.5405 | 0.7692 | 0.4167 | 0.8966 | 0.65 | 0.6566 | | 0.234 | 16.98 | 900 | 1.1498 | 0.6981 | 0.5556 | 0.8333 | 0.4167 | 0.9310 | 0.6585 | 0.6739 | | 0.7581 | 18.87 | 1000 | 1.0952 | 0.7170 | 0.6154 | 0.8 | 0.5 | 0.8966 | 0.6842 | 0.6983 | | 0.1689 | 20.75 | 1100 | 1.1653 | 0.6981 | 0.5789 | 0.7857 | 0.4583 | 0.8966 | 0.6667 | 0.6774 | | 0.0765 | 22.64 | 1200 | 1.1245 | 0.7170 | 0.6667 | 0.7143 | 0.625 | 0.7931 | 0.7188 | 0.7091 | | 0.6287 | 24.53 | 1300 | 1.2222 | 0.6981 | 0.6 | 0.75 | 0.5 | 0.8621 | 0.6757 | 0.6810 | | 0.0527 | 26.42 | 1400 | 1.2350 | 0.7358 | 0.6818 | 0.75 | 0.625 | 0.8276 | 0.7273 | 0.7263 | | 0.3622 | 28.3 | 1500 | 1.1022 | 0.7547 | 0.6667 | 0.8667 | 0.5417 | 0.9310 | 0.7105 | 0.7364 | | 0.3227 | 30.19 | 1600 | 1.1541 | 0.7170 | 0.6154 | 0.8 | 0.5 | 0.8966 | 0.6842 | 0.6983 | | 0.3849 | 32.08 | 1700 | 1.2818 | 0.7170 | 0.6154 | 0.8 | 0.5 | 0.8966 | 0.6842 | 0.6983 | | 0.4528 | 33.96 | 1800 | 1.3213 | 0.6981 | 0.5789 | 0.7857 | 0.4583 | 0.8966 | 0.6667 | 0.6774 | | 0.1824 | 35.85 | 1900 | 1.3171 | 0.7170 | 0.6512 | 0.7368 | 0.5833 | 0.8276 | 0.7059 | 0.7055 | | 0.0367 | 37.74 | 2000 | 1.4484 | 0.7170 | 0.6154 | 0.8 | 0.5 | 0.8966 | 0.6842 | 0.6983 | | 0.07 | 39.62 | 2100 | 1.3521 | 0.7547 | 0.6977 | 0.7895 | 0.625 | 0.8621 | 0.7353 | 0.7435 | | 0.0696 | 41.51 | 2200 | 1.2636 | 0.7358 | 0.65 | 0.8125 | 0.5417 | 0.8966 | 0.7027 | 0.7191 | | 0.1554 | 43.4 | 2300 | 1.2225 | 0.7358 | 0.6667 | 0.7778 | 0.5833 | 0.8621 | 0.7143 | 0.7227 | | 0.2346 | 45.28 | 2400 | 1.2627 | 0.7547 | 0.6829 | 0.8235 | 0.5833 | 0.8966 | 0.7222 | 0.7399 | | 0.097 | 47.17 | 2500 | 1.4892 | 0.7170 | 0.6667 | 0.7143 | 0.625 | 0.7931 | 0.7188 | 0.7091 | | 0.2494 | 49.06 | 2600 | 1.5282 | 0.7170 | 0.6512 | 0.7368 | 0.5833 | 0.8276 | 0.7059 | 0.7055 | | 0.0734 | 50.94 | 2700 | 1.3989 | 0.7170 | 0.6341 | 0.7647 | 0.5417 | 0.8621 | 0.6944 | 0.7019 | | 0.1077 | 52.83 | 2800 | 1.5155 | 0.6792 | 0.5641 | 0.7333 | 0.4583 | 0.8621 | 0.6579 | 0.6602 | | 0.2456 | 54.72 | 2900 | 1.4400 | 0.7170 | 0.6512 | 0.7368 | 0.5833 | 0.8276 | 0.7059 | 0.7055 | | 0.0823 | 56.6 | 3000 | 1.4511 | 0.7358 | 0.65 | 0.8125 | 0.5417 | 0.8966 | 0.7027 | 0.7191 | | 0.0471 | 58.49 | 3100 | 1.5114 | 0.7547 | 0.6829 | 0.8235 | 0.5833 | 0.8966 | 0.7222 | 0.7399 | | 0.0144 | 60.38 | 3200 | 1.4412 | 0.7925 | 0.7317 | 0.8824 | 0.625 | 0.9310 | 0.75 | 0.7780 | | 0.1235 | 62.26 | 3300 | 1.2029 | 0.7547 | 0.6977 | 0.7895 | 0.625 | 0.8621 | 0.7353 | 0.7435 | | 0.0121 | 64.15 | 3400 | 1.4925 | 0.7358 | 0.6667 | 0.7778 | 0.5833 | 0.8621 | 0.7143 | 0.7227 | | 0.2126 | 66.04 | 3500 | 1.3614 | 0.7547 | 0.6667 | 0.8667 | 0.5417 | 0.9310 | 0.7105 | 0.7364 | | 0.0496 | 67.92 | 3600 | 1.2960 | 0.7736 | 0.7143 | 0.8333 | 0.625 | 0.8966 | 0.7429 | 0.7608 | | 0.1145 | 69.81 | 3700 | 1.3763 | 0.7547 | 0.6829 | 0.8235 | 0.5833 | 0.8966 | 0.7222 | 0.7399 | | 0.1272 | 71.7 | 3800 | 1.6328 | 0.7170 | 0.5946 | 0.8462 | 0.4583 | 0.9310 | 0.675 | 0.6947 | | 0.0007 | 73.58 | 3900 | 1.5622 | 0.7547 | 0.6977 | 0.7895 | 0.625 | 0.8621 | 0.7353 | 0.7435 | | 0.0101 | 75.47 | 4000 | 1.1811 | 0.7925 | 0.7442 | 0.8421 | 0.6667 | 0.8966 | 0.7647 | 0.7816 | | 0.0002 | 77.36 | 4100 | 1.8533 | 0.6981 | 0.5789 | 0.7857 | 0.4583 | 0.8966 | 0.6667 | 0.6774 | | 0.0423 | 79.25 | 4200 | 1.2510 | 0.7547 | 0.6977 | 0.7895 | 0.625 | 0.8621 | 0.7353 | 0.7435 | | 0.0036 | 81.13 | 4300 | 1.3443 | 0.7547 | 0.6829 | 0.8235 | 0.5833 | 0.8966 | 0.7222 | 0.7399 | | 0.0432 | 83.02 | 4400 | 1.2864 | 0.7736 | 0.7273 | 0.8 | 0.6667 | 0.8621 | 0.7576 | 0.7644 | | 0.0021 | 84.91 | 4500 | 0.8999 | 0.7925 | 0.7755 | 0.76 | 0.7917 | 0.7931 | 0.8214 | 0.7924 | | 0.0002 | 86.79 | 4600 | 1.3634 | 0.7925 | 0.7442 | 0.8421 | 0.6667 | 0.8966 | 0.7647 | 0.7816 | | 0.0044 | 88.68 | 4700 | 1.7830 | 0.7358 | 0.65 | 0.8125 | 0.5417 | 0.8966 | 0.7027 | 0.7191 | | 0.0003 | 90.57 | 4800 | 1.2640 | 0.7736 | 0.7273 | 0.8 | 0.6667 | 0.8621 | 0.7576 | 0.7644 | | 0.0253 | 92.45 | 4900 | 1.2649 | 0.7925 | 0.7442 | 0.8421 | 0.6667 | 0.8966 | 0.7647 | 0.7816 | | 0.0278 | 94.34 | 5000 | 1.7485 | 0.7170 | 0.6512 | 0.7368 | 0.5833 | 0.8276 | 0.7059 | 0.7055 | | 0.1608 | 96.23 | 5100 | 1.2641 | 0.8113 | 0.7727 | 0.85 | 0.7083 | 0.8966 | 0.7879 | 0.8024 | | 0.0017 | 98.11 | 5200 | 1.6380 | 0.7170 | 0.6667 | 0.7143 | 0.625 | 0.7931 | 0.7188 | 0.7091 | | 0.001 | 100.0 | 5300 | 1.2502 | 0.7925 | 0.7556 | 0.8095 | 0.7083 | 0.8621 | 0.7812 | 0.7852 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
pig4431/amazonPolarity_XLNET_5E
pig4431
2022-11-01T23:26:13Z
89
0
transformers
[ "transformers", "pytorch", "xlnet", "text-classification", "generated_from_trainer", "dataset:amazon_polarity", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T23:17:18Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_polarity metrics: - accuracy model-index: - name: amazonPolarity_XLNET_5E results: - task: name: Text Classification type: text-classification dataset: name: amazon_polarity type: amazon_polarity config: amazon_polarity split: train args: amazon_polarity metrics: - name: Accuracy type: accuracy value: 0.9266666666666666 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazonPolarity_XLNET_5E This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the amazon_polarity dataset. It achieves the following results on the evaluation set: - Loss: 0.4490 - Accuracy: 0.9267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6238 | 0.01 | 50 | 0.3703 | 0.86 | | 0.3149 | 0.03 | 100 | 0.3715 | 0.9 | | 0.3849 | 0.04 | 150 | 0.4125 | 0.8867 | | 0.4051 | 0.05 | 200 | 0.4958 | 0.8933 | | 0.3345 | 0.07 | 250 | 0.4258 | 0.9067 | | 0.439 | 0.08 | 300 | 0.2650 | 0.9067 | | 0.2248 | 0.09 | 350 | 0.3314 | 0.9267 | | 0.2849 | 0.11 | 400 | 0.3097 | 0.8933 | | 0.3468 | 0.12 | 450 | 0.3060 | 0.9067 | | 0.3216 | 0.13 | 500 | 0.3826 | 0.9067 | | 0.3462 | 0.15 | 550 | 0.2207 | 0.94 | | 0.3632 | 0.16 | 600 | 0.1864 | 0.94 | | 0.2483 | 0.17 | 650 | 0.3069 | 0.9267 | | 0.3709 | 0.19 | 700 | 0.2859 | 0.9333 | | 0.2953 | 0.2 | 750 | 0.3010 | 0.9333 | | 0.3222 | 0.21 | 800 | 0.2668 | 0.9133 | | 0.3142 | 0.23 | 850 | 0.3545 | 0.8667 | | 0.2637 | 0.24 | 900 | 0.1922 | 0.9467 | | 0.3929 | 0.25 | 950 | 0.2712 | 0.92 | | 0.2918 | 0.27 | 1000 | 0.2516 | 0.9333 | | 0.2269 | 0.28 | 1050 | 0.4227 | 0.8933 | | 0.239 | 0.29 | 1100 | 0.3639 | 0.9133 | | 0.2439 | 0.31 | 1150 | 0.3430 | 0.9133 | | 0.2417 | 0.32 | 1200 | 0.2920 | 0.94 | | 0.3223 | 0.33 | 1250 | 0.3426 | 0.9067 | | 0.2775 | 0.35 | 1300 | 0.3752 | 0.8867 | | 0.2733 | 0.36 | 1350 | 0.3015 | 0.9333 | | 0.3737 | 0.37 | 1400 | 0.2875 | 0.9267 | | 0.2907 | 0.39 | 1450 | 0.4926 | 0.8933 | | 0.316 | 0.4 | 1500 | 0.2948 | 0.9333 | | 0.2472 | 0.41 | 1550 | 0.4003 | 0.8933 | | 0.2607 | 0.43 | 1600 | 0.3608 | 0.92 | | 0.2848 | 0.44 | 1650 | 0.3332 | 0.9133 | | 0.2708 | 0.45 | 1700 | 0.3424 | 0.92 | | 0.3721 | 0.47 | 1750 | 0.2384 | 0.9267 | | 0.2925 | 0.48 | 1800 | 0.4472 | 0.88 | | 0.3619 | 0.49 | 1850 | 0.3824 | 0.9 | | 0.1994 | 0.51 | 1900 | 0.4160 | 0.9133 | | 0.3586 | 0.52 | 1950 | 0.3198 | 0.8867 | | 0.2455 | 0.53 | 2000 | 0.3119 | 0.92 | | 0.2683 | 0.55 | 2050 | 0.4262 | 0.8867 | | 0.2983 | 0.56 | 2100 | 0.3552 | 0.9067 | | 0.2973 | 0.57 | 2150 | 0.2966 | 0.8933 | | 0.2299 | 0.59 | 2200 | 0.2972 | 0.92 | | 0.295 | 0.6 | 2250 | 0.3122 | 0.9067 | | 0.2716 | 0.61 | 2300 | 0.2556 | 0.9267 | | 0.2842 | 0.63 | 2350 | 0.3317 | 0.92 | | 0.2723 | 0.64 | 2400 | 0.4409 | 0.8933 | | 0.2492 | 0.65 | 2450 | 0.3871 | 0.88 | | 0.2297 | 0.67 | 2500 | 0.3526 | 0.9133 | | 0.2125 | 0.68 | 2550 | 0.4597 | 0.9067 | | 0.3003 | 0.69 | 2600 | 0.3374 | 0.8933 | | 0.2622 | 0.71 | 2650 | 0.3492 | 0.9267 | | 0.2436 | 0.72 | 2700 | 0.3438 | 0.9267 | | 0.2599 | 0.73 | 2750 | 0.3725 | 0.9133 | | 0.2759 | 0.75 | 2800 | 0.3260 | 0.9333 | | 0.1841 | 0.76 | 2850 | 0.4218 | 0.9067 | | 0.252 | 0.77 | 2900 | 0.2730 | 0.92 | | 0.248 | 0.79 | 2950 | 0.3628 | 0.92 | | 0.2356 | 0.8 | 3000 | 0.4012 | 0.9067 | | 0.191 | 0.81 | 3050 | 0.3500 | 0.9267 | | 0.2351 | 0.83 | 3100 | 0.4038 | 0.9133 | | 0.2758 | 0.84 | 3150 | 0.3361 | 0.9067 | | 0.2952 | 0.85 | 3200 | 0.2301 | 0.9267 | | 0.2137 | 0.87 | 3250 | 0.3837 | 0.9133 | | 0.2386 | 0.88 | 3300 | 0.2739 | 0.94 | | 0.2786 | 0.89 | 3350 | 0.2820 | 0.9333 | | 0.2284 | 0.91 | 3400 | 0.2557 | 0.9333 | | 0.2546 | 0.92 | 3450 | 0.2744 | 0.9267 | | 0.2514 | 0.93 | 3500 | 0.2908 | 0.94 | | 0.3052 | 0.95 | 3550 | 0.2362 | 0.9333 | | 0.2366 | 0.96 | 3600 | 0.3047 | 0.9333 | | 0.2147 | 0.97 | 3650 | 0.3375 | 0.9333 | | 0.3347 | 0.99 | 3700 | 0.2669 | 0.9267 | | 0.3076 | 1.0 | 3750 | 0.2453 | 0.94 | | 0.1685 | 1.01 | 3800 | 0.4117 | 0.9133 | | 0.1954 | 1.03 | 3850 | 0.3074 | 0.9333 | | 0.2512 | 1.04 | 3900 | 0.3942 | 0.9133 | | 0.1365 | 1.05 | 3950 | 0.3211 | 0.92 | | 0.1985 | 1.07 | 4000 | 0.4188 | 0.9133 | | 0.1585 | 1.08 | 4050 | 0.4177 | 0.9133 | | 0.1798 | 1.09 | 4100 | 0.3298 | 0.9333 | | 0.1458 | 1.11 | 4150 | 0.5283 | 0.9 | | 0.1831 | 1.12 | 4200 | 0.3884 | 0.92 | | 0.1452 | 1.13 | 4250 | 0.4130 | 0.9133 | | 0.1679 | 1.15 | 4300 | 0.3678 | 0.9267 | | 0.1688 | 1.16 | 4350 | 0.3268 | 0.9333 | | 0.1175 | 1.17 | 4400 | 0.4722 | 0.92 | | 0.1661 | 1.19 | 4450 | 0.3899 | 0.9133 | | 0.1688 | 1.2 | 4500 | 0.4050 | 0.9133 | | 0.228 | 1.21 | 4550 | 0.4608 | 0.9 | | 0.1946 | 1.23 | 4600 | 0.5080 | 0.9 | | 0.1849 | 1.24 | 4650 | 0.4340 | 0.9067 | | 0.1365 | 1.25 | 4700 | 0.4592 | 0.9133 | | 0.2432 | 1.27 | 4750 | 0.3683 | 0.92 | | 0.1679 | 1.28 | 4800 | 0.4604 | 0.9 | | 0.2107 | 1.29 | 4850 | 0.3952 | 0.9 | | 0.1499 | 1.31 | 4900 | 0.4275 | 0.92 | | 0.1504 | 1.32 | 4950 | 0.3370 | 0.9333 | | 0.1013 | 1.33 | 5000 | 0.3723 | 0.92 | | 0.1303 | 1.35 | 5050 | 0.2925 | 0.9333 | | 0.1205 | 1.36 | 5100 | 0.3452 | 0.9267 | | 0.1427 | 1.37 | 5150 | 0.3080 | 0.94 | | 0.1518 | 1.39 | 5200 | 0.3190 | 0.94 | | 0.1885 | 1.4 | 5250 | 0.2726 | 0.9467 | | 0.1264 | 1.41 | 5300 | 0.3466 | 0.9333 | | 0.1939 | 1.43 | 5350 | 0.3957 | 0.9133 | | 0.1939 | 1.44 | 5400 | 0.4007 | 0.9 | | 0.1239 | 1.45 | 5450 | 0.2924 | 0.9333 | | 0.1588 | 1.47 | 5500 | 0.2687 | 0.9333 | | 0.1516 | 1.48 | 5550 | 0.3668 | 0.92 | | 0.1623 | 1.49 | 5600 | 0.3141 | 0.94 | | 0.2632 | 1.51 | 5650 | 0.2714 | 0.9333 | | 0.1674 | 1.52 | 5700 | 0.3188 | 0.94 | | 0.1854 | 1.53 | 5750 | 0.2818 | 0.9267 | | 0.1282 | 1.55 | 5800 | 0.2918 | 0.9333 | | 0.228 | 1.56 | 5850 | 0.2802 | 0.9133 | | 0.2349 | 1.57 | 5900 | 0.1803 | 0.9467 | | 0.1608 | 1.59 | 5950 | 0.3112 | 0.92 | | 0.1493 | 1.6 | 6000 | 0.3018 | 0.9267 | | 0.2182 | 1.61 | 6050 | 0.3419 | 0.9333 | | 0.2408 | 1.63 | 6100 | 0.2887 | 0.9267 | | 0.1872 | 1.64 | 6150 | 0.2408 | 0.9267 | | 0.1246 | 1.65 | 6200 | 0.3752 | 0.9 | | 0.2098 | 1.67 | 6250 | 0.2622 | 0.9333 | | 0.1916 | 1.68 | 6300 | 0.2245 | 0.9467 | | 0.2069 | 1.69 | 6350 | 0.2151 | 0.9467 | | 0.1446 | 1.71 | 6400 | 0.2186 | 0.9533 | | 0.1528 | 1.72 | 6450 | 0.1863 | 0.9533 | | 0.1352 | 1.73 | 6500 | 0.2660 | 0.9467 | | 0.2398 | 1.75 | 6550 | 0.1912 | 0.9533 | | 0.1485 | 1.76 | 6600 | 0.2492 | 0.9467 | | 0.2006 | 1.77 | 6650 | 0.2495 | 0.9267 | | 0.2036 | 1.79 | 6700 | 0.3885 | 0.9067 | | 0.1725 | 1.8 | 6750 | 0.2359 | 0.9533 | | 0.1864 | 1.81 | 6800 | 0.2271 | 0.9533 | | 0.1465 | 1.83 | 6850 | 0.2669 | 0.9333 | | 0.197 | 1.84 | 6900 | 0.2290 | 0.96 | | 0.1382 | 1.85 | 6950 | 0.2322 | 0.9467 | | 0.1206 | 1.87 | 7000 | 0.3117 | 0.9333 | | 0.157 | 1.88 | 7050 | 0.2163 | 0.9533 | | 0.1686 | 1.89 | 7100 | 0.2239 | 0.9533 | | 0.1953 | 1.91 | 7150 | 0.3064 | 0.9333 | | 0.1638 | 1.92 | 7200 | 0.2821 | 0.9533 | | 0.1605 | 1.93 | 7250 | 0.2413 | 0.9467 | | 0.1736 | 1.95 | 7300 | 0.2430 | 0.94 | | 0.2372 | 1.96 | 7350 | 0.2306 | 0.94 | | 0.1549 | 1.97 | 7400 | 0.2730 | 0.94 | | 0.1824 | 1.99 | 7450 | 0.3443 | 0.94 | | 0.2263 | 2.0 | 7500 | 0.2695 | 0.9267 | | 0.088 | 2.01 | 7550 | 0.2305 | 0.96 | | 0.0376 | 2.03 | 7600 | 0.3380 | 0.94 | | 0.072 | 2.04 | 7650 | 0.3349 | 0.9467 | | 0.0491 | 2.05 | 7700 | 0.3397 | 0.94 | | 0.0509 | 2.07 | 7750 | 0.3496 | 0.9467 | | 0.1033 | 2.08 | 7800 | 0.3364 | 0.94 | | 0.0549 | 2.09 | 7850 | 0.3520 | 0.94 | | 0.0627 | 2.11 | 7900 | 0.4510 | 0.9267 | | 0.0283 | 2.12 | 7950 | 0.3733 | 0.94 | | 0.1215 | 2.13 | 8000 | 0.3892 | 0.9267 | | 0.0856 | 2.15 | 8050 | 0.3114 | 0.9533 | | 0.0945 | 2.16 | 8100 | 0.3626 | 0.9333 | | 0.0901 | 2.17 | 8150 | 0.3116 | 0.94 | | 0.0688 | 2.19 | 8200 | 0.3515 | 0.9267 | | 0.1286 | 2.2 | 8250 | 0.3255 | 0.9333 | | 0.1043 | 2.21 | 8300 | 0.4395 | 0.9133 | | 0.1199 | 2.23 | 8350 | 0.3307 | 0.94 | | 0.0608 | 2.24 | 8400 | 0.2992 | 0.9533 | | 0.0827 | 2.25 | 8450 | 0.3500 | 0.94 | | 0.047 | 2.27 | 8500 | 0.3982 | 0.94 | | 0.1154 | 2.28 | 8550 | 0.3851 | 0.94 | | 0.1158 | 2.29 | 8600 | 0.3820 | 0.9133 | | 0.1053 | 2.31 | 8650 | 0.4414 | 0.92 | | 0.1336 | 2.32 | 8700 | 0.3680 | 0.92 | | 0.0853 | 2.33 | 8750 | 0.3732 | 0.9333 | | 0.0496 | 2.35 | 8800 | 0.3450 | 0.94 | | 0.0552 | 2.36 | 8850 | 0.4310 | 0.9267 | | 0.1054 | 2.37 | 8900 | 0.4174 | 0.92 | | 0.0951 | 2.39 | 8950 | 0.3815 | 0.9333 | | 0.1235 | 2.4 | 9000 | 0.4119 | 0.9267 | | 0.1094 | 2.41 | 9050 | 0.4282 | 0.9133 | | 0.0897 | 2.43 | 9100 | 0.4766 | 0.9133 | | 0.0925 | 2.44 | 9150 | 0.3303 | 0.94 | | 0.1487 | 2.45 | 9200 | 0.2948 | 0.94 | | 0.0963 | 2.47 | 9250 | 0.2911 | 0.94 | | 0.0836 | 2.48 | 9300 | 0.3379 | 0.94 | | 0.1594 | 2.49 | 9350 | 0.3841 | 0.9267 | | 0.0846 | 2.51 | 9400 | 0.4128 | 0.9267 | | 0.0984 | 2.52 | 9450 | 0.4131 | 0.9333 | | 0.1042 | 2.53 | 9500 | 0.4048 | 0.9267 | | 0.0633 | 2.55 | 9550 | 0.3776 | 0.94 | | 0.1266 | 2.56 | 9600 | 0.3247 | 0.9333 | | 0.1084 | 2.57 | 9650 | 0.3174 | 0.9467 | | 0.0714 | 2.59 | 9700 | 0.3597 | 0.94 | | 0.0826 | 2.6 | 9750 | 0.3261 | 0.9467 | | 0.1527 | 2.61 | 9800 | 0.2531 | 0.9533 | | 0.0506 | 2.63 | 9850 | 0.2994 | 0.9533 | | 0.1043 | 2.64 | 9900 | 0.3345 | 0.9467 | | 0.0229 | 2.65 | 9950 | 0.4318 | 0.9333 | | 0.1247 | 2.67 | 10000 | 0.2951 | 0.9533 | | 0.1285 | 2.68 | 10050 | 0.3036 | 0.9533 | | 0.081 | 2.69 | 10100 | 0.3541 | 0.94 | | 0.0829 | 2.71 | 10150 | 0.3757 | 0.9467 | | 0.0702 | 2.72 | 10200 | 0.3307 | 0.9533 | | 0.07 | 2.73 | 10250 | 0.3638 | 0.94 | | 0.1563 | 2.75 | 10300 | 0.3283 | 0.94 | | 0.1223 | 2.76 | 10350 | 0.3441 | 0.92 | | 0.0954 | 2.77 | 10400 | 0.3049 | 0.94 | | 0.0438 | 2.79 | 10450 | 0.3675 | 0.9467 | | 0.0796 | 2.8 | 10500 | 0.3364 | 0.94 | | 0.0803 | 2.81 | 10550 | 0.2970 | 0.94 | | 0.0324 | 2.83 | 10600 | 0.3941 | 0.9267 | | 0.083 | 2.84 | 10650 | 0.3439 | 0.94 | | 0.1263 | 2.85 | 10700 | 0.3759 | 0.9267 | | 0.1044 | 2.87 | 10750 | 1.0700 | 0.58 | | 0.1182 | 2.88 | 10800 | 0.4409 | 0.9333 | | 0.126 | 2.89 | 10850 | 0.6467 | 0.5933 | | 0.094 | 2.91 | 10900 | 0.3741 | 0.9333 | | 0.1405 | 2.92 | 10950 | 0.3458 | 0.9267 | | 0.1024 | 2.93 | 11000 | 0.2946 | 0.9333 | | 0.0812 | 2.95 | 11050 | 0.2850 | 0.9333 | | 0.1132 | 2.96 | 11100 | 0.3093 | 0.9267 | | 0.0775 | 2.97 | 11150 | 0.3938 | 0.9067 | | 0.1179 | 2.99 | 11200 | 0.3528 | 0.9267 | | 0.1413 | 3.0 | 11250 | 0.2984 | 0.9333 | | 0.0528 | 3.01 | 11300 | 0.3387 | 0.9333 | | 0.0214 | 3.03 | 11350 | 0.4108 | 0.92 | | 0.0408 | 3.04 | 11400 | 0.4174 | 0.9267 | | 0.0808 | 3.05 | 11450 | 0.4283 | 0.9267 | | 0.0535 | 3.07 | 11500 | 0.3719 | 0.9333 | | 0.0344 | 3.08 | 11550 | 0.4382 | 0.9333 | | 0.0364 | 3.09 | 11600 | 0.4195 | 0.9333 | | 0.0524 | 3.11 | 11650 | 0.4607 | 0.92 | | 0.0682 | 3.12 | 11700 | 0.4503 | 0.92 | | 0.0554 | 3.13 | 11750 | 0.4563 | 0.92 | | 0.0401 | 3.15 | 11800 | 0.4668 | 0.9133 | | 0.0782 | 3.16 | 11850 | 0.4468 | 0.9133 | | 0.0605 | 3.17 | 11900 | 0.4239 | 0.92 | | 0.0599 | 3.19 | 11950 | 0.4019 | 0.92 | | 0.0364 | 3.2 | 12000 | 0.3988 | 0.9267 | | 0.0357 | 3.21 | 12050 | 0.4168 | 0.9267 | | 0.072 | 3.23 | 12100 | 0.3889 | 0.9333 | | 0.0931 | 3.24 | 12150 | 0.3368 | 0.9333 | | 0.0724 | 3.25 | 12200 | 0.3209 | 0.9333 | | 0.0653 | 3.27 | 12250 | 0.3615 | 0.9333 | | 0.0173 | 3.28 | 12300 | 0.3946 | 0.9333 | | 0.0537 | 3.29 | 12350 | 0.3876 | 0.9333 | | 0.0373 | 3.31 | 12400 | 0.4079 | 0.9267 | | 0.0322 | 3.32 | 12450 | 0.3553 | 0.94 | | 0.0585 | 3.33 | 12500 | 0.4276 | 0.92 | | 0.0315 | 3.35 | 12550 | 0.4092 | 0.9267 | | 0.0317 | 3.36 | 12600 | 0.4107 | 0.9267 | | 0.082 | 3.37 | 12650 | 0.4170 | 0.9267 | | 0.1101 | 3.39 | 12700 | 0.3801 | 0.9333 | | 0.0392 | 3.4 | 12750 | 0.3802 | 0.9333 | | 0.0382 | 3.41 | 12800 | 0.4194 | 0.9267 | | 0.048 | 3.43 | 12850 | 0.3794 | 0.9333 | | 0.0896 | 3.44 | 12900 | 0.3961 | 0.9267 | | 0.0966 | 3.45 | 12950 | 0.3982 | 0.92 | | 0.0165 | 3.47 | 13000 | 0.3819 | 0.92 | | 0.0701 | 3.48 | 13050 | 0.3440 | 0.94 | | 0.0104 | 3.49 | 13100 | 0.4132 | 0.9267 | | 0.0991 | 3.51 | 13150 | 0.3477 | 0.9333 | | 0.0554 | 3.52 | 13200 | 0.3255 | 0.94 | | 0.0476 | 3.53 | 13250 | 0.4343 | 0.92 | | 0.0213 | 3.55 | 13300 | 0.4601 | 0.92 | | 0.0465 | 3.56 | 13350 | 0.4141 | 0.9267 | | 0.1246 | 3.57 | 13400 | 0.3473 | 0.94 | | 0.1112 | 3.59 | 13450 | 0.3679 | 0.92 | | 0.0323 | 3.6 | 13500 | 0.3508 | 0.9267 | | 0.0423 | 3.61 | 13550 | 0.3475 | 0.94 | | 0.0498 | 3.63 | 13600 | 0.4095 | 0.92 | | 0.0531 | 3.64 | 13650 | 0.3544 | 0.9333 | | 0.0365 | 3.65 | 13700 | 0.4403 | 0.9133 | | 0.058 | 3.67 | 13750 | 0.4284 | 0.9133 | | 0.0191 | 3.68 | 13800 | 0.4466 | 0.92 | | 0.0838 | 3.69 | 13850 | 0.5128 | 0.9067 | | 0.1561 | 3.71 | 13900 | 0.3588 | 0.9267 | | 0.0464 | 3.72 | 13950 | 0.3867 | 0.92 | | 0.037 | 3.73 | 14000 | 0.3961 | 0.92 | | 0.0288 | 3.75 | 14050 | 0.4274 | 0.92 | | 0.0928 | 3.76 | 14100 | 0.3524 | 0.94 | | 0.0696 | 3.77 | 14150 | 0.3555 | 0.9333 | | 0.0318 | 3.79 | 14200 | 0.3457 | 0.9467 | | 0.0417 | 3.8 | 14250 | 0.3412 | 0.94 | | 0.0283 | 3.81 | 14300 | 0.3845 | 0.9333 | | 0.058 | 3.83 | 14350 | 0.3765 | 0.9333 | | 0.0589 | 3.84 | 14400 | 0.4085 | 0.9267 | | 0.0432 | 3.85 | 14450 | 0.4103 | 0.9267 | | 0.0365 | 3.87 | 14500 | 0.4000 | 0.9267 | | 0.0858 | 3.88 | 14550 | 0.3905 | 0.9267 | | 0.0494 | 3.89 | 14600 | 0.3739 | 0.9267 | | 0.0503 | 3.91 | 14650 | 0.3203 | 0.94 | | 0.0349 | 3.92 | 14700 | 0.3268 | 0.9467 | | 0.0328 | 3.93 | 14750 | 0.3259 | 0.9467 | | 0.0347 | 3.95 | 14800 | 0.3588 | 0.94 | | 0.0233 | 3.96 | 14850 | 0.3456 | 0.9467 | | 0.0602 | 3.97 | 14900 | 0.3819 | 0.94 | | 0.0766 | 3.99 | 14950 | 0.3813 | 0.9333 | | 0.0562 | 4.0 | 15000 | 0.3669 | 0.9333 | | 0.0163 | 4.01 | 15050 | 0.4176 | 0.92 | | 0.007 | 4.03 | 15100 | 0.3694 | 0.9333 | | 0.0005 | 4.04 | 15150 | 0.3915 | 0.9333 | | 0.021 | 4.05 | 15200 | 0.4334 | 0.9333 | | 0.0823 | 4.07 | 15250 | 0.4155 | 0.9333 | | 0.0509 | 4.08 | 15300 | 0.4056 | 0.9333 | | 0.0381 | 4.09 | 15350 | 0.3729 | 0.94 | | 0.045 | 4.11 | 15400 | 0.3940 | 0.9333 | | 0.0379 | 4.12 | 15450 | 0.4276 | 0.9267 | | 0.0661 | 4.13 | 15500 | 0.3797 | 0.94 | | 0.0522 | 4.15 | 15550 | 0.4029 | 0.9333 | | 0.0189 | 4.16 | 15600 | 0.4424 | 0.9267 | | 0.0191 | 4.17 | 15650 | 0.4711 | 0.92 | | 0.031 | 4.19 | 15700 | 0.4344 | 0.9333 | | 0.0837 | 4.2 | 15750 | 0.3703 | 0.94 | | 0.0397 | 4.21 | 15800 | 0.3976 | 0.9333 | | 0.034 | 4.23 | 15850 | 0.4021 | 0.9333 | | 0.0199 | 4.24 | 15900 | 0.4015 | 0.9333 | | 0.0315 | 4.25 | 15950 | 0.3652 | 0.94 | | 0.076 | 4.27 | 16000 | 0.3421 | 0.94 | | 0.0478 | 4.28 | 16050 | 0.3122 | 0.9533 | | 0.0203 | 4.29 | 16100 | 0.3436 | 0.9467 | | 0.0706 | 4.31 | 16150 | 0.3544 | 0.94 | | 0.0086 | 4.32 | 16200 | 0.3730 | 0.94 | | 0.05 | 4.33 | 16250 | 0.3761 | 0.94 | | 0.048 | 4.35 | 16300 | 0.3583 | 0.94 | | 0.0715 | 4.36 | 16350 | 0.3459 | 0.94 | | 0.0316 | 4.37 | 16400 | 0.3355 | 0.94 | | 0.0356 | 4.39 | 16450 | 0.3278 | 0.9467 | | 0.0176 | 4.4 | 16500 | 0.3177 | 0.9467 | | 0.0817 | 4.41 | 16550 | 0.3705 | 0.9333 | | 0.0414 | 4.43 | 16600 | 0.3919 | 0.9333 | | 0.0198 | 4.44 | 16650 | 0.3435 | 0.9467 | | 0.0203 | 4.45 | 16700 | 0.3708 | 0.94 | | 0.0391 | 4.47 | 16750 | 0.3615 | 0.94 | | 0.0132 | 4.48 | 16800 | 0.3827 | 0.94 | | 0.0385 | 4.49 | 16850 | 0.3837 | 0.94 | | 0.0366 | 4.51 | 16900 | 0.3633 | 0.94 | | 0.0779 | 4.52 | 16950 | 0.3403 | 0.9467 | | 0.0168 | 4.53 | 17000 | 0.4592 | 0.92 | | 0.0517 | 4.55 | 17050 | 0.4063 | 0.9333 | | 0.0138 | 4.56 | 17100 | 0.4335 | 0.9267 | | 0.0123 | 4.57 | 17150 | 0.3777 | 0.9333 | | 0.0324 | 4.59 | 17200 | 0.4657 | 0.92 | | 0.0202 | 4.6 | 17250 | 0.4791 | 0.92 | | 0.001 | 4.61 | 17300 | 0.4761 | 0.92 | | 0.0364 | 4.63 | 17350 | 0.4663 | 0.92 | | 0.0154 | 4.64 | 17400 | 0.4611 | 0.92 | | 0.0184 | 4.65 | 17450 | 0.4616 | 0.92 | | 0.0004 | 4.67 | 17500 | 0.4650 | 0.92 | | 0.0192 | 4.68 | 17550 | 0.4649 | 0.92 | | 0.0185 | 4.69 | 17600 | 0.4654 | 0.92 | | 0.0196 | 4.71 | 17650 | 0.4643 | 0.92 | | 0.0386 | 4.72 | 17700 | 0.4660 | 0.92 | | 0.0236 | 4.73 | 17750 | 0.4499 | 0.9267 | | 0.0383 | 4.75 | 17800 | 0.4479 | 0.9267 | | 0.0398 | 4.76 | 17850 | 0.4483 | 0.9267 | | 0.0004 | 4.77 | 17900 | 0.4541 | 0.9267 | | 0.023 | 4.79 | 17950 | 0.4387 | 0.9267 | | 0.0361 | 4.8 | 18000 | 0.4409 | 0.9267 | | 0.0409 | 4.81 | 18050 | 0.4384 | 0.9267 | | 0.0004 | 4.83 | 18100 | 0.4376 | 0.9267 | | 0.0171 | 4.84 | 18150 | 0.4421 | 0.9267 | | 0.0589 | 4.85 | 18200 | 0.4373 | 0.9267 | | 0.0004 | 4.87 | 18250 | 0.4492 | 0.9267 | | 0.0142 | 4.88 | 18300 | 0.4585 | 0.9267 | | 0.0561 | 4.89 | 18350 | 0.4681 | 0.9267 | | 0.0204 | 4.91 | 18400 | 0.4608 | 0.9267 | | 0.0248 | 4.92 | 18450 | 0.4641 | 0.9267 | | 0.0404 | 4.93 | 18500 | 0.4567 | 0.9267 | | 0.0608 | 4.95 | 18550 | 0.4518 | 0.9267 | | 0.0412 | 4.96 | 18600 | 0.4510 | 0.9267 | | 0.0183 | 4.97 | 18650 | 0.4522 | 0.9267 | | 0.0567 | 4.99 | 18700 | 0.4492 | 0.9267 | | 0.0173 | 5.0 | 18750 | 0.4490 | 0.9267 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
yfzhoucs/TinyLanguageRobots
yfzhoucs
2022-11-01T22:57:47Z
11
0
null
[ "license:mit", "region:us" ]
null
2022-11-01T22:51:50Z
--- license: mit task: robotics ---
dumitrescustefan/t5-v1_1-base-romanian
dumitrescustefan
2022-11-01T22:29:39Z
448
0
transformers
[ "transformers", "pytorch", "jax", "mt5", "text2text-generation", "ro", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text2text-generation
2022-11-01T21:55:48Z
--- language: ro inference: false license: apache-2.0 --- This is a pretrained-from-scratch **T5v1.1 base** model (**247M** parameters) on the [t5x](https://github.com/google-research/t5x) platform. Training was performed on a clean 80GB Romanian text corpus for 4M steps with these [scripts](https://github.com/dumitrescustefan/t5x_models). The model was trained with an encoder sequence length of 512 and a decoder sequence length of 256. **!! IMPORTANT !!** This model was pretrained on the span corruption MLM task, meaning this model is **not usable** in any downstream task **without finetuning** first! ### How to load a t5x model ```python from transformers import T5Tokenizer, T5Model tokenizer = T5Tokenizer.from_pretrained('dumitrescustefan/t5-v1_1-base-romanian') model = T5Model.from_pretrained('dumitrescustefan/t5-v1_1-base-romanian') input_ids = tokenizer("Acesta este un test", return_tensors="pt").input_ids # Batch size 1 decoder_input_ids = tokenizer("Acesta este", return_tensors="pt").input_ids # Batch size 1 # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model. # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg. decoder_input_ids = model._shift_right(decoder_input_ids) # forward pass outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) last_hidden_states = outputs.last_hidden_state print(last_hidden_states.shape) # this will print [1, 3, 768] ``` Remember to always sanitize your text! Replace ``ş`` and ``ţ`` cedilla-letters to comma-letters with : ```python text = text.replace("ţ", "ț").replace("ş", "ș").replace("Ţ", "Ț").replace("Ş", "Ș") ``` because the model was **not** trained on cedilla ``ş`` and ``ţ``s. If you don't, you will have decreased performance due to ``<UNK>``s and increased number of tokens per word. ### Acknowledgements We'd like to thank [TPU Research Cloud](https://sites.research.google/trc/about/) for providing the TPUv4 cores we used to train these models! ### Authors Yours truly, _[Stefan Dumitrescu](https://github.com/dumitrescustefan), [Mihai Ilie](https://github.com/iliemihai) and [Per Egil Kummervold](https://huggingface.co/north)_
dumitrescustefan/t5-v1_1-large-romanian
dumitrescustefan
2022-11-01T22:29:19Z
21
1
transformers
[ "transformers", "pytorch", "jax", "mt5", "text2text-generation", "ro", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text2text-generation
2022-11-01T22:00:14Z
--- language: ro inference: false license: apache-2.0 --- This is a pretrained-from-scratch **T5v1.1 large** model (**783M** parameters) on the [t5x](https://github.com/google-research/t5x) platform. Training was performed on a clean 80GB Romanian text corpus for 4M steps with these [scripts](https://github.com/dumitrescustefan/t5x_models). The model was trained with an encoder and decoder sequence length of 512. **!! IMPORTANT !!** This model was pretrained on the span corruption MLM task, meaning this model is **not usable** in any downstream task **without finetuning** first! ### How to load a t5x model ```python from transformers import T5Tokenizer, T5Model tokenizer = T5Tokenizer.from_pretrained('dumitrescustefan/t5-v1_1-large-romanian') model = T5Model.from_pretrained('dumitrescustefan/t5-v1_1-large-romanian') input_ids = tokenizer("Acesta este un test", return_tensors="pt").input_ids # Batch size 1 decoder_input_ids = tokenizer("Acesta este", return_tensors="pt").input_ids # Batch size 1 # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model. # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg. decoder_input_ids = model._shift_right(decoder_input_ids) # forward pass outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) last_hidden_states = outputs.last_hidden_state print(last_hidden_states.shape) # this will print [1, 3, 1024] ``` Remember to always sanitize your text! Replace ``ş`` and ``ţ`` cedilla-letters to comma-letters with : ```python text = text.replace("ţ", "ț").replace("ş", "ș").replace("Ţ", "Ț").replace("Ş", "Ș") ``` because the model was **not** trained on cedilla ``ş`` and ``ţ``s. If you don't, you will have decreased performance due to ``<UNK>``s and increased number of tokens per word. ### Acknowledgements We'd like to thank [TPU Research Cloud](https://sites.research.google/trc/about/) for providing the TPUv4 cores we used to train these models! ### Authors Yours truly, _[Stefan Dumitrescu](https://github.com/dumitrescustefan), [Mihai Ilie](https://github.com/iliemihai) and [Per Egil Kummervold](https://huggingface.co/north)_
pig4431/amazonPolarity_BERT_5E
pig4431
2022-11-01T22:23:46Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:amazon_polarity", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T22:23:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_polarity metrics: - accuracy model-index: - name: amazonPolarity_BERT_5E results: - task: name: Text Classification type: text-classification dataset: name: amazon_polarity type: amazon_polarity config: amazon_polarity split: train args: amazon_polarity metrics: - name: Accuracy type: accuracy value: 0.9066666666666666 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazonPolarity_BERT_5E This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the amazon_polarity dataset. It achieves the following results on the evaluation set: - Loss: 0.4402 - Accuracy: 0.9067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7011 | 0.03 | 50 | 0.6199 | 0.7 | | 0.6238 | 0.05 | 100 | 0.4710 | 0.8133 | | 0.4478 | 0.08 | 150 | 0.3249 | 0.8733 | | 0.3646 | 0.11 | 200 | 0.3044 | 0.86 | | 0.3244 | 0.13 | 250 | 0.2548 | 0.86 | | 0.2734 | 0.16 | 300 | 0.2666 | 0.88 | | 0.2784 | 0.19 | 350 | 0.2416 | 0.88 | | 0.2706 | 0.21 | 400 | 0.2660 | 0.88 | | 0.2368 | 0.24 | 450 | 0.2522 | 0.8867 | | 0.2449 | 0.27 | 500 | 0.3135 | 0.88 | | 0.262 | 0.29 | 550 | 0.2718 | 0.8733 | | 0.2111 | 0.32 | 600 | 0.2494 | 0.8933 | | 0.2459 | 0.35 | 650 | 0.2468 | 0.8867 | | 0.2264 | 0.37 | 700 | 0.3049 | 0.8667 | | 0.2572 | 0.4 | 750 | 0.2054 | 0.8933 | | 0.1749 | 0.43 | 800 | 0.3489 | 0.86 | | 0.2423 | 0.45 | 850 | 0.2142 | 0.8933 | | 0.1931 | 0.48 | 900 | 0.2096 | 0.9067 | | 0.2444 | 0.51 | 950 | 0.3404 | 0.8733 | | 0.2666 | 0.53 | 1000 | 0.2378 | 0.9067 | | 0.2311 | 0.56 | 1050 | 0.2416 | 0.9067 | | 0.2269 | 0.59 | 1100 | 0.3188 | 0.8733 | | 0.2143 | 0.61 | 1150 | 0.2343 | 0.9 | | 0.2181 | 0.64 | 1200 | 0.2606 | 0.8667 | | 0.2151 | 0.67 | 1250 | 0.1888 | 0.9133 | | 0.2694 | 0.69 | 1300 | 0.3982 | 0.8467 | | 0.2408 | 0.72 | 1350 | 0.1978 | 0.9067 | | 0.2043 | 0.75 | 1400 | 0.2125 | 0.9 | | 0.2081 | 0.77 | 1450 | 0.2680 | 0.8933 | | 0.2361 | 0.8 | 1500 | 0.3723 | 0.8467 | | 0.2503 | 0.83 | 1550 | 0.3427 | 0.8733 | | 0.1983 | 0.85 | 1600 | 0.2525 | 0.9067 | | 0.1947 | 0.88 | 1650 | 0.2427 | 0.9133 | | 0.2411 | 0.91 | 1700 | 0.2448 | 0.9 | | 0.2381 | 0.93 | 1750 | 0.3354 | 0.88 | | 0.1852 | 0.96 | 1800 | 0.3078 | 0.8667 | | 0.2427 | 0.99 | 1850 | 0.2408 | 0.9 | | 0.1582 | 1.01 | 1900 | 0.2698 | 0.9133 | | 0.159 | 1.04 | 1950 | 0.3383 | 0.9 | | 0.1833 | 1.07 | 2000 | 0.2849 | 0.9 | | 0.1257 | 1.09 | 2050 | 0.5376 | 0.8667 | | 0.1513 | 1.12 | 2100 | 0.4469 | 0.88 | | 0.1869 | 1.15 | 2150 | 0.3415 | 0.8933 | | 0.1342 | 1.17 | 2200 | 0.3021 | 0.8867 | | 0.1404 | 1.2 | 2250 | 0.3619 | 0.88 | | 0.1576 | 1.23 | 2300 | 0.2815 | 0.9 | | 0.1419 | 1.25 | 2350 | 0.4351 | 0.8867 | | 0.1491 | 1.28 | 2400 | 0.3025 | 0.9133 | | 0.1914 | 1.31 | 2450 | 0.3011 | 0.9067 | | 0.1265 | 1.33 | 2500 | 0.3953 | 0.88 | | 0.128 | 1.36 | 2550 | 0.2557 | 0.9333 | | 0.1631 | 1.39 | 2600 | 0.2226 | 0.9333 | | 0.1019 | 1.41 | 2650 | 0.3638 | 0.9133 | | 0.1551 | 1.44 | 2700 | 0.3591 | 0.9 | | 0.1853 | 1.47 | 2750 | 0.5005 | 0.8733 | | 0.1578 | 1.49 | 2800 | 0.2662 | 0.92 | | 0.1522 | 1.52 | 2850 | 0.2545 | 0.9267 | | 0.1188 | 1.55 | 2900 | 0.3874 | 0.88 | | 0.1638 | 1.57 | 2950 | 0.3003 | 0.92 | | 0.1583 | 1.6 | 3000 | 0.2702 | 0.92 | | 0.1844 | 1.63 | 3050 | 0.2183 | 0.9333 | | 0.1365 | 1.65 | 3100 | 0.3322 | 0.8933 | | 0.1683 | 1.68 | 3150 | 0.2069 | 0.9467 | | 0.168 | 1.71 | 3200 | 0.4046 | 0.8667 | | 0.1907 | 1.73 | 3250 | 0.3411 | 0.8933 | | 0.1695 | 1.76 | 3300 | 0.1992 | 0.9333 | | 0.1851 | 1.79 | 3350 | 0.2370 | 0.92 | | 0.1302 | 1.81 | 3400 | 0.3058 | 0.9133 | | 0.1353 | 1.84 | 3450 | 0.3134 | 0.9067 | | 0.1428 | 1.87 | 3500 | 0.3767 | 0.8667 | | 0.1642 | 1.89 | 3550 | 0.3239 | 0.8867 | | 0.1319 | 1.92 | 3600 | 0.4725 | 0.86 | | 0.1714 | 1.95 | 3650 | 0.3115 | 0.8867 | | 0.1265 | 1.97 | 3700 | 0.3621 | 0.8867 | | 0.1222 | 2.0 | 3750 | 0.3665 | 0.8933 | | 0.0821 | 2.03 | 3800 | 0.2482 | 0.9133 | | 0.1136 | 2.05 | 3850 | 0.3244 | 0.9 | | 0.0915 | 2.08 | 3900 | 0.4745 | 0.8733 | | 0.0967 | 2.11 | 3950 | 0.2346 | 0.94 | | 0.0962 | 2.13 | 4000 | 0.3139 | 0.92 | | 0.1001 | 2.16 | 4050 | 0.2944 | 0.9267 | | 0.086 | 2.19 | 4100 | 0.5542 | 0.86 | | 0.0588 | 2.21 | 4150 | 0.4377 | 0.9 | | 0.1056 | 2.24 | 4200 | 0.3540 | 0.9133 | | 0.0899 | 2.27 | 4250 | 0.5661 | 0.8733 | | 0.0737 | 2.29 | 4300 | 0.5683 | 0.8733 | | 0.1152 | 2.32 | 4350 | 0.2997 | 0.9333 | | 0.0852 | 2.35 | 4400 | 0.5055 | 0.8933 | | 0.1114 | 2.37 | 4450 | 0.3099 | 0.92 | | 0.0821 | 2.4 | 4500 | 0.3026 | 0.9267 | | 0.0698 | 2.43 | 4550 | 0.3250 | 0.92 | | 0.1123 | 2.45 | 4600 | 0.3674 | 0.9 | | 0.1196 | 2.48 | 4650 | 0.4539 | 0.8733 | | 0.0617 | 2.51 | 4700 | 0.3446 | 0.92 | | 0.0939 | 2.53 | 4750 | 0.3302 | 0.92 | | 0.1114 | 2.56 | 4800 | 0.5149 | 0.8733 | | 0.1154 | 2.59 | 4850 | 0.4935 | 0.8867 | | 0.1495 | 2.61 | 4900 | 0.4706 | 0.8933 | | 0.0858 | 2.64 | 4950 | 0.4048 | 0.9 | | 0.0767 | 2.67 | 5000 | 0.3849 | 0.9133 | | 0.0569 | 2.69 | 5050 | 0.5491 | 0.8867 | | 0.1058 | 2.72 | 5100 | 0.5872 | 0.8733 | | 0.0899 | 2.75 | 5150 | 0.3159 | 0.92 | | 0.0757 | 2.77 | 5200 | 0.5861 | 0.8733 | | 0.1305 | 2.8 | 5250 | 0.3633 | 0.9133 | | 0.1027 | 2.83 | 5300 | 0.3972 | 0.9133 | | 0.1259 | 2.85 | 5350 | 0.4197 | 0.8933 | | 0.1255 | 2.88 | 5400 | 0.4583 | 0.8867 | | 0.0981 | 2.91 | 5450 | 0.4657 | 0.8933 | | 0.0736 | 2.93 | 5500 | 0.4036 | 0.9133 | | 0.116 | 2.96 | 5550 | 0.3026 | 0.9067 | | 0.0692 | 2.99 | 5600 | 0.3409 | 0.9133 | | 0.0721 | 3.01 | 5650 | 0.5598 | 0.8733 | | 0.052 | 3.04 | 5700 | 0.4130 | 0.9133 | | 0.0661 | 3.07 | 5750 | 0.2589 | 0.9333 | | 0.0667 | 3.09 | 5800 | 0.4484 | 0.9067 | | 0.0599 | 3.12 | 5850 | 0.4883 | 0.9 | | 0.0406 | 3.15 | 5900 | 0.4516 | 0.9067 | | 0.0837 | 3.17 | 5950 | 0.3394 | 0.9267 | | 0.0636 | 3.2 | 6000 | 0.4649 | 0.8867 | | 0.0861 | 3.23 | 6050 | 0.5046 | 0.8933 | | 0.0667 | 3.25 | 6100 | 0.3252 | 0.92 | | 0.0401 | 3.28 | 6150 | 0.2771 | 0.94 | | 0.0998 | 3.31 | 6200 | 0.4509 | 0.9 | | 0.0209 | 3.33 | 6250 | 0.4666 | 0.8933 | | 0.0747 | 3.36 | 6300 | 0.5430 | 0.8867 | | 0.0678 | 3.39 | 6350 | 0.4050 | 0.9067 | | 0.0685 | 3.41 | 6400 | 0.3738 | 0.92 | | 0.0654 | 3.44 | 6450 | 0.4486 | 0.9 | | 0.0496 | 3.47 | 6500 | 0.4386 | 0.9067 | | 0.0379 | 3.49 | 6550 | 0.4547 | 0.9067 | | 0.0897 | 3.52 | 6600 | 0.4197 | 0.9133 | | 0.0729 | 3.55 | 6650 | 0.2855 | 0.9333 | | 0.0515 | 3.57 | 6700 | 0.4459 | 0.9067 | | 0.0588 | 3.6 | 6750 | 0.3627 | 0.92 | | 0.0724 | 3.63 | 6800 | 0.4060 | 0.9267 | | 0.0607 | 3.65 | 6850 | 0.4505 | 0.9133 | | 0.0252 | 3.68 | 6900 | 0.5465 | 0.8933 | | 0.0594 | 3.71 | 6950 | 0.4786 | 0.9067 | | 0.0743 | 3.73 | 7000 | 0.4163 | 0.9267 | | 0.0506 | 3.76 | 7050 | 0.3801 | 0.92 | | 0.0548 | 3.79 | 7100 | 0.3557 | 0.9267 | | 0.0932 | 3.81 | 7150 | 0.4278 | 0.9133 | | 0.0643 | 3.84 | 7200 | 0.4673 | 0.9 | | 0.0631 | 3.87 | 7250 | 0.3611 | 0.92 | | 0.0793 | 3.89 | 7300 | 0.3956 | 0.9067 | | 0.0729 | 3.92 | 7350 | 0.6630 | 0.8733 | | 0.0552 | 3.95 | 7400 | 0.4259 | 0.8867 | | 0.0432 | 3.97 | 7450 | 0.3615 | 0.92 | | 0.0697 | 4.0 | 7500 | 0.5116 | 0.88 | | 0.0463 | 4.03 | 7550 | 0.3334 | 0.94 | | 0.046 | 4.05 | 7600 | 0.4704 | 0.8867 | | 0.0371 | 4.08 | 7650 | 0.3323 | 0.94 | | 0.0809 | 4.11 | 7700 | 0.3503 | 0.92 | | 0.0285 | 4.13 | 7750 | 0.3360 | 0.92 | | 0.0469 | 4.16 | 7800 | 0.3365 | 0.9333 | | 0.041 | 4.19 | 7850 | 0.5726 | 0.88 | | 0.0447 | 4.21 | 7900 | 0.4564 | 0.9067 | | 0.0144 | 4.24 | 7950 | 0.5521 | 0.8867 | | 0.0511 | 4.27 | 8000 | 0.5661 | 0.88 | | 0.0481 | 4.29 | 8050 | 0.3445 | 0.94 | | 0.036 | 4.32 | 8100 | 0.3247 | 0.94 | | 0.0662 | 4.35 | 8150 | 0.3647 | 0.9333 | | 0.051 | 4.37 | 8200 | 0.5024 | 0.9 | | 0.0546 | 4.4 | 8250 | 0.4737 | 0.8933 | | 0.0526 | 4.43 | 8300 | 0.4067 | 0.92 | | 0.0291 | 4.45 | 8350 | 0.3862 | 0.9267 | | 0.0292 | 4.48 | 8400 | 0.5101 | 0.9 | | 0.0426 | 4.51 | 8450 | 0.4207 | 0.92 | | 0.0771 | 4.53 | 8500 | 0.5525 | 0.8867 | | 0.0668 | 4.56 | 8550 | 0.4487 | 0.9067 | | 0.0585 | 4.59 | 8600 | 0.3574 | 0.9267 | | 0.0375 | 4.61 | 8650 | 0.3980 | 0.92 | | 0.0508 | 4.64 | 8700 | 0.4064 | 0.92 | | 0.0334 | 4.67 | 8750 | 0.3031 | 0.94 | | 0.0257 | 4.69 | 8800 | 0.3340 | 0.9333 | | 0.0165 | 4.72 | 8850 | 0.4011 | 0.92 | | 0.0553 | 4.75 | 8900 | 0.4243 | 0.9133 | | 0.0597 | 4.77 | 8950 | 0.3685 | 0.9267 | | 0.0407 | 4.8 | 9000 | 0.4262 | 0.9133 | | 0.032 | 4.83 | 9050 | 0.4080 | 0.9133 | | 0.0573 | 4.85 | 9100 | 0.4416 | 0.9133 | | 0.0308 | 4.88 | 9150 | 0.4397 | 0.9133 | | 0.0494 | 4.91 | 9200 | 0.4476 | 0.9067 | | 0.015 | 4.93 | 9250 | 0.4419 | 0.9067 | | 0.0443 | 4.96 | 9300 | 0.4347 | 0.9133 | | 0.0479 | 4.99 | 9350 | 0.4402 | 0.9067 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
rikkar/dsd_futurism
rikkar
2022-11-01T21:59:19Z
0
0
null
[ "license:cc0-1.0", "region:us" ]
null
2022-11-01T13:51:42Z
--- license: cc0-1.0 --- Stable Diffusion model trained for 5k steps on the art style "futurism". Invoke the style with "in the style of futtt". Play with weights, it's a strong style so prompt accordingly. Sample images: ![20221101103331_00000_78550141.png](https://s3.amazonaws.com/moonup/production/uploads/1667339716454-62ad05306bc70f4a0ce27214.png) ![20221031150530_00000_4006546038.png](https://s3.amazonaws.com/moonup/production/uploads/1667339752250-62ad05306bc70f4a0ce27214.png) ![20221031151001_00007_222715945.png](https://s3.amazonaws.com/moonup/production/uploads/1667339780164-62ad05306bc70f4a0ce27214.png) Sample training images: ![futtt_(4).jpg](https://s3.amazonaws.com/moonup/production/uploads/1667315842086-62ad05306bc70f4a0ce27214.jpeg) ![futtt_(8).jpg](https://s3.amazonaws.com/moonup/production/uploads/1667315860265-62ad05306bc70f4a0ce27214.jpeg) ![futtt_(16).jpg](https://s3.amazonaws.com/moonup/production/uploads/1667315873761-62ad05306bc70f4a0ce27214.jpeg) ![futtt_(36).jpg](https://s3.amazonaws.com/moonup/production/uploads/1667315883690-62ad05306bc70f4a0ce27214.jpeg) ![futtt_(50).jpg](https://s3.amazonaws.com/moonup/production/uploads/1667315890969-62ad05306bc70f4a0ce27214.jpeg)
AlekseyKorshuk/retriever-coding-guru-adapted
AlekseyKorshuk
2022-11-01T21:53:11Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-01T21:42:16Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # AlekseyKorshuk/retriever-coding-guru-adapted This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('AlekseyKorshuk/retriever-coding-guru-adapted') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('AlekseyKorshuk/retriever-coding-guru-adapted') model = AutoModel.from_pretrained('AlekseyKorshuk/retriever-coding-guru-adapted') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=AlekseyKorshuk/retriever-coding-guru-adapted) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 317 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 31, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
troesy/spanbert-base-cased-LAT-True-added-tokenizer
troesy
2022-11-01T21:19:53Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-11-01T20:55:41Z
--- tags: - generated_from_trainer model-index: - name: spanbert-base-cased-LAT-True-added-tokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spanbert-base-cased-LAT-True-added-tokenizer This model is a fine-tuned version of [SpanBERT/spanbert-base-cased](https://huggingface.co/SpanBERT/spanbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 174 | 0.3422 | | No log | 2.0 | 348 | 0.2893 | | 0.3406 | 3.0 | 522 | 0.2767 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
pig4431/amazonPolarity_roBERTa_5E
pig4431
2022-11-01T21:13:15Z
7
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_polarity", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T21:12:18Z
--- license: mit tags: - generated_from_trainer datasets: - amazon_polarity metrics: - accuracy model-index: - name: amazonPolarity_roBERTa_5E results: - task: name: Text Classification type: text-classification dataset: name: amazon_polarity type: amazon_polarity config: amazon_polarity split: train args: amazon_polarity metrics: - name: Accuracy type: accuracy value: 0.96 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazonPolarity_roBERTa_5E This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the amazon_polarity dataset. It achieves the following results on the evaluation set: - Loss: 0.2201 - Accuracy: 0.96 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5785 | 0.05 | 50 | 0.2706 | 0.9133 | | 0.2731 | 0.11 | 100 | 0.2379 | 0.9267 | | 0.2223 | 0.16 | 150 | 0.1731 | 0.92 | | 0.1887 | 0.21 | 200 | 0.1672 | 0.9267 | | 0.1915 | 0.27 | 250 | 0.2946 | 0.9067 | | 0.1981 | 0.32 | 300 | 0.1744 | 0.9267 | | 0.1617 | 0.37 | 350 | 0.2349 | 0.92 | | 0.1919 | 0.43 | 400 | 0.1605 | 0.9333 | | 0.1713 | 0.48 | 450 | 0.1626 | 0.94 | | 0.1961 | 0.53 | 500 | 0.1555 | 0.9467 | | 0.1652 | 0.59 | 550 | 0.1996 | 0.94 | | 0.1719 | 0.64 | 600 | 0.1848 | 0.9333 | | 0.159 | 0.69 | 650 | 0.1783 | 0.9467 | | 0.1533 | 0.75 | 700 | 0.2016 | 0.9467 | | 0.1749 | 0.8 | 750 | 0.3943 | 0.8733 | | 0.1675 | 0.85 | 800 | 0.1948 | 0.9133 | | 0.1601 | 0.91 | 850 | 0.2044 | 0.92 | | 0.1424 | 0.96 | 900 | 0.1061 | 0.9533 | | 0.1447 | 1.01 | 950 | 0.2195 | 0.9267 | | 0.0997 | 1.07 | 1000 | 0.2102 | 0.9333 | | 0.1454 | 1.12 | 1050 | 0.1648 | 0.9467 | | 0.1326 | 1.17 | 1100 | 0.2774 | 0.9 | | 0.1192 | 1.23 | 1150 | 0.1337 | 0.96 | | 0.1429 | 1.28 | 1200 | 0.1451 | 0.96 | | 0.1227 | 1.33 | 1250 | 0.1995 | 0.94 | | 0.1343 | 1.39 | 1300 | 0.2115 | 0.92 | | 0.1208 | 1.44 | 1350 | 0.1832 | 0.9467 | | 0.1314 | 1.49 | 1400 | 0.1298 | 0.96 | | 0.1069 | 1.55 | 1450 | 0.1778 | 0.94 | | 0.126 | 1.6 | 1500 | 0.1205 | 0.9667 | | 0.1162 | 1.65 | 1550 | 0.1569 | 0.9533 | | 0.0961 | 1.71 | 1600 | 0.1865 | 0.9467 | | 0.13 | 1.76 | 1650 | 0.1458 | 0.96 | | 0.1206 | 1.81 | 1700 | 0.1648 | 0.96 | | 0.1096 | 1.87 | 1750 | 0.2221 | 0.9333 | | 0.1138 | 1.92 | 1800 | 0.1727 | 0.9533 | | 0.1258 | 1.97 | 1850 | 0.2036 | 0.9467 | | 0.1032 | 2.03 | 1900 | 0.1710 | 0.9667 | | 0.082 | 2.08 | 1950 | 0.2380 | 0.9467 | | 0.101 | 2.13 | 2000 | 0.1868 | 0.9533 | | 0.0913 | 2.19 | 2050 | 0.2934 | 0.9267 | | 0.0859 | 2.24 | 2100 | 0.2385 | 0.9333 | | 0.1019 | 2.29 | 2150 | 0.1697 | 0.9667 | | 0.1069 | 2.35 | 2200 | 0.1815 | 0.94 | | 0.0805 | 2.4 | 2250 | 0.2185 | 0.9467 | | 0.0906 | 2.45 | 2300 | 0.1923 | 0.96 | | 0.105 | 2.51 | 2350 | 0.1720 | 0.96 | | 0.0866 | 2.56 | 2400 | 0.1710 | 0.96 | | 0.0821 | 2.61 | 2450 | 0.2267 | 0.9533 | | 0.107 | 2.67 | 2500 | 0.2203 | 0.9467 | | 0.0841 | 2.72 | 2550 | 0.1621 | 0.9533 | | 0.0811 | 2.77 | 2600 | 0.1954 | 0.9533 | | 0.1077 | 2.83 | 2650 | 0.2107 | 0.9533 | | 0.0771 | 2.88 | 2700 | 0.2398 | 0.9467 | | 0.08 | 2.93 | 2750 | 0.1816 | 0.96 | | 0.0827 | 2.99 | 2800 | 0.2311 | 0.9467 | | 0.1118 | 3.04 | 2850 | 0.1825 | 0.96 | | 0.0626 | 3.09 | 2900 | 0.2876 | 0.9333 | | 0.0733 | 3.14 | 2950 | 0.2045 | 0.9467 | | 0.0554 | 3.2 | 3000 | 0.1775 | 0.96 | | 0.0569 | 3.25 | 3050 | 0.2208 | 0.9467 | | 0.0566 | 3.3 | 3100 | 0.2113 | 0.9533 | | 0.063 | 3.36 | 3150 | 0.2013 | 0.96 | | 0.056 | 3.41 | 3200 | 0.2229 | 0.96 | | 0.0791 | 3.46 | 3250 | 0.2472 | 0.9467 | | 0.0867 | 3.52 | 3300 | 0.1630 | 0.9667 | | 0.0749 | 3.57 | 3350 | 0.2066 | 0.9533 | | 0.0653 | 3.62 | 3400 | 0.2085 | 0.96 | | 0.0784 | 3.68 | 3450 | 0.2068 | 0.9467 | | 0.074 | 3.73 | 3500 | 0.1976 | 0.96 | | 0.076 | 3.78 | 3550 | 0.1953 | 0.9533 | | 0.0807 | 3.84 | 3600 | 0.2246 | 0.9467 | | 0.077 | 3.89 | 3650 | 0.1867 | 0.9533 | | 0.0771 | 3.94 | 3700 | 0.2035 | 0.9533 | | 0.0658 | 4.0 | 3750 | 0.1754 | 0.9667 | | 0.0711 | 4.05 | 3800 | 0.1977 | 0.9667 | | 0.066 | 4.1 | 3850 | 0.1806 | 0.9667 | | 0.0627 | 4.16 | 3900 | 0.1819 | 0.96 | | 0.0671 | 4.21 | 3950 | 0.2247 | 0.9533 | | 0.0245 | 4.26 | 4000 | 0.2482 | 0.9467 | | 0.0372 | 4.32 | 4050 | 0.2201 | 0.96 | | 0.0607 | 4.37 | 4100 | 0.2381 | 0.9467 | | 0.0689 | 4.42 | 4150 | 0.2159 | 0.96 | | 0.0383 | 4.48 | 4200 | 0.2278 | 0.9533 | | 0.0382 | 4.53 | 4250 | 0.2277 | 0.96 | | 0.0626 | 4.58 | 4300 | 0.2325 | 0.96 | | 0.0595 | 4.64 | 4350 | 0.2315 | 0.96 | | 0.0578 | 4.69 | 4400 | 0.2284 | 0.96 | | 0.0324 | 4.74 | 4450 | 0.2297 | 0.96 | | 0.0476 | 4.8 | 4500 | 0.2154 | 0.96 | | 0.0309 | 4.85 | 4550 | 0.2258 | 0.96 | | 0.0748 | 4.9 | 4600 | 0.2131 | 0.96 | | 0.0731 | 4.96 | 4650 | 0.2201 | 0.96 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
jayantapaul888/xtremedistil-l6-h256-uncased-eng-only-sentiment-single-finetuned-memes
jayantapaul888
2022-11-01T20:53:27Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T20:35:37Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: xtremedistil-l6-h256-uncased-eng-only-sentiment-single-finetuned-memes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xtremedistil-l6-h256-uncased-eng-only-sentiment-single-finetuned-memes This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3513 - Accuracy: 0.8555 - Precision: 0.8706 - Recall: 0.8697 - F1: 0.8699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 378 | 0.3579 | 0.8526 | 0.8685 | 0.8667 | 0.8674 | | 0.4989 | 2.0 | 756 | 0.3368 | 0.8503 | 0.8665 | 0.8650 | 0.8645 | | 0.3318 | 3.0 | 1134 | 0.3379 | 0.8533 | 0.8693 | 0.8675 | 0.8678 | | 0.279 | 4.0 | 1512 | 0.3426 | 0.8555 | 0.8712 | 0.8698 | 0.8696 | | 0.279 | 5.0 | 1890 | 0.3495 | 0.8555 | 0.8717 | 0.8698 | 0.8698 | | 0.2471 | 6.0 | 2268 | 0.3513 | 0.8555 | 0.8706 | 0.8697 | 0.8699 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
jayantapaul888/xlm-roberta-base-eng-only-sentiment-single-finetuned-memes
jayantapaul888
2022-11-01T20:15:39Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T19:34:41Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: xlm-roberta-base-eng-only-sentiment-single-finetuned-memes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-eng-only-sentiment-single-finetuned-memes This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5629 - Accuracy: 0.8652 - Precision: 0.8794 - Recall: 0.8786 - F1: 0.8789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 378 | 0.3506 | 0.8459 | 0.8647 | 0.8584 | 0.8605 | | 0.4424 | 2.0 | 756 | 0.3264 | 0.8563 | 0.8818 | 0.8696 | 0.8689 | | 0.2888 | 3.0 | 1134 | 0.3563 | 0.8578 | 0.8759 | 0.8701 | 0.8714 | | 0.1889 | 4.0 | 1512 | 0.3939 | 0.8585 | 0.8733 | 0.8729 | 0.8730 | | 0.1889 | 5.0 | 1890 | 0.4698 | 0.8622 | 0.8765 | 0.8761 | 0.8763 | | 0.1136 | 6.0 | 2268 | 0.5629 | 0.8652 | 0.8794 | 0.8786 | 0.8789 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
pig4431/IMDB_BERT_5E
pig4431
2022-11-01T19:39:15Z
8
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T19:38:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: IMDB_BERT_5E results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9533333333333334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IMDB_BERT_5E This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2316 - Accuracy: 0.9533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7094 | 0.03 | 50 | 0.6527 | 0.6467 | | 0.5867 | 0.06 | 100 | 0.3681 | 0.8533 | | 0.3441 | 0.1 | 150 | 0.2455 | 0.9 | | 0.3052 | 0.13 | 200 | 0.3143 | 0.88 | | 0.2991 | 0.16 | 250 | 0.1890 | 0.92 | | 0.2954 | 0.19 | 300 | 0.2012 | 0.9267 | | 0.2723 | 0.22 | 350 | 0.2178 | 0.9333 | | 0.255 | 0.26 | 400 | 0.1740 | 0.9267 | | 0.2675 | 0.29 | 450 | 0.1667 | 0.9467 | | 0.3071 | 0.32 | 500 | 0.1766 | 0.9333 | | 0.2498 | 0.35 | 550 | 0.1928 | 0.9267 | | 0.2402 | 0.38 | 600 | 0.1334 | 0.94 | | 0.2449 | 0.42 | 650 | 0.1332 | 0.9467 | | 0.2298 | 0.45 | 700 | 0.1375 | 0.9333 | | 0.2625 | 0.48 | 750 | 0.1529 | 0.9467 | | 0.2459 | 0.51 | 800 | 0.1621 | 0.94 | | 0.2499 | 0.54 | 850 | 0.1606 | 0.92 | | 0.2405 | 0.58 | 900 | 0.1375 | 0.94 | | 0.208 | 0.61 | 950 | 0.1697 | 0.94 | | 0.2642 | 0.64 | 1000 | 0.1507 | 0.9467 | | 0.2272 | 0.67 | 1050 | 0.1478 | 0.94 | | 0.2769 | 0.7 | 1100 | 0.1423 | 0.9467 | | 0.2293 | 0.74 | 1150 | 0.1434 | 0.9467 | | 0.2212 | 0.77 | 1200 | 0.1371 | 0.9533 | | 0.2176 | 0.8 | 1250 | 0.1380 | 0.9533 | | 0.2269 | 0.83 | 1300 | 0.1453 | 0.9467 | | 0.2422 | 0.86 | 1350 | 0.1450 | 0.9467 | | 0.2141 | 0.9 | 1400 | 0.1775 | 0.9467 | | 0.235 | 0.93 | 1450 | 0.1302 | 0.9467 | | 0.2275 | 0.96 | 1500 | 0.1304 | 0.9467 | | 0.2282 | 0.99 | 1550 | 0.1620 | 0.9533 | | 0.1898 | 1.02 | 1600 | 0.1482 | 0.9333 | | 0.1677 | 1.06 | 1650 | 0.1304 | 0.9533 | | 0.1533 | 1.09 | 1700 | 0.1270 | 0.96 | | 0.1915 | 1.12 | 1750 | 0.1601 | 0.9533 | | 0.1687 | 1.15 | 1800 | 0.1515 | 0.9467 | | 0.1605 | 1.18 | 1850 | 0.1729 | 0.9467 | | 0.1731 | 1.22 | 1900 | 0.1529 | 0.94 | | 0.1308 | 1.25 | 1950 | 0.1577 | 0.96 | | 0.1792 | 1.28 | 2000 | 0.1668 | 0.9333 | | 0.1987 | 1.31 | 2050 | 0.1613 | 0.9533 | | 0.1782 | 1.34 | 2100 | 0.1542 | 0.96 | | 0.199 | 1.38 | 2150 | 0.1437 | 0.9533 | | 0.1224 | 1.41 | 2200 | 0.1674 | 0.96 | | 0.1854 | 1.44 | 2250 | 0.1831 | 0.9533 | | 0.1622 | 1.47 | 2300 | 0.1403 | 0.9533 | | 0.1586 | 1.5 | 2350 | 0.1417 | 0.96 | | 0.1375 | 1.54 | 2400 | 0.1409 | 0.9533 | | 0.1401 | 1.57 | 2450 | 0.1759 | 0.96 | | 0.1999 | 1.6 | 2500 | 0.1172 | 0.96 | | 0.1746 | 1.63 | 2550 | 0.1479 | 0.96 | | 0.1983 | 1.66 | 2600 | 0.1498 | 0.9467 | | 0.1658 | 1.7 | 2650 | 0.1375 | 0.9533 | | 0.1492 | 1.73 | 2700 | 0.1504 | 0.9667 | | 0.1435 | 1.76 | 2750 | 0.1340 | 0.9667 | | 0.1473 | 1.79 | 2800 | 0.1262 | 0.9667 | | 0.1692 | 1.82 | 2850 | 0.1323 | 0.9533 | | 0.1567 | 1.86 | 2900 | 0.1339 | 0.96 | | 0.1615 | 1.89 | 2950 | 0.1204 | 0.9667 | | 0.1677 | 1.92 | 3000 | 0.1202 | 0.9667 | | 0.1426 | 1.95 | 3050 | 0.1310 | 0.96 | | 0.1754 | 1.98 | 3100 | 0.1469 | 0.9533 | | 0.1395 | 2.02 | 3150 | 0.1663 | 0.96 | | 0.0702 | 2.05 | 3200 | 0.1399 | 0.9733 | | 0.1351 | 2.08 | 3250 | 0.1520 | 0.9667 | | 0.1194 | 2.11 | 3300 | 0.1410 | 0.9667 | | 0.1087 | 2.14 | 3350 | 0.1361 | 0.9733 | | 0.1245 | 2.18 | 3400 | 0.1490 | 0.9533 | | 0.1285 | 2.21 | 3450 | 0.1799 | 0.96 | | 0.0801 | 2.24 | 3500 | 0.1776 | 0.9533 | | 0.117 | 2.27 | 3550 | 0.1756 | 0.9667 | | 0.1105 | 2.3 | 3600 | 0.1749 | 0.9533 | | 0.1359 | 2.34 | 3650 | 0.1750 | 0.96 | | 0.1328 | 2.37 | 3700 | 0.1857 | 0.9533 | | 0.1201 | 2.4 | 3750 | 0.1834 | 0.9533 | | 0.1239 | 2.43 | 3800 | 0.1923 | 0.9533 | | 0.0998 | 2.46 | 3850 | 0.1882 | 0.9533 | | 0.0907 | 2.5 | 3900 | 0.1722 | 0.96 | | 0.1214 | 2.53 | 3950 | 0.1787 | 0.96 | | 0.0858 | 2.56 | 4000 | 0.1927 | 0.96 | | 0.1384 | 2.59 | 4050 | 0.1312 | 0.96 | | 0.0951 | 2.62 | 4100 | 0.1348 | 0.96 | | 0.1325 | 2.66 | 4150 | 0.1652 | 0.9533 | | 0.1429 | 2.69 | 4200 | 0.1603 | 0.9533 | | 0.0923 | 2.72 | 4250 | 0.2141 | 0.94 | | 0.1336 | 2.75 | 4300 | 0.1348 | 0.9733 | | 0.0893 | 2.78 | 4350 | 0.1356 | 0.9667 | | 0.1057 | 2.82 | 4400 | 0.1932 | 0.9533 | | 0.0928 | 2.85 | 4450 | 0.1868 | 0.9533 | | 0.0586 | 2.88 | 4500 | 0.1620 | 0.96 | | 0.1426 | 2.91 | 4550 | 0.1944 | 0.9533 | | 0.1394 | 2.94 | 4600 | 0.1630 | 0.96 | | 0.0785 | 2.98 | 4650 | 0.1560 | 0.9667 | | 0.0772 | 3.01 | 4700 | 0.2093 | 0.9467 | | 0.0565 | 3.04 | 4750 | 0.1785 | 0.96 | | 0.0771 | 3.07 | 4800 | 0.2361 | 0.9467 | | 0.0634 | 3.1 | 4850 | 0.1809 | 0.96 | | 0.0847 | 3.13 | 4900 | 0.1496 | 0.9733 | | 0.0526 | 3.17 | 4950 | 0.1620 | 0.9667 | | 0.0796 | 3.2 | 5000 | 0.1764 | 0.9667 | | 0.0786 | 3.23 | 5050 | 0.1798 | 0.9667 | | 0.0531 | 3.26 | 5100 | 0.1698 | 0.9667 | | 0.0445 | 3.29 | 5150 | 0.2088 | 0.96 | | 0.1212 | 3.33 | 5200 | 0.1842 | 0.9533 | | 0.0825 | 3.36 | 5250 | 0.2016 | 0.9533 | | 0.0782 | 3.39 | 5300 | 0.1775 | 0.9533 | | 0.0627 | 3.42 | 5350 | 0.1656 | 0.96 | | 0.0898 | 3.45 | 5400 | 0.2331 | 0.9533 | | 0.0882 | 3.49 | 5450 | 0.2514 | 0.9467 | | 0.0798 | 3.52 | 5500 | 0.2090 | 0.9533 | | 0.0474 | 3.55 | 5550 | 0.2322 | 0.96 | | 0.0773 | 3.58 | 5600 | 0.2023 | 0.96 | | 0.0862 | 3.61 | 5650 | 0.2247 | 0.96 | | 0.0723 | 3.65 | 5700 | 0.2001 | 0.96 | | 0.0549 | 3.68 | 5750 | 0.2031 | 0.9533 | | 0.044 | 3.71 | 5800 | 0.2133 | 0.96 | | 0.0644 | 3.74 | 5850 | 0.1876 | 0.9667 | | 0.0868 | 3.77 | 5900 | 0.2182 | 0.9533 | | 0.072 | 3.81 | 5950 | 0.1856 | 0.9667 | | 0.092 | 3.84 | 6000 | 0.2120 | 0.96 | | 0.0806 | 3.87 | 6050 | 0.2006 | 0.9533 | | 0.0627 | 3.9 | 6100 | 0.1900 | 0.9533 | | 0.0738 | 3.93 | 6150 | 0.1869 | 0.96 | | 0.0667 | 3.97 | 6200 | 0.2216 | 0.96 | | 0.0551 | 4.0 | 6250 | 0.2147 | 0.9533 | | 0.0271 | 4.03 | 6300 | 0.2038 | 0.96 | | 0.0763 | 4.06 | 6350 | 0.2058 | 0.96 | | 0.0612 | 4.09 | 6400 | 0.2037 | 0.9533 | | 0.0351 | 4.13 | 6450 | 0.2081 | 0.96 | | 0.0265 | 4.16 | 6500 | 0.2373 | 0.9533 | | 0.0391 | 4.19 | 6550 | 0.2264 | 0.9533 | | 0.0609 | 4.22 | 6600 | 0.2035 | 0.9533 | | 0.0435 | 4.25 | 6650 | 0.1989 | 0.96 | | 0.0309 | 4.29 | 6700 | 0.2096 | 0.9667 | | 0.064 | 4.32 | 6750 | 0.2385 | 0.9533 | | 0.0388 | 4.35 | 6800 | 0.2071 | 0.96 | | 0.0267 | 4.38 | 6850 | 0.2336 | 0.96 | | 0.0433 | 4.41 | 6900 | 0.2045 | 0.9667 | | 0.0596 | 4.45 | 6950 | 0.2013 | 0.96 | | 0.0273 | 4.48 | 7000 | 0.2122 | 0.96 | | 0.0559 | 4.51 | 7050 | 0.2182 | 0.96 | | 0.0504 | 4.54 | 7100 | 0.2172 | 0.96 | | 0.0536 | 4.57 | 7150 | 0.2406 | 0.9533 | | 0.0624 | 4.61 | 7200 | 0.2194 | 0.9533 | | 0.0668 | 4.64 | 7250 | 0.2156 | 0.96 | | 0.0208 | 4.67 | 7300 | 0.2150 | 0.96 | | 0.0436 | 4.7 | 7350 | 0.2361 | 0.9533 | | 0.0285 | 4.73 | 7400 | 0.2175 | 0.96 | | 0.0604 | 4.77 | 7450 | 0.2241 | 0.9467 | | 0.0502 | 4.8 | 7500 | 0.2201 | 0.96 | | 0.0342 | 4.83 | 7550 | 0.2232 | 0.96 | | 0.0467 | 4.86 | 7600 | 0.2247 | 0.9533 | | 0.0615 | 4.89 | 7650 | 0.2235 | 0.96 | | 0.0769 | 4.93 | 7700 | 0.2302 | 0.9533 | | 0.0451 | 4.96 | 7750 | 0.2334 | 0.9467 | | 0.0532 | 4.99 | 7800 | 0.2316 | 0.9533 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
loremipsum3658/jur-v5-fsl-tuned-cla-assun
loremipsum3658
2022-11-01T19:27:51Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-01T19:14:38Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1099 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1099, "warmup_steps": 110, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
motmono/Reinforce-PixelCopterPLEv0
motmono
2022-11-01T18:33:04Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-11-01T18:30:11Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopterPLEv0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 11.70 +/- 11.40 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Hrimurr/bert-base-multilingual-cased-finetuned-multibert
Hrimurr
2022-11-01T17:59:23Z
61
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-01T17:16:20Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Hrimurr/bert-base-multilingual-cased-finetuned-multibert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Hrimurr/bert-base-multilingual-cased-finetuned-multibert This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.8092 - Validation Loss: 1.5697 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.8092 | 1.5697 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1
SiddharthaM/twitter-data-xlm-roberta-base-hindi-only-memes
SiddharthaM
2022-11-01T17:49:41Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T17:00:16Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-data-xlm-roberta-base-hindi-only-memes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-data-xlm-roberta-base-hindi-only-memes This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4006 - Accuracy: 0.9240 - Precision: 0.9255 - Recall: 0.9263 - F1: 0.9259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.7485 | 1.0 | 511 | 0.4062 | 0.8381 | 0.8520 | 0.8422 | 0.8417 | | 0.4253 | 2.0 | 1022 | 0.3195 | 0.8822 | 0.8880 | 0.8853 | 0.8851 | | 0.2899 | 3.0 | 1533 | 0.2994 | 0.9031 | 0.9068 | 0.9060 | 0.9049 | | 0.2116 | 4.0 | 2044 | 0.3526 | 0.9163 | 0.9199 | 0.9185 | 0.9187 | | 0.1582 | 5.0 | 2555 | 0.4031 | 0.9163 | 0.9193 | 0.9186 | 0.9187 | | 0.103 | 6.0 | 3066 | 0.4006 | 0.9240 | 0.9255 | 0.9263 | 0.9259 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
SiddharthaM/twitter-data-bert-base-multilingual-uncased-hindi-only-memes
SiddharthaM
2022-11-01T17:43:39Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T17:18:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-data-bert-base-multilingual-uncased-hindi-only-memes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-data-bert-base-multilingual-uncased-hindi-only-memes This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5614 - Accuracy: 0.9031 - Precision: 0.9064 - Recall: 0.9057 - F1: 0.9060 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5408 | 1.0 | 511 | 0.4798 | 0.7974 | 0.8447 | 0.8049 | 0.7940 | | 0.3117 | 2.0 | 1022 | 0.3576 | 0.8844 | 0.8875 | 0.8882 | 0.8869 | | 0.2019 | 3.0 | 1533 | 0.3401 | 0.9020 | 0.9076 | 0.9047 | 0.9052 | | 0.1364 | 4.0 | 2044 | 0.4519 | 0.8888 | 0.8936 | 0.8921 | 0.8923 | | 0.0767 | 5.0 | 2555 | 0.5251 | 0.8987 | 0.9024 | 0.9016 | 0.9019 | | 0.0433 | 6.0 | 3066 | 0.5614 | 0.9031 | 0.9064 | 0.9057 | 0.9060 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
pig4431/IMDB_ALBERT_5E
pig4431
2022-11-01T17:39:50Z
106
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T17:39:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: IMDB_ALBERT_5E results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9466666666666667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IMDB_ALBERT_5E This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2220 - Accuracy: 0.9467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5285 | 0.06 | 50 | 0.2692 | 0.9133 | | 0.3515 | 0.13 | 100 | 0.2054 | 0.9267 | | 0.2314 | 0.19 | 150 | 0.1669 | 0.94 | | 0.2147 | 0.26 | 200 | 0.1660 | 0.92 | | 0.2053 | 0.32 | 250 | 0.1546 | 0.94 | | 0.2143 | 0.38 | 300 | 0.1636 | 0.9267 | | 0.1943 | 0.45 | 350 | 0.2068 | 0.9467 | | 0.2107 | 0.51 | 400 | 0.1655 | 0.9333 | | 0.2059 | 0.58 | 450 | 0.1782 | 0.94 | | 0.1839 | 0.64 | 500 | 0.1695 | 0.94 | | 0.2014 | 0.7 | 550 | 0.1481 | 0.9333 | | 0.2215 | 0.77 | 600 | 0.1588 | 0.9267 | | 0.1837 | 0.83 | 650 | 0.1352 | 0.9333 | | 0.1938 | 0.9 | 700 | 0.1389 | 0.94 | | 0.221 | 0.96 | 750 | 0.1193 | 0.9467 | | 0.1843 | 1.02 | 800 | 0.1294 | 0.9467 | | 0.1293 | 1.09 | 850 | 0.1585 | 0.9467 | | 0.1517 | 1.15 | 900 | 0.1353 | 0.9467 | | 0.137 | 1.21 | 950 | 0.1391 | 0.9467 | | 0.1858 | 1.28 | 1000 | 0.1547 | 0.9333 | | 0.1478 | 1.34 | 1050 | 0.1019 | 0.9533 | | 0.155 | 1.41 | 1100 | 0.1154 | 0.9667 | | 0.1439 | 1.47 | 1150 | 0.1306 | 0.9467 | | 0.1476 | 1.53 | 1200 | 0.2085 | 0.92 | | 0.1702 | 1.6 | 1250 | 0.1190 | 0.9467 | | 0.1517 | 1.66 | 1300 | 0.1303 | 0.9533 | | 0.1551 | 1.73 | 1350 | 0.1200 | 0.9467 | | 0.1554 | 1.79 | 1400 | 0.1297 | 0.9533 | | 0.1543 | 1.85 | 1450 | 0.1222 | 0.96 | | 0.1242 | 1.92 | 1500 | 0.1418 | 0.9467 | | 0.1312 | 1.98 | 1550 | 0.1279 | 0.9467 | | 0.1292 | 2.05 | 1600 | 0.1255 | 0.9533 | | 0.0948 | 2.11 | 1650 | 0.1305 | 0.9667 | | 0.088 | 2.17 | 1700 | 0.1912 | 0.9333 | | 0.0949 | 2.24 | 1750 | 0.1594 | 0.9333 | | 0.1094 | 2.3 | 1800 | 0.1958 | 0.9467 | | 0.1179 | 2.37 | 1850 | 0.1427 | 0.94 | | 0.1116 | 2.43 | 1900 | 0.1551 | 0.9333 | | 0.0742 | 2.49 | 1950 | 0.1743 | 0.94 | | 0.1016 | 2.56 | 2000 | 0.1603 | 0.9533 | | 0.0835 | 2.62 | 2050 | 0.1866 | 0.9333 | | 0.0882 | 2.69 | 2100 | 0.1191 | 0.9467 | | 0.1032 | 2.75 | 2150 | 0.1420 | 0.96 | | 0.0957 | 2.81 | 2200 | 0.1403 | 0.96 | | 0.1234 | 2.88 | 2250 | 0.1232 | 0.96 | | 0.0669 | 2.94 | 2300 | 0.1557 | 0.9467 | | 0.0994 | 3.01 | 2350 | 0.1270 | 0.9533 | | 0.0583 | 3.07 | 2400 | 0.1520 | 0.9533 | | 0.0651 | 3.13 | 2450 | 0.1641 | 0.9467 | | 0.0384 | 3.2 | 2500 | 0.2165 | 0.94 | | 0.0839 | 3.26 | 2550 | 0.1755 | 0.9467 | | 0.0546 | 3.32 | 2600 | 0.1782 | 0.9333 | | 0.0703 | 3.39 | 2650 | 0.1945 | 0.94 | | 0.0734 | 3.45 | 2700 | 0.2139 | 0.9467 | | 0.0629 | 3.52 | 2750 | 0.1445 | 0.9467 | | 0.0513 | 3.58 | 2800 | 0.1613 | 0.9667 | | 0.0794 | 3.64 | 2850 | 0.1742 | 0.9333 | | 0.0537 | 3.71 | 2900 | 0.1745 | 0.9467 | | 0.0553 | 3.77 | 2950 | 0.1724 | 0.96 | | 0.0483 | 3.84 | 3000 | 0.1638 | 0.9533 | | 0.0647 | 3.9 | 3050 | 0.1986 | 0.9467 | | 0.0443 | 3.96 | 3100 | 0.1926 | 0.9533 | | 0.0418 | 4.03 | 3150 | 0.1879 | 0.94 | | 0.0466 | 4.09 | 3200 | 0.2058 | 0.9333 | | 0.0491 | 4.16 | 3250 | 0.2017 | 0.9467 | | 0.0287 | 4.22 | 3300 | 0.2020 | 0.9533 | | 0.0272 | 4.28 | 3350 | 0.1974 | 0.9533 | | 0.0359 | 4.35 | 3400 | 0.2242 | 0.9333 | | 0.0405 | 4.41 | 3450 | 0.2157 | 0.94 | | 0.0309 | 4.48 | 3500 | 0.2142 | 0.9467 | | 0.033 | 4.54 | 3550 | 0.2163 | 0.94 | | 0.0408 | 4.6 | 3600 | 0.2368 | 0.94 | | 0.0336 | 4.67 | 3650 | 0.2173 | 0.94 | | 0.0356 | 4.73 | 3700 | 0.2230 | 0.94 | | 0.0548 | 4.8 | 3750 | 0.2181 | 0.9533 | | 0.042 | 4.86 | 3800 | 0.2240 | 0.9333 | | 0.0292 | 4.92 | 3850 | 0.2259 | 0.9267 | | 0.0196 | 4.99 | 3900 | 0.2220 | 0.9467 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
musika/musika-irish-jigs
musika
2022-11-01T15:03:23Z
0
1
null
[ "audio", "music", "generation", "tensorflow", "arxiv:2208.08706", "license:mit", "region:us" ]
null
2022-11-01T15:03:05Z
--- license: mit tags: - audio - music - generation - tensorflow --- # Musika Model: musika_irish_jigs ## Model provided by: rjadr Pretrained musika_irish_jigs model for the [Musika system](https://github.com/marcoppasini/musika) for fast infinite waveform music generation. Introduced in [this paper](https://arxiv.org/abs/2208.08706). ## How to use You can generate music from this pretrained musika_irish_jigs model using the notebook available [here](https://colab.research.google.com/drive/1HJWliBXPi-Xlx3gY8cjFI5-xaZgrTD7r). ### Model description This pretrained GAN system consists of a ResNet-style generator and discriminator. During training, stability is controlled by adapting the strength of gradient penalty regularization on-the-fly. The gradient penalty weighting term is contained in *switch.npy*. The generator is conditioned on a latent coordinate system to produce samples of arbitrary length. The latent representations produced by the generator are then passed to a decoder which converts them into waveform audio. The generator has a context window of about 12 seconds of audio.
huggingtweets/oliverjumpertz
huggingtweets
2022-11-01T14:16:40Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-01T14:15:25Z
--- language: en thumbnail: http://www.huggingtweets.com/oliverjumpertz/1667312196044/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1458152201344495624/tW6dBUm6_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Oliver Jumpertz</div> <div style="text-align: center; font-size: 14px;">@oliverjumpertz</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Oliver Jumpertz. | Data | Oliver Jumpertz | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 239 | | Short tweets | 835 | | Tweets kept | 2176 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/238ero8e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @oliverjumpertz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1h1p9vyl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1h1p9vyl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/oliverjumpertz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gislei/meu
gislei
2022-11-01T14:13:15Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-11-01T14:10:45Z
--- license: bigscience-openrail-m ---
fay/ddpm-butterflies-128
fay
2022-11-01T14:02:17Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-01T12:22:07Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/fay/ddpm-butterflies-128/tensorboard?#scalars)
emrevarol/dz_finetuning-medium-distillbert-95K
emrevarol
2022-11-01T13:40:20Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T13:17:56Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: dz_finetuning-medium-distillbert-95K results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dz_finetuning-medium-distillbert-95K This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0047 - Accuracy: 0.9991 - F1: 0.9991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
pig4431/IMDB_ELECTRA_5E
pig4431
2022-11-01T13:37:25Z
6
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T13:36:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: IMDB_ELECTRA_5E results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9533333333333334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IMDB_ELECTRA_5E This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2158 - Accuracy: 0.9533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6784 | 0.03 | 50 | 0.6027 | 0.84 | | 0.4378 | 0.06 | 100 | 0.2217 | 0.9533 | | 0.3063 | 0.1 | 150 | 0.1879 | 0.94 | | 0.2183 | 0.13 | 200 | 0.1868 | 0.9333 | | 0.2058 | 0.16 | 250 | 0.1548 | 0.9467 | | 0.2287 | 0.19 | 300 | 0.1572 | 0.9533 | | 0.1677 | 0.22 | 350 | 0.1472 | 0.9533 | | 0.1997 | 0.26 | 400 | 0.1400 | 0.9533 | | 0.1966 | 0.29 | 450 | 0.1592 | 0.9333 | | 0.184 | 0.32 | 500 | 0.1529 | 0.96 | | 0.2084 | 0.35 | 550 | 0.2136 | 0.9067 | | 0.2126 | 0.38 | 600 | 0.1508 | 0.9533 | | 0.1695 | 0.42 | 650 | 0.1442 | 0.9667 | | 0.2506 | 0.45 | 700 | 0.1811 | 0.9467 | | 0.1755 | 0.48 | 750 | 0.1336 | 0.96 | | 0.1874 | 0.51 | 800 | 0.1403 | 0.9533 | | 0.1535 | 0.54 | 850 | 0.1239 | 0.96 | | 0.1458 | 0.58 | 900 | 0.1198 | 0.9667 | | 0.1649 | 0.61 | 950 | 0.1538 | 0.9533 | | 0.2014 | 0.64 | 1000 | 0.1196 | 0.9667 | | 0.1651 | 0.67 | 1050 | 0.1200 | 0.96 | | 0.1595 | 0.7 | 1100 | 0.1155 | 0.96 | | 0.1787 | 0.74 | 1150 | 0.1175 | 0.96 | | 0.1666 | 0.77 | 1200 | 0.1264 | 0.9533 | | 0.1412 | 0.8 | 1250 | 0.1655 | 0.9533 | | 0.1949 | 0.83 | 1300 | 0.1363 | 0.9467 | | 0.1485 | 0.86 | 1350 | 0.1434 | 0.9667 | | 0.1801 | 0.9 | 1400 | 0.1379 | 0.9667 | | 0.178 | 0.93 | 1450 | 0.1498 | 0.96 | | 0.1767 | 0.96 | 1500 | 0.1507 | 0.9533 | | 0.1452 | 0.99 | 1550 | 0.1340 | 0.94 | | 0.1465 | 1.02 | 1600 | 0.1416 | 0.96 | | 0.1115 | 1.06 | 1650 | 0.1435 | 0.96 | | 0.1212 | 1.09 | 1700 | 0.1379 | 0.96 | | 0.1534 | 1.12 | 1750 | 0.1198 | 0.96 | | 0.1164 | 1.15 | 1800 | 0.1011 | 0.96 | | 0.1383 | 1.18 | 1850 | 0.1043 | 0.96 | | 0.1415 | 1.22 | 1900 | 0.0914 | 0.9533 | | 0.136 | 1.25 | 1950 | 0.1341 | 0.9533 | | 0.1301 | 1.28 | 2000 | 0.1303 | 0.9533 | | 0.1486 | 1.31 | 2050 | 0.1027 | 0.9733 | | 0.0844 | 1.34 | 2100 | 0.1410 | 0.9667 | | 0.1388 | 1.38 | 2150 | 0.1265 | 0.9667 | | 0.12 | 1.41 | 2200 | 0.1139 | 0.9667 | | 0.1329 | 1.44 | 2250 | 0.1259 | 0.9667 | | 0.0982 | 1.47 | 2300 | 0.1349 | 0.9667 | | 0.1271 | 1.5 | 2350 | 0.1176 | 0.9667 | | 0.1286 | 1.54 | 2400 | 0.1349 | 0.9533 | | 0.1079 | 1.57 | 2450 | 0.1335 | 0.96 | | 0.1236 | 1.6 | 2500 | 0.1393 | 0.96 | | 0.1285 | 1.63 | 2550 | 0.1635 | 0.96 | | 0.0932 | 1.66 | 2600 | 0.1571 | 0.9533 | | 0.1222 | 1.7 | 2650 | 0.1610 | 0.9533 | | 0.1421 | 1.73 | 2700 | 0.1296 | 0.9533 | | 0.1581 | 1.76 | 2750 | 0.1289 | 0.96 | | 0.1245 | 1.79 | 2800 | 0.1180 | 0.9667 | | 0.1196 | 1.82 | 2850 | 0.1371 | 0.96 | | 0.1062 | 1.86 | 2900 | 0.1269 | 0.96 | | 0.1188 | 1.89 | 2950 | 0.1259 | 0.9667 | | 0.1183 | 1.92 | 3000 | 0.1164 | 0.9667 | | 0.1173 | 1.95 | 3050 | 0.1280 | 0.9667 | | 0.1344 | 1.98 | 3100 | 0.1439 | 0.96 | | 0.1166 | 2.02 | 3150 | 0.1442 | 0.96 | | 0.0746 | 2.05 | 3200 | 0.1562 | 0.96 | | 0.0813 | 2.08 | 3250 | 0.1760 | 0.96 | | 0.0991 | 2.11 | 3300 | 0.1485 | 0.9667 | | 0.076 | 2.14 | 3350 | 0.1530 | 0.9533 | | 0.087 | 2.18 | 3400 | 0.1441 | 0.96 | | 0.0754 | 2.21 | 3450 | 0.1401 | 0.9667 | | 0.0878 | 2.24 | 3500 | 0.1480 | 0.96 | | 0.0605 | 2.27 | 3550 | 0.1579 | 0.9667 | | 0.0424 | 2.3 | 3600 | 0.1897 | 0.9667 | | 0.0541 | 2.34 | 3650 | 0.1784 | 0.96 | | 0.0755 | 2.37 | 3700 | 0.1527 | 0.9733 | | 0.1089 | 2.4 | 3750 | 0.1376 | 0.9733 | | 0.1061 | 2.43 | 3800 | 0.1329 | 0.9667 | | 0.0858 | 2.46 | 3850 | 0.1539 | 0.9667 | | 0.1424 | 2.5 | 3900 | 0.1296 | 0.9667 | | 0.0928 | 2.53 | 3950 | 0.1324 | 0.9667 | | 0.0669 | 2.56 | 4000 | 0.1371 | 0.9667 | | 0.0797 | 2.59 | 4050 | 0.1493 | 0.9667 | | 0.0563 | 2.62 | 4100 | 0.1657 | 0.96 | | 0.0579 | 2.66 | 4150 | 0.1799 | 0.9533 | | 0.1014 | 2.69 | 4200 | 0.1625 | 0.96 | | 0.0629 | 2.72 | 4250 | 0.1388 | 0.9733 | | 0.1331 | 2.75 | 4300 | 0.1522 | 0.9667 | | 0.0535 | 2.78 | 4350 | 0.1449 | 0.9667 | | 0.1103 | 2.82 | 4400 | 0.1394 | 0.9733 | | 0.0691 | 2.85 | 4450 | 0.1324 | 0.9733 | | 0.0869 | 2.88 | 4500 | 0.1146 | 0.9667 | | 0.068 | 2.91 | 4550 | 0.1621 | 0.9667 | | 0.0854 | 2.94 | 4600 | 0.1995 | 0.96 | | 0.0907 | 2.98 | 4650 | 0.1819 | 0.96 | | 0.0679 | 3.01 | 4700 | 0.1771 | 0.9533 | | 0.0632 | 3.04 | 4750 | 0.1388 | 0.9667 | | 0.0653 | 3.07 | 4800 | 0.1652 | 0.9667 | | 0.0305 | 3.1 | 4850 | 0.1474 | 0.9733 | | 0.065 | 3.13 | 4900 | 0.1741 | 0.9667 | | 0.0909 | 3.17 | 4950 | 0.1417 | 0.9733 | | 0.0663 | 3.2 | 5000 | 0.1578 | 0.9667 | | 0.0204 | 3.23 | 5050 | 0.1801 | 0.9667 | | 0.0478 | 3.26 | 5100 | 0.1892 | 0.9667 | | 0.0809 | 3.29 | 5150 | 0.1724 | 0.9667 | | 0.0454 | 3.33 | 5200 | 0.2045 | 0.96 | | 0.0958 | 3.36 | 5250 | 0.1635 | 0.9667 | | 0.0258 | 3.39 | 5300 | 0.1831 | 0.9667 | | 0.0621 | 3.42 | 5350 | 0.1663 | 0.9667 | | 0.064 | 3.45 | 5400 | 0.1794 | 0.9667 | | 0.0629 | 3.49 | 5450 | 0.1737 | 0.9667 | | 0.0436 | 3.52 | 5500 | 0.1815 | 0.9667 | | 0.0378 | 3.55 | 5550 | 0.1903 | 0.9667 | | 0.0149 | 3.58 | 5600 | 0.1876 | 0.9667 | | 0.0698 | 3.61 | 5650 | 0.1861 | 0.9667 | | 0.047 | 3.65 | 5700 | 0.1764 | 0.9667 | | 0.0739 | 3.68 | 5750 | 0.1510 | 0.9667 | | 0.0363 | 3.71 | 5800 | 0.1802 | 0.96 | | 0.031 | 3.74 | 5850 | 0.1688 | 0.9733 | | 0.1034 | 3.77 | 5900 | 0.1764 | 0.9667 | | 0.0588 | 3.81 | 5950 | 0.1840 | 0.9667 | | 0.0433 | 3.84 | 6000 | 0.1743 | 0.9667 | | 0.057 | 3.87 | 6050 | 0.1896 | 0.9667 | | 0.0385 | 3.9 | 6100 | 0.1959 | 0.9667 | | 0.0483 | 3.93 | 6150 | 0.1982 | 0.9667 | | 0.0292 | 3.97 | 6200 | 0.2016 | 0.9667 | | 0.0456 | 4.0 | 6250 | 0.1981 | 0.9667 | | 0.0563 | 4.03 | 6300 | 0.1915 | 0.9667 | | 0.0346 | 4.06 | 6350 | 0.1967 | 0.9667 | | 0.038 | 4.09 | 6400 | 0.2035 | 0.9667 | | 0.0341 | 4.13 | 6450 | 0.2356 | 0.96 | | 0.0425 | 4.16 | 6500 | 0.1913 | 0.9667 | | 0.0282 | 4.19 | 6550 | 0.2091 | 0.96 | | 0.0543 | 4.22 | 6600 | 0.2311 | 0.9533 | | 0.0139 | 4.25 | 6650 | 0.2260 | 0.96 | | 0.0587 | 4.29 | 6700 | 0.2257 | 0.96 | | 0.0446 | 4.32 | 6750 | 0.2439 | 0.9533 | | 0.0447 | 4.35 | 6800 | 0.2444 | 0.9533 | | 0.0199 | 4.38 | 6850 | 0.2327 | 0.96 | | 0.0392 | 4.41 | 6900 | 0.2476 | 0.9533 | | 0.0596 | 4.45 | 6950 | 0.2443 | 0.9533 | | 0.0292 | 4.48 | 7000 | 0.2499 | 0.9533 | | 0.0325 | 4.51 | 7050 | 0.2430 | 0.9533 | | 0.0316 | 4.54 | 7100 | 0.2272 | 0.96 | | 0.0259 | 4.57 | 7150 | 0.2275 | 0.96 | | 0.0294 | 4.61 | 7200 | 0.2339 | 0.9533 | | 0.0292 | 4.64 | 7250 | 0.2304 | 0.96 | | 0.0258 | 4.67 | 7300 | 0.2258 | 0.96 | | 0.0221 | 4.7 | 7350 | 0.2164 | 0.96 | | 0.0407 | 4.73 | 7400 | 0.2212 | 0.96 | | 0.0344 | 4.77 | 7450 | 0.2246 | 0.96 | | 0.0364 | 4.8 | 7500 | 0.2211 | 0.96 | | 0.0266 | 4.83 | 7550 | 0.2207 | 0.96 | | 0.0419 | 4.86 | 7600 | 0.2199 | 0.9533 | | 0.0283 | 4.89 | 7650 | 0.2185 | 0.96 | | 0.0193 | 4.93 | 7700 | 0.2173 | 0.96 | | 0.022 | 4.96 | 7750 | 0.2157 | 0.9533 | | 0.0517 | 4.99 | 7800 | 0.2158 | 0.9533 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
rufimelo/Legal-BERTimbau-large-TSDAE-v4
rufimelo
2022-11-01T13:12:56Z
5
1
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "tsdae", "pt", "dataset:rufimelo/PortugueseLegalSentences-v1", "license:mit", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-11-01T01:00:28Z
--- language: - pt thumbnail: "Portugues BERT for the Legal Domain" tags: - bert - pytorch - tsdae datasets: - rufimelo/PortugueseLegalSentences-v1 license: "mit" widget: - text: "O advogado apresentou [MASK] ao juíz." --- # Legal_BERTimbau ## Introduction Legal_BERTimbau Large is a fine-tuned BERT model based on [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) Large. "BERTimbau Base is a pretrained BERT model for Brazilian Portuguese that achieves state-of-the-art performances on three downstream NLP tasks: Named Entity Recognition, Sentence Textual Similarity and Recognizing Textual Entailment. It is available in two sizes: Base and Large. For further information or requests, please go to [BERTimbau repository](https://github.com/neuralmind-ai/portuguese-bert/)." The performance of Language Models can change drastically when there is a domain shift between training and test data. In order create a Portuguese Language Model adapted to a Legal domain, the original BERTimbau model was submitted to a fine-tuning stage where it was performed 1 "PreTraining" epoch over 200000 cleaned documents (lr: 1e-5, using TSDAE technique) ## Available models | Model | Arch. | #Layers | #Params | | ---------------------------------------- | ---------- | ------- | ------- | |`rufimelo/Legal-BERTimbau-base` |BERT-Base |12 |110M| | `rufimelo/Legal-BERTimbau-large` | BERT-Large | 24 | 335M | ## Usage ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE-v3") model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE") ``` ### Masked language modeling prediction example ```python from transformers import pipeline from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE-v3") model = AutoModelForMaskedLM.from_pretrained("rufimelo/Legal-BERTimbau-large-TSDAE-v3") pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer) pipe('O advogado apresentou [MASK] para o juíz') # [{'score': 0.5034703612327576, #'token': 8190, #'token_str': 'recurso', #'sequence': 'O advogado apresentou recurso para o juíz'}, #{'score': 0.07347951829433441, #'token': 21973, #'token_str': 'petição', #'sequence': 'O advogado apresentou petição para o juíz'}, #{'score': 0.05165359005331993, #'token': 4299, #'token_str': 'resposta', #'sequence': 'O advogado apresentou resposta para o juíz'}, #{'score': 0.04611917585134506, #'token': 5265, #'token_str': 'exposição', #'sequence': 'O advogado apresentou exposição para o juíz'}, #{'score': 0.04068068787455559, #'token': 19737, 'token_str': #'alegações', #'sequence': 'O advogado apresentou alegações para o juíz'}] ``` ### For BERT embeddings ```python import torch from transformers import AutoModel model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-large-TSDAE') input_ids = tokenizer.encode('O advogado apresentou recurso para o juíz', return_tensors='pt') with torch.no_grad(): outs = model(input_ids) encoded = outs[0][0, 1:-1] #tensor([[ 0.0328, -0.4292, -0.6230, ..., -0.3048, -0.5674, 0.0157], #[-0.3569, 0.3326, 0.7013, ..., -0.7778, 0.2646, 1.1310], #[ 0.3169, 0.4333, 0.2026, ..., 1.0517, -0.1951, 0.7050], #..., #[-0.3648, -0.8137, -0.4764, ..., -0.2725, -0.4879, 0.6264], #[-0.2264, -0.1821, -0.3011, ..., -0.5428, 0.1429, 0.0509], #[-1.4617, 0.6281, -0.0625, ..., -1.2774, -0.4491, 0.3131]]) ``` ## Citation If you use this work, please cite BERTimbau's work: ```bibtex @inproceedings{souza2020bertimbau, author = {F{\'a}bio Souza and Rodrigo Nogueira and Roberto Lotufo}, title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, year = {2020} } ```
emrevarol/dz_finetuning_distilbert-base-uncased-finetuned-sst-2-english
emrevarol
2022-11-01T13:03:58Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T12:54:37Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: dz_finetuning_distilbert-base-uncased-finetuned-sst-2-english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dz_finetuning_distilbert-base-uncased-finetuned-sst-2-english This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0363 - Accuracy: 0.9933 - F1: 0.9938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
kzk-kbys/distilbert-base-uncased-finetuned-emotion
kzk-kbys
2022-11-01T12:49:13Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-31T14:34:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.94 - name: F1 type: f1 value: 0.940059296063194 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1895 - Accuracy: 0.94 - F1: 0.9401 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4628 | 1.0 | 2000 | 0.2334 | 0.9315 | 0.9312 | | 0.1579 | 2.0 | 4000 | 0.1895 | 0.94 | 0.9401 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.1
memento/ddpm-butterflies-128
memento
2022-11-01T12:35:06Z
3
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-11-01T11:20:13Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/memento/ddpm-butterflies-128/tensorboard?#scalars)
zhujlfine/wav2vec2-common_voice-tr-demo
zhujlfine
2022-11-01T12:28:13Z
161
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "tr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-01T08:35:56Z
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-common_voice-tr-demo results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-common_voice-tr-demo This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.5682 - Wer: 0.5739 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 3.69 | 100 | 3.5365 | 1.0 | | No log | 7.4 | 200 | 2.9341 | 0.9999 | | No log | 11.11 | 300 | 0.6994 | 0.6841 | | No log | 14.8 | 400 | 0.5623 | 0.5792 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.11.0+cu113 - Datasets 2.6.1 - Tokenizers 0.12.1
emrevarol/dz_finetuning-sentiment-model-3000-samples
emrevarol
2022-11-01T12:18:37Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T12:05:17Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: dz_finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dz_finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0553 - Accuracy: 0.99 - F1: 0.9908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
huggingtweets/manjhunathravi
huggingtweets
2022-11-01T11:48:44Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-01T11:47:34Z
--- language: en thumbnail: http://www.huggingtweets.com/manjhunathravi/1667303320061/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1550071946041102336/7TWTKpfv_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Manjhunath Ravi 🚀</div> <div style="text-align: center; font-size: 14px;">@manjhunathravi</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Manjhunath Ravi 🚀. | Data | Manjhunath Ravi 🚀 | | --- | --- | | Tweets downloaded | 3218 | | Retweets | 2 | | Short tweets | 287 | | Tweets kept | 2929 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/r8x1jof9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @manjhunathravi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mmrw5vmz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mmrw5vmz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/manjhunathravi') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gabrielgmendonca/bert-base-portuguese-cased-finetuned-enjoei
gabrielgmendonca
2022-11-01T11:41:39Z
105
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "bert", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-11-01T01:14:08Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: gabrielgmendonca/bert-base-portuguese-cased-finetuned-enjoei results: [] --- # gabrielgmendonca/bert-base-portuguese-cased-finetuned-enjoei This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on a teaching dataset extracted from https://www.enjoei.com.br/. It achieves the following results on the evaluation set: - Train Loss: 6.0784 - Validation Loss: 5.2882 - Epoch: 2 ## Intended uses & limitations This model is intended for **educational purposes**. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -985, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 6.3618 | 5.7723 | 0 | | 6.3353 | 5.4076 | 1 | | 6.0784 | 5.2882 | 2 | ### Framework versions - Transformers 4.23.1 - TensorFlow 2.9.2 - Datasets 2.6.1 - Tokenizers 0.13.1
davidmasip/deforestation_predatathon
davidmasip
2022-11-01T11:05:41Z
4
0
fastai
[ "fastai", "region:us" ]
null
2022-11-01T09:04:53Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
ayyuce/my_solar_model
ayyuce
2022-11-01T11:04:54Z
0
1
sklearn
[ "sklearn", "skops", "tabular-regression", "license:mit", "region:us" ]
tabular-regression
2022-11-01T11:04:25Z
--- license: mit library_name: sklearn tags: - sklearn - skops - tabular-regression widget: structuredData: AMBIENT_TEMPERATURE: - 21.4322062 - 27.322759933333337 - 25.56246340000001 DAILY_YIELD: - 0.0 - 996.4285714 - 685.0 DC_POWER: - 0.0 - 8358.285714 - 6741.285714 IRRADIATION: - 0.0 - 0.6465474886666664 - 0.498367802 MODULE_TEMPERATURE: - 19.826896066666663 - 45.7407144 - 38.252356133333336 TOTAL_YIELD: - 7218223.0 - 6366043.429 - 6372656.0 --- # Model description This is a LinearRegression model trained on Solar Power Generation Data. ## Intended uses & limitations This model is not ready to be used in production. ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |------------------|------------| | alpha | 1.0 | | copy_X | True | | fit_intercept | True | | l1_ratio | 0.5 | | max_iter | 1000 | | normalize | deprecated | | positive | False | | precompute | False | | random_state | 0 | | selection | cyclic | | tol | 0.0001 | | warm_start | False | </details> ### Model Plot The model plot is below. <style>#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b {color: black;background-color: white;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b pre{padding: 0;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-toggleable {background-color: white;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-estimator:hover {background-color: #d4ebff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-item {z-index: 1;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-parallel-item:only-child::after {width: 0;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b div.sk-container {display: inline-block;position: relative;}</style><div id="sk-a3a3b863-d5cf-4b57-9e19-e3d8f2db0a0b" class"sk-top-container"><div class="sk-container"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="d20384ee-8f34-4e73-b4a5-b15dfd56af7a" type="checkbox" checked><label class="sk-toggleable__label" for="d20384ee-8f34-4e73-b4a5-b15dfd56af7a">ElasticNet</label><div class="sk-toggleable__content"><pre>ElasticNet(random_state=0)</pre></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|---------| | accuracy | 99.9994 | # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python import pickle with open(dtc_pkl_filename, 'rb') as file: clf = pickle.load(file) ``` </details> # Model Card Authors This model card is written by following authors: ayyuce demirbas # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` bibtex @inproceedings{...,year={2022}} ```
cjbarrie/bert-base-multilingual-uncased-finetuned-masress
cjbarrie
2022-11-01T10:21:27Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-23T17:56:39Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bert-base-multilingual-uncased-finetuned-masress results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-uncased-finetuned-masress This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0946 - Accuracy: 0.5782 - F1: 0.5769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.1646 | 1.0 | 151 | 1.0626 | 0.5588 | 0.5566 | | 0.9281 | 2.0 | 302 | 0.9800 | 0.5869 | 0.5792 | | 0.8269 | 3.0 | 453 | 1.0134 | 0.5911 | 0.5775 | | 0.7335 | 4.0 | 604 | 1.0644 | 0.5861 | 0.5816 | | 0.6786 | 5.0 | 755 | 1.0946 | 0.5782 | 0.5769 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
cgt/Roberta-wwm-ext-large-qa
cgt
2022-11-01T09:34:05Z
14
1
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:cmrc2018", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-31T02:20:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cmrc2018 model-index: - name: Roberta-wwm-ext-large-qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Roberta-wwm-ext-large-qa This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) on the cmrc2018 dataset. It achieves the following results on the evaluation set: - Loss: 1.1416 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3584 | 1.0 | 1200 | 1.1416 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.10.0+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
kkotkar1/t5-base-finetuned-eli5
kkotkar1
2022-11-01T08:05:49Z
129
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-01T02:10:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-base-finetuned-eli5-finetuned-eli5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-eli5-finetuned-eli5 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 - Gen Len: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 68159 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1
pig4431/IMDB_roBERTa_5E
pig4431
2022-11-01T08:01:43Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:imdb", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-01T08:00:15Z
--- license: mit tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: IMDB_roBERTa_5E results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9466666666666667 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IMDB_roBERTa_5E This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2383 - Accuracy: 0.9467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5851 | 0.06 | 50 | 0.1789 | 0.94 | | 0.2612 | 0.13 | 100 | 0.1520 | 0.9533 | | 0.2339 | 0.19 | 150 | 0.1997 | 0.9267 | | 0.2349 | 0.26 | 200 | 0.1702 | 0.92 | | 0.207 | 0.32 | 250 | 0.1515 | 0.9333 | | 0.2222 | 0.38 | 300 | 0.1522 | 0.9467 | | 0.1916 | 0.45 | 350 | 0.1328 | 0.94 | | 0.1559 | 0.51 | 400 | 0.1676 | 0.94 | | 0.1621 | 0.58 | 450 | 0.1363 | 0.9467 | | 0.1663 | 0.64 | 500 | 0.1327 | 0.9533 | | 0.1841 | 0.7 | 550 | 0.1347 | 0.9467 | | 0.1742 | 0.77 | 600 | 0.1127 | 0.9533 | | 0.1559 | 0.83 | 650 | 0.1119 | 0.9467 | | 0.172 | 0.9 | 700 | 0.1123 | 0.9467 | | 0.1644 | 0.96 | 750 | 0.1326 | 0.96 | | 0.1524 | 1.02 | 800 | 0.1718 | 0.9467 | | 0.1456 | 1.09 | 850 | 0.1464 | 0.9467 | | 0.1271 | 1.15 | 900 | 0.1190 | 0.9533 | | 0.1412 | 1.21 | 950 | 0.1323 | 0.9533 | | 0.1114 | 1.28 | 1000 | 0.1475 | 0.9467 | | 0.1222 | 1.34 | 1050 | 0.1592 | 0.9467 | | 0.1164 | 1.41 | 1100 | 0.1345 | 0.96 | | 0.1126 | 1.47 | 1150 | 0.1325 | 0.9533 | | 0.1237 | 1.53 | 1200 | 0.1561 | 0.9533 | | 0.1385 | 1.6 | 1250 | 0.1225 | 0.9467 | | 0.1522 | 1.66 | 1300 | 0.1119 | 0.9533 | | 0.1154 | 1.73 | 1350 | 0.1231 | 0.96 | | 0.1182 | 1.79 | 1400 | 0.1366 | 0.96 | | 0.1415 | 1.85 | 1450 | 0.0972 | 0.96 | | 0.124 | 1.92 | 1500 | 0.1082 | 0.96 | | 0.1584 | 1.98 | 1550 | 0.1770 | 0.96 | | 0.0927 | 2.05 | 1600 | 0.1821 | 0.9533 | | 0.1065 | 2.11 | 1650 | 0.0999 | 0.9733 | | 0.0974 | 2.17 | 1700 | 0.1365 | 0.9533 | | 0.079 | 2.24 | 1750 | 0.1694 | 0.9467 | | 0.1217 | 2.3 | 1800 | 0.1564 | 0.9533 | | 0.0676 | 2.37 | 1850 | 0.2116 | 0.9467 | | 0.0832 | 2.43 | 1900 | 0.1779 | 0.9533 | | 0.0899 | 2.49 | 1950 | 0.0999 | 0.9667 | | 0.0898 | 2.56 | 2000 | 0.1502 | 0.9467 | | 0.0955 | 2.62 | 2050 | 0.1776 | 0.9467 | | 0.0989 | 2.69 | 2100 | 0.1279 | 0.9533 | | 0.102 | 2.75 | 2150 | 0.1005 | 0.9667 | | 0.0957 | 2.81 | 2200 | 0.1070 | 0.9667 | | 0.0786 | 2.88 | 2250 | 0.1881 | 0.9467 | | 0.0897 | 2.94 | 2300 | 0.1951 | 0.9533 | | 0.0801 | 3.01 | 2350 | 0.1827 | 0.9467 | | 0.0829 | 3.07 | 2400 | 0.1854 | 0.96 | | 0.0665 | 3.13 | 2450 | 0.1775 | 0.9533 | | 0.0838 | 3.2 | 2500 | 0.1700 | 0.96 | | 0.0441 | 3.26 | 2550 | 0.1810 | 0.96 | | 0.071 | 3.32 | 2600 | 0.2083 | 0.9533 | | 0.0655 | 3.39 | 2650 | 0.1943 | 0.96 | | 0.0565 | 3.45 | 2700 | 0.2486 | 0.9533 | | 0.0669 | 3.52 | 2750 | 0.2540 | 0.9533 | | 0.0671 | 3.58 | 2800 | 0.2140 | 0.9467 | | 0.0857 | 3.64 | 2850 | 0.1609 | 0.9533 | | 0.0585 | 3.71 | 2900 | 0.2067 | 0.9467 | | 0.0597 | 3.77 | 2950 | 0.2380 | 0.9467 | | 0.0932 | 3.84 | 3000 | 0.1727 | 0.9533 | | 0.0744 | 3.9 | 3050 | 0.2099 | 0.9467 | | 0.0679 | 3.96 | 3100 | 0.2034 | 0.9467 | | 0.0447 | 4.03 | 3150 | 0.2461 | 0.9533 | | 0.0486 | 4.09 | 3200 | 0.2032 | 0.9533 | | 0.0409 | 4.16 | 3250 | 0.2468 | 0.9467 | | 0.0605 | 4.22 | 3300 | 0.2422 | 0.9467 | | 0.0319 | 4.28 | 3350 | 0.2681 | 0.9467 | | 0.0483 | 4.35 | 3400 | 0.2222 | 0.9533 | | 0.0801 | 4.41 | 3450 | 0.2247 | 0.9533 | | 0.0333 | 4.48 | 3500 | 0.2190 | 0.9533 | | 0.0432 | 4.54 | 3550 | 0.2167 | 0.9533 | | 0.0381 | 4.6 | 3600 | 0.2507 | 0.9467 | | 0.0647 | 4.67 | 3650 | 0.2410 | 0.9533 | | 0.0427 | 4.73 | 3700 | 0.2447 | 0.9467 | | 0.0627 | 4.8 | 3750 | 0.2332 | 0.9533 | | 0.0569 | 4.86 | 3800 | 0.2358 | 0.9533 | | 0.069 | 4.92 | 3850 | 0.2379 | 0.9533 | | 0.0474 | 4.99 | 3900 | 0.2383 | 0.9467 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.13.0 - Datasets 2.6.1 - Tokenizers 0.13.1
hdc-labs/outputs
hdc-labs
2022-11-01T07:55:10Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-01T07:39:34Z
--- tags: - generated_from_trainer datasets: - common_voice metrics: - wer model-index: - name: outputs results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice type: common_voice config: tr split: train+validation args: tr metrics: - name: Wer type: wer value: 0.35818608926565215 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # outputs This model was trained from scratch on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3878 - Wer: 0.3582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7391 | 0.92 | 100 | 3.5760 | 1.0 | | 2.927 | 1.83 | 200 | 3.0796 | 0.9999 | | 0.9009 | 2.75 | 300 | 0.9278 | 0.8226 | | 0.6529 | 3.67 | 400 | 0.5926 | 0.6367 | | 0.3623 | 4.59 | 500 | 0.5372 | 0.5692 | | 0.2888 | 5.5 | 600 | 0.4407 | 0.4838 | | 0.285 | 6.42 | 700 | 0.4341 | 0.4694 | | 0.0842 | 7.34 | 800 | 0.4153 | 0.4302 | | 0.1415 | 8.26 | 900 | 0.4317 | 0.4136 | | 0.1552 | 9.17 | 1000 | 0.4145 | 0.4013 | | 0.1184 | 10.09 | 1100 | 0.4115 | 0.3844 | | 0.0556 | 11.01 | 1200 | 0.4182 | 0.3862 | | 0.0851 | 11.93 | 1300 | 0.3985 | 0.3688 | | 0.0961 | 12.84 | 1400 | 0.4030 | 0.3665 | | 0.0596 | 13.76 | 1500 | 0.3880 | 0.3631 | | 0.0917 | 14.68 | 1600 | 0.3878 | 0.3582 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
kit-nlp/transformers-ud-japanese-electra-base-discriminator-cyberbullying
kit-nlp
2022-11-01T07:18:40Z
37
2
transformers
[ "transformers", "pytorch", "electra", "text-classification", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-09T04:08:15Z
--- language: ja license: cc-by-sa-4.0 --- # electra-base-cyberbullying This is an [ELECTRA](https://github.com/google-research/electra) Base model for the Japanese language finetuned for automatic cyberbullying detection. The model was based on [Megagon Labs ELECTRA Base](https://huggingface.co/megagonlabs/transformers-ud-japanese-electra-base-discriminator), and later finetuned on a balanced dataset created by unifying two datasets, namely "Harmful BBS Japanese comments dataset" and "Twitter Japanese cyberbullying dataset". ## Licenses The finetuned model with all attached files is licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/), or Creative Commons Attribution-ShareAlike 4.0 International License. <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a> ## Citations Please, cite this model using the following citation. ``` @inproceedings{tanabe2022electra-base-cyberbullying, title={北見工業大学 テキスト情報処理研究室 ELECTRA Base ネットいじめ検出モデル}, author={田邊 威裕 and プタシンスキ ミハウ and エロネン ユーソ and 桝井 文人}, publisher={HuggingFace}, year={2022}, url = "https://huggingface.co/kit-nlp/transformers-ud-japanese-electra-base-discriminator-cyberbullying" } ```
kit-nlp/bert-base-japanese-sentiment-cyberbullying
kit-nlp
2022-11-01T07:18:05Z
52
4
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-09T02:16:34Z
--- language: ja license: cc-by-sa-4.0 --- # electra-base-cyberbullying This is a BERT Base model for the Japanese language finetuned for automatic cyberbullying detection. The model was based on [daigo's BERT Base for Japanese sentiment analysis](https://huggingface.co/daigo/bert-base-japanese-sentiment), and later finetuned on a balanced dataset created by unifying two datasets, namely "Harmful BBS Japanese comments dataset" and "Twitter Japanese cyberbullying dataset". ## Licenses The finetuned model with all attached files is licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/), or Creative Commons Attribution-ShareAlike 4.0 International License. <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a> ## Citations Please, cite this model using the following citation. ``` @inproceedings{tanabe2022bert-base-cyberbullying, title={北見工業大学 テキスト情報処理研究室 BERT Base ネットいじめ検出モデル (Daigo ver.)}, author={田邊 威裕 and プタシンスキ ミハウ and エロネン ユーソ and 桝井 文人}, publisher={HuggingFace}, year={2022}, url = "https://huggingface.co/kit-nlp/bert-base-japanese-sentiment-cyberbullying" } ```
thisisHJLee/wav2vec2-large-xls-r-300m-korean-sen3
thisisHJLee
2022-11-01T07:17:15Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-01T02:14:34Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-korean-sen3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-korean-sen3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0111 - Cer: 0.0014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.7932 | 1.0 | 1614 | 0.2858 | 0.0740 | | 0.153 | 2.0 | 3228 | 0.0290 | 0.0054 | | 0.08 | 3.0 | 4842 | 0.0111 | 0.0014 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.0 - Datasets 1.18.3 - Tokenizers 0.11.0
kit-nlp/electra-small-japanese-discriminator-cyberbullying
kit-nlp
2022-11-01T07:14:15Z
9
2
transformers
[ "transformers", "pytorch", "electra", "text-classification", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-09T02:43:59Z
--- language: ja license: cc-by-sa-4.0 --- # electra-base-cyberbullying This is an [ELECTRA](https://github.com/google-research/electra) Small model for the Japanese language finetuned for automatic cyberbullying detection. The model was based on [Izumi Lab ELECTRA small Japanese discriminator](https://huggingface.co/izumi-lab/electra-small-japanese-discriminator), and later finetuned on a balanced dataset created by unifying two datasets, namely "Harmful BBS Japanese comments dataset" and "Twitter Japanese cyberbullying dataset". ## Licenses The finetuned model with all attached files is licensed under [CC BY-SA 4.0](http://creativecommons.org/licenses/by-sa/4.0/), or Creative Commons Attribution-ShareAlike 4.0 International License. <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a> ## Citations Please, cite this model using the following citation. ``` @inproceedings{tanabe2022electra-small-cyberbullying, title={北見工業大学 テキスト情報処理研究室 ELECTRA Small ネットいじめ検出モデル (Izumi Lab ver.)}, author={田邊 威裕 and プタシンスキ ミハウ and エロネン ユーソ and 桝井 文人}, publisher={HuggingFace}, year={2022}, url = "https://huggingface.co/kit-nlp/electra-small-japanese-discriminator-cyberbullying" } ```
SSK0908/ppo-LunarLander-v2
SSK0908
2022-11-01T05:33:03Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-11-01T05:32:34Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.54 +/- 22.80 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
fanpu/model_output_subreddit-wallstreetbets_new
fanpu
2022-11-01T05:30:52Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-01T01:38:17Z
--- license: mit tags: - generated_from_trainer model-index: - name: model_output_subreddit-wallstreetbets_new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_output_subreddit-wallstreetbets_new This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.8945 | 1.19 | 5000 | 3.7710 | | 3.6757 | 2.39 | 10000 | 3.7186 | | 3.5115 | 3.58 | 15000 | 3.6829 | | 3.3631 | 4.77 | 20000 | 3.6832 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
adit94/sentencetest
adit94
2022-11-01T04:30:14Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-11-01T03:42:10Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 625 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 188, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/fienddddddd
huggingtweets
2022-11-01T03:45:19Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-11-01T03:39:16Z
--- language: en thumbnail: http://www.huggingtweets.com/fienddddddd/1667274315870/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1429983882741489668/TQAnTzje_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Golden Boy Noah</div> <div style="text-align: center; font-size: 14px;">@fienddddddd</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Golden Boy Noah. | Data | Golden Boy Noah | | --- | --- | | Tweets downloaded | 158 | | Retweets | 30 | | Short tweets | 12 | | Tweets kept | 116 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/25q0d5x3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fienddddddd's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ob718th) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ob718th/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fienddddddd') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Mingguksky/PyTorch-StudioGAN
Mingguksky
2022-11-01T03:20:38Z
0
18
null
[ "arxiv:2206.09479", "region:us" ]
null
2022-10-31T14:06:24Z
<p align="center"> <img width="60%" src="https://raw.githubusercontent.com/POSTECH-CVLab/PyTorch-StudioGAN/master/docs/figures/studiogan_logo.jpg" /> </p>**StudioGAN** is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation. StudioGAN aims to offer an identical playground for modern GANs so that machine learning researchers can readily compare and analyze a new idea. This hub provides all the checkpoints we used to create the GAN benchmarks below. Please visit our github repository ([PyTorch-StudioGAN](https://github.com/POSTECH-CVLab/PyTorch-StudioGAN)) for more details. <p align="center"> <img width="95%" src="https://raw.githubusercontent.com/POSTECH-CVLab/PyTorch-StudioGAN/master/docs/figures/StudioGAN_Benchmark.png"/> </p> ## License PyTorch-StudioGAN is an open-source library under the MIT license (MIT). However, portions of the library are avaiiable under distinct license terms: StyleGAN2, StyleGAN2-ADA, and StyleGAN3 are licensed under [NVIDIA source code license](https://github.com/POSTECH-CVLab/PyTorch-StudioGAN/blob/master/LICENSE-NVIDIA), and PyTorch-FID is licensed under [Apache License](https://github.com/POSTECH-CVLab/PyTorch-StudioGAN/blob/master/src/metrics/fid.py). ## Citation StudioGAN is established for the following research projects. Please cite our work if you use StudioGAN. ```bib @article{kang2022StudioGAN, title = {{StudioGAN: A Taxonomy and Benchmark of GANs for Image Synthesis}}, author = {MinGuk Kang and Joonghyuk Shin and Jaesik Park}, journal = {2206.09479 (arXiv)}, year = {2022} } ``` ```bib @inproceedings{kang2021ReACGAN, title = {{Rebooting ACGAN: Auxiliary Classifier GANs with Stable Training}}, author = {Minguk Kang, Woohyeon Shim, Minsu Cho, and Jaesik Park}, journal = {Conference on Neural Information Processing Systems (NeurIPS)}, year = {2021} } ``` ```bib @inproceedings{kang2020ContraGAN, title = {{ContraGAN: Contrastive Learning for Conditional Image Generation}}, author = {Minguk Kang and Jaesik Park}, journal = {Conference on Neural Information Processing Systems (NeurIPS)}, year = {2020} } ```
cheese7858/stance_detection
cheese7858
2022-11-01T02:39:11Z
9
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-31T03:22:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: stance_detection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stance_detection This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) towards 26 US SPAC stock mergers on Twitter. It achieves the following results on the evaluation set: - Loss: 0.4906 - Accuracy: 0.8409 - F1w: 0.8574 - Acc0: 0.8293 - Acc1: 0.6 - Acc2: 0.7652 - Acc3: 0.8637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1w | Acc0 | Acc1 | Acc2 | Acc3 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:----:|:------:|:------:| | 0.7748 | 1.0 | 194 | 0.5172 | 0.8158 | 0.8297 | 0.8699 | 0.0 | 0.7429 | 0.8248 | | 0.5181 | 2.0 | 388 | 0.4692 | 0.8509 | 0.8587 | 0.8699 | 0.4 | 0.7429 | 0.8743 | | 0.3868 | 3.0 | 582 | 0.4906 | 0.8409 | 0.8574 | 0.8293 | 0.6 | 0.7652 | 0.8637 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.11.0 - Datasets 2.5.2 - Tokenizers 0.12.1
rufimelo/Legal-BERTimbau-base-TSDAE-sts
rufimelo
2022-11-01T01:31:11Z
3
1
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "pt", "dataset:assin", "dataset:assin2", "dataset:stsb_multi_mt", "dataset:rufimelo/PortugueseLegalSentences-v1", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-29T17:36:41Z
--- language: - pt thumbnail: "Portuguese BERT for the Legal Domain" pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - transformers datasets: - assin - assin2 - stsb_multi_mt - rufimelo/PortugueseLegalSentences-v1 widget: - source_sentence: "O advogado apresentou as provas ao juíz." sentences: - "O juíz leu as provas." - "O juíz leu o recurso." - "O juíz atirou uma pedra." example_title: "Example 1" model-index: - name: BERTimbau results: - task: name: STS type: STS metrics: - name: Pearson Correlation - assin Dataset type: Pearson Correlation value: 0.78814 - name: Pearson Correlation - assin2 Dataset type: Pearson Correlation value: 0.81380 - name: Pearson Correlation - stsb_multi_mt pt Dataset type: Pearson Correlation value: 0.75777 --- # rufimelo/Legal-BERTimbau-base-TSDAE-sts This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. rufimelo/Legal-BERTimbau-base-TSDAE-sts is based on Legal-BERTimbau-large which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-large-portuguese-cased) large. It is adapted to the Portuguese legal domain and trained for STS on portuguese datasets. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["Isto é um exemplo", "Isto é um outro exemplo"] model = SentenceTransformer('rufimelo/Legal-BERTimbau-base-TSDAE-sts') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-BERTimbau-base-TSDAE-sts') model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-base-TSDAE-sts') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results STS | Model| Assin | Assin2|stsb_multi_mt pt| avg| | ---------------------------------------- | ---------- | ---------- |---------- |---------- | | Legal-BERTimbau-sts-base| 0.71457| 0.73545 | 0.72383|0.72462| | Legal-BERTimbau-sts-base-ma| 0.74874 | 0.79532|0.82254 |0.78886| | Legal-BERTimbau-sts-base-ma-v2| 0.75481 | 0.80262|0.82178|0.79307| | Legal-BERTimbau-base-TSDAE-sts|0.78814 |0.81380 |0.75777|0.78657| | Legal-BERTimbau-sts-large| 0.76629| 0.82357 | 0.79120|0.79369| | Legal-BERTimbau-sts-large-v2| 0.76299 | 0.81121|0.81726 |0.79715| | Legal-BERTimbau-sts-large-ma| 0.76195| 0.81622 | 0.82608|0.80142| | Legal-BERTimbau-sts-large-ma-v2| 0.7836| 0.8462| 0.8261| 0.81863| | Legal-BERTimbau-sts-large-ma-v3| 0.7749| **0.8470**| 0.8364| **0.81943**| | Legal-BERTimbau-large-v2-sts| 0.71665| 0.80106| 0.73724| 0.75165| | Legal-BERTimbau-large-TSDAE-sts| 0.72376| 0.79261| 0.73635| 0.75090| | Legal-BERTimbau-large-TSDAE-sts-v2| 0.81326| 0.83130| 0.786314| 0.81029| | Legal-BERTimbau-large-TSDAE-sts-v3|0.80703 |0.82270 |0.77638 |0.80204 | | ---------------------------------------- | ---------- |---------- |---------- |---------- | | BERTimbau base Fine-tuned for STS|**0.78455** | 0.80626|0.82841|0.80640| | BERTimbau large Fine-tuned for STS|0.78193 | 0.81758|0.83784|0.81245| | ---------------------------------------- | ---------- |---------- |---------- |---------- | | paraphrase-multilingual-mpnet-base-v2| 0.71457| 0.79831 |0.83999 |0.78429| | paraphrase-multilingual-mpnet-base-v2 Fine-tuned with assin(s)| 0.77641|0.79831 |**0.84575**|0.80682| ## Training rufimelo/Legal-BERTimbau-base-TSDAE-sts is based on rufimelo/Legal-BERTimbau-base-TSDAE which derives from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) large. rufimelo/Legal-BERTimbau-base-TSDAE was trained with TSDAE: 50000 cleaned documents (https://huggingface.co/datasets/rufimelo/PortugueseLegalSentences-v1) 'lr': 1e-5 It was trained for Semantic Textual Similarity, being submitted to a fine tuning stage with the [assin](https://huggingface.co/datasets/assin), [assin2](https://huggingface.co/datasets/assin2) and [stsb_multi_mt pt](https://huggingface.co/datasets/stsb_multi_mt) datasets. 'lr': 1e-5 ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ## Citing & Authors If you use this work, please cite: ```bibtex @inproceedings{souza2020bertimbau, author = {F{\'a}bio Souza and Rodrigo Nogueira and Roberto Lotufo}, title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, year = {2020} } @inproceedings{fonseca2016assin, title={ASSIN: Avaliacao de similaridade semantica e inferencia textual}, author={Fonseca, E and Santos, L and Criscuolo, Marcelo and Aluisio, S}, booktitle={Computational Processing of the Portuguese Language-12th International Conference, Tomar, Portugal}, pages={13--15}, year={2016} } @inproceedings{real2020assin, title={The assin 2 shared task: a quick overview}, author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo}, booktitle={International Conference on Computational Processing of the Portuguese Language}, pages={406--412}, year={2020}, organization={Springer} } @InProceedings{huggingface:dataset:stsb_multi_mt, title = {Machine translated multilingual STS benchmark dataset.}, author={Philip May}, year={2021}, url={https://github.com/PhilipMay/stsb-multi-mt} } ```
Assadullah/donut-base-sroie2
Assadullah
2022-11-01T01:15:12Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-09-21T02:28:53Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie2 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.8.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/anders-zorn
sd-concepts-library
2022-11-01T00:49:33Z
0
13
null
[ "license:mit", "region:us" ]
null
2022-11-01T00:49:30Z
--- license: mit --- ### Anders Zorn on Stable Diffusion This is the `<anders-zorn>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<anders-zorn> 0](https://huggingface.co/sd-concepts-library/anders-zorn/resolve/main/concept_images/2.jpeg) ![<anders-zorn> 1](https://huggingface.co/sd-concepts-library/anders-zorn/resolve/main/concept_images/3.jpeg) ![<anders-zorn> 2](https://huggingface.co/sd-concepts-library/anders-zorn/resolve/main/concept_images/7.jpeg) ![<anders-zorn> 3](https://huggingface.co/sd-concepts-library/anders-zorn/resolve/main/concept_images/9.jpeg) ![<anders-zorn> 4](https://huggingface.co/sd-concepts-library/anders-zorn/resolve/main/concept_images/0.jpeg) ![<anders-zorn> 5](https://huggingface.co/sd-concepts-library/anders-zorn/resolve/main/concept_images/5.jpeg) ![<anders-zorn> 6](https://huggingface.co/sd-concepts-library/anders-zorn/resolve/main/concept_images/8.jpeg) ![<anders-zorn> 7](https://huggingface.co/sd-concepts-library/anders-zorn/resolve/main/concept_images/1.jpeg) ![<anders-zorn> 8](https://huggingface.co/sd-concepts-library/anders-zorn/resolve/main/concept_images/10.jpeg) ![<anders-zorn> 9](https://huggingface.co/sd-concepts-library/anders-zorn/resolve/main/concept_images/4.jpeg) ![<anders-zorn> 10](https://huggingface.co/sd-concepts-library/anders-zorn/resolve/main/concept_images/11.jpeg) ![<anders-zorn> 11](https://huggingface.co/sd-concepts-library/anders-zorn/resolve/main/concept_images/6.jpeg)
microsoft/cocolm-base
microsoft
2022-11-01T00:26:13Z
11
6
transformers
[ "transformers", "pytorch", "arxiv:2102.08473", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# Model Card for COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining # Model Details ## Model Description This model card contains the COCO-LM model (**base++** version) pretrained models on GLUE and SQuAD 2.0 benchmarks. - **Developed by:** Microsoft - **Shared by [Optional]:** HuggingFace - **Model type:** Language model - **Language(s) (NLP):** en - **License:** MIT - **Related Models:** More information needed - **Parent Model:** More information needed - **Resources for more information:** - [GitHub Repo](https://github.com/microsoft/COCO-LM) - [Associated Paper](https://arxiv.org/abs/2102.08473) # Uses ## Direct Use Correcting and Contrasting Text Sequences for Language Model Pretraining ## Downstream Use [Optional] More information needed. ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations. # Training Details ## Training Data See the associated [dataset card]({0}) for further details ## Training Procedure ### Preprocessing The model devloeprs note in the [associated paper](https://arxiv.org/abs/2102.08473): >We employ three standard settings, base, base++, and large++. Base is the BERTBase training configuration: Pretraining on Wikipedia and BookCorpus (16 GB of texts) for 256 million samples on 512 token sequences (125K batches with 2048 batch size). We use the same corpus and 32, 768 uncased BPE vocabulary as with TUPE. Base++ trains the base size model with larger corpora and/or more training steps. Following recent research, we add in OpenWebText, CC-News , and STORIES, to a total of 160 GB texts, and train for 4 billion (with 2048 batch size) samples. We follow the prepossessing of UniLMV2 and use 64, 000 cased BPE vocabulary. Large++ uses the same training corpora as base++ and pretrains for 4 billion samples (2048 batch size). Its Transformer configuration is the same with BERTLarge. ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data GLUE SQuAD 2.0 ### Factors All results are single-task, single-model fine-tuning. ### Metrics More information needed ## Results ### GLUE Fine-Tuning Results The [General Language Understanding Evaluation (GLUE)](https://gluebenchmark.com/) benchmark is a collection of sentence- or sentence-pair language understanding tasks for evaluating and analyzing natural language understanding systems. GLUE dev set results of COCO-LM base++ and large++ models are as follows (median of 5 different random seeds): | Model | MNLI-m/mm | QQP | QNLI | SST-2 | CoLA | RTE | MRPC | STS-B | AVG | | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | | COCO-LM base++ | 90.2/90.0 | 92.2 | 94.2 | 94.6 | 67.3 | 87.4 | 91.2 | 91.8 | 88.6 | | COCO-LM large++ | 91.4/91.6 | 92.8 | 95.7 | 96.9 | 73.9 | 91.0 | 92.2 | 92.7 | 90.8 | GLUE test set results of COCO-LM base++ and large++ models are as follows (no ensemble, task-specific tricks, etc.): | Model | MNLI-m/mm | QQP | QNLI | SST-2 | CoLA | RTE | MRPC | STS-B | AVG | | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | | COCO-LM base++ | 89.8/89.3 | 89.8 | 94.2 | 95.6 | 68.6 | 82.3 | 88.5 | 90.3 | 87.4 | | COCO-LM large++ | 91.6/91.1 | 90.5 | 95.8 | 96.7 | 70.5 | 89.2 | 88.4 | 91.8 | 89.3 | ### SQuAD 2.0 Fine-Tuning Results [Stanford Question Answering Dataset (SQuAD)](https://rajpurkar.github.io/SQuAD-explorer/) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. SQuAD 2.0 dev set results of COCO-LM base++ and large++ models are as follows (median of 5 different random seeds): | Model | EM | F1 | | ------ | ------ | ------ | | COCO-LM base++ | 85.4 | 88.1 | | COCO-LM large++ | 88.2 | 91.0 | # Model Examination The model delevopers note in the [associated paper](https://arxiv.org/abs/2102.08473): >Architecture. Removing relative position encoding (Rel-Pos) leads to better numbers on some tasks but significantly hurts MNLI. Using a shallow auxiliary network and keeping the same hidden dimension (768) is more effective than ELECTRA’s 12-layer but 256-hidden dimension generator. >One limitation of this work is that the contrastive pairs are constructed by simple cropping and MLM replacements. Recent studies have shown the effectiveness of advanced data augmentation techniques in fine-tuning language models [16, 38, 51]. A future research direction is to explore better ways to construct contrastive pairs in language model pretraining. # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed} # Technical Specifications [optional] ## Model Architecture and Objective The model delevopers note in the [associated paper](https://arxiv.org/abs/2102.08473): >Model Architecture. Our base/base++ model uses the BERTBase architecture: 12 layer Transformer, 768 hidden size, plus T5 relative position encoding. Our large++ model is the same with BERTLarge, 24 layer and 1024 hidden size, plus T5 relative position encoding. Our auxiliary network uses the same hidden size but a shallow 4-layer Transformer in base/base++ and a 6-layer one in large++. When generating XMLM we disable dropout in the auxiliary model ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed # Citation **BibTeX:** If you find the code and models useful for your research, please cite the following paper: ``` @inproceedings{meng2021cocolm, title={{COCO-LM}: Correcting and contrasting text sequences for language model pretraining}, author={Meng, Yu and Xiong, Chenyan and Bajaj, Payal and Tiwary, Saurabh and Bennett, Paul and Han, Jiawei and Song, Xia}, booktitle={Conference on Neural Information Processing Systems}, year={2021} } ``` # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Microsoft in collaboration with Ezi Ozoani and the HuggingFace team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoModel model = AutoModel.from_pretrained("microsoft/cocolm-base") ``` </details>
LeKazuha/Tf-base
LeKazuha
2022-10-31T23:32:43Z
62
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-31T23:27:29Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Tf-base results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Tf-base This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.7.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Sangeetha/fineTunedCategory
Sangeetha
2022-10-31T23:21:49Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-31T23:21:34Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 183 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 183, "warmup_steps": 19, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
sd-concepts-library/degodsheavy
sd-concepts-library
2022-10-31T22:14:24Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-10-31T22:14:13Z
--- license: mit --- ### DeGodsHeavy on Stable Diffusion This is the `<degods-heavy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<degods-heavy> 0](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/19.jpeg) ![<degods-heavy> 1](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/16.jpeg) ![<degods-heavy> 2](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/21.jpeg) ![<degods-heavy> 3](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/5.jpeg) ![<degods-heavy> 4](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/13.jpeg) ![<degods-heavy> 5](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/9.jpeg) ![<degods-heavy> 6](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/10.jpeg) ![<degods-heavy> 7](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/20.jpeg) ![<degods-heavy> 8](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/6.jpeg) ![<degods-heavy> 9](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/17.jpeg) ![<degods-heavy> 10](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/4.jpeg) ![<degods-heavy> 11](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/1.jpeg) ![<degods-heavy> 12](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/3.jpeg) ![<degods-heavy> 13](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/12.jpeg) ![<degods-heavy> 14](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/2.jpeg) ![<degods-heavy> 15](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/0.jpeg) ![<degods-heavy> 16](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/7.jpeg) ![<degods-heavy> 17](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/8.jpeg) ![<degods-heavy> 18](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/15.jpeg) ![<degods-heavy> 19](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/22.jpeg) ![<degods-heavy> 20](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/18.jpeg) ![<degods-heavy> 21](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/11.jpeg) ![<degods-heavy> 22](https://huggingface.co/sd-concepts-library/degodsheavy/resolve/main/concept_images/14.jpeg)
LeKazuha/distilbert-base-uncased-finetuned-squad
LeKazuha
2022-10-31T22:03:59Z
11
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-18T21:31:52Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: LeKazuha/distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # LeKazuha/distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1946 - Train End Logits Accuracy: 0.6778 - Train Start Logits Accuracy: 0.6365 - Validation Loss: 1.1272 - Validation End Logits Accuracy: 0.6948 - Validation Start Logits Accuracy: 0.6569 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.1946 | 0.6778 | 0.6365 | 1.1272 | 0.6948 | 0.6569 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.7.0 - Datasets 2.1.0 - Tokenizers 0.12.1
SiddharthaM/twitter-data-distilbert-base-uncased-sentiment-finetuned-memes-test
SiddharthaM
2022-10-31T21:14:21Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-31T16:48:38Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-data-distilbert-base-uncased-sentiment-finetuned-memes-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-data-distilbert-base-uncased-sentiment-finetuned-memes-test This model is a fine-tuned version of [jayantapaul888/twitter-data-distilbert-base-uncased-sentiment-finetuned-memes](https://huggingface.co/jayantapaul888/twitter-data-distilbert-base-uncased-sentiment-finetuned-memes) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6985 - Accuracy: 0.8218 - Precision: 0.8225 - Recall: 0.8218 - F1: 0.8221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 294 | 0.4189 | 0.8124 | 0.8151 | 0.8124 | 0.8136 | | 0.4351 | 2.0 | 588 | 0.4057 | 0.8258 | 0.8275 | 0.8258 | 0.8263 | | 0.4351 | 3.0 | 882 | 0.4628 | 0.8220 | 0.8244 | 0.8220 | 0.8224 | | 0.2248 | 4.0 | 1176 | 0.5336 | 0.8250 | 0.8258 | 0.8250 | 0.8253 | | 0.2248 | 5.0 | 1470 | 0.6466 | 0.8208 | 0.8217 | 0.8208 | 0.8212 | | 0.1158 | 6.0 | 1764 | 0.6985 | 0.8218 | 0.8225 | 0.8218 | 0.8221 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1