modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 18:29:29
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 18:25:24
card
stringlengths
11
1.01M
DOOGLAK/Tagged_Uni_500v4_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T20:12:29Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_uni500v4_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T20:07:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_uni500v4_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_Uni_500v4_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_uni500v4_wikigold_split type: tagged_uni500v4_wikigold_split args: default metrics: - name: Precision type: precision value: 0.6813225466056982 - name: Recall type: recall value: 0.6430942895086321 - name: F1 type: f1 value: 0.6616567036720751 - name: Accuracy type: accuracy value: 0.9231136153593894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_Uni_500v4_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni500v4_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.2629 - Precision: 0.6813 - Recall: 0.6431 - F1: 0.6617 - Accuracy: 0.9231 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 182 | 0.2853 | 0.5326 | 0.4525 | 0.4893 | 0.8999 | | No log | 2.0 | 364 | 0.2683 | 0.6492 | 0.5930 | 0.6198 | 0.9143 | | 0.1134 | 3.0 | 546 | 0.2629 | 0.6813 | 0.6431 | 0.6617 | 0.9231 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_Uni_500v3_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T20:07:09Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_uni500v3_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T20:02:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_uni500v3_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_Uni_500v3_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_uni500v3_wikigold_split type: tagged_uni500v3_wikigold_split args: default metrics: - name: Precision type: precision value: 0.7143812709030101 - name: Recall type: recall value: 0.7115256495669554 - name: F1 type: f1 value: 0.7129506008010682 - name: Accuracy type: accuracy value: 0.9340035371870055 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_Uni_500v3_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni500v3_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.2350 - Precision: 0.7144 - Recall: 0.7115 - F1: 0.7130 - Accuracy: 0.9340 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 172 | 0.2361 | 0.6056 | 0.5596 | 0.5817 | 0.9194 | | No log | 2.0 | 344 | 0.2236 | 0.6872 | 0.6922 | 0.6897 | 0.9315 | | 0.1011 | 3.0 | 516 | 0.2350 | 0.7144 | 0.7115 | 0.7130 | 0.9340 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
0x-YuAN/CL_1
0x-YuAN
2022-08-11T19:56:16Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "zh", "dataset:yuan1729/autotrain-data-YuAN-lawthone-CL_facts_backTrans", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-11T18:47:58Z
--- tags: - autotrain - text-classification language: - zh widget: - text: "I love AutoTrain 🤗" datasets: - yuan1729/autotrain-data-YuAN-lawthone-CL_facts_backTrans co2_eq_emissions: emissions: 151.97297148175758 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1241547318 - CO2 Emissions (in grams): 151.9730 ## Validation Metrics - Loss: 0.512 - Accuracy: 0.862 - Macro F1: 0.862 - Micro F1: 0.862 - Weighted F1: 0.862 - Macro Precision: 0.863 - Micro Precision: 0.862 - Weighted Precision: 0.863 - Macro Recall: 0.862 - Micro Recall: 0.862 - Weighted Recall: 0.862 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/yuan1729/autotrain-YuAN-lawthone-CL_facts_backTrans-1241547318 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("yuan1729/autotrain-YuAN-lawthone-CL_facts_backTrans-1241547318", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("yuan1729/autotrain-YuAN-lawthone-CL_facts_backTrans-1241547318", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
DOOGLAK/Tagged_Uni_250v8_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T19:39:39Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_uni250v8_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T19:35:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_uni250v8_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_Uni_250v8_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_uni250v8_wikigold_split type: tagged_uni250v8_wikigold_split args: default metrics: - name: Precision type: precision value: 0.5548306927617273 - name: Recall type: recall value: 0.4939159292035398 - name: F1 type: f1 value: 0.5226042428675933 - name: Accuracy type: accuracy value: 0.8976334059696954 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_Uni_250v8_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni250v8_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.3186 - Precision: 0.5548 - Recall: 0.4939 - F1: 0.5226 - Accuracy: 0.8976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 95 | 0.4132 | 0.3646 | 0.2008 | 0.2590 | 0.8504 | | No log | 2.0 | 190 | 0.2983 | 0.5077 | 0.4552 | 0.4800 | 0.8977 | | No log | 3.0 | 285 | 0.3186 | 0.5548 | 0.4939 | 0.5226 | 0.8976 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_Uni_250v6_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T19:29:17Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_uni250v6_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T19:23:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_uni250v6_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_Uni_250v6_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_uni250v6_wikigold_split type: tagged_uni250v6_wikigold_split args: default metrics: - name: Precision type: precision value: 0.5571526351813826 - name: Recall type: recall value: 0.45730337078651684 - name: F1 type: f1 value: 0.5023141005862387 - name: Accuracy type: accuracy value: 0.8952912645884908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_Uni_250v6_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni250v6_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.3080 - Precision: 0.5572 - Recall: 0.4573 - F1: 0.5023 - Accuracy: 0.8953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 72 | 0.3505 | 0.3004 | 0.1817 | 0.2265 | 0.8649 | | No log | 2.0 | 144 | 0.2989 | 0.5217 | 0.4219 | 0.4665 | 0.8931 | | No log | 3.0 | 216 | 0.3080 | 0.5572 | 0.4573 | 0.5023 | 0.8953 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_Uni_250v5_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T19:23:01Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_uni250v5_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T19:17:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_uni250v5_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_Uni_250v5_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_uni250v5_wikigold_split type: tagged_uni250v5_wikigold_split args: default metrics: - name: Precision type: precision value: 0.5808346213292117 - name: Recall type: recall value: 0.5341102899374645 - name: F1 type: f1 value: 0.5564934103361469 - name: Accuracy type: accuracy value: 0.9006217563331792 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_Uni_250v5_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni250v5_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.3324 - Precision: 0.5808 - Recall: 0.5341 - F1: 0.5565 - Accuracy: 0.9006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 99 | 0.4305 | 0.3110 | 0.2149 | 0.2542 | 0.8533 | | No log | 2.0 | 198 | 0.3340 | 0.5449 | 0.4935 | 0.5179 | 0.8956 | | No log | 3.0 | 297 | 0.3324 | 0.5808 | 0.5341 | 0.5565 | 0.9006 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
roscoyoon/distilbert-base-uncased-finetuned
roscoyoon
2022-08-11T19:07:34Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-11T08:40:52Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9183870967741935 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7734 - Accuracy: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2955 | 1.0 | 318 | 3.2914 | 0.7452 | | 2.6342 | 2.0 | 636 | 1.8815 | 0.8313 | | 1.5504 | 3.0 | 954 | 1.1547 | 0.8952 | | 1.0151 | 4.0 | 1272 | 0.8580 | 0.9113 | | 0.7936 | 5.0 | 1590 | 0.7734 | 0.9184 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
DOOGLAK/Tagged_Uni_250v1_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T19:00:36Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_uni250v1_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T18:55:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_uni250v1_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_Uni_250v1_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_uni250v1_wikigold_split type: tagged_uni250v1_wikigold_split args: default metrics: - name: Precision type: precision value: 0.5971956660293181 - name: Recall type: recall value: 0.5290796160361377 - name: F1 type: f1 value: 0.5610778443113772 - name: Accuracy type: accuracy value: 0.906793008840565 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_Uni_250v1_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni250v1_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.3057 - Precision: 0.5972 - Recall: 0.5291 - F1: 0.5611 - Accuracy: 0.9068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 87 | 0.3972 | 0.2749 | 0.2081 | 0.2369 | 0.8625 | | No log | 2.0 | 174 | 0.2895 | 0.5545 | 0.5054 | 0.5288 | 0.9059 | | No log | 3.0 | 261 | 0.3057 | 0.5972 | 0.5291 | 0.5611 | 0.9068 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
andres-hsn/Reinforce-AndresV0
andres-hsn
2022-08-11T18:47:14Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T18:42:39Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-AndresV0 results: - metrics: - type: mean_reward value: 64.50 +/- 5.39 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
athairus/xlm-roberta-base-finetuned-panx-de
athairus
2022-08-11T18:37:59Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T18:28:06Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8663101604278075 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1339 - F1: 0.8663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2581 | 1.0 | 525 | 0.1690 | 0.8303 | | 0.1305 | 2.0 | 1050 | 0.1352 | 0.8484 | | 0.0839 | 3.0 | 1575 | 0.1339 | 0.8663 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.10.3
Petros89/bert-finetuned-squad
Petros89
2022-08-11T18:30:06Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-03T14:56:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.0 - Pytorch 1.7.0 - Datasets 2.4.0 - Tokenizers 0.12.1
DOOGLAK/Tagged_Uni_100v5_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T18:26:29Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_uni100v5_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T18:22:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_uni100v5_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_Uni_100v5_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_uni100v5_wikigold_split type: tagged_uni100v5_wikigold_split args: default metrics: - name: Precision type: precision value: 0.27475592747559274 - name: Recall type: recall value: 0.20112302194997447 - name: F1 type: f1 value: 0.2322428529325081 - name: Accuracy type: accuracy value: 0.8489666875886277 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_Uni_100v5_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni100v5_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.4479 - Precision: 0.2748 - Recall: 0.2011 - F1: 0.2322 - Accuracy: 0.8490 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 39 | 0.4908 | 0.2544 | 0.1445 | 0.1843 | 0.8292 | | No log | 2.0 | 78 | 0.4703 | 0.2611 | 0.1881 | 0.2187 | 0.8437 | | No log | 3.0 | 117 | 0.4479 | 0.2748 | 0.2011 | 0.2322 | 0.8490 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_Uni_100v4_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T18:21:22Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_uni100v4_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T18:16:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_uni100v4_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_Uni_100v4_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_uni100v4_wikigold_split type: tagged_uni100v4_wikigold_split args: default metrics: - name: Precision type: precision value: 0.25279187817258886 - name: Recall type: recall value: 0.19148936170212766 - name: F1 type: f1 value: 0.2179113185530922 - name: Accuracy type: accuracy value: 0.8640945027509362 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_Uni_100v4_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni100v4_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.3691 - Precision: 0.2528 - Recall: 0.1915 - F1: 0.2179 - Accuracy: 0.8641 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 34 | 0.5215 | 0.1087 | 0.0026 | 0.0050 | 0.7980 | | No log | 2.0 | 68 | 0.3908 | 0.2356 | 0.1515 | 0.1844 | 0.8527 | | No log | 3.0 | 102 | 0.3691 | 0.2528 | 0.1915 | 0.2179 | 0.8641 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_Uni_100v3_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T18:15:31Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_uni100v3_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T18:10:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_uni100v3_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_Uni_100v3_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_uni100v3_wikigold_split type: tagged_uni100v3_wikigold_split args: default metrics: - name: Precision type: precision value: 0.27637540453074433 - name: Recall type: recall value: 0.10801922590437642 - name: F1 type: f1 value: 0.15532921062204438 - name: Accuracy type: accuracy value: 0.8105687105062148 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_Uni_100v3_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni100v3_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.4884 - Precision: 0.2764 - Recall: 0.1080 - F1: 0.1553 - Accuracy: 0.8106 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 26 | 0.6238 | 0.2 | 0.0089 | 0.0170 | 0.7822 | | No log | 2.0 | 52 | 0.5210 | 0.2497 | 0.0587 | 0.0950 | 0.7971 | | No log | 3.0 | 78 | 0.4884 | 0.2764 | 0.1080 | 0.1553 | 0.8106 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_Uni_100v2_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T18:09:41Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_uni100v2_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T18:04:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_uni100v2_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_Uni_100v2_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_uni100v2_wikigold_split type: tagged_uni100v2_wikigold_split args: default metrics: - name: Precision type: precision value: 0.2783229259589652 - name: Recall type: recall value: 0.15885947046843177 - name: F1 type: f1 value: 0.20226904376012964 - name: Accuracy type: accuracy value: 0.8411943180251 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_Uni_100v2_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni100v2_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.4048 - Precision: 0.2783 - Recall: 0.1589 - F1: 0.2023 - Accuracy: 0.8412 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 39 | 0.4802 | 0.3667 | 0.0784 | 0.1292 | 0.8125 | | No log | 2.0 | 78 | 0.4028 | 0.2745 | 0.1540 | 0.1973 | 0.8412 | | No log | 3.0 | 117 | 0.4048 | 0.2783 | 0.1589 | 0.2023 | 0.8412 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_Uni_100v1_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T18:03:50Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_uni100v1_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T17:59:09Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_uni100v1_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_Uni_100v1_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_uni100v1_wikigold_split type: tagged_uni100v1_wikigold_split args: default metrics: - name: Precision type: precision value: 0.23641213737912636 - name: Recall type: recall value: 0.18425155925155925 - name: F1 type: f1 value: 0.20709799912370383 - name: Accuracy type: accuracy value: 0.8493674748280798 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_Uni_100v1_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni100v1_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.4031 - Precision: 0.2364 - Recall: 0.1843 - F1: 0.2071 - Accuracy: 0.8494 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 39 | 0.4906 | 0.1526 | 0.0580 | 0.0840 | 0.8187 | | No log | 2.0 | 78 | 0.4213 | 0.2321 | 0.1736 | 0.1986 | 0.8456 | | No log | 3.0 | 117 | 0.4031 | 0.2364 | 0.1843 | 0.2071 | 0.8494 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_Uni_100v0_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T17:58:39Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_uni100v0_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T17:53:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_uni100v0_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_Uni_100v0_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_uni100v0_wikigold_split type: tagged_uni100v0_wikigold_split args: default metrics: - name: Precision type: precision value: 0.1801752464403067 - name: Recall type: recall value: 0.08303886925795052 - name: F1 type: f1 value: 0.11368348306841741 - name: Accuracy type: accuracy value: 0.8143372512510183 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_Uni_100v0_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni100v0_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.4601 - Precision: 0.1802 - Recall: 0.0830 - F1: 0.1137 - Accuracy: 0.8143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 33 | 0.5687 | 0.0882 | 0.0015 | 0.0030 | 0.7791 | | No log | 2.0 | 66 | 0.5410 | 0.1319 | 0.0270 | 0.0448 | 0.7946 | | No log | 3.0 | 99 | 0.4601 | 0.1802 | 0.0830 | 0.1137 | 0.8143 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_Uni_50v9_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T17:52:48Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_uni50v9_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T17:47:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_uni50v9_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_Uni_50v9_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_uni50v9_wikigold_split type: tagged_uni50v9_wikigold_split args: default metrics: - name: Precision type: precision value: 0.5 - name: Recall type: recall value: 0.000243605359317905 - name: F1 type: f1 value: 0.00048697345994643296 - name: Accuracy type: accuracy value: 0.7843220814175171 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_Uni_50v9_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni50v9_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.6233 - Precision: 0.5 - Recall: 0.0002 - F1: 0.0005 - Accuracy: 0.7843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 16 | 0.7531 | 0.0 | 0.0 | 0.0 | 0.7788 | | No log | 2.0 | 32 | 0.6599 | 0.5 | 0.0002 | 0.0005 | 0.7823 | | No log | 3.0 | 48 | 0.6233 | 0.5 | 0.0002 | 0.0005 | 0.7843 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_Uni_50v8_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T17:47:02Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_uni50v8_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T17:41:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_uni50v8_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_Uni_50v8_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_uni50v8_wikigold_split type: tagged_uni50v8_wikigold_split args: default metrics: - name: Precision type: precision value: 0.15460526315789475 - name: Recall type: recall value: 0.023016650342801176 - name: F1 type: f1 value: 0.04006820119352089 - name: Accuracy type: accuracy value: 0.7925892757192432 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_Uni_50v8_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni50v8_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.5527 - Precision: 0.1546 - Recall: 0.0230 - F1: 0.0401 - Accuracy: 0.7926 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 19 | 0.6981 | 0.0 | 0.0 | 0.0 | 0.7786 | | No log | 2.0 | 38 | 0.5851 | 0.1290 | 0.0049 | 0.0094 | 0.7832 | | No log | 3.0 | 57 | 0.5527 | 0.1546 | 0.0230 | 0.0401 | 0.7926 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_Uni_50v7_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T17:41:22Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_uni50v7_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T17:37:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_uni50v7_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_Uni_50v7_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_uni50v7_wikigold_split type: tagged_uni50v7_wikigold_split args: default metrics: - name: Precision type: precision value: 0.0 - name: Recall type: recall value: 0.0 - name: F1 type: f1 value: 0.0 - name: Accuracy type: accuracy value: 0.7783445190156599 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_Uni_50v7_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni50v7_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.6772 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.7783 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 12 | 0.7850 | 0.0 | 0.0 | 0.0 | 0.7783 | | No log | 2.0 | 24 | 0.7010 | 0.0 | 0.0 | 0.0 | 0.7783 | | No log | 3.0 | 36 | 0.6772 | 0.0 | 0.0 | 0.0 | 0.7783 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_Uni_50v6_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T17:36:45Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_uni50v6_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T17:31:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_uni50v6_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_Uni_50v6_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_uni50v6_wikigold_split type: tagged_uni50v6_wikigold_split args: default metrics: - name: Precision type: precision value: 0.0 - name: Recall type: recall value: 0.0 - name: F1 type: f1 value: 0.0 - name: Accuracy type: accuracy value: 0.7775983130313839 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_Uni_50v6_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni50v6_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.6142 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.7776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 17 | 0.7369 | 0.0 | 0.0 | 0.0 | 0.7773 | | No log | 2.0 | 34 | 0.6359 | 0.0 | 0.0 | 0.0 | 0.7773 | | No log | 3.0 | 51 | 0.6142 | 0.0 | 0.0 | 0.0 | 0.7776 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_Uni_50v3_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T17:20:04Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_uni50v3_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T17:14:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_uni50v3_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_Uni_50v3_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_uni50v3_wikigold_split type: tagged_uni50v3_wikigold_split args: default metrics: - name: Precision type: precision value: 0.14766839378238342 - name: Recall type: recall value: 0.013980868285504048 - name: F1 type: f1 value: 0.025543356486668164 - name: Accuracy type: accuracy value: 0.7865287304621612 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_Uni_50v3_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni50v3_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.5987 - Precision: 0.1477 - Recall: 0.0140 - F1: 0.0255 - Accuracy: 0.7865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 14 | 0.7260 | 0.0 | 0.0 | 0.0 | 0.7789 | | No log | 2.0 | 28 | 0.6256 | 0.1436 | 0.0140 | 0.0255 | 0.7865 | | No log | 3.0 | 42 | 0.5987 | 0.1477 | 0.0140 | 0.0255 | 0.7865 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_Uni_50v2_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T17:14:13Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_uni50v2_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T17:08:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_uni50v2_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_Uni_50v2_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_uni50v2_wikigold_split type: tagged_uni50v2_wikigold_split args: default metrics: - name: Precision type: precision value: 0.08 - name: Recall type: recall value: 0.0004884004884004884 - name: F1 type: f1 value: 0.0009708737864077671 - name: Accuracy type: accuracy value: 0.7850352033723486 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_Uni_50v2_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_uni50v2_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.6159 - Precision: 0.08 - Recall: 0.0005 - F1: 0.0010 - Accuracy: 0.7850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 16 | 0.7399 | 0.0 | 0.0 | 0.0 | 0.7779 | | No log | 2.0 | 32 | 0.6545 | 0.0833 | 0.0002 | 0.0005 | 0.7817 | | No log | 3.0 | 48 | 0.6159 | 0.08 | 0.0005 | 0.0010 | 0.7850 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
Yao92/distilbert-base-uncased-finetuned-cola
Yao92
2022-08-11T17:12:08Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-11T17:01:52Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5303243504311796 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8278 - Matthews Correlation: 0.5303 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5225 | 1.0 | 535 | 0.5299 | 0.3973 | | 0.3485 | 2.0 | 1070 | 0.5279 | 0.4975 | | 0.2375 | 3.0 | 1605 | 0.5637 | 0.5275 | | 0.1832 | 4.0 | 2140 | 0.7995 | 0.5249 | | 0.1301 | 5.0 | 2675 | 0.8278 | 0.5303 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
waynedsouza/distilbert-base-uncased-gc-art2e
waynedsouza
2022-08-11T16:45:26Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-11T16:39:42Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-gc-art2e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-gc-art2e This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0863 - Accuracy: 0.982 - F1: 0.9731 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0875 | 1.0 | 32 | 0.0874 | 0.982 | 0.9731 | | 0.0711 | 2.0 | 64 | 0.0863 | 0.982 | 0.9731 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
DOOGLAK/Tagged_One_500v7_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T16:45:22Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one500v7_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T16:40:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one500v7_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_500v7_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one500v7_wikigold_split type: tagged_one500v7_wikigold_split args: default metrics: - name: Precision type: precision value: 0.6700655498907502 - name: Recall type: recall value: 0.6767193821257815 - name: F1 type: f1 value: 0.6733760292772187 - name: Accuracy type: accuracy value: 0.9237216043353603 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_500v7_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one500v7_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.2679 - Precision: 0.6701 - Recall: 0.6767 - F1: 0.6734 - Accuracy: 0.9237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 156 | 0.3336 | 0.5893 | 0.4855 | 0.5324 | 0.8955 | | No log | 2.0 | 312 | 0.2580 | 0.6617 | 0.6561 | 0.6589 | 0.9215 | | No log | 3.0 | 468 | 0.2679 | 0.6701 | 0.6767 | 0.6734 | 0.9237 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_One_500v6_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T16:39:36Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one500v6_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T16:33:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one500v6_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_500v6_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one500v6_wikigold_split type: tagged_one500v6_wikigold_split args: default metrics: - name: Precision type: precision value: 0.6866690621631333 - name: Recall type: recall value: 0.6719409282700421 - name: F1 type: f1 value: 0.679225164385996 - name: Accuracy type: accuracy value: 0.9239838169290094 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_500v6_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one500v6_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.2690 - Precision: 0.6867 - Recall: 0.6719 - F1: 0.6792 - Accuracy: 0.9240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 189 | 0.2819 | 0.6009 | 0.5352 | 0.5661 | 0.9105 | | No log | 2.0 | 378 | 0.2614 | 0.6743 | 0.6406 | 0.6571 | 0.9201 | | 0.11 | 3.0 | 567 | 0.2690 | 0.6867 | 0.6719 | 0.6792 | 0.9240 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_One_500v5_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T16:33:19Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one500v5_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T16:27:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one500v5_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_500v5_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one500v5_wikigold_split type: tagged_one500v5_wikigold_split args: default metrics: - name: Precision type: precision value: 0.6984998170508598 - name: Recall type: recall value: 0.6817857142857143 - name: F1 type: f1 value: 0.690041568769203 - name: Accuracy type: accuracy value: 0.9276886906197251 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_500v5_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one500v5_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.2523 - Precision: 0.6985 - Recall: 0.6818 - F1: 0.6900 - Accuracy: 0.9277 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 161 | 0.2446 | 0.5625 | 0.5493 | 0.5558 | 0.9167 | | No log | 2.0 | 322 | 0.2487 | 0.6894 | 0.6557 | 0.6722 | 0.9237 | | No log | 3.0 | 483 | 0.2523 | 0.6985 | 0.6818 | 0.6900 | 0.9277 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
QianMolloy/ppo-LunarLander-v2
QianMolloy
2022-08-11T16:23:15Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T16:22:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 250.97 +/- 23.38 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DOOGLAK/Tagged_One_500v3_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T16:21:20Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one500v3_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T16:16:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one500v3_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_500v3_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one500v3_wikigold_split type: tagged_one500v3_wikigold_split args: default metrics: - name: Precision type: precision value: 0.697499143542309 - name: Recall type: recall value: 0.6782145236508994 - name: F1 type: f1 value: 0.6877216686370546 - name: Accuracy type: accuracy value: 0.9245400105495051 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_500v3_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one500v3_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.2659 - Precision: 0.6975 - Recall: 0.6782 - F1: 0.6877 - Accuracy: 0.9245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 175 | 0.2990 | 0.5405 | 0.4600 | 0.4970 | 0.9007 | | No log | 2.0 | 350 | 0.2789 | 0.6837 | 0.6236 | 0.6523 | 0.9157 | | 0.1081 | 3.0 | 525 | 0.2659 | 0.6975 | 0.6782 | 0.6877 | 0.9245 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_One_500v1_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T16:09:15Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one500v1_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T16:03:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one500v1_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_500v1_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one500v1_wikigold_split type: tagged_one500v1_wikigold_split args: default metrics: - name: Precision type: precision value: 0.7131782945736435 - name: Recall type: recall value: 0.6693121693121693 - name: F1 type: f1 value: 0.690549300580007 - name: Accuracy type: accuracy value: 0.9232131948686622 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_500v1_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one500v1_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.2834 - Precision: 0.7132 - Recall: 0.6693 - F1: 0.6905 - Accuracy: 0.9232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 164 | 0.2830 | 0.4758 | 0.4064 | 0.4384 | 0.9032 | | No log | 2.0 | 328 | 0.2631 | 0.6901 | 0.6716 | 0.6807 | 0.9232 | | No log | 3.0 | 492 | 0.2834 | 0.7132 | 0.6693 | 0.6905 | 0.9232 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_One_500v0_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T16:03:05Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one500v0_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T15:57:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one500v0_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_500v0_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one500v0_wikigold_split type: tagged_one500v0_wikigold_split args: default metrics: - name: Precision type: precision value: 0.6663055254604551 - name: Recall type: recall value: 0.683839881393625 - name: F1 type: f1 value: 0.6749588439729285 - name: Accuracy type: accuracy value: 0.9260204081632653 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_500v0_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one500v0_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.2679 - Precision: 0.6663 - Recall: 0.6838 - F1: 0.6750 - Accuracy: 0.9260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 173 | 0.2827 | 0.5972 | 0.5556 | 0.5757 | 0.9079 | | No log | 2.0 | 346 | 0.2668 | 0.6442 | 0.6383 | 0.6412 | 0.9204 | | 0.1142 | 3.0 | 519 | 0.2679 | 0.6663 | 0.6838 | 0.6750 | 0.9260 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_One_250v9_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T15:57:04Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one250v9_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T15:51:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one250v9_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_250v9_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one250v9_wikigold_split type: tagged_one250v9_wikigold_split args: default metrics: - name: Precision type: precision value: 0.5794920037629351 - name: Recall type: recall value: 0.5334872979214781 - name: F1 type: f1 value: 0.5555388546520367 - name: Accuracy type: accuracy value: 0.9034831230122089 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_250v9_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one250v9_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.3012 - Precision: 0.5795 - Recall: 0.5335 - F1: 0.5555 - Accuracy: 0.9035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 90 | 0.3614 | 0.2860 | 0.1969 | 0.2332 | 0.8576 | | No log | 2.0 | 180 | 0.3317 | 0.5186 | 0.4596 | 0.4873 | 0.8924 | | No log | 3.0 | 270 | 0.3012 | 0.5795 | 0.5335 | 0.5555 | 0.9035 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_One_250v8_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T15:51:20Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one250v8_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T15:45:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one250v8_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_250v8_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one250v8_wikigold_split type: tagged_one250v8_wikigold_split args: default metrics: - name: Precision type: precision value: 0.5351851851851852 - name: Recall type: recall value: 0.4795353982300885 - name: F1 type: f1 value: 0.5058343057176197 - name: Accuracy type: accuracy value: 0.8947195053970506 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_250v8_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one250v8_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.3389 - Precision: 0.5352 - Recall: 0.4795 - F1: 0.5058 - Accuracy: 0.8947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 95 | 0.4305 | 0.3497 | 0.1814 | 0.2389 | 0.8488 | | No log | 2.0 | 190 | 0.3469 | 0.4995 | 0.4281 | 0.4611 | 0.8875 | | No log | 3.0 | 285 | 0.3389 | 0.5352 | 0.4795 | 0.5058 | 0.8947 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_One_250v7_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T15:45:15Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one250v7_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T15:40:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one250v7_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_250v7_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one250v7_wikigold_split type: tagged_one250v7_wikigold_split args: default metrics: - name: Precision type: precision value: 0.5509259259259259 - name: Recall type: recall value: 0.4675834970530452 - name: F1 type: f1 value: 0.5058448459086079 - name: Accuracy type: accuracy value: 0.8893517705222476 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_250v7_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one250v7_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.3809 - Precision: 0.5509 - Recall: 0.4676 - F1: 0.5058 - Accuracy: 0.8894 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 87 | 0.4450 | 0.1912 | 0.1047 | 0.1353 | 0.8278 | | No log | 2.0 | 174 | 0.3903 | 0.4992 | 0.4176 | 0.4548 | 0.8820 | | No log | 3.0 | 261 | 0.3809 | 0.5509 | 0.4676 | 0.5058 | 0.8894 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_One_250v5_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T15:33:15Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one250v5_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T15:27:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one250v5_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_250v5_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one250v5_wikigold_split type: tagged_one250v5_wikigold_split args: default metrics: - name: Precision type: precision value: 0.5500158780565259 - name: Recall type: recall value: 0.4923251847640705 - name: F1 type: f1 value: 0.5195740212989352 - name: Accuracy type: accuracy value: 0.8949951184420122 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_250v5_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one250v5_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.3623 - Precision: 0.5500 - Recall: 0.4923 - F1: 0.5196 - Accuracy: 0.8950 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 91 | 0.3950 | 0.2800 | 0.2138 | 0.2424 | 0.8558 | | No log | 2.0 | 182 | 0.3633 | 0.4938 | 0.4306 | 0.4601 | 0.8887 | | No log | 3.0 | 273 | 0.3623 | 0.5500 | 0.4923 | 0.5196 | 0.8950 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_One_250v2_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T15:16:03Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one250v2_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T15:10:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one250v2_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_250v2_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one250v2_wikigold_split type: tagged_one250v2_wikigold_split args: default metrics: - name: Precision type: precision value: 0.5859220092531394 - name: Recall type: recall value: 0.5074413279908414 - name: F1 type: f1 value: 0.5438650306748466 - name: Accuracy type: accuracy value: 0.8979617609173338 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_250v2_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one250v2_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.3573 - Precision: 0.5859 - Recall: 0.5074 - F1: 0.5439 - Accuracy: 0.8980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 93 | 0.3884 | 0.2899 | 0.2006 | 0.2371 | 0.8583 | | No log | 2.0 | 186 | 0.3502 | 0.5467 | 0.4705 | 0.5058 | 0.8937 | | No log | 3.0 | 279 | 0.3573 | 0.5859 | 0.5074 | 0.5439 | 0.8980 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_One_250v1_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T15:10:04Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one250v1_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T15:05:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one250v1_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_250v1_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one250v1_wikigold_split type: tagged_one250v1_wikigold_split args: default metrics: - name: Precision type: precision value: 0.5896180215475024 - name: Recall type: recall value: 0.5098814229249012 - name: F1 type: f1 value: 0.5468584405753218 - name: Accuracy type: accuracy value: 0.8999339498018494 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_250v1_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one250v1_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.3321 - Precision: 0.5896 - Recall: 0.5099 - F1: 0.5469 - Accuracy: 0.8999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 89 | 0.3518 | 0.3537 | 0.2945 | 0.3214 | 0.8761 | | No log | 2.0 | 178 | 0.3115 | 0.5583 | 0.4867 | 0.5201 | 0.8974 | | No log | 3.0 | 267 | 0.3321 | 0.5896 | 0.5099 | 0.5469 | 0.8999 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
huggingtweets/henryfarrell
huggingtweets
2022-08-11T15:08:57Z
104
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-11T15:08:06Z
--- language: en thumbnail: http://www.huggingtweets.com/henryfarrell/1660230533136/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1161630886963683328/SgNq1g_6_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Henry Farrell</div> <div style="text-align: center; font-size: 14px;">@henryfarrell</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Henry Farrell. | Data | Henry Farrell | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 1491 | | Short tweets | 120 | | Tweets kept | 1636 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3s3w7i53/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @henryfarrell's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/aifgbb0k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/aifgbb0k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/henryfarrell') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
DOOGLAK/Tagged_One_250v0_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T15:04:33Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one250v0_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T14:59:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one250v0_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_250v0_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one250v0_wikigold_split type: tagged_one250v0_wikigold_split args: default metrics: - name: Precision type: precision value: 0.5125421190565331 - name: Recall type: recall value: 0.3694009713977334 - name: F1 type: f1 value: 0.4293554963148816 - name: Accuracy type: accuracy value: 0.8786972744569918 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_250v0_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one250v0_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.4287 - Precision: 0.5125 - Recall: 0.3694 - F1: 0.4294 - Accuracy: 0.8787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 96 | 0.4352 | 0.3056 | 0.1692 | 0.2178 | 0.8448 | | No log | 2.0 | 192 | 0.3881 | 0.4394 | 0.3295 | 0.3766 | 0.8773 | | No log | 3.0 | 288 | 0.4287 | 0.5125 | 0.3694 | 0.4294 | 0.8787 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_One_100v9_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T14:58:20Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one100v9_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T14:53:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one100v9_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_100v9_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one100v9_wikigold_split type: tagged_one100v9_wikigold_split args: default metrics: - name: Precision type: precision value: 0.3040441176470588 - name: Recall type: recall value: 0.21319927816447537 - name: F1 type: f1 value: 0.2506440369752993 - name: Accuracy type: accuracy value: 0.8538912172644546 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_100v9_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one100v9_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.4255 - Precision: 0.3040 - Recall: 0.2132 - F1: 0.2506 - Accuracy: 0.8539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 40 | 0.5167 | 0.1936 | 0.0376 | 0.0630 | 0.8004 | | No log | 2.0 | 80 | 0.4406 | 0.2405 | 0.1441 | 0.1802 | 0.8385 | | No log | 3.0 | 120 | 0.4255 | 0.3040 | 0.2132 | 0.2506 | 0.8539 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
vish88/xlnet-base-mnli-orgs-finetuned1
vish88
2022-08-11T14:53:15Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlnet", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-05T00:45:17Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlnet-base-mnli-orgs-finetuned1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-mnli-orgs-finetuned1 This model is a fine-tuned version of [clevrly/xlnet-base-mnli-finetuned](https://huggingface.co/clevrly/xlnet-base-mnli-finetuned) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1542 - F1: 0.6957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2719 | 1.0 | 1462 | 0.2841 | 0.0 | | 0.3042 | 2.0 | 2924 | 0.2664 | 0.4324 | | 0.1366 | 3.0 | 4386 | 0.1408 | 0.6452 | | 0.1149 | 4.0 | 5848 | 0.1387 | 0.6866 | | 0.0986 | 5.0 | 7310 | 0.1542 | 0.6957 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
DOOGLAK/Tagged_One_100v8_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T14:52:30Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one100v8_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T14:47:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one100v8_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_100v8_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one100v8_wikigold_split type: tagged_one100v8_wikigold_split args: default metrics: - name: Precision type: precision value: 0.18848653667595172 - name: Recall type: recall value: 0.0498159509202454 - name: F1 type: f1 value: 0.07880434782608696 - name: Accuracy type: accuracy value: 0.8035317050796927 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_100v8_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one100v8_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.5649 - Precision: 0.1885 - Recall: 0.0498 - F1: 0.0788 - Accuracy: 0.8035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 37 | 0.7042 | 0.0 | 0.0 | 0.0 | 0.7750 | | No log | 2.0 | 74 | 0.5744 | 0.1628 | 0.0243 | 0.0423 | 0.7930 | | No log | 3.0 | 111 | 0.5649 | 0.1885 | 0.0498 | 0.0788 | 0.8035 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_One_100v7_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T14:46:38Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one100v7_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T14:41:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one100v7_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_100v7_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one100v7_wikigold_split type: tagged_one100v7_wikigold_split args: default metrics: - name: Precision type: precision value: 0.2402332361516035 - name: Recall type: recall value: 0.10690192008303062 - name: F1 type: f1 value: 0.14796193212425932 - name: Accuracy type: accuracy value: 0.817534449274022 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_100v7_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one100v7_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.5232 - Precision: 0.2402 - Recall: 0.1069 - F1: 0.1480 - Accuracy: 0.8175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 26 | 0.6129 | 0.0647 | 0.0023 | 0.0045 | 0.7840 | | No log | 2.0 | 52 | 0.5177 | 0.2035 | 0.0807 | 0.1156 | 0.8130 | | No log | 3.0 | 78 | 0.5232 | 0.2402 | 0.1069 | 0.1480 | 0.8175 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_One_100v6_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T14:40:57Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one100v6_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T14:35:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one100v6_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_100v6_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one100v6_wikigold_split type: tagged_one100v6_wikigold_split args: default metrics: - name: Precision type: precision value: 0.244097995545657 - name: Recall type: recall value: 0.13908629441624365 - name: F1 type: f1 value: 0.17720291026677445 - name: Accuracy type: accuracy value: 0.8258844149255108 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_100v6_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one100v6_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.5346 - Precision: 0.2441 - Recall: 0.1391 - F1: 0.1772 - Accuracy: 0.8259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 47 | 0.5840 | 0.1614 | 0.0454 | 0.0709 | 0.8044 | | No log | 2.0 | 94 | 0.5226 | 0.2489 | 0.1312 | 0.1718 | 0.8256 | | No log | 3.0 | 141 | 0.5346 | 0.2441 | 0.1391 | 0.1772 | 0.8259 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
VietAI/vi-bartflax-large-news
VietAI
2022-08-11T14:40:17Z
36
1
transformers
[ "transformers", "jax", "tensorboard", "bart", "text2text-generation", "vi", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-09T00:33:59Z
--- language: vi --- # BART-large on Vietnamese News Details will be available soon. For more information, please contact anhduongng.1001@gmail.com (Dương). ### Important note When finetuning this model on downstream tasks (e.g. text summarization), ensure that your label has the form of `tokenizer.bos_token + target + tokenizer.eos_token` before tokenizing.
Cube/ShijiBERT
Cube
2022-08-11T14:39:40Z
2
0
transformers
[ "transformers", "bert", "fill-mask", "zh", "license:apache-2.0", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-11T14:01:58Z
--- language: - "zh" license: "apache-2.0" pipeline_tag: "fill-mask" mask_token: "[MASK]" widget: - text: "[MASK]太元中,武陵人捕鱼为业。" - text: "问征夫以前路,恨晨光之[MASK]微。" - text: "浔阳江头夜送客,枫叶[MASK]花秋瑟瑟。" ---
harish/t5-e2e-2epochs-lr1e4-alpha0-5
harish
2022-08-11T14:22:13Z
7
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-11T14:17:21Z
--- license: cc-by-nc-sa-4.0 ---
DOOGLAK/Tagged_One_100v2_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T14:19:11Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one100v2_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T14:13:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one100v2_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_100v2_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one100v2_wikigold_split type: tagged_one100v2_wikigold_split args: default metrics: - name: Precision type: precision value: 0.29022988505747127 - name: Recall type: recall value: 0.12856415478615071 - name: F1 type: f1 value: 0.17819336626676077 - name: Accuracy type: accuracy value: 0.833149450650485 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_100v2_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one100v2_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.4407 - Precision: 0.2902 - Recall: 0.1286 - F1: 0.1782 - Accuracy: 0.8331 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 40 | 0.5318 | 0.2817 | 0.0204 | 0.0380 | 0.7978 | | No log | 2.0 | 80 | 0.4431 | 0.2932 | 0.1146 | 0.1647 | 0.8291 | | No log | 3.0 | 120 | 0.4407 | 0.2902 | 0.1286 | 0.1782 | 0.8331 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
miguelwon/xlm-roberta-base-finetuned-panx-de
miguelwon
2022-08-11T14:08:55Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T12:47:00Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: train args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8615332274892267 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1375 - F1: 0.8615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 525 | 0.1795 | 0.8092 | | No log | 2.0 | 1050 | 0.1360 | 0.8490 | | No log | 3.0 | 1575 | 0.1375 | 0.8615 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.13.0.dev20220808 - Datasets 2.4.0 - Tokenizers 0.12.1
DOOGLAK/Tagged_One_100v0_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T14:07:39Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one100v0_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T14:02:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one100v0_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_100v0_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one100v0_wikigold_split type: tagged_one100v0_wikigold_split args: default metrics: - name: Precision type: precision value: 0.16896060749881348 - name: Recall type: recall value: 0.08985360928823827 - name: F1 type: f1 value: 0.11731751524139067 - name: Accuracy type: accuracy value: 0.8183405097172117 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_100v0_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one100v0_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.4700 - Precision: 0.1690 - Recall: 0.0899 - F1: 0.1173 - Accuracy: 0.8183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 32 | 0.5975 | 0.1034 | 0.0015 | 0.0030 | 0.7790 | | No log | 2.0 | 64 | 0.4756 | 0.1607 | 0.0765 | 0.1036 | 0.8137 | | No log | 3.0 | 96 | 0.4700 | 0.1690 | 0.0899 | 0.1173 | 0.8183 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Tagged_One_50v9_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T14:02:29Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one50v9_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T13:57:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one50v9_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_50v9_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one50v9_wikigold_split type: tagged_one50v9_wikigold_split args: default metrics: - name: Precision type: precision value: 0.5 - name: Recall type: recall value: 0.000243605359317905 - name: F1 type: f1 value: 0.00048697345994643296 - name: Accuracy type: accuracy value: 0.7806885723898171 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_50v9_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one50v9_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.6504 - Precision: 0.5 - Recall: 0.0002 - F1: 0.0005 - Accuracy: 0.7807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 16 | 0.7521 | 0.0 | 0.0 | 0.0 | 0.7782 | | No log | 2.0 | 32 | 0.6778 | 1.0 | 0.0002 | 0.0005 | 0.7797 | | No log | 3.0 | 48 | 0.6504 | 0.5 | 0.0002 | 0.0005 | 0.7807 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
srcocotero/bert-large-qa
srcocotero
2022-08-11T13:46:18Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-07T14:48:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-large-qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-qa This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 6 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
DOOGLAK/Tagged_One_50v5_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T13:40:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one50v5_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T13:36:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one50v5_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_50v5_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one50v5_wikigold_split type: tagged_one50v5_wikigold_split args: default metrics: - name: Precision type: precision value: 0.11643835616438356 - name: Recall type: recall value: 0.008254430687059966 - name: F1 type: f1 value: 0.015416005440943096 - name: Accuracy type: accuracy value: 0.7840127288617977 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_50v5_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one50v5_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.6440 - Precision: 0.1164 - Recall: 0.0083 - F1: 0.0154 - Accuracy: 0.7840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 26 | 0.6934 | 0.0 | 0.0 | 0.0 | 0.7768 | | No log | 2.0 | 52 | 0.6426 | 0.0855 | 0.0024 | 0.0047 | 0.7799 | | No log | 3.0 | 78 | 0.6440 | 0.1164 | 0.0083 | 0.0154 | 0.7840 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
mrm8488/Worm_v2
mrm8488
2022-08-11T13:35:34Z
10
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Worm", "region:us" ]
reinforcement-learning
2022-08-11T13:35:19Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Worm library_name: ml-agents --- # **ppo** Agent playing **Worm** This is a trained model of a **ppo** agent playing **Worm** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Worm 2. Step 1: Write your model_id: mrm8488/Worm_v2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
DOOGLAK/Tagged_One_50v2_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T13:25:41Z
99
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one50v2_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T13:20:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one50v2_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_50v2_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one50v2_wikigold_split type: tagged_one50v2_wikigold_split args: default metrics: - name: Precision type: precision value: 0.125 - name: Recall type: recall value: 0.0007326007326007326 - name: F1 type: f1 value: 0.0014566642388929353 - name: Accuracy type: accuracy value: 0.7835104713215839 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_50v2_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one50v2_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.6200 - Precision: 0.125 - Recall: 0.0007 - F1: 0.0015 - Accuracy: 0.7835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 18 | 0.7424 | 0.0 | 0.0 | 0.0 | 0.7776 | | No log | 2.0 | 36 | 0.6479 | 0.0909 | 0.0002 | 0.0005 | 0.7819 | | No log | 3.0 | 54 | 0.6200 | 0.125 | 0.0007 | 0.0015 | 0.7835 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
GEEKLEO/FINBERT
GEEKLEO
2022-08-11T13:20:35Z
91
1
transformers
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-08-11T07:13:02Z
仅方便自用,原模型来源为Github上开源的模型:valuesimplex/FinBERT,地址为:https://github.com/valuesimplex/FinBERT 这是一个金融领域大规模语料上训练的开源中文BERT预训练模型。
DOOGLAK/Tagged_One_50v1_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T13:20:10Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:tagged_one50v1_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T13:15:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - tagged_one50v1_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Tagged_One_50v1_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: tagged_one50v1_wikigold_split type: tagged_one50v1_wikigold_split args: default metrics: - name: Precision type: precision value: 0.19072164948453607 - name: Recall type: recall value: 0.02711284807034685 - name: F1 type: f1 value: 0.04747647562018819 - name: Accuracy type: accuracy value: 0.7925038291737995 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Tagged_One_50v1_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tagged_one50v1_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.6207 - Precision: 0.1907 - Recall: 0.0271 - F1: 0.0475 - Accuracy: 0.7925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 26 | 0.6635 | 0.0 | 0.0 | 0.0 | 0.7775 | | No log | 2.0 | 52 | 0.5963 | 0.1820 | 0.0208 | 0.0373 | 0.7906 | | No log | 3.0 | 78 | 0.6207 | 0.1907 | 0.0271 | 0.0475 | 0.7925 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
ClementRomac/TA_Random_SAC_chimpanzee_easy_parkour_s15
ClementRomac
2022-08-11T13:16:58Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "region:us" ]
reinforcement-learning
2022-08-11T13:15:54Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo). *This policy was not part of TeachMyAgent's benchmark. It was trained on the easy task space of the Parkour environment with water removed.* ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour (easy + no water)' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'ALP-GMM' 'morphology': 'climbing_profile_chimpanzee'} ```
ClementRomac/TA_Random_SAC_chimpanzee_easy_parkour_s2
ClementRomac
2022-08-11T13:13:53Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "region:us" ]
reinforcement-learning
2022-08-11T13:10:36Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo). *This policy was not part of TeachMyAgent's benchmark. It was trained on the easy task space of the Parkour environment with water removed.* ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour (easy + no water)' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'ALP-GMM' 'morphology': 'climbing_profile_chimpanzee'} ```
carted-nlp/categorization-finetuned-20220721-164940-distilled-20220811-074207
carted-nlp
2022-08-11T13:09:13Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-11T07:43:56Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: categorization-finetuned-20220721-164940-distilled-20220811-074207 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # categorization-finetuned-20220721-164940-distilled-20220811-074207 This model is a fine-tuned version of [carted-nlp/categorization-finetuned-20220721-164940](https://huggingface.co/carted-nlp/categorization-finetuned-20220721-164940) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1499 - Accuracy: 0.8771 - F1: 0.8763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 96 - seed: 314 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1500 - num_epochs: 30.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:| | 0.5644 | 0.56 | 2500 | 0.2739 | 0.7822 | 0.7774 | | 0.2658 | 1.12 | 5000 | 0.2288 | 0.8159 | 0.8127 | | 0.2307 | 1.69 | 7500 | 0.2082 | 0.8298 | 0.8273 | | 0.2126 | 2.25 | 10000 | 0.1970 | 0.8389 | 0.8370 | | 0.2012 | 2.81 | 12500 | 0.1888 | 0.8450 | 0.8433 | | 0.1903 | 3.37 | 15000 | 0.1829 | 0.8496 | 0.8485 | | 0.1846 | 3.94 | 17500 | 0.1783 | 0.8529 | 0.8511 | | 0.1771 | 4.5 | 20000 | 0.1750 | 0.8548 | 0.8537 | | 0.1726 | 5.06 | 22500 | 0.1727 | 0.8577 | 0.8564 | | 0.1673 | 5.62 | 25000 | 0.1683 | 0.8602 | 0.8591 | | 0.1648 | 6.19 | 27500 | 0.1675 | 0.8608 | 0.8597 | | 0.1596 | 6.75 | 30000 | 0.1657 | 0.8630 | 0.8620 | | 0.1563 | 7.31 | 32500 | 0.1635 | 0.8646 | 0.8639 | | 0.154 | 7.87 | 35000 | 0.1613 | 0.8656 | 0.8647 | | 0.1496 | 8.43 | 37500 | 0.1611 | 0.8666 | 0.8656 | | 0.1496 | 9.0 | 40000 | 0.1598 | 0.8676 | 0.8669 | | 0.1445 | 9.56 | 42500 | 0.1594 | 0.8681 | 0.8671 | | 0.1435 | 10.12 | 45000 | 0.1588 | 0.8688 | 0.8679 | | 0.1407 | 10.68 | 47500 | 0.1568 | 0.8703 | 0.8695 | | 0.1382 | 11.25 | 50000 | 0.1564 | 0.8708 | 0.8700 | | 0.1372 | 11.81 | 52500 | 0.1550 | 0.8720 | 0.8713 | | 0.1344 | 12.37 | 55000 | 0.1559 | 0.8718 | 0.8708 | | 0.1337 | 12.93 | 57500 | 0.1540 | 0.8735 | 0.8729 | | 0.1303 | 13.5 | 60000 | 0.1541 | 0.8729 | 0.8721 | | 0.1304 | 14.06 | 62500 | 0.1531 | 0.8735 | 0.8727 | | 0.1274 | 14.62 | 65000 | 0.1535 | 0.8736 | 0.8727 | | 0.1266 | 15.18 | 67500 | 0.1527 | 0.8750 | 0.8742 | | 0.1251 | 15.74 | 70000 | 0.1525 | 0.8755 | 0.8748 | | 0.1234 | 16.31 | 72500 | 0.1528 | 0.8753 | 0.8745 | | 0.1229 | 16.87 | 75000 | 0.1516 | 0.8760 | 0.8753 | | 0.121 | 17.43 | 77500 | 0.1523 | 0.8759 | 0.8752 | | 0.1212 | 17.99 | 80000 | 0.1515 | 0.8760 | 0.8754 | | 0.1185 | 18.56 | 82500 | 0.1514 | 0.8765 | 0.8757 | | 0.1186 | 19.12 | 85000 | 0.1516 | 0.8766 | 0.8760 | | 0.1172 | 19.68 | 87500 | 0.1506 | 0.8774 | 0.8767 | | 0.1164 | 20.24 | 90000 | 0.1513 | 0.8770 | 0.8763 | | 0.116 | 20.81 | 92500 | 0.1507 | 0.8774 | 0.8767 | | 0.1145 | 21.37 | 95000 | 0.1507 | 0.8777 | 0.8770 | | 0.1143 | 21.93 | 97500 | 0.1506 | 0.8776 | 0.8770 | | 0.1131 | 22.49 | 100000 | 0.1507 | 0.8779 | 0.8772 | | 0.1131 | 23.05 | 102500 | 0.1505 | 0.8779 | 0.8772 | | 0.1123 | 23.62 | 105000 | 0.1506 | 0.8781 | 0.8774 | | 0.1117 | 24.18 | 107500 | 0.1504 | 0.8783 | 0.8776 | | 0.1118 | 24.74 | 110000 | 0.1503 | 0.8784 | 0.8777 | | 0.1111 | 25.3 | 112500 | 0.1503 | 0.8783 | 0.8776 | | 0.1111 | 25.87 | 115000 | 0.1502 | 0.8784 | 0.8777 | | 0.1105 | 26.43 | 117500 | 0.1504 | 0.8783 | 0.8776 | | 0.1105 | 26.99 | 120000 | 0.1502 | 0.8786 | 0.8779 | | 0.1104 | 27.55 | 122500 | 0.1503 | 0.8786 | 0.8779 | | 0.1096 | 28.12 | 125000 | 0.1502 | 0.8785 | 0.8779 | | 0.1101 | 28.68 | 127500 | 0.1501 | 0.8786 | 0.8779 | | 0.1101 | 29.24 | 130000 | 0.1502 | 0.8786 | 0.8779 | | 0.1094 | 29.8 | 132500 | 0.1501 | 0.8786 | 0.8779 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
DOOGLAK/Article_500v9_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T13:05:10Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:article500v9_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T12:59:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - article500v9_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Article_500v9_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: article500v9_wikigold_split type: article500v9_wikigold_split args: default metrics: - name: Precision type: precision value: 0.74375 - name: Recall type: recall value: 0.7617924528301887 - name: F1 type: f1 value: 0.7526631158455394 - name: Accuracy type: accuracy value: 0.9441837337228455 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Article_500v9_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the article500v9_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.1931 - Precision: 0.7438 - Recall: 0.7618 - F1: 0.7527 - Accuracy: 0.9442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 194 | 0.1870 | 0.7335 | 0.7335 | 0.7335 | 0.9401 | | No log | 2.0 | 388 | 0.1840 | 0.7384 | 0.7561 | 0.7471 | 0.9444 | | 0.1376 | 3.0 | 582 | 0.1931 | 0.7438 | 0.7618 | 0.7527 | 0.9442 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
ClementRomac/TA_ALP-GMM_SAC_spider_s1
ClementRomac
2022-08-11T12:59:15Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "region:us" ]
reinforcement-learning
2022-08-11T12:48:21Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo). *This policy was not part of TeachMyAgent's benchmark* ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'ALP-GMM' 'morphology': 'spider'} ```
DOOGLAK/Article_500v8_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T12:58:50Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:article500v8_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T12:53:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - article500v8_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Article_500v8_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: article500v8_wikigold_split type: article500v8_wikigold_split args: default metrics: - name: Precision type: precision value: 0.7349189934505344 - name: Recall type: recall value: 0.7560283687943262 - name: F1 type: f1 value: 0.7453242440132843 - name: Accuracy type: accuracy value: 0.9421215763172877 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Article_500v8_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the article500v8_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.2113 - Precision: 0.7349 - Recall: 0.7560 - F1: 0.7453 - Accuracy: 0.9421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 191 | 0.1914 | 0.7105 | 0.7181 | 0.7143 | 0.9382 | | No log | 2.0 | 382 | 0.2045 | 0.7283 | 0.7574 | 0.7426 | 0.9408 | | 0.1441 | 3.0 | 573 | 0.2113 | 0.7349 | 0.7560 | 0.7453 | 0.9421 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Article_500v5_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T12:40:47Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:article500v5_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T12:35:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - article500v5_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Article_500v5_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: article500v5_wikigold_split type: article500v5_wikigold_split args: default metrics: - name: Precision type: precision value: 0.7302452316076294 - name: Recall type: recall value: 0.7657142857142857 - name: F1 type: f1 value: 0.7475592747559274 - name: Accuracy type: accuracy value: 0.9453822040028936 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Article_500v5_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the article500v5_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.1848 - Precision: 0.7302 - Recall: 0.7657 - F1: 0.7476 - Accuracy: 0.9454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 172 | 0.1781 | 0.7013 | 0.7396 | 0.7200 | 0.9403 | | No log | 2.0 | 344 | 0.1904 | 0.7203 | 0.7421 | 0.7310 | 0.9396 | | 0.1436 | 3.0 | 516 | 0.1848 | 0.7302 | 0.7657 | 0.7476 | 0.9454 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
DOOGLAK/Article_500v3_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T12:28:40Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:article500v3_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T12:23:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - article500v3_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Article_500v3_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: article500v3_wikigold_split type: article500v3_wikigold_split args: default metrics: - name: Precision type: precision value: 0.7293136626042335 - name: Recall type: recall value: 0.7574950033311126 - name: F1 type: f1 value: 0.7431372549019608 - name: Accuracy type: accuracy value: 0.9403332402494647 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Article_500v3_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the article500v3_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.2187 - Precision: 0.7293 - Recall: 0.7575 - F1: 0.7431 - Accuracy: 0.9403 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 187 | 0.2080 | 0.6933 | 0.7109 | 0.7020 | 0.9363 | | No log | 2.0 | 374 | 0.2159 | 0.7244 | 0.7338 | 0.7291 | 0.9379 | | 0.1349 | 3.0 | 561 | 0.2187 | 0.7293 | 0.7575 | 0.7431 | 0.9403 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
Eylul/ppo-LunarLander-v2
Eylul
2022-08-11T12:25:34Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:22:27Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 180.17 +/- 95.47 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
harish/t5-e2e-5epochs-lr1e4-alpha0-5-BLANKS
harish
2022-08-11T12:22:42Z
7
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-11T12:22:13Z
--- license: cc-by-nc-sa-4.0 ---
yogeshkulkarni/ppo-LunarLander-v2
yogeshkulkarni
2022-08-11T12:14:18Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T12:04:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 194.68 +/- 76.58 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) ```python import gym from stable_baselines3 import PPO from stable_baselines3.common.evaluation import evaluate_policy from huggingface_sb3 import load_from_hub repo_id = "yogeshkulkarni/ppo-LunarLander-v2" # The repo_id filename = "ppo-LunarLander-v2.zip" # The model filename.zip # When the model was trained on Python 3.8 the pickle protocol is 5 # But Python 3.6, 3.7 use protocol 4 # In order to get compatibility we need to: # 1. Install pickle5 (we done it at the beginning of the colab) # 2. Create a custom empty object we pass as parameter to PPO.load() custom_objects = { "learning_rate": 0.0, "lr_schedule": lambda _: 0.0, "clip_range": lambda _: 0.0, } checkpoint = load_from_hub(repo_id, filename) model = PPO.load(checkpoint, custom_objects=custom_objects, print_system_info=True) # Evaluate this model eval_env = gym.make("LunarLander-v2") mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True) print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") ```
DOOGLAK/Article_500v2_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T12:11:10Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:article500v2_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T12:05:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - article500v2_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Article_500v2_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: article500v2_wikigold_split type: article500v2_wikigold_split args: default metrics: - name: Precision type: precision value: 0.7113220815752461 - name: Recall type: recall value: 0.7526041666666666 - name: F1 type: f1 value: 0.7313810556760665 - name: Accuracy type: accuracy value: 0.9410548086866598 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Article_500v2_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the article500v2_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.2086 - Precision: 0.7113 - Recall: 0.7526 - F1: 0.7314 - Accuracy: 0.9411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 185 | 0.1795 | 0.6982 | 0.7530 | 0.7245 | 0.9412 | | No log | 2.0 | 370 | 0.2018 | 0.7218 | 0.7537 | 0.7374 | 0.9403 | | 0.1342 | 3.0 | 555 | 0.2086 | 0.7113 | 0.7526 | 0.7314 | 0.9411 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
flowers-team/TA_ALP-GMM_SAC_chimpanzee_s18
flowers-team
2022-08-11T12:07:16Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T10:12:51Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: ALP-GMM_SAC_chimpanzee_s18 results: - metrics: - type: mean_reward value: -54.01 +/- 71.37 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'ALP-GMM' 'morphology': 'climbing_profile_chimpanzee'} ```
DOOGLAK/Article_500v0_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T11:58:58Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:article500v0_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T11:53:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - article500v0_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Article_500v0_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: article500v0_wikigold_split type: article500v0_wikigold_split args: default metrics: - name: Precision type: precision value: 0.7004528039010798 - name: Recall type: recall value: 0.7453669384729429 - name: F1 type: f1 value: 0.7222122463637995 - name: Accuracy type: accuracy value: 0.9411139455782312 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Article_500v0_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the article500v0_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.2180 - Precision: 0.7005 - Recall: 0.7454 - F1: 0.7222 - Accuracy: 0.9411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 197 | 0.1988 | 0.6828 | 0.7046 | 0.6935 | 0.9347 | | No log | 2.0 | 394 | 0.2051 | 0.6942 | 0.7454 | 0.7189 | 0.9403 | | 0.1447 | 3.0 | 591 | 0.2180 | 0.7005 | 0.7454 | 0.7222 | 0.9411 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
flowers-team/TA_ADR_SAC_bipedal_s2
flowers-team
2022-08-11T11:58:49Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:58:38Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: ADR_SAC_bipedal_s2 results: - metrics: - type: mean_reward value: 189.10 +/- 122.50 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'ADR' 'morphology': 'old_classic_bipedal'} ```
flowers-team/TA_ADR_SAC_bipedal_s1
flowers-team
2022-08-11T11:58:36Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:58:26Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: ADR_SAC_bipedal_s1 results: - metrics: - type: mean_reward value: 212.60 +/- 137.22 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'ADR' 'morphology': 'old_classic_bipedal'} ```
harish/t5-e2e-10epochs-lr1e4-alpha0-1PLUSalpha0-9-e10
harish
2022-08-11T11:57:30Z
13
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-11T11:43:36Z
--- license: cc-by-nc-sa-4.0 ---
flowers-team/TA_ALP-GMM_SAC_fish_s44
flowers-team
2022-08-11T11:57:23Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T10:13:44Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: ALP-GMM_SAC_fish_s44 results: - metrics: - type: mean_reward value: 268.93 +/- 94.84 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'ALP-GMM' 'morphology': 'fish'} ```
flowers-team/TA_ALP-GMM_SAC_bipedal_s12
flowers-team
2022-08-11T11:56:23Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T10:13:19Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: ALP-GMM_SAC_bipedal_s12 results: - metrics: - type: mean_reward value: 229.56 +/- 132.91 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'ALP-GMM' 'morphology': 'old_classic_bipedal'} ```
flowers-team/TA_GoalGAN_SAC_chimpanzee_s15
flowers-team
2022-08-11T11:56:03Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:55:52Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: GoalGAN_SAC_chimpanzee_s15 results: - metrics: - type: mean_reward value: -48.56 +/- 77.61 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'GoalGAN' 'morphology': 'climbing_profile_chimpanzee'} ```
flowers-team/TA_GoalGAN_SAC_chimpanzee_s2
flowers-team
2022-08-11T11:55:50Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:55:40Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: GoalGAN_SAC_chimpanzee_s2 results: - metrics: - type: mean_reward value: -33.19 +/- 80.11 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'GoalGAN' 'morphology': 'climbing_profile_chimpanzee'} ```
flowers-team/TA_GoalGAN_SAC_chimpanzee_s11
flowers-team
2022-08-11T11:55:21Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:55:07Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: GoalGAN_SAC_chimpanzee_s11 results: - metrics: - type: mean_reward value: 12.27 +/- 121.30 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'GoalGAN' 'morphology': 'climbing_profile_chimpanzee'} ```
flowers-team/TA_Random_SAC_chimpanzee_s19
flowers-team
2022-08-11T11:55:05Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:54:51Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: Random_SAC_chimpanzee_s19 results: - metrics: - type: mean_reward value: -58.01 +/- 1.63 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'Random' 'morphology': 'climbing_profile_chimpanzee'} ```
flowers-team/TA_Random_SAC_chimpanzee_s24
flowers-team
2022-08-11T11:54:27Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:54:11Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: Random_SAC_chimpanzee_s24 results: - metrics: - type: mean_reward value: -56.22 +/- 10.28 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'Random' 'morphology': 'climbing_profile_chimpanzee'} ```
flowers-team/TA_RIAC_SAC_fish_s5
flowers-team
2022-08-11T11:54:06Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:53:56Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: RIAC_SAC_fish_s5 results: - metrics: - type: mean_reward value: 224.55 +/- 128.93 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'RIAC' 'morphology': 'fish'} ```
flowers-team/TA_ADR_SAC_fish_s46
flowers-team
2022-08-11T11:52:56Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:52:39Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: ADR_SAC_fish_s46 results: - metrics: - type: mean_reward value: -82.48 +/- 54.44 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'ADR' 'morphology': 'fish'} ```
flowers-team/TA_RIAC_SAC_chimpanzee_s10
flowers-team
2022-08-11T11:52:07Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:51:44Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: RIAC_SAC_chimpanzee_s10 results: - metrics: - type: mean_reward value: -59.06 +/- 4.59 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'RIAC' 'morphology': 'climbing_profile_chimpanzee'} ```
DOOGLAK/Article_250v9_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T11:51:40Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:article250v9_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T11:46:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - article250v9_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Article_250v9_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: article250v9_wikigold_split type: article250v9_wikigold_split args: default metrics: - name: Precision type: precision value: 0.6808931599773883 - name: Recall type: recall value: 0.6954387990762124 - name: F1 type: f1 value: 0.68808911739503 - name: Accuracy type: accuracy value: 0.9338001436339386 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Article_250v9_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the article250v9_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.2025 - Precision: 0.6809 - Recall: 0.6954 - F1: 0.6881 - Accuracy: 0.9338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 98 | 0.2169 | 0.5997 | 0.6579 | 0.6275 | 0.9256 | | No log | 2.0 | 196 | 0.2077 | 0.6791 | 0.6804 | 0.6797 | 0.9317 | | No log | 3.0 | 294 | 0.2025 | 0.6809 | 0.6954 | 0.6881 | 0.9338 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
flowers-team/TA_RIAC_SAC_chimpanzee_s7
flowers-team
2022-08-11T11:51:28Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:51:17Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: RIAC_SAC_chimpanzee_s7 results: - metrics: - type: mean_reward value: -50.45 +/- 6.05 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'RIAC' 'morphology': 'climbing_profile_chimpanzee'} ```
flowers-team/TA_GoalGAN_SAC_fish_s5
flowers-team
2022-08-11T11:50:37Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:50:26Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: GoalGAN_SAC_fish_s5 results: - metrics: - type: mean_reward value: 296.27 +/- 72.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'GoalGAN' 'morphology': 'fish'} ```
flowers-team/TA_Setter-Solver_SAC_bipedal_s4
flowers-team
2022-08-11T11:49:02Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:48:51Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: Setter-Solver_SAC_bipedal_s4 results: - metrics: - type: mean_reward value: 212.13 +/- 135.83 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'Setter-Solver' 'morphology': 'old_classic_bipedal'} ```
flowers-team/TA_Setter-Solver_SAC_bipedal_s10
flowers-team
2022-08-11T11:48:25Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:48:14Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: Setter-Solver_SAC_bipedal_s10 results: - metrics: - type: mean_reward value: 239.05 +/- 138.15 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'Setter-Solver' 'morphology': 'old_classic_bipedal'} ```
flowers-team/TA_GoalGAN_SAC_bipedal_s2
flowers-team
2022-08-11T11:48:12Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:48:01Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: GoalGAN_SAC_bipedal_s2 results: - metrics: - type: mean_reward value: 225.91 +/- 136.42 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'GoalGAN' 'morphology': 'old_classic_bipedal'} ```
flowers-team/TA_ADR_SAC_chimpanzee_s26
flowers-team
2022-08-11T11:45:40Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:45:29Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: ADR_SAC_chimpanzee_s26 results: - metrics: - type: mean_reward value: -75.58 +/- 15.05 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'ADR' 'morphology': 'climbing_profile_chimpanzee'} ```
DOOGLAK/Article_250v8_NER_Model_3Epochs_AUGMENTED
DOOGLAK
2022-08-11T11:45:35Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:article250v8_wikigold_split", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-11T11:40:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - article250v8_wikigold_split metrics: - precision - recall - f1 - accuracy model-index: - name: Article_250v8_NER_Model_3Epochs_AUGMENTED results: - task: name: Token Classification type: token-classification dataset: name: article250v8_wikigold_split type: article250v8_wikigold_split args: default metrics: - name: Precision type: precision value: 0.6710306406685237 - name: Recall type: recall value: 0.6662057522123894 - name: F1 type: f1 value: 0.6686094920899252 - name: Accuracy type: accuracy value: 0.9222875386408554 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Article_250v8_NER_Model_3Epochs_AUGMENTED This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the article250v8_wikigold_split dataset. It achieves the following results on the evaluation set: - Loss: 0.2522 - Precision: 0.6710 - Recall: 0.6662 - F1: 0.6686 - Accuracy: 0.9223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 100 | 0.2607 | 0.5716 | 0.5575 | 0.5645 | 0.9106 | | No log | 2.0 | 200 | 0.2498 | 0.6572 | 0.6427 | 0.6499 | 0.9200 | | No log | 3.0 | 300 | 0.2522 | 0.6710 | 0.6662 | 0.6686 | 0.9223 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.4.0 - Tokenizers 0.11.6
flowers-team/TA_ADR_SAC_chimpanzee_s24
flowers-team
2022-08-11T11:45:27Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:45:16Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: ADR_SAC_chimpanzee_s24 results: - metrics: - type: mean_reward value: -68.95 +/- 24.51 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'ADR' 'morphology': 'climbing_profile_chimpanzee'} ```
flowers-team/TA_ADR_SAC_chimpanzee_s20
flowers-team
2022-08-11T11:45:05Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:44:51Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: ADR_SAC_chimpanzee_s20 results: - metrics: - type: mean_reward value: -57.14 +/- 2.69 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'ADR' 'morphology': 'climbing_profile_chimpanzee'} ```
flowers-team/TA_Self-Paced_SAC_fish_s11
flowers-team
2022-08-11T11:44:28Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:44:17Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: Self-Paced_SAC_fish_s11 results: - metrics: - type: mean_reward value: -61.40 +/- 66.57 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'Self-Paced' 'morphology': 'fish'} ```
flowers-team/TA_Self-Paced_SAC_fish_s5
flowers-team
2022-08-11T11:44:15Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:43:45Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: Self-Paced_SAC_fish_s5 results: - metrics: - type: mean_reward value: 193.28 +/- 140.12 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'Self-Paced' 'morphology': 'fish'} ```
flowers-team/TA_Self-Paced_SAC_fish_s13
flowers-team
2022-08-11T11:43:36Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:43:23Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: Self-Paced_SAC_fish_s13 results: - metrics: - type: mean_reward value: 279.71 +/- 107.85 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'Self-Paced' 'morphology': 'fish'} ```
flowers-team/TA_Self-Paced_SAC_chimpanzee_s10
flowers-team
2022-08-11T11:42:59Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:42:48Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: Self-Paced_SAC_chimpanzee_s10 results: - metrics: - type: mean_reward value: -70.90 +/- 5.24 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'Self-Paced' 'morphology': 'climbing_profile_chimpanzee'} ```
flowers-team/TA_RIAC_SAC_bipedal_s13
flowers-team
2022-08-11T11:42:18Z
0
0
null
[ "sac", "deep-reinforcement-learning", "reinforcement-learning", "teach-my-agent-parkour", "arxiv:2103.09815", "model-index", "region:us" ]
reinforcement-learning
2022-08-11T11:42:08Z
--- tags: - sac - deep-reinforcement-learning - reinforcement-learning - teach-my-agent-parkour model-index: - name: RIAC_SAC_bipedal_s13 results: - metrics: - type: mean_reward value: 184.93 +/- 139.14 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: teach-my-agent-parkour type: teach-my-agent-parkour --- # Deep RL Agent Playing TeachMyAgent's parkour. You can find more info about TeachMyAgent [here](https://developmentalsystems.org/TeachMyAgent/). Results of our benchmark can be found in our [paper](https://arxiv.org/pdf/2103.09815.pdf). You can test this policy [here](https://huggingface.co/spaces/flowers-team/Interactive_DeepRL_Demo) ## Results Percentage of mastered tasks (i.e. reward >= 230) after 20 millions steps on the Parkour track. Results shown are averages over 16 seeds along with the standard deviation for each morphology as well as the aggregation of the 48 seeds in the *Overall* column. We highlight the best results in bold. | Algorithm | BipedalWalker | Fish | Climber | Overall | |---------------|----------------|---------------|--------------|---------------| | Random | 27.25 (± 10.7) | 23.6 (± 21.3) | 0.0 (± 0.0) | 16.9 (± 18.3) | | ADR | 14.7 (± 19.4) | 5.3 (± 20.6) | 0.0 (± 0.0) | 6.7 (± 17.4) | | ALP-GMM | **42.7** (± 11.2) | 36.1 (± 28.5) | 0.4 (± 1.2) | **26.4** (± 25.7) | | Covar-GMM | 35.7 (± 15.9) | 29.9 (± 27.9) | 0.5 (± 1.9) | 22.1 (± 24.2) | | GoalGAN | 25.4 (± 24.7) | 34.7 ± 37.0) | 0.8 (± 2.7) | 20.3 (± 29.5) | | RIAC | 31.2 (± 8.2) | **37.4** (± 25.4) | 0.4 (± 1.4) | 23.0 (± 22.4) | | SPDL | 30.6 (± 22.8) | 9.0 (± 24.2) | **1.0** (± 3.4) | 13.5 (± 23.0) | | Setter-Solver | 28.75 (± 20.7) | 5.1 (± 7.6) | 0.0 (± 0.0) | 11.3 (± 17.9) | # Hyperparameters ```python {'student': 'SAC' 'environment': 'parkour' 'training_steps': 20000000 'n_evaluation_tasks': 100 'teacher': 'RIAC' 'morphology': 'old_classic_bipedal'} ```