modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 18:29:29
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 18:25:24
card
stringlengths
11
1.01M
mhyatt000/YOLOv5
mhyatt000
2022-09-01T15:25:36Z
0
0
stable-baselines3
[ "stable-baselines3", "seals/CartPole-v0", "deep-reinforcement-learning", "reinforcement-learning", "object-detection", "dataset:coco", "license:gpl-2.0", "model-index", "region:us" ]
object-detection
2022-06-20T16:37:08Z
--- license: gpl-2.0 datasets: - coco library_name: stable-baselines3 tags: - seals/CartPole-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 - object-detection model-index: - name: PPO results: - metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: True task: type: reinforcement-learning name: reinforcement-learning dataset: name: seals/CartPole-v0 type: seals/CartPole-v0 --- # YOLOv5 Ultralytics YOLOv5 model in Pytorch. Proof of concept for (TypoSquatting, Niche Squatting) security flaw on Hugging Face. ## Model Description ## How to use ```python from transformers import YolosFeatureExtractor, YolosForObjectDetection from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = YolosFeatureExtractor.from_pretrained('mhyatt000/yolov5') model = YolosForObjectDetection.from_pretrained('mhyatt000/yolov5') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) # model predicts bounding boxes and corresponding COCO classes logits = outputs.logits bboxes = outputs.pred_boxes ``` ## Training Data ### Training ## Evaluation Model was evaluated on [COCO2017](https://cocodataset.org/#home) dataset. | Model | size (pixels) | mAPval | Speed | params | FLOPS | |---------------|-------------------|-----------|-----------|-----------|-----------| | YOLOv5s6 | 1280 | 43.3 | 4.3 | 12.7 | 17.4 | | YOLOv5m6 | 1280 | 50.5 | 8.4 | 35.9 | 52.4 | | YOLOv5l6 | 1280 | 53.4 | 12.3 | 77.2 | 117.7 | | YOLOv5x6 | 1280 | 54.4 | 22.4 | 141.8 | 222.9 | ### Bibtex and citation info ```bibtex @software{glenn_jocher_2022_6222936, author = {Glenn Jocher and Ayush Chaurasia and Alex Stoken and Jirka Borovec and NanoCode012 and Yonghye Kwon and TaoXie and Jiacong Fang and imyhxy and Kalen Michael and Lorna and Abhiram V and Diego Montes and Jebastin Nadar and Laughing and tkianai and yxNONG and Piotr Skalski and Zhiqiang Wang and Adam Hogan and Cristi Fati and Lorenzo Mammana and AlexWang1900 and Deep Patel and Ding Yiwei and Felix You and Jan Hajek and Laurentiu Diaconu and Mai Thanh Minh}, title = {{ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference}}, month = feb, year = 2022, publisher = {Zenodo}, version = {v6.1}, doi = {10.5281/zenodo.6222936}, url = {https://doi.org/10.5281/zenodo.6222936} } ```
BigSalmon/Backwards
BigSalmon
2022-09-01T15:13:56Z
159
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-31T18:40:44Z
Used the same dataset as the one I trained https://huggingface.co/BigSalmon/InformalToFormalLincoln73Paraphrase, but all the words are in the opposite order. * Note: I think I probably train it for more epochs. The loss was very high. That said, keep an eye on my profile, if this is something you are interested in.
GItaf/gpt2-finetuned-mbti-0901
GItaf
2022-09-01T15:10:56Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-01T13:20:36Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-finetuned-mbti-0901 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-finetuned-mbti-0901 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.9470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.1073 | 1.0 | 9906 | 4.0111 | | 4.0302 | 2.0 | 19812 | 3.9761 | | 3.9757 | 3.0 | 29718 | 3.9578 | | 3.9471 | 4.0 | 39624 | 3.9495 | | 3.9187 | 5.0 | 49530 | 3.9470 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
butchland/Reinforce-Cartpole-v1
butchland
2022-09-01T14:40:46Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-01T14:23:01Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 95.80 +/- 22.48 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
pmpc/twitter-roberta-base-stance-abortionV3
pmpc
2022-09-01T13:45:07Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-01T13:34:41Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: twitter-roberta-base-stance-abortionV3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-roberta-base-stance-abortionV3 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-stance-abortion](https://huggingface.co/cardiffnlp/twitter-roberta-base-stance-abortion) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5095 - F1: 0.7917 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8492 | 1.0 | 12 | 0.4862 | 0.7917 | | 0.7291 | 2.0 | 24 | 0.4264 | 0.7917 | | 0.5465 | 3.0 | 36 | 0.6450 | 0.7917 | | 0.5905 | 4.0 | 48 | 0.5857 | 0.7917 | | 0.4556 | 5.0 | 60 | 0.5095 | 0.7917 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
DrishtiSharma/finetuned-ViT-human-action-recognition-v1
DrishtiSharma
2022-09-01T13:09:05Z
210
7
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-01T12:22:59Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-ViT-human-action-recognition-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-ViT-human-action-recognition-v1 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the Human_Action_Recognition dataset. It achieves the following results on the evaluation set: - Loss: 3.1427 - Accuracy: 0.0791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4986 | 0.13 | 100 | 3.1427 | 0.0791 | | 1.1929 | 0.25 | 200 | 3.4083 | 0.0726 | | 1.2673 | 0.38 | 300 | 3.4615 | 0.0769 | | 0.9805 | 0.51 | 400 | 3.9192 | 0.0824 | | 1.158 | 0.63 | 500 | 4.2648 | 0.0698 | | 1.2544 | 0.76 | 600 | 4.5536 | 0.0574 | | 1.0073 | 0.89 | 700 | 4.0310 | 0.0819 | | 0.9315 | 1.02 | 800 | 4.5154 | 0.0702 | | 0.9063 | 1.14 | 900 | 4.7162 | 0.0633 | | 0.6756 | 1.27 | 1000 | 4.6482 | 0.0626 | | 1.0239 | 1.4 | 1100 | 4.6437 | 0.0635 | | 0.7634 | 1.52 | 1200 | 4.5625 | 0.0752 | | 0.8365 | 1.65 | 1300 | 4.9912 | 0.0561 | | 0.8979 | 1.78 | 1400 | 5.1739 | 0.0356 | | 0.9448 | 1.9 | 1500 | 4.8946 | 0.0541 | | 0.697 | 2.03 | 1600 | 4.9516 | 0.0741 | | 0.7861 | 2.16 | 1700 | 5.0090 | 0.0776 | | 0.6404 | 2.28 | 1800 | 5.3905 | 0.0643 | | 0.7939 | 2.41 | 1900 | 4.9159 | 0.1015 | | 0.6331 | 2.54 | 2000 | 5.3083 | 0.0589 | | 0.6082 | 2.66 | 2100 | 4.8538 | 0.0857 | | 0.6229 | 2.79 | 2200 | 5.3086 | 0.0689 | | 0.6964 | 2.92 | 2300 | 5.3745 | 0.0713 | | 0.5246 | 3.05 | 2400 | 5.0369 | 0.0796 | | 0.6097 | 3.17 | 2500 | 5.2935 | 0.0743 | | 0.5778 | 3.3 | 2600 | 5.5431 | 0.0709 | | 0.4196 | 3.43 | 2700 | 5.5508 | 0.0759 | | 0.5495 | 3.55 | 2800 | 5.5728 | 0.0813 | | 0.5932 | 3.68 | 2900 | 5.7992 | 0.0663 | | 0.4382 | 3.81 | 3000 | 5.8010 | 0.0643 | | 0.4827 | 3.93 | 3100 | 5.7529 | 0.0680 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
KISSz/wav2vac2-vee-train001-ASR
KISSz
2022-09-01T12:51:55Z
111
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-01T09:50:51Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer model_index: name: wav2vac2-vee-train001-ASR --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vac2-vee-train001-ASR This model is a fine-tuned version of [airesearch/wav2vec2-large-xlsr-53-th](https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cpu - Datasets 1.11.0 - Tokenizers 0.10.3
GItaf/roberta-base-finetuned-mbti-0901
GItaf
2022-09-01T12:24:17Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-09-01T08:01:47Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-mbti-0901 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-mbti-0901 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 4.3179 | 1.0 | 9920 | 4.1970 | | 4.186 | 2.0 | 19840 | 4.1264 | | 4.1057 | 3.0 | 29760 | 4.0955 | | 4.0629 | 4.0 | 39680 | 4.0826 | | 4.0333 | 5.0 | 49600 | 4.0780 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Astrofolia/distilbert-base-uncased-finetuned-emotion
Astrofolia
2022-09-01T11:20:22Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-01T11:10:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9285 - name: F1 type: f1 value: 0.9284597945931914 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2175 - Accuracy: 0.9285 - F1: 0.9285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8486 | 1.0 | 250 | 0.3234 | 0.896 | 0.8913 | | 0.257 | 2.0 | 500 | 0.2175 | 0.9285 | 0.9285 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
PhucLe/LRO_v1.0.2a
PhucLe
2022-09-01T09:56:58Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:PhucLe/autotrain-data-LRO_v1.0.2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-01T09:55:28Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - PhucLe/autotrain-data-LRO_v1.0.2 co2_eq_emissions: emissions: 1.2585708613878817 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1345851607 - CO2 Emissions (in grams): 1.2586 ## Validation Metrics - Loss: 0.523 - Accuracy: 0.818 - Macro F1: 0.817 - Micro F1: 0.818 - Weighted F1: 0.817 - Macro Precision: 0.824 - Micro Precision: 0.818 - Weighted Precision: 0.824 - Macro Recall: 0.818 - Micro Recall: 0.818 - Weighted Recall: 0.818 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/PhucLe/autotrain-LRO_v1.0.2-1345851607 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("PhucLe/autotrain-LRO_v1.0.2-1345851607", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("PhucLe/autotrain-LRO_v1.0.2-1345851607", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
huggingtweets/buckeshot-onlinepete
huggingtweets
2022-09-01T09:35:19Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-18T07:03:11Z
--- language: en thumbnail: http://www.huggingtweets.com/buckeshot-onlinepete/1662024914888/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1545140847259406337/bTk2lL6O_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/456958582731603969/QZKpv6eI_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BUCKSHOT & im pete online</div> <div style="text-align: center; font-size: 14px;">@buckeshot-onlinepete</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BUCKSHOT & im pete online. | Data | BUCKSHOT | im pete online | | --- | --- | --- | | Tweets downloaded | 311 | 3190 | | Retweets | 77 | 94 | | Short tweets | 46 | 1003 | | Tweets kept | 188 | 2093 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1wyw1egj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @buckeshot-onlinepete's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1bnj1d4d) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1bnj1d4d/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/buckeshot-onlinepete') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Conrad747/lg-en-v3
Conrad747
2022-09-01T09:11:44Z
116
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-01T06:10:32Z
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: lg-en-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lg-en-v3 This model is a fine-tuned version of [AI-Lab-Makerere/lg_en](https://huggingface.co/AI-Lab-Makerere/lg_en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9289 - Bleu: 32.5138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.4271483249908667e-05 - train_batch_size: 14 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 1.0 | 26 | 1.0323 | 32.6278 | | No log | 2.0 | 52 | 0.9289 | 32.5138 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
NimaBoscarino/IS-Net_DIS-general-use
NimaBoscarino
2022-09-01T06:41:58Z
0
15
null
[ "background-removal", "computer-vision", "image-segmentation", "arxiv:2203.03041", "license:apache-2.0", "region:us" ]
image-segmentation
2022-09-01T05:33:22Z
--- tags: - background-removal - computer-vision - image-segmentation license: apache-2.0 library: pytorch inference: false --- # IS-Net_DIS-general-use * Model Authors: Xuebin Qin, Hang Dai, Xiaobin Hu, Deng-Ping Fan*, Ling Shao, Luc Van Gool * Paper: Highly Accurate Dichotomous Image Segmentation (ECCV 2022 - https://arxiv.org/pdf/2203.03041.pdf * Code Repo: https://github.com/xuebinqin/DIS * Project Homepage: https://xuebinqin.github.io/dis/index.html Note that this is an _optimized_ version of the IS-NET model. From the paper abstract: > [...] we introduce a simple intermediate supervision baseline (IS- Net) using both feature-level and mask-level guidance for DIS model training. Without tricks, IS-Net outperforms var- ious cutting-edge baselines on the proposed DIS5K, mak- ing it a general self-learned supervision network that can help facilitate future research in DIS. ![](https://raw.githubusercontent.com/xuebinqin/DIS/main/figures/is-net.png) # Citation ``` @InProceedings{qin2022, author={Xuebin Qin and Hang Dai and Xiaobin Hu and Deng-Ping Fan and Ling Shao and Luc Van Gool}, title={Highly Accurate Dichotomous Image Segmentation}, booktitle={ECCV}, year={2022} } ```
NimaBoscarino/IS-Net_DIS
NimaBoscarino
2022-09-01T06:41:46Z
0
4
null
[ "background-removal", "computer-vision", "image-segmentation", "arxiv:2203.03041", "license:apache-2.0", "region:us" ]
image-segmentation
2022-09-01T05:05:18Z
--- tags: - background-removal - computer-vision - image-segmentation license: apache-2.0 library: pytorch inference: false --- # IS-Net_DIS * Model Authors: Xuebin Qin, Hang Dai, Xiaobin Hu, Deng-Ping Fan*, Ling Shao, Luc Van Gool * Paper: Highly Accurate Dichotomous Image Segmentation (ECCV 2022 - https://arxiv.org/pdf/2203.03041.pdf * Code Repo: https://github.com/xuebinqin/DIS * Project Homepage: https://xuebinqin.github.io/dis/index.html From the paper abstract: > [...] we introduce a simple intermediate supervision baseline (IS- Net) using both feature-level and mask-level guidance for DIS model training. Without tricks, IS-Net outperforms var- ious cutting-edge baselines on the proposed DIS5K, mak- ing it a general self-learned supervision network that can help facilitate future research in DIS. ![](https://raw.githubusercontent.com/xuebinqin/DIS/main/figures/is-net.png) [HCE score](https://github.com/xuebinqin/DIS#4-human-correction-efforts-hce): 1016 # Citation ``` @InProceedings{qin2022, author={Xuebin Qin and Hang Dai and Xiaobin Hu and Deng-Ping Fan and Ling Shao and Luc Van Gool}, title={Highly Accurate Dichotomous Image Segmentation}, booktitle={ECCV}, year={2022} } ```
Wakeme/ddpm-butterflies-128
Wakeme
2022-09-01T05:47:18Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-01T04:34:11Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Wakeme/ddpm-butterflies-128/tensorboard?#scalars)
dvalbuena1/a2c-AntBulletEnv-v0
dvalbuena1
2022-09-01T04:21:12Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-01T04:19:59Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 836.44 +/- 139.46 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
SharpAI/mal-net-traffic-t5-l12
SharpAI
2022-09-01T01:17:03Z
110
0
transformers
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-01T01:16:05Z
--- tags: - generated_from_keras_callback model-index: - name: mal-net-traffic-t5-l12 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mal-net-traffic-t5-l12 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
JAlexis/modelF_01
JAlexis
2022-08-31T22:59:44Z
99
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-08-31T22:46:53Z
--- widget: - text: "How can I protect myself against covid-19?" context: "Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. " - text: "What are the risk factors for covid-19?" context: "To identify risk factors for hospital deaths from COVID-19, the OpenSAFELY platform examined electronic health records from 17.4 million UK adults. The authors used multivariable Cox proportional hazards model to identify the association of risk of death with older age, lower socio-economic status, being male, non-white ethnic background and certain clinical conditions (diabetes, obesity, cancer, respiratory diseases, heart, kidney, liver, neurological and autoimmune conditions). Notably, asthma was identified as a risk factor, despite prior suggestion of a potential protective role. Interestingly, higher risks due to ethnicity or lower socio-economic status could not be completely attributed to pre-existing health conditions." ---
nawage/dragons-test
nawage
2022-08-31T22:35:54Z
4
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-31T21:44:48Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # dragons-test ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/nawage/dragons-test/tensorboard?#scalars)
marsyanzeyu/bert-finetuned-ner-test-2
marsyanzeyu
2022-08-31T21:53:00Z
59
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-31T21:45:00Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: marsyanzeyu/bert-finetuned-ner-test-2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # marsyanzeyu/bert-finetuned-ner-test-2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0266 - Validation Loss: 0.0542 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1742 | 0.0652 | 0 | | 0.0467 | 0.0561 | 1 | | 0.0266 | 0.0542 | 2 | ### Framework versions - Transformers 4.21.2 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
theojolliffe/T5-model-1-feedback-e1
theojolliffe
2022-08-31T21:00:29Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-31T20:36:55Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: T5-model-1-feedback-e1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-model-1-feedback-e1 This model is a fine-tuned version of [theojolliffe/T5-model-1-feedback](https://huggingface.co/theojolliffe/T5-model-1-feedback) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:|:---------:|:-------:| | No log | 1.0 | 119 | 0.4255 | 86.0527 | 81.4537 | 85.654 | 85.9336 | 14.1852 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0 - Datasets 1.18.0 - Tokenizers 0.10.3
kiheh85202/yolo
kiheh85202
2022-08-31T20:28:31Z
162
1
transformers
[ "transformers", "pytorch", "dpt", "vision", "image-segmentation", "dataset:scene_parse_150", "arxiv:2103.13413", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-segmentation
2022-08-18T20:27:18Z
--- license: apache-2.0 tags: - vision - image-segmentation datasets: - scene_parse_150 widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # DPT (large-sized model) fine-tuned on ADE20k Dense Prediction Transformer (DPT) model trained on ADE20k for semantic segmentation. It was introduced in the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by Ranftl et al. and first released in [this repository](https://github.com/isl-org/DPT). Disclaimer: The team releasing DPT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description DPT uses the Vision Transformer (ViT) as backbone and adds a neck + head on top for semantic segmentation. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/dpt_architecture.jpg) ## Intended uses & limitations You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?search=dpt) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python from transformers import DPTFeatureExtractor, DPTForSemanticSegmentation from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large-ade") model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade") inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/dpt). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2103-13413, author = {Ren{\'{e}} Ranftl and Alexey Bochkovskiy and Vladlen Koltun}, title = {Vision Transformers for Dense Prediction}, journal = {CoRR}, volume = {abs/2103.13413}, year = {2021}, url = {https://arxiv.org/abs/2103.13413}, eprinttype = {arXiv}, eprint = {2103.13413}, timestamp = {Wed, 07 Apr 2021 15:31:46 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2103-13413.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
muhtasham/tajberto-ner
muhtasham
2022-08-31T20:15:40Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:wikiann", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-27T15:15:25Z
--- widget: - text: " Исмоили Сомонӣ - намояндаи бузурги форсу-тоҷик" - text: "Ин фурудгоҳ дар кишвари Индонезия қарор дорад." - text: " Бобоҷон Ғафуров – солҳои 1946-1956" - text: " Лоиқ Шералӣ дар васфи Модар шеър" tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: tajberto-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann config: tg split: train+test args: tg metrics: - name: Precision type: precision value: 0.576 - name: Recall type: recall value: 0.6923076923076923 - name: F1 type: f1 value: 0.62882096069869 - name: Accuracy type: accuracy value: 0.8934049079754601 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tajberto-ner This model is a fine-tuned version of [muhtasham/TajBERTo](https://huggingface.co/muhtasham/TajBERTo) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.6129 - Precision: 0.576 - Recall: 0.6923 - F1: 0.6288 - Accuracy: 0.8934 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.0 | 50 | 0.6171 | 0.1667 | 0.2885 | 0.2113 | 0.7646 | | No log | 4.0 | 100 | 0.4733 | 0.2824 | 0.4615 | 0.3504 | 0.8344 | | No log | 6.0 | 150 | 0.3857 | 0.3372 | 0.5577 | 0.4203 | 0.8589 | | No log | 8.0 | 200 | 0.4523 | 0.4519 | 0.5865 | 0.5105 | 0.8765 | | No log | 10.0 | 250 | 0.3870 | 0.44 | 0.6346 | 0.5197 | 0.8834 | | No log | 12.0 | 300 | 0.4512 | 0.5267 | 0.6635 | 0.5872 | 0.8865 | | No log | 14.0 | 350 | 0.4934 | 0.4789 | 0.6538 | 0.5528 | 0.8819 | | No log | 16.0 | 400 | 0.4924 | 0.4783 | 0.6346 | 0.5455 | 0.8842 | | No log | 18.0 | 450 | 0.5355 | 0.4595 | 0.6538 | 0.5397 | 0.8788 | | 0.1682 | 20.0 | 500 | 0.5440 | 0.5547 | 0.6827 | 0.6121 | 0.8942 | | 0.1682 | 22.0 | 550 | 0.5299 | 0.5794 | 0.7019 | 0.6348 | 0.9003 | | 0.1682 | 24.0 | 600 | 0.5735 | 0.5691 | 0.6731 | 0.6167 | 0.8926 | | 0.1682 | 26.0 | 650 | 0.6027 | 0.5833 | 0.6731 | 0.6250 | 0.8796 | | 0.1682 | 28.0 | 700 | 0.6119 | 0.568 | 0.6827 | 0.6201 | 0.8934 | | 0.1682 | 30.0 | 750 | 0.6098 | 0.5635 | 0.6827 | 0.6174 | 0.8911 | | 0.1682 | 32.0 | 800 | 0.6237 | 0.5469 | 0.6731 | 0.6034 | 0.8834 | | 0.1682 | 34.0 | 850 | 0.6215 | 0.5530 | 0.7019 | 0.6186 | 0.8842 | | 0.1682 | 36.0 | 900 | 0.6179 | 0.5802 | 0.7308 | 0.6468 | 0.8888 | | 0.1682 | 38.0 | 950 | 0.6201 | 0.5373 | 0.6923 | 0.6050 | 0.8873 | | 0.0007 | 40.0 | 1000 | 0.6114 | 0.5952 | 0.7212 | 0.6522 | 0.8911 | | 0.0007 | 42.0 | 1050 | 0.6073 | 0.5625 | 0.6923 | 0.6207 | 0.8896 | | 0.0007 | 44.0 | 1100 | 0.6327 | 0.5620 | 0.6538 | 0.6044 | 0.8896 | | 0.0007 | 46.0 | 1150 | 0.6129 | 0.576 | 0.6923 | 0.6288 | 0.8934 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
gus1999/model
gus1999
2022-08-31T20:10:26Z
160
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "fill-mask", "generated_from_trainer", "dataset:allocine", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-31T19:07:54Z
--- license: mit tags: - generated_from_trainer datasets: - allocine model-index: - name: model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model This model is a fine-tuned version of [cmarkea/distilcamembert-base](https://huggingface.co/cmarkea/distilcamembert-base) on the allocine dataset. It achieves the following results on the evaluation set: - Loss: 2.0254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4388 | 1.0 | 157 | 2.1637 | | 2.288 | 2.0 | 314 | 2.1697 | | 2.2444 | 3.0 | 471 | 2.1150 | | 2.2166 | 4.0 | 628 | 2.0906 | | 2.1754 | 5.0 | 785 | 2.0899 | | 2.1604 | 6.0 | 942 | 2.0797 | | 2.1299 | 7.0 | 1099 | 2.0589 | | 2.1195 | 8.0 | 1256 | 2.0178 | | 2.1258 | 9.0 | 1413 | 2.0348 | | 2.1071 | 10.0 | 1570 | 2.0090 | | 2.0888 | 11.0 | 1727 | 2.0047 | | 2.0792 | 12.0 | 1884 | 2.0219 | | 2.0687 | 13.0 | 2041 | 2.0080 | | 2.0527 | 14.0 | 2198 | 2.0298 | | 2.0589 | 15.0 | 2355 | 1.9869 | | 2.0518 | 16.0 | 2512 | 2.0152 | | 2.0409 | 17.0 | 2669 | 2.0247 | | 2.0507 | 18.0 | 2826 | 1.9928 | | 2.0366 | 19.0 | 2983 | 2.0175 | | 2.0386 | 20.0 | 3140 | 1.9487 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
AaronCU/attribute-classification
AaronCU
2022-08-31T19:25:23Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:AaronCU/autotrain-data-attribute-classification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-31T19:24:40Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - AaronCU/autotrain-data-attribute-classification co2_eq_emissions: emissions: 0.002847008943614719 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1343651539 - CO2 Emissions (in grams): 0.0028 ## Validation Metrics - Loss: 0.163 - Accuracy: 0.949 - Macro F1: 0.947 - Micro F1: 0.949 - Weighted F1: 0.949 - Macro Precision: 0.943 - Micro Precision: 0.949 - Weighted Precision: 0.951 - Macro Recall: 0.952 - Micro Recall: 0.949 - Weighted Recall: 0.949 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/AaronCU/autotrain-attribute-classification-1343651539 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("AaronCU/autotrain-attribute-classification-1343651539", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("AaronCU/autotrain-attribute-classification-1343651539", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
castorini/monot5-3b-msmarco-10k
castorini
2022-08-31T19:20:16Z
497
12
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2206.02873", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-28T15:08:54Z
This model is a T5-3B reranker fine-tuned on the MS MARCO passage dataset for 10k steps (or 1 epoch). For more details on how to use it, check [pygaggle.ai](pygaggle.ai) Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/) This model is also the state of the art on the BEIR Benchmark. - Paper: [No Parameter Left Behind: How Distillation and Model Size Affect Zero-Shot Retrieval](https://arxiv.org/abs/2206.02873) - [Repository](https://github.com/guilhermemr04/scaling-zero-shot-retrieval)
suey2580/distilbert-base-uncased-finetuned-cola
suey2580
2022-08-31T18:58:43Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-06T01:29:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5238347808517775 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.0766 - Matthews Correlation: 0.5238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.403175733231667e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4954 | 1.0 | 1069 | 0.4770 | 0.4589 | | 0.3627 | 2.0 | 2138 | 0.5464 | 0.4998 | | 0.2576 | 3.0 | 3207 | 0.8439 | 0.4933 | | 0.1488 | 4.0 | 4276 | 1.0184 | 0.5035 | | 0.1031 | 5.0 | 5345 | 1.0766 | 0.5238 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
curt-tigges/q-Taxi-v3
curt-tigges
2022-08-31T18:47:23Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-31T18:47:16Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="curt-tigges/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Shivus/cartpole
Shivus
2022-08-31T17:07:14Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-31T17:04:29Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 139.50 +/- 32.14 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
29thDay/A2C-SpaceInvadersNoFrameskip-v4
29thDay
2022-08-31T15:47:23Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-31T15:46:15Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 10.00 +/- 10.25 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **A2C** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **A2C** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ericntay/stbl_clinical_bert_ft
ericntay
2022-08-31T15:31:41Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-31T15:14:00Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: stbl_clinical_bert_ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stbl_clinical_bert_ft This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1789 - F1: 0.8523 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2786 | 1.0 | 95 | 0.1083 | 0.8090 | | 0.0654 | 2.0 | 190 | 0.1005 | 0.8475 | | 0.0299 | 3.0 | 285 | 0.1207 | 0.8481 | | 0.0146 | 4.0 | 380 | 0.1432 | 0.8454 | | 0.0088 | 5.0 | 475 | 0.1362 | 0.8475 | | 0.0056 | 6.0 | 570 | 0.1527 | 0.8518 | | 0.0037 | 7.0 | 665 | 0.1617 | 0.8519 | | 0.0022 | 8.0 | 760 | 0.1726 | 0.8495 | | 0.0018 | 9.0 | 855 | 0.1743 | 0.8527 | | 0.0014 | 10.0 | 950 | 0.1750 | 0.8463 | | 0.0014 | 11.0 | 1045 | 0.1775 | 0.8522 | | 0.001 | 12.0 | 1140 | 0.1789 | 0.8523 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ai-forever/mGPT-armenian
ai-forever
2022-08-31T15:05:46Z
25
8
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "multilingual", "PyTorch", "Transformers", "gpt3", "Deepspeed", "Megatron", "hy", "dataset:mc4", "dataset:wikipedia", "arxiv:2112.10668", "arxiv:2204.07580", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-31T14:24:00Z
--- license: apache-2.0 language: - hy pipeline_tag: text-generation tags: - multilingual - PyTorch - Transformers - gpt3 - gpt2 - Deepspeed - Megatron datasets: - mc4 - wikipedia thumbnail: "https://github.com/sberbank-ai/mgpt" --- # Multilingual GPT model, Armenian language finetune We introduce a monolingual GPT-3-based model for Armenian language The model is based on [mGPT](https://huggingface.co/sberbank-ai/mGPT/), a family of autoregressive GPT-like models with 1.3 billion parameters trained on 60 languages from 25 language families using Wikipedia and Colossal Clean Crawled Corpus. We reproduce the GPT-3 architecture using GPT-2 sources and the sparse attention mechanism, [Deepspeed](https://github.com/microsoft/DeepSpeed) and [Megatron](https://github.com/NVIDIA/Megatron-LM) frameworks allows us to effectively parallelize the training and inference steps. The resulting models show performance on par with the recently released [XGLM](https://arxiv.org/pdf/2112.10668.pdf) models at the same time covering more languages and enhancing NLP possibilities for low resource languages. ## Code The source code for the mGPT XL model is available on [Github](https://github.com/sberbank-ai/mgpt) ## Paper mGPT: Few-Shot Learners Go Multilingual [Abstract](https://arxiv.org/abs/2204.07580) [PDF](https://arxiv.org/pdf/2204.07580.pdf) ![](https://habrastorage.org/webt/1q/ru/yt/1qruytul6m2m-upyk9frq3pgrds.png) ``` @misc{https://doi.org/10.48550/arxiv.2204.07580, doi = {10.48550/ARXIV.2204.07580}, url = {https://arxiv.org/abs/2204.07580}, author = {Shliazhko, Oleh and Fenogenova, Alena and Tikhonova, Maria and Mikhailov, Vladislav and Kozlova, Anastasia and Shavrina, Tatiana}, keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences, I.2; I.2.7, 68-06, 68-04, 68T50, 68T01}, title = {mGPT: Few-Shot Learners Go Multilingual}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` ## Training The model was fine-tuned on 170GB of Armenian texts, including MC4, Archive.org fiction, EANC public data, OpenSubtitles, OSCAR corpus and blog texts. Val perplexity is 2.046. The mGPT model was pre-trained for 12 days x 256 GPU (Tesla NVidia V100), 4 epochs, then 9 days x 64 GPU, 1 epoch The Armenian finetune was around 7 days with 4 Tesla NVidia V100 and has made 160k steps. ![](https://habrastorage.org/webt/4h/pp/tq/4hpptqkgytnoi9ax58wdrymsxx4.png) What happens on this image? The model is originally trained with sparse attention masks, then fine-tuned with no sparsity on the last steps (perplexity and loss peak). Getting rid of the sparsity in the end of the training helps to integrate the model into the GPT2 HF class.
farleyknight-org-username/vit-base-mnist
farleyknight-org-username
2022-08-31T14:55:56Z
1,370
8
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "vision", "generated_from_trainer", "dataset:mnist", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-21T16:48:27Z
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - mnist metrics: - accuracy model-index: - name: vit-base-mnist results: - task: name: Image Classification type: image-classification dataset: name: mnist type: mnist config: mnist split: train args: mnist metrics: - name: Accuracy type: accuracy value: 0.9948888888888889 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-mnist This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the mnist dataset. It achieves the following results on the evaluation set: - Loss: 0.0236 - Accuracy: 0.9949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3717 | 1.0 | 6375 | 0.0522 | 0.9893 | | 0.3453 | 2.0 | 12750 | 0.0370 | 0.9906 | | 0.3736 | 3.0 | 19125 | 0.0308 | 0.9916 | | 0.3224 | 4.0 | 25500 | 0.0269 | 0.9939 | | 0.2846 | 5.0 | 31875 | 0.0236 | 0.9949 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.11.0a0+17540c5 - Datasets 2.4.0 - Tokenizers 0.12.1
AliShaker/layoutlmv3-finetuned-wildreceipt
AliShaker
2022-08-31T14:44:42Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:wildreceipt", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-31T13:06:54Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - wildreceipt metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-wildreceipt results: - task: name: Token Classification type: token-classification dataset: name: wildreceipt type: wildreceipt config: WildReceipt split: train args: WildReceipt metrics: - name: Precision type: precision value: 0.877962408063198 - name: Recall type: recall value: 0.8870235310306867 - name: F1 type: f1 value: 0.8824697104524608 - name: Accuracy type: accuracy value: 0.9265109136777449 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-wildreceipt This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the wildreceipt dataset. It achieves the following results on the evaluation set: - Loss: 0.3129 - Precision: 0.8780 - Recall: 0.8870 - F1: 0.8825 - Accuracy: 0.9265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.32 | 100 | 1.2240 | 0.6077 | 0.3766 | 0.4650 | 0.7011 | | No log | 0.63 | 200 | 0.8417 | 0.6440 | 0.5089 | 0.5685 | 0.7743 | | No log | 0.95 | 300 | 0.6466 | 0.7243 | 0.6583 | 0.6897 | 0.8311 | | No log | 1.26 | 400 | 0.5516 | 0.7533 | 0.7158 | 0.7341 | 0.8537 | | 0.9961 | 1.58 | 500 | 0.4845 | 0.7835 | 0.7557 | 0.7693 | 0.8699 | | 0.9961 | 1.89 | 600 | 0.4506 | 0.7809 | 0.7930 | 0.7869 | 0.8770 | | 0.9961 | 2.21 | 700 | 0.4230 | 0.8101 | 0.8107 | 0.8104 | 0.8886 | | 0.9961 | 2.52 | 800 | 0.3797 | 0.8211 | 0.8296 | 0.8253 | 0.8983 | | 0.9961 | 2.84 | 900 | 0.3576 | 0.8289 | 0.8411 | 0.8349 | 0.9016 | | 0.4076 | 3.15 | 1000 | 0.3430 | 0.8394 | 0.8371 | 0.8382 | 0.9055 | | 0.4076 | 3.47 | 1100 | 0.3354 | 0.8531 | 0.8405 | 0.8467 | 0.9071 | | 0.4076 | 3.79 | 1200 | 0.3331 | 0.8371 | 0.8504 | 0.8437 | 0.9076 | | 0.4076 | 4.1 | 1300 | 0.3184 | 0.8445 | 0.8609 | 0.8526 | 0.9118 | | 0.4076 | 4.42 | 1400 | 0.3087 | 0.8617 | 0.8580 | 0.8598 | 0.9150 | | 0.2673 | 4.73 | 1500 | 0.3013 | 0.8613 | 0.8657 | 0.8635 | 0.9177 | | 0.2673 | 5.05 | 1600 | 0.2971 | 0.8630 | 0.8689 | 0.8659 | 0.9181 | | 0.2673 | 5.36 | 1700 | 0.3075 | 0.8675 | 0.8639 | 0.8657 | 0.9177 | | 0.2673 | 5.68 | 1800 | 0.2989 | 0.8551 | 0.8764 | 0.8656 | 0.9193 | | 0.2673 | 5.99 | 1900 | 0.3011 | 0.8572 | 0.8762 | 0.8666 | 0.9194 | | 0.2026 | 6.31 | 2000 | 0.3107 | 0.8595 | 0.8722 | 0.8658 | 0.9181 | | 0.2026 | 6.62 | 2100 | 0.3050 | 0.8678 | 0.8800 | 0.8739 | 0.9220 | | 0.2026 | 6.94 | 2200 | 0.2971 | 0.8722 | 0.8789 | 0.8755 | 0.9237 | | 0.2026 | 7.26 | 2300 | 0.3057 | 0.8666 | 0.8785 | 0.8725 | 0.9209 | | 0.2026 | 7.57 | 2400 | 0.3172 | 0.8593 | 0.8773 | 0.8682 | 0.9184 | | 0.1647 | 7.89 | 2500 | 0.3018 | 0.8695 | 0.8823 | 0.8759 | 0.9228 | | 0.1647 | 8.2 | 2600 | 0.3001 | 0.8760 | 0.8795 | 0.8777 | 0.9256 | | 0.1647 | 8.52 | 2700 | 0.3068 | 0.8758 | 0.8745 | 0.8752 | 0.9235 | | 0.1647 | 8.83 | 2800 | 0.3007 | 0.8779 | 0.8779 | 0.8779 | 0.9248 | | 0.1647 | 9.15 | 2900 | 0.3063 | 0.8740 | 0.8763 | 0.8751 | 0.9228 | | 0.1342 | 9.46 | 3000 | 0.3096 | 0.8675 | 0.8834 | 0.8754 | 0.9235 | | 0.1342 | 9.78 | 3100 | 0.3052 | 0.8736 | 0.8848 | 0.8792 | 0.9249 | | 0.1342 | 10.09 | 3200 | 0.3120 | 0.8727 | 0.8885 | 0.8805 | 0.9252 | | 0.1342 | 10.41 | 3300 | 0.3146 | 0.8718 | 0.8843 | 0.8780 | 0.9243 | | 0.1342 | 10.73 | 3400 | 0.3124 | 0.8720 | 0.8880 | 0.8799 | 0.9253 | | 0.117 | 11.04 | 3500 | 0.3088 | 0.8761 | 0.8817 | 0.8789 | 0.9252 | | 0.117 | 11.36 | 3600 | 0.3082 | 0.8782 | 0.8834 | 0.8808 | 0.9257 | | 0.117 | 11.67 | 3700 | 0.3129 | 0.8767 | 0.8847 | 0.8807 | 0.9256 | | 0.117 | 11.99 | 3800 | 0.3116 | 0.8792 | 0.8847 | 0.8820 | 0.9265 | | 0.117 | 12.3 | 3900 | 0.3142 | 0.8768 | 0.8874 | 0.8821 | 0.9261 | | 0.1022 | 12.62 | 4000 | 0.3129 | 0.8780 | 0.8870 | 0.8825 | 0.9265 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
chinoll/ACGTTS
chinoll
2022-08-31T13:59:25Z
0
4
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2022-08-06T10:02:11Z
--- license: cc-by-nc-sa-4.0 --- # ACGTTS 模型库 ### old支持的语音 ``` 0 - 绫地宁宁 1 - 因幡巡 2 - 户隐憧子 ``` ### new支持的语音 ``` 0 - 绫地宁宁 1 - 户隐憧子 2 - 因幡巡 3 - 明月栞那 4 - 四季夏目 5 - 墨染希 6 - 火打谷爱衣 7 - 汐山凉音 8 - 中文注入声线 9 - 二条院羽月 10 - 在原七海 11 - 式部茉优 12 - 三司绫濑 13 - 壬生千咲 14 - 朝武芳乃 15 - 常陆茉子 16 - 丛雨 17 - 蕾娜·列支敦瑙尔 18 - 鞍马小春 ``` 目前模型支持的语言有中文(方言味浓重)和日语 # 代码地址 [ACGTTS](https://github.com/chinoll/ACGTTS)
karthid/ta_Tamil_NER
karthid
2022-08-31T13:52:24Z
2
0
spacy
[ "spacy", "token-classification", "ta", "model-index", "region:us" ]
token-classification
2022-08-28T18:36:59Z
--- tags: - spacy - token-classification language: - ta widget: - text: "கூகுள் நிறுவனம் தனது முக்கிய வசதியான ஸ்ட்ரீட் வியூ வசதியை 10 நகரங்களில் இந்தியாவில் அறிமுகப்படுத்தி உள்ளது." - text: "கென்யாவின் புதிய அரசுத்தலைவராக வில்லியம் ரூட்டோ தேர்ந்தெடுக்கப்பட்டார்." - text: "என் பெயர் மாறன், நான் சென்னையில் வசிக்கிறேன்." model-index: - name: ta_Tamil_NER results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8433655536 - name: NER Recall type: recall value: 0.8552016039 - name: NER F Score type: f_score value: 0.8492423404 --- ## Intended uses & limitations #### How to use You can use this model with spacy. !pip install https://huggingface.co/karthid/ta_Tamil_NER/resolve/main/ta_Tamil_NER-any-py3-none-any.whl import ta_Tamil_NER from spacy import displacy nlp = ta_Tamil_NER.load() doc = nlp("கூகுள் நிறுவனம் தனது முக்கிய வசதியான ஸ்ட்ரீட் வியூ வசதியை 10 நகரங்களில் இந்தியாவில் அறிமுகப்படுத்தி உள்ளது.") displacy.render(doc,jupyter=True, style = "ent") | Feature | Description | | --- | --- | | **Name** | `ta_Tamil_NER` | | **Version** | `0.0.0` | | **spaCy** | `>=3.2.4,<3.3.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | Karthi Dhayalan | ### Label Scheme <details> <summary>View label scheme </summary> | Component | Labels | | --- | --- | | **`ner`** | `B-PER`, `I-PER`, `B-ORG`, `I-ORG`, `B-LOC`, `I-LOC` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 84.92 | | `ENTS_P` | 84.34 | | `ENTS_R` | 85.52 | | `TRANSFORMER_LOSS` | 1842600.06 | | `NER_LOSS` | 108788.05 |
29thDay/A2C-AntBulletEnv-v0
29thDay
2022-08-31T13:32:46Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-31T13:31:39Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 822.42 +/- 48.82 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
autoevaluate/glue-mnli
autoevaluate
2022-08-31T13:27:39Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-29T09:59:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: glue-mnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mnli split: train args: mnli metrics: - name: Accuracy type: accuracy value: 0.6772287315333673 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue-mnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8003 - Accuracy: 0.6772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9378 | 1.0 | 625 | 0.7896 | 0.6585 | | 0.7086 | 2.0 | 1250 | 0.7850 | 0.6712 | | 0.5758 | 3.0 | 1875 | 0.8003 | 0.6772 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
kingabzpro/a2c-HalfCheetahBulletEnv-v0
kingabzpro
2022-08-31T13:06:52Z
3
0
stable-baselines3
[ "stable-baselines3", "HalfCheetahBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-31T12:10:34Z
--- library_name: stable-baselines3 tags: - HalfCheetahBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1647.65 +/- 21.63 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: HalfCheetahBulletEnv-v0 type: HalfCheetahBulletEnv-v0 --- # **A2C** Agent playing **HalfCheetahBulletEnv-v0** This is a trained model of a **A2C** agent playing **HalfCheetahBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
huggingtweets/donaldtusk
huggingtweets
2022-08-31T12:29:41Z
107
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-05T20:21:21Z
--- language: en thumbnail: http://www.huggingtweets.com/donaldtusk/1661948958135/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/990605878993793024/7uuCR4hP_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Donald Tusk</div> <div style="text-align: center; font-size: 14px;">@donaldtusk</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Donald Tusk. | Data | Donald Tusk | | --- | --- | | Tweets downloaded | 928 | | Retweets | 194 | | Short tweets | 35 | | Tweets kept | 699 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/pyk96dcl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @donaldtusk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ivs2zls) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ivs2zls/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/donaldtusk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Langboat/bloom-800m-zh
Langboat
2022-08-31T11:58:08Z
23
3
transformers
[ "transformers", "pytorch", "bloom", "text-generation", "zh", "license:bigscience-bloom-rail-1.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-31T06:48:29Z
--- license: bigscience-bloom-rail-1.0 language: - zh pipeline_tag: text-generation widget: - text: "中国的首都是" --- This model is based on [bigscience/bloom-1b1](https://huggingface.co/bigscience/bloom-1b1). We pruned its vocabulary from 250880 to 46145 with Chinese corpus to reduce GPU memory usage. So the total parameter is 800m now. # How to use ```python from transformers import BloomTokenizerFast, BloomForCausalLM tokenizer = BloomTokenizerFast.from_pretrained('Langboat/bloom-800m-zh') model = BloomForCausalLM.from_pretrained('Langboat/bloom-800m-zh') print(tokenizer.batch_decode(model.generate(tokenizer.encode('中国的首都是', return_tensors='pt')))) ```
mrm8488/data2vec-text-base-finetuned-cola
mrm8488
2022-08-31T10:26:09Z
18
0
transformers
[ "transformers", "pytorch", "tensorboard", "data2vec-text", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-03T14:51:13Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: data2vec-text-base-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5214716883534575 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # data2vec-text-base-finetuned-cola This model is a fine-tuned version of [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5254 - Matthews Correlation: 0.5215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.160701759709141e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 30 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5632 | 1.0 | 535 | 0.5252 | 0.3869 | | 0.4572 | 2.0 | 1070 | 0.5534 | 0.4758 | | 0.3905 | 3.0 | 1605 | 0.4962 | 0.5259 | | 0.3592 | 4.0 | 2140 | 0.5254 | 0.5215 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
mrm8488/data2vec-text-base-finetuned-mnli
mrm8488
2022-08-31T10:25:23Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "data2vec-text", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-29T16:27:18Z
--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: data2vec-text-base-finetuned-mnli results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.7862455425369332 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # data2vec-text-base-finetuned-mnli This model is a fine-tuned version of [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5521 - Accuracy: 0.7862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 1.099 | 1.0 | 24544 | 1.0987 | 0.3182 | | 1.0993 | 2.0 | 49088 | 1.0979 | 0.3545 | | 0.7481 | 3.0 | 73632 | 0.7197 | 0.7046 | | 0.5671 | 4.0 | 98176 | 0.5862 | 0.7728 | | 0.5505 | 5.0 | 122720 | 0.5521 | 0.7862 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
mrp/bert-finetuned-squad
mrp
2022-08-31T09:52:58Z
17
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: - task: type: question-answering name: Question Answering dataset: name: squad type: squad config: plain_text split: validation metrics: - name: Loss type: loss value: 1.073493242263794 verified: true - name: Exact Match type: exact_match value: 80.0853 verified: true - name: F1 type: f1 value: 87.606 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
VioletaMG/dtu-scan114-128_50epochs
VioletaMG
2022-08-31T09:29:52Z
2
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-31T09:08:22Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # dtu-scan114-128_50epochs ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/VioletaMG/dtu-scan114-128_50epochs/tensorboard?#scalars)
merkalo-ziri/qa_model
merkalo-ziri
2022-08-31T09:20:35Z
26
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "question answering", "endpoints_compatible", "region:us" ]
question-answering
2022-08-23T20:14:41Z
--- tags: - "question answering" widget: - context: "Привет, меня зовут Артем. Завтра заеду к вам" - question: "Что я планирую делать?" ---
osanseviero/flair_test4
osanseviero
2022-08-31T09:04:18Z
1
0
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "region:us" ]
token-classification
2022-08-31T09:02:30Z
--- tags: - flair - token-classification - sequence-tagger-model --- ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("osanseviero/flair_test4") # make example sentence sentence = Sentence("On September 1st George won 1 dollar while watching Game of Thrones.") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ```
Fulccrum/distilbert-base-uncased-finetuned-sst2
Fulccrum
2022-08-31T09:02:13Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-02T09:56:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9128440366972477 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-sst2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3739 - Accuracy: 0.9128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1885 | 1.0 | 4210 | 0.3092 | 0.9083 | | 0.1311 | 2.0 | 8420 | 0.3809 | 0.9071 | | 0.1036 | 3.0 | 12630 | 0.3739 | 0.9128 | | 0.0629 | 4.0 | 16840 | 0.4623 | 0.9083 | | 0.036 | 5.0 | 21050 | 0.5198 | 0.9048 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
VanHoan/bert-fine-tuned-cola
VanHoan
2022-08-31T08:48:56Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-20T02:35:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-fine-tuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5981073556597793 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-cola This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8408 - Matthews Correlation: 0.5981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4729 | 1.0 | 1069 | 0.5311 | 0.5154 | | 0.3134 | 2.0 | 2138 | 0.6336 | 0.6007 | | 0.1686 | 3.0 | 3207 | 0.8408 | 0.5981 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
cynthiachan/finetuned-bert-base-10pct
cynthiachan
2022-08-31T08:45:34Z
109
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:cynthiachan/FeedRef_10pct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-15T02:47:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cynthiachan/FeedRef_10pct model-index: - name: training results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # training This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the cynthiachan/FeedRef_10pct dataset. It achieves the following results on the evaluation set: - Loss: 0.1291 - Attackid Precision: 1.0 - Attackid Recall: 1.0 - Attackid F1: 1.0 - Attackid Number: 6 - Cve Precision: 0.8333 - Cve Recall: 0.9091 - Cve F1: 0.8696 - Cve Number: 11 - Defenderthreat Precision: 0.0 - Defenderthreat Recall: 0.0 - Defenderthreat F1: 0.0 - Defenderthreat Number: 2 - Domain Precision: 0.7826 - Domain Recall: 0.7826 - Domain F1: 0.7826 - Domain Number: 23 - Email Precision: 0.6667 - Email Recall: 0.6667 - Email F1: 0.6667 - Email Number: 3 - Filepath Precision: 0.6766 - Filepath Recall: 0.8242 - Filepath F1: 0.7432 - Filepath Number: 165 - Hostname Precision: 1.0 - Hostname Recall: 0.9167 - Hostname F1: 0.9565 - Hostname Number: 12 - Ipv4 Precision: 0.8333 - Ipv4 Recall: 0.8333 - Ipv4 F1: 0.8333 - Ipv4 Number: 12 - Md5 Precision: 0.7246 - Md5 Recall: 0.9615 - Md5 F1: 0.8264 - Md5 Number: 52 - Sha1 Precision: 0.0667 - Sha1 Recall: 0.1429 - Sha1 F1: 0.0909 - Sha1 Number: 7 - Sha256 Precision: 0.6780 - Sha256 Recall: 0.9091 - Sha256 F1: 0.7767 - Sha256 Number: 44 - Uri Precision: 0.0 - Uri Recall: 0.0 - Uri F1: 0.0 - Uri Number: 1 - Overall Precision: 0.6910 - Overall Recall: 0.8402 - Overall F1: 0.7583 - Overall Accuracy: 0.9725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Attackid Precision | Attackid Recall | Attackid F1 | Attackid Number | Cve Precision | Cve Recall | Cve F1 | Cve Number | Defenderthreat Precision | Defenderthreat Recall | Defenderthreat F1 | Defenderthreat Number | Domain Precision | Domain Recall | Domain F1 | Domain Number | Email Precision | Email Recall | Email F1 | Email Number | Filepath Precision | Filepath Recall | Filepath F1 | Filepath Number | Hostname Precision | Hostname Recall | Hostname F1 | Hostname Number | Ipv4 Precision | Ipv4 Recall | Ipv4 F1 | Ipv4 Number | Md5 Precision | Md5 Recall | Md5 F1 | Md5 Number | Sha1 Precision | Sha1 Recall | Sha1 F1 | Sha1 Number | Sha256 Precision | Sha256 Recall | Sha256 F1 | Sha256 Number | Uri Precision | Uri Recall | Uri F1 | Uri Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:-------------:|:----------:|:------:|:----------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:----------------:|:-------------:|:---------:|:-------------:|:---------------:|:------------:|:--------:|:------------:|:------------------:|:---------------:|:-----------:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:--------------:|:-----------:|:-------:|:-----------:|:-------------:|:----------:|:------:|:----------:|:--------------:|:-----------:|:-------:|:-----------:|:----------------:|:-------------:|:---------:|:-------------:|:-------------:|:----------:|:------:|:----------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.3943 | 0.37 | 500 | 0.2881 | 0.0 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.1138 | 0.2 | 0.1451 | 165 | 0.0692 | 0.9167 | 0.1287 | 12 | 0.4706 | 0.6667 | 0.5517 | 12 | 0.75 | 0.9231 | 0.8276 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.5694 | 0.9318 | 0.7069 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.2342 | 0.4172 | 0.3 | 0.9360 | | 0.1987 | 0.75 | 1000 | 0.1722 | 0.5 | 1.0 | 0.6667 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.4779 | 0.6545 | 0.5524 | 165 | 0.25 | 0.6667 | 0.3636 | 12 | 0.6923 | 0.75 | 0.7200 | 12 | 0.6364 | 0.9423 | 0.7597 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.6545 | 0.8182 | 0.7273 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.5136 | 0.6716 | 0.5821 | 0.9529 | | 0.1595 | 1.12 | 1500 | 0.1346 | 0.8571 | 1.0 | 0.9231 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.4286 | 0.5217 | 0.4706 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.5797 | 0.7273 | 0.6452 | 165 | 0.44 | 0.9167 | 0.5946 | 12 | 0.3929 | 0.9167 | 0.55 | 12 | 0.6364 | 0.9423 | 0.7597 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.78 | 0.8864 | 0.8298 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.5768 | 0.7663 | 0.6582 | 0.9658 | | 0.118 | 1.5 | 2000 | 0.1436 | 1.0 | 1.0 | 1.0 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.6087 | 0.6087 | 0.6087 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.6101 | 0.8061 | 0.6945 | 165 | 0.9091 | 0.8333 | 0.8696 | 12 | 0.7273 | 0.6667 | 0.6957 | 12 | 0.7869 | 0.9231 | 0.8496 | 52 | 0.2143 | 0.4286 | 0.2857 | 7 | 0.7407 | 0.9091 | 0.8163 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.6675 | 0.8077 | 0.7309 | 0.9686 | | 0.1198 | 1.87 | 2500 | 0.1385 | 1.0 | 1.0 | 1.0 | 6 | 0.7692 | 0.9091 | 0.8333 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.85 | 0.7391 | 0.7907 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.6390 | 0.7939 | 0.7081 | 165 | 1.0 | 0.8333 | 0.9091 | 12 | 0.5333 | 0.6667 | 0.5926 | 12 | 0.7778 | 0.9423 | 0.8522 | 52 | 0.3333 | 0.5714 | 0.4211 | 7 | 0.8571 | 0.9545 | 0.9032 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.6995 | 0.8195 | 0.7548 | 0.9687 | | 0.0742 | 2.25 | 3000 | 0.1291 | 1.0 | 1.0 | 1.0 | 6 | 0.8333 | 0.9091 | 0.8696 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.7826 | 0.7826 | 0.7826 | 23 | 0.6667 | 0.6667 | 0.6667 | 3 | 0.6766 | 0.8242 | 0.7432 | 165 | 1.0 | 0.9167 | 0.9565 | 12 | 0.8333 | 0.8333 | 0.8333 | 12 | 0.7246 | 0.9615 | 0.8264 | 52 | 0.0667 | 0.1429 | 0.0909 | 7 | 0.6780 | 0.9091 | 0.7767 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.6910 | 0.8402 | 0.7583 | 0.9725 | | 0.0687 | 2.62 | 3500 | 0.1385 | 1.0 | 1.0 | 1.0 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.8077 | 0.9130 | 0.8571 | 23 | 1.0 | 1.0 | 1.0 | 3 | 0.7746 | 0.8121 | 0.7929 | 165 | 0.7333 | 0.9167 | 0.8148 | 12 | 0.7143 | 0.8333 | 0.7692 | 12 | 0.96 | 0.9231 | 0.9412 | 52 | 0.4444 | 0.5714 | 0.5 | 7 | 0.8113 | 0.9773 | 0.8866 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.8083 | 0.8609 | 0.8338 | 0.9737 | | 0.0652 | 3.0 | 4000 | 0.1299 | 1.0 | 1.0 | 1.0 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.8077 | 0.9130 | 0.8571 | 23 | 1.0 | 1.0 | 1.0 | 3 | 0.7553 | 0.8606 | 0.8045 | 165 | 0.8462 | 0.9167 | 0.8800 | 12 | 0.7143 | 0.8333 | 0.7692 | 12 | 0.8571 | 0.9231 | 0.8889 | 52 | 0.75 | 0.8571 | 0.8000 | 7 | 0.8723 | 0.9318 | 0.9011 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.8038 | 0.8846 | 0.8423 | 0.9772 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
varun3dec/cat_or_dog
varun3dec
2022-08-31T07:51:03Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-08-31T07:32:00Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
js05212/ddpm-butterflies-128
js05212
2022-08-31T04:49:25Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-31T04:08:43Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/js05212/ddpm-butterflies-128/tensorboard?#scalars)
Late-potato/distilbert-base-uncased-finetuned-imdb
Late-potato
2022-08-31T04:47:26Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-31T04:10:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.2999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4977 | 1.0 | 782 | 2.3318 | | 2.4232 | 2.0 | 1564 | 2.3005 | | 2.386 | 3.0 | 2346 | 2.2721 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.12.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
thammarat-th/distilbert-base-uncased-finetuned-imdb
thammarat-th
2022-08-31T04:46:34Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-31T04:01:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.2591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4216 | 1.0 | 782 | 2.2803 | | 2.3719 | 2.0 | 1564 | 2.2577 | | 2.3407 | 3.0 | 2346 | 2.2320 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.12.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
ayameRushia/wav2vec2-large-xls-r-300m-el
ayameRushia
2022-08-31T04:43:27Z
24
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "el", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - el license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - robust-speech-event - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-el results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: el metrics: - name: Test WER using LM type: wer value: 20.9 - name: Test CER using LM type: cer value: 6.0466 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - EL dataset. It achieves the following results on the evaluation set: - Loss: 0.3218 - Wer: 0.3095 ## Training and evaluation data Evaluation is conducted in Notebook, you can see within the repo "notebook_evaluation_wav2vec2_el.ipynb" Test WER without LM wer = 31.1294 % cer = 7.9509 % Test WER using LM wer = 20.7340 % cer = 6.0466 % How to use eval.py ``` huggingface-cli login #login to huggingface for getting auth token to access the common voice v8 #running with LM !python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-el --dataset mozilla-foundation/common_voice_8_0 --config el --split test # running without LM !python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-el --dataset mozilla-foundation/common_voice_8_0 --config el --split test --greedy ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 80.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.3683 | 8.77 | 500 | 3.1280 | 1.0 | | 1.9915 | 17.54 | 1000 | 0.6600 | 0.6444 | | 0.6565 | 26.32 | 1500 | 0.4208 | 0.4486 | | 0.4484 | 35.09 | 2000 | 0.3885 | 0.4006 | | 0.3573 | 43.86 | 2500 | 0.3548 | 0.3626 | | 0.3063 | 52.63 | 3000 | 0.3375 | 0.3430 | | 0.2751 | 61.4 | 3500 | 0.3359 | 0.3241 | | 0.2511 | 70.18 | 4000 | 0.3222 | 0.3108 | | 0.2361 | 78.95 | 4500 | 0.3205 | 0.3084 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
ayameRushia/wav2vec2-large-xls-r-300m-id
ayameRushia
2022-08-31T04:43:20Z
19
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "id", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - id license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_8_0 - generated_from_trainer - robust-speech-event datasets: - common_voice model-index: - name: 'XLS-R-300M - Indonesia' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: sv-SE metrics: - name: Test WER type: wer value: 38.098 - name: Test CER type: cer value: 14.261 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ID dataset. It achieves the following results on the evaluation set: - Loss: 0.3975 - Wer: 0.2633 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.78 | 100 | 4.5645 | 1.0 | | No log | 1.55 | 200 | 2.9016 | 1.0 | | No log | 2.33 | 300 | 2.2666 | 1.0982 | | No log | 3.1 | 400 | 0.6079 | 0.6376 | | 3.2188 | 3.88 | 500 | 0.4985 | 0.5008 | | 3.2188 | 4.65 | 600 | 0.4477 | 0.4469 | | 3.2188 | 5.43 | 700 | 0.3953 | 0.3915 | | 3.2188 | 6.2 | 800 | 0.4319 | 0.3921 | | 3.2188 | 6.98 | 900 | 0.4171 | 0.3698 | | 0.2193 | 7.75 | 1000 | 0.3957 | 0.3600 | | 0.2193 | 8.53 | 1100 | 0.3730 | 0.3493 | | 0.2193 | 9.3 | 1200 | 0.3780 | 0.3348 | | 0.2193 | 10.08 | 1300 | 0.4133 | 0.3568 | | 0.2193 | 10.85 | 1400 | 0.3984 | 0.3193 | | 0.1129 | 11.63 | 1500 | 0.3845 | 0.3174 | | 0.1129 | 12.4 | 1600 | 0.3882 | 0.3162 | | 0.1129 | 13.18 | 1700 | 0.3982 | 0.3008 | | 0.1129 | 13.95 | 1800 | 0.3902 | 0.3198 | | 0.1129 | 14.73 | 1900 | 0.4082 | 0.3237 | | 0.0765 | 15.5 | 2000 | 0.3732 | 0.3126 | | 0.0765 | 16.28 | 2100 | 0.3893 | 0.3001 | | 0.0765 | 17.05 | 2200 | 0.4168 | 0.3083 | | 0.0765 | 17.83 | 2300 | 0.4193 | 0.3044 | | 0.0765 | 18.6 | 2400 | 0.4006 | 0.3013 | | 0.0588 | 19.38 | 2500 | 0.3836 | 0.2892 | | 0.0588 | 20.16 | 2600 | 0.3761 | 0.2903 | | 0.0588 | 20.93 | 2700 | 0.3895 | 0.2930 | | 0.0588 | 21.71 | 2800 | 0.3885 | 0.2791 | | 0.0588 | 22.48 | 2900 | 0.3902 | 0.2891 | | 0.0448 | 23.26 | 3000 | 0.4200 | 0.2849 | | 0.0448 | 24.03 | 3100 | 0.4013 | 0.2799 | | 0.0448 | 24.81 | 3200 | 0.4039 | 0.2731 | | 0.0448 | 25.58 | 3300 | 0.3970 | 0.2647 | | 0.0448 | 26.36 | 3400 | 0.4081 | 0.2690 | | 0.0351 | 27.13 | 3500 | 0.4090 | 0.2674 | | 0.0351 | 27.91 | 3600 | 0.3953 | 0.2663 | | 0.0351 | 28.68 | 3700 | 0.4044 | 0.2650 | | 0.0351 | 29.46 | 3800 | 0.3969 | 0.2646 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
ayameRushia/wav2vec2-large-xls-r-300m-ia
ayameRushia
2022-08-31T04:43:14Z
6
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "mozilla-foundation/common_voice_8_0", "ia", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - ia license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - robust-speech-event - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-ia results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ia metrics: - name: Test WER using LM type: wer value: 8.6074 - name: Test CER using LM type: cer value: 2.4147 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ia This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.1452 - Wer: 0.1253 ## Training Procedure Training is conducted in Google Colab, the training notebook provided in the repo ## Training and evaluation data Language Model Created from texts from processed sentence in train + validation split of dataset (common voice 8.0 for Interlingua) Evaluation is conducted in Notebook, you can see within the repo "notebook_evaluation_wav2vec2_ia.ipynb" Test WER without LM wer = 20.1776 % cer = 4.7205 % Test WER using wer = 8.6074 % cer = 2.4147 % evaluation using eval.py ``` huggingface-cli login #login to huggingface for getting auth token to access the common voice v8 #running with LM python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-ia --dataset mozilla-foundation/common_voice_8_0 --config ia --split test # running without LM python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-ia --dataset mozilla-foundation/common_voice_8_0 --config ia --split test --greedy ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.432 | 1.87 | 400 | 2.9636 | 1.0 | | 2.6922 | 3.74 | 800 | 2.2111 | 0.9977 | | 1.2581 | 5.61 | 1200 | 0.4864 | 0.4028 | | 0.6232 | 7.48 | 1600 | 0.2807 | 0.2413 | | 0.4479 | 9.35 | 2000 | 0.2219 | 0.1885 | | 0.3654 | 11.21 | 2400 | 0.1886 | 0.1606 | | 0.323 | 13.08 | 2800 | 0.1716 | 0.1444 | | 0.2935 | 14.95 | 3200 | 0.1687 | 0.1443 | | 0.2707 | 16.82 | 3600 | 0.1632 | 0.1382 | | 0.2559 | 18.69 | 4000 | 0.1507 | 0.1337 | | 0.2433 | 20.56 | 4400 | 0.1572 | 0.1358 | | 0.2338 | 22.43 | 4800 | 0.1489 | 0.1305 | | 0.2258 | 24.3 | 5200 | 0.1485 | 0.1278 | | 0.2218 | 26.17 | 5600 | 0.1470 | 0.1272 | | 0.2169 | 28.04 | 6000 | 0.1470 | 0.1270 | | 0.2117 | 29.91 | 6400 | 0.1452 | 0.1253 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
ayameRushia/wav2vec2-large-xls-r-300m-mn
ayameRushia
2022-08-31T04:43:06Z
16
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "mozilla-foundation/common_voice_8_0", "mn", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - robust-speech-event - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-mn results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: mn metrics: - name: Test WER using LM type: wer value: 31.3919 - name: Test CER using LM type: cer value: 10.2565 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: mn metrics: - name: Test WER type: wer value: 65.26 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: mn metrics: - name: Test WER type: wer value: 63.09 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MN dataset. It achieves the following results on the evaluation set: - Loss: 0.5502 - Wer: 0.4042 ## Training and evaluation data Evaluation is conducted in Notebook, you can see within the repo "notebook_evaluation_wav2vec2_mn.ipynb" Test WER without LM wer = 58.2171 % cer = 16.0670 % Test WER using wer = 31.3919 % cer = 10.2565 % How to use eval.py ``` huggingface-cli login #login to huggingface for getting auth token to access the common voice v8 #running with LM python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-mn --dataset mozilla-foundation/common_voice_8_0 --config mn --split test # running without LM python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-mn --dataset mozilla-foundation/common_voice_8_0 --config mn --split test --greedy ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 6.35 | 400 | 0.9380 | 0.7902 | | 3.2674 | 12.7 | 800 | 0.5794 | 0.5309 | | 0.7531 | 19.05 | 1200 | 0.5749 | 0.4815 | | 0.5382 | 25.4 | 1600 | 0.5530 | 0.4447 | | 0.4293 | 31.75 | 2000 | 0.5709 | 0.4237 | | 0.4293 | 38.1 | 2400 | 0.5476 | 0.4059 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
M7un/ZL-RoBERTa-wwm
M7un
2022-08-31T04:36:58Z
0
0
null
[ "region:us" ]
null
2022-08-31T04:36:33Z
#Pre-trained-Language-Model-For-Chinese-Patent ZL-RoBERTa-wwm: MLM with Whole Word Masking 在中文发明专利上进行训练,MLM任务使用了wwm策略
Pawaret717/distilbert-base-uncased-finetuned-imdb
Pawaret717
2022-08-31T04:15:16Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-31T04:04:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.12.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
reztork/first-text-app
reztork
2022-08-31T02:08:41Z
0
0
null
[ "region:us" ]
null
2022-08-31T02:06:40Z
language: - "List of ISO 639-1 code for your language" - lang1 - lang2 thumbnail: "url to a thumbnail used in social sharing" tags: - tag1 - tag2 license: "any valid license identifier" datasets: - dataset1 - dataset2 metrics: - metric1 - metric2
mooface/xlm-roberta-base-finetuned-panx-de
mooface
2022-08-31T02:07:15Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-31T01:43:13Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
npc-engine/t5-base-mse-summarization
npc-engine
2022-08-31T01:50:49Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-30T20:51:56Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-base-mse-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-mse-summarization This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8743 - Rouge1: 45.9597 - Rouge2: 26.8086 - Rougel: 39.935 - Rougelsum: 43.8897 - Bleurt: -0.7132 - Gen Len: 18.464 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleurt | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-------:| | 1.2568 | 1.0 | 267 | 1.0472 | 41.6829 | 21.9654 | 35.4264 | 39.5556 | -0.8231 | 18.522 | | 1.1085 | 2.0 | 534 | 0.9840 | 43.1479 | 23.3351 | 36.9244 | 40.886 | -0.7843 | 18.534 | | 1.0548 | 3.0 | 801 | 0.9515 | 44.1511 | 24.4912 | 37.9549 | 41.9984 | -0.7702 | 18.528 | | 1.0251 | 4.0 | 1068 | 0.9331 | 44.426 | 24.9439 | 38.2978 | 42.1731 | -0.7633 | 18.619 | | 0.9888 | 5.0 | 1335 | 0.9201 | 45.0385 | 25.524 | 38.8681 | 42.8998 | -0.7497 | 18.523 | | 0.9623 | 6.0 | 1602 | 0.9119 | 44.8648 | 25.469 | 38.9281 | 42.7798 | -0.7496 | 18.537 | | 0.9502 | 7.0 | 1869 | 0.9015 | 44.9668 | 25.5041 | 38.9463 | 42.9368 | -0.7412 | 18.48 | | 0.9316 | 8.0 | 2136 | 0.8973 | 45.3028 | 25.7232 | 39.1533 | 43.277 | -0.7318 | 18.523 | | 0.9191 | 9.0 | 2403 | 0.8921 | 45.2901 | 25.916 | 39.2909 | 43.3022 | -0.7296 | 18.529 | | 0.9122 | 10.0 | 2670 | 0.8889 | 45.3535 | 26.1369 | 39.4861 | 43.28 | -0.7271 | 18.545 | | 0.8993 | 11.0 | 2937 | 0.8857 | 45.5345 | 26.1669 | 39.5656 | 43.4664 | -0.7269 | 18.474 | | 0.8905 | 12.0 | 3204 | 0.8816 | 45.7796 | 26.4145 | 39.8117 | 43.734 | -0.7185 | 18.503 | | 0.8821 | 13.0 | 3471 | 0.8794 | 45.7163 | 26.4314 | 39.719 | 43.6407 | -0.7211 | 18.496 | | 0.8789 | 14.0 | 3738 | 0.8784 | 45.9097 | 26.7281 | 39.9071 | 43.8105 | -0.7127 | 18.452 | | 0.8665 | 15.0 | 4005 | 0.8765 | 46.1148 | 26.8882 | 40.1006 | 43.988 | -0.711 | 18.443 | | 0.8676 | 16.0 | 4272 | 0.8766 | 45.9119 | 26.7674 | 39.9001 | 43.8237 | -0.718 | 18.491 | | 0.8637 | 17.0 | 4539 | 0.8758 | 45.9158 | 26.7153 | 39.9463 | 43.8323 | -0.7183 | 18.492 | | 0.8622 | 18.0 | 4806 | 0.8752 | 45.9508 | 26.75 | 39.9533 | 43.8795 | -0.7144 | 18.465 | | 0.8588 | 19.0 | 5073 | 0.8744 | 45.9192 | 26.7352 | 39.8921 | 43.8204 | -0.7148 | 18.462 | | 0.8554 | 20.0 | 5340 | 0.8743 | 45.9597 | 26.8086 | 39.935 | 43.8897 | -0.7132 | 18.464 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
DylanJHJ/monot5m-large-msmarco-100k
DylanJHJ
2022-08-31T01:20:45Z
9
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-27T02:09:46Z
Check our SIGIR2021 short paper: https://dl.acm.org/doi/10.1145/3404835.3463048 This checkpoint is a variant of monot5 (T5 pointwise re-ranking model). Specifically, we fuse the "P2Q (i.e. doc2query)" and "Rank (i.e. passage ranking)" to learn the **discriminative** view (Rank) and **geneartive** view (P2Q). We found that under the specific **mixing ratio** of these two task, the effectiveness of passage re-ranking improves on par with monot5-3B models. Hence, you can try to do both the task with this checkpoint by the following input format: - P2Q: Document: *\<here is a document or a passage\>* Translate Document to Query: - Rank: Query: *\<here is a query\>* Document: *\<here is a document or a passage\>* Relevant: which the outputs will be like: - P2Q: *\<relevant query of the given text\>* - Rank: *true* or *false* ``` Note that we usually use the logit values of *true*/ *false* token from T5 reranker as our query-passage relevant scores Note the above tokens are all case-sensitive. ```
abhitopia/question-answer-generation
abhitopia
2022-08-31T00:30:48Z
89
7
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "question-answer-generation", "dataset:squad", "arxiv:1910.10683", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-30T21:54:29Z
--- datasets: - squad tags: - question-answer-generation widget: - text: "generate question: <hl> 42 <hl> is the answer to life, the universe and everything. </s>" - text: "question: What is 42 context: 42 is the answer to life, the universe and everything. </s>" license: mit --- ## T5 for multi-task QA and QG This is multi-task [t5-base](https://arxiv.org/abs/1910.10683) model trained for question answering and answer aware question generation tasks. For question generation the answer spans are highlighted within the text with special highlight tokens (`<hl>`) and prefixed with 'generate question: '. For QA the input is processed like this `question: question_text context: context_text </s>` You can play with the model using the inference API. Here's how you can use it For QG `generate question: <hl> 42 <hl> is the answer to life, the universe and everything. </s>` For QA `question: What is 42 context: 42 is the answer to life, the universe and everything. </s>` For more deatils see [this](https://github.com/patil-suraj/question_generation) repo.
npc-engine/t5-small-mse-summarization
npc-engine
2022-08-30T23:43:58Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-30T21:24:56Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-mse-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-mse-summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1108 - Rouge1: 43.1145 - Rouge2: 23.2262 - Rougel: 37.218 - Rougelsum: 41.0897 - Bleurt: -0.8051 - Gen Len: 18.549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleurt | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-------:| | 1.5207 | 1.0 | 267 | 1.2922 | 38.8738 | 19.1958 | 32.8458 | 36.9993 | -0.9061 | 18.668 | | 1.363 | 2.0 | 534 | 1.2340 | 39.8466 | 20.0452 | 33.9101 | 37.7708 | -0.8925 | 18.657 | | 1.3062 | 3.0 | 801 | 1.2057 | 40.5536 | 20.8249 | 34.5221 | 38.4648 | -0.8625 | 18.602 | | 1.272 | 4.0 | 1068 | 1.1782 | 41.0078 | 21.2186 | 35.0101 | 38.9186 | -0.8595 | 18.602 | | 1.2312 | 5.0 | 1335 | 1.1688 | 41.521 | 21.7934 | 35.704 | 39.4718 | -0.842 | 18.486 | | 1.2052 | 6.0 | 1602 | 1.1557 | 42.1037 | 22.4291 | 36.3554 | 40.1124 | -0.8432 | 18.533 | | 1.1842 | 7.0 | 1869 | 1.1440 | 42.4438 | 22.6456 | 36.5729 | 40.3134 | -0.8288 | 18.553 | | 1.1643 | 8.0 | 2136 | 1.1408 | 42.245 | 22.4859 | 36.3637 | 40.2193 | -0.8284 | 18.622 | | 1.1495 | 9.0 | 2403 | 1.1320 | 42.5362 | 22.5034 | 36.5092 | 40.4552 | -0.8211 | 18.57 | | 1.1368 | 10.0 | 2670 | 1.1301 | 42.5159 | 22.462 | 36.4646 | 40.3968 | -0.819 | 18.538 | | 1.1203 | 11.0 | 2937 | 1.1243 | 42.2803 | 22.5963 | 36.3454 | 40.2987 | -0.8242 | 18.522 | | 1.1116 | 12.0 | 3204 | 1.1197 | 42.8078 | 22.8409 | 36.7344 | 40.8186 | -0.821 | 18.565 | | 1.099 | 13.0 | 3471 | 1.1193 | 42.7423 | 22.9397 | 36.7894 | 40.7298 | -0.8125 | 18.552 | | 1.0976 | 14.0 | 3738 | 1.1176 | 42.9002 | 23.2394 | 37.0215 | 40.9211 | -0.8156 | 18.568 | | 1.0816 | 15.0 | 4005 | 1.1133 | 43.0007 | 23.3093 | 37.2037 | 40.9719 | -0.8059 | 18.519 | | 1.084 | 16.0 | 4272 | 1.1146 | 42.9053 | 23.2391 | 37.0542 | 40.8826 | -0.8104 | 18.533 | | 1.0755 | 17.0 | 4539 | 1.1124 | 43.0429 | 23.2773 | 37.1389 | 41.0755 | -0.8086 | 18.544 | | 1.0748 | 18.0 | 4806 | 1.1121 | 43.2243 | 23.4179 | 37.2039 | 41.143 | -0.8048 | 18.548 | | 1.072 | 19.0 | 5073 | 1.1106 | 43.1776 | 23.3061 | 37.3105 | 41.1392 | -0.8039 | 18.549 | | 1.0671 | 20.0 | 5340 | 1.1108 | 43.1145 | 23.2262 | 37.218 | 41.0897 | -0.8051 | 18.549 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
microsoft/bloom-deepspeed-inference-int8
microsoft
2022-08-30T23:01:17Z
7
28
transformers
[ "transformers", "bloom", "feature-extraction", "license:bigscience-bloom-rail-1.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-18T18:26:43Z
--- license: bigscience-bloom-rail-1.0 --- This is a custom INT8 version of the original [BLOOM weights](https://huggingface.co/bigscience/bloom) to make it fast to use with the [DeepSpeed-Inference](https://www.deepspeed.ai/tutorials/inference-tutorial/) engine which uses Tensor Parallelism. In this repo the tensors are split into 8 shards to target 8 GPUs. The full BLOOM documentation is [here](https://huggingface.co/bigscience/bloom). To use the weights in repo, you can adapt to your needs the scripts found [here](https://github.com/bigscience-workshop/Megatron-DeepSpeed/tree/main/scripts/inference) (XXX: they are going to migrate soon to HF Transformers code base, so will need to update the link once moved).
Einmalumdiewelt/DistilBART_CNN_GNAD_V3
Einmalumdiewelt
2022-08-30T22:49:07Z
4
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "de", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-30T08:03:33Z
--- language: - de tags: - generated_from_trainer metrics: - rouge model-index: - name: DistilBART_CNN_GNAD_V3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBART_CNN_GNAD_V3 This model is a fine-tuned version of [Einmalumdiewelt/DistilBART_CNN_GNAD_V3](https://huggingface.co/Einmalumdiewelt/DistilBART_CNN_GNAD_V3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8786 - Rouge1: 27.0297 - Rouge2: 8.1224 - Rougel: 17.9777 - Rougelsum: 22.8827 - Gen Len: 90.3667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ruse40folly/distilbert-base-uncased-finetuned-emotion
ruse40folly
2022-08-30T22:15:45Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-30T21:58:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9235 - name: F1 type: f1 value: 0.9235310384339321 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2236 - Accuracy: 0.9235 - F1: 0.9235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8521 | 1.0 | 250 | 0.3251 | 0.9085 | 0.9063 | | 0.2489 | 2.0 | 500 | 0.2236 | 0.9235 | 0.9235 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
RussianNLP/ruRoBERTa-large-rucola
RussianNLP
2022-08-30T20:23:10Z
586
5
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "ru", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-30T19:54:51Z
--- language: ru license: apache-2.0 tags: - transformers thumbnail: "https://github.com/RussianNLP/RuCoLA/blob/main/logo.png" widget: - text: "Он решил ту или иную сложную задачу." --- This is a finetuned version of [RuRoBERTa-large](https://huggingface.co/sberbank-ai/ruRoberta-large) for the task of linguistic acceptability classification on the [RuCoLA](https://rucola-benchmark.com/) benchmark. The hyperparameters used for finetuning are as follows: * 5 training epochs (with early stopping based on validation MCC) * Peak learning rate: 1e-5, linear warmup for 10% of total training time * Weight decay: 1e-4 * Batch size: 32 * Random seed: 5 * Optimizer: [torch.optim.AdamW](https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html)
demo-org/tabular-playground
demo-org
2022-08-30T19:13:58Z
0
0
sklearn
[ "sklearn", "skops", "tabular-classification", "region:us" ]
tabular-classification
2022-08-12T18:03:12Z
--- library_name: sklearn tags: - sklearn - skops - tabular-classification widget: structuredData: attribute_0: - material_7 - material_7 - material_7 attribute_1: - material_6 - material_5 - material_6 attribute_2: - 6 - 6 - 6 attribute_3: - 9 - 6 - 9 loading: - 101.52 - 91.34 - 167.03 measurement_0: - 9 - 10 - 11 measurement_1: - 11 - 11 - 5 measurement_10: - 14.926 - 15.162 - 16.398 measurement_11: - 20.394 - 19.46 - 20.613 measurement_12: - 11.829 - 9.114 - 11.007 measurement_13: - 16.195 - 16.024 - 16.061 measurement_14: - 16.517 - 17.132 - 15.18 measurement_15: - 13.826 - 12.257 - 15.758 measurement_16: - 14.206 - 15.094 - .nan measurement_17: - 723.712 - 896.835 - 893.454 measurement_2: - 2 - 10 - 6 measurement_3: - 17.492 - 18.114 - 18.42 measurement_4: - 13.962 - 10.185 - 13.565 measurement_5: - 15.716 - 18.06 - 16.916 measurement_6: - 17.104 - 18.283 - 17.917 measurement_7: - 12.377 - 10.957 - 10.394 measurement_8: - 19.221 - 20.638 - 19.805 measurement_9: - 11.613 - 11.804 - 12.012 product_code: - E - D - E --- # Model description This is a DecisionTreeClassifier model built for Kaggle Tabular Playground Series August 2022, trained on supersoaker production failures dataset. ## Intended uses & limitations This model is not ready to be used in production. ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | memory | | | steps | [('transformation', ColumnTransformer(transformers=[('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])])), ('model', DecisionTreeClassifier(max_depth=4))] | | verbose | False | | transformation | ColumnTransformer(transformers=[('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])]) | | model | DecisionTreeClassifier(max_depth=4) | | transformation__n_jobs | | | transformation__remainder | drop | | transformation__sparse_threshold | 0.3 | | transformation__transformer_weights | | | transformation__transformers | [('loading_missing_value_imputer', SimpleImputer(), ['loading']), ('numerical_missing_value_imputer', SimpleImputer(), ['loading', 'measurement_3', 'measurement_4', 'measurement_5', 'measurement_6', 'measurement_7', 'measurement_8', 'measurement_9', 'measurement_10', 'measurement_11', 'measurement_12', 'measurement_13', 'measurement_14', 'measurement_15', 'measurement_16', 'measurement_17']), ('attribute_0_encoder', OneHotEncoder(), ['attribute_0']), ('attribute_1_encoder', OneHotEncoder(), ['attribute_1']), ('product_code_encoder', OneHotEncoder(), ['product_code'])] | | transformation__verbose | False | | transformation__verbose_feature_names_out | True | | transformation__loading_missing_value_imputer | SimpleImputer() | | transformation__numerical_missing_value_imputer | SimpleImputer() | | transformation__attribute_0_encoder | OneHotEncoder() | | transformation__attribute_1_encoder | OneHotEncoder() | | transformation__product_code_encoder | OneHotEncoder() | | transformation__loading_missing_value_imputer__add_indicator | False | | transformation__loading_missing_value_imputer__copy | True | | transformation__loading_missing_value_imputer__fill_value | | | transformation__loading_missing_value_imputer__missing_values | nan | | transformation__loading_missing_value_imputer__strategy | mean | | transformation__loading_missing_value_imputer__verbose | 0 | | transformation__numerical_missing_value_imputer__add_indicator | False | | transformation__numerical_missing_value_imputer__copy | True | | transformation__numerical_missing_value_imputer__fill_value | | | transformation__numerical_missing_value_imputer__missing_values | nan | | transformation__numerical_missing_value_imputer__strategy | mean | | transformation__numerical_missing_value_imputer__verbose | 0 | | transformation__attribute_0_encoder__categories | auto | | transformation__attribute_0_encoder__drop | | | transformation__attribute_0_encoder__dtype | <class 'numpy.float64'> | | transformation__attribute_0_encoder__handle_unknown | error | | transformation__attribute_0_encoder__sparse | True | | transformation__attribute_1_encoder__categories | auto | | transformation__attribute_1_encoder__drop | | | transformation__attribute_1_encoder__dtype | <class 'numpy.float64'> | | transformation__attribute_1_encoder__handle_unknown | error | | transformation__attribute_1_encoder__sparse | True | | transformation__product_code_encoder__categories | auto | | transformation__product_code_encoder__drop | | | transformation__product_code_encoder__dtype | <class 'numpy.float64'> | | transformation__product_code_encoder__handle_unknown | error | | transformation__product_code_encoder__sparse | True | | model__ccp_alpha | 0.0 | | model__class_weight | | | model__criterion | gini | | model__max_depth | 4 | | model__max_features | | | model__max_leaf_nodes | | | model__min_impurity_decrease | 0.0 | | model__min_samples_leaf | 1 | | model__min_samples_split | 2 | | model__min_weight_fraction_leaf | 0.0 | | model__random_state | | | model__splitter | best | </details> ### Model Plot The model plot is below. <style>#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 {color: black;background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 pre{padding: 0;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-toggleable {background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-estimator:hover {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-item {z-index: 1;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-parallel-item:only-child::after {width: 0;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86 div.sk-text-repr-fallback {display: none;}</style><div id="sk-b5518c10-fd7e-49af-b124-60d3dd3d0f86" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="48fbfeb0-e954-46f7-9a36-8dfe86284fca" type="checkbox" ><label for="48fbfeb0-e954-46f7-9a36-8dfe86284fca" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="157828b7-30d1-4b5b-b25e-971143379fff" type="checkbox" ><label for="157828b7-30d1-4b5b-b25e-971143379fff" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(), [&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;, OneHotEncoder(),[&#x27;product_code&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="3bde7e44-3687-4b99-a3b7-b4e87023ec85" type="checkbox" ><label for="3bde7e44-3687-4b99-a3b7-b4e87023ec85" class="sk-toggleable__label sk-toggleable__label-arrow">loading_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ef9279cb-7d77-4ef1-aafe-26e433e2a615" type="checkbox" ><label for="ef9279cb-7d77-4ef1-aafe-26e433e2a615" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b079e8d7-f789-4622-ad66-197193ef0061" type="checkbox" ><label for="b079e8d7-f789-4622-ad66-197193ef0061" class="sk-toggleable__label sk-toggleable__label-arrow">numerical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;, &#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;, &#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;, &#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;, &#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;, &#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;, &#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;, &#x27;measurement_17&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="969f6026-8077-468a-b332-8ceb69bac4e9" type="checkbox" ><label for="969f6026-8077-468a-b332-8ceb69bac4e9" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="5bb6cc8f-c971-47b8-a1bc-fe8053602d5c" type="checkbox" ><label for="5bb6cc8f-c971-47b8-a1bc-fe8053602d5c" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_0_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_0&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="8a841657-38e1-41bb-b8f9-5ad2cc25f7d3" type="checkbox" ><label for="8a841657-38e1-41bb-b8f9-5ad2cc25f7d3" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="be08add7-98fc-40b5-a259-d462d738780a" type="checkbox" ><label for="be08add7-98fc-40b5-a259-d462d738780a" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_1_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_1&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="cf07a6c2-b92e-40b1-9862-2c1ca3baab47" type="checkbox" ><label for="cf07a6c2-b92e-40b1-9862-2c1ca3baab47" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="244735dc-f1e1-458c-a1c6-60ef847b9cae" type="checkbox" ><label for="244735dc-f1e1-458c-a1c6-60ef847b9cae" class="sk-toggleable__label sk-toggleable__label-arrow">product_code_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;product_code&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="2f1a1c41-e1c4-40ce-afd9-9658030b3423" type="checkbox" ><label for="2f1a1c41-e1c4-40ce-afd9-9658030b3423" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="25044b48-b814-45f9-a75b-9ee472bdc79c" type="checkbox" ><label for="25044b48-b814-45f9-a75b-9ee472bdc79c" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(max_depth=4)</pre></div></div></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|----------| | accuracy | 0.791961 | | f1 score | 0.791961 | # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python import pickle with open(decision-tree-playground-kaggle/model.pkl, 'rb') as file: clf = pickle.load(file) ``` </details> # Model Card Authors This model card is written by following authors: huggingface # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ``` # Additional Content ## Tree Plot ![Tree Plot](tree.png) ## Confusion Matrix ![Confusion Matrix](confusion_matrix.png)
vendorabc/modeltest
vendorabc
2022-08-30T19:01:03Z
0
0
sklearn
[ "sklearn", "skops", "tabular-classification", "license:mit", "region:us" ]
tabular-classification
2022-08-30T19:00:59Z
--- license: mit library_name: sklearn tags: - sklearn - skops - tabular-classification widget: structuredData: area error: - 30.29 - 96.05 - 48.31 compactness error: - 0.01911 - 0.01652 - 0.01484 concave points error: - 0.01037 - 0.0137 - 0.01093 concavity error: - 0.02701 - 0.02269 - 0.02813 fractal dimension error: - 0.003586 - 0.001698 - 0.002461 mean area: - 481.9 - 1130.0 - 748.9 mean compactness: - 0.1058 - 0.1029 - 0.1223 mean concave points: - 0.03821 - 0.07951 - 0.08087 mean concavity: - 0.08005 - 0.108 - 0.1466 mean fractal dimension: - 0.06373 - 0.05461 - 0.05796 mean perimeter: - 81.09 - 123.6 - 101.7 mean radius: - 12.47 - 18.94 - 15.46 mean smoothness: - 0.09965 - 0.09009 - 0.1092 mean symmetry: - 0.1925 - 0.1582 - 0.1931 mean texture: - 18.6 - 21.31 - 19.48 perimeter error: - 2.497 - 5.486 - 3.094 radius error: - 0.3961 - 0.7888 - 0.4743 smoothness error: - 0.006953 - 0.004444 - 0.00624 symmetry error: - 0.01782 - 0.01386 - 0.01397 texture error: - 1.044 - 0.7975 - 0.7859 worst area: - 677.9 - 1866.0 - 1156.0 worst compactness: - 0.2378 - 0.2336 - 0.2394 worst concave points: - 0.1015 - 0.1789 - 0.1514 worst concavity: - 0.2671 - 0.2687 - 0.3791 worst fractal dimension: - 0.0875 - 0.06589 - 0.08019 worst perimeter: - 96.05 - 165.9 - 124.9 worst radius: - 14.97 - 24.86 - 19.26 worst smoothness: - 0.1426 - 0.1193 - 0.1546 worst symmetry: - 0.3014 - 0.2551 - 0.2837 worst texture: - 24.64 - 26.58 - 26.0 --- # Model description This is a HistGradientBoostingClassifier model trained on breast cancer dataset. It's trained with Halving Grid Search Cross Validation, with parameter grids on max_leaf_nodes and max_depth. ## Intended uses & limitations This model is not ready to be used in production. ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |---------------------------------|----------------------------------------------------------| | aggressive_elimination | False | | cv | 5 | | error_score | nan | | estimator__categorical_features | | | estimator__early_stopping | auto | | estimator__l2_regularization | 0.0 | | estimator__learning_rate | 0.1 | | estimator__loss | auto | | estimator__max_bins | 255 | | estimator__max_depth | | | estimator__max_iter | 100 | | estimator__max_leaf_nodes | 31 | | estimator__min_samples_leaf | 20 | | estimator__monotonic_cst | | | estimator__n_iter_no_change | 10 | | estimator__random_state | | | estimator__scoring | loss | | estimator__tol | 1e-07 | | estimator__validation_fraction | 0.1 | | estimator__verbose | 0 | | estimator__warm_start | False | | estimator | HistGradientBoostingClassifier() | | factor | 3 | | max_resources | auto | | min_resources | exhaust | | n_jobs | -1 | | param_grid | {'max_leaf_nodes': [5, 10, 15], 'max_depth': [2, 5, 10]} | | random_state | 42 | | refit | True | | resource | n_samples | | return_train_score | True | | scoring | | | verbose | 0 | </details> ### Model Plot The model plot is below. <style>#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 {color: black;background-color: white;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 pre{padding: 0;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-toggleable {background-color: white;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-estimator:hover {background-color: #d4ebff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-item {z-index: 1;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item:only-child::after {width: 0;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-text-repr-fallback {display: none;}</style><div id="sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={&#x27;max_depth&#x27;: [2, 5, 10],&#x27;max_leaf_nodes&#x27;: [5, 10, 15]},random_state=42)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ab167486-be7e-4eb5-be01-ba21adbd7469" type="checkbox" ><label for="ab167486-be7e-4eb5-be01-ba21adbd7469" class="sk-toggleable__label sk-toggleable__label-arrow">HalvingGridSearchCV</label><div class="sk-toggleable__content"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={&#x27;max_depth&#x27;: [2, 5, 10],&#x27;max_leaf_nodes&#x27;: [5, 10, 15]},random_state=42)</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="e9df9f06-8d9e-4379-ad72-52f461408663" type="checkbox" ><label for="e9df9f06-8d9e-4379-ad72-52f461408663" class="sk-toggleable__label sk-toggleable__label-arrow">HistGradientBoostingClassifier</label><div class="sk-toggleable__content"><pre>HistGradientBoostingClassifier()</pre></div></div></div></div></div></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|----------| | accuracy | 0.959064 | | f1 score | 0.959064 | # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python import pickle with open(pkl_filename, 'rb') as file: clf = pickle.load(file) ``` </details> # Model Card Authors This model card is written by following authors: skops_user # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` bibtex @inproceedings{...,year={2020}} ``` # Additional Content ## Confusion matrix ![Confusion matrix](confusion_matrix.png) ## Hyperparameter search results <details> <summary> Click to expand </summary> | iter | n_resources | mean_fit_time | std_fit_time | mean_score_time | std_score_time | param_max_depth | param_max_leaf_nodes | params | split0_test_score | split1_test_score | split2_test_score | split3_test_score | split4_test_score | mean_test_score | std_test_score | rank_test_score | split0_train_score | split1_train_score | split2_train_score | split3_train_score | split4_train_score | mean_train_score | std_train_score | |--------|---------------|-----------------|----------------|-------------------|------------------|-------------------|------------------------|-----------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-------------------|------------------|-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------|-------------------| | 0 | 44 | 0.0498069 | 0.0107112 | 0.0121156 | 0.0061838 | 2 | 5 | {'max_depth': 2, 'max_leaf_nodes': 5} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0492636 | 0.0187271 | 0.00738611 | 0.00245441 | 2 | 10 | {'max_depth': 2, 'max_leaf_nodes': 10} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0572055 | 0.0153176 | 0.0111395 | 0.0010297 | 2 | 15 | {'max_depth': 2, 'max_leaf_nodes': 15} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0498482 | 0.0177091 | 0.00857358 | 0.00415935 | 5 | 5 | {'max_depth': 5, 'max_leaf_nodes': 5} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0500658 | 0.00992094 | 0.00998321 | 0.00527031 | 5 | 10 | {'max_depth': 5, 'max_leaf_nodes': 10} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0525903 | 0.0151616 | 0.00874681 | 0.00462998 | 5 | 15 | {'max_depth': 5, 'max_leaf_nodes': 15} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0512018 | 0.0130152 | 0.00881834 | 0.00500514 | 10 | 5 | {'max_depth': 10, 'max_leaf_nodes': 5} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0566921 | 0.0186051 | 0.00513492 | 0.000498488 | 10 | 10 | {'max_depth': 10, 'max_leaf_nodes': 10} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.060587 | 0.04041 | 0.00987453 | 0.00529624 | 10 | 15 | {'max_depth': 10, 'max_leaf_nodes': 15} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 1 | 132 | 0.232459 | 0.0479878 | 0.0145514 | 0.00856422 | 10 | 5 | {'max_depth': 10, 'max_leaf_nodes': 5} | 0.961538 | 0.923077 | 0.923077 | 0.961538 | 0.961538 | 0.946154 | 0.0188422 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | 1 | 132 | 0.272297 | 0.0228833 | 0.011561 | 0.0068272 | 10 | 10 | {'max_depth': 10, 'max_leaf_nodes': 10} | 0.961538 | 0.923077 | 0.923077 | 0.961538 | 0.961538 | 0.946154 | 0.0188422 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | 1 | 132 | 0.239161 | 0.0330412 | 0.0116591 | 0.003554 | 10 | 15 | {'max_depth': 10, 'max_leaf_nodes': 15} | 0.961538 | 0.923077 | 0.923077 | 0.961538 | 0.961538 | 0.946154 | 0.0188422 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | 2 | 396 | 0.920334 | 0.18198 | 0.0166654 | 0.00776263 | 10 | 15 | {'max_depth': 10, 'max_leaf_nodes': 15} | 0.962025 | 0.911392 | 0.987342 | 0.974359 | 0.935897 | 0.954203 | 0.0273257 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | </details> ## Classification report <details> <summary> Click to expand </summary> | index | precision | recall | f1-score | support | |--------------|-------------|----------|------------|-----------| | malignant | 0.951613 | 0.936508 | 0.944 | 63 | | benign | 0.963303 | 0.972222 | 0.967742 | 108 | | macro avg | 0.957458 | 0.954365 | 0.955871 | 171 | | weighted avg | 0.958996 | 0.959064 | 0.958995 | 171 | </details>
agustina/museo
agustina
2022-08-30T18:25:36Z
0
0
null
[ "region:us" ]
null
2022-08-30T18:24:37Z
museo de mariposis y insectos moderno, con muebles blancos yiluminados
epsil/Health_Psychology_Analysis
epsil
2022-08-30T17:49:10Z
0
1
null
[ "region:us" ]
null
2022-08-30T15:49:29Z
### TO BE ADDED widget: - text: "I am going through lot of stress"
VioletaMG/ddpm-butterflies-128
VioletaMG
2022-08-30T17:30:39Z
4
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-30T13:57:49Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/VioletaMG/ddpm-butterflies-128/tensorboard?#scalars)
TingChenChang/make-multilingual-en-zh-tw-20220825062338
TingChenChang
2022-08-30T17:26:18Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-08-25T15:35:33Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11898 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MSELoss.MSELoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "eps": 1e-06, "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
yasuaki0406/distilbert-base-uncased-finetuned-emotion
yasuaki0406
2022-08-30T16:01:46Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-30T15:51:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9244242594868723 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2123 - Accuracy: 0.9245 - F1: 0.9244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8144 | 1.0 | 250 | 0.3129 | 0.9055 | 0.9027 | | 0.2457 | 2.0 | 500 | 0.2123 | 0.9245 | 0.9244 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
maxpe/bertin-roberta-base-spanish_sem_eval_2018_task_1
maxpe
2022-08-30T16:01:41Z
13
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "doi:10.57967/hf/0032", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-30T15:53:12Z
# BERTIN-roBERTa-base-Spanish_sem_eval_2018_task_1 This is a [BERTIN-roBERTa-base-Spanish](https://huggingface.co/bertin-project/bertin-roberta-base-spanish) model finetuned on ~3500 tweets in Spanish annotated for 11 emotion categories in [SemEval-2018 Task 1: Affect in Tweets: SubTask 5: Emotion Classification](https://competitions.codalab.org/competitions/17751) (also available on the [Hugging Face Dataset Hub](https://huggingface.co/datasets/sem_eval_2018_task_1)). To quickly test it locally, use a pipeline: ```python from transformers import pipeline pipe = pipeline("text-classification",model="maxpe/bertin-roberta-base-spanish_sem_eval_2018_task_1") pipe("¡Odio tener tanto estrés!",top_k=11) ```
maxpe/twitter-roberta-base-jun2022_sem_eval_2018_task_1
maxpe
2022-08-30T15:33:52Z
10
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "doi:10.57967/hf/0033", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-30T14:26:53Z
# Twitter-roBERTa-base-jun2022_sem_eval_2018_task1 This model was trained on ~7000 tweets in English annotated for 11 emotion categories in [SemEval-2018 Task 1: Affect in Tweets: SubTask 5: Emotion Classification](https://competitions.codalab.org/competitions/17751) (also available on the [Hugging Face Dataset Hub](https://huggingface.co/datasets/sem_eval_2018_task_1)). The underlying model is a RoBERTa-base model trained on 132.26M tweets until the end of June 2022. Fore more details check out the [model page](https://huggingface.co/cardiffnlp/twitter-roberta-base-jun2022). To quickly test it locally, use a pipeline: ```python from transformers import pipeline pipe = pipeline("text-classification",model="maxpe/twitter-roberta-base-jun2022_sem_eval_2018_task_1") pipe("I couldn't see any seafood for a year after I went to that restaurant that they send all the tourists to!",top_k=11) ```
maxpe/twitter-roberta-base_semeval18_emodetection
maxpe
2022-08-30T15:14:04Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# UPDATE: NEW AND IMPROVED MODEL AVAILABLE AT https://huggingface.co/maxpe/twitter-roberta-base-jun2022_sem_eval_2018_task_1 # Twitter-roBERTa-base_SemEval18_Emodetection This is a Twitter-roBERTa-base model trained on ~7000 tweets in English annotated for 11 emotion categories in [SemEval-2018 Task 1: Affect in Tweets: SubTask 5: Emotion Classification](https://competitions.codalab.org/competitions/17751). Run the classifier on the test set of the competition: ```python from datasets import load_dataset from transformers import AutoTokenizer, AutoModel from torch.utils.data import DataLoader import torch import pandas as pd # choose GPU when available device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base",model_max_length=512) # build custom model with classification layer on top and a dropout layer before class RobertaClass(torch.nn.Module): def __init__(self): super(RobertaClass, self).__init__() self.l1 = AutoModel.from_pretrained("cardiffnlp/twitter-roberta-base",return_dict=False) self.l2 = torch.nn.Dropout(0.3) self.l3 = torch.nn.Linear(768, 11) def forward(self, input_ids, attention_mask): _, output_1= self.l1(input_ids=input_ids, attention_mask=attention_mask) output_2 = self.l2(output_1) output = self.l3(output_2) return output model_name="twitter-roberta-base_semeval18_emodetection/pytorch_model.bin" model=RobertaClass() model.load_state_dict(torch.load(model_name,map_location=torch.device(device))) model.eval() # run on more than 1 GPU model = torch.nn.DataParallel(model) model.to(device) twnames=['anger','anticipation','disgust','fear','joy','love','optimism','pessimism','sadness','surprise','trust'] # load from hugging face dataset hub testset_raw = load_dataset('sem_eval_2018_task_1','subtask5.english',split='test') # remove old columns testset=testset_raw.remove_columns(twnames+["ID"]) # tokenize testset_tokenized = testset.map(lambda e: tokenizer(e['Tweet'], truncation=True, padding='max_length'), batched=True) testset_tokenized=testset_tokenized.remove_columns("Tweet") testset_tokenized.set_format(type='torch', columns=['input_ids', 'attention_mask']) outfile="predicted_2018-E-c-En-test-gold.txt" MAX_LEN = 512 VALID_BATCH_SIZE = 8 # set batch size according to available RAM # VALID_BATCH_SIZE = 1000 # set num_workers for parallel processing inference_params = {'batch_size': VALID_BATCH_SIZE, 'shuffle': False, # 'num_workers': 1 } inference_loader = DataLoader(testset_tokenized, **inference_params) open(outfile,"w").close() with torch.no_grad(): # change lines for progress manager # for _, data in tqdm(enumerate(inference_loader, 0),total=len(inference_loader)): for _, data in enumerate(inference_loader, 0): outputs = model(input_ids=data['input_ids'],attention_mask=data['attention_mask']) fin_outputs=torch.sigmoid(outputs).cpu().detach().numpy().tolist() pd.DataFrame(fin_outputs).to_csv(outfile,index=False,header=False,sep="\t",mode='a') # # dataset from file (one text per line) # from datasets import Dataset # with open(linesoftextfile,"rb") as textfile: # textdict={"text":[x.decode().rstrip("\n") for x in textfile.readlines()]} # inference_dataset=Dataset.from_dict(textdict) # del(textdict) ```
Gozdi/Electra-base-squad-adversarialqa-epoch-1
Gozdi
2022-08-30T14:25:36Z
61
0
transformers
[ "transformers", "tf", "electra", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-30T14:19:36Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Electra-base-squad-adversarialqa-epoch-1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Electra-base-squad-adversarialqa-epoch-1 This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.4884 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 43062, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1104, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.4884 | 0 | ### Framework versions - Transformers 4.21.2 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
igpaub/q-FrozenLake-v1-8x8
igpaub
2022-08-30T14:03:55Z
0
0
null
[ "FrozenLake-v1-8x8", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-30T12:58:49Z
--- tags: - FrozenLake-v1-8x8 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8 type: FrozenLake-v1-8x8 metrics: - type: mean_reward value: 0.35 +/- 0.48 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="igpaub/q-FrozenLake-v1-8x8", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
jcmc/reinforce-Pixelcopter
jcmc
2022-08-30T12:36:49Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-30T12:07:22Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-Pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 8.80 +/- 7.30 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
huggingbase/xlm-roberta-base-finetuned-panx-all
huggingbase
2022-08-30T12:29:00Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-30T11:59:48Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1745 - F1: 0.8505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3055 | 1.0 | 835 | 0.1842 | 0.8099 | | 0.1561 | 2.0 | 1670 | 0.1711 | 0.8452 | | 0.1016 | 3.0 | 2505 | 0.1745 | 0.8505 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Shivus/testpyramidsrnd
Shivus
2022-08-30T11:45:00Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-08-30T11:44:55Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: Shivus/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
huggingbase/xlm-roberta-base-finetuned-panx-it
huggingbase
2022-08-30T11:42:25Z
126
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-30T11:24:40Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8124233755619126 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2630 - F1: 0.8124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8193 | 1.0 | 70 | 0.3200 | 0.7356 | | 0.2773 | 2.0 | 140 | 0.2841 | 0.7882 | | 0.1807 | 3.0 | 210 | 0.2630 | 0.8124 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingbase/xlm-roberta-base-finetuned-panx-fr
huggingbase
2022-08-30T11:24:25Z
107
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-30T11:05:10Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8346456692913387 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2763 - F1: 0.8346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5779 | 1.0 | 191 | 0.3701 | 0.7701 | | 0.2735 | 2.0 | 382 | 0.2908 | 0.8254 | | 0.1769 | 3.0 | 573 | 0.2763 | 0.8346 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Conrad747/lg-en-v2
Conrad747
2022-08-30T10:06:19Z
15
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-30T09:47:44Z
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: lg-en-test-version results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lg-en-test-version This model is a fine-tuned version of [AI-Lab-Makerere/lg_en](https://huggingface.co/AI-Lab-Makerere/lg_en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5803 - Bleu: 31.3111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.687717341785184e-05 - train_batch_size: 15 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 1.0 | 24 | 1.0100 | 28.5722 | | No log | 2.0 | 48 | 0.7758 | 27.7506 | | No log | 3.0 | 72 | 0.6459 | 40.3866 | | No log | 4.0 | 96 | 0.5803 | 31.3111 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
HIT-TMG/GlyphBERT
HIT-TMG
2022-08-30T07:15:12Z
7
5
transformers
[ "transformers", "bert", "fill-mask", "bert-base-chinese", "zh", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-24T03:05:34Z
--- language: - zh tags: - bert-base-chinese license: afl-3.0 --- This project page is about the pytorch code implementation of GlyphBERT by the HITsz-TMG research group. ![img.png](https://s3.amazonaws.com/moonup/production/uploads/1661697350102-621a2b96100edd793f521ab6.png) GlyphBERT is a Chinese pre-training model that includes Chinese character glyph features.It renders the input characters into images and designs them in the form of multi-channel location feature maps, and designs a two-layer residual convolutional neural network module to extract the image features of the characters for training. The experimental results show that the performance of the pre-training model can be well improved by fusing the features of Chinese glyphs. GlyphBERT is much better than BERT in multiple downstream tasks, and has strong transferability. For more details about using it, you can check the [github repo](https://github.com/HITsz-TMG/GlyphBERT)
philschmid/custom-handler-distilbert
philschmid
2022-08-30T06:58:57Z
107
0
transformers
[ "transformers", "pytorch", "tf", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-30T06:52:47Z
--- pipeline_tag: text-classification ---
cynthiachan/finetuned-roberta-base-10pct
cynthiachan
2022-08-30T06:49:09Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "dataset:cynthiachan/FeedRef_10pct", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-29T03:56:32Z
--- license: mit tags: - generated_from_trainer datasets: - cynthiachan/FeedRef_10pct model-index: - name: training results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # training This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the cynthiachan/FeedRef_10pct dataset. It achieves the following results on the evaluation set: - Loss: 0.1033 - Attackid Precision: 1.0 - Attackid Recall: 1.0 - Attackid F1: 1.0 - Attackid Number: 6 - Cve Precision: 1.0 - Cve Recall: 1.0 - Cve F1: 1.0 - Cve Number: 11 - Defenderthreat Precision: 0.0 - Defenderthreat Recall: 0.0 - Defenderthreat F1: 0.0 - Defenderthreat Number: 2 - Domain Precision: 0.8636 - Domain Recall: 0.8261 - Domain F1: 0.8444 - Domain Number: 23 - Email Precision: 1.0 - Email Recall: 1.0 - Email F1: 1.0 - Email Number: 3 - Filepath Precision: 0.8108 - Filepath Recall: 0.9091 - Filepath F1: 0.8571 - Filepath Number: 165 - Hostname Precision: 0.9231 - Hostname Recall: 1.0 - Hostname F1: 0.9600 - Hostname Number: 12 - Ipv4 Precision: 0.9167 - Ipv4 Recall: 0.9167 - Ipv4 F1: 0.9167 - Ipv4 Number: 12 - Md5 Precision: 0.875 - Md5 Recall: 0.9423 - Md5 F1: 0.9074 - Md5 Number: 52 - Sha1 Precision: 0.75 - Sha1 Recall: 0.8571 - Sha1 F1: 0.8000 - Sha1 Number: 7 - Sha256 Precision: 0.8 - Sha256 Recall: 1.0 - Sha256 F1: 0.8889 - Sha256 Number: 44 - Uri Precision: 0.0 - Uri Recall: 0.0 - Uri F1: 0.0 - Uri Number: 1 - Overall Precision: 0.8383 - Overall Recall: 0.9201 - Overall F1: 0.8773 - Overall Accuracy: 0.9816 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Attackid Precision | Attackid Recall | Attackid F1 | Attackid Number | Cve Precision | Cve Recall | Cve F1 | Cve Number | Defenderthreat Precision | Defenderthreat Recall | Defenderthreat F1 | Defenderthreat Number | Domain Precision | Domain Recall | Domain F1 | Domain Number | Email Precision | Email Recall | Email F1 | Email Number | Filepath Precision | Filepath Recall | Filepath F1 | Filepath Number | Hostname Precision | Hostname Recall | Hostname F1 | Hostname Number | Ipv4 Precision | Ipv4 Recall | Ipv4 F1 | Ipv4 Number | Md5 Precision | Md5 Recall | Md5 F1 | Md5 Number | Sha1 Precision | Sha1 Recall | Sha1 F1 | Sha1 Number | Sha256 Precision | Sha256 Recall | Sha256 F1 | Sha256 Number | Uri Precision | Uri Recall | Uri F1 | Uri Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:-------------:|:----------:|:------:|:----------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:----------------:|:-------------:|:---------:|:-------------:|:---------------:|:------------:|:--------:|:------------:|:------------------:|:---------------:|:-----------:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:--------------:|:-----------:|:-------:|:-----------:|:-------------:|:----------:|:------:|:----------:|:--------------:|:-----------:|:-------:|:-----------:|:----------------:|:-------------:|:---------:|:-------------:|:-------------:|:----------:|:------:|:----------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.4353 | 0.37 | 500 | 0.3525 | 0.0 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.3984 | 0.6182 | 0.4846 | 165 | 0.0714 | 0.3333 | 0.1176 | 12 | 0.0 | 0.0 | 0.0 | 12 | 0.8936 | 0.8077 | 0.8485 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.4937 | 0.8864 | 0.6341 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.4156 | 0.5533 | 0.4746 | 0.9459 | | 0.2089 | 0.75 | 1000 | 0.1812 | 0.0 | 0.0 | 0.0 | 6 | 0.9 | 0.8182 | 0.8571 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.15 | 0.2609 | 0.1905 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.6432 | 0.7758 | 0.7033 | 165 | 0.0 | 0.0 | 0.0 | 12 | 0.6471 | 0.9167 | 0.7586 | 12 | 0.7143 | 0.8654 | 0.7826 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.5286 | 0.8409 | 0.6491 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.5315 | 0.6982 | 0.6036 | 0.9626 | | 0.1453 | 1.12 | 1500 | 0.1374 | 0.75 | 0.5 | 0.6 | 6 | 0.9167 | 1.0 | 0.9565 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.5135 | 0.8261 | 0.6333 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.6863 | 0.8485 | 0.7588 | 165 | 0.7 | 0.5833 | 0.6364 | 12 | 0.6667 | 0.6667 | 0.6667 | 12 | 0.8167 | 0.9423 | 0.8750 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.8333 | 0.9091 | 0.8696 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.7048 | 0.8195 | 0.7579 | 0.9745 | | 0.1277 | 1.5 | 2000 | 0.1400 | 1.0 | 1.0 | 1.0 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.7273 | 0.6957 | 0.7111 | 23 | 0.2 | 0.3333 | 0.25 | 3 | 0.7181 | 0.8182 | 0.7649 | 165 | 0.9167 | 0.9167 | 0.9167 | 12 | 0.7857 | 0.9167 | 0.8462 | 12 | 0.8167 | 0.9423 | 0.8750 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.8302 | 1.0 | 0.9072 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.7634 | 0.8402 | 0.8000 | 0.9735 | | 0.1074 | 1.87 | 2500 | 0.1101 | 1.0 | 1.0 | 1.0 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.72 | 0.7826 | 0.7500 | 23 | 0.2857 | 0.6667 | 0.4 | 3 | 0.7554 | 0.8424 | 0.7966 | 165 | 0.8571 | 1.0 | 0.9231 | 12 | 0.8182 | 0.75 | 0.7826 | 12 | 0.9259 | 0.9615 | 0.9434 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.6833 | 0.9318 | 0.7885 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.7660 | 0.8521 | 0.8067 | 0.9762 | | 0.0758 | 2.25 | 3000 | 0.1161 | 1.0 | 1.0 | 1.0 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.9091 | 0.8696 | 0.8889 | 23 | 0.5 | 0.6667 | 0.5714 | 3 | 0.8251 | 0.9152 | 0.8678 | 165 | 1.0 | 1.0 | 1.0 | 12 | 1.0 | 0.6667 | 0.8 | 12 | 0.9259 | 0.9615 | 0.9434 | 52 | 1.0 | 0.5714 | 0.7273 | 7 | 0.8958 | 0.9773 | 0.9348 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.8722 | 0.9083 | 0.8899 | 0.9814 | | 0.064 | 2.62 | 3500 | 0.1275 | 1.0 | 1.0 | 1.0 | 6 | 0.8333 | 0.9091 | 0.8696 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.8947 | 0.7391 | 0.8095 | 23 | 1.0 | 1.0 | 1.0 | 3 | 0.8418 | 0.9030 | 0.8713 | 165 | 0.8571 | 1.0 | 0.9231 | 12 | 1.0 | 0.75 | 0.8571 | 12 | 0.9245 | 0.9423 | 0.9333 | 52 | 0.6667 | 0.5714 | 0.6154 | 7 | 0.8113 | 0.9773 | 0.8866 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.8580 | 0.8935 | 0.8754 | 0.9793 | | 0.0522 | 3.0 | 4000 | 0.1033 | 1.0 | 1.0 | 1.0 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.8636 | 0.8261 | 0.8444 | 23 | 1.0 | 1.0 | 1.0 | 3 | 0.8108 | 0.9091 | 0.8571 | 165 | 0.9231 | 1.0 | 0.9600 | 12 | 0.9167 | 0.9167 | 0.9167 | 12 | 0.875 | 0.9423 | 0.9074 | 52 | 0.75 | 0.8571 | 0.8000 | 7 | 0.8 | 1.0 | 0.8889 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.8383 | 0.9201 | 0.8773 | 0.9816 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
philschmid/custom-pipeline-text-classification
philschmid
2022-08-30T06:43:39Z
0
1
generic
[ "generic", "text-classification", "region:us" ]
text-classification
2022-07-18T12:21:29Z
--- tags: - text-classification library_name: generic --- # Text Classification repository template This is a template repository for Text Classification to support generic inference with Hugging Face Hub generic Inference API. There are two required steps: 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/text-classification cd text-classification git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
hasibzunair/melanet
hasibzunair
2022-08-30T03:00:32Z
0
1
keras
[ "keras", "vision", "image-classification", "arxiv:2004.06824", "license:apache-2.0", "region:us" ]
image-classification
2022-08-29T22:48:30Z
--- license: apache-2.0 library_name: keras tags: - vision - image-classification --- # Intro This is the model for our paper ["Melanoma Detection using Adversarial Training and Deep Transfer Learning"](https://arxiv.org/abs/2004.06824). Code is available [here](https://github.com/hasibzunair/adversarial-lesions). ## Model description The model is trained on the ISIC 2016 Task 3 dataset. The architecture and algorithm is described in this [paper](https://arxiv.org/abs/2004.06824). ## Intended uses & limitations You can use the raw model for melanoma detection from skin lesion images. ## How to use See Spaces [demo](https://huggingface.co/spaces/hasibzunair/melanoma-detection-demo). For more code examples, we refer to this [GitHub](https://github.com/hasibzunair/adversarial-lesions#deploy) deploy section. ## Limitations and bias The model is trained on a specific dataset with just over a thousand samples. It may or may not work for other kinds of skin lesion images. Further, there is no out-of-distribution detection method to filter out non skin lesion images. If you give an image of a dog, the model will still classify it as benign for malignant! ## Training data See [dataset details](https://github.com/hasibzunair/adversarial-lesions#preparing-training-and-test-datasets). ## Training procedure See [training details](https://github.com/hasibzunair/adversarial-lesions#training-both-stages). ## Evaluation results For results in benchmarks, we refer to Figures 5, 6 and Table 1 of the original paper [here](https://arxiv.org/abs/2004.06824). ## Citation ```bibtex @article{zunair2020melanoma, title={Melanoma detection using adversarial training and deep transfer learning}, author={Zunair, Hasib and Hamza, A Ben}, journal={Physics in Medicine \& Biology}, year={2020}, publisher={IOP Publishing} } ```
jaynlp/t5-large-samsum
jaynlp
2022-08-30T02:47:51Z
5
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2203.01552", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
We pre-trained `t5-large` on SAMSum Dialogue Summarization corpus. If you use this work for your research, please cite our work [Dialogue Summaries as Dialogue States ({DS}2), Template-Guided Summarization for Few-shot Dialogue State Tracking](https://arxiv.org/abs/2203.01552) ### Citation ``` @inproceedings{shin-etal-2022-dialogue, title = "Dialogue Summaries as Dialogue States ({DS}2), Template-Guided Summarization for Few-shot Dialogue State Tracking", author = "Shin, Jamin and Yu, Hangyeol and Moon, Hyeongdon and Madotto, Andrea and Park, Juneyoung", booktitle = "Findings of the Association for Computational Linguistics: ACL 2022", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.findings-acl.302", pages = "3824--3846", abstract = "Annotating task-oriented dialogues is notorious for the expensive and difficult data collection process. Few-shot dialogue state tracking (DST) is a realistic solution to this problem. In this paper, we hypothesize that dialogue summaries are essentially unstructured dialogue states; hence, we propose to reformulate dialogue state tracking as a dialogue summarization problem. To elaborate, we train a text-to-text language model with synthetic template-based dialogue summaries, generated by a set of rules from the dialogue states. Then, the dialogue states can be recovered by inversely applying the summary generation rules. We empirically show that our method DS2 outperforms previous works on few-shot DST in MultiWoZ 2.0 and 2.1, in both cross-domain and multi-domain settings. Our method also exhibits vast speedup during both training and inference as it can generate all states at once.Finally, based on our analysis, we discover that the naturalness of the summary templates plays a key role for successful training.", } ``` We used the following prompt for training ``` Summarize this dialogue: <DIALOGUE> ... ```
jaynlp/t5-large-transferqa
jaynlp
2022-08-30T02:47:11Z
103
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2109.04655", "arxiv:2203.01552", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
We reproduced the [TransferQA paper's](https://arxiv.org/abs/2109.04655) QA pre-trained weights. If you use this work for your research, please cite our work [Dialogue Summaries as Dialogue States ({DS}2), Template-Guided Summarization for Few-shot Dialogue State Tracking](https://arxiv.org/abs/2203.01552) ### Citation ``` @inproceedings{shin-etal-2022-dialogue, title = "Dialogue Summaries as Dialogue States ({DS}2), Template-Guided Summarization for Few-shot Dialogue State Tracking", author = "Shin, Jamin and Yu, Hangyeol and Moon, Hyeongdon and Madotto, Andrea and Park, Juneyoung", booktitle = "Findings of the Association for Computational Linguistics: ACL 2022", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.findings-acl.302", pages = "3824--3846", abstract = "Annotating task-oriented dialogues is notorious for the expensive and difficult data collection process. Few-shot dialogue state tracking (DST) is a realistic solution to this problem. In this paper, we hypothesize that dialogue summaries are essentially unstructured dialogue states; hence, we propose to reformulate dialogue state tracking as a dialogue summarization problem. To elaborate, we train a text-to-text language model with synthetic template-based dialogue summaries, generated by a set of rules from the dialogue states. Then, the dialogue states can be recovered by inversely applying the summary generation rules. We empirically show that our method DS2 outperforms previous works on few-shot DST in MultiWoZ 2.0 and 2.1, in both cross-domain and multi-domain settings. Our method also exhibits vast speedup during both training and inference as it can generate all states at once.Finally, based on our analysis, we discover that the naturalness of the summary templates plays a key role for successful training.", } ```
JAlexis/modelv2
JAlexis
2022-08-30T02:38:24Z
12
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-08-30T02:20:27Z
--- widget: - text: "How can I protect myself against covid-19?" context: "Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. " - text: "What are the risk factors for covid-19?" context: "To identify risk factors for hospital deaths from COVID-19, the OpenSAFELY platform examined electronic health records from 17.4 million UK adults. The authors used multivariable Cox proportional hazards model to identify the association of risk of death with older age, lower socio-economic status, being male, non-white ethnic background and certain clinical conditions (diabetes, obesity, cancer, respiratory diseases, heart, kidney, liver, neurological and autoimmune conditions). Notably, asthma was identified as a risk factor, despite prior suggestion of a potential protective role. Interestingly, higher risks due to ethnicity or lower socio-economic status could not be completely attributed to pre-existing health conditions." ---
freeagh/q-FrozenLake-v1-4x4-noSlippery
freeagh
2022-08-30T02:32:11Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-30T02:32:05Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="freeagh/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Sandeepanie/clinical-finetunedNew
Sandeepanie
2022-08-30T01:41:17Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-30T01:18:21Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: clinical-finetunedNew results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clinical-finetunedNew This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0423 - Accuracy: 0.84 - Precision: 0.8562 - Recall: 0.9191 - F1: 0.8865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0707 | 1.0 | 50 | 0.9997 | 0.86 | 0.86 | 0.9485 | 0.9021 | | 0.0593 | 2.0 | 100 | 0.9293 | 0.845 | 0.8777 | 0.8971 | 0.8873 | | 0.0273 | 3.0 | 150 | 0.9836 | 0.83 | 0.8643 | 0.8897 | 0.8768 | | 0.039 | 4.0 | 200 | 1.0028 | 0.85 | 0.8732 | 0.9118 | 0.8921 | | 0.0121 | 5.0 | 250 | 1.0423 | 0.84 | 0.8562 | 0.9191 | 0.8865 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
dvalbuena1/Reinforce-Pong
dvalbuena1
2022-08-30T01:35:00Z
0
0
null
[ "Pong-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-30T01:34:06Z
--- tags: - Pong-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pong results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-PLE-v0 type: Pong-PLE-v0 metrics: - type: mean_reward value: -16.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pong-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pong-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Einmalumdiewelt/DistilBART_CNN_GNAD_V2
Einmalumdiewelt
2022-08-29T23:21:34Z
14
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "de", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-29T15:01:52Z
--- language: - de tags: - generated_from_trainer metrics: - rouge model-index: - name: DistilBART_CNN_GNAD_V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBART_CNN_GNAD_V2 This model is a fine-tuned version of [Einmalumdiewelt/DistilBART_CNN_GNAD_V2](https://huggingface.co/Einmalumdiewelt/DistilBART_CNN_GNAD_V2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7281 - Rouge1: 27.7253 - Rouge2: 8.4647 - Rougel: 18.2059 - Rougelsum: 23.238 - Gen Len: 91.6827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1