modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 06:31:37
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 06:31:07
card
stringlengths
11
1.01M
ckandemir/a2c-PandaReachDense-v3
ckandemir
2023-08-14T01:08:29Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-14T01:02:42Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.22 +/- 0.12 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kkmkorea/qlora-polyglot-12.8b
kkmkorea
2023-08-14T00:50:53Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-14T00:50:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
C-Lo/balanced_gendered-dataset
C-Lo
2023-08-14T00:21:59Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-14T00:18:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: balanced_gendered-dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # balanced_gendered-dataset This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
MichaelYxWang/q-FrozenLake-v1-4x4-noSlippery
MichaelYxWang
2023-08-14T00:21:36Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-14T00:21:34Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="MichaelYxWang/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
johnowhitaker/gaussian_splatter_models
johnowhitaker
2023-08-14T00:14:16Z
0
0
null
[ "region:us" ]
null
2023-08-13T23:58:24Z
Adding models from https://github.com/graphdeco-inria/gaussian-splatting/ for easier access so you don't have to download the whole big models.zip file. TODO: show usage
Nelver28/grailsolver-test-10
Nelver28
2023-08-14T00:13:43Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-14T00:13:27Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
HexHands/finishABOUTME
HexHands
2023-08-14T00:04:07Z
153
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "en", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-01T01:56:24Z
--- license: cc-by-4.0 language: en tags: - text-generation pipeline_tag: text-generation widget: - text: "My name is " - text: "I believe that I need to be more friendly." - text: "Follow @griffpatch!" - text: "How will my projects get better?" --- # finishABOUTME finishABOUTME is a torch model which was trained on 2000 Scratch About Me sections. It is meant to finish any About Me section! # Example Input: This Scratch Studio will reach 100 followers in a few days!\n Output: This Scratch Studio will reach 100 followers in a few days!\nThis studio here so much slower. Sorry for the inconveni have all, but we get every monday feel free to add projects about duckling Pond!\n\nThe Duckling Pond
nihal-tw/finetuned-f7b
nihal-tw
2023-08-13T23:49:41Z
31
0
peft
[ "peft", "medical", "text-generation", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2023-08-13T23:11:52Z
--- library_name: peft license: apache-2.0 pipeline_tag: text-generation tags: - medical --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
lockiultra/rating_model
lockiultra
2023-08-13T23:48:40Z
67
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-13T23:45:04Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: rating_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # rating_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
javinfamous/infamous_rias_v2
javinfamous
2023-08-13T23:39:02Z
0
0
null
[ "rvc", "Audio-to-Audio", "license:openrail", "region:us" ]
null
2023-08-13T14:56:05Z
--- license: openrail tags: - rvc - Audio-to-Audio --- # Infamous_rias_v2 Model ID ![SD_rias](rias_model_card.png) ## Model Details This model of Rias Gremory from Highschool DxD was created with a 6 minute audio dataset, 32 epoch, trained on RVC V2. - **Developed by:** javinfamous
nacielo/wav2BertMusicfreeze
nacielo
2023-08-13T23:30:28Z
89
0
transformers
[ "transformers", "pytorch", "tensorboard", "speech-encoder-decoder", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T22:21:33Z
--- base_model: '' tags: - generated_from_trainer metrics: - rouge model-index: - name: wav2BertMusicfreeze results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2BertMusicfreeze This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3867 - Rouge1: 27.1456 - Rouge2: 7.625 - Rougel: 20.1034 - Rougelsum: 20.0485 - Gen Len: 46.26 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 5.1626 | 1.0 | 1361 | 3.9917 | 24.7464 | 5.7911 | 18.5211 | 18.5124 | 65.15 | | 3.4372 | 2.0 | 2722 | 3.0113 | 24.0633 | 5.6872 | 18.4731 | 18.4535 | 40.02 | | 2.9324 | 3.0 | 4083 | 2.6271 | 32.2681 | 8.0887 | 23.541 | 23.4982 | 54.76 | | 2.7227 | 4.0 | 5444 | 2.4558 | 29.1184 | 6.5853 | 21.5936 | 21.5896 | 48.21 | | 2.6377 | 5.0 | 6805 | 2.3867 | 27.1456 | 7.625 | 20.1034 | 20.0485 | 46.26 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3
AOLCDROM/WAV2LIP-HQ-Updated-MIRROR
AOLCDROM
2023-08-13T23:22:41Z
0
3
null
[ "region:us" ]
null
2023-08-13T23:14:06Z
This is a mirror of the weights for the Wav2Lip-HQ-Updated repo, because the linked files on Google Drive appear to be incorrect or down. License follows oriignal authors intent. --- license: other ---
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e8_s55555_v4_l5_v50
KingKazma
2023-08-13T23:15:48Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T23:15:45Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
AmelieSchreiber/esm2_t12_35M_UR50D_RNA_LoRA_weighted
AmelieSchreiber
2023-08-13T23:13:58Z
2
1
peft
[ "peft", "transformers", "biology", "esm", "esm2", "protein", "protein language model", "en", "license:mit", "region:us" ]
null
2023-08-13T23:01:51Z
--- library_name: peft license: mit language: - en tags: - transformers - biology - esm - esm2 - protein - protein language model --- # ESM-2 RNA Binding Site LoRA This is a Parameter Efficient Fine Tuning (PEFT) Low Rank Adaptation (LoRA) of the [esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) model for the (binary) token classification task of predicting RNA binding sites of proteins. You can also find a version of this model that was fine-tuned without LoRA [here](https://huggingface.co/AmelieSchreiber/esm2_t6_8M_UR50D_rna_binding_site_predictor). ## Training procedure This is a Low Rank Adaptation (LoRA) of `esm2_t12_35M_UR50D`, trained on `166` protein sequences in the [RNA binding sites dataset](https://huggingface.co/datasets/AmelieSchreiber/data_of_protein-rna_binding_sites) using a `85/15` train/test split. This model was trained with class weighting due to the imbalanced nature of the RNA binding site dataset (fewer binding sites than non-binding sites). This model has slightly improved precision, recall, and F1 score over [AmelieSchreiber/esm2_t12_35M_weighted_lora_rna_binding](https://huggingface.co/AmelieSchreiber/esm2_t12_35M_weighted_lora_rna_binding) but may suffer from mild overfitting, as indicated by the training loss being slightly lower than the eval loss (see metrics below). If you are searching for binding sites and aren't worried about false positives, the higher recall may make this model preferable to the other RNA binding site predictors. You can train your own version using [this notebook](https://huggingface.co/AmelieSchreiber/esm2_t6_8M_weighted_lora_rna_binding/blob/main/LoRA_binding_sites_no_sweeps_v2.ipynb)! You just need the RNA `binding_sites.xml` file [found here](https://huggingface.co/datasets/AmelieSchreiber/data_of_protein-rna_binding_sites). You may also need to run some `pip install` statements at the beginning of the script. If you are running in colab run: ```python !pip install transformers[torch] datasets peft -q ``` ```python !pip install accelerate -U -q ``` Try to improve upon these metrics by adjusting the hyperparameters: ``` {'eval_loss': 0.500779926776886, 'eval_precision': 0.1708695652173913, 'eval_recall': 0.8397435897435898, 'eval_f1': 0.2839595375722543, 'eval_auc': 0.771835775620126, 'epoch': 11.0} {'loss': 0.4171, 'learning_rate': 0.00032491416877500004, 'epoch': 11.43} ``` A similar model can also be trained using the Github with a training script and conda env YAML, which can be [found here](https://github.com/Amelie-Schreiber/esm2_LoRA_binding_sites/tree/main). This version uses wandb sweeps for hyperparameter search. However, it does not use class weighting. ### Framework versions - PEFT 0.4.0 ## Using the Model To use the model, try running the following pip install statements: ```python !pip install transformers peft -q ``` then try tunning: ```python from transformers import AutoModelForTokenClassification, AutoTokenizer from peft import PeftModel import torch # Path to the saved LoRA model model_path = "AmelieSchreiber/esm2_t12_35M_UR50D_RNA_LoRA_weighted" # ESM2 base model base_model_path = "facebook/esm2_t12_35M_UR50D" # Load the model base_model = AutoModelForTokenClassification.from_pretrained(base_model_path) loaded_model = PeftModel.from_pretrained(base_model, model_path) # Ensure the model is in evaluation mode loaded_model.eval() # Load the tokenizer loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path) # Protein sequence for inference protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence # Tokenize the sequence inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length') # Run the model with torch.no_grad(): logits = loaded_model(**inputs).logits # Get predictions tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens predictions = torch.argmax(logits, dim=2) # Define labels id2label = { 0: "No binding site", 1: "Binding site" } # Print the predicted labels for each token for token, prediction in zip(tokens, predictions[0].numpy()): if token not in ['<pad>', '<cls>', '<eos>']: print((token, id2label[prediction])) ```
D4ve-R/yellow-lora-sd15
D4ve-R
2023-08-13T23:09:19Z
3
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-12T17:29:27Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - D4ve-R/yellow-lora-sd15 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the None dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
FireHead90544/RudraRVCs
FireHead90544
2023-08-13T23:08:19Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-08-09T15:39:45Z
--- license: openrail --- # RVCs - Some of the voices I trained **Seiya Ryuuguuin - The Hero Is Overpowered But Overly Cautious (JP VA: Yuuichirou Umehara)** Currently, these ones are available: - ## [Seiya Ryuuguuin RVC v2 Mangio-Crepe (340 Epochs, 5440 Steps)](https://huggingface.co/FireHead90544/RudraRVCs/resolve/main/SeiyaRyuuguuinRVC.zip) - ## [Seiya Ryuuguuin RVC v2 RMVPE (300 Epochs, 6300 Steps)](https://huggingface.co/FireHead90544/RudraRVCs/resolve/main/SeiyaRyuuguuinV2.zip) # This seems to perform better - ## [Seiya Ryuuguuin Max RVC v2 RMVPE (400 Epochs, 8400 Steps)](https://huggingface.co/FireHead90544/RudraRVCs/resolve/main/SeiyaRyuuguuinMax.zip) # Probably the best one ## Samples - ### Mangio-Crepe - [NEFFEX - Cold](https://cdn.discordapp.com/attachments/1090766429785178142/1138861234561753249/Seiya_Ryuuguuin_-_Cold.mp3) - [Kenshi Yonezu - Kick Back](https://cdn.discordapp.com/attachments/1090766429785178142/1138861234951819264/Seiya_Ryuuguuin_-_Kick_Back.mp3) - ### RMVPE - [YOASOBI - Running Into The Night](https://cdn.discordapp.com/attachments/549264174753120267/1138908849076703332/Seiya_Ryuuguuin_-_Racing_Into_The_Night.mp3) - [Tk From Ling Tosite Sigure - Unravel](https://cdn.discordapp.com/attachments/549264174753120267/1138908849789734972/Seiya_Ryuuguuin_-_Unravel.mp3) - [Jin Hashimoto - Stand Proud](https://cdn.discordapp.com/attachments/549264174753120267/1138908849424834741/Seiya_Ryuuguuin_-_Stand_Proud.mp3) - [KSUKE - Contradiction](https://cdn.discordapp.com/attachments/549264174753120267/1138908848749551636/Seiya_Ryuuguuin_-_Contradiction.mp3) - [Smash Mouth - All Star](https://cdn.discordapp.com/attachments/549264174753120267/1138908850137858189/Seiya_Ryuuguuin_-_All_Star.mp3) - [OxT - Clattanoia](https://cdn.discordapp.com/attachments/549264174753120267/1138908850469216327/Seiya_Ryuuguuin_-_Clattanoia.mp3) - <video controls width="640" height="360"> <source src="https://cdn.discordapp.com/attachments/1138965403658362910/1139679982717767870/Cupid.mp4" type="video/mp4"> Your browser does not support the video tag. </video> - <video controls width="640" height="360"> <source src="https://cdn.discordapp.com/attachments/1138965403658362910/1140419271772606474/Yoru_Ni_Kakeru.mp4" type="video/mp4"> Your browser does not support the video tag. </video>
mchablani/llama-2-7b-mini-medqa
mchablani
2023-08-13T23:02:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T07:03:08Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
ittailup/lallama-13b-lora
ittailup
2023-08-13T22:55:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T22:53:53Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e5_s55555_v4_l5_v50
KingKazma
2023-08-13T22:53:17Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T22:53:13Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e4_s55555_v4_l5_v50
KingKazma
2023-08-13T22:45:46Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T22:45:43Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e4_s108_v4_l5_v50
KingKazma
2023-08-13T22:40:30Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T22:40:28Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e3_s55555_v4_l5_v50
KingKazma
2023-08-13T22:38:16Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T22:38:13Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
platzi/platzi-distilroberta-base-mrpc-glue-angrim
platzi
2023-08-13T22:31:39Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-13T21:44:25Z
--- license: apache-2.0 tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 widget: - text: ["Yucaipa owned Dominick 's before selling the chain to Safeway in 1998 for $ 2.5 billion.", "Yucaipa bought Dominick's in 1995 for $ 693 million and sold it to Safeway for $ 1.8 billion in 1998."] example_title: Not Equivalent - text: ["Revenue in the first quarter of the year dropped 15 percent from the same period a year earlier.", "With the scandal hanging over Stewart's company revenue the first quarter of the year dropped 15 percent from the same period a year earlier."] example_title: Equivalent model-index: - name: platzi-distilroberta-base-mrpc-glue-angrim results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8284313725490197 - name: F1 type: f1 value: 0.8771929824561404 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-distilroberta-base-mrpc-glue-angrim This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue and the mrpc datasets. It achieves the following results on the evaluation set: - Loss: 0.3994 - Accuracy: 0.8284 - F1: 0.8772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5211 | 1.09 | 500 | 0.3994 | 0.8284 | 0.8772 | | 0.3565 | 2.18 | 1000 | 0.5487 | 0.8456 | 0.8857 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e0_s55555_v4_l5_v50
KingKazma
2023-08-13T22:15:45Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T22:15:42Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
BrendaScar/dqn-SpaceInvadersNoFrameskip-v4
BrendaScar
2023-08-13T21:53:30Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T21:52:53Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 657.50 +/- 163.33 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga BrendaScar -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga BrendaScar -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga BrendaScar ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e9_s55555_v4_l5_v50
KingKazma
2023-08-13T21:47:40Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T21:47:38Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e7_s55555_v4_l4_v100
KingKazma
2023-08-13T21:45:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T21:45:46Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
redstonehero/cetusmix_v4
redstonehero
2023-08-13T21:42:07Z
751
4
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-13T20:31:26Z
--- license: creativeml-openrail-m library_name: diffusers ---
redstonehero/angrarealflex_v20
redstonehero
2023-08-13T21:42:05Z
29
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-13T20:38:38Z
--- license: creativeml-openrail-m library_name: diffusers ---
SaranaAbidueva/mbart50_ru_bua
SaranaAbidueva
2023-08-13T21:38:06Z
104
1
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "ru", "bua", "bxr", "dataset:SaranaAbidueva/buryat-russian_parallel_corpus", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-11T10:42:25Z
--- language: - ru - bua - bxr datasets: - SaranaAbidueva/buryat-russian_parallel_corpus metrics: - bleu --- This model translates from Russian to Buryat language. How to use in Python: ```python from transformers import MBartForConditionalGeneration, MBart50Tokenizer model = MBartForConditionalGeneration.from_pretrained("SaranaAbidueva/mbart50_ru_bua") tokenizer = MBart50Tokenizer.from_pretrained("SaranaAbidueva/mbart50_ru_bua") def translate(text, max_length=200, num_beams=5, repetition_penalty=5.0, **kwargs): encoded = tokenizer(text, return_tensors="pt") generated_tokens = model.generate( **encoded.to(model.device), max_length=max_length, num_beams=num_beams, repetition_penalty=repetition_penalty ) return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] translate('Евгений Онегин интересная книга') ```
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e6_s55555_v4_l4_v100
KingKazma
2023-08-13T21:37:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T21:37:09Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e5_s55555_v4_l4_v100
KingKazma
2023-08-13T21:28:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T21:28:32Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e6_s55555_v4_l5_v50
KingKazma
2023-08-13T21:24:15Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T21:24:13Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
GeneralRincewind/ShakespeareGPT
GeneralRincewind
2023-08-13T21:20:51Z
6
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-13T05:59:18Z
https://colab.research.google.com/drive/1Dlm8FA9JjjcqJIkfCagaIQWex8Ho5IKI#scrollTo=e8xIjRNsl3Bb ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("GeneralRincewind/ShakespeareGPT") model = AutoModelForCausalLM.from_pretrained("GeneralRincewind/ShakespeareGPT") #### Generate text from transformers import TextStreamer tokenized_text = tokenizer("", return_tensors="pt", truncation=True) input_ids = tokenized_text.input_ids streamer = TextStreamer(tokenizer) model.eval() full_completion = model.generate(inputs=tokenized_text["input_ids"].to("cuda"), attention_mask=tokenized_text["attention_mask"].to("cuda"), temperature=0.9, top_k=80, top_p=0.65, do_sample=True, streamer=streamer, num_beams=1, max_new_tokens=500, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, repetition_penalty=1) decoded_text = tokenizer.decode(full_completion[0]) print(decoded_text) ```
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e4_s55555_v4_l4_v100
KingKazma
2023-08-13T21:19:56Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T21:19:55Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e3_s55555_v4_l4_v100
KingKazma
2023-08-13T21:14:21Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T21:14:16Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e3_s55555_v4_l4_v100
KingKazma
2023-08-13T21:11:18Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:29:22Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e4_s55555_v4_l5_v50
KingKazma
2023-08-13T21:08:38Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T21:08:36Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e9_s55555_v4_l4_v100
KingKazma
2023-08-13T21:07:52Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T21:07:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e2_s55555_v4_l4_v100
KingKazma
2023-08-13T21:07:34Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T21:07:30Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e2_s55555_v4_l4_v100
KingKazma
2023-08-13T21:02:41Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:20:44Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0060
bigmorning
2023-08-13T21:02:11Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T21:02:03Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0060 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0060 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0009 - Train Accuracy: 0.0795 - Train Wermet: 7.7512 - Validation Loss: 0.5624 - Validation Accuracy: 0.0770 - Validation Wermet: 6.7969 - Epoch: 59 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | | 0.0012 | 0.0795 | 8.3370 | 0.5683 | 0.0768 | 7.1040 | 37 | | 0.0005 | 0.0795 | 7.9931 | 0.5658 | 0.0769 | 6.8043 | 38 | | 0.0002 | 0.0795 | 7.9500 | 0.5660 | 0.0769 | 7.0891 | 39 | | 0.0001 | 0.0795 | 8.1912 | 0.5632 | 0.0770 | 7.1929 | 40 | | 0.0001 | 0.0795 | 8.2484 | 0.5678 | 0.0769 | 7.6993 | 41 | | 0.0001 | 0.0795 | 8.2925 | 0.5648 | 0.0770 | 7.1917 | 42 | | 0.0001 | 0.0795 | 7.9155 | 0.5752 | 0.0769 | 6.4900 | 43 | | 0.0095 | 0.0793 | 8.3244 | 0.5662 | 0.0767 | 6.9524 | 44 | | 0.0019 | 0.0795 | 7.8491 | 0.5533 | 0.0769 | 6.9541 | 45 | | 0.0006 | 0.0795 | 8.0596 | 0.5573 | 0.0768 | 6.9489 | 46 | | 0.0008 | 0.0795 | 8.0277 | 0.5581 | 0.0769 | 6.9081 | 47 | | 0.0005 | 0.0795 | 7.6084 | 0.5604 | 0.0769 | 6.7158 | 48 | | 0.0006 | 0.0795 | 8.0561 | 0.5729 | 0.0767 | 7.4189 | 49 | | 0.0014 | 0.0795 | 8.2875 | 0.5658 | 0.0768 | 7.5768 | 50 | | 0.0011 | 0.0795 | 8.4376 | 0.5665 | 0.0768 | 7.2469 | 51 | | 0.0018 | 0.0795 | 8.3093 | 0.5771 | 0.0768 | 7.2637 | 52 | | 0.0021 | 0.0795 | 7.8370 | 0.5680 | 0.0768 | 7.0030 | 53 | | 0.0014 | 0.0795 | 7.7408 | 0.5661 | 0.0769 | 7.1664 | 54 | | 0.0009 | 0.0795 | 7.7601 | 0.5639 | 0.0769 | 6.9567 | 55 | | 0.0006 | 0.0795 | 7.8589 | 0.5667 | 0.0769 | 7.3058 | 56 | | 0.0013 | 0.0795 | 7.9766 | 0.5741 | 0.0768 | 6.8820 | 57 | | 0.0027 | 0.0795 | 7.9402 | 0.5718 | 0.0768 | 7.0204 | 58 | | 0.0009 | 0.0795 | 7.7512 | 0.5624 | 0.0770 | 6.7969 | 59 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e8_s55555_v4_l4_v100
KingKazma
2023-08-13T21:00:57Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-13T21:00:56Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e1_s55555_v4_l4_v100
KingKazma
2023-08-13T21:00:48Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T21:00:43Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0059
bigmorning
2023-08-13T20:57:46Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T20:57:38Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0059 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0059 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0027 - Train Accuracy: 0.0795 - Train Wermet: 7.9402 - Validation Loss: 0.5718 - Validation Accuracy: 0.0768 - Validation Wermet: 7.0204 - Epoch: 58 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | | 0.0012 | 0.0795 | 8.3370 | 0.5683 | 0.0768 | 7.1040 | 37 | | 0.0005 | 0.0795 | 7.9931 | 0.5658 | 0.0769 | 6.8043 | 38 | | 0.0002 | 0.0795 | 7.9500 | 0.5660 | 0.0769 | 7.0891 | 39 | | 0.0001 | 0.0795 | 8.1912 | 0.5632 | 0.0770 | 7.1929 | 40 | | 0.0001 | 0.0795 | 8.2484 | 0.5678 | 0.0769 | 7.6993 | 41 | | 0.0001 | 0.0795 | 8.2925 | 0.5648 | 0.0770 | 7.1917 | 42 | | 0.0001 | 0.0795 | 7.9155 | 0.5752 | 0.0769 | 6.4900 | 43 | | 0.0095 | 0.0793 | 8.3244 | 0.5662 | 0.0767 | 6.9524 | 44 | | 0.0019 | 0.0795 | 7.8491 | 0.5533 | 0.0769 | 6.9541 | 45 | | 0.0006 | 0.0795 | 8.0596 | 0.5573 | 0.0768 | 6.9489 | 46 | | 0.0008 | 0.0795 | 8.0277 | 0.5581 | 0.0769 | 6.9081 | 47 | | 0.0005 | 0.0795 | 7.6084 | 0.5604 | 0.0769 | 6.7158 | 48 | | 0.0006 | 0.0795 | 8.0561 | 0.5729 | 0.0767 | 7.4189 | 49 | | 0.0014 | 0.0795 | 8.2875 | 0.5658 | 0.0768 | 7.5768 | 50 | | 0.0011 | 0.0795 | 8.4376 | 0.5665 | 0.0768 | 7.2469 | 51 | | 0.0018 | 0.0795 | 8.3093 | 0.5771 | 0.0768 | 7.2637 | 52 | | 0.0021 | 0.0795 | 7.8370 | 0.5680 | 0.0768 | 7.0030 | 53 | | 0.0014 | 0.0795 | 7.7408 | 0.5661 | 0.0769 | 7.1664 | 54 | | 0.0009 | 0.0795 | 7.7601 | 0.5639 | 0.0769 | 6.9567 | 55 | | 0.0006 | 0.0795 | 7.8589 | 0.5667 | 0.0769 | 7.3058 | 56 | | 0.0013 | 0.0795 | 7.9766 | 0.5741 | 0.0768 | 6.8820 | 57 | | 0.0027 | 0.0795 | 7.9402 | 0.5718 | 0.0768 | 7.0204 | 58 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e1_s55555_v4_l4_v100
KingKazma
2023-08-13T20:54:05Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:12:04Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
CCatalao/respapers_topics
CCatalao
2023-08-13T20:53:46Z
5
0
bertopic
[ "bertopic", "text-classification", "region:us" ]
text-classification
2023-08-13T14:56:41Z
--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # respapers_topics This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. This pre-trained model was built to demonstrate the use of representation model inspired on KeyBERT to be use within BERTopic. This model was trained on ~30000 Research Papers abstracts with the KeyBERTInspired representation method (bertopic.representation). The dataset was downloaded from [kaggle](https://www.kaggle.com/datasets/arashnic/urban-sound?resource=download&select=train_tm), with the two subsets (test and train) being merged into a single dataset. To access the complete code, you can vist this tutorial on my GitHub page: [ResPapers](https://github.com/ccatalao/respapers/blob/main/respapers.ipynb) ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("CCatalao/respapers_topics") topic_model.get_topic_info() ``` To view the KeyBERT inspired topic representation please use the following: ```python >>> topic_model.get_topic(0, full=True) {'Main': [['spin', 0.01852648864225281], ['magnetic', 0.015019436257929909], ['phase', 0.013081733986038124], ['quantum', 0.012942253723133639], ['temperature', 0.012591407440537158], ['states', 0.011025582290837643], ['field', 0.010954775154251296], ['electron', 0.010168708734803916], ['transition', 0.009728560280580357], ['energy', 0.00937042795113575]], 'KeyBERTInspired': [['quantum', 0.4072583317756653], ['phase transition', 0.35542067885398865], ['lattice', 0.34462833404541016], ['spin', 0.3268473744392395], ['magnetic', 0.3024371564388275], ['magnetization', 0.2868726849555969], ['phases', 0.27178525924682617], ['fermi', 0.26290175318717957], ['electron', 0.25709500908851624], ['phase', 0.23375216126441956]]} ``` ## Topic overview * Number of topics: 112 * Number of training documents: 29961 <details> <summary>Click here for an overview of all topics.</summary> | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | data - model - paper - time - based | 20 | -1_data_model_paper_time | | 0 | spin - magnetic - phase - quantum - temperature | 12937 | 0_spin_magnetic_phase_quantum | | 1 | mass - star - stars - 10 - stellar | 3048 | 1_mass_star_stars_10 | | 2 | reinforcement - reinforcement learning - learning - policy - robot | 2564 | 2_reinforcement_reinforcement learning_learning_policy | | 3 | logic - semantics - programs - automata - languages | 556 | 3_logic_semantics_programs_automata | | 4 | neural - networks - neural networks - deep - training | 478 | 4_neural_networks_neural networks_deep | | 5 | networks - community - network - social - nodes | 405 | 5_networks_community_network_social | | 6 | word - translation - language - words - sentence | 340 | 6_word_translation_language_words | | 7 | object - 3d - camera - pose - localization | 298 | 7_object_3d_camera_pose | | 8 | classification - label - classifier - learning - classifiers | 294 | 8_classification_label_classifier_learning | | 9 | convex - gradient - stochastic - convergence - optimization | 287 | 9_convex_gradient_stochastic_convergence | | 10 | graphs - graph - vertices - vertex - edge | 284 | 10_graphs_graph_vertices_vertex | | 11 | brain - neurons - connectivity - neural - synaptic | 273 | 11_brain_neurons_connectivity_neural | | 12 | robots - robot - planning - control - motion | 255 | 12_robots_robot_planning_control | | 13 | prime - numbers - polynomials - integers - zeta | 245 | 13_prime_numbers_polynomials_integers | | 14 | tensor - rank - matrix - low rank - pca | 226 | 14_tensor_rank_matrix_low rank | | 15 | power - energy - grid - renewable - load | 222 | 15_power_energy_grid_renewable | | 16 | channel - power - mimo - interference - wireless | 219 | 16_channel_power_mimo_interference | | 17 | adversarial - attacks - adversarial examples - attack - examples | 208 | 17_adversarial_attacks_adversarial examples_attack | | 18 | gan - gans - generative - generative adversarial - adversarial | 200 | 18_gan_gans_generative_generative adversarial | | 19 | media - social - twitter - users - social media | 196 | 19_media_social_twitter_users | | 20 | posterior - monte - monte carlo - carlo - bayesian | 190 | 20_posterior_monte_monte carlo_carlo | | 21 | estimator - estimators - regression - quantile - estimation | 189 | 21_estimator_estimators_regression_quantile | | 22 | software - code - developers - projects - development | 178 | 22_software_code_developers_projects | | 23 | regret - bandit - armed - arm - multi armed | 177 | 23_regret_bandit_armed_arm | | 24 | omega - mathbb - solutions - boundary - equation | 177 | 24_omega_mathbb_solutions_boundary | | 25 | numerical - scheme - mesh - method - order | 175 | 25_numerical_scheme_mesh_method | | 26 | causal - treatment - outcome - effects - causal inference | 174 | 26_causal_treatment_outcome_effects | | 27 | curvature - mean curvature - riemannian - ricci - metric | 164 | 27_curvature_mean curvature_riemannian_ricci | | 28 | control - distributed - systems - consensus - agents | 156 | 28_control_distributed_systems_consensus | | 29 | groups - group - subgroup - subgroups - finite | 153 | 29_groups_group_subgroup_subgroups | | 30 | segmentation - images - image - convolutional - medical | 148 | 30_segmentation_images_image_convolutional | | 31 | market - portfolio - asset - price - volatility | 144 | 31_market_portfolio_asset_price | | 32 | recommendation - user - item - items - recommender | 138 | 32_recommendation_user_item_items | | 33 | algebra - algebras - lie - mathfrak - modules | 131 | 33_algebra_algebras_lie_mathfrak | | 34 | quantum - classical - circuits - annealing - circuit | 121 | 34_quantum_classical_circuits_annealing | | 35 | moduli - varieties - projective - curves - bundles | 119 | 35_moduli_varieties_projective_curves | | 36 | graph - embedding - node - graphs - network | 117 | 36_graph_embedding_node_graphs | | 37 | codes - decoding - channel - code - capacity | 113 | 37_codes_decoding_channel_code | | 38 | sparse - signal - recovery - sensing - measurements | 107 | 38_sparse_signal_recovery_sensing | | 39 | knot - knots - homology - invariants - link | 103 | 39_knot_knots_homology_invariants | | 40 | spaces - hardy - operators - mathbb - boundedness | 95 | 40_spaces_hardy_operators_mathbb | | 41 | blockchain - security - privacy - authentication - encryption | 90 | 41_blockchain_security_privacy_authentication | | 42 | turbulence - turbulent - flow - flows - reynolds | 89 | 42_turbulence_turbulent_flow_flows | | 43 | privacy - differential privacy - private - differential - data | 86 | 43_privacy_differential privacy_private_differential | | 44 | epidemic - disease - infection - infected - infectious | 83 | 44_epidemic_disease_infection_infected | | 45 | citation - scientific - research - journal - papers | 82 | 45_citation_scientific_research_journal | | 46 | surface - droplet - fluid - liquid - droplets | 81 | 46_surface_droplet_fluid_liquid | | 47 | chemical - molecules - molecular - protein - learning | 79 | 47_chemical_molecules_molecular_protein | | 48 | kähler - manifolds - manifold - complex - metrics | 77 | 48_kähler_manifolds_manifold_complex | | 49 | games - game - players - nash - player | 74 | 49_games_game_players_nash | | 50 | patients - patient - clinical - ehr - care | 73 | 50_patients_patient_clinical_ehr | | 51 | music - musical - audio - chord - note | 70 | 51_music_musical_audio_chord | | 52 | visual - shot - image - cnns - learning | 70 | 52_visual_shot_image_cnns | | 53 | speaker - speech - end - recognition - speech recognition | 70 | 53_speaker_speech_end_recognition | | 54 | cell - cells - tissue - active - tumor | 69 | 54_cell_cells_tissue_active | | 55 | eeg - brain - signals - sleep - subjects | 69 | 55_eeg_brain_signals_sleep | | 56 | fairness - fair - discrimination - decision - algorithmic | 67 | 56_fairness_fair_discrimination_decision | | 57 | clustering - clusters - data - based clustering - cluster | 66 | 57_clustering_clusters_data_based clustering | | 58 | relativity - black - solutions - einstein - spacetime | 65 | 58_relativity_black_solutions_einstein | | 59 | mathbb - curves - elliptic - conjecture - fields | 62 | 59_mathbb_curves_elliptic_conjecture | | 60 | stokes - navier - navier stokes - equations - stokes equations | 61 | 60_stokes_navier_navier stokes_equations | | 61 | species - population - dispersal - ecosystem - populations | 60 | 61_species_population_dispersal_ecosystem | | 62 | reconstruction - ct - artifacts - image - images | 58 | 62_reconstruction_ct_artifacts_image | | 63 | algebra - algebras - mathcal - alpha - crossed | 58 | 63_algebra_algebras_mathcal_alpha | | 64 | tiling - polytopes - set - polygon - polytope | 58 | 64_tiling_polytopes_set_polygon | | 65 | mobile - video - network - latency - computing | 57 | 65_mobile_video_network_latency | | 66 | latent - variational - vae - generative - inference | 55 | 66_latent_variational_vae_generative | | 67 | players - game - team - player - teams | 54 | 67_players_game_team_player | | 68 | genes - gene - cancer - expression - sequencing | 53 | 68_genes_gene_cancer_expression | | 69 | forcing - kappa - definable - cardinal - zfc | 51 | 69_forcing_kappa_definable_cardinal | | 70 | dna - protein - folding - proteins - molecule | 50 | 70_dna_protein_folding_proteins | | 71 | spaces - space - metric - metric spaces - topology | 49 | 71_spaces_space_metric_metric spaces | | 72 | speech - separation - source separation - enhancement - speaker | 49 | 72_speech_separation_source separation_enhancement | | 73 | imaging - resolution - light - diffraction - phase | 47 | 73_imaging_resolution_light_diffraction | | 74 | traffic - traffic flow - prediction - temporal - transportation | 46 | 74_traffic_traffic flow_prediction_temporal | | 75 | climate - precipitation - sea - flood - extreme | 45 | 75_climate_precipitation_sea_flood | | 76 | audio - sound - event detection - event - bird | 43 | 76_audio_sound_event detection_event | | 77 | memory - storage - cache - performance - write | 40 | 77_memory_storage_cache_performance | | 78 | wishart - matrices - eigenvalue - free - smallest | 39 | 78_wishart_matrices_eigenvalue_free | | 79 | domain - domain adaptation - adaptation - transfer - target | 39 | 79_domain_domain adaptation_adaptation_transfer | | 80 | glass - glasses - glassy - amorphous - liquids | 39 | 80_glass_glasses_glassy_amorphous | | 81 | gpu - gpus - nvidia - code - performance | 38 | 81_gpu_gpus_nvidia_code | | 82 | face - face recognition - facial - recognition - faces | 38 | 82_face_face recognition_facial_recognition | | 83 | stock - market - price - financial - stocks | 37 | 83_stock_market_price_financial | | 84 | reaction - flux - metabolic - growth - biochemical | 34 | 84_reaction_flux_metabolic_growth | | 85 | fleet - routing - vehicles - ride - traffic | 34 | 85_fleet_routing_vehicles_ride | | 86 | cooperation - evolutionary - game - social - payoff | 33 | 86_cooperation_evolutionary_game_social | | 87 | students - courses - student - course - education | 33 | 87_students_courses_student_course | | 88 | action - temporal - video - recognition - videos | 33 | 88_action_temporal_video_recognition | | 89 | irreducible - group - mathcal - representations - let | 32 | 89_irreducible_group_mathcal_representations | | 90 | phylogenetic - tree - trees - species - gene | 32 | 90_phylogenetic_tree_trees_species | | 91 | processes - drift - asymptotic - estimators - stationary | 31 | 91_processes_drift_asymptotic_estimators | | 92 | wave - waves - water - free surface - shallow water | 30 | 92_wave_waves_water_free surface | | 93 | distributed - gradient - byzantine - communication - sgd | 30 | 93_distributed_gradient_byzantine_communication | | 94 | voters - voting - election - voter - winner | 30 | 94_voters_voting_election_voter | | 95 | gaussian process - gaussian - gp - process - gaussian processes | 30 | 95_gaussian process_gaussian_gp_process | | 96 | mathfrak - gorenstein - ring - rings - modules | 29 | 96_mathfrak_gorenstein_ring_rings | | 97 | motivic - gw - cohomology - dm - category | 29 | 97_motivic_gw_cohomology_dm | | 98 | recurrent - lstm - rnn - recurrent neural - memory | 28 | 98_recurrent_lstm_rnn_recurrent neural | | 99 | semigroup - semigroups - xy - ordered - pt | 27 | 99_semigroup_semigroups_xy_ordered | | 100 | robot - robots - human - human robot - children | 25 | 100_robot_robots_human_human robot | | 101 | categories - category - homotopy - functor - grothendieck | 25 | 101_categories_category_homotopy_functor | | 102 | queue - queues - server - scheduling - customer | 24 | 102_queue_queues_server_scheduling | | 103 | topic - topics - topic modeling - lda - documents | 24 | 103_topic_topics_topic modeling_lda | | 104 | synchronization - oscillators - chimera - coupling - coupled | 24 | 104_synchronization_oscillators_chimera_coupling | | 105 | stochastic - existence - equation - solutions - uniqueness | 24 | 105_stochastic_existence_equation_solutions | | 106 | fractional - derivative - derivatives - integral - psi | 23 | 106_fractional_derivative_derivatives_integral | | 107 | lasso - regression - estimator - estimators - bootstrap | 23 | 107_lasso_regression_estimator_estimators | | 108 | soil - moisture - machine - resolution - seismic | 22 | 108_soil_moisture_machine_resolution | | 109 | bayesian optimization - optimization - acquisition - bayesian - bo | 21 | 109_bayesian optimization_optimization_acquisition_bayesian | | 110 | urban - city - mobility - cities - social | 21 | 110_urban_city_mobility_cities | </details> ## Training Procedure The model was trained as follows: ```python from bertopic import BERTopic from sklearn.feature_extraction.text import CountVectorizer from bertopic.representation import KeyBERTInspired from sentence_transformers import SentenceTransformer from umap import UMAP from hdbscan import HDBSCAN # Prepre sub-models embedding_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2') umap_model = UMAP(n_components=5, n_neighbors=50, random_state=42, metric="cosine", verbose=True) hdbscan_model = HDBSCAN(min_samples=20, gen_min_span_tree=True, prediction_data=False, min_cluster_size=20) vectorizer_model = CountVectorizer(stop_words="english", ngram_range=(1, 3), min_df=5) # Representation models representation_models = {"KeyBERTInspired": KeyBERTInspired()} # Fit BERTopic topic_model = BERTopic( umap_model=umap_model, hdbscan_model=hdbscan_model, vectorizer_model=vectorizer_model, representation_model=representation_models, min_topic_size= 10, n_gram_range= (1, 1), nr_topics=None, seed_topic_list=None, top_n_words=10, calculate_probabilities=False, language=None, verbose = True ).fit(docs) ``` ## Training hyperparameters * calculate_probabilities: False * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: True ## Framework versions * Numpy: 1.22.4 * HDBSCAN: 0.8.33 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.29.2 * Numba: 0.56.4 * Plotly: 5.13.1 * Python: 3.10.11
vj1148/lora-peft-holding-classification-cot
vj1148
2023-08-13T20:52:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:52:46Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_5_e0_s55555_v4_l4_v100
KingKazma
2023-08-13T20:45:28Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:03:26Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e1_s55555_v4_l5_v50
KingKazma
2023-08-13T20:45:13Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:12:11Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0056
bigmorning
2023-08-13T20:44:40Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T20:44:32Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0056 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0056 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0009 - Train Accuracy: 0.0795 - Train Wermet: 7.7601 - Validation Loss: 0.5639 - Validation Accuracy: 0.0769 - Validation Wermet: 6.9567 - Epoch: 55 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | | 0.0012 | 0.0795 | 8.3370 | 0.5683 | 0.0768 | 7.1040 | 37 | | 0.0005 | 0.0795 | 7.9931 | 0.5658 | 0.0769 | 6.8043 | 38 | | 0.0002 | 0.0795 | 7.9500 | 0.5660 | 0.0769 | 7.0891 | 39 | | 0.0001 | 0.0795 | 8.1912 | 0.5632 | 0.0770 | 7.1929 | 40 | | 0.0001 | 0.0795 | 8.2484 | 0.5678 | 0.0769 | 7.6993 | 41 | | 0.0001 | 0.0795 | 8.2925 | 0.5648 | 0.0770 | 7.1917 | 42 | | 0.0001 | 0.0795 | 7.9155 | 0.5752 | 0.0769 | 6.4900 | 43 | | 0.0095 | 0.0793 | 8.3244 | 0.5662 | 0.0767 | 6.9524 | 44 | | 0.0019 | 0.0795 | 7.8491 | 0.5533 | 0.0769 | 6.9541 | 45 | | 0.0006 | 0.0795 | 8.0596 | 0.5573 | 0.0768 | 6.9489 | 46 | | 0.0008 | 0.0795 | 8.0277 | 0.5581 | 0.0769 | 6.9081 | 47 | | 0.0005 | 0.0795 | 7.6084 | 0.5604 | 0.0769 | 6.7158 | 48 | | 0.0006 | 0.0795 | 8.0561 | 0.5729 | 0.0767 | 7.4189 | 49 | | 0.0014 | 0.0795 | 8.2875 | 0.5658 | 0.0768 | 7.5768 | 50 | | 0.0011 | 0.0795 | 8.4376 | 0.5665 | 0.0768 | 7.2469 | 51 | | 0.0018 | 0.0795 | 8.3093 | 0.5771 | 0.0768 | 7.2637 | 52 | | 0.0021 | 0.0795 | 7.8370 | 0.5680 | 0.0768 | 7.0030 | 53 | | 0.0014 | 0.0795 | 7.7408 | 0.5661 | 0.0769 | 7.1664 | 54 | | 0.0009 | 0.0795 | 7.7601 | 0.5639 | 0.0769 | 6.9567 | 55 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e9_s108_v4_l4_v100
KingKazma
2023-08-13T20:38:26Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:38:21Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e0_s55555_v4_l5_v50
KingKazma
2023-08-13T20:37:26Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:04:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0054
bigmorning
2023-08-13T20:35:53Z
58
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T20:35:47Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0054 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0054 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0021 - Train Accuracy: 0.0795 - Train Wermet: 7.8370 - Validation Loss: 0.5680 - Validation Accuracy: 0.0768 - Validation Wermet: 7.0030 - Epoch: 53 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | | 0.0012 | 0.0795 | 8.3370 | 0.5683 | 0.0768 | 7.1040 | 37 | | 0.0005 | 0.0795 | 7.9931 | 0.5658 | 0.0769 | 6.8043 | 38 | | 0.0002 | 0.0795 | 7.9500 | 0.5660 | 0.0769 | 7.0891 | 39 | | 0.0001 | 0.0795 | 8.1912 | 0.5632 | 0.0770 | 7.1929 | 40 | | 0.0001 | 0.0795 | 8.2484 | 0.5678 | 0.0769 | 7.6993 | 41 | | 0.0001 | 0.0795 | 8.2925 | 0.5648 | 0.0770 | 7.1917 | 42 | | 0.0001 | 0.0795 | 7.9155 | 0.5752 | 0.0769 | 6.4900 | 43 | | 0.0095 | 0.0793 | 8.3244 | 0.5662 | 0.0767 | 6.9524 | 44 | | 0.0019 | 0.0795 | 7.8491 | 0.5533 | 0.0769 | 6.9541 | 45 | | 0.0006 | 0.0795 | 8.0596 | 0.5573 | 0.0768 | 6.9489 | 46 | | 0.0008 | 0.0795 | 8.0277 | 0.5581 | 0.0769 | 6.9081 | 47 | | 0.0005 | 0.0795 | 7.6084 | 0.5604 | 0.0769 | 6.7158 | 48 | | 0.0006 | 0.0795 | 8.0561 | 0.5729 | 0.0767 | 7.4189 | 49 | | 0.0014 | 0.0795 | 8.2875 | 0.5658 | 0.0768 | 7.5768 | 50 | | 0.0011 | 0.0795 | 8.4376 | 0.5665 | 0.0768 | 7.2469 | 51 | | 0.0018 | 0.0795 | 8.3093 | 0.5771 | 0.0768 | 7.2637 | 52 | | 0.0021 | 0.0795 | 7.8370 | 0.5680 | 0.0768 | 7.0030 | 53 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e4_s55555_v4_l4_v100
KingKazma
2023-08-13T20:33:12Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:33:11Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e8_s108_v4_l4_v100
KingKazma
2023-08-13T20:31:39Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:31:34Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0053
bigmorning
2023-08-13T20:31:30Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T20:31:22Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0053 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0053 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0018 - Train Accuracy: 0.0795 - Train Wermet: 8.3093 - Validation Loss: 0.5771 - Validation Accuracy: 0.0768 - Validation Wermet: 7.2637 - Epoch: 52 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | | 0.0012 | 0.0795 | 8.3370 | 0.5683 | 0.0768 | 7.1040 | 37 | | 0.0005 | 0.0795 | 7.9931 | 0.5658 | 0.0769 | 6.8043 | 38 | | 0.0002 | 0.0795 | 7.9500 | 0.5660 | 0.0769 | 7.0891 | 39 | | 0.0001 | 0.0795 | 8.1912 | 0.5632 | 0.0770 | 7.1929 | 40 | | 0.0001 | 0.0795 | 8.2484 | 0.5678 | 0.0769 | 7.6993 | 41 | | 0.0001 | 0.0795 | 8.2925 | 0.5648 | 0.0770 | 7.1917 | 42 | | 0.0001 | 0.0795 | 7.9155 | 0.5752 | 0.0769 | 6.4900 | 43 | | 0.0095 | 0.0793 | 8.3244 | 0.5662 | 0.0767 | 6.9524 | 44 | | 0.0019 | 0.0795 | 7.8491 | 0.5533 | 0.0769 | 6.9541 | 45 | | 0.0006 | 0.0795 | 8.0596 | 0.5573 | 0.0768 | 6.9489 | 46 | | 0.0008 | 0.0795 | 8.0277 | 0.5581 | 0.0769 | 6.9081 | 47 | | 0.0005 | 0.0795 | 7.6084 | 0.5604 | 0.0769 | 6.7158 | 48 | | 0.0006 | 0.0795 | 8.0561 | 0.5729 | 0.0767 | 7.4189 | 49 | | 0.0014 | 0.0795 | 8.2875 | 0.5658 | 0.0768 | 7.5768 | 50 | | 0.0011 | 0.0795 | 8.4376 | 0.5665 | 0.0768 | 7.2469 | 51 | | 0.0018 | 0.0795 | 8.3093 | 0.5771 | 0.0768 | 7.2637 | 52 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e-1_s55555_v4_l5_v50
KingKazma
2023-08-13T20:29:44Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:57:34Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e3_s55555_v4_l4_v100
KingKazma
2023-08-13T20:26:17Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:26:16Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e2_s55555_v4_l4_v100
KingKazma
2023-08-13T20:19:21Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:19:20Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0050
bigmorning
2023-08-13T20:18:38Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T20:18:18Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0050 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0050 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0006 - Train Accuracy: 0.0795 - Train Wermet: 8.0561 - Validation Loss: 0.5729 - Validation Accuracy: 0.0767 - Validation Wermet: 7.4189 - Epoch: 49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | | 0.0012 | 0.0795 | 8.3370 | 0.5683 | 0.0768 | 7.1040 | 37 | | 0.0005 | 0.0795 | 7.9931 | 0.5658 | 0.0769 | 6.8043 | 38 | | 0.0002 | 0.0795 | 7.9500 | 0.5660 | 0.0769 | 7.0891 | 39 | | 0.0001 | 0.0795 | 8.1912 | 0.5632 | 0.0770 | 7.1929 | 40 | | 0.0001 | 0.0795 | 8.2484 | 0.5678 | 0.0769 | 7.6993 | 41 | | 0.0001 | 0.0795 | 8.2925 | 0.5648 | 0.0770 | 7.1917 | 42 | | 0.0001 | 0.0795 | 7.9155 | 0.5752 | 0.0769 | 6.4900 | 43 | | 0.0095 | 0.0793 | 8.3244 | 0.5662 | 0.0767 | 6.9524 | 44 | | 0.0019 | 0.0795 | 7.8491 | 0.5533 | 0.0769 | 6.9541 | 45 | | 0.0006 | 0.0795 | 8.0596 | 0.5573 | 0.0768 | 6.9489 | 46 | | 0.0008 | 0.0795 | 8.0277 | 0.5581 | 0.0769 | 6.9081 | 47 | | 0.0005 | 0.0795 | 7.6084 | 0.5604 | 0.0769 | 6.7158 | 48 | | 0.0006 | 0.0795 | 8.0561 | 0.5729 | 0.0767 | 7.4189 | 49 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e1_s55555_v4_l4_v100
KingKazma
2023-08-13T20:12:26Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:12:24Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e5_s108_v4_l4_v100
KingKazma
2023-08-13T20:11:23Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:15:27Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
nikitamoshkov/ppo-LunarLander-v2
nikitamoshkov
2023-08-13T20:08:49Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T20:08:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 257.89 +/- 20.73 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e0_s55555_v4_l4_v100
KingKazma
2023-08-13T20:05:30Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:05:29Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
redstonehero/epicrealism_pureevolutionv5
redstonehero
2023-08-13T20:05:07Z
54
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-13T18:39:14Z
--- license: creativeml-openrail-m library_name: diffusers ---
redstonehero/lofi_v3
redstonehero
2023-08-13T20:05:07Z
32
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-13T18:40:18Z
--- license: creativeml-openrail-m library_name: diffusers ---
redstonehero/lifelikediffusionv30
redstonehero
2023-08-13T20:05:04Z
29
2
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-13T18:45:52Z
--- license: creativeml-openrail-m library_name: diffusers ---
redstonehero/m4rv3lsdungeonsv40
redstonehero
2023-08-13T20:05:01Z
5
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-13T18:43:05Z
--- license: creativeml-openrail-m library_name: diffusers ---
redstonehero/reliberate_v20
redstonehero
2023-08-13T20:04:44Z
3
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-13T18:38:19Z
--- license: creativeml-openrail-m library_name: diffusers ---
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_8_e8_s108_v4_l4_v100
KingKazma
2023-08-13T20:04:21Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T20:04:19Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0046
bigmorning
2023-08-13T20:00:51Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T20:00:43Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0046 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0046 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0019 - Train Accuracy: 0.0795 - Train Wermet: 7.8491 - Validation Loss: 0.5533 - Validation Accuracy: 0.0769 - Validation Wermet: 6.9541 - Epoch: 45 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | | 0.0012 | 0.0795 | 8.3370 | 0.5683 | 0.0768 | 7.1040 | 37 | | 0.0005 | 0.0795 | 7.9931 | 0.5658 | 0.0769 | 6.8043 | 38 | | 0.0002 | 0.0795 | 7.9500 | 0.5660 | 0.0769 | 7.0891 | 39 | | 0.0001 | 0.0795 | 8.1912 | 0.5632 | 0.0770 | 7.1929 | 40 | | 0.0001 | 0.0795 | 8.2484 | 0.5678 | 0.0769 | 7.6993 | 41 | | 0.0001 | 0.0795 | 8.2925 | 0.5648 | 0.0770 | 7.1917 | 42 | | 0.0001 | 0.0795 | 7.9155 | 0.5752 | 0.0769 | 6.4900 | 43 | | 0.0095 | 0.0793 | 8.3244 | 0.5662 | 0.0767 | 6.9524 | 44 | | 0.0019 | 0.0795 | 7.8491 | 0.5533 | 0.0769 | 6.9541 | 45 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e-1_s55555_v4_l4_v100
KingKazma
2023-08-13T19:58:35Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:58:34Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
sherif1311/flan-t5-base-intent
sherif1311
2023-08-13T19:57:32Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-13T17:45:07Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer metrics: - f1 model-index: - name: flan-t5-base-intent results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-intent This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - F1: 100.0 - Gen Len: 2.3333 ## Model description Use double quotation for any tweet. 0: Anti-tobacco 1: Neutral 2: Pro-tobacco ## Intended uses & limitations The fine tuned model by STOP is intended for Anti-tobacco/ Pro-tobacco monitoring for social media. ## Training and evaluation data The model was developed and fine tuned in STOP, University of Bath, UK Data used is sherif1311/intend which was collected, augmented and trained by STOP. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 1.12.1+cu116 - Datasets 2.14.4 - Tokenizers 0.12.1
bigmorning/whisper_charsplit_new_round2__0045
bigmorning
2023-08-13T19:56:29Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T19:56:22Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0045 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0045 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0095 - Train Accuracy: 0.0793 - Train Wermet: 8.3244 - Validation Loss: 0.5662 - Validation Accuracy: 0.0767 - Validation Wermet: 6.9524 - Epoch: 44 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | | 0.0012 | 0.0795 | 8.3370 | 0.5683 | 0.0768 | 7.1040 | 37 | | 0.0005 | 0.0795 | 7.9931 | 0.5658 | 0.0769 | 6.8043 | 38 | | 0.0002 | 0.0795 | 7.9500 | 0.5660 | 0.0769 | 7.0891 | 39 | | 0.0001 | 0.0795 | 8.1912 | 0.5632 | 0.0770 | 7.1929 | 40 | | 0.0001 | 0.0795 | 8.2484 | 0.5678 | 0.0769 | 7.6993 | 41 | | 0.0001 | 0.0795 | 8.2925 | 0.5648 | 0.0770 | 7.1917 | 42 | | 0.0001 | 0.0795 | 7.9155 | 0.5752 | 0.0769 | 6.4900 | 43 | | 0.0095 | 0.0793 | 8.3244 | 0.5662 | 0.0767 | 6.9524 | 44 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
s3nh/flozi00-Llama-2-13B-german-assistant-v3-GGML
s3nh
2023-08-13T19:51:57Z
0
0
transformers
[ "transformers", "text-generation", "zh", "en", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-08-13T19:51:56Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh - en --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/Photolens/OpenOrcaxOpenChat-2-13b-langchain-chat). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e2_s108_v4_l4_v100
KingKazma
2023-08-13T19:51:14Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:54:36Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e9_s108_v4_l5_v50
KingKazma
2023-08-13T19:47:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:47:45Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e1_s108_v4_l4_v100
KingKazma
2023-08-13T19:44:32Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:47:40Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0042
bigmorning
2023-08-13T19:43:07Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T19:43:01Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0042 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0042 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0001 - Train Accuracy: 0.0795 - Train Wermet: 8.2484 - Validation Loss: 0.5678 - Validation Accuracy: 0.0769 - Validation Wermet: 7.6993 - Epoch: 41 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | | 0.0012 | 0.0795 | 8.3370 | 0.5683 | 0.0768 | 7.1040 | 37 | | 0.0005 | 0.0795 | 7.9931 | 0.5658 | 0.0769 | 6.8043 | 38 | | 0.0002 | 0.0795 | 7.9500 | 0.5660 | 0.0769 | 7.0891 | 39 | | 0.0001 | 0.0795 | 8.1912 | 0.5632 | 0.0770 | 7.1929 | 40 | | 0.0001 | 0.0795 | 8.2484 | 0.5678 | 0.0769 | 7.6993 | 41 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e8_s108_v4_l4_v100
KingKazma
2023-08-13T19:40:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:40:54Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0041
bigmorning
2023-08-13T19:38:44Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T19:38:36Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0041 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0041 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0001 - Train Accuracy: 0.0795 - Train Wermet: 8.1912 - Validation Loss: 0.5632 - Validation Accuracy: 0.0770 - Validation Wermet: 7.1929 - Epoch: 40 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | | 0.0018 | 0.0795 | 8.4062 | 0.5713 | 0.0768 | 7.2127 | 36 | | 0.0012 | 0.0795 | 8.3370 | 0.5683 | 0.0768 | 7.1040 | 37 | | 0.0005 | 0.0795 | 7.9931 | 0.5658 | 0.0769 | 6.8043 | 38 | | 0.0002 | 0.0795 | 7.9500 | 0.5660 | 0.0769 | 7.0891 | 39 | | 0.0001 | 0.0795 | 8.1912 | 0.5632 | 0.0770 | 7.1929 | 40 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e0_s108_v4_l4_v100
KingKazma
2023-08-13T19:37:49Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:40:43Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
shreyasdatar/distilbert-base-uncased-finetuned-imdb
shreyasdatar
2023-08-13T19:35:06Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:tweet_eval", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-19T14:09:37Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - tweet_eval model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 3.1620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6538 | 1.0 | 149 | 3.3045 | | 3.3379 | 2.0 | 298 | 3.1949 | | 3.2875 | 3.0 | 447 | 3.1166 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e7_s108_v4_l5_v50
KingKazma
2023-08-13T19:33:08Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:33:06Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e5_s108_v4_l4_v100
KingKazma
2023-08-13T19:20:07Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:20:06Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0036
bigmorning
2023-08-13T19:16:56Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T19:16:50Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0036 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0036 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0036 - Train Accuracy: 0.0795 - Train Wermet: 8.9171 - Validation Loss: 0.5687 - Validation Accuracy: 0.0767 - Validation Wermet: 7.6962 - Epoch: 35 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | | 0.0036 | 0.0795 | 8.9171 | 0.5687 | 0.0767 | 7.6962 | 35 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round2__0035
bigmorning
2023-08-13T19:12:33Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T19:12:25Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0035 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0035 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0010 - Train Accuracy: 0.0795 - Train Wermet: 8.1006 - Validation Loss: 0.5918 - Validation Accuracy: 0.0766 - Validation Wermet: 7.4447 - Epoch: 34 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | | 0.0005 | 0.0795 | 8.2728 | 0.5669 | 0.0768 | 7.1451 | 33 | | 0.0010 | 0.0795 | 8.1006 | 0.5918 | 0.0766 | 7.4447 | 34 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_8_e2_s108_v4_l4_v100
KingKazma
2023-08-13T19:11:24Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:11:23Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e4_s108_v4_l5_v50
KingKazma
2023-08-13T19:11:09Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T19:11:07Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0033
bigmorning
2023-08-13T19:03:48Z
55
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T19:03:41Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0033 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0033 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0009 - Train Accuracy: 0.0795 - Train Wermet: 8.4768 - Validation Loss: 0.5611 - Validation Accuracy: 0.0769 - Validation Wermet: 7.6392 - Epoch: 32 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | | 0.0009 | 0.0795 | 8.4768 | 0.5611 | 0.0769 | 7.6392 | 32 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prompt_tuning_500_10_3000_8_e1_s108_v4_l4_v100
KingKazma
2023-08-13T19:02:35Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T15:55:00Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
aongwachi/amity-09092023
aongwachi
2023-08-13T19:00:52Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:58:15Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round2__0032
bigmorning
2023-08-13T18:59:27Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T18:59:19Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0032 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0032 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0019 - Train Accuracy: 0.0795 - Train Wermet: 8.6037 - Validation Loss: 0.5715 - Validation Accuracy: 0.0767 - Validation Wermet: 7.6157 - Epoch: 31 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | | 0.0019 | 0.0795 | 8.6037 | 0.5715 | 0.0767 | 7.6157 | 31 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e2_s108_v4_l4_v100
KingKazma
2023-08-13T18:59:21Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:20:40Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
sherif1311/flan-t5-base-classification_int1
sherif1311
2023-08-13T18:55:37Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-13T18:50:58Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer metrics: - f1 model-index: - name: flan-t5-base-classification_int1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-classification_int1 This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0036 - F1: 99.7778 - Gen Len: 2.3333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 1.12.1+cu116 - Datasets 2.14.4 - Tokenizers 0.12.1
bigmorning/whisper_charsplit_new_round2__0031
bigmorning
2023-08-13T18:55:01Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-13T18:54:54Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round2__0031 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round2__0031 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0022 - Train Accuracy: 0.0795 - Train Wermet: 8.2353 - Validation Loss: 0.5789 - Validation Accuracy: 0.0767 - Validation Wermet: 7.4442 - Epoch: 30 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0010 | 0.0795 | 8.7507 | 0.5575 | 0.0767 | 7.6778 | 0 | | 0.0013 | 0.0795 | 8.9468 | 0.5652 | 0.0766 | 8.3360 | 1 | | 0.0025 | 0.0795 | 8.7338 | 0.5673 | 0.0765 | 8.3770 | 2 | | 0.0019 | 0.0795 | 8.9450 | 0.5623 | 0.0766 | 7.7117 | 3 | | 0.0011 | 0.0795 | 8.9053 | 0.5609 | 0.0767 | 7.5155 | 4 | | 0.0012 | 0.0795 | 8.8862 | 0.5667 | 0.0767 | 8.2913 | 5 | | 0.0009 | 0.0795 | 8.7510 | 0.5642 | 0.0766 | 7.9083 | 6 | | 0.0037 | 0.0795 | 9.3428 | 0.5717 | 0.0764 | 8.2631 | 7 | | 0.0031 | 0.0795 | 9.2135 | 0.5636 | 0.0766 | 8.2384 | 8 | | 0.0011 | 0.0795 | 8.9730 | 0.5605 | 0.0767 | 8.3958 | 9 | | 0.0005 | 0.0795 | 9.3749 | 0.5552 | 0.0768 | 8.0800 | 10 | | 0.0003 | 0.0795 | 9.3340 | 0.5584 | 0.0768 | 8.1322 | 11 | | 0.0005 | 0.0795 | 9.2292 | 0.5687 | 0.0767 | 8.5576 | 12 | | 0.0037 | 0.0795 | 9.2838 | 0.5751 | 0.0765 | 7.4189 | 13 | | 0.0038 | 0.0795 | 8.7270 | 0.5605 | 0.0767 | 7.7098 | 14 | | 0.0012 | 0.0795 | 8.8259 | 0.5563 | 0.0768 | 8.2647 | 15 | | 0.0005 | 0.0795 | 9.0553 | 0.5620 | 0.0768 | 8.5020 | 16 | | 0.0004 | 0.0795 | 9.1734 | 0.5607 | 0.0768 | 8.0252 | 17 | | 0.0003 | 0.0795 | 9.0084 | 0.5571 | 0.0769 | 8.1563 | 18 | | 0.0014 | 0.0795 | 8.7153 | 0.5804 | 0.0765 | 7.8654 | 19 | | 0.0058 | 0.0794 | 8.8460 | 0.5706 | 0.0766 | 7.4342 | 20 | | 0.0020 | 0.0795 | 8.6599 | 0.5612 | 0.0767 | 7.7369 | 21 | | 0.0007 | 0.0795 | 8.6456 | 0.5543 | 0.0768 | 7.4625 | 22 | | 0.0008 | 0.0795 | 8.3246 | 0.5620 | 0.0768 | 7.4475 | 23 | | 0.0012 | 0.0795 | 7.9451 | 0.5615 | 0.0768 | 7.0907 | 24 | | 0.0025 | 0.0795 | 8.1065 | 0.5619 | 0.0768 | 7.7020 | 25 | | 0.0011 | 0.0795 | 8.4237 | 0.5710 | 0.0768 | 7.4035 | 26 | | 0.0009 | 0.0795 | 8.3074 | 0.5641 | 0.0768 | 7.1747 | 27 | | 0.0007 | 0.0795 | 8.5183 | 0.5688 | 0.0768 | 7.4310 | 28 | | 0.0014 | 0.0795 | 8.6604 | 0.5750 | 0.0767 | 8.0751 | 29 | | 0.0022 | 0.0795 | 8.2353 | 0.5789 | 0.0767 | 7.4442 | 30 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_prefix_tuning_500_10_3000_8_e1_s108_v4_l4_v100
KingKazma
2023-08-13T18:52:26Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T18:13:23Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
mark-oppenheim/Reinforce-Pixelcopter-PLE-v0
mark-oppenheim
2023-08-13T18:51:41Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-13T18:47:26Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 61.20 +/- 42.26 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e1_s108_v4_l5_v50
KingKazma
2023-08-13T18:49:12Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T17:50:45Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0