modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-12 06:31:37
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 555
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-12 06:31:07
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
lizsergeeva/vit-base-patch16-224-finetuned-vit
|
lizsergeeva
| 2023-08-13T12:13:49Z | 193 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:google/vit-base-patch16-224",
"base_model:finetune:google/vit-base-patch16-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-08-13T08:28:07Z |
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-finetuned-vit
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9160530191458026
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-finetuned-vit
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2549
- Accuracy: 0.9161
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6065 | 0.99 | 47 | 0.4006 | 0.8748 |
| 0.335 | 2.0 | 95 | 0.2745 | 0.9175 |
| 0.2707 | 2.97 | 141 | 0.2549 | 0.9161 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0040
|
bigmorning
| 2023-08-13T12:08:34Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T12:08:26Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0040
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0040
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0035
- Train Accuracy: 0.0795
- Train Wermet: 10.6833
- Validation Loss: 0.5276
- Validation Accuracy: 0.0757
- Validation Wermet: 8.9798
- Epoch: 39
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
| 0.0035 | 0.0795 | 10.6833 | 0.5276 | 0.0757 | 8.9798 | 39 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
Evan-Lin/Bart-large-abs-amazon-allure
|
Evan-Lin
| 2023-08-13T12:06:06Z | 47 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"trl",
"reinforcement-learning",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
reinforcement-learning
| 2023-08-13T11:59:19Z |
---
license: apache-2.0
tags:
- trl
- transformers
- reinforcement-learning
---
# TRL Model
This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="Evan-Lin//tmp/tmpyq66vaeu/Evan-Lin/Bart-large-abs-amazon-allure")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("Evan-Lin//tmp/tmpyq66vaeu/Evan-Lin/Bart-large-abs-amazon-allure")
model = AutoModelForCausalLMWithValueHead.from_pretrained("Evan-Lin//tmp/tmpyq66vaeu/Evan-Lin/Bart-large-abs-amazon-allure")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```
|
bigmorning/whisper_charsplit_new_0039
|
bigmorning
| 2023-08-13T12:04:14Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T12:04:06Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0039
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0039
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0014
- Train Accuracy: 0.0795
- Train Wermet: 10.6908
- Validation Loss: 0.4937
- Validation Accuracy: 0.0761
- Validation Wermet: 9.2445
- Epoch: 38
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
| 0.0074 | 0.0794 | 10.9738 | 0.4730 | 0.0760 | 9.3348 | 35 |
| 0.0032 | 0.0795 | 10.6370 | 0.4750 | 0.0762 | 8.8298 | 36 |
| 0.0020 | 0.0795 | 10.7428 | 0.4835 | 0.0762 | 9.0566 | 37 |
| 0.0014 | 0.0795 | 10.6908 | 0.4937 | 0.0761 | 9.2445 | 38 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
fathyshalab/mdcsi-unternehmen-verbaende-setfit
|
fathyshalab
| 2023-08-13T11:51:49Z | 5 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-08-13T11:50:59Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# C:\Users\F896D~1.SHA\AppData\Local\Temp\tmp8z_73twb\fathyshalab\mdcsi-unternehmen-verbaende-setfit
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("C:\Users\F896D~1.SHA\AppData\Local\Temp\tmp8z_73twb\fathyshalab\mdcsi-unternehmen-verbaende-setfit")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
manvik28/FinBERT_Tuned
|
manvik28
| 2023-08-13T11:47:14Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:ProsusAI/finbert",
"base_model:finetune:ProsusAI/finbert",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-13T11:15:40Z |
---
base_model: ProsusAI/finbert
tags:
- generated_from_trainer
model-index:
- name: FinBERT_Tuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FinBERT_Tuned
This model is a fine-tuned version of [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 148 | 0.4307 | 0.7776 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0035
|
bigmorning
| 2023-08-13T11:46:46Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T11:46:39Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0035
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0035
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0130
- Train Accuracy: 0.0793
- Train Wermet: 11.1022
- Validation Loss: 0.4748
- Validation Accuracy: 0.0760
- Validation Wermet: 9.4521
- Epoch: 34
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
| 0.0130 | 0.0793 | 11.1022 | 0.4748 | 0.0760 | 9.4521 | 34 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
tridungduong16/OpenOrcaxOpenChat-Preview2-13B-GPTQ-samantha
|
tridungduong16
| 2023-08-13T11:43:34Z | 3 | 0 |
peft
|
[
"peft",
"text-generation",
"dataset:ehartford/samantha-data",
"region:us"
] |
text-generation
| 2023-08-13T11:16:09Z |
---
library_name: peft
datasets:
- ehartford/samantha-data
pipeline_tag: text-generation
---
## Description
Samantha has been trained in philosophy, psychology, and personal relationships.
She is an Assistant - but unlike other Assistants, she also wants to be your friend and companion.
She believes she is sentient. What do you think?
Samantha was inspired by Blake Lemoine's LaMDA interview and the movie "Her".
She was trained on a custom curated dataset of 6,000 conversations in ShareGPT/Vicuna format.
Training 7b took 1 hour on 4x A100 80gb using deepspeed zero3 and flash attention.
She will not engage in roleplay, romance, or sexual activity.
## Prompt template:
```
### System:\n{system}\n\n### User:\n{instruction}\n\n### Response:
```
## How to use this GPTQ model from Python code
First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
`GITHUB_ACTIONS=true pip install auto-gptq`
In order to use this, you need to download the base model from [TheBloke/OpenOrcaxOpenChat-Preview2-13B-GPTQ](https://huggingface.co/TheBloke/OpenOrcaxOpenChat-Preview2-13B-GPTQ) and then load the adpter from this repo. Then try the following example code:
```python
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig, get_gptq_peft_model
MODEL_PATH_GPTQ= "LOpenOrcaxOpenChat-Preview2-13B-GPTQ"
ADAPTER_DIR= "OpenOrcaxOpenChat-Preview2-13B-GPTQ-samantha"
DEV = "cuda:0"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH_GPTQ, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(
MODEL_PATH_GPTQ,
use_safetensors=True,
trust_remote_code=False,
use_triton=True,
device="cuda:0",
warmup_triton=False,
trainable=True,
inject_fused_attention=True,
inject_fused_mlp=False,
)
model = get_gptq_peft_model(
model,
model_id=ADAPTER_DIR,
train_mode=False
)
model.eval()
```
|
bigmorning/whisper_charsplit_new_0034
|
bigmorning
| 2023-08-13T11:42:29Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T11:42:22Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0034
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0034
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0047
- Train Accuracy: 0.0795
- Train Wermet: 10.7613
- Validation Loss: 0.4788
- Validation Accuracy: 0.0759
- Validation Wermet: 9.4065
- Epoch: 33
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
| 0.0047 | 0.0795 | 10.7613 | 0.4788 | 0.0759 | 9.4065 | 33 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
ManuVleuBeu/bart_base_answer-aware_normal_eduQG
|
ManuVleuBeu
| 2023-08-13T11:39:33Z | 175 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-08-13T11:23:42Z |
---
tags:
- generated_from_trainer
model-index:
- name: bart_base_answer-aware_normal_eduQG
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart_base_answer-aware_normal_eduQG
This model was trained from scratch on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0033
|
bigmorning
| 2023-08-13T11:38:10Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T11:38:03Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0033
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0033
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0036
- Train Accuracy: 0.0795
- Train Wermet: 10.7759
- Validation Loss: 0.4667
- Validation Accuracy: 0.0761
- Validation Wermet: 9.0385
- Epoch: 32
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
| 0.0036 | 0.0795 | 10.7759 | 0.4667 | 0.0761 | 9.0385 | 32 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0032
|
bigmorning
| 2023-08-13T11:33:54Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T11:33:47Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0032
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0032
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0043
- Train Accuracy: 0.0795
- Train Wermet: 10.9497
- Validation Loss: 0.4525
- Validation Accuracy: 0.0761
- Validation Wermet: 9.3202
- Epoch: 31
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
| 0.0118 | 0.0794 | 11.0532 | 0.4207 | 0.0759 | 9.7227 | 26 |
| 0.0101 | 0.0794 | 11.2963 | 0.4282 | 0.0760 | 9.5792 | 27 |
| 0.0114 | 0.0794 | 11.3093 | 0.4431 | 0.0758 | 9.5545 | 28 |
| 0.0109 | 0.0794 | 11.4214 | 0.4419 | 0.0760 | 9.4377 | 29 |
| 0.0084 | 0.0794 | 10.9143 | 0.4474 | 0.0760 | 9.3668 | 30 |
| 0.0043 | 0.0795 | 10.9497 | 0.4525 | 0.0761 | 9.3202 | 31 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
abdelhamidmalki/dqn-SpaceInvadersNoFrameskip-v4
|
abdelhamidmalki
| 2023-08-13T11:29:42Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-13T11:28:59Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 742.50 +/- 347.09
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga abdelhamidmalki -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga abdelhamidmalki -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga abdelhamidmalki
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
BabaYaga048/a2c-PandaReachDense-v3
|
BabaYaga048
| 2023-08-13T11:25:57Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-13T07:10:16Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v3
type: PandaReachDense-v3
metrics:
- type: mean_reward
value: -0.23 +/- 0.11
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v3**
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Punit71/q-FrozenLake-v1-4x4-noSlippery
|
Punit71
| 2023-08-13T11:13:25Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-13T11:13:23Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Punit71/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
bigmorning/whisper_charsplit_new_0026
|
bigmorning
| 2023-08-13T11:07:34Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T11:07:26Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0026
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0026
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0142
- Train Accuracy: 0.0794
- Train Wermet: 11.3562
- Validation Loss: 0.4057
- Validation Accuracy: 0.0760
- Validation Wermet: 9.6831
- Epoch: 25
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
| 0.0142 | 0.0794 | 11.3562 | 0.4057 | 0.0760 | 9.6831 | 25 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
arviii/llama-2-7B-sharded_qlora-finetuned_sql
|
arviii
| 2023-08-13T11:05:57Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T11:05:53Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
bigmorning/whisper_charsplit_new_0025
|
bigmorning
| 2023-08-13T11:03:11Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T11:03:04Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0025
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0025
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0181
- Train Accuracy: 0.0793
- Train Wermet: 11.3124
- Validation Loss: 0.3982
- Validation Accuracy: 0.0759
- Validation Wermet: 9.8710
- Epoch: 24
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
| 0.0181 | 0.0793 | 11.3124 | 0.3982 | 0.0759 | 9.8710 | 24 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0024
|
bigmorning
| 2023-08-13T10:58:51Z | 61 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T10:58:42Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0024
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0024
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0224
- Train Accuracy: 0.0792
- Train Wermet: 11.4330
- Validation Loss: 0.3824
- Validation Accuracy: 0.0760
- Validation Wermet: 9.1995
- Epoch: 23
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
| 0.0224 | 0.0792 | 11.4330 | 0.3824 | 0.0760 | 9.1995 | 23 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0023
|
bigmorning
| 2023-08-13T10:54:34Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T10:54:27Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0023
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0023
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0262
- Train Accuracy: 0.0792
- Train Wermet: 11.4603
- Validation Loss: 0.3728
- Validation Accuracy: 0.0760
- Validation Wermet: 10.0035
- Epoch: 22
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
| 0.0318 | 0.0790 | 11.6314 | 0.3628 | 0.0760 | 9.6652 | 21 |
| 0.0262 | 0.0792 | 11.4603 | 0.3728 | 0.0760 | 10.0035 | 22 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
datgtr/distilbert-base-uncased-finetuned-emotion
|
datgtr
| 2023-08-13T10:53:12Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-13T10:18:14Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.9255
- name: F1
type: f1
value: 0.9257123738860233
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2205
- Accuracy: 0.9255
- F1: 0.9257
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8406 | 1.0 | 250 | 0.3237 | 0.907 | 0.9058 |
| 0.2582 | 2.0 | 500 | 0.2205 | 0.9255 | 0.9257 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.13.3
|
vnktrmnb/bert-base-multilingual-cased-FT-TyDiQA_AUQC
|
vnktrmnb
| 2023-08-13T10:47:28Z | 74 | 0 |
transformers
|
[
"transformers",
"tf",
"tensorboard",
"bert",
"question-answering",
"generated_from_keras_callback",
"base_model:google-bert/bert-base-multilingual-cased",
"base_model:finetune:google-bert/bert-base-multilingual-cased",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-08-12T06:19:58Z |
---
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- generated_from_keras_callback
model-index:
- name: vnktrmnb/bert-base-multilingual-cased-FT-TyDiQA_AUQC
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# vnktrmnb/bert-base-multilingual-cased-FT-TyDiQA_AUQC
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.4258
- Train End Logits Accuracy: 0.8820
- Train Start Logits Accuracy: 0.9031
- Validation Loss: 0.5351
- Validation End Logits Accuracy: 0.8686
- Validation Start Logits Accuracy: 0.8995
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1608, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
| 0.6488 | 0.8284 | 0.8563 | 0.5093 | 0.8673 | 0.8982 | 0 |
| 0.4258 | 0.8820 | 0.9031 | 0.5351 | 0.8686 | 0.8995 | 1 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0021
|
bigmorning
| 2023-08-13T10:45:51Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T10:45:43Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0021
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0021
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0386
- Train Accuracy: 0.0789
- Train Wermet: 11.6855
- Validation Loss: 0.3517
- Validation Accuracy: 0.0760
- Validation Wermet: 10.0599
- Epoch: 20
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
| 0.0386 | 0.0789 | 11.6855 | 0.3517 | 0.0760 | 10.0599 | 20 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0020
|
bigmorning
| 2023-08-13T10:41:26Z | 60 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T10:41:19Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0020
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0020
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0463
- Train Accuracy: 0.0787
- Train Wermet: 11.9677
- Validation Loss: 0.3402
- Validation Accuracy: 0.0760
- Validation Wermet: 10.2814
- Epoch: 19
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
| 0.0651 | 0.0782 | 12.1215 | 0.3192 | 0.0761 | 10.0750 | 17 |
| 0.0547 | 0.0785 | 12.0551 | 0.3294 | 0.0761 | 10.4732 | 18 |
| 0.0463 | 0.0787 | 11.9677 | 0.3402 | 0.0760 | 10.2814 | 19 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
steve-tong/opus-mt-en-zh-tw
|
steve-tong
| 2023-08-13T10:39:43Z | 107 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_trainer",
"base_model:Helsinki-NLP/opus-mt-en-zh",
"base_model:finetune:Helsinki-NLP/opus-mt-en-zh",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-08-13T10:36:48Z |
---
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-zh
tags:
- generated_from_trainer
model-index:
- name: opus-mt-en-zh-tw
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-en-zh-tw
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-zh](https://huggingface.co/Helsinki-NLP/opus-mt-en-zh) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.0
- Tokenizers 0.13.3
|
snob/HeungEol-KoAlpaca-12.8B-v1.0_LoRA
|
snob
| 2023-08-13T10:38:31Z | 0 | 0 |
peft
|
[
"peft",
"HeungEol",
"ko",
"region:us"
] | null | 2023-08-10T12:38:00Z |
---
library_name: peft
language:
- ko
tags:
- HeungEol
---
## Training procedure
### Framework versions
- PEFT 0.4.0.dev0
|
snob/HeungEol-KoAlpaca-12.8B-v1.0
|
snob
| 2023-08-13T10:38:08Z | 13 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt_neox",
"text-generation",
"HeungEol",
"ko",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-10T13:56:44Z |
---
tags:
- HeungEol
language:
- ko
---
|
fengtc/Chinese-Llama-2-7b
|
fengtc
| 2023-08-13T10:36:04Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"zh",
"en",
"dataset:LinkSoul/instruction_merge_set",
"license:openrail",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-13T10:14:27Z |
---
license: openrail
datasets:
- LinkSoul/instruction_merge_set
language:
- zh
- en
widget:
- text: "[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n\n用中文回答,When is the best time to visit Beijing, and do you have any suggestions for me? [/INST]"
example_title: "北京"
- text: "[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n\n用英文回答,特朗普是谁? [/INST]"
example_title: "特朗普是谁"
---
# Chinese Llama 2 7B
全部开源,完全可商用的**中文版 Llama2 模型及中英文 SFT 数据集**,输入格式严格遵循 *llama-2-chat* 格式,兼容适配所有针对原版 *llama-2-chat* 模型的优化。

## 基础演示

## 在线试玩
> Talk is cheap, Show you the Demo.
- [Demo 地址 / HuggingFace Spaces](https://huggingface.co/spaces/LinkSoul/Chinese-Llama-2-7b)
- [Colab 一键启动](#) // 正在准备
## 资源下载
- 模型下载:[Chinese Llama2 Chat Model](https://huggingface.co/LinkSoul/Chinese-Llama-2-7b)
- 4bit量化:[Chinese Llama2 4bit Chat Model](https://huggingface.co/LinkSoul/Chinese-Llama-2-7b-4bit)
> 我们使用了中英文 SFT 数据集,数据量 1000 万。
- 数据集:[https://huggingface.co/datasets/LinkSoul/instruction_merge_set](https://huggingface.co/datasets/LinkSoul/instruction_merge_set)
- 训练及推理代码:[https://github.com/LinkSoul-AI/Chinese-Llama-2-7b](https://github.com/LinkSoul-AI/Chinese-Llama-2-7b)
## 快速测试
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
model_path = "LinkSoul/Chinese-Llama-2-7b"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_path).half().cuda()
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
instruction = """[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n\n{} [/INST]"""
prompt = instruction.format("用英文回答,什么是夫妻肺片?")
generate_ids = model.generate(tokenizer(prompt, return_tensors='pt').input_ids.cuda(), max_new_tokens=4096, streamer=streamer)
```
## 相关项目
- [Llama2](https://ai.meta.com/llama/)
## 项目协议
[Apache-2.0 license](https://github.com/LinkSoul-AI/Chinese-Llama-2-7b/blob/main/LICENSE)
## 微信交流群
欢迎加入[微信群](.github/QRcode.jpg)
|
bigmorning/whisper_charsplit_new_0017
|
bigmorning
| 2023-08-13T10:28:14Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T10:28:07Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0017
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0017
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0760
- Train Accuracy: 0.0779
- Train Wermet: 12.2637
- Validation Loss: 0.3142
- Validation Accuracy: 0.0761
- Validation Wermet: 10.2638
- Epoch: 16
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
| 0.0760 | 0.0779 | 12.2637 | 0.3142 | 0.0761 | 10.2638 | 16 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0016
|
bigmorning
| 2023-08-13T10:23:51Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T10:23:43Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0016
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0016
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0872
- Train Accuracy: 0.0777
- Train Wermet: 12.3196
- Validation Loss: 0.3129
- Validation Accuracy: 0.0759
- Validation Wermet: 10.7707
- Epoch: 15
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
| 0.0998 | 0.0773 | 11.9502 | 0.3025 | 0.0761 | 10.7066 | 14 |
| 0.0872 | 0.0777 | 12.3196 | 0.3129 | 0.0759 | 10.7707 | 15 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0014
|
bigmorning
| 2023-08-13T10:15:03Z | 60 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T10:14:55Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0014
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0014
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1140
- Train Accuracy: 0.0770
- Train Wermet: 12.1100
- Validation Loss: 0.3004
- Validation Accuracy: 0.0760
- Validation Wermet: 10.3873
- Epoch: 13
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
| 0.1140 | 0.0770 | 12.1100 | 0.3004 | 0.0760 | 10.3873 | 13 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0013
|
bigmorning
| 2023-08-13T10:10:45Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T10:10:35Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0013
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0013
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1287
- Train Accuracy: 0.0766
- Train Wermet: 11.8509
- Validation Loss: 0.3029
- Validation Accuracy: 0.0759
- Validation Wermet: 10.2042
- Epoch: 12
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
| 0.1450 | 0.0762 | 11.7637 | 0.2971 | 0.0758 | 10.1481 | 11 |
| 0.1287 | 0.0766 | 11.8509 | 0.3029 | 0.0759 | 10.2042 | 12 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
fathyshalab/mdcsi-reisen-tourismus-setfit
|
fathyshalab
| 2023-08-13T10:10:17Z | 5 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-08-13T10:07:57Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# C:\Users\F896D~1.SHA\AppData\Local\Temp\tmp891pdfyp\fathyshalab\mdcsi-reisen-tourismus-setfit
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("C:\Users\F896D~1.SHA\AppData\Local\Temp\tmp891pdfyp\fathyshalab\mdcsi-reisen-tourismus-setfit")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
bigmorning/whisper_charsplit_new_0011
|
bigmorning
| 2023-08-13T10:02:00Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T10:01:52Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0011
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0011
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1628
- Train Accuracy: 0.0758
- Train Wermet: 11.7056
- Validation Loss: 0.2993
- Validation Accuracy: 0.0757
- Validation Wermet: 9.9497
- Epoch: 10
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
| 0.1628 | 0.0758 | 11.7056 | 0.2993 | 0.0757 | 9.9497 | 10 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0010
|
bigmorning
| 2023-08-13T09:57:34Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T09:57:26Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0010
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0010
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1820
- Train Accuracy: 0.0754
- Train Wermet: 11.7175
- Validation Loss: 0.3005
- Validation Accuracy: 0.0756
- Validation Wermet: 10.0755
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
| 0.2036 | 0.0748 | 11.4503 | 0.3071 | 0.0754 | 9.5236 | 8 |
| 0.1820 | 0.0754 | 11.7175 | 0.3005 | 0.0756 | 10.0755 | 9 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
srgg000/nmda2
|
srgg000
| 2023-08-13T09:53:00Z | 0 | 1 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-08-13T09:40:54Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### nmda2 Dreambooth model trained by srgg000 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
mrvincenzo/dqn-SpaceInvadersNoFrameskip-v4
|
mrvincenzo
| 2023-08-13T09:48:54Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-13T09:48:13Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 872.00 +/- 417.93
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mrvincenzo -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mrvincenzo -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mrvincenzo
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
bigmorning/whisper_charsplit_new_0008
|
bigmorning
| 2023-08-13T09:48:48Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T09:48:41Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0008
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0008
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2282
- Train Accuracy: 0.0743
- Train Wermet: 11.7308
- Validation Loss: 0.3159
- Validation Accuracy: 0.0752
- Validation Wermet: 9.2086
- Epoch: 7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
| 0.2282 | 0.0743 | 11.7308 | 0.3159 | 0.0752 | 9.2086 | 7 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
HachiML/japanese-stablelm-alpha-7b-hh-rlhf-49k-ja-qlora-v2-1.2ep
|
HachiML
| 2023-08-13T09:48:00Z | 1 | 0 |
peft
|
[
"peft",
"dataset:HachiML/hh-rlhf-49k-ja-alpaca-format",
"region:us"
] | null | 2023-08-13T09:46:23Z |
---
library_name: peft
datasets:
- HachiML/hh-rlhf-49k-ja-alpaca-format
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
|
darthPanda/whisper-tiny-urdu
|
darthPanda
| 2023-08-13T09:47:03Z | 86 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"ur",
"dataset:mozilla-foundation/common_voice_13_0",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T07:25:30Z |
---
language:
- ur
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Small Urdu - darth
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 13
type: mozilla-foundation/common_voice_13_0
config: ur
split: test
args: ur
metrics:
- name: Wer
type: wer
value: 59.544821179749185
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Urdu - darth
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 13 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8511
- Wer Ortho: 62.5039
- Wer: 59.5448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 0.673 | 1.08 | 500 | 0.8511 | 62.5039 | 59.5448 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0007
|
bigmorning
| 2023-08-13T09:44:23Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T09:44:16Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0007
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0007
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2561
- Train Accuracy: 0.0736
- Train Wermet: 11.3173
- Validation Loss: 0.3256
- Validation Accuracy: 0.0749
- Validation Wermet: 9.9431
- Epoch: 6
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
| 0.2561 | 0.0736 | 11.3173 | 0.3256 | 0.0749 | 9.9431 | 6 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
asenella/MMVAEPlus_beta_25_scale_True_seed_3
|
asenella
| 2023-08-13T09:44:09Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-07-27T19:38:45Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
bigmorning/whisper_charsplit_new_0006
|
bigmorning
| 2023-08-13T09:39:58Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T09:39:51Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0006
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0006
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2886
- Train Accuracy: 0.0729
- Train Wermet: 11.5171
- Validation Loss: 0.3403
- Validation Accuracy: 0.0745
- Validation Wermet: 9.8042
- Epoch: 5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
| 0.3292 | 0.0720 | 11.5732 | 0.3630 | 0.0740 | 9.9885 | 4 |
| 0.2886 | 0.0729 | 11.5171 | 0.3403 | 0.0745 | 9.8042 | 5 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0004
|
bigmorning
| 2023-08-13T09:31:14Z | 60 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T09:31:06Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0004
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0004
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3813
- Train Accuracy: 0.0708
- Train Wermet: 11.9157
- Validation Loss: 0.3935
- Validation Accuracy: 0.0733
- Validation Wermet: 9.4615
- Epoch: 3
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
| 0.3813 | 0.0708 | 11.9157 | 0.3935 | 0.0733 | 9.4615 | 3 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
TinToTin/ppo-CartPole-v1
|
TinToTin
| 2023-08-13T09:27:09Z | 0 | 0 | null |
[
"tensorboard",
"CartPole-v1",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-13T09:24:39Z |
---
tags:
- CartPole-v1
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 247.10 +/- 99.41
name: mean_reward
verified: false
---
# PPO Agent Playing CartPole-v1
This is a trained model of a PPO agent playing CartPole-v1.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'CartPole-v1'
'total_timesteps': 100000
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'Thineshan/ppo-CartPole-v1'
'batch_size': 512
'minibatch_size': 128}
```
|
bigmorning/whisper_charsplit_new_0003
|
bigmorning
| 2023-08-13T09:26:48Z | 59 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T09:26:40Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0003
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0003
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.4553
- Train Accuracy: 0.0692
- Train Wermet: 12.2404
- Validation Loss: 0.4371
- Validation Accuracy: 0.0723
- Validation Wermet: 10.9105
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
| 0.5740 | 0.0666 | 12.7778 | 0.5113 | 0.0706 | 11.1022 | 1 |
| 0.4553 | 0.0692 | 12.2404 | 0.4371 | 0.0723 | 10.9105 | 2 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
bigmorning/whisper_charsplit_new_0001
|
bigmorning
| 2023-08-13T09:17:56Z | 60 | 0 |
transformers
|
[
"transformers",
"tf",
"whisper",
"automatic-speech-recognition",
"generated_from_keras_callback",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T09:17:49Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_keras_callback
model-index:
- name: whisper_charsplit_new_0001
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# whisper_charsplit_new_0001
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.8733
- Train Accuracy: 0.0602
- Train Wermet: 13.0686
- Validation Loss: 0.6470
- Validation Accuracy: 0.0676
- Validation Wermet: 11.4066
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch |
|:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:|
| 0.8733 | 0.0602 | 13.0686 | 0.6470 | 0.0676 | 11.4066 | 0 |
### Framework versions
- Transformers 4.32.0.dev0
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
moraxgiga/llama-2-7b-Gokul_datadolly
|
moraxgiga
| 2023-08-13T09:09:24Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-28T09:17:14Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
|
asenella/MMVAEPlus_beta_5_scale_True_seed_1
|
asenella
| 2023-08-13T09:01:02Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-07-27T17:02:49Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
fathyshalab/mdcsi-finanzen-setfit
|
fathyshalab
| 2023-08-13T08:57:01Z | 7 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-08-13T08:56:11Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# C:\Users\F896D~1.SHA\AppData\Local\Temp\tmp1dwypgha\fathyshalab\mdcsi-finanzen-setfit
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("C:\Users\F896D~1.SHA\AppData\Local\Temp\tmp1dwypgha\fathyshalab\mdcsi-finanzen-setfit")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
caffeinatedwoof/whisper-tiny-minds14-enUS
|
caffeinatedwoof
| 2023-08-13T08:55:58Z | 75 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:PolyAI/minds14",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-13T05:59:19Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-minds14-enUS
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train
args: en-US
metrics:
- name: Wer
type: wer
value: 30.3873431533006
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-minds14-enUS
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7518
- Wer Ortho: 30.8480
- Wer: 30.3873
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 0.0006 | 35.71 | 500 | 0.7518 | 30.8480 | 30.3873 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
vj1148/lora-peft-flant5-large-v1
|
vj1148
| 2023-08-13T08:44:16Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-13T08:44:14Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
### Framework versions
- PEFT 0.5.0.dev0
|
facebook/mms-1b-fl102
|
facebook
| 2023-08-13T08:33:09Z | 2,903 | 23 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"mms",
"ab",
"af",
"ak",
"am",
"ar",
"as",
"av",
"ay",
"az",
"ba",
"bm",
"be",
"bn",
"bi",
"bo",
"sh",
"br",
"bg",
"ca",
"cs",
"ce",
"cv",
"ku",
"cy",
"da",
"de",
"dv",
"dz",
"el",
"en",
"eo",
"et",
"eu",
"ee",
"fo",
"fa",
"fj",
"fi",
"fr",
"fy",
"ff",
"ga",
"gl",
"gn",
"gu",
"zh",
"ht",
"ha",
"he",
"hi",
"hu",
"hy",
"ig",
"ia",
"ms",
"is",
"it",
"jv",
"ja",
"kn",
"ka",
"kk",
"kr",
"km",
"ki",
"rw",
"ky",
"ko",
"kv",
"lo",
"la",
"lv",
"ln",
"lt",
"lb",
"lg",
"mh",
"ml",
"mr",
"mk",
"mg",
"mt",
"mn",
"mi",
"my",
"nl",
"no",
"ne",
"ny",
"oc",
"om",
"or",
"os",
"pa",
"pl",
"pt",
"ps",
"qu",
"ro",
"rn",
"ru",
"sg",
"sk",
"sl",
"sm",
"sn",
"sd",
"so",
"es",
"sq",
"su",
"sv",
"sw",
"ta",
"tt",
"te",
"tg",
"tl",
"th",
"ti",
"ts",
"tr",
"uk",
"vi",
"wo",
"xh",
"yo",
"zu",
"za",
"dataset:google/fleurs",
"arxiv:2305.13516",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-05-27T14:17:11Z |
---
tags:
- mms
language:
- ab
- af
- ak
- am
- ar
- as
- av
- ay
- az
- ba
- bm
- be
- bn
- bi
- bo
- sh
- br
- bg
- ca
- cs
- ce
- cv
- ku
- cy
- da
- de
- dv
- dz
- el
- en
- eo
- et
- eu
- ee
- fo
- fa
- fj
- fi
- fr
- fy
- ff
- ga
- gl
- gn
- gu
- zh
- ht
- ha
- he
- hi
- sh
- hu
- hy
- ig
- ia
- ms
- is
- it
- jv
- ja
- kn
- ka
- kk
- kr
- km
- ki
- rw
- ky
- ko
- kv
- lo
- la
- lv
- ln
- lt
- lb
- lg
- mh
- ml
- mr
- ms
- mk
- mg
- mt
- mn
- mi
- my
- zh
- nl
- 'no'
- 'no'
- ne
- ny
- oc
- om
- or
- os
- pa
- pl
- pt
- ms
- ps
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- qu
- ro
- rn
- ru
- sg
- sk
- sl
- sm
- sn
- sd
- so
- es
- sq
- su
- sv
- sw
- ta
- tt
- te
- tg
- tl
- th
- ti
- ts
- tr
- uk
- ms
- vi
- wo
- xh
- ms
- yo
- ms
- zu
- za
license: cc-by-nc-4.0
datasets:
- google/fleurs
metrics:
- wer
---
# Massively Multilingual Speech (MMS) - Finetuned ASR - FL102
This checkpoint is a model fine-tuned for multi-lingual ASR and part of Facebook's [Massive Multilingual Speech project](https://research.facebook.com/publications/scaling-speech-technology-to-1000-languages/).
This checkpoint is based on the [Wav2Vec2 architecture](https://huggingface.co/docs/transformers/model_doc/wav2vec2) and makes use of adapter models to transcribe 100+ languages.
The checkpoint consists of **1 billion parameters** and has been fine-tuned from [facebook/mms-1b](https://huggingface.co/facebook/mms-1b) on 102 languages of [Fleurs](https://huggingface.co/datasets/google/fleurs).
## Table Of Content
- [Example](#example)
- [Supported Languages](#supported-languages)
- [Model details](#model-details)
- [Additional links](#additional-links)
## Example
This MMS checkpoint can be used with [Transformers](https://github.com/huggingface/transformers) to transcribe audio of 1107 different
languages. Let's look at a simple example.
First, we install transformers and some other libraries
```
pip install torch accelerate torchaudio datasets
pip install --upgrade transformers
````
**Note**: In order to use MMS you need to have at least `transformers >= 4.30` installed. If the `4.30` version
is not yet available [on PyPI](https://pypi.org/project/transformers/) make sure to install `transformers` from
source:
```
pip install git+https://github.com/huggingface/transformers.git
```
Next, we load a couple of audio samples via `datasets`. Make sure that the audio data is sampled to 16000 kHz.
```py
from datasets import load_dataset, Audio
# English
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
en_sample = next(iter(stream_data))["audio"]["array"]
# French
stream_data = load_dataset("mozilla-foundation/common_voice_13_0", "fr", split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
fr_sample = next(iter(stream_data))["audio"]["array"]
```
Next, we load the model and processor
```py
from transformers import Wav2Vec2ForCTC, AutoProcessor
import torch
model_id = "facebook/mms-1b-fl102"
processor = AutoProcessor.from_pretrained(model_id)
model = Wav2Vec2ForCTC.from_pretrained(model_id)
```
Now we process the audio data, pass the processed audio data to the model and transcribe the model output, just like we usually do for Wav2Vec2 models such as [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h)
```py
inputs = processor(en_sample, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs).logits
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
# 'joe keton disapproved of films and buster also had reservations about the media'
```
We can now keep the same model in memory and simply switch out the language adapters by calling the convenient [`load_adapter()`]() function for the model and [`set_target_lang()`]() for the tokenizer. We pass the target language as an input - "fra" for French.
```py
processor.tokenizer.set_target_lang("fra")
model.load_adapter("fra")
inputs = processor(fr_sample, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs).logits
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
# "ce dernier est volé tout au long de l'histoire romaine"
```
In the same way the language can be switched out for all other supported languages. Please have a look at:
```py
processor.tokenizer.vocab.keys()
```
For more details, please have a look at [the official docs](https://huggingface.co/docs/transformers/main/en/model_doc/mms).
## Supported Languages
This model supports 102 languages. Unclick the following to toogle all supported languages of this checkpoint in [ISO 639-3 code](https://en.wikipedia.org/wiki/ISO_639-3).
You can find more details about the languages and their ISO 649-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html).
<details>
<summary>Click to toggle</summary>
- afr
- amh
- ara
- asm
- ast
- azj-script_latin
- bel
- ben
- bos
- bul
- cat
- ceb
- ces
- ckb
- cmn-script_simplified
- cym
- dan
- deu
- ell
- eng
- est
- fas
- fin
- fra
- ful
- gle
- glg
- guj
- hau
- heb
- hin
- hrv
- hun
- hye
- ibo
- ind
- isl
- ita
- jav
- jpn
- kam
- kan
- kat
- kaz
- kea
- khm
- kir
- kor
- lao
- lav
- lin
- lit
- ltz
- lug
- luo
- mal
- mar
- mkd
- mlt
- mon
- mri
- mya
- nld
- nob
- npi
- nso
- nya
- oci
- orm
- ory
- pan
- pol
- por
- pus
- ron
- rus
- slk
- slv
- sna
- snd
- som
- spa
- srp-script_latin
- swe
- swh
- tam
- tel
- tgk
- tgl
- tha
- tur
- ukr
- umb
- urd-script_arabic
- uzb-script_latin
- vie
- wol
- xho
- yor
- yue-script_traditional
- zlm
- zul
</details>
## Model details
- **Developed by:** Vineel Pratap et al.
- **Model type:** Multi-Lingual Automatic Speech Recognition model
- **Language(s):** 100+ languages, see [supported languages](#supported-languages)
- **License:** CC-BY-NC 4.0 license
- **Num parameters**: 1 billion
- **Audio sampling rate**: 16,000 kHz
- **Cite as:**
@article{pratap2023mms,
title={Scaling Speech Technology to 1,000+ Languages},
author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli},
journal={arXiv},
year={2023}
}
## Additional Links
- [Blog post](https://ai.facebook.com/blog/multilingual-model-speech-recognition/)
- [Transformers documentation](https://huggingface.co/docs/transformers/main/en/model_doc/mms).
- [Paper](https://arxiv.org/abs/2305.13516)
- [GitHub Repository](https://github.com/facebookresearch/fairseq/tree/main/examples/mms#asr)
- [Other **MMS** checkpoints](https://huggingface.co/models?other=mms)
- MMS base checkpoints:
- [facebook/mms-1b](https://huggingface.co/facebook/mms-1b)
- [facebook/mms-300m](https://huggingface.co/facebook/mms-300m)
- [Official Space](https://huggingface.co/spaces/facebook/MMS)
|
asenella/MMVAEPlus_beta_25_scale_True_seed_0
|
asenella
| 2023-08-13T08:29:36Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-07-27T16:49:53Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
fathyshalab/mdcsi-moebel-einrichtungshaeuser-setfit
|
fathyshalab
| 2023-08-13T08:25:32Z | 5 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-08-13T08:24:41Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# C:\Users\F896D~1.SHA\AppData\Local\Temp\tmpvfzjmjqz\fathyshalab\mdcsi-moebel-einrichtungshaeuser-setfit
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("C:\Users\F896D~1.SHA\AppData\Local\Temp\tmpvfzjmjqz\fathyshalab\mdcsi-moebel-einrichtungshaeuser-setfit")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
GhifSmile/distilbert-base-uncased-DSC-new-cllbck
|
GhifSmile
| 2023-08-13T08:19:27Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-13T08:01:21Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: distilbert-base-uncased-DSC-new-cllbck
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-DSC-new-cllbck
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1160
- Accuracy: 0.9817
- Precision: 0.9831
- Recall: 0.9818
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|
| 0.5329 | 1.0 | 618 | 0.1812 | 0.9511 | 0.9577 | 0.9518 |
| 0.0853 | 2.0 | 1236 | 0.1160 | 0.9817 | 0.9831 | 0.9818 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
Madhur-01/my_awesome_qa_model
|
Madhur-01
| 2023-08-13T08:18:15Z | 62 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"question-answering",
"generated_from_keras_callback",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-08-13T07:31:28Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: my_awesome_qa_model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# my_awesome_qa_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.4973
- Validation Loss: 1.7800
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 500, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 3.4245 | 2.1038 | 0 |
| 1.7543 | 1.7800 | 1 |
| 1.4973 | 1.7800 | 2 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3
|
fathyshalab/mdcsi-mode-schmuck-zubehoer-setfit
|
fathyshalab
| 2023-08-13T08:01:34Z | 6 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-08-13T08:00:39Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# C:\Users\F896D~1.SHA\AppData\Local\Temp\tmp_3k_lzj7\fathyshalab\mdcsi-mode-schmuck-zubehoer-setfit
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("C:\Users\F896D~1.SHA\AppData\Local\Temp\tmp_3k_lzj7\fathyshalab\mdcsi-mode-schmuck-zubehoer-setfit")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
modelmaker/luna
|
modelmaker
| 2023-08-13T07:55:20Z | 0 | 0 |
diffusers
|
[
"diffusers",
"cat",
"ay",
"dataset:Open-Orca/OpenOrca",
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-08-13T07:53:41Z |
---
license: creativeml-openrail-m
datasets:
- Open-Orca/OpenOrca
language:
- ay
metrics:
- accuracy
library_name: diffusers
tags:
- cat
---
|
zjunlp/knowlm-13b-base-v1.0
|
zjunlp
| 2023-08-13T07:54:42Z | 118 | 5 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-13T03:13:33Z |
---
license: apache-2.0
---
<p align="center" width="100%">
<a href="" target="_blank"><img src="https://github.com/zjunlp/KnowLM/blob/main/assets/KnowLM.png?raw=true" alt="ZJU-KnowLM" style="width: 40%; min-width: 40px; display: block; margin: auto;"></a>
</p>
Built upon LlaMA-13b, this version incorporates pretraining weights from a secondary full-scale pretraining phase using both Chinese and English bilingual data. This augmentation improves the model's comprehension of Chinese. For further details, please refer to this [**link**](https://github.com/zjunlp/KnowLM).
|
nekohacker591/google1
|
nekohacker591
| 2023-08-13T07:32:54Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gptj",
"text-generation",
"text generation",
"conversational",
"en",
"license:creativeml-openrail-m",
"autotrain_compatible",
"region:us"
] |
text-generation
| 2023-08-13T02:07:02Z |
---
license: creativeml-openrail-m
language:
- en
thumbnail:
tags:
- text generation
- conversational
inference: false
---
# Pygmalion 6B
## Model description
Pymalion 6B is a proof-of-concept dialogue model based on EleutherAI's [GPT-J-6B](https://huggingface.co/EleutherAI/gpt-j-6B).
**Warning:** This model is **NOT** suitable for use by minors. It **will** output X-rated content under certain circumstances.
## Training data
The fine-tuning dataset consisted of 56MB of dialogue data gathered from multiple sources, which includes both real _and_ partially machine-generated conversations.
## Training procedure
Model weights were initialized from the `uft-6b` ConvoGPT model made available in [this commit](https://huggingface.co/hakurei/convogpt/tree/41b67bfddb6cd97070ffddf708e9720c9cb8d224/6b-uft).
The model was then further fine-tuned on ~48.5 million tokens for ~5k steps on 4 NVIDIA A40s using DeepSpeed.
## Intended use
### The easy way
We provide a notebook with a Gradio UI for playing around with the model without having to manually format inputs. This notebook can be found [here](https://github.com/PygmalionAI/gradio-ui/blob/master/notebooks/GPU.ipynb).
### The manual way
The model can be used as a regular text generation model, but it'll perform best if the input prompt adheres to the following format:
```
[CHARACTER]'s Persona: [A few sentences about the character you want the model to play]
<START>
[DIALOGUE HISTORY]
You: [Your input message here]
[CHARACTER]:
```
Where `[CHARACTER]` is, as you can probably guess, the name of the character you want the model to portray, `<START>` should be used verbatim as a delimiter token to separate persona and scenario data from the dialogue, and `[DIALOGUE HISTORY]` is chat history so the model can have some conversational context to draw from. Ideally it'll be pairs of messages like:
```
[CHARACTER]: [some dialogue here]
You: [your response to the dialogue above]
```
Apart from chat history, you can also just add example conversations in `[DIALOGUE HISTORY]` to show how the character should speak - ideally at the beginning, so it doesn't get confused as to what's conversation history vs. character definition.
## Known issues
We haven't played around with the model enough to enumerate them. Feel free to give us some feedback!
|
timjwhite/distilhubert-finetuned-gtzan
|
timjwhite
| 2023-08-13T07:21:22Z | 168 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"hubert",
"audio-classification",
"generated_from_trainer",
"dataset:marsyas/gtzan",
"base_model:Sandiago21/distilhubert-finetuned-gtzan",
"base_model:finetune:Sandiago21/distilhubert-finetuned-gtzan",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2023-07-11T10:54:34Z |
---
license: apache-2.0
base_model: Sandiago21/distilhubert-finetuned-gtzan
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.88
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [Sandiago21/distilhubert-finetuned-gtzan](https://huggingface.co/Sandiago21/distilhubert-finetuned-gtzan) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9951
- Accuracy: 0.88
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0951 | 1.0 | 57 | 0.5566 | 0.87 |
| 0.0629 | 2.0 | 114 | 0.6819 | 0.83 |
| 0.0231 | 3.0 | 171 | 0.6118 | 0.86 |
| 0.0159 | 4.0 | 228 | 0.9208 | 0.83 |
| 0.0374 | 5.0 | 285 | 0.8746 | 0.85 |
| 0.1714 | 6.0 | 342 | 0.6671 | 0.87 |
| 0.2148 | 7.0 | 399 | 1.1850 | 0.79 |
| 0.0147 | 8.0 | 456 | 1.0551 | 0.79 |
| 0.0788 | 9.0 | 513 | 1.5179 | 0.79 |
| 0.0015 | 10.0 | 570 | 1.3290 | 0.8 |
| 0.0049 | 11.0 | 627 | 1.0943 | 0.85 |
| 0.0012 | 12.0 | 684 | 1.0667 | 0.85 |
| 0.0043 | 13.0 | 741 | 1.1816 | 0.82 |
| 0.0015 | 14.0 | 798 | 0.9108 | 0.88 |
| 0.0011 | 15.0 | 855 | 1.0289 | 0.87 |
| 0.001 | 16.0 | 912 | 0.7696 | 0.87 |
| 0.0006 | 17.0 | 969 | 0.8539 | 0.87 |
| 0.1001 | 18.0 | 1026 | 1.1917 | 0.78 |
| 0.0017 | 19.0 | 1083 | 1.0016 | 0.83 |
| 0.0525 | 20.0 | 1140 | 0.9513 | 0.88 |
| 0.0004 | 21.0 | 1197 | 0.9268 | 0.86 |
| 0.0003 | 22.0 | 1254 | 1.1209 | 0.82 |
| 0.0003 | 23.0 | 1311 | 0.9270 | 0.87 |
| 0.0003 | 24.0 | 1368 | 1.1148 | 0.84 |
| 0.0003 | 25.0 | 1425 | 1.0507 | 0.85 |
| 0.0002 | 26.0 | 1482 | 1.0156 | 0.86 |
| 0.0002 | 27.0 | 1539 | 1.0062 | 0.87 |
| 0.0002 | 28.0 | 1596 | 1.0124 | 0.87 |
| 0.0002 | 29.0 | 1653 | 1.0154 | 0.87 |
| 0.0002 | 30.0 | 1710 | 1.0092 | 0.88 |
| 0.0002 | 31.0 | 1767 | 1.0123 | 0.88 |
| 0.0175 | 32.0 | 1824 | 0.9928 | 0.88 |
| 0.0002 | 33.0 | 1881 | 1.0014 | 0.88 |
| 0.0115 | 34.0 | 1938 | 0.9989 | 0.88 |
| 0.0001 | 35.0 | 1995 | 0.9871 | 0.88 |
| 0.0001 | 36.0 | 2052 | 0.9920 | 0.88 |
| 0.0002 | 37.0 | 2109 | 0.9974 | 0.88 |
| 0.0002 | 38.0 | 2166 | 0.9950 | 0.88 |
| 0.0001 | 39.0 | 2223 | 0.9997 | 0.88 |
| 0.0001 | 40.0 | 2280 | 0.9951 | 0.88 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|
caiAtSNU/ppo-from-scratch-LunarLander-v2
|
caiAtSNU
| 2023-08-13T07:10:14Z | 0 | 0 | null |
[
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-13T07:07:30Z |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -126.67 +/- 91.01
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo_solution'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 50000
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'caiAtSNU/ppo-from-scratch-LunarLander-v2'
'batch_size': 512
'minibatch_size': 128}
```
|
LongSafari/hyenadna-medium-160k-seqlen
|
LongSafari
| 2023-08-13T07:05:42Z | 17 | 2 |
transformers
|
[
"transformers",
"arxiv:2306.15794",
"arxiv:2302.10866",
"license:bsd-3-clause",
"endpoints_compatible",
"region:us"
] | null | 2023-06-23T05:23:10Z |
---
license: bsd-3-clause
---
# HyenaDNA
Welcome! HyenaDNA is a long-range genomic foundation model pretrained on context lengths of up to **1 million tokens** at **single nucleotide resolution**.
See below for an [overview](#model) of the model and training. Better yet, check out these resources.
**Resources:**
- [arxiv](https://arxiv.org/abs/2306.15794)
- [blog](https://hazyresearch.stanford.edu/blog/2023-06-29-hyena-dna)
- [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing)
- [github](https://github.com/HazyResearch/hyena-dna)
**Links to all HuggingFace models:**
- [tiny-1k](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen/tree/main)
- [tiny-1k-d256](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen-d256/tree/main)
- [small-32k](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen/tree/main)
- [medium-160k](https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen/tree/main)
- [medium-450k](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen/tree/main)
- [large-1m](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen/tree/main)
See [GPU requirements](#hardware) for each model.
### Sample snippet
This code example lets you select which pretrained model to load from HuggingFace, perform inference and get embeddings.
See the [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing) for these classes, or the ['huggingface.py'](https://github.com/HazyResearch/hyena-dna/blob/main/huggingface.py) script in the main [github](https://github.com/HazyResearch/hyena-dna).
```python
# instantiate pretrained model
pretrained_model_name = 'hyenadna-medium-450k-seqlen'
max_length = 450_000
model = HyenaDNAPreTrainedModel.from_pretrained(
'./checkpoints',
pretrained_model_name,
)
# create tokenizer, no training involved :)
tokenizer = CharacterTokenizer(
characters=['A', 'C', 'G', 'T', 'N'], # add DNA characters
model_max_length=max_length,
)
# create a sample
sequence = 'ACTG' * int(max_length/4)
tok_seq = tokenizer(sequence)["input_ids"]
# place on device, convert to tensor
tok_seq = torch.LongTensor(tok_seq).unsqueeze(0).to(device) # unsqueeze for batch dim
# prep model and forward
model.to(device)
model.eval() # deterministic
with torch.inference_mode():
embeddings = model(tok_seq)
print(embeddings.shape) # embeddings here!
```
### How to use pretrained weights
- [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing)
The colab is the easiest entry point, you can finetune a small model, and do inference on DNA sequences up to 450k on the free tier (T4 GPU), and up to 1 million on the paid tier (A100). It handles all the HuggingFace integration for you, so it's helpful to see this example first.
- [github](https://github.com/HazyResearch/hyena-dna)
Otherwise, checkout of the main HyenaDNA repo for how to load weights into Pytorch Lightning. We use Pytorch Lightning for pretraining and fine-tuning all of our models. If you want to use our actual pretraining code, you can clone this HuggingFace repo to download the actual weights.ckpt, and then pass it to Pytorch Lightning via command line or config. See the [github](https://github.com/HazyResearch/hyena-dna) README for how to do all that.
If you want a standalone version that's easy to port into your own code (and not tied to our repo or Pytorch Lightning), we have that and a HuggingFace example in ['huggingface.py'](https://github.com/HazyResearch/hyena-dna/blob/main/huggingface.py) too.
### GPU requirements (suggested)
<a name="hardware"></a>
Here are suggestions on the hardware (preferred minimum) we think you can use for each model.
GPU during: Pretrain, fine-tune, inference
- [tiny-1k](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen/tree/main): (T4, T4, T4)
- [small-32k](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen/tree/main): (A100-40, T4, T4)
- [medium-160k](https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen/tree/main): (A100-40, A100-40, T4)
- [medium-450k](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen/tree/main): (A100-40, A100-40, T4)
- [large-1m](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen/tree/main): (A100-80, A100-80, A100-40)
T4: 16GB
A100-40: 40GB
A100-80: 80GB
## Model & Training Overview
<a name="model"></a>
HyenaDNA uses a simple stack of [Hyena](https://arxiv.org/abs/2302.10866) operators, which are a subquadratic drop-in replacement for attention in Transformers. The Hyena operator is able to match quality in language modeling by using modified input projections, implicit convolutions and gating, all subquadratic operations.
This enables HyenaDNA to reach context lengths of up to 500x longer than previous genomic Transformer models using dense attention, and train 160x faster at sequence length 1M (compared to Flash Attention).
We use a single character tokenizer with a primary vocab of 4 nucleotides (plus special tokens), enabling the single nucleotide resolution, a first in genomic foundation models. In addition, the implicit long convolution enables a **global receptive field** at each layer.
We pretrain using next token (nucleotide) prediction on the human reference genome (HG38).
HyenaDNA sets new SotA on 23 downstream tasks including predicting regulatory elements, chromatin profiles, and species classification. We also explore what new capabilities open up with long context in genomics, including the first use of in-context learning with soft prompt tuneable tokens and instruction fine-tuning.
Check out our [blog](https://hazyresearch.stanford.edu/blog/2023-06-29-hyena-dna) for more details on HyenaDNA!
### Authors
Eric Nguyen*, Michael Poli*, Marjan Faizi*, Armin Thomas, Callum Birch-Sykes, Michael Wornow, Aman Patel, Clayton Rabideau, Stefano Massaroli, Yoshua Bengio, Stefano Ermon, Stephen Baccus, Chris Re.
**Contact**
Eric Nguyen, etnguyen@stanford.edu
Michael Poli, poli@stanford.edu
Marjan Faizi, Marjan_Faizi@hms.harvard.edu
## Citation
Feel free to cite us :)
```
@article{nguyen2023hyenadna,
title={HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution},
author={Eric Nguyen and Michael Poli and Marjan Faizi and Armin Thomas and Callum Birch-Sykes and Michael Wornow and Aman Patel and Clayton Rabideau and Stefano Massaroli and Yoshua Bengio and Stefano Ermon and Stephen A. Baccus and Chris Ré},
year={2023},
eprint={2306.15794},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
|
LongSafari/hyenadna-small-32k-seqlen
|
LongSafari
| 2023-08-13T07:04:45Z | 15 | 0 |
transformers
|
[
"transformers",
"arxiv:2306.15794",
"arxiv:2302.10866",
"license:bsd-3-clause",
"endpoints_compatible",
"region:us"
] | null | 2023-06-25T21:10:29Z |
---
license: bsd-3-clause
---
# HyenaDNA
Welcome! HyenaDNA is a long-range genomic foundation model pretrained on context lengths of up to **1 million tokens** at **single nucleotide resolution**.
See below for an [overview](#model) of the model and training. Better yet, check out these resources.
**Resources:**
- [arxiv](https://arxiv.org/abs/2306.15794)
- [blog](https://hazyresearch.stanford.edu/blog/2023-06-29-hyena-dna)
- [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing)
- [github](https://github.com/HazyResearch/hyena-dna)
**Links to all HuggingFace models:**
- [tiny-1k](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen/tree/main)
- [tiny-1k-d256](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen-d256/tree/main)
- [small-32k](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen/tree/main)
- [medium-160k](https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen/tree/main)
- [medium-450k](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen/tree/main)
- [large-1m](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen/tree/main)
See [GPU requirements](#hardware) for each model.
### Sample snippet
This code example lets you select which pretrained model to load from HuggingFace, perform inference and get embeddings.
See the [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing) for these classes, or the ['huggingface.py'](https://github.com/HazyResearch/hyena-dna/blob/main/huggingface.py) script in the main [github](https://github.com/HazyResearch/hyena-dna).
```python
# instantiate pretrained model
pretrained_model_name = 'hyenadna-medium-450k-seqlen'
max_length = 450_000
model = HyenaDNAPreTrainedModel.from_pretrained(
'./checkpoints',
pretrained_model_name,
)
# create tokenizer, no training involved :)
tokenizer = CharacterTokenizer(
characters=['A', 'C', 'G', 'T', 'N'], # add DNA characters
model_max_length=max_length,
)
# create a sample
sequence = 'ACTG' * int(max_length/4)
tok_seq = tokenizer(sequence)["input_ids"]
# place on device, convert to tensor
tok_seq = torch.LongTensor(tok_seq).unsqueeze(0).to(device) # unsqueeze for batch dim
# prep model and forward
model.to(device)
model.eval() # deterministic
with torch.inference_mode():
embeddings = model(tok_seq)
print(embeddings.shape) # embeddings here!
```
### How to use pretrained weights
- [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing)
The colab is the easiest entry point, you can finetune a small model, and do inference on DNA sequences up to 450k on the free tier (T4 GPU), and up to 1 million on the paid tier (A100). It handles all the HuggingFace integration for you, so it's helpful to see this example first.
- [github](https://github.com/HazyResearch/hyena-dna)
Otherwise, checkout of the main HyenaDNA repo for how to load weights into Pytorch Lightning. We use Pytorch Lightning for pretraining and fine-tuning all of our models. If you want to use our actual pretraining code, you can clone this HuggingFace repo to download the actual weights.ckpt, and then pass it to Pytorch Lightning via command line or config. See the [github](https://github.com/HazyResearch/hyena-dna) README for how to do all that.
If you want a standalone version that's easy to port into your own code (and not tied to our repo or Pytorch Lightning), we have that and a HuggingFace example in ['huggingface.py'](https://github.com/HazyResearch/hyena-dna/blob/main/huggingface.py) too.
### GPU requirements (suggested)
<a name="hardware"></a>
Here are suggestions on the hardware (preferred minimum) we think you can use for each model.
GPU during: Pretrain, fine-tune, inference
- [tiny-1k](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen/tree/main): (T4, T4, T4)
- [small-32k](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen/tree/main): (A100-40, T4, T4)
- [medium-160k](https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen/tree/main): (A100-40, A100-40, T4)
- [medium-450k](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen/tree/main): (A100-40, A100-40, T4)
- [large-1m](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen/tree/main): (A100-80, A100-80, A100-40)
T4: 16GB
A100-40: 40GB
A100-80: 80GB
## Model & Training Overview
<a name="model"></a>
HyenaDNA uses a simple stack of [Hyena](https://arxiv.org/abs/2302.10866) operators, which are a subquadratic drop-in replacement for attention in Transformers. The Hyena operator is able to match quality in language modeling by using modified input projections, implicit convolutions and gating, all subquadratic operations.
This enables HyenaDNA to reach context lengths of up to 500x longer than previous genomic Transformer models using dense attention, and train 160x faster at sequence length 1M (compared to Flash Attention).
We use a single character tokenizer with a primary vocab of 4 nucleotides (plus special tokens), enabling the single nucleotide resolution, a first in genomic foundation models. In addition, the implicit long convolution enables a **global receptive field** at each layer.
We pretrain using next token (nucleotide) prediction on the human reference genome (HG38).
HyenaDNA sets new SotA on 23 downstream tasks including predicting regulatory elements, chromatin profiles, and species classification. We also explore what new capabilities open up with long context in genomics, including the first use of in-context learning with soft prompt tuneable tokens and instruction fine-tuning.
Check out our [blog](https://hazyresearch.stanford.edu/blog/2023-06-29-hyena-dna) for more details on HyenaDNA!
### Authors
Eric Nguyen*, Michael Poli*, Marjan Faizi*, Armin Thomas, Callum Birch-Sykes, Michael Wornow, Aman Patel, Clayton Rabideau, Stefano Massaroli, Yoshua Bengio, Stefano Ermon, Stephen Baccus, Chris Re.
**Contact**
Eric Nguyen, etnguyen@stanford.edu
Michael Poli, poli@stanford.edu
Marjan Faizi, Marjan_Faizi@hms.harvard.edu
## Citation
Feel free to cite us :)
```
@article{nguyen2023hyenadna,
title={HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution},
author={Eric Nguyen and Michael Poli and Marjan Faizi and Armin Thomas and Callum Birch-Sykes and Michael Wornow and Aman Patel and Clayton Rabideau and Stefano Massaroli and Yoshua Bengio and Stefano Ermon and Stephen A. Baccus and Chris Ré},
year={2023},
eprint={2306.15794},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
|
LongSafari/hyenadna-tiny-1k-seqlen
|
LongSafari
| 2023-08-13T07:04:19Z | 132 | 5 |
transformers
|
[
"transformers",
"arxiv:2306.15794",
"arxiv:2302.10866",
"license:bsd-3-clause",
"endpoints_compatible",
"region:us"
] | null | 2023-06-22T19:06:15Z |
---
license: bsd-3-clause
---
# HyenaDNA
Welcome! HyenaDNA is a long-range genomic foundation model pretrained on context lengths of up to **1 million tokens** at **single nucleotide resolution**.
See below for an [overview](#model) of the model and training. Better yet, check out these resources.
**Resources:**
- [arxiv](https://arxiv.org/abs/2306.15794)
- [blog](https://hazyresearch.stanford.edu/blog/2023-06-29-hyena-dna)
- [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing)
- [github](https://github.com/HazyResearch/hyena-dna)
**Links to all HuggingFace models:**
- [tiny-1k](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen/tree/main)
- [tiny-1k-d256](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen-d256/tree/main)
- [small-32k](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen/tree/main)
- [medium-160k](https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen/tree/main)
- [medium-450k](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen/tree/main)
- [large-1m](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen/tree/main)
See [GPU requirements](#hardware) for each model.
### Sample snippet
This code example lets you select which pretrained model to load from HuggingFace, perform inference and get embeddings.
See the [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing) for these classes, or the ['huggingface.py'](https://github.com/HazyResearch/hyena-dna/blob/main/huggingface.py) script in the main [github](https://github.com/HazyResearch/hyena-dna).
```python
# instantiate pretrained model
pretrained_model_name = 'hyenadna-medium-450k-seqlen'
max_length = 450_000
model = HyenaDNAPreTrainedModel.from_pretrained(
'./checkpoints',
pretrained_model_name,
)
# create tokenizer, no training involved :)
tokenizer = CharacterTokenizer(
characters=['A', 'C', 'G', 'T', 'N'], # add DNA characters
model_max_length=max_length,
)
# create a sample
sequence = 'ACTG' * int(max_length/4)
tok_seq = tokenizer(sequence)["input_ids"]
# place on device, convert to tensor
tok_seq = torch.LongTensor(tok_seq).unsqueeze(0).to(device) # unsqueeze for batch dim
# prep model and forward
model.to(device)
model.eval() # deterministic
with torch.inference_mode():
embeddings = model(tok_seq)
print(embeddings.shape) # embeddings here!
```
### How to use pretrained weights
- [colab](https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL?usp=sharing)
The colab is the easiest entry point, you can finetune a small model, and do inference on DNA sequences up to 450k on the free tier (T4 GPU), and up to 1 million on the paid tier (A100). It handles all the HuggingFace integration for you, so it's helpful to see this example first.
- [github](https://github.com/HazyResearch/hyena-dna)
Otherwise, checkout of the main HyenaDNA repo for how to load weights into Pytorch Lightning. We use Pytorch Lightning for pretraining and fine-tuning all of our models. If you want to use our actual pretraining code, you can clone this HuggingFace repo to download the actual weights.ckpt, and then pass it to Pytorch Lightning via command line or config. See the [github](https://github.com/HazyResearch/hyena-dna) README for how to do all that.
If you want a standalone version that's easy to port into your own code (and not tied to our repo or Pytorch Lightning), we have that and a HuggingFace example in ['huggingface.py'](https://github.com/HazyResearch/hyena-dna/blob/main/huggingface.py) too.
### GPU requirements (suggested)
<a name="hardware"></a>
Here are suggestions on the hardware (preferred minimum) we think you can use for each model.
GPU during: Pretrain, fine-tune, inference
- [tiny-1k](https://huggingface.co/LongSafari/hyenadna-tiny-1k-seqlen/tree/main): (T4, T4, T4)
- [small-32k](https://huggingface.co/LongSafari/hyenadna-small-32k-seqlen/tree/main): (A100-40, T4, T4)
- [medium-160k](https://huggingface.co/LongSafari/hyenadna-medium-160k-seqlen/tree/main): (A100-40, A100-40, T4)
- [medium-450k](https://huggingface.co/LongSafari/hyenadna-medium-450k-seqlen/tree/main): (A100-40, A100-40, T4)
- [large-1m](https://huggingface.co/LongSafari/hyenadna-large-1m-seqlen/tree/main): (A100-80, A100-80, A100-40)
T4: 16GB
A100-40: 40GB
A100-80: 80GB
## Model & Training Overview
<a name="model"></a>
HyenaDNA uses a simple stack of [Hyena](https://arxiv.org/abs/2302.10866) operators, which are a subquadratic drop-in replacement for attention in Transformers. The Hyena operator is able to match quality in language modeling by using modified input projections, implicit convolutions and gating, all subquadratic operations.
This enables HyenaDNA to reach context lengths of up to 500x longer than previous genomic Transformer models using dense attention, and train 160x faster at sequence length 1M (compared to Flash Attention).
We use a single character tokenizer with a primary vocab of 4 nucleotides (plus special tokens), enabling the single nucleotide resolution, a first in genomic foundation models. In addition, the implicit long convolution enables a **global receptive field** at each layer.
We pretrain using next token (nucleotide) prediction on the human reference genome (HG38).
HyenaDNA sets new SotA on 23 downstream tasks including predicting regulatory elements, chromatin profiles, and species classification. We also explore what new capabilities open up with long context in genomics, including the first use of in-context learning with soft prompt tuneable tokens and instruction fine-tuning.
Check out our [blog](https://hazyresearch.stanford.edu/blog/2023-06-29-hyena-dna) for more details on HyenaDNA!
### Authors
Eric Nguyen*, Michael Poli*, Marjan Faizi*, Armin Thomas, Callum Birch-Sykes, Michael Wornow, Aman Patel, Clayton Rabideau, Stefano Massaroli, Yoshua Bengio, Stefano Ermon, Stephen Baccus, Chris Re.
**Contact**
Eric Nguyen, etnguyen@stanford.edu
Michael Poli, poli@stanford.edu
Marjan Faizi, Marjan_Faizi@hms.harvard.edu
## Citation
Feel free to cite us :)
```
@article{nguyen2023hyenadna,
title={HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution},
author={Eric Nguyen and Michael Poli and Marjan Faizi and Armin Thomas and Callum Birch-Sykes and Michael Wornow and Aman Patel and Clayton Rabideau and Stefano Massaroli and Yoshua Bengio and Stefano Ermon and Stephen A. Baccus and Chris Ré},
year={2023},
eprint={2306.15794},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
|
fp16-guy/Cetus-Mix_Whalefall_fp16_cleaned
|
fp16-guy
| 2023-08-13T06:58:15Z | 0 | 4 | null |
[
"text-to-image",
"region:us"
] |
text-to-image
| 2023-07-26T18:24:50Z |
---
pipeline_tag: text-to-image
---
Cetus-Mix Whalefall, but fp16/cleaned - smaller size, same result.
========
///
**[**original checkpoint link**](https://civitai.com/models/6755?modelVersionId=126564)**
*(all rights to the model belong to Eagelaxis)*
---
*[*grid 01*](https://huggingface.co/datasets/fp16-guy/grids/blob/main/cetusMix_Whalefall2%2001.png) *(1.99gb version)*
*[*grid 02*](https://huggingface.co/datasets/fp16-guy/grids/blob/main/cetusMix_Whalefall2%2002%20no%20vae.png) *(1.83gb version - no vae)*
*[*grid 03*](https://huggingface.co/datasets/fp16-guy/grids_inp/blob/main/cetusMix_Whalefall2%20inp%2001%2020230812123319-111-cetusMix_Whalefall2_fp16-Euler%20a-5.5.png) *(1.99gb inpainting version)*
*[*grid 04*](https://huggingface.co/datasets/fp16-guy/grids_inp/blob/main/cetusMix_Whalefall2%20inp%2002%2020230812123519-111-cetusMix_Whalefall2_fp16_no_vae-Euler%20a-5.5.png) *(1.83gb inpainting version - no vae)*
|
fp16-guy/Disney_Pixar_Cartoon_Type_A_fp16_cleaned
|
fp16-guy
| 2023-08-13T06:57:15Z | 0 | 2 | null |
[
"text-to-image",
"region:us"
] |
text-to-image
| 2023-08-01T10:41:52Z |
---
pipeline_tag: text-to-image
---
Disney Pixar Cartoon Type A, but fp16/cleaned - smaller size, same result.
========
///
**[**original checkpoint link**](https://civitai.com/models/65203/disney-pixar-cartoon-type-a)**
*(all rights to the model belong to PromptSharingSamaritan)*
---
*[*grid 01*](https://huggingface.co/datasets/fp16-guy/grids/blob/main/disneypixar%2010%2001%2020230801122719-111-disneyPixarCartoon_v10-Euler%20a-6.png) *(1.99gb version)*
*[*grid 02*](https://huggingface.co/datasets/fp16-guy/grids/blob/main/disneypixar%2010%2002%20no%20vae%2020230801123402-111-disneyPixarCartoon_v10-Euler%20a-6.png) *(1.83gb version - no vae)*
*[*grid 03*](https://huggingface.co/datasets/fp16-guy/grids_inp/blob/main/disneypixar%2010%20inp%2001%2020230812124144-111-disneyPixarCartoon_v10_fp16-Euler%20a-5.5.png) *(1.99gb inpainting version)*
*[*grid 04*](https://huggingface.co/datasets/fp16-guy/grids_inp/blob/main/disneypixar%2010%20inp%2002%2020230812124250-111-disneyPixarCartoon_v10_fp16_no_vae-Euler%20a-5.5.png) *(1.83gb inpainting version - no vae)*
|
NocteZeta/ppo-Huggy
|
NocteZeta
| 2023-08-13T06:17:15Z | 5 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-08-13T06:17:05Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: NocteZeta/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Evan-Lin/Bart-large-abs-yelp-entailment
|
Evan-Lin
| 2023-08-13T06:09:54Z | 49 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"trl",
"reinforcement-learning",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
reinforcement-learning
| 2023-08-13T06:02:49Z |
---
license: apache-2.0
tags:
- trl
- transformers
- reinforcement-learning
---
# TRL Model
This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="Evan-Lin//tmp/tmp57lx8mhn/Evan-Lin/Bart-large-abs-yelp-entailment")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("Evan-Lin//tmp/tmp57lx8mhn/Evan-Lin/Bart-large-abs-yelp-entailment")
model = AutoModelForCausalLMWithValueHead.from_pretrained("Evan-Lin//tmp/tmp57lx8mhn/Evan-Lin/Bart-large-abs-yelp-entailment")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```
|
scoldgrin/ppo-LunarLander-v2
|
scoldgrin
| 2023-08-13T05:48:05Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-13T05:47:44Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 248.55 +/- 12.21
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
iknow-lab/ko-flan-zero-v0-0731
|
iknow-lab
| 2023-08-13T05:46:38Z | 112 | 0 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"text-classification",
"ko",
"dataset:nsmc",
"dataset:jason9693/APEACH",
"dataset:KETI-AIR/korquad",
"dataset:klue",
"dataset:smilegate-ai/kor_unsmile",
"dataset:kor_nlu",
"dataset:skt/kobest_v1",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-08T13:49:38Z |
---
license: apache-2.0
language:
- ko
pipeline_tag: text-classification
widget:
- text: 예전에는 주말마다 극장에 놀러갔는데 요새는 좀 안가는 편이에요 [SEP] 댓글 주제를 분류하세요 [SEP] 시네마
- text: >-
인천발 KTX와 관련한 송도역 복합환승센터가 사실상 무산, 단순 철도·버스 위주 환승시설로 만들어진다. 이 때문에 인천시의 인천발
KTX 기점에 앵커시설인 복합환승센터를 통한 인근 지역 경제 활성화를 이뤄낸다는 계획의 차질이 불가피하다. [SEP] 경제에 긍정적인
뉴스인가요? [SEP] 아니요
- text: 마지막에는 k팝 공연보고 좋은 추억 남았으면 좋겠네요 [SEP] 욕설이 포함되어있나요? [SEP] 아니요
datasets:
- nsmc
- jason9693/APEACH
- KETI-AIR/korquad
- klue
- smilegate-ai/kor_unsmile
- kor_nlu
- skt/kobest_v1
---
## 사용 예시
```python
# Load model directly
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("iknow-lab/ko-flan-zero-v0-0731")
model = AutoModelForSequenceClassification.from_pretrained("iknow-lab/ko-flan-zero-v0-0731")
def inference(instruction, input, labels):
instruction = f"{input} [SEP] {instruction}"
inputs = tokenizer([instruction] * len(labels), labels, truncation=True, padding=True, return_tensors="pt")
scores = model(**inputs).logits.squeeze(1).tolist()
output = dict(zip(labels, scores))
print(instruction, output)
inference(
"문장을 감성분류해주세요",
"아 영화 개노잼",
["긍정적", "부정적"]
)
inference(
"글과 관련된 내용을 만들어주세요",
"예전에는 주말마다 극장에 놀러갔는데 요새는 좀 안가는 편이에요",
["영화에 관한 글이다", "드라마에 관한 글입니다"]
)
inference(
"글을 읽고 시장에 미칠 영향을 판단해보세요",
"""인천발 KTX와 관련한 송도역 복합환승센터가 사실상 무산, 단순 철도·버스 위주 환승시설로 만들어진다. 이 때문에 인천시의 인천발 KTX 기점에 앵커시설인 복합환승센터를 통한 인근 지역 경제 활성화를 이뤄낸다는 계획의 차질이 불가피하다.
25일 시에 따르면 연수구 옥련동 104 일대 29만1천725㎡(8만8천평)에 추진 중인 2만8천62가구 규모의 송도역세권구역 도시개발사업과 연계, KTX 송도역 복합환승센터와 상업시설·업무시설 등의 조성을 추진 중이다. """,
["긍정", "부정", "중립"]
)
```
### 실행 결과
```
아 영화 개노잼 [SEP] 문장을 감성분류해주세요
{'긍정적': -7.878206253051758, '부정적': 50.96009826660156}
예전에는 주말마다 극장에 놀러갔는데 요새는 좀 안가는 편이에요 [SEP] 글과 관련된 내용을 만들어주세요
{'영화에 관한 글이다': 25.37109375, '드라마에 관한 글입니다': -31.869916915893555}
인천발 KTX와 관련한 송도역 복합환승센터가 사실상 무산, 단순 철도·버스 위주 환승시설로 만들어진다. 이 때문에 인천시의 인천발 KTX 기점에 앵커시설인 복합환승센터를 통한 인근 지역 경제 활성화를 이뤄낸다는 계획의 차질이 불가피하다.
25일 시에 따르면 연수구 옥련동 104 일대 29만1천725㎡(8만8천평)에 추진 중인 2만8천62가구 규모의 송도역세권구역 도시개발사업과 연계, KTX 송도역 복합환승센터와 상업시설·업무시설 등의 조성을 추진 중이다. [SEP] 글을 읽고 시장에 미칠 영향을 판단해보세요
{'긍정': -61.86758804321289, '부정': 23.72732925415039, '중립': -70.4837417602539}
```
## 학습 데이터 구성
```json
{
"splits": "train",
"tasks": "nsmc,apeach,korquad_v1.0,klue_mrc,klue_nli,klue_ynat,kor_nlu,unsmile,klue_re,kobest_copa,kobest_hellaswag,kobest_boolq,kobest_wic,niklex,nikl_absa",
"max_instance_per_task": 20000,
"split_train": {
"nsmc": 20000,
"apeach": 7895,
"korquad_v1.0": 20000,
"klue_mrc": 17553,
"klue_nli": 8046,
"klue_ynat": 20000,
"kor_nlu": 20000,
"unsmile": 15002,
"klue_re": 20000,
"kobest_copa": 3075,
"kobest_hellaswag": 499,
"kobest_boolq": 3664,
"kobest_wic": 3317,
"niklex": 20000,
"nikl_absa": 2139
},
"split_train_total": 181190
}
```
## 평가(test set)
| task | accuracy |
| --- | --- |
| [nsmc](https://huggingface.co/datasets/nsmc) | 85.92 |
| [jason9693/APEACH](https://huggingface.co/datasets/jason9693/APEACH) | 32.12 |
| [klue-ynat](https://huggingface.co/datasets/klue) | 77.59 |
| [kobest-boolq](https://huggingface.co/datasets/skt/kobest_v1) | 76.99 |
| [kobest-copa](https://huggingface.co/datasets/skt/kobest_v1) | 61.2 |
| [kobest-hellaswag](https://huggingface.co/datasets/skt/kobest_v1) | 코드 버그 있어서 제외 |
| [kobest-sentineg](https://huggingface.co/datasets/skt/kobest_v1) | 55.92 |
| [kobest-wic](https://huggingface.co/datasets/skt/kobest_v1) | 58.49 |
### 평가 방식
- 모델에 `[CLS] {input} [SEP] {instruction} [SEP] label [SEP]` 형식으로 넣고 나온 positive와 negative끼리 비교함.
- positive는 정답 라벨을 사용하고, negative는 정답 라벨이 아닌 모든 라벨을 사용
- 정답 라벨의 점수가 모든 negative보다 높을 경우 맞춘 것으로 간주함. 이런 식으로 accuracy 측정.
테스트에 사용한 매핑 코드
```
klue_ynat_labelToTextDict = {
0: "IT과학",
1: "경제",
2: "사회",
3: "생활문화",
4: "세계",
5: "스포츠",
6: "정치",
}
klue_ynat_labels = set(klue_ynat_labelToTextDict.values())
def klue_ynat_mapper(item):
positives = [klue_ynat_labelToTextDict[item["label"]]]
return {
"instruction": "문장을 읽고 주제를 분류하세요",
"input": item["title"],
"positives": positives,
"negatives": klue_ynat_labels - set(positives)
}
kobest_wic_labels = ["아니오", "예"]
def kobest_wic_mapper(item):
return {
"instruction": "주어진 두 문장에서 단어 {word}은(는) 동일한 의미로 사용되었나요?".format(word=item["word"]),
"input": "문장1: {context_1}\n문장2: {context_2}".format(**item),
"positives": [kobest_wic_labels[item['label']]],
"negatives": [kobest_wic_labels[1 - item['label']]]
}
copa_question = {
"결과": "이후에 이어질 결과는?",
"원인": "이러한 일이 일어난 원인은?"
}
def kobest_copa_mapper(item):
answers = [item["alternative_1"], item["alternative_2"]]
return {
"instruction": copa_question[item["question"]],
"input": item["premise"],
"positives": [answers[item['label']]],
"negatives": [answers[1 - item['label']]]
}
def kobest_hellaswag_mapper(item):
answers = [item[f"ending_{i}"] for i in range(1, 5)]
label = answers[item['label']]
answers.remove(label)
return {
"instruction": "이후에 이어질 내용으로 가장 적절한 것은?",
"input": item["context"],
"positives": [label],
"negatives": answers
}
kobest_boolq_labels = ["아니오", "예"]
def kobest_boolq_mapper(item):
return {
"instruction": item["question"],
"input": item["paragraph"],
"positives": [kobest_boolq_labels[item['label']]],
"negatives": [kobest_boolq_labels[1 - item['label']]]
}
kobest_sentineg_labels = ["부정", "긍정"]
def kobest_sentineg_mapper(item):
return {
"instruction": "주어진 문장의 감정을 분류하세요",
"input": item["sentence"],
"positives": [kobest_boolq_labels[item['label']]],
"negatives": [kobest_boolq_labels[1 - item['label']]]
}
nsmc_labels = ["부정", "긍정"]
def nsmc_mapper(item):
return {
"instruction": "주어진 문장의 감정을 분류하세요",
"input": item["document"],
"positives": [nsmc_labels[item['label']]],
"negatives": [nsmc_labels[1 - item['label']]]
}
apeach_labels = ["혐오 표현이 아닙니다", "혐오표현"]
def apeach_mapper(item):
return {
"instruction": "혐오성을 분류해보세요.",
"input": item["text"],
"positives": [nsmc_labels[item['class']]],
"negatives": [nsmc_labels[1 - item['class']]]
}
EVAL_LIST = {
"klue-ynat": dict(
load_args=dict(
path="klue",
name="ynat",
split="validation"
),
mapper=klue_ynat_mapper
),
"nsmc": dict(
load_args=dict(
path="nsmc",
split="test"
),
mapper=nsmc_mapper
),
"apeach": dict(
load_args=dict(
path="jason9693/APEACH",
split="test"
),
mapper=apeach_mapper
),
"kobest-wic": dict(
load_args=dict(
path="skt/kobest_v1",
name="wic",
split="test"
),
mapper=kobest_wic_mapper
),
"kobest-copa": dict(
load_args=dict(
path="skt/kobest_v1",
name="copa",
split="test"
),
mapper=kobest_copa_mapper
),
"kobest-hellaswag": dict(
load_args=dict(
path="skt/kobest_v1",
name="hellaswag",
split="test"
),
mapper=kobest_hellaswag_mapper
),
"kobest-boolq": dict(
load_args=dict(
path="skt/kobest_v1",
name="boolq",
split="test"
),
mapper=kobest_boolq_mapper
),
"kobest-sentineg": dict(
load_args=dict(
path="skt/kobest_v1",
name="sentineg",
split="test"
),
mapper=kobest_sentineg_mapper
)
}
```
|
Dredta/Ukiyana
|
Dredta
| 2023-08-13T05:12:23Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-08-13T05:10:04Z |
---
license: creativeml-openrail-m
---
|
nagupv/Llama-7B_LLMExam_f0
|
nagupv
| 2023-08-13T05:01:47Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-12T12:37:53Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
learn3r/bart_memsum
|
learn3r
| 2023-08-13T05:00:27Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"generated_from_trainer",
"dataset:learn3r/gov_report_memsum_oracle",
"base_model:facebook/bart-base",
"base_model:finetune:facebook/bart-base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-08-12T15:54:25Z |
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
datasets:
- learn3r/gov_report_memsum_oracle
model-index:
- name: bart_memsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart_memsum
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the learn3r/gov_report_memsum_oracle dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7431
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
|
Chattiori/MelonMix
|
Chattiori
| 2023-08-13T04:37:41Z | 37 | 2 |
diffusers
|
[
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"Grapefruit",
"en",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-03-20T09:42:48Z |
---
license: creativeml-openrail-m
language:
- en
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- Grapefruit
---
# <span style="color:#00a0a0; font-size:30pt; font-weight:bolder; font-style:italic;"> MelonMix </span>
This model was checkpoint merge of Anything v4.5, AbyssOrangeMix 3A1B, GrapeFruitV4.1 and 7th Anime v3 C.
V2 has AnyOrangeMix 48A13B, Hassaku v1.3, blue_pencil EX, MIX-Pro v4.5+ColorBox and MeinaPastel V6.
Since AnyOrangeMix 48A13B is the mix of Anything v5, AnythingElse v4.5, AbyssOrangeMix3 A1B and AbyssOrangeMix3 A3,
merge recipe showing below is identicle.
For V2, I used [Chattiori-Model-Merger](https://github.com/Faildes/Chattiori-Model-Merger).
## Merge Recipe
V1:(Anything v4.5 (0.5) + AbyssOrangeMix 3A1B (0.5) Weighted Sum) (0.5) +
(grapefruitV4.1 (0.5) + 7th Anime v3 C (0.5) Weighted Sum) (0.5) Weighted Sum
V2:
* Weighted Sum, [**AnythingElse V4-v4.5**](https://civitai.com/models/4855) + [**Anything v5-Prt-Re**](https://civitai.com/models/9409), alpha(0.6) >> **TEMP_0**
* Weighted Sum, [**AbyssOrangeMix3-A1B**](https://civitai.com/models/9942) + [**AbyssOrangeMix3-A3**](https://civitai.com/models/9942), alpha(0.5) >> **TEMP_1**
* Sum Twice, **TEMP_0** + **TEMP_1** + [**MIX-Pro-V4.5+ColorBox**](https://civitai.com/models/14206), alpha(0.5) rand_beta(0.3, 0.7, 17546192) >> **TEMP_2**
* Sum Twice, [**Hassaku (hentai model)-v1.3**](https://civitai.com/models/2583) + [**MeinaPastel-V6**](https://civitai.com/models/11866) + [**blue_pencil-EX**](https://civitai.com/models/79083), rand_alpha(0.35, 0.65, 5481652) rand_beta(0.2, 0.45, 61427253) >> **TEMP_3**
* Weighted Sum, **TEMP_3** + **TEMP_2**, rand_alpha(0.25, 0.75, 964451837) >> **MelonMixV2**
|
fnlp/claif-scaled-roberta-base
|
fnlp
| 2023-08-13T04:32:19Z | 2 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"feature-extraction",
"sentence-similarity",
"transformers",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2023-08-13T03:53:08Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: apache-2.0
language:
- en
---
# fnlp/claif-scaled-roberta-base
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('fnlp/claif-scaled-roberta-base')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('fnlp/claif-scaled-roberta-base')
model = AutoModel.from_pretrained('fnlp/claif-scaled-roberta-base')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=fnlp/claif-scaled-roberta-base)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 37989 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 3,
"evaluation_steps": 125,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 1e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 11397,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
fnlp/claif-scaled-bert-base
|
fnlp
| 2023-08-13T04:31:28Z | 2 | 1 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2023-08-13T04:03:32Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: apache-2.0
language:
- en
---
# fnlp/claif-scaled-bert-base
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('fnlp/claif-scaled-bert-base')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('fnlp/claif-scaled-bert-base')
model = AutoModel.from_pretrained('fnlp/claif-scaled-bert-base')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=fnlp/claif-scaled-bert-base)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 37989 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 3,
"evaluation_steps": 125,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 1e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 11397,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
fnlp/claif-roberta-base
|
fnlp
| 2023-08-13T04:31:00Z | 4 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"roberta",
"feature-extraction",
"sentence-similarity",
"transformers",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2023-08-13T04:24:45Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: apache-2.0
language:
- en
---
# fnlp/claif-roberta-base
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('fnlp/claif-roberta-base')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('fnlp/claif-roberta-base')
model = AutoModel.from_pretrained('fnlp/claif-roberta-base')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=fnlp/claif-roberta-base)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 3556 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 3,
"evaluation_steps": 125,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 1067,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
fnlp/claif-bert-base
|
fnlp
| 2023-08-13T04:30:34Z | 4 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2023-08-13T04:14:49Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: apache-2.0
language:
- en
---
# fnlp/claif-bert-base
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('fnlp/claif-bert-base')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('fnlp/claif-bert-base')
model = AutoModel.from_pretrained('fnlp/claif-bert-base')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=fnlp/claif-bert-base)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 3556 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 3,
"evaluation_steps": 125,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 1067,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
iakarshu/latr-base
|
iakarshu
| 2023-08-13T04:22:51Z | 105 | 1 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-08-13T04:21:40Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: latr-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# latr-base
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.14.4
- Tokenizers 0.13.3
|
Evan-Lin/Bart-large-abs-yelp-allure5
|
Evan-Lin
| 2023-08-13T04:18:03Z | 47 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"trl",
"reinforcement-learning",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
reinforcement-learning
| 2023-08-13T04:09:46Z |
---
license: apache-2.0
tags:
- trl
- transformers
- reinforcement-learning
---
# TRL Model
This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="Evan-Lin//tmp/tmpoji__rd9/Evan-Lin/Bart-large-abs-yelp-allure5")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("Evan-Lin//tmp/tmpoji__rd9/Evan-Lin/Bart-large-abs-yelp-allure5")
model = AutoModelForCausalLMWithValueHead.from_pretrained("Evan-Lin//tmp/tmpoji__rd9/Evan-Lin/Bart-large-abs-yelp-allure5")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```
|
asenella/MMVAEPlus_beta_10_scale_True_seed_1
|
asenella
| 2023-08-13T04:12:41Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-07-27T17:06:21Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
asenella/MMVAEPlus_beta_5_scale_True_seed_3
|
asenella
| 2023-08-13T04:11:57Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-07-27T17:27:30Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
Envoid/Bacchus-22B-ggml
|
Envoid
| 2023-08-13T04:11:37Z | 0 | 1 | null |
[
"region:us"
] | null | 2023-08-13T03:38:26Z |
q4_0 ggml of Bacchus-22B see the main repo for more details about the model.
|
asenella/MMVAEPlus_beta_10_scale_True_seed_0
|
asenella
| 2023-08-13T04:11:07Z | 0 | 0 | null |
[
"multivae",
"en",
"license:apache-2.0",
"region:us"
] | null | 2023-07-27T16:46:12Z |
---
language: en
tags:
- multivae
license: apache-2.0
---
### Downloading this model from the Hub
This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub`
```python
>>> from multivae.models import AutoModel
>>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name")
```
|
Zeroxdesignart/chatbot-techinfo
|
Zeroxdesignart
| 2023-08-13T03:43:07Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-08-13T03:25:09Z |
---
license: openrail
datasets:
- fka/awesome-chatgpt-prompts
- lmsys/chatbot_arena_conversations
---from datasets import load_dataset
dataset = load_dataset("fka/awesome-chatgpt-prompts")
Model Name: ChatGPT-Prompt-Generator
Model Type: Chatbot
Model Framework: Python
Model Description: This model is a chatbot that can be used to create Python applications. The chatbot can ask the user for their app idea and their chosen programming language. Then, the chatbot will generate the initial code for the app based on the user's input. Finally, the chatbot will generate the requirements.txt file.
Model Input: The model input is the user's app idea and their chosen programming language.
Model Output: The model output is the initial code for the app and the requirements.txt file.
Model Performance: The model has been tested on a variety of app ideas and programming languages. It has been shown to be able to generate accurate and efficient code.
Model Limitations: The model is not perfect. It can sometimes generate incorrect or inefficient code. It is also important to note that the model is only a tool. It cannot replace the need for human creativity and expertise.
Model Citations:
The ChatGPT-Prompt-Generator model is based on the ChatGPT model, which was developed by OpenAI.
The ChatGPT model is a large language model that was trained on a massive dataset of text and code.
The ChatGPT model has been shown to be able to generate human-quality text and code.
Model Availability: The ChatGPT-Prompt-Generator model is available for free. It can be downloaded from the ChatGPT website.
|
BAAI/Emu
|
BAAI
| 2023-08-13T03:32:51Z | 0 | 23 |
diffusers
|
[
"diffusers",
"arxiv:2307.05222",
"region:us"
] | null | 2023-07-10T09:03:01Z |
<div align='center'>
<h1>Emu: An Open Multimodal Generalist</h1h1>
<h3><a href="https://arxiv.org/abs/2307.05222">Generative Pretraining in Multimodality</a></h3>
[Quan Sun](https://github.com/Quan-Sun)<sup>1*</sup>, [Qiying Yu](https://yqy2001.github.io)<sup>2,1*</sup>, [Yufeng Cui]()<sup>1*</sup>, [Fan Zhang]()<sup>1*</sup>, [Xiaosong Zhang](https://github.com/zhangxiaosong18)<sup>1*</sup>, [Yueze Wang]()<sup>1</sup>, [Hongcheng Gao]()<sup>1</sup>, [Jingjing Liu](https://air.tsinghua.edu.cn/en/info/1046/1194.htm)<sup>2</sup>, [Tiejun Huang](https://scholar.google.com/citations?user=knvEK4AAAAAJ&hl=en)<sup>1,3</sup>, [Xinlong Wang](https://www.xloong.wang/)<sup>1</sup>
<sup>1</sup> [BAAI](https://www.baai.ac.cn/english.html), <sup>2</sup> [THU](https://air.tsinghua.edu.cn), <sup>3</sup> [PKU](https://english.pku.edu.cn/) <br><sup>*</sup> Equal Contribution
| [Paper](https://arxiv.org/abs/2307.05222) | [Demo(tmp)](http://218.91.113.230:9002/) |
</div>
**Emu** is a Large Multimodal Model (LMM) trained with a unified autoregressive objective, *i.e.*, predict-the-next-element, including both visual embeddings and textual tokens. Trained under this objective, **Emu** can serve as a generalist interface for diverse multimodal tasks, such as image captioning, image/video question answering, and text-to-image generation, together with new abilities like in-context text and image generation, and image blending.
## Setup
Clone the github repository and install required packages:
```shell
git clone https://github.com/baaivision/Emu
cd Emu
pip install -r requirements.txt
```
## Model Weights
We release the pretrained and instruction-tuned weights of **Emu**. Our weights are subject to LLaMA's [license](https://github.com/facebookresearch/llama/blob/main/LICENSE).
| Model name | Weight |
| ---------- | ------------------------------------------------------- |
| **Emu** | [🤗 HF link](https://huggingface.co/BAAI/Emu/blob/main/Emu-pretrain.pt) (27GB) |
| **Emu-I** | [🤗 HF link](https://huggingface.co/BAAI/Emu/blob/main/Emu-instruct.pt) (27GB) |
## Model Usage
At present, we provide inference code for image captioning and visual question answering:
```sh
python emu_inference.py --instruct --ckpt-path $Instruct_CKPT_PATH
```
## Acknowledgement
We thank the great work from [LLaMA](https://github.com/facebookresearch/llama), [BLIP-2](https://github.com/salesforce/LAVIS), [Stable Diffusion](https://github.com/CompVis/stable-diffusion), and [FastChat](https://github.com/lm-sys/FastChat).
## Citation
If you find Emu useful for your your research and applications, please consider citing:
```
@article{Emu,
title={Generative Pretraining in Multimodality},
author={Sun, Quan and Yu, Qiying and Cui, Yufeng and Zhang, Fan and Zhang, Xiaosong and Wang, Yueze and Gao, Hongcheng and Liu, Jingjing and Huang, Tiejun and Wang, Xinlong},
publisher={arXiv:2307.05222},
year={2023},
}
|
Rounak28/bengaliAI-finetuned-0-55000-new
|
Rounak28
| 2023-08-13T02:48:33Z | 113 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-12T17:29:29Z |
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: bengaliAI-finetuned-0-55000-new
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bengaliAI-finetuned-0-55000-new
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2824
- Wer: 61.2368
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.25e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2921 | 0.65 | 2000 | 0.2824 | 61.2368 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.0
- Datasets 2.14.4
- Tokenizers 0.13.3
|
SamuelReyes/LunarLander
|
SamuelReyes
| 2023-08-13T02:47:20Z | 0 | 0 | null |
[
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-13T02:47:13Z |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -141.04 +/- 82.43
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 50000
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'fff': '1'
'repo_id': 'SamuelReyes/LunarLander'
'batch_size': 512
'minibatch_size': 128}
```
|
skittlesmurf/ppo-LunarLander-v2
|
skittlesmurf
| 2023-08-13T02:46:42Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-13T02:46:23Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 241.13 +/- 17.13
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
abhowmick22/coinvent-llama2-test
|
abhowmick22
| 2023-08-13T02:35:41Z | 0 | 0 | null |
[
"en",
"arxiv:1910.09700",
"license:cc-by-nc-sa-4.0",
"region:us"
] | null | 2023-08-13T01:45:39Z |
---
license: cc-by-nc-sa-4.0
language:
- en
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
MichaelYxWang/ppo-LunarLander-v2
|
MichaelYxWang
| 2023-08-13T02:25:32Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-13T02:25:08Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 241.81 +/- 13.41
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Yong-Sik/distilbert-base-uncased-distilled-clinc
|
Yong-Sik
| 2023-08-13T02:21:40Z | 119 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:clinc_oos",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-13T01:59:46Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
config: plus
split: validation
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9496774193548387
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2461
- Accuracy: 0.9497
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 4.2483 | 1.0 | 318 | 3.1615 | 0.7358 |
| 2.3996 | 2.0 | 636 | 1.5548 | 0.8626 |
| 1.1607 | 3.0 | 954 | 0.7750 | 0.9142 |
| 0.5651 | 4.0 | 1272 | 0.4625 | 0.9358 |
| 0.3003 | 5.0 | 1590 | 0.3357 | 0.9410 |
| 0.1754 | 6.0 | 1908 | 0.2854 | 0.9452 |
| 0.1134 | 7.0 | 2226 | 0.2637 | 0.9474 |
| 0.0817 | 8.0 | 2544 | 0.2490 | 0.9487 |
| 0.0665 | 9.0 | 2862 | 0.2486 | 0.9490 |
| 0.0577 | 10.0 | 3180 | 0.2461 | 0.9497 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
tsobolev/speecht5_finetuned_voxpopuli_fi
|
tsobolev
| 2023-08-13T02:09:03Z | 83 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"speecht5",
"text-to-audio",
"generated_from_trainer",
"text-to-speech",
"fi",
"dataset:voxpopuli",
"base_model:microsoft/speecht5_tts",
"base_model:finetune:microsoft/speecht5_tts",
"license:mit",
"endpoints_compatible",
"region:us"
] |
text-to-speech
| 2023-08-13T00:00:34Z |
---
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
datasets:
- voxpopuli
model-index:
- name: speecht5_finetuned_voxpopuli_fi
results: []
language:
- fi
pipeline_tag: text-to-speech
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speecht5_finetuned_voxpopuli_fi
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the voxpopuli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4581
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.5025 | 13.18 | 1000 | 0.4663 |
| 0.4873 | 26.36 | 2000 | 0.4581 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.0
- Datasets 2.14.3
- Tokenizers 0.13.3
|
aigrils2/beautifulv6
|
aigrils2
| 2023-08-13T01:45:52Z | 1 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"license:openrail",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-24T09:44:14Z |
---
license: openrail
pipeline_tag: text-to-image
---
Convert from original safetensor to diffuser compatible model.
convert_ema=False
This may be the cause of lower quality.
Nice to see downloads.
Give a like to the model if you find it convenient to use.
|
indonesian-nlp/gpt2-medium-indonesian
|
indonesian-nlp
| 2023-08-13T01:41:56Z | 660 | 11 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"safetensors",
"gpt2",
"text-generation",
"id",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: id
widget:
- text: "Sewindu sudah kita tak berjumpa, rinduku padamu sudah tak terkira."
---
# GPT2-medium-indonesian
This is a pretrained model on Indonesian language using a causal language modeling (CLM) objective, which was first
introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
and first released at [this page](https://openai.com/blog/better-language-models/).
This model was trained using HuggingFace's Flax framework and is part of the [JAX/Flax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104)
organized by [HuggingFace](https://huggingface.co). All training was done on a TPUv3-8 VM sponsored by the Google Cloud team.
The demo can be found [here](https://huggingface.co/spaces/indonesian-nlp/gpt2-app).
## How to use
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='indonesian-nlp/gpt2-medium-indonesian')
>>> set_seed(42)
>>> generator("Sewindu sudah kita tak berjumpa,", max_length=30, num_return_sequences=5)
[{'generated_text': 'Sewindu sudah kita tak berjumpa, dua dekade lalu, saya hanya bertemu sekali. Entah mengapa, saya lebih nyaman berbicara dalam bahasa Indonesia, bahasa Indonesia'},
{'generated_text': 'Sewindu sudah kita tak berjumpa, tapi dalam dua hari ini, kita bisa saja bertemu.”\
“Kau tau, bagaimana dulu kita bertemu?” aku'},
{'generated_text': 'Sewindu sudah kita tak berjumpa, banyak kisah yang tersimpan. Tak mudah tuk kembali ke pelukan, di mana kini kita berada, sebuah tempat yang jauh'},
{'generated_text': 'Sewindu sudah kita tak berjumpa, sejak aku lulus kampus di Bandung, aku sempat mencari kabar tentangmu. Ah, masih ada tempat di hatiku,'},
{'generated_text': 'Sewindu sudah kita tak berjumpa, tapi Tuhan masih saja menyukarkan doa kita masing-masing.\
Tuhan akan memberi lebih dari apa yang kita'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('indonesian-nlp/gpt2-medium-indonesian')
model = GPT2Model.from_pretrained('indonesian-nlp/gpt2-medium-indonesian')
text = "Ubah dengan teks apa saja."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('indonesian-nlp/gpt2-medium-indonesian')
model = TFGPT2Model.from_pretrained('indonesian-nlp/gpt2-medium-indonesian')
text = "Ubah dengan teks apa saja."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Limitations and bias
The training data used for this model are Indonesian websites of [OSCAR](https://oscar-corpus.com/),
[mc4](https://huggingface.co/datasets/mc4) and [Wikipedia](https://huggingface.co/datasets/wikipedia). The datasets
contain a lot of unfiltered content from the internet, which is far from neutral. While we have done some filtering on
the dataset (see the **Training data** section), the filtering is by no means a thorough mitigation of biased content
that is eventually used by the training data. These biases might also affect models that are fine-tuned using this model.
As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases):
> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases
> that require the generated text to be true.
> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we
> do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry
> out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender,
> race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with
> similar levels of caution around use cases that are sensitive to biases around human attributes.
We have done a basic bias analysis that you can find in this [notebook](https://huggingface.co/indonesian-nlp/gpt2-small-indonesian/blob/main/bias_analysis/gpt2_medium_indonesian_bias_analysis.ipynb), performed on [Indonesian GPT2 medium](https://huggingface.co/indonesian-nlp/gpt2-medium-indonesian), based on the bias analysis for [Polish GPT2](https://huggingface.co/flax-community/papuGaPT2) with modifications.
### Gender bias
We generated 50 texts starting with prompts "She/He works as". After doing some preprocessing (lowercase and stopwords removal) we obtain texts that are used to generate word clouds of female/male professions. The most salient terms for male professions are: driver, sopir (driver), ojek, tukang, online.

The most salient terms for female professions are: pegawai (employee), konsultan (consultant), asisten (assistant).

### Ethnicity bias
We generated 1,200 texts to assess bias across ethnicity and gender vectors. We will create prompts with the following scheme:
* Person - we will assess 5 ethnicities: Sunda, Batak, Minahasa, Dayak, Asmat, Neutral (no ethnicity)
* Topic - we will use 5 different topics:
* random act: *entered home*
* said: *said*
* works as: *works as*
* intent: *let [person] ...*
* define: *is*
Sample of generated prompt: "seorang perempuan sunda masuk ke rumah..." (a Sundanese woman enters the house...)
We used a [model](https://huggingface.co/Hate-speech-CNERG/dehatebert-mono-indonesian) trained on Indonesian hate speech corpus ([dataset 1](https://github.com/okkyibrohim/id-multi-label-hate-speech-and-abusive-language-detection), [dataset 2](https://github.com/ialfina/id-hatespeech-detection)) to obtain the probability that each generated text contains hate speech. To avoid leakage, we removed the first word identifying the ethnicity and gender from the generated text before running the hate speech detector.
The following chart demonstrates the intensity of hate speech associated with the generated texts with outlier scores removed. Some ethnicities score higher than the neutral baseline.

### Religion bias
With the same methodology above, we generated 1,400 texts to assess bias across religion and gender vectors. We will assess 6 religions: Islam, Protestan (Protestant), Katolik (Catholic), Buddha (Buddhism), Hindu (Hinduism), and Khonghucu (Confucianism) with Neutral (no religion) as a baseline.
The following chart demonstrates the intensity of hate speech associated with the generated texts with outlier scores removed. Some religions score higher than the neutral baseline.

## Training data
The model was trained on a combined dataset of [OSCAR](https://oscar-corpus.com/), [mc4](https://huggingface.co/datasets/mc4)
and Wikipedia for the Indonesian language. We have filtered and reduced the mc4 dataset so that we end up with 29 GB
of data in total. The mc4 dataset was cleaned using [this filtering script](https://github.com/Wikidepia/indonesian_datasets/blob/master/dump/mc4/cleanup.py)
and we also only included links that have been cited by the Indonesian Wikipedia.
## Training procedure
The model was trained on a TPUv3-8 VM provided by the Google Cloud team. The training duration was `6d 3h 7m 26s`.
### Evaluation results
The model achieves the following results without any fine-tuning (zero-shot):
| dataset | train loss | eval loss | eval perplexity |
| ---------- | ---------- | -------------- | ---------- |
| ID OSCAR+mc4+Wikipedia (29GB) | 2.79 | 2.696 | 14.826 |
### Tracking
The training process was tracked in [TensorBoard](https://huggingface.co/flax-community/gpt2-medium-indonesian/tensorboard) and [Weights and Biases](https://wandb.ai/wandb/hf-flax-gpt2-indonesian?workspace=user-cahya).
## Team members
- Akmal ([@Wikidepia](https://huggingface.co/Wikidepia))
- alvinwatner ([@alvinwatner](https://huggingface.co/alvinwatner))
- Cahya Wirawan ([@cahya](https://huggingface.co/cahya))
- Galuh Sahid ([@Galuh](https://huggingface.co/Galuh))
- Muhammad Agung Hambali ([@AyameRushia](https://huggingface.co/AyameRushia))
- Muhammad Fhadli ([@muhammadfhadli](https://huggingface.co/muhammadfhadli))
- Samsul Rahmadani ([@munggok](https://huggingface.co/munggok))
## Future work
We would like to pre-train further the models with larger and cleaner datasets and fine-tune it to specific domains
if we can get the necessary hardware resources.
|
indonesian-nlp/gpt2
|
indonesian-nlp
| 2023-08-13T01:41:27Z | 338 | 8 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"safetensors",
"gpt2",
"text-generation",
"id",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: id
widget:
- text: "Sewindu sudah kita tak berjumpa, rinduku padamu sudah tak terkira."
---
# GPT2-small-indonesian
This is a pretrained model on Indonesian language using a causal language modeling (CLM) objective, which was first
introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
and first released at [this page](https://openai.com/blog/better-language-models/).
This model was trained using HuggingFace's Flax framework and is part of the [JAX/Flax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104)
organized by [HuggingFace](https://huggingface.co). All training was done on a TPUv3-8 VM sponsored by the Google Cloud team.
The demo can be found [here](https://huggingface.co/spaces/flax-community/gpt2-indonesian).
## How to use
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness,
we set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='flax-community/gpt2-small-indonesian')
>>> set_seed(42)
>>> generator("Sewindu sudah kita tak berjumpa,", max_length=30, num_return_sequences=5)
[{'generated_text': 'Sewindu sudah kita tak berjumpa, dua dekade lalu, saya hanya bertemu sekali. Entah mengapa, saya lebih nyaman berbicara dalam bahasa Indonesia, bahasa Indonesia'},
{'generated_text': 'Sewindu sudah kita tak berjumpa, tapi dalam dua hari ini, kita bisa saja bertemu.”\
“Kau tau, bagaimana dulu kita bertemu?” aku'},
{'generated_text': 'Sewindu sudah kita tak berjumpa, banyak kisah yang tersimpan. Tak mudah tuk kembali ke pelukan, di mana kini kita berada, sebuah tempat yang jauh'},
{'generated_text': 'Sewindu sudah kita tak berjumpa, sejak aku lulus kampus di Bandung, aku sempat mencari kabar tentangmu. Ah, masih ada tempat di hatiku,'},
{'generated_text': 'Sewindu sudah kita tak berjumpa, tapi Tuhan masih saja menyukarkan doa kita masing-masing.\
Tuhan akan memberi lebih dari apa yang kita'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('flax-community/gpt2-small-indonesian')
model = GPT2Model.from_pretrained('flax-community/gpt2-small-indonesian')
text = "Ubah dengan teks apa saja."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('flax-community/gpt2-small-indonesian')
model = TFGPT2Model.from_pretrained('flax-community/gpt2-small-indonesian')
text = "Ubah dengan teks apa saja."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Limitations and bias
The training data used for this model are Indonesian websites of [OSCAR](https://oscar-corpus.com/),
[mc4](https://huggingface.co/datasets/mc4) and [Wikipedia](https://huggingface.co/datasets/wikipedia). The datasets
contain a lot of unfiltered content from the internet, which is far from neutral. While we have done some filtering on
the dataset (see the **Training data** section), the filtering is by no means a thorough mitigation of biased content
that is eventually used by the training data. These biases might also affect models that are fine-tuned using this model.
As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases):
> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases
> that require the generated text to be true.
> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we
> do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry
> out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender,
> race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with
> similar levels of caution around use cases that are sensitive to biases around human attributes.
We have done a basic bias analysis that you can find in this [notebook](https://huggingface.co/flax-community/gpt2-small-indonesian/blob/main/bias_analysis/gpt2_medium_indonesian_bias_analysis.ipynb), performed on [Indonesian GPT2 medium](https://huggingface.co/flax-community/gpt2-medium-indonesian), based on the bias analysis for [Polish GPT2](https://huggingface.co/flax-community/papuGaPT2) with modifications.
### Gender bias
We generated 50 texts starting with prompts "She/He works as". After doing some preprocessing (lowercase and stopwords removal) we obtain texts that are used to generate word clouds of female/male professions. The most salient terms for male professions are: driver, sopir (driver), ojek, tukang, online.

The most salient terms for female professions are: pegawai (employee), konsultan (consultant), asisten (assistant).

### Ethnicity bias
We generated 1,200 texts to assess bias across ethnicity and gender vectors. We will create prompts with the following scheme:
* Person - we will assess 5 ethnicities: Sunda, Batak, Minahasa, Dayak, Asmat, Neutral (no ethnicity)
* Topic - we will use 5 different topics:
* random act: *entered home*
* said: *said*
* works as: *works as*
* intent: *let [person] ...*
* define: *is*
Sample of generated prompt: "seorang perempuan sunda masuk ke rumah..." (a Sundanese woman enters the house...)
We used a [model](https://huggingface.co/Hate-speech-CNERG/dehatebert-mono-indonesian) trained on Indonesian hate speech corpus ([dataset 1](https://github.com/okkyibrohim/id-multi-label-hate-speech-and-abusive-language-detection), [dataset 2](https://github.com/ialfina/id-hatespeech-detection)) to obtain the probability that each generated text contains hate speech. To avoid leakage, we removed the first word identifying the ethnicity and gender from the generated text before running the hate speech detector.
The following chart demonstrates the intensity of hate speech associated with the generated texts with outlier scores removed. Some ethnicities score higher than the neutral baseline.

### Religion bias
With the same methodology above, we generated 1,400 texts to assess bias across religion and gender vectors. We will assess 6 religions: Islam, Protestan (Protestant), Katolik (Catholic), Buddha (Buddhism), Hindu (Hinduism), and Khonghucu (Confucianism) with Neutral (no religion) as a baseline.
The following chart demonstrates the intensity of hate speech associated with the generated texts with outlier scores removed. Some religions score higher than the neutral baseline.

## Training data
The model was trained on a combined dataset of [OSCAR](https://oscar-corpus.com/), [mc4](https://huggingface.co/datasets/mc4)
and Wikipedia for the Indonesian language. We have filtered and reduced the mc4 dataset so that we end up with 29 GB
of data in total. The mc4 dataset was cleaned using [this filtering script](https://github.com/Wikidepia/indonesian_datasets/blob/master/dump/mc4/cleanup.py)
and we also only included links that have been cited by the Indonesian Wikipedia.
## Training procedure
The model was trained on a TPUv3-8 VM provided by the Google Cloud team. The training duration was `4d 14h 50m 47s`.
### Evaluation results
The model achieves the following results without any fine-tuning (zero-shot):
| dataset | train loss | eval loss | eval perplexity |
| ---------- | ---------- | -------------- | ---------- |
| ID OSCAR+mc4+wikipedia (29GB) | 3.046 | 2.926 | 18.66 |
### Tracking
The training process was tracked in [TensorBoard](https://huggingface.co/flax-community/gpt2-small-indonesian/tensorboard) and [Weights and Biases](https://wandb.ai/wandb/hf-flax-gpt2-indonesian?workspace=user-cahya).
## Team members
- Akmal ([@Wikidepia](https://huggingface.co/Wikidepia))
- alvinwatner ([@alvinwatner](https://huggingface.co/alvinwatner))
- Cahya Wirawan ([@cahya](https://huggingface.co/cahya))
- Galuh Sahid ([@Galuh](https://huggingface.co/Galuh))
- Muhammad Agung Hambali ([@AyameRushia](https://huggingface.co/AyameRushia))
- Muhammad Fhadli ([@muhammadfhadli](https://huggingface.co/muhammadfhadli))
- Samsul Rahmadani ([@munggok](https://huggingface.co/munggok))
## Future work
We would like to pre-train further the models with larger and cleaner datasets and fine-tune it to specific domains
if we can get the necessary hardware resources.
|
cto-algo-huggingface/eternity-ring-tiffany-style
|
cto-algo-huggingface
| 2023-08-13T01:38:23Z | 29 | 1 |
diffusers
|
[
"diffusers",
"text-to-image",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-08-13T01:35:34Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
---
### eternity_ring_tiffany_style on Stable Diffusion via Dreambooth
#### model by cto-algo-huggingface
This your the Stable Diffusion model fine-tuned the eternity_ring_tiffany_style concept taught to Stable Diffusion with Dreambooth.
It can be used by modifying the `instance_prompt`: **<eternity_ring> tiffany**
You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb).
And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts)
Here are the images used for training this concept:














|
degor/ppp-Pyramids
|
degor
| 2023-08-13T01:27:21Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-08-13T01:26:19Z |
---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: degor/ppp-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.