modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 06:30:11
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 06:29:58
card
stringlengths
11
1.01M
jonatasgrosman/exp_w2v2t_es_unispeech-ml_s952
jonatasgrosman
2022-07-11T12:05:40Z
3
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T12:04:48Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_unispeech-ml_s952 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_wavlm_s655
jonatasgrosman
2022-07-11T11:44:23Z
3
0
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T11:43:35Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_wavlm_s655 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
rajkumarrrk/t5-base-fine-tuned-on-cnn-dm
rajkumarrrk
2022-07-11T11:41:58Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-11T10:48:43Z
--- license: apache-2.0 --- T5-base fine-tuned on CNN/DM Summarization dataset. Training args: ``` { "learning_rate": 0.0001, "logging_steps": 5000, "lr_scheduler_type": "cosine", "num_train_epochs": 2, "per_device_train_batch_size": 16, # total batch size of 48 "save_total_limit": 1, "weight_decay": 0.1 } ``` Generation kwargs: ``` { "do_sample": true, "max_new_tokens": 100, "min_length": 50, "temperature": 0.7, "top_k": 0 }, ```` Pre-processing: Append prompt with prefix "Summarize: " Post-processing: None Test split metrics: ``` {"lexical/meteor": 0.30857827917561603, "lexical/rouge_rouge1": 0.41099971702474514, "lexical/rouge_rouge2": 0.17676173608661166, "lexical/rouge_rougeL": 0.2759112075051335, "lexical/rouge_rougeLsum": 0.34316108028094616, "lexical/bleu": 0.10747816852428271, "semantic/bert_score": 0.8760301497472277} ```
jonatasgrosman/exp_w2v2t_es_wavlm_s26
jonatasgrosman
2022-07-11T11:37:51Z
3
0
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T11:37:01Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_wavlm_s26 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_wavlm_s115
jonatasgrosman
2022-07-11T11:30:30Z
3
0
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T11:29:51Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_wavlm_s115 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_no-pretraining_s953
jonatasgrosman
2022-07-11T11:23:40Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T11:22:50Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_no-pretraining_s953 Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_no-pretraining_s807
jonatasgrosman
2022-07-11T11:18:11Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T11:17:31Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_no-pretraining_s807 Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_vp-sv_s93
jonatasgrosman
2022-07-11T11:11:20Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T11:10:33Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_vp-sv_s93 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_vp-sv_s44
jonatasgrosman
2022-07-11T11:07:51Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T11:07:05Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_vp-sv_s44 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_hubert_s456
jonatasgrosman
2022-07-11T10:56:25Z
5
0
transformers
[ "transformers", "pytorch", "hubert", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T10:55:43Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_hubert_s456 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_unispeech_s461
jonatasgrosman
2022-07-11T10:49:40Z
3
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T10:49:09Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_unispeech_s461 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_unispeech_s990
jonatasgrosman
2022-07-11T10:43:19Z
4
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T10:42:38Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_unispeech_s990 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_xlsr-53_s103
jonatasgrosman
2022-07-11T10:40:01Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T10:39:11Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_xlsr-53_s103 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
GhostZen/distilbert-base-uncased-finetuned-squad
GhostZen
2022-07-11T10:38:10Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-07-11T10:09:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_es_xlsr-53_s756
jonatasgrosman
2022-07-11T10:35:54Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T10:35:16Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_xlsr-53_s756 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_xlsr-53_s377
jonatasgrosman
2022-07-11T10:32:41Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T10:32:11Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_xlsr-53_s377 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
wooihen/distilbert-base-uncased-finetuned-emotion
wooihen
2022-07-11T10:28:32Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-11T10:04:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9225 - name: F1 type: f1 value: 0.922771245052197 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2146 - Accuracy: 0.9225 - F1: 0.9228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8233 | 1.0 | 250 | 0.3068 | 0.9025 | 0.8995 | | 0.2394 | 2.0 | 500 | 0.2146 | 0.9225 | 0.9228 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
AliMMZ/first_RL
AliMMZ
2022-07-11T10:26:59Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-11T09:56:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 265.62 +/- 14.05 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jonatasgrosman/exp_w2v2t_es_vp-100k_s957
jonatasgrosman
2022-07-11T10:23:05Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T10:22:18Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_vp-100k_s957 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_es_wav2vec2_s596
jonatasgrosman
2022-07-11T10:16:07Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "es", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T10:15:16Z
--- language: - es license: apache-2.0 tags: - automatic-speech-recognition - es datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_es_wav2vec2_s596 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (es)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_vp-it_s975
jonatasgrosman
2022-07-11T10:03:48Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T10:03:23Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_vp-it_s975 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
fxmarty/20220711-h10m00s56_example_conll2003
fxmarty
2022-07-11T10:01:01Z
0
0
null
[ "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "region:us" ]
token-classification
2022-07-11T10:00:56Z
--- pipeline_tag: token-classification datasets: - conll2003 metrics: - precision - recall - f1 - accuracy tags: - distilbert --- **task**: `token-classification` **Backend:** `sagemaker-training` **Backend args:** `{'instance_type': 'ml.m5.2xlarge', 'supported_instructions': 'avx512'}` **Number of evaluation samples:** `100` Fixed parameters: * **model_name_or_path**: `elastic/distilbert-base-uncased-finetuned-conll03-english` * **dataset**: * **path**: `conll2003` * **eval_split**: `validation` * **data_keys**: `{'primary': 'tokens'}` * **ref_keys**: `['ner_tags']` * **calibration_split**: `train` * **node_exclusion**: `[]` * **per_channel**: `False` * **calibration**: * **method**: `minmax` * **num_calibration_samples**: `100` * **framework**: `onnxruntime` * **framework_args**: * **opset**: `11` * **optimization_level**: `1` * **aware_training**: `False` Benchmarked parameters: * **quantization_approach**: `dynamic`, `static` * **operators_to_quantize**: `['Add', 'MatMul']`, `['Add']` # Evaluation ## Non-time metrics | quantization_approach | operators_to_quantize | | precision (original) | precision (optimized) | | recall (original) | recall (optimized) | | f1 (original) | f1 (optimized) | | accuracy (original) | accuracy (optimized) | | :-------------------: | :-------------------: | :-: | :------------------: | :-------------------: | :-: | :---------------: | :----------------: | :-: | :-----------: | :------------: | :-: | :-----------------: | :------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 0.974 | 0.974 | \| | 0.955 | 0.949 | \| | 0.964 | 0.962 | \| | 0.990 | 0.989 | | `dynamic` | `['Add']` | \| | 0.974 | 0.974 | \| | 0.955 | 0.955 | \| | 0.964 | 0.964 | \| | 0.990 | 0.990 | | `static` | `['Add', 'MatMul']` | \| | 0.974 | 0.081 | \| | 0.955 | 0.222 | \| | 0.964 | 0.118 | \| | 0.990 | 0.467 | | `static` | `['Add']` | \| | 0.974 | 0.073 | \| | 0.955 | 0.182 | \| | 0.964 | 0.105 | \| | 0.990 | 0.290 | ## Time metrics Time benchmarks were run for 3 seconds per config. Below, time metrics for batch size = 1, input length = 64. | quantization_approach | operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 59.35 | 21.91 | \| | 17.00 | 45.67 | | `dynamic` | `['Add']` | \| | 59.18 | 29.24 | \| | 17.00 | 34.33 | | `static` | `['Add', 'MatMul']` | \| | 59.25 | 28.31 | \| | 17.00 | 35.33 | | `static` | `['Add']` | \| | 58.77 | 31.80 | \| | 17.33 | 31.67 |
jonatasgrosman/exp_w2v2t_ru_vp-it_s817
jonatasgrosman
2022-07-11T09:59:54Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T09:59:26Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_vp-it_s817 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_r-wav2vec2_s408
jonatasgrosman
2022-07-11T09:53:37Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T09:53:13Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_r-wav2vec2_s408 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_r-wav2vec2_s399
jonatasgrosman
2022-07-11T09:50:40Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T09:49:58Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_r-wav2vec2_s399 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
fxmarty/20220711-h09m49s39_example_conll2003
fxmarty
2022-07-11T09:49:44Z
0
0
null
[ "tensorboard", "distilbert", "token-classification", "dataset:conll2003", "region:us" ]
token-classification
2022-07-11T09:49:39Z
--- pipeline_tag: token-classification datasets: - conll2003 metrics: - precision - recall - f1 - accuracy tags: - distilbert --- **task**: `token-classification` **Backend:** `sagemaker-training` **Backend args:** `{'instance_type': 'ml.m5.2xlarge', 'supported_instructions': 'avx512'}` **Number of evaluation samples:** `10` Fixed parameters: * **model_name_or_path**: `elastic/distilbert-base-uncased-finetuned-conll03-english` * **dataset**: * **path**: `conll2003` * **eval_split**: `validation` * **data_keys**: `{'primary': 'tokens'}` * **ref_keys**: `['ner_tags']` * **calibration_split**: `train` * **node_exclusion**: `[]` * **per_channel**: `False` * **calibration**: * **method**: `minmax` * **num_calibration_samples**: `100` * **framework**: `onnxruntime` * **framework_args**: * **opset**: `11` * **optimization_level**: `1` * **aware_training**: `False` Benchmarked parameters: * **quantization_approach**: `dynamic`, `static` * **operators_to_quantize**: `['Add', 'MatMul']`, `['Add']` # Evaluation ## Non-time metrics | quantization_approach | operators_to_quantize | | precision (original) | precision (optimized) | | recall (original) | recall (optimized) | | f1 (original) | f1 (optimized) | | accuracy (original) | accuracy (optimized) | | :-------------------: | :-------------------: | :-: | :------------------: | :-------------------: | :-: | :---------------: | :----------------: | :-: | :-----------: | :------------: | :-: | :-----------------: | :------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 0.970 | 0.969 | \| | 0.970 | 0.939 | \| | 0.970 | 0.954 | \| | 0.993 | 0.990 | | `dynamic` | `['Add']` | \| | 0.970 | 0.970 | \| | 0.970 | 0.970 | \| | 0.970 | 0.970 | \| | 0.993 | 0.993 | | `static` | `['Add', 'MatMul']` | \| | 0.970 | 0.104 | \| | 0.970 | 0.212 | \| | 0.970 | 0.140 | \| | 0.993 | 0.691 | | `static` | `['Add']` | \| | 0.970 | 0.037 | \| | 0.970 | 0.121 | \| | 0.970 | 0.057 | \| | 0.993 | 0.110 | ## Time metrics Time benchmarks were run for 3 seconds per config. Below, time metrics for batch size = 1, input length = 64. | quantization_approach | operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | :-------------------: | :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | | `dynamic` | `['Add', 'MatMul']` | \| | 60.12 | 18.13 | \| | 16.67 | 55.33 | | `dynamic` | `['Add']` | \| | 59.49 | 29.12 | \| | 17.00 | 34.67 | | `static` | `['Add', 'MatMul']` | \| | 58.89 | 24.30 | \| | 17.00 | 41.33 | | `static` | `['Add']` | \| | 43.19 | 38.12 | \| | 23.33 | 26.33 |
jonatasgrosman/exp_w2v2t_ru_xls-r_s946
jonatasgrosman
2022-07-11T09:47:04Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T09:46:39Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_xls-r_s946 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_xls-r_s635
jonatasgrosman
2022-07-11T09:42:39Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T09:42:14Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_xls-r_s635 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_unispeech-sat_s418
jonatasgrosman
2022-07-11T09:26:37Z
3
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T09:26:11Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_unispeech-sat_s418 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_unispeech-sat_s423
jonatasgrosman
2022-07-11T09:23:21Z
3
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T09:22:56Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_unispeech-sat_s423 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_vp-nl_s131
jonatasgrosman
2022-07-11T09:17:04Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T09:16:37Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_vp-nl_s131 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_vp-nl_s328
jonatasgrosman
2022-07-11T09:14:06Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T09:13:23Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_vp-nl_s328 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_vp-fr_s805
jonatasgrosman
2022-07-11T09:01:30Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T09:01:05Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_vp-fr_s805 Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_unispeech-ml_s569
jonatasgrosman
2022-07-11T08:48:36Z
5
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T08:48:11Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_unispeech-ml_s569 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_unispeech-ml_s947
jonatasgrosman
2022-07-11T08:45:37Z
3
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T08:44:54Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_unispeech-ml_s947 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_wavlm_s363
jonatasgrosman
2022-07-11T08:36:26Z
3
1
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T08:36:00Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_wavlm_s363 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
ybelkada/japanese-dummy-tokenizer
ybelkada
2022-07-11T08:24:32Z
4
1
transformers
[ "transformers", "ja", "japanese", "tokenizer", "en", "dataset:snow_simplified_japanese_corpus", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-04-06T12:31:37Z
--- language: - en - ja license: mit datasets: - snow_simplified_japanese_corpus tags: - ja - japanese - tokenizer widget: - text: "誰が一番に着くか私には分かりません。" --- # Japanese Dummy Tokenizer Repository containing a dummy Japanese Tokenizer trained on ```snow_simplified_japanese_corpus``` dataset. The tokenizer has been trained using Hugging Face datasets in a streaming manner. ## Intended uses & limitations You can use this tokenizer to tokenize Japanese sentences. ## How to use it ``` from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("ybelkada/japanese-dummy-tokenizer") ``` ## How to train the tokenizer Check the file ```tokenizer.py```, you can freely adapt it to other datasets. This tokenizer is based on the tokenizer from ```csebuetnlp/mT5_multilingual_XLSum```.
jonatasgrosman/exp_w2v2t_ru_vp-sv_s658
jonatasgrosman
2022-07-11T08:21:28Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T08:20:56Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_vp-sv_s658 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_vp-sv_s772
jonatasgrosman
2022-07-11T08:18:26Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T08:17:19Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_vp-sv_s772 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_unispeech_s42
jonatasgrosman
2022-07-11T07:55:21Z
3
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T07:54:56Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_unispeech_s42 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_xlsr-53_s911
jonatasgrosman
2022-07-11T07:52:25Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T07:51:37Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_xlsr-53_s911 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_xlsr-53_s303
jonatasgrosman
2022-07-11T07:45:29Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T07:44:48Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_xlsr-53_s303 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_ru_vp-100k_s69
jonatasgrosman
2022-07-11T07:35:45Z
5
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T07:35:04Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_vp-100k_s69 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
osanseviero/tfjs-mobilenet-611
osanseviero
2022-07-11T07:33:29Z
0
0
null
[ "image-classification", "tfjs", "license:mit", "region:us" ]
image-classification
2022-07-11T07:33:21Z
--- license: mit tags: - image-classification - tfjs --- ## TensorFlow.js version of Mobilenet Pushed from Web ![](coffee.jpg)
jonatasgrosman/exp_w2v2t_ru_wav2vec2_s847
jonatasgrosman
2022-07-11T07:28:38Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ru", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T07:28:07Z
--- language: - ru license: apache-2.0 tags: - automatic-speech-recognition - ru datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_ru_wav2vec2_s847 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_vp-it_s449
jonatasgrosman
2022-07-11T07:20:08Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T07:19:25Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_vp-it_s449 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_vp-it_s149
jonatasgrosman
2022-07-11T07:16:32Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T07:15:48Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_vp-it_s149 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_r-wav2vec2_s925
jonatasgrosman
2022-07-11T07:09:56Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T07:09:27Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_r-wav2vec2_s925 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_r-wav2vec2_s170
jonatasgrosman
2022-07-11T07:01:02Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T07:00:22Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_r-wav2vec2_s170 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
hellennamulinda/eng-lug
hellennamulinda
2022-07-11T06:45:00Z
10
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain", "unk", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-01T13:10:28Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" co2_eq_emissions: 0.04087910671538076 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 1026034854 - CO2 Emissions (in grams): 0.04087910671538076 ## Validation Metrics - Loss: 1.0871405601501465 - Rouge1: 55.8225 - Rouge2: 34.1547 - RougeL: 54.4274 - RougeLsum: 54.408 - Gen Len: 23.178 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/hellennamulinda/autotrain-eng-lug-1070637495 ```
jonatasgrosman/exp_w2v2t_nl_vp-nl_s747
jonatasgrosman
2022-07-11T06:29:19Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T06:28:49Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_vp-nl_s747 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_vp-nl_s424
jonatasgrosman
2022-07-11T06:23:18Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T06:22:52Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_vp-nl_s424 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_vp-es_s476
jonatasgrosman
2022-07-11T06:20:15Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T06:19:49Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_vp-es_s476 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_vp-es_s496
jonatasgrosman
2022-07-11T06:14:20Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T06:13:55Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_vp-es_s496 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_vp-fr_s417
jonatasgrosman
2022-07-11T06:08:16Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T06:07:50Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_vp-fr_s417 Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_wavlm_s246
jonatasgrosman
2022-07-11T05:52:32Z
3
0
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T05:51:59Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_wavlm_s246 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
AndyChiang/bert-test
AndyChiang
2022-07-11T05:50:10Z
3
0
transformers
[ "transformers", "pytorch", "tf", "bert", "fill-mask", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-11T03:34:14Z
--- tags: - generated_from_keras_callback model-index: - name: bert-test results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-test This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_nl_no-pretraining_s512
jonatasgrosman
2022-07-11T05:43:20Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T05:42:54Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_no-pretraining_s512 Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_no-pretraining_s399
jonatasgrosman
2022-07-11T05:40:21Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T05:39:37Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_no-pretraining_s399 Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_vp-sv_s510
jonatasgrosman
2022-07-11T05:34:04Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T05:33:38Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_vp-sv_s510 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_vp-sv_s607
jonatasgrosman
2022-07-11T05:27:33Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T05:27:07Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_vp-sv_s607 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_hubert_s562
jonatasgrosman
2022-07-11T05:00:40Z
3
0
transformers
[ "transformers", "pytorch", "hubert", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T05:00:15Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_hubert_s562 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_hubert_s319
jonatasgrosman
2022-07-11T04:36:03Z
3
0
transformers
[ "transformers", "pytorch", "hubert", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T04:35:38Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_hubert_s319 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_unispeech_s683
jonatasgrosman
2022-07-11T04:24:15Z
3
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T04:23:30Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_unispeech_s683 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_unispeech_s853
jonatasgrosman
2022-07-11T04:05:42Z
3
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T04:05:02Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_unispeech_s853 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_xlsr-53_s948
jonatasgrosman
2022-07-11T03:52:19Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T03:51:53Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_xlsr-53_s948 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
infinitejoy/MLAgents-Worm
infinitejoy
2022-07-11T03:50:39Z
14
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Worm", "region:us" ]
reinforcement-learning
2022-07-11T03:50:32Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Worm library_name: ml-agents --- # **ppo** Agent playing **Worm** This is a trained model of a **ppo** agent playing **Worm** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Worm 2. Step 1: Write your model_id: infinitejoy/MLAgents-Worm 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
jonatasgrosman/exp_w2v2t_nl_xlsr-53_s972
jonatasgrosman
2022-07-11T03:31:44Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T03:31:17Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_xlsr-53_s972 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_vp-100k_s899
jonatasgrosman
2022-07-11T03:12:37Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T03:11:52Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_vp-100k_s899 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
Lvxue/finetuned-mbart-large-10epoch
Lvxue
2022-07-11T03:11:38Z
3
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "generated_from_trainer", "en", "ro", "dataset:wmt16", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-08T07:40:58Z
--- language: - en - ro tags: - generated_from_trainer datasets: - wmt16 model-index: - name: finetuned-mbart-large-10epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-mbart-large-10epoch This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.6032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_nl_wav2vec2_s721
jonatasgrosman
2022-07-11T03:04:17Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T03:03:52Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_wav2vec2_s721 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_wav2vec2_s754
jonatasgrosman
2022-07-11T02:56:30Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T02:56:05Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_wav2vec2_s754 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_nl_wav2vec2_s379
jonatasgrosman
2022-07-11T02:46:55Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "nl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T02:46:29Z
--- language: - nl license: apache-2.0 tags: - automatic-speech-recognition - nl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_nl_wav2vec2_s379 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_vp-it_s992
jonatasgrosman
2022-07-11T02:32:42Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T02:32:18Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_vp-it_s992 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_xls-r_s662
jonatasgrosman
2022-07-11T01:42:16Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T01:41:33Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_xls-r_s662 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_unispeech-sat_s108
jonatasgrosman
2022-07-11T01:09:54Z
6
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T01:09:13Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_unispeech-sat_s108 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_unispeech-sat_s364
jonatasgrosman
2022-07-11T01:00:50Z
5
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T01:00:06Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_unispeech-sat_s364 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_vp-nl_s354
jonatasgrosman
2022-07-11T00:31:29Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T00:31:05Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_vp-nl_s354 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_vp-es_s803
jonatasgrosman
2022-07-11T00:20:03Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-11T00:19:20Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_vp-es_s803 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_unispeech-ml_s545
jonatasgrosman
2022-07-10T23:44:50Z
4
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T23:44:05Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_unispeech-ml_s545 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_unispeech-ml_s527
jonatasgrosman
2022-07-10T23:36:00Z
4
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T23:35:36Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_unispeech-ml_s527 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_unispeech-ml_s779
jonatasgrosman
2022-07-10T23:31:09Z
3
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T23:30:26Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_unispeech-ml_s779 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_wavlm_s887
jonatasgrosman
2022-07-10T23:17:52Z
3
0
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T23:17:06Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_wavlm_s887 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_wavlm_s753
jonatasgrosman
2022-07-10T23:09:20Z
3
0
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T23:08:50Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_wavlm_s753 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_vp-sv_s953
jonatasgrosman
2022-07-10T22:47:21Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T22:46:56Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_vp-sv_s953 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_hubert_s390
jonatasgrosman
2022-07-10T22:44:26Z
3
0
transformers
[ "transformers", "pytorch", "hubert", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T22:44:02Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_hubert_s390 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_hubert_s507
jonatasgrosman
2022-07-10T22:41:25Z
3
0
transformers
[ "transformers", "pytorch", "hubert", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T22:40:39Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_hubert_s507 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
malinoori/wav2vec2-base-2
malinoori
2022-07-10T22:33:08Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T20:17:40Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5953 - eval_wer: 0.3621 - eval_runtime: 54.4895 - eval_samples_per_second: 30.832 - eval_steps_per_second: 3.854 - epoch: 22.61 - step: 22500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_et_unispeech_s605
jonatasgrosman
2022-07-10T22:28:55Z
3
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T22:28:31Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_unispeech_s605 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_xlsr-53_s186
jonatasgrosman
2022-07-10T22:25:50Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T22:25:17Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_xlsr-53_s186 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_xlsr-53_s952
jonatasgrosman
2022-07-10T22:14:42Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T22:14:16Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_xlsr-53_s952 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_xlsr-53_s474
jonatasgrosman
2022-07-10T22:11:50Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T22:11:24Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_xlsr-53_s474 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_vp-100k_s377
jonatasgrosman
2022-07-10T21:58:55Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T21:58:31Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_vp-100k_s377 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
nestoralvaro/distilbert-base-uncased-finetuned-ner
nestoralvaro
2022-07-10T21:28:55Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-10T15:30:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4253 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 15 | 0.4677 | 0.0 | 0.0 | 0.0 | 0.9226 | | No log | 2.0 | 30 | 0.4303 | 0.0 | 0.0 | 0.0 | 0.9226 | | No log | 3.0 | 45 | 0.4253 | 0.0 | 0.0 | 0.0 | 0.9226 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_et_vp-100k_s756
jonatasgrosman
2022-07-10T21:23:08Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T21:22:43Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_vp-100k_s756 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_vp-100k_s103
jonatasgrosman
2022-07-10T20:58:08Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T20:57:43Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_vp-100k_s103 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
elonmuskceo/tfjs-mobilenet-yay
elonmuskceo
2022-07-10T20:57:54Z
0
0
null
[ "image-classification", "tfjs", "license:mit", "region:us" ]
image-classification
2022-07-10T20:57:46Z
--- license: mit tags: - image-classification - tfjs --- ## TensorFlow.js version of Mobilenet Pushed from Web ![](coffee.jpg)
jonatasgrosman/exp_w2v2t_et_wav2vec2_s253
jonatasgrosman
2022-07-10T20:52:12Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T20:51:49Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_wav2vec2_s253 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_et_wav2vec2_s112
jonatasgrosman
2022-07-10T20:49:17Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "et", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T20:48:53Z
--- language: - et license: apache-2.0 tags: - automatic-speech-recognition - et datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_et_wav2vec2_s112 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_pl_vp-it_s157
jonatasgrosman
2022-07-10T20:42:40Z
8
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "pl", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-10T20:42:16Z
--- language: - pl license: apache-2.0 tags: - automatic-speech-recognition - pl datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_pl_vp-it_s157 Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.