modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-09 00:41:25
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
549 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-09 00:41:08
card
stringlengths
11
1.01M
qownscks/banana_hand_to_hand
qownscks
2025-09-08T20:08:01Z
24
0
lerobot
[ "lerobot", "safetensors", "robotics", "smolvla", "dataset:qownscks/banana_hand_to_hand", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-09-06T13:54:47Z
--- base_model: lerobot/smolvla_base datasets: qownscks/banana_hand_to_hand library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - robotics - smolvla - lerobot --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` *Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`.* ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details * **License:** apache-2.0
maukluchoda/blockassist-bc-placid_stinky_buffalo_1757362057
maukluchoda
2025-09-08T20:07:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid stinky buffalo", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T20:07:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid stinky buffalo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
b9504148/blockassist-bc-thorny_whiskered_opossum_1757362027
b9504148
2025-09-08T20:07:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny whiskered opossum", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T20:07:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny whiskered opossum --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
craftcore/lightning
craftcore
2025-09-08T20:07:10Z
0
0
diffusers
[ "diffusers", "safetensors", "gguf", "license:apache-2.0", "region:us" ]
null
2025-09-08T19:43:24Z
--- license: apache-2.0 ---
arvisom516/blockassist-bc-marine_tough_hornet_1757361969
arvisom516
2025-09-08T20:06:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "marine tough hornet", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T20:06:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - marine tough hornet --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Paradoxis/Qwen2.5-VL-3B-Instruct-GRPO
Paradoxis
2025-09-08T20:05:21Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "grpo", "hf_jobs", "trl", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-3B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-09-08T09:34:18Z
--- base_model: Qwen/Qwen2.5-VL-3B-Instruct library_name: transformers model_name: Qwen2.5-VL-3B-Instruct-GRPO tags: - generated_from_trainer - grpo - hf_jobs - trl licence: license --- # Model Card for Qwen2.5-VL-3B-Instruct-GRPO This model is a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Paradoxis/Qwen2.5-VL-3B-Instruct-GRPO", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/flofiz-universit-de-bourgogne/GRPO/runs/mty0pdyc) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.23.0.dev0 - Transformers: 4.56.0 - Pytorch: 2.7.1 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citations Cite GRPO as: ```bibtex @article{shao2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Muapi/wizard-s-spellbook-taped-faces
Muapi
2025-09-08T20:05:00Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-09-08T20:04:48Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Wizard's Spellbook: Taped Faces ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: s3ll0t4p3, s3ll0t4p3 closeup photograph ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1144079@1286742", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
goshujaieja/blockassist-bc-untamed_armored_ram_1757361824
goshujaieja
2025-09-08T20:04:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed armored ram", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T20:04:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed armored ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tewsharlesau/blockassist-bc-nasty_hibernating_rabbit_1757361797
tewsharlesau
2025-09-08T20:03:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "nasty hibernating rabbit", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T20:03:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - nasty hibernating rabbit --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cesarcosentino/blockassist-bc-colorful_sturdy_anteater_1757361773
cesarcosentino
2025-09-08T20:03:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful sturdy anteater", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T20:02:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful sturdy anteater --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cyprogabellivari/blockassist-bc-singing_territorial_cod_1757361748
cyprogabellivari
2025-09-08T20:02:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "singing territorial cod", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T20:02:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - singing territorial cod --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cddoan/phishingAI
cddoan
2025-09-08T20:02:27Z
2
0
null
[ "gguf", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-02T22:07:49Z
--- license: mit --- ## Adding the model to Ollama - Install the model, the model file and Ollama - Run: ollama create phishingAI -f modelFile
Muapi/dalcefo_flux1.dev-kasuki
Muapi
2025-09-08T20:02:25Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-09-08T20:01:14Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Dalcefo_Flux1.Dev-Kasuki ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:677854@758780", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
abadkibriya3524/blockassist-bc-timid_padded_ape_1757361717
abadkibriya3524
2025-09-08T20:02:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "timid padded ape", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T20:02:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - timid padded ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tauteolifrancis/blockassist-bc-nocturnal_vicious_buffalo_1757361622
tauteolifrancis
2025-09-08T20:00:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "nocturnal vicious buffalo", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T20:00:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - nocturnal vicious buffalo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1757361525
bah63843
2025-09-08T19:59:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T19:59:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Karthikappi0011/gemma-3-finetuned-v0.1-supervised_data
Karthikappi0011
2025-09-08T19:58:54Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3_text", "en", "base_model:unsloth/gemma-3-1b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-1b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-08T19:56:37Z
--- base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** Karthikappi0011 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-1b-it-unsloth-bnb-4bit This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
yandjaynejenei/blockassist-bc-hairy_shiny_hyena_1757361486
yandjaynejenei
2025-09-08T19:58:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy shiny hyena", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T19:58:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy shiny hyena --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ghost613/VC-MJY_Woman_40s-0_preprocessed-12
ghost613
2025-09-08T19:56:46Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-09-06T08:09:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aidan-ucc/LoRA-qwen2.5VL7b-3900-eco
aidan-ucc
2025-09-08T19:54:40Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Qwen2.5-VL-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-VL-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2025-09-08T19:38:25Z
--- base_model: unsloth/Qwen2.5-VL-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2_5_vl license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** aidan-ucc - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-VL-7B-Instruct This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
bah63843/blockassist-bc-plump_fast_antelope_1757361131
bah63843
2025-09-08T19:53:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T19:52:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bingbangboom/QwenPhil
bingbangboom
2025-09-08T19:52:59Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-08T19:52:37Z
--- base_model: unsloth/qwen3-4b-instruct-2507-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** bingbangboom - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-4b-instruct-2507-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
GigaGabe/vit_base-oxford-iiit-pets
GigaGabe
2025-09-08T19:52:44Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-09-08T17:45:26Z
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit_base-oxford-iiit-pets results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit_base-oxford-iiit-pets This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the pcuenq/oxford-pets dataset. It achieves the following results on the evaluation set: - Loss: 0.2044 - Accuracy: 0.9445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3791 | 1.0 | 370 | 0.2934 | 0.9296 | | 0.2011 | 2.0 | 740 | 0.2223 | 0.9364 | | 0.1679 | 3.0 | 1110 | 0.2024 | 0.9364 | | 0.1518 | 4.0 | 1480 | 0.1935 | 0.9391 | | 0.1355 | 5.0 | 1850 | 0.1911 | 0.9418 | ### Framework versions - Transformers 4.56.0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.0
silverbenehi/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bold_running_kangaroo
silverbenehi
2025-09-08T19:49:25Z
105
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am bold running kangaroo", "trl", "genrl-swarm", "I am bold_running_kangaroo", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-09T21:11:49Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bold_running_kangaroo tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am bold running kangaroo - trl - genrl-swarm - I am bold_running_kangaroo licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bold_running_kangaroo This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="silverbenehi/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-bold_running_kangaroo", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
palmart111/blockassist-bc-armored_feline_capybara_1757360916
palmart111
2025-09-08T19:49:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored feline capybara", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T19:49:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored feline capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NahedDom/blockassist-bc-flapping_stocky_leopard_1757358661
NahedDom
2025-09-08T19:48:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flapping stocky leopard", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T19:48:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flapping stocky leopard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
straino/Phi-3-mini-128k-instruct-IQ4_NL-GGUF
straino
2025-09-08T19:47:56Z
0
0
null
[ "gguf", "nlp", "code", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:microsoft/Phi-3-mini-128k-instruct", "base_model:quantized:microsoft/Phi-3-mini-128k-instruct", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
2025-09-08T19:47:44Z
--- license: mit license_link: https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/LICENSE language: - en pipeline_tag: text-generation tags: - nlp - code - llama-cpp - gguf-my-repo widget: - messages: - role: user content: Can you provide ways to eat combinations of bananas and dragonfruits? base_model: microsoft/Phi-3-mini-128k-instruct --- # straino/Phi-3-mini-128k-instruct-IQ4_NL-GGUF This model was converted to GGUF format from [`microsoft/Phi-3-mini-128k-instruct`](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo straino/Phi-3-mini-128k-instruct-IQ4_NL-GGUF --hf-file phi-3-mini-128k-instruct-iq4_nl-imat.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo straino/Phi-3-mini-128k-instruct-IQ4_NL-GGUF --hf-file phi-3-mini-128k-instruct-iq4_nl-imat.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo straino/Phi-3-mini-128k-instruct-IQ4_NL-GGUF --hf-file phi-3-mini-128k-instruct-iq4_nl-imat.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo straino/Phi-3-mini-128k-instruct-IQ4_NL-GGUF --hf-file phi-3-mini-128k-instruct-iq4_nl-imat.gguf -c 2048 ```
sekirr/blockassist-bc-masked_tenacious_whale_1757360827
sekirr
2025-09-08T19:47:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T19:47:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
FluidInference/coreml-kokoro
FluidInference
2025-09-08T19:47:22Z
0
0
null
[ "coreml", "region:us" ]
null
2025-09-08T06:19:05Z
--- license: apache-2.0 language: - en base_model: - hexgrad/Kokoro-82M pipeline_tag: text-to-speech --- Based on the original kokoro model, see https://github.com/FluidInference/FluidAudio for inference
Coolboi0099/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-tall_rangy_porcupine
Coolboi0099
2025-09-08T19:47:07Z
139
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am tall_rangy_porcupine", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-03T05:06:39Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am tall_rangy_porcupine --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
seams01/blockassist-bc-insectivorous_stubby_snake_1757359259
seams01
2025-09-08T19:46:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous stubby snake", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T19:46:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous stubby snake --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IcosaComputingHF/unlu_oss20b_HF
IcosaComputingHF
2025-09-08T19:45:53Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-08T19:43:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
liukevin666/blockassist-bc-yawning_striped_cassowary_1757360684
liukevin666
2025-09-08T19:45:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T19:45:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lavonihak/blockassist-bc-twitchy_lively_mosquito_1757360623
lavonihak
2025-09-08T19:43:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy lively mosquito", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T19:43:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy lively mosquito --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
caseboltvernie/blockassist-bc-quick_lazy_whale_1757360457
caseboltvernie
2025-09-08T19:41:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick lazy whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T19:41:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick lazy whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
prolinkmoon/blockassist-bc-rabid_scaly_anteater_1757360335
prolinkmoon
2025-09-08T19:40:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rabid scaly anteater", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T19:39:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rabid scaly anteater --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
shamith/babyLlama-TinyStories
shamith
2025-09-08T19:17:42Z
6
0
transformers
[ "transformers", "PyTorch", "text-generation", "en", "dataset:roneneldan/TinyStories", "license:mit", "endpoints_compatible", "region:us" ]
text-generation
2025-09-06T18:55:48Z
--- license: mit datasets: - roneneldan/TinyStories language: - en pipeline_tag: text-generation library_name: transformers tags: - PyTorch --- # Model Card for babyLlama-TinyStories The goal for training this model is to see if a tiny llm can generate coherent text/stories when trained a tiny subset of TinyStories, in this case just 1% of the total training data. I was able to locally train a small LLM, babyLlama based on Llama2 architecture, with close to 0.8M parameters and found it was able to generate coherent stories to an extent. ## Limitations - This model was trained with a context length of 64 so that it can be trained quickly on a laptop - This model uses a custom tokenizer specifically trained on TinyStories with a vocab size of 8192 ## Quick start ```python !git lfs install !git clone https://huggingface.co/shamith/babyLlama-TinyStories and cd babyLlama-TinyStories !git checkout "0.8M" import torch from transformers import AutoTokenizer from configuration_babyllama import BabyLlamaConfig from modeling_babyllama import BabyLlamaForCausalLM tokenizer = AutoTokenizer.from_pretrained("shamith/babyLlama-TinyStories", revision="0.8M") config = BabyLlamaConfig(max_seq_len=128) model = BabyLlamaForCausalLM(config) model.load_state_dict(torch.load("pytorch_model.bin", weights_only=True)) model.eval() prompt = "Once upon a time" input_ids = tokenizer.encode(prompt, return_tensors="pt") output = model.generate(input_ids, max_new_tokens=100, do_sample=True, temperature=0.6, top_k=60, repetition_penalty=1.1) output = tokenizer.decode(output[0], skip_special_tokens=True) print(output) # Output 1: Once upon a time, there was a little girl named Lily. She loved to play outside with her friends and run around the garden. One day, she found an interesting mushroom that was very pretty. She wanted to find it up, but it wasn't nice to break it. Lily was sad because she didn't know what to do. But then, her mom came over and saw the microscope. She said, "Lily, you are so kind of the mushroom." Lily thought it was a good spot in # Output 2: Once upon a time there was a little girl named Lucy. She had a very special toy that she loved to play with. Every day she would play outside and see some interesting things in the park. One day, Lucy saw a big black ball in the park. She wanted to play with it, so she started running around with the ball. She ran around and laughed and played with it all by herself. Suddenly, Lucy heard a noise coming from the mailbox. It was a big, ugly cat! She was feeling ``` ## Training procedure - revision: 0.8M - Trained on M1 Max iGPU for 6 epochs - Trained on 4,491,878 tokens, Validated on 44,357 examples. Each training epoch took around 55 minutes on average - [0.8M params, dtype: float32, batch size: 64]: The training takes about 2-2.5 GB of memory - Training script: train.ipynb ### Framework versions - torch: 2.5.1 - transformers: 4.48.0 - datasets: 3.2.0 - tokenizers: 0.21.4 - sentencepiece: 0.2.0
dwoprer/blockassist-bc-bipedal_flapping_anaconda_1757356191
dwoprer
2025-09-08T18:30:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bipedal flapping anaconda", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:29:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bipedal flapping anaconda --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ElRompeAnosFullAnal/ElRompeAnosFullAnal
ElRompeAnosFullAnal
2025-09-08T18:30:02Z
0
0
null
[ "license:cc-by-nc-4.0", "region:us" ]
null
2025-03-31T22:45:18Z
--- license: cc-by-nc-4.0 ---
tjsvdicfaslism/blockassist-bc-keen_bellowing_crocodile_1757356186
tjsvdicfaslism
2025-09-08T18:29:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen bellowing crocodile", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:29:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen bellowing crocodile --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1757356048
bah63843
2025-09-08T18:28:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:28:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
boomeryop/blockassist-bc-screeching_pawing_wallaby_1757356035
boomeryop
2025-09-08T18:27:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "screeching pawing wallaby", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:27:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - screeching pawing wallaby --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
andrewwentzel-epsilon/ttp-qwen-Q4_K_M-GGUF
andrewwentzel-epsilon
2025-09-08T18:27:43Z
0
0
transformers
[ "transformers", "gguf", "trl", "bco", "llama-cpp", "gguf-my-repo", "base_model:andrewwentzel-epsilon/ttp-qwen", "base_model:quantized:andrewwentzel-epsilon/ttp-qwen", "endpoints_compatible", "region:us" ]
null
2025-09-08T18:27:30Z
--- library_name: transformers tags: - trl - bco - llama-cpp - gguf-my-repo base_model: andrewwentzel-epsilon/ttp-qwen --- # andrewwentzel-epsilon/ttp-qwen-Q4_K_M-GGUF This model was converted to GGUF format from [`andrewwentzel-epsilon/ttp-qwen`](https://huggingface.co/andrewwentzel-epsilon/ttp-qwen) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/andrewwentzel-epsilon/ttp-qwen) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo andrewwentzel-epsilon/ttp-qwen-Q4_K_M-GGUF --hf-file ttp-qwen-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo andrewwentzel-epsilon/ttp-qwen-Q4_K_M-GGUF --hf-file ttp-qwen-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo andrewwentzel-epsilon/ttp-qwen-Q4_K_M-GGUF --hf-file ttp-qwen-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo andrewwentzel-epsilon/ttp-qwen-Q4_K_M-GGUF --hf-file ttp-qwen-q4_k_m.gguf -c 2048 ```
daliakaineroxie/blockassist-bc-miniature_flightless_caribou_1757356031
daliakaineroxie
2025-09-08T18:27:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "miniature flightless caribou", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:27:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - miniature flightless caribou --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Comfy-Org/hunyuan3D_2.1_repackaged
Comfy-Org
2025-09-08T18:26:28Z
0
2
diffusion-single-file
[ "diffusion-single-file", "comfyui", "region:us" ]
null
2025-09-05T02:20:34Z
--- tags: - diffusion-single-file - comfyui ---
ahumadaxhg/blockassist-bc-alert_spotted_dolphin_1757355970
ahumadaxhg
2025-09-08T18:26:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert spotted dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:26:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert spotted dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Benbass1991/DeepSeek-R1-Qwen3-8B-ToT-Merged
Benbass1991
2025-09-08T18:25:46Z
6
0
null
[ "safetensors", "qwen3", "tree", "of", "thought", "Tot", "thinking", "en", "base_model:deepseek-ai/DeepSeek-R1-0528-Qwen3-8B", "base_model:finetune:deepseek-ai/DeepSeek-R1-0528-Qwen3-8B", "license:mit", "region:us" ]
null
2025-09-04T22:56:13Z
--- license: mit language: - en base_model: - deepseek-ai/DeepSeek-R1-0528-Qwen3-8B tags: - tree - of - thought - Tot - thinking --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description This is a first attempt to fine tune a 8B paramater deepseek r1 model for tree of thought reasoning. It was fine-tuned using the dataset terrycraddock/Tree_Of_Thoughts_BASE_24k. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> terrycraddock/Tree_Of_Thoughts_BASE_24k [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
harfertwinston/blockassist-bc-hibernating_quick_dinosaur_1757355830
harfertwinston
2025-09-08T18:24:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hibernating quick dinosaur", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:24:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hibernating quick dinosaur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1757355739
liukevin666
2025-09-08T18:23:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:23:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mcbridepollakdq/blockassist-bc-armored_cunning_armadillo_1757355805
mcbridepollakdq
2025-09-08T18:23:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored cunning armadillo", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:23:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored cunning armadillo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hash-map/telugu_english_tokenizers
hash-map
2025-09-08T18:23:11Z
0
0
sentence-transformers
[ "sentence-transformers", "en", "te", "license:mit", "region:us" ]
null
2025-09-08T18:19:50Z
--- license: mit language: - en - te library_name: sentence-transformers ---
0xnu/european-license-plate-recognition
0xnu
2025-09-08T18:23:05Z
305
0
null
[ "onnx", "YOLOv12n", "eu", "european-union", "transport", "transportation", "computer-vision", "object-detection", "license-plate-recognition", "ocr", "en", "de", "fr", "es", "it", "nl", "dataset:0xnu/european-licence-plate", "doi:10.57967/hf/6297", "license:mit", "region:us" ]
object-detection
2025-08-16T20:22:52Z
--- license: mit datasets: - 0xnu/european-licence-plate tags: - eu - european-union - transport - transportation - computer-vision - object-detection - license-plate-recognition - ocr language: - en - de - fr - es - it - nl --- ## EULPR: European License Plate Recognition EULPR is a computer-vision model architecture purpose-built for detecting, reading, and recognizing European license plates. It is optimized for speed and accuracy across diverse EU plate formats. ### Model Performance - **Detection Rate**: 100.0% - **Text Extraction Rate**: 100.0% - **Processing Speed**: 7.6 FPS - **Model Size**: YOLOv12 Nano (~10.5MB) ### Supported Languages - English (en) - German (de) - French (fr) - Spanish (es) - Italian (it) - Dutch (nl) ### Quick Start #### Installation ```python pip install ultralytics easyocr opencv-python pillow torch torchvision huggingface_hub ``` #### Usage ```python import cv2 import numpy as np from ultralytics import YOLO import easyocr from PIL import Image from huggingface_hub import hf_hub_download import warnings # Suppress warnings warnings.filterwarnings('ignore') # Download models from HuggingFace print("Downloading model from HuggingFace...") model_path = hf_hub_download(repo_id="0xnu/european-license-plate-recognition", filename="model.onnx") config_path = hf_hub_download(repo_id="0xnu/european-license-plate-recognition", filename="config.json") # Load models with explicit task specification yolo_model = YOLO(model_path, task='detect') ocr_reader = easyocr.Reader(['en', 'de', 'fr', 'es', 'it', 'nl'], gpu=False, verbose=False) # Process image def recognize_license_plate(image_path): # Load image image = cv2.imread(image_path) image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Detect license plates results = yolo_model(image_rgb, conf=0.5, verbose=False) plates = [] for result in results: boxes = result.boxes if boxes is not None: for box in boxes: # Get coordinates x1, y1, x2, y2 = box.xyxy[0].cpu().numpy() # Crop plate plate_crop = image_rgb[int(y1):int(y2), int(x1):int(x2)] # Extract text ocr_results = ocr_reader.readtext(plate_crop) if ocr_results: text = ocr_results[0][1] confidence = float(ocr_results[0][2]) # Convert to native Python float plates.append({'text': text, 'confidence': confidence}) return plates # Usage Example results = recognize_license_plate('sample_car_with_license.jpeg') print(results) ``` ### Model Architecture #### Detection Model (YOLOv12n) - **Architecture**: YOLOv12 Nano - **Parameters**: ~3M - **Input Size**: 640x640 pixels - **Output**: Bounding boxes for license plates #### OCR Model (EasyOCR) - **Engine**: Deep learning-based OCR - **Languages**: Multi-European language support - **Character Set**: Alphanumeric + common symbols ### Training Details - **Dataset**: European License Plate Dataset ([0xnu/european-licence-plate](https://huggingface.co/datasets/0xnu/european-licence-plate)) - **Training Epochs**: 30 - **Batch Size**: 16 - **Image Size**: 640x640 - **Optimizer**: AdamW - **Framework**: Ultralytics YOLOv12 ### Use Cases - Traffic monitoring systems - Automated parking management - Law enforcement applications - Toll collection systems - Vehicle access control ### Limitations - Optimized for European license plate formats - Performance may vary with extreme weather conditions - Requires good image quality for optimal text recognition - Real-time performance depends on hardware capabilities ### License This project is licensed under the [Modified MIT License](./LICENSE). ### Citation If you use this model in your research or product, please cite: ```bibtex @misc{eulpr2025, title={EULPR: European License Plate Recognition}, author={Finbarrs Oketunji}, year={2025}, publisher={Hugging Face}, howpublished={\url{https://huggingface.co/0xnu/european-license-plate-recognition}} } ``` ### Copyright Copyright (C) 2025 Finbarrs Oketunji. All Rights Reserved.
carmaxsh/2399_Shredded_Cheese_-_Portion__2_oz_labled.json
carmaxsh
2025-09-08T18:22:48Z
0
0
transformers
[ "transformers", "safetensors", "convnext", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-09-08T18:22:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
NahedDom/blockassist-bc-flapping_stocky_leopard_1757353628
NahedDom
2025-09-08T18:22:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flapping stocky leopard", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:22:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flapping stocky leopard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
brauerraglmb/blockassist-bc-tough_subtle_tortoise_1757355698
brauerraglmb
2025-09-08T18:21:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tough subtle tortoise", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:21:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tough subtle tortoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Lucf2/Florence-2-TableRecognition-SantaMariaDelFiore-FullData_V4
Lucf2
2025-09-08T18:21:40Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "florence2", "image-text-to-text", "generated_from_trainer", "custom_code", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-09-08T16:11:40Z
--- library_name: transformers tags: - image-text-to-text - generated_from_trainer model-index: - name: Florence-2-TableRecognition-SantaMariaDelFiore-FullData_V4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Florence-2-TableRecognition-SantaMariaDelFiore-FullData_V4 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1251 | 1.0 | 114 | 2.7425 | | 2.4319 | 2.0 | 228 | 2.6248 | | 2.3052 | 3.0 | 342 | 2.5871 | | 2.2445 | 4.0 | 456 | 2.5530 | | 2.1945 | 5.0 | 570 | 2.5257 | | 2.1529 | 6.0 | 684 | 2.5203 | | 2.1284 | 7.0 | 798 | 2.5094 | | 2.105 | 8.0 | 912 | 2.5012 | | 2.0899 | 9.0 | 1026 | 2.4991 | | 2.0727 | 10.0 | 1140 | 2.4987 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.1+cu118 - Datasets 4.0.0 - Tokenizers 0.21.4
taniyatoha637/blockassist-bc-eager_flapping_anaconda_1757355670
taniyatoha637
2025-09-08T18:21:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "eager flapping anaconda", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:21:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - eager flapping anaconda --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1757353837
sampingkaca72
2025-09-08T18:20:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:20:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zeldepaulojelks/blockassist-bc-slithering_quiet_vulture_1757355612
zeldepaulojelks
2025-09-08T18:20:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slithering quiet vulture", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:20:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slithering quiet vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ferric-gravity/Model_1_v2
ferric-gravity
2025-09-08T18:20:03Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-09-08T18:10:29Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: Model_1_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Model_1_v2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0936 - Accuracy: 0.9753 - F1: 0.9753 - Roc Auc: 0.9753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:-------:| | No log | 1.0 | 64 | 0.1913 | 0.9348 | 0.9346 | 0.9333 | | 0.3434 | 2.0 | 128 | 0.1091 | 0.9674 | 0.9674 | 0.9673 | | 0.1176 | 3.0 | 192 | 0.0972 | 0.9733 | 0.9733 | 0.9733 | | 0.07 | 4.0 | 256 | 0.0959 | 0.9733 | 0.9733 | 0.9732 | | 0.0491 | 5.0 | 320 | 0.0936 | 0.9753 | 0.9753 | 0.9753 | ### Framework versions - Transformers 4.56.0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.0
haihp02/085b95c6-0ec5-45f9-98d5-487e3e33f031
haihp02
2025-09-08T18:20:02Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-08T18:19:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ayda138000/controlnet_persian_text_v1
ayda138000
2025-09-08T18:19:49Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "controlnet", "diffusers-training", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2025-09-05T09:40:52Z
--- base_model: runwayml/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m inference: true tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet - diffusers-training - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet - diffusers-training --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # controlnet-ayda138000/controlnet_persian_text_v1 These are controlnet weights trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. You can find some example images below. prompt: یک لوگوی مدرن برای یک شرکت فناوری پیشرفته ![images_0)](./images_0.png) ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
ehlkehulda/blockassist-bc-camouflaged_fierce_beaver_1757355531
ehlkehulda
2025-09-08T18:19:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged fierce beaver", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:19:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged fierce beaver --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zzzzit/Qwen3-1.7B-baseline-4
zzzzit
2025-09-08T18:18:42Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:open-r1/OpenR1-Math-220k", "arxiv:2402.03300", "base_model:Qwen/Qwen3-1.7B", "base_model:finetune:Qwen/Qwen3-1.7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-08T03:08:14Z
--- base_model: Qwen/Qwen3-1.7B datasets: open-r1/OpenR1-Math-220k library_name: transformers model_name: Qwen3-1.7B-baseline-4 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen3-1.7B-baseline-4 This model is a fine-tuned version of [Qwen/Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) on the [open-r1/OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="zzzzit/Qwen3-1.7B-baseline-4", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.0 - Transformers: 4.52.3 - Pytorch: 2.6.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
camakloree/blockassist-bc-pouncing_howling_gorilla_1757355485
camakloree
2025-09-08T18:18:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pouncing howling gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:18:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pouncing howling gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Rudra-madlads/blockassist-bc-jumping_swift_gazelle_1757355426
Rudra-madlads
2025-09-08T18:18:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "jumping swift gazelle", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:17:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - jumping swift gazelle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/llamargy-1B-Instruct-GGUF
mradermacher
2025-09-08T18:18:00Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:nskwal/llamargy-1B-Instruct", "base_model:quantized:nskwal/llamargy-1B-Instruct", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-08T17:59:41Z
--- base_model: nskwal/llamargy-1B-Instruct language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/nskwal/llamargy-1B-Instruct <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#llamargy-1B-Instruct-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/llamargy-1B-Instruct-GGUF/resolve/main/llamargy-1B-Instruct.Q2_K.gguf) | Q2_K | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/llamargy-1B-Instruct-GGUF/resolve/main/llamargy-1B-Instruct.Q3_K_S.gguf) | Q3_K_S | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/llamargy-1B-Instruct-GGUF/resolve/main/llamargy-1B-Instruct.Q3_K_M.gguf) | Q3_K_M | 0.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/llamargy-1B-Instruct-GGUF/resolve/main/llamargy-1B-Instruct.Q3_K_L.gguf) | Q3_K_L | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/llamargy-1B-Instruct-GGUF/resolve/main/llamargy-1B-Instruct.IQ4_XS.gguf) | IQ4_XS | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/llamargy-1B-Instruct-GGUF/resolve/main/llamargy-1B-Instruct.Q4_K_S.gguf) | Q4_K_S | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llamargy-1B-Instruct-GGUF/resolve/main/llamargy-1B-Instruct.Q4_K_M.gguf) | Q4_K_M | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/llamargy-1B-Instruct-GGUF/resolve/main/llamargy-1B-Instruct.Q5_K_S.gguf) | Q5_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/llamargy-1B-Instruct-GGUF/resolve/main/llamargy-1B-Instruct.Q5_K_M.gguf) | Q5_K_M | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/llamargy-1B-Instruct-GGUF/resolve/main/llamargy-1B-Instruct.Q6_K.gguf) | Q6_K | 1.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/llamargy-1B-Instruct-GGUF/resolve/main/llamargy-1B-Instruct.Q8_0.gguf) | Q8_0 | 1.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/llamargy-1B-Instruct-GGUF/resolve/main/llamargy-1B-Instruct.f16.gguf) | f16 | 2.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
samiya-hijab-Viral-Video-Original-Clips/FULL.VIDEO.LINK.samiya.hijab.Viral.Video.Leaks.Official
samiya-hijab-Viral-Video-Original-Clips
2025-09-08T18:17:56Z
0
0
null
[ "region:us" ]
null
2025-09-08T18:17:34Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
virginiammccauley4/blockassist-bc-grunting_squeaky_lynx_1757355458
virginiammccauley4
2025-09-08T18:17:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "grunting squeaky lynx", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:17:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - grunting squeaky lynx --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
siouxluriekaile/blockassist-bc-deadly_peckish_hare_1757355402
siouxluriekaile
2025-09-08T18:16:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly peckish hare", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:16:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly peckish hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1757355364
bah63843
2025-09-08T18:16:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:16:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jazmynikrr/blockassist-bc-dormant_hulking_eagle_1757355375
jazmynikrr
2025-09-08T18:16:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant hulking eagle", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:16:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant hulking eagle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vendi11/blockassist-bc-placid_placid_llama_1757355244
vendi11
2025-09-08T18:14:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:14:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ockermahergatiseko/blockassist-bc-keen_winged_turtle_1757355250
ockermahergatiseko
2025-09-08T18:14:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen winged turtle", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:14:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen winged turtle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Anzhc/VAE-benches
Anzhc
2025-09-08T18:13:23Z
0
0
null
[ "region:us" ]
null
2025-09-08T17:22:12Z
Bench on small set of anime illustrations: | VAE 16ch | L1&nbsp;↓ | L2&nbsp;↓ | PSNR&nbsp;↑ | LPIPS&nbsp;↓ | MS-SSIM&nbsp;↑ | KL&nbsp;↓ | CONSISTENCY&nbsp;↓ | rFID&nbsp;↓ | |---|---|---|---|---|---|---|---|---| | FLUX VAE | 3.0600 | 4.7752 | 35.4400 | <span style="color:Crimson">0.0112</span> | 0.9905 | 12.4717 | <span style="color:Orange">0.0079</span> | <span style="color:Crimson">0.669906</span> | | MS-LC-EQ-D-VR VAE FLUX | 2.933 | 4.856 | 35.251 | 0.018 | 0.990 | <span style="color:Orange">11.225</span> | — | 1.561 | | Flux EQ v2 B1 | <span style="color:Crimson">2.4825</span> | <span style="color:Crimson">4.2776</span> | <span style="color:Crimson">36.6027</span> | <span style="color:Orange">0.0132</span> | <span style="color:Crimson">0.9916</span> | 11.6388 | <span style="color:Crimson">0.0039</span> | <span style="color:Orange">0.744904</span> | | Disty SD3 Anime ft | 2.6486 | 4.4930 | 36.2098 | 0.0418 | 0.9897 | <span style="color:Crimson">8.9334</span> | <span style="color:Crimson">0.0039</span> | 0.817663 | | Flux Chat Error | <span style="color:Orange">2.6131</span> | <span style="color:Orange">4.3238</span> | <span style="color:Orange">36.3946</span> | 0.0173 | <span style="color:Orange">0.9912</span> | 12.4778 | <span style="color:Orange">0.0057</span> | 0.768330 |
zarozinskiallen/blockassist-bc-amphibious_quiet_camel_1757355163
zarozinskiallen
2025-09-08T18:12:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "amphibious quiet camel", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:12:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - amphibious quiet camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
prolinkmoon/blockassist-bc-rabid_scaly_anteater_1757355008
prolinkmoon
2025-09-08T18:12:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rabid scaly anteater", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:11:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rabid scaly anteater --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ehsanl/me5-base-trimmed-old-syn-filt_2ng_lwu
Ehsanl
2025-09-08T18:11:38Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "feature-extraction", "generated_from_trainer", "base_model:nicolaebanari/me5-base-trimmed-nl-test", "base_model:finetune:nicolaebanari/me5-base-trimmed-nl-test", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-09-08T17:19:15Z
--- library_name: transformers base_model: nicolaebanari/me5-base-trimmed-nl-test tags: - generated_from_trainer model-index: - name: me5-base-trimmed-old-syn-filt_2ng_lwu results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # me5-base-trimmed-old-syn-filt_2ng_lwu This model is a fine-tuned version of [nicolaebanari/me5-base-trimmed-nl-test](https://huggingface.co/nicolaebanari/me5-base-trimmed-nl-test) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.8 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.53.0 - Pytorch 2.7.0+cu128 - Datasets 4.0.0 - Tokenizers 0.21.2
mistie4525/blockassist-bc-hairy_sprightly_puffin_1757355070
mistie4525
2025-09-08T18:11:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy sprightly puffin", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:11:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy sprightly puffin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
EleutherAI/early-unlearning-weak-filter-ga-1-in-41-ga-lr-scale-0_001-gclip-0_5-wmdp-papers
EleutherAI
2025-09-08T18:09:57Z
0
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-08T17:35:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sensmeierbrenton/blockassist-bc-silky_solitary_boar_1757354868
sensmeierbrenton
2025-09-08T18:08:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky solitary boar", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:07:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky solitary boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
clairreginald/blockassist-bc-lethal_wary_shark_1757354837
clairreginald
2025-09-08T18:07:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lethal wary shark", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:07:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lethal wary shark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vendi11/blockassist-bc-placid_placid_llama_1757354771
vendi11
2025-09-08T18:06:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:06:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jeresftarke/blockassist-bc-flapping_beaked_owl_1757354788
jeresftarke
2025-09-08T18:06:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flapping beaked owl", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:06:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flapping beaked owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
boomeryop/blockassist-bc-noisy_keen_heron_1757354739
boomeryop
2025-09-08T18:06:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "noisy keen heron", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:05:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - noisy keen heron --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1757354695
bah63843
2025-09-08T18:05:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:05:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Llama-3.1-Swallow-8B-v0.5-GGUF
mradermacher
2025-09-08T18:05:37Z
0
0
transformers
[ "transformers", "gguf", "en", "ja", "dataset:tokyotech-llm/swallow-code", "dataset:tokyotech-llm/swallow-math", "base_model:tokyotech-llm/Llama-3.1-Swallow-8B-v0.5", "base_model:quantized:tokyotech-llm/Llama-3.1-Swallow-8B-v0.5", "license:llama3.3", "license:gemma", "endpoints_compatible", "region:us" ]
null
2025-09-08T13:00:37Z
--- base_model: tokyotech-llm/Llama-3.1-Swallow-8B-v0.5 datasets: - tokyotech-llm/swallow-code - tokyotech-llm/swallow-math language: - en - ja library_name: transformers license: - llama3.3 - gemma model_type: llama mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.5 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Llama-3.1-Swallow-8B-v0.5-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-v0.5-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-v0.5.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-v0.5.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-v0.5.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-v0.5.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-v0.5.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-v0.5.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-v0.5.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-v0.5.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-v0.5.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-v0.5.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-v0.5.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-v0.5-GGUF/resolve/main/Llama-3.1-Swallow-8B-v0.5.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
zcopwerq/blockassist-bc-lumbering_tropical_aardvark_1757354715
zcopwerq
2025-09-08T18:05:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering tropical aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:05:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering tropical aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
capungmerah627/blockassist-bc-stinging_soaring_porcupine_1757353173
capungmerah627
2025-09-08T18:05:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinging soaring porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:05:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinging soaring porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
DevQuasar/huihui-ai.Huihui-Hunyuan-MT-7B-abliterated-GGUF
DevQuasar
2025-09-08T18:04:45Z
0
0
null
[ "gguf", "text-generation", "base_model:huihui-ai/Huihui-Hunyuan-MT-7B-abliterated", "base_model:quantized:huihui-ai/Huihui-Hunyuan-MT-7B-abliterated", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-09-08T17:20:02Z
--- base_model: - huihui-ai/Huihui-Hunyuan-MT-7B-abliterated pipeline_tag: text-generation --- [<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com) Quantized version of: [huihui-ai/Huihui-Hunyuan-MT-7B-abliterated](https://huggingface.co/huihui-ai/Huihui-Hunyuan-MT-7B-abliterated) 'Make knowledge free for everyone' <p align="center"> Made with <br> <a href="https://www.civo.com/" target="_blank"> <img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/> </a> </p> <a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
mradermacher/DPE-70b-Ckpts-GGUF
mradermacher
2025-09-08T18:04:40Z
111
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "en", "dataset:merged.json", "dataset:PocketDoc/Dans-Prosemaxx-RP", "dataset:PocketDoc/Dans-Personamaxx-Logs-2", "dataset:PocketDoc/Dans-Personamaxx-VN", "dataset:PocketDoc/Dans-Kinomaxx-VanillaBackrooms", "dataset:PocketDoc/Dans-Prosemaxx-Gutenberg", "dataset:PocketDoc/Dans-Prosemaxx-Cowriter-3-XL", "dataset:PocketDoc/Dans-Prosemaxx-Adventure", "dataset:PocketDoc/Dans-Failuremaxx-Adventure-3", "dataset:PocketDoc/Dans-Prosemaxx-InstructWriter-ZeroShot-2", "dataset:PocketDoc/Dans-Prosemaxx-InstructWriter-ZeroShot-3", "dataset:PocketDoc/Dans-Prosemaxx-InstructWriter-Continue-2", "dataset:PocketDoc/Dans-Prosemaxx-Instructwriter-Long", "dataset:PocketDoc/Dans-Prosemaxx-RepRemover-1", "dataset:PocketDoc/Dans-MemoryCore-CoreCurriculum-Small", "dataset:AquaV/US-Army-Survival-Sharegpt", "dataset:AquaV/Multi-Environment-Operations-Sharegpt", "dataset:AquaV/Resistance-Sharegpt", "dataset:AquaV/Interrogation-Sharegpt", "dataset:AquaV/Chemical-Biological-Safety-Applications-Sharegpt", "dataset:AquaV/Energetic-Materials-Sharegpt", "dataset:PocketDoc/Dans-Mathmaxx", "dataset:PJMixers/Math-Multiturn-1K-ShareGPT", "dataset:PocketDoc/Dans-Taskmaxx", "dataset:PocketDoc/Dans-Taskmaxx-DataPrepper", "dataset:PocketDoc/Dans-Taskmaxx-ConcurrentQA-Reworked", "dataset:PocketDoc/Dans-Taskmaxx-TableGPT", "dataset:PocketDoc/Dans-Taskmaxx-SciRIFF", "dataset:PocketDoc/Dans-Taskmaxx-Edit", "dataset:PocketDoc/Dans-Toolmaxx-Agent", "dataset:PocketDoc/Dans-Toolmaxx-ShellCommands", "dataset:PocketDoc/Dans-Toolmaxx-Functions-Toolbench", "dataset:PocketDoc/Dans-Toolmaxx-Functions-ToolACE", "dataset:PocketDoc/Dans-Toolmaxx-Functions-apigen-subset", "dataset:PocketDoc/Dans-Assistantmaxx-OpenAssistant2", "dataset:PocketDoc/Dans-Assistantmaxx-Opus-Merge-2", "dataset:PocketDoc/Dans-Assistantmaxx-sonnetorca-subset", "dataset:PocketDoc/Dans-Assistantmaxx-sonnetorca-subset-2", "dataset:PocketDoc/Dans-Assistantmaxx-Synthia", "dataset:PocketDoc/Dans-Assistantmaxx-ASL", "dataset:PocketDoc/Dans-Assistantmaxx-PersonaLLM-Opus", "dataset:PocketDoc/Dans-Assistantmaxx-LongAlign", "dataset:PocketDoc/Dans-Assistantmaxx-OpenLeecher-Instruct", "dataset:PocketDoc/Dans-Assistantmaxx-Tulu3-IF", "dataset:PocketDoc/Dans-Systemmaxx", "dataset:PocketDoc/Dans-Logicmaxx-SAT-AP", "dataset:PJMixers/grimulkan_theory-of-mind-ShareGPT", "dataset:PJMixers/grimulkan_physical-reasoning-ShareGPT", "dataset:PocketDoc/Dans-Reasoningmaxx-NaturalReasoning", "dataset:PocketDoc/Dans-Reasoningmaxx-WebInstruct", "dataset:PocketDoc/Dans-Reasoningmaxx-GeneralReasoning", "dataset:Delta-Vector/Orion-LN-V1-ShareGPT", "dataset:Delta-Vector/Orion-Alpindale-LN-ShareGPT", "dataset:Delta-Vector/Orion-Shoujo-AI-Filtered-ShareGPT", "dataset:Delta-Vector/Orion-RP-Guild", "dataset:Delta-Vector/Orion-OpenCAI-ShareGPT", "dataset:Delta-Vector/Orion-LIMARP-Complexity", "base_model:NewEden/DPE-70b-Ckpts", "base_model:quantized:NewEden/DPE-70b-Ckpts", "license:llama3.1", "endpoints_compatible", "region:us" ]
null
2025-09-08T02:45:06Z
--- base_model: NewEden/DPE-70b-Ckpts datasets: - merged.json - PocketDoc/Dans-Prosemaxx-RP - PocketDoc/Dans-Personamaxx-Logs-2 - PocketDoc/Dans-Personamaxx-VN - PocketDoc/Dans-Kinomaxx-VanillaBackrooms - PocketDoc/Dans-Prosemaxx-Gutenberg - PocketDoc/Dans-Prosemaxx-Cowriter-3-XL - PocketDoc/Dans-Prosemaxx-Adventure - PocketDoc/Dans-Failuremaxx-Adventure-3 - PocketDoc/Dans-Prosemaxx-InstructWriter-ZeroShot-2 - PocketDoc/Dans-Prosemaxx-InstructWriter-ZeroShot-3 - PocketDoc/Dans-Prosemaxx-InstructWriter-Continue-2 - PocketDoc/Dans-Prosemaxx-Instructwriter-Long - PocketDoc/Dans-Prosemaxx-RepRemover-1 - PocketDoc/Dans-MemoryCore-CoreCurriculum-Small - AquaV/US-Army-Survival-Sharegpt - AquaV/Multi-Environment-Operations-Sharegpt - AquaV/Resistance-Sharegpt - AquaV/Interrogation-Sharegpt - AquaV/Chemical-Biological-Safety-Applications-Sharegpt - AquaV/Energetic-Materials-Sharegpt - PocketDoc/Dans-Mathmaxx - PJMixers/Math-Multiturn-1K-ShareGPT - PocketDoc/Dans-Taskmaxx - PocketDoc/Dans-Taskmaxx-DataPrepper - PocketDoc/Dans-Taskmaxx-ConcurrentQA-Reworked - PocketDoc/Dans-Taskmaxx-TableGPT - PocketDoc/Dans-Taskmaxx-SciRIFF - PocketDoc/Dans-Taskmaxx-Edit - PocketDoc/Dans-Toolmaxx-Agent - PocketDoc/Dans-Toolmaxx-ShellCommands - PocketDoc/Dans-Toolmaxx-Functions-Toolbench - PocketDoc/Dans-Toolmaxx-Functions-ToolACE - PocketDoc/Dans-Toolmaxx-Functions-apigen-subset - PocketDoc/Dans-Assistantmaxx-OpenAssistant2 - PocketDoc/Dans-Assistantmaxx-Opus-Merge-2 - PocketDoc/Dans-Assistantmaxx-sonnetorca-subset - PocketDoc/Dans-Assistantmaxx-sonnetorca-subset-2 - PocketDoc/Dans-Assistantmaxx-Synthia - PocketDoc/Dans-Assistantmaxx-ASL - PocketDoc/Dans-Assistantmaxx-PersonaLLM-Opus - PocketDoc/Dans-Assistantmaxx-LongAlign - PocketDoc/Dans-Assistantmaxx-OpenLeecher-Instruct - PocketDoc/Dans-Assistantmaxx-Tulu3-IF - PocketDoc/Dans-Systemmaxx - PocketDoc/Dans-Logicmaxx-SAT-AP - PJMixers/grimulkan_theory-of-mind-ShareGPT - PJMixers/grimulkan_physical-reasoning-ShareGPT - PocketDoc/Dans-Reasoningmaxx-NaturalReasoning - PocketDoc/Dans-Reasoningmaxx-WebInstruct - PocketDoc/Dans-Reasoningmaxx-GeneralReasoning - Delta-Vector/Orion-LN-V1-ShareGPT - Delta-Vector/Orion-Alpindale-LN-ShareGPT - Delta-Vector/Orion-Shoujo-AI-Filtered-ShareGPT - Delta-Vector/Orion-RP-Guild - Delta-Vector/Orion-OpenCAI-ShareGPT - Delta-Vector/Orion-LIMARP-Complexity language: - en library_name: transformers license: llama3.1 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - generated_from_trainer --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/NewEden/DPE-70b-Ckpts <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#DPE-70b-Ckpts-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DPE-70b-Ckpts-GGUF/resolve/main/DPE-70b-Ckpts.Q2_K.gguf) | Q2_K | 26.5 | | | [GGUF](https://huggingface.co/mradermacher/DPE-70b-Ckpts-GGUF/resolve/main/DPE-70b-Ckpts.Q3_K_S.gguf) | Q3_K_S | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/DPE-70b-Ckpts-GGUF/resolve/main/DPE-70b-Ckpts.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DPE-70b-Ckpts-GGUF/resolve/main/DPE-70b-Ckpts.Q3_K_L.gguf) | Q3_K_L | 37.2 | | | [GGUF](https://huggingface.co/mradermacher/DPE-70b-Ckpts-GGUF/resolve/main/DPE-70b-Ckpts.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DPE-70b-Ckpts-GGUF/resolve/main/DPE-70b-Ckpts.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DPE-70b-Ckpts-GGUF/resolve/main/DPE-70b-Ckpts.Q5_K_S.gguf) | Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/DPE-70b-Ckpts-GGUF/resolve/main/DPE-70b-Ckpts.Q5_K_M.gguf) | Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/DPE-70b-Ckpts-GGUF/resolve/main/DPE-70b-Ckpts.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/DPE-70b-Ckpts-GGUF/resolve/main/DPE-70b-Ckpts.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality | | [PART 1](https://huggingface.co/mradermacher/DPE-70b-Ckpts-GGUF/resolve/main/DPE-70b-Ckpts.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/DPE-70b-Ckpts-GGUF/resolve/main/DPE-70b-Ckpts.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
boomeryop/blockassist-bc-prowling_rugged_capybara_1757354613
boomeryop
2025-09-08T18:04:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "prowling rugged capybara", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:03:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - prowling rugged capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lista-ia/despir-ia
lista-ia
2025-09-08T18:03:12Z
0
0
null
[ "region:us" ]
null
2025-09-08T17:58:31Z
# Despir IA – Melhor aplicativo de despir fotos ia em 2025 sem cadastro {p9d2m} (Atualizado: 09 de setembro de 2025) (Última atualização: 09 de setembro de 2025) ## Despir IA – A ferramenta mais avançada para tirar roupas com inteligência artificial (2025) - **Remoção de roupas por despir ia** – gera pele hiper-realista, sombras e texturas. - **Modos de teste e troca** – pré-visualização de biquíni/lingerie, efeitos transparentes e simulação de roupa-para-nude. - **Ferramentas inteligentes de edição** – corrigir marcas de bronzeado, suavizar pele, ajustar iluminação/reflexos e ampliar detalhes. - **Processamento em lote ou imagem única** – rapidez e consistência nos resultados. 🔒 Projetado com privacidade em mente • Apenas 18+ • Use apenas em fotos próprias ou com consentimento expresso. <style> .button_despir_ia { display: inline-flex !important; align-items: center !important; gap: .5rem !important; text-decoration: none !important; background: linear-gradient(135deg,#ff3b3b,#ff7a00 55%,#ffd400) !important; color: #ffffff !important; border: 0 !important; border-radius: 999px !important; font: 600 16px/1.2 system-ui,-apple-system,Segoe UI,Roboto,Helvetica,Arial,sans-serif !important; padding: 14px 26px !important; box-shadow: 0 8px 18px rgba(255,69,0,.35), inset 0 -2px 0 rgba(0,0,0,.15) !important; transition: transform .15s ease, box-shadow .15s ease, filter .15s ease !important; } .button_despir_ia:hover { transform: translateY(-1px) !important; box-shadow: 0 12px 24px rgba(255,69,0,.45), inset 0 -2px 0 rgba(0,0,0,.15) !important; text-decoration: none !important; } .button_despir_ia:focus { outline: 3px solid #ffd400 !important; outline-offset: 2px !important; } .button_despir_ia-emoji { font-size: 20px !important; } </style> <a href="https://aiweely.com/update/app" class="button_despir_ia" target="_blank" rel="noopener" aria-label="Experimente agora o melhor despir ia gratuito"> <span class="button_despir_ia-emoji">👉</span> <span>Experimente agora o melhor <strong>despir ia gratuito</strong></span> </a> ![Despir IA](https://ucarecdn.com/f02c9bc4-cfb4-45ff-a8a2-923e5700ea92/-/preview/1000x539/) --- ## O que é Despir IA? (Atualizado: 09 de setembro de 2025) O **despir ia**, também chamado de **IA nua**, **indress ia** ou **ia tirar roupa**, refere-se a uma classe de aplicações de inteligência artificial criadas para alterar imagens e remover ou simular a remoção de roupas. Essas ferramentas utilizam algoritmos sofisticados para manipular conteúdo visual e gerar imagens que mostram uma **mulher nua ia** ou pessoas sem vestimenta. --- ## Tecnologias-chave por trás do despir ia - **Redes Adversárias Generativas (GANs)**: dois modelos neurais competem para criar imagens cada vez mais realistas. - **Modelos de Difusão**: refinam imagens em várias etapas, aumentando a qualidade e os detalhes. Graças a essas tecnologias, o **despir fotos ia** produz alterações altamente realistas, muitas vezes difíceis de distinguir de fotos genuínas. --- ## História e evolução (Atualizado: 09 de setembro de 2025) O conceito de **ia pelada** tem origem em experimentos iniciais de manipulação de imagens e na tecnologia de deepfake. Um marco importante foi o lançamento do **DeepNude** em 2019, aplicativo que ganhou notoriedade por conseguir **despir fotos ia** de mulheres de forma convincente. Apesar de retirado do ar por questões éticas, ele pavimentou o caminho para inovações futuras em **despir ia**. De 2020 a 2025, a tecnologia avançou rapidamente: - **2020–2021**: primeiras ferramentas de deepfake com função de ia tirar roupa, mas com baixa precisão. - **2022–2023**: melhorias significativas nos algoritmos aumentaram o realismo e a consistência. - **2024–2025**: interfaces amigáveis e ampla distribuição online facilitaram o acesso ao **despir ia gratuito**. --- ## Funcionalidades do despir ia - **Remoção automática de roupas** - **Simulação de prova de roupas e transparência** - **Realismo nas texturas de pele** - **Ajustes de iluminação e sombras** - **Suporte para múltiplas imagens ou fotos únicas** --- ## Popularidade do despir ia (Atualizado: 09 de setembro de 2025) O crescimento do **despir fotos ia** pode ser atribuído a diversos fatores: - **Disseminação viral em redes sociais** - **Cobertura da mídia** sobre avanços e controvérsias - **Comunidades online** debatendo, testando e compartilhando resultados --- ## Como funciona o despir ia (Atualizado: 09 de setembro de 2025) 1. **Upload**: o usuário envia uma foto ao aplicativo. 2. **Pré-processamento**: a **indress ia** analisa corpo, roupas e iluminação. 3. **Remoção de roupas**: com GANs ou modelos de difusão, gera-se uma versão nua da imagem. 4. **Pós-processamento**: texturas da pele e luz são refinadas. 5. **Saída**: a foto modificada é entregue ao usuário. ⚠️ Importante: o **despir ia gratuito** não “vê através” da roupa; ele cria simulações plausíveis baseadas em padrões aprendidos. --- ## Capacidades e limitações (2025) **Capacidades:** - Processamento em alta resolução - Geração de texturas realistas - Customização do nível de remoção de roupas **Limitações:** - Resultados variam de acordo com qualidade da foto - Erros comuns: borrões, sombras inconsistentes, artefatos - Proporções corporais imprecisas em alguns casos --- ## Exemplos de ferramentas despir ia (2025) | Nome | Tipo | Promessa | Realidade | Status legal | |-----------------|-----------------|-----------------------------------|-------------------------------------|----------------------| | NudeAI Pro | Plataforma web | Remoção de roupas perfeita | Produz erros e artefatos | Banido em várias regiões | | SeeThroughX | App mobile | Despir em tempo real | Pouca precisão, alto consumo de bateria | Sob investigação | | AIClothRemover | Software desktop | Fotos em alta resolução | Exige hardware potente | Legal com restrições | | VirtualTryOn AI | Ferramenta AR | Prova de roupas virtuais | Funciona para moda, não para nude | Amplamente aceito | | SafeNudeArt | Focado em arte | Conteúdo NSFW com consentimento | Ético e seguro | Regulamentado e legal| --- ## Riscos de usar despir ia - **Infecção por malware** em apps falsos - **Extorsão** com imagens manipuladas - **Roubo de dados** de fotos pessoais enviadas --- ## Perigos éticos e legais (Atualizado: 09 de setembro de 2025) **Implicações legais:** - Leis diferentes em cada país - Alterar imagens sem permissão = grave violação de privacidade - Uso para difamação ou assédio pode gerar processos **Preocupações éticas:** - Violação da privacidade pessoal - Potencial de abuso e desequilíbrio de poder - Impacto social ao normalizar o uso de **ia pelada** **Usos legítimos:** - Prova de roupas em lojas online - Educação médica (simulações anatômicas) - Criação artística e avatares digitais ⚠️ **Usos abusivos:** revenge porn, assédio direcionado, roubo de identidade. --- ## Como detectar imagens feitas com despir ia - Identificar artefatos e sombras estranhas - Analisar metadados das fotos - Usar busca reversa de imagens - Ferramentas de detecção forense baseadas em IA --- ## Alternativas ao despir fotos ia (Atualizado: 09 de setembro de 2025) - **Plataformas de prova virtual de moda** - **Simuladores 3D médicos** para ensino - **Ferramentas NSFW consentidas**, respeitando privacidade --- ## FAQ (Atualizado: 09 de setembro de 2025) **O despir ia é real?** Sim, trata-se de ferramentas de IA que removem roupas digitalmente. **O despir ia consegue realmente ver através das roupas?** Não – ele apenas gera representações plausíveis. **É legal usar IA nua?** Na maioria dos países, só com consentimento. Caso contrário, é ilegal. **Quais os riscos do despir fotos ia?** Privacidade violada, riscos jurídicos, golpes e malwares. **Posso usar ia tirar roupa em fotos de celebridades?** Não. Além de antiético, provavelmente é ilegal. **Existem aplicativos móveis de despir ia gratuito?** Sim, mas muitos são fraudulentos ou inseguros. **Quais países proíbem indress ia?** Diversos já baniram o uso não consentido. **Quais alternativas seguras existem?** Prova de roupas em e-commerce, simuladores médicos 3D e arte NSFW consentida. --- ## Conclusão e lembrete ético (Atualizado: 09 de setembro de 2025) O **despir ia** representa um avanço impressionante da inteligência artificial, mas também carrega riscos éticos e legais. Embora haja aplicações legítimas em moda, medicina e arte, o uso indevido pode causar graves danos à privacidade e reputação. 👉 **Sempre peça consentimento, respeite a privacidade e siga as leis ao usar uma ia tirar roupa.**
fyjsj6669/blockassist-bc-wary_hibernating_anaconda_1757354515
fyjsj6669
2025-09-08T18:02:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wary hibernating anaconda", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:02:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wary hibernating anaconda --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
canoplos112/blockassist-bc-yapping_sleek_squirrel_1757354428
canoplos112
2025-09-08T18:02:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:01:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
andidedjag513/blockassist-bc-monstrous_subtle_kingfisher_1757354463
andidedjag513
2025-09-08T18:01:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous subtle kingfisher", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:01:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous subtle kingfisher --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
neylanduoh/blockassist-bc-prehistoric_iridescent_puffin_1757354434
neylanduoh
2025-09-08T18:00:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "prehistoric iridescent puffin", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:00:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - prehistoric iridescent puffin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1757354384
bah63843
2025-09-08T18:00:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T18:00:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
slxhere/modern_ancientpoem_encoder
slxhere
2025-09-08T18:00:30Z
10
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:225000", "loss:MultipleNegativesRankingLoss", "zh", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:richinfoai/ritrieve_zh_v1", "base_model:finetune:richinfoai/ritrieve_zh_v1", "license:mit", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-05-19T14:37:02Z
--- language: - zh license: mit tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:225000 - loss:MultipleNegativesRankingLoss base_model: richinfoai/ritrieve_zh_v1 widget: - source_sentence: 下班后和同事直奔常去的那家火锅店,热热闹闹地涮了一晚上。 sentences: - 联延掩四远,赫弈成洪炉。 - 把酒仰问天,古今谁不死。 - 骑出平阳里,筵开卫尉家。 - source_sentence: 站在山顶看日出时,突然觉得世俗烦恼都不重要了。 sentences: - 郁没二悲魂,萧条犹在否。 - 封疆亲日月,邑里出王公。 - 心朝玉皇帝,貌似紫阳人。 - source_sentence: 隔壁老张家两个儿子都被征走了,现在天天以泪洗面。 sentences: - 若教为女嫁东风,除却黄莺难匹配。 - 山东今岁点行频,几处冤魂哭虏尘。 - 远图尝画地,超拜乃登坛。 - source_sentence: 边境小镇常年没人驻守,只有老李一个人在山脚下种地。 sentences: - 海徼长无戍,湘山独种畬。 - 高名宋玉遗闲丽,作赋兰成绝盛才。 - 九衢南面色,苍翠绝纤尘。 - source_sentence: 微信列表翻到底,能说真心话的居然只剩快递群。 sentences: - 黛消波月空蟾影,歌息梁尘有梵声。 - 代情难重论,人事好乖移。 - 时应记得长安事,曾向文场属思劳。 pipeline_tag: sentence-similarity library_name: sentence-transformers --- # RETRIEVE ZH 微调:古诗 ↔ 现代语 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [richinfoai/ritrieve_zh_v1](https://huggingface.co/richinfoai/ritrieve_zh_v1) on the json dataset. It maps sentences & paragraphs to a 1792-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [richinfoai/ritrieve_zh_v1](https://huggingface.co/richinfoai/ritrieve_zh_v1) <!-- at revision f8d5a707656c55705027678e311f9202c8ced12c --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1792 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** zh - **License:** mit ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Dense({'in_features': 1024, 'out_features': 1792, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ '微信列表翻到底,能说真心话的居然只剩快递群。', '代情难重论,人事好乖移。', '时应记得长安事,曾向文场属思劳。', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1792] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### json * Dataset: json * Size: 225,000 training samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 14 tokens</li><li>mean: 26.51 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 15.23 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 15.34 tokens</li><li>max: 34 tokens</li></ul> | * Samples: | anchor | positive | negative | |:-------------------------------------|:------------------------------|:------------------------------| | <code>整个人蜷在阳光里,连毛衣都晒出一股蓬松的香味。</code> | <code>箕踞拥裘坐,半身在日旸。</code> | <code>洛阳女儿对门居,才可容颜十五馀。</code> | | <code>好像所有的好事都约好了一样,今天一起找上门来。</code> | <code>临终极乐宝华迎,观音势至俱来至。</code> | <code>身没南朝宅已荒,邑人犹赏旧风光。</code> | | <code>大家都觉得她太娇气,只有你一直小心照顾着她。</code> | <code>弱质人皆弃,唯君手自栽。</code> | <code>秦筑长城城已摧,汉武北上单于台。</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### json * Dataset: json * Size: 25,000 evaluation samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 12 tokens</li><li>mean: 26.86 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 15.31 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 15.3 tokens</li><li>max: 26 tokens</li></ul> | * Samples: | anchor | positive | negative | |:---------------------------------------|:--------------------------|:------------------------------| | <code>看着街边那些孤零零的老人,真怕自己以后也变成那样。</code> | <code>垂白乱南翁,委身希北叟。</code> | <code>熏香荀令偏怜少,傅粉何郎不解愁。</code> | | <code>关了灯,屋里黑漆漆的,就听见外面秋虫和落叶在说话。</code> | <code>秋虫与秋叶,一夜隔窗闻。</code> | <code>未能穷意义,岂敢求瑕痕。</code> | | <code>虽然爷爷不在了,但他教我做人的道理永远记在心里。</code> | <code>惟孝虽遥,灵规不朽。</code> | <code>巧类鸳机织,光攒麝月团。</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `learning_rate`: 2e-05 - `num_train_epochs`: 6 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 6 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `tp_size`: 0 - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs <details><summary>Click to expand</summary> | Epoch | Step | Training Loss | Validation Loss | |:------:|:-----:|:-------------:|:---------------:| | 0.0284 | 50 | 4.4241 | - | | 0.0569 | 100 | 3.4415 | - | | 0.0853 | 150 | 2.6725 | - | | 0.1138 | 200 | 2.4137 | 2.2686 | | 0.1422 | 250 | 2.2701 | - | | 0.1706 | 300 | 2.1523 | - | | 0.1991 | 350 | 2.0805 | - | | 0.2275 | 400 | 2.0513 | 1.9506 | | 0.2560 | 450 | 2.0048 | - | | 0.2844 | 500 | 1.9552 | - | | 0.3129 | 550 | 1.8778 | - | | 0.3413 | 600 | 1.8549 | 1.7630 | | 0.3697 | 650 | 1.822 | - | | 0.3982 | 700 | 1.8128 | - | | 0.4266 | 750 | 1.7742 | - | | 0.4551 | 800 | 1.7076 | 1.6331 | | 0.4835 | 850 | 1.6919 | - | | 0.5119 | 900 | 1.64 | - | | 0.5404 | 950 | 1.6291 | - | | 0.5688 | 1000 | 1.5881 | 1.5368 | | 0.5973 | 1050 | 1.6018 | - | | 0.6257 | 1100 | 1.5664 | - | | 0.6542 | 1150 | 1.5545 | - | | 0.6826 | 1200 | 1.5292 | 1.4532 | | 0.7110 | 1250 | 1.5166 | - | | 0.7395 | 1300 | 1.517 | - | | 0.7679 | 1350 | 1.4639 | - | | 0.7964 | 1400 | 1.4729 | 1.3687 | | 0.8248 | 1450 | 1.4501 | - | | 0.8532 | 1500 | 1.3932 | - | | 0.8817 | 1550 | 1.4063 | - | | 0.9101 | 1600 | 1.3825 | 1.3003 | | 0.9386 | 1650 | 1.3647 | - | | 0.9670 | 1700 | 1.3431 | - | | 0.9954 | 1750 | 1.3417 | - | | 1.0239 | 1800 | 1.0839 | 1.2431 | | 1.0523 | 1850 | 1.0801 | - | | 1.0808 | 1900 | 1.0577 | - | | 1.1092 | 1950 | 1.0159 | - | | 1.1377 | 2000 | 1.0239 | 1.2132 | | 1.1661 | 2050 | 1.0335 | - | | 1.1945 | 2100 | 1.0117 | - | | 1.2230 | 2150 | 1.0343 | - | | 1.2514 | 2200 | 1.0193 | 1.1808 | | 1.2799 | 2250 | 1.0235 | - | | 1.3083 | 2300 | 0.9949 | - | | 1.3367 | 2350 | 1.0058 | - | | 1.3652 | 2400 | 1.0039 | 1.1428 | | 1.3936 | 2450 | 1.0164 | - | | 1.4221 | 2500 | 0.9934 | - | | 1.4505 | 2550 | 0.9777 | - | | 1.4790 | 2600 | 0.9753 | 1.1101 | | 1.5074 | 2650 | 0.9621 | - | | 1.5358 | 2700 | 0.9756 | - | | 1.5643 | 2750 | 0.9725 | - | | 1.5927 | 2800 | 0.9649 | 1.0813 | | 1.6212 | 2850 | 0.9652 | - | | 1.6496 | 2900 | 0.9861 | - | | 1.6780 | 2950 | 0.916 | - | | 1.7065 | 3000 | 0.9417 | 1.0523 | | 1.7349 | 3050 | 0.9599 | - | | 1.7634 | 3100 | 0.9275 | - | | 1.7918 | 3150 | 0.9247 | - | | 1.8203 | 3200 | 0.9417 | 1.0306 | | 1.8487 | 3250 | 0.9275 | - | | 1.8771 | 3300 | 0.9431 | - | | 1.9056 | 3350 | 0.9147 | - | | 1.9340 | 3400 | 0.8957 | 1.0051 | | 1.9625 | 3450 | 0.9169 | - | | 1.9909 | 3500 | 0.9079 | - | | 2.0193 | 3550 | 0.7057 | - | | 2.0478 | 3600 | 0.6037 | 0.9944 | | 2.0762 | 3650 | 0.5888 | - | | 2.1047 | 3700 | 0.6134 | - | | 2.1331 | 3750 | 0.6209 | - | | 2.1615 | 3800 | 0.6163 | 0.9836 | | 2.1900 | 3850 | 0.6271 | - | | 2.2184 | 3900 | 0.629 | - | | 2.2469 | 3950 | 0.6041 | - | | 2.2753 | 4000 | 0.622 | 0.9792 | | 2.3038 | 4050 | 0.6175 | - | | 2.3322 | 4100 | 0.627 | - | | 2.3606 | 4150 | 0.6339 | - | | 2.3891 | 4200 | 0.6325 | 0.9643 | | 2.4175 | 4250 | 0.6044 | - | | 2.4460 | 4300 | 0.6124 | - | | 2.4744 | 4350 | 0.6326 | - | | 2.5028 | 4400 | 0.6349 | 0.9462 | | 2.5313 | 4450 | 0.6286 | - | | 2.5597 | 4500 | 0.6325 | - | | 2.5882 | 4550 | 0.6399 | - | | 2.6166 | 4600 | 0.6184 | 0.9317 | | 2.6451 | 4650 | 0.6292 | - | | 2.6735 | 4700 | 0.6017 | - | | 2.7019 | 4750 | 0.6305 | - | | 2.7304 | 4800 | 0.6152 | 0.9213 | | 2.7588 | 4850 | 0.5972 | - | | 2.7873 | 4900 | 0.6048 | - | | 2.8157 | 4950 | 0.6096 | - | | 2.8441 | 5000 | 0.6156 | 0.9073 | | 2.8726 | 5050 | 0.5942 | - | | 2.9010 | 5100 | 0.592 | - | | 2.9295 | 5150 | 0.6088 | - | | 2.9579 | 5200 | 0.5941 | 0.8950 | | 2.9863 | 5250 | 0.6161 | - | | 3.0148 | 5300 | 0.5021 | - | | 3.0432 | 5350 | 0.4116 | - | | 3.0717 | 5400 | 0.3936 | 0.9009 | | 3.1001 | 5450 | 0.4193 | - | | 3.1286 | 5500 | 0.422 | - | | 3.1570 | 5550 | 0.432 | - | | 3.1854 | 5600 | 0.4281 | 0.8985 | | 3.2139 | 5650 | 0.4091 | - | | 3.2423 | 5700 | 0.4305 | - | | 3.2708 | 5750 | 0.4203 | - | | 3.2992 | 5800 | 0.4193 | 0.8869 | | 3.3276 | 5850 | 0.4238 | - | | 3.3561 | 5900 | 0.4274 | - | | 3.3845 | 5950 | 0.4124 | - | | 3.4130 | 6000 | 0.4241 | 0.8842 | | 3.4414 | 6050 | 0.427 | - | | 3.4699 | 6100 | 0.4275 | - | | 3.4983 | 6150 | 0.4152 | - | | 3.5267 | 6200 | 0.4247 | 0.8733 | | 3.5552 | 6250 | 0.4111 | - | | 3.5836 | 6300 | 0.4396 | - | | 3.6121 | 6350 | 0.4122 | - | | 3.6405 | 6400 | 0.4252 | 0.8657 | | 3.6689 | 6450 | 0.4167 | - | | 3.6974 | 6500 | 0.4282 | - | | 3.7258 | 6550 | 0.411 | - | | 3.7543 | 6600 | 0.4273 | 0.8540 | | 3.7827 | 6650 | 0.4327 | - | | 3.8111 | 6700 | 0.431 | - | | 3.8396 | 6750 | 0.4347 | - | | 3.8680 | 6800 | 0.4264 | 0.8523 | | 3.8965 | 6850 | 0.4213 | - | | 3.9249 | 6900 | 0.4285 | - | | 3.9534 | 6950 | 0.4138 | - | | 3.9818 | 7000 | 0.4051 | 0.8407 | | 4.0102 | 7050 | 0.3779 | - | | 4.0387 | 7100 | 0.2957 | - | | 4.0671 | 7150 | 0.2939 | - | | 4.0956 | 7200 | 0.3065 | 0.8590 | | 4.1240 | 7250 | 0.3081 | - | | 4.1524 | 7300 | 0.3043 | - | | 4.1809 | 7350 | 0.3176 | - | | 4.2093 | 7400 | 0.3067 | 0.8487 | | 4.2378 | 7450 | 0.299 | - | | 4.2662 | 7500 | 0.3106 | - | | 4.2947 | 7550 | 0.3062 | - | | 4.3231 | 7600 | 0.3153 | 0.8498 | | 4.3515 | 7650 | 0.3206 | - | | 4.3800 | 7700 | 0.3202 | - | | 4.4084 | 7750 | 0.3167 | - | | 4.4369 | 7800 | 0.3044 | 0.8426 | | 4.4653 | 7850 | 0.3015 | - | | 4.4937 | 7900 | 0.3157 | - | | 4.5222 | 7950 | 0.3109 | - | | 4.5506 | 8000 | 0.3164 | 0.8385 | | 4.5791 | 8050 | 0.2996 | - | | 4.6075 | 8100 | 0.3247 | - | | 4.6359 | 8150 | 0.3093 | - | | 4.6644 | 8200 | 0.3017 | 0.8294 | | 4.6928 | 8250 | 0.3075 | - | | 4.7213 | 8300 | 0.3006 | - | | 4.7497 | 8350 | 0.3134 | - | | 4.7782 | 8400 | 0.3111 | 0.8249 | | 4.8066 | 8450 | 0.3165 | - | | 4.8350 | 8500 | 0.3071 | - | | 4.8635 | 8550 | 0.3017 | - | | 4.8919 | 8600 | 0.3092 | 0.8225 | | 4.9204 | 8650 | 0.3 | - | | 4.9488 | 8700 | 0.2999 | - | | 4.9772 | 8750 | 0.3116 | - | | 5.0057 | 8800 | 0.3046 | 0.8173 | | 5.0341 | 8850 | 0.2501 | - | | 5.0626 | 8900 | 0.2443 | - | | 5.0910 | 8950 | 0.2338 | - | | 5.1195 | 9000 | 0.2382 | 0.8248 | | 5.1479 | 9050 | 0.2524 | - | | 5.1763 | 9100 | 0.2427 | - | | 5.2048 | 9150 | 0.2512 | - | | 5.2332 | 9200 | 0.2377 | 0.8218 | | 5.2617 | 9250 | 0.2458 | - | | 5.2901 | 9300 | 0.2515 | - | | 5.3185 | 9350 | 0.2453 | - | | 5.3470 | 9400 | 0.244 | 0.8226 | | 5.3754 | 9450 | 0.2389 | - | | 5.4039 | 9500 | 0.253 | - | | 5.4323 | 9550 | 0.2509 | - | | 5.4608 | 9600 | 0.2492 | 0.8198 | | 5.4892 | 9650 | 0.2379 | - | | 5.5176 | 9700 | 0.247 | - | | 5.5461 | 9750 | 0.2419 | - | | 5.5745 | 9800 | 0.244 | 0.8150 | | 5.6030 | 9850 | 0.2498 | - | | 5.6314 | 9900 | 0.2381 | - | | 5.6598 | 9950 | 0.2425 | - | | 5.6883 | 10000 | 0.2451 | 0.8148 | | 5.7167 | 10050 | 0.2468 | - | | 5.7452 | 10100 | 0.2404 | - | | 5.7736 | 10150 | 0.2397 | - | | 5.8020 | 10200 | 0.2417 | 0.8124 | | 5.8305 | 10250 | 0.2446 | - | | 5.8589 | 10300 | 0.2443 | - | | 5.8874 | 10350 | 0.2465 | - | | 5.9158 | 10400 | 0.2472 | 0.8121 | </details> ### Framework Versions - Python: 3.10.16 - Sentence Transformers: 4.1.0 - Transformers: 4.51.3 - PyTorch: 2.7.0+cu126 - Accelerate: 1.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
boomeryop/blockassist-bc-restless_colorful_otter_1757354381
boomeryop
2025-09-08T18:00:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "restless colorful otter", "arxiv:2504.07091", "region:us" ]
null
2025-09-08T17:59:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - restless colorful otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).