modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 12:31:00
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 12:28:53
card
stringlengths
11
1.01M
bigmorning/whisper_charsplit_new_round3__0060
bigmorning
2023-08-14T07:34:51Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T07:34:45Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0060 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0060 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0009 - Train Accuracy: 0.0795 - Train Wermet: 7.4969 - Validation Loss: 0.5584 - Validation Accuracy: 0.0771 - Validation Wermet: 6.7292 - Epoch: 59 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | | 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 | | 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 | | 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 | | 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 | | 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 | | 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 | | 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 | | 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 | | 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
Den4ikAI/sbert_large_mt_ru_retriever
Den4ikAI
2023-08-14T07:34:25Z
2,565
2
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "ru", "license:mit", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-08-08T05:49:23Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers widget: - source_sentence: 'query: Когда родился Пушкин?' sentences: - >- passage: Алекса́ндр Серге́евич Пу́шкин (26 мая [6 июня] 1799, Москва — 29 января [10 февраля] 1837, Санкт-Петербург) — русский поэт, драматург и прозаик, заложивший основы русского реалистического направления[2], литературный критик[3] и теоретик литературы, историк[3], публицист, журналист[3]. - 'passage: Пушкин ловил кайф со своими друзьями' - >- passage: Пушкин из самых авторитетных литературных деятелей первой трети XIX века. Ещё при жизни Пушкина сложилась его репутация величайшего национального русского поэта[4][5]. Пушкин рассматривается как основоположник современного русского литературного языка[~ 2]. license: mit language: - ru --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3622 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: ``` {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 500, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3622, "weight_decay": 1e-05 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Den4ikAI/rubert-tiny2-retriever
Den4ikAI
2023-08-14T07:33:22Z
2
2
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "ru", "license:mit", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-08-07T13:33:54Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers license: mit language: - ru widget: - source_sentence: "query: Когда родился Пушкин?" sentences: - "passage: Алекса́ндр Серге́евич Пу́шкин (26 мая [6 июня] 1799, Москва — 29 января [10 февраля] 1837, Санкт-Петербург) — русский поэт, драматург и прозаик, заложивший основы русского реалистического направления[2], литературный критик[3] и теоретик литературы, историк[3], публицист, журналист[3]." - "passage: Пушкин ловил кайф со своими друзьями" - "passage: Пушкин из самых авторитетных литературных деятелей первой трети XIX века. Ещё при жизни Пушкина сложилась его репутация величайшего национального русского поэта[4][5]. Пушкин рассматривается как основоположник современного русского литературного языка[~ 2]." --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 312 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 966 with parameters: ``` {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: ``` {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 500, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 966, "weight_decay": 1e-05 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
bookbot/sherpa-ncnn-pruned-transducer-stateless7-streaming-id
bookbot
2023-08-14T07:32:20Z
0
1
null
[ "icefall", "sherpa-ncnn", "phoneme-recognition", "automatic-speech-recognition", "id", "dataset:mozilla-foundation/common_voice_13_0", "dataset:indonesian-nlp/librivox-indonesia", "dataset:google/fleurs", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2023-06-23T07:58:15Z
--- language: id license: apache-2.0 tags: - icefall - sherpa-ncnn - phoneme-recognition - automatic-speech-recognition datasets: - mozilla-foundation/common_voice_13_0 - indonesian-nlp/librivox-indonesia - google/fleurs --- # Sherpa-ncnn Pruned Stateless Zipformer RNN-T Streaming ID Sherpa-ncnn Pruned Stateless Zipformer RNN-T Streaming ID is an automatic speech recognition model trained on the following datasets: - [Common Voice ID](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0) - [LibriVox Indonesia](https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia) - [FLEURS ID](https://huggingface.co/datasets/google/fleurs) Instead of being trained to predict sequences of words, this model was trained to predict sequence of phonemes, e.g. `['p', 'ə', 'r', 'b', 'u', 'a', 't', 'a', 'n', 'ɲ', 'a']`. Therefore, the model's [vocabulary](https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id/blob/main/data/lang_phone/tokens.txt) contains the different IPA phonemes found in [g2p ID](https://github.com/bookbot-kids/g2p_id). This model was converted from the TorchScript version of [Pruned Stateless Zipformer RNN-T Streaming ID](https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id) to ncnn format. ## Converting from TorchScript Refer to the [official instructions](https://icefall.readthedocs.io/en/latest/model-export/export-ncnn-zipformer.html) for conversion to ncnn, which includes installation of `csukuangfj`'s [ncnn](https://github.com/csukuangfj/ncnn) fork. ## Frameworks - [k2](https://github.com/k2-fsa/k2) - [icefall](https://github.com/bookbot-hive/icefall) - [lhotse](https://github.com/bookbot-hive/lhotse) - [sherpa-ncnn](https://github.com/k2-fsa/sherpa-ncnn) - [ncnn](https://github.com/csukuangfj/ncnn)
ihgn/Discriminator-Paraphrase
ihgn
2023-08-14T07:30:21Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-14T01:16:25Z
--- pipeline_tag: text-classification --- tokenizer = BartTokenizer.from_pretrained('ihgn/paraphrase-detection') model = BartForConditionalGeneration.from_pretrained("ihgn/paraphrase-detection").to(device) source_sentence = "This was a series of nested angular standards , so that measurements in azimuth and elevation could be done directly in polar coordinates relative to the ecliptic." target_paraphrase = "This was a series of nested polar scales , so that measurements in azimuth and elevation could be performed directly in angular coordinates relative to the ecliptic" def paraphrase_detection(model, tokenizer, source_sentence, target_paraphrase): # Tokenize the input sentence inputs = tokenizer.encode_plus(source_sentence + ' <sep> ' + target_paraphrase, return_tensors='pt') # Classify the input using the model with torch.no_grad(): outputs = model.generate(inputs['input_ids'].to(device)) # Get the predicted label predicted_label = 1 if generated_text == '1' else 0 print("Predicted Label:", predicted_label) paraphrase_detection(model, tokenizer, source_sentence, target_paraphrase)
bigmorning/whisper_charsplit_new_round3__0058
bigmorning
2023-08-14T07:26:41Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T07:26:32Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0058 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0058 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0113 - Train Accuracy: 0.0793 - Train Wermet: 7.8674 - Validation Loss: 0.5714 - Validation Accuracy: 0.0768 - Validation Wermet: 6.0540 - Epoch: 57 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | | 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 | | 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 | | 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 | | 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 | | 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 | | 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 | | 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
CyberHarem/hyuuga_hinata_naruto
CyberHarem
2023-08-14T07:11:38Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/hyuuga_hinata_naruto", "license:mit", "region:us" ]
text-to-image
2023-08-14T07:08:01Z
--- license: mit datasets: - CyberHarem/hyuuga_hinata_naruto pipeline_tag: text-to-image tags: - art --- # Lora of hyuuga_hinata_naruto This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/hyuuga_hinata_naruto.pt` as the embedding and `1500/hyuuga_hinata_naruto.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `hyuuga_hinata_naruto`.** These are available steps: | Steps | pattern_1 | bikini | free | nude | Download | |--------:|:-----------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------| | 1500 | ![pattern_1-1500](1500/previews/pattern_1.png) | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/hyuuga_hinata_naruto.zip) | | 1400 | ![pattern_1-1400](1400/previews/pattern_1.png) | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/hyuuga_hinata_naruto.zip) | | 1300 | ![pattern_1-1300](1300/previews/pattern_1.png) | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/hyuuga_hinata_naruto.zip) | | 1200 | ![pattern_1-1200](1200/previews/pattern_1.png) | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/hyuuga_hinata_naruto.zip) | | 1100 | ![pattern_1-1100](1100/previews/pattern_1.png) | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/hyuuga_hinata_naruto.zip) | | 1000 | ![pattern_1-1000](1000/previews/pattern_1.png) | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/hyuuga_hinata_naruto.zip) | | 900 | ![pattern_1-900](900/previews/pattern_1.png) | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/hyuuga_hinata_naruto.zip) | | 800 | ![pattern_1-800](800/previews/pattern_1.png) | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/hyuuga_hinata_naruto.zip) | | 700 | ![pattern_1-700](700/previews/pattern_1.png) | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/hyuuga_hinata_naruto.zip) | | 600 | ![pattern_1-600](600/previews/pattern_1.png) | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/hyuuga_hinata_naruto.zip) | | 500 | ![pattern_1-500](500/previews/pattern_1.png) | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/hyuuga_hinata_naruto.zip) | | 400 | ![pattern_1-400](400/previews/pattern_1.png) | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/hyuuga_hinata_naruto.zip) | | 300 | ![pattern_1-300](300/previews/pattern_1.png) | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/hyuuga_hinata_naruto.zip) | | 200 | ![pattern_1-200](200/previews/pattern_1.png) | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/hyuuga_hinata_naruto.zip) | | 100 | ![pattern_1-100](100/previews/pattern_1.png) | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/hyuuga_hinata_naruto.zip) |
orhay1/RVC_Amamiya_Sora
orhay1
2023-08-14T07:10:30Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-06-23T19:34:21Z
--- license: openrail --- RVC V2 model for the japanese voice actress and singer Amamiya Sora
bigmorning/whisper_charsplit_new_round3__0054
bigmorning
2023-08-14T07:10:05Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T07:09:55Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0054 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0054 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 7.9400 - Validation Loss: 0.5822 - Validation Accuracy: 0.0772 - Validation Wermet: 7.0438 - Epoch: 53 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | | 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 | | 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 | | 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
morell23/arcanestyle
morell23
2023-08-14T06:58:13Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-14T06:58:13Z
--- license: creativeml-openrail-m ---
bigmorning/whisper_charsplit_new_round3__0051
bigmorning
2023-08-14T06:57:31Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T06:57:22Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0051 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0051 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 7.8755 - Validation Loss: 0.5744 - Validation Accuracy: 0.0772 - Validation Wermet: 6.9767 - Epoch: 50 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
yadhikari/yogesh-a-v2
yadhikari
2023-08-14T06:56:14Z
2
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-14T06:50:18Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### yogesh-a-v2 Dreambooth model trained by yadhikari with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
mainuzzaman/llama-2-7b-miniguanaco
mainuzzaman
2023-08-14T06:54:33Z
0
1
peft
[ "peft", "region:us" ]
null
2023-08-14T06:48:26Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
bigmorning/whisper_charsplit_new_round3__0050
bigmorning
2023-08-14T06:53:17Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T06:53:09Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0050 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0050 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 7.8480 - Validation Loss: 0.5724 - Validation Accuracy: 0.0772 - Validation Wermet: 6.9544 - Epoch: 49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
TheTravellingEngineer/llama2-7b-chat-hf-dpo
TheTravellingEngineer
2023-08-14T06:50:53Z
1,530
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-14T06:33:07Z
The base model is meta's Llama-2-7b-chat-hf. It was finetuned using DPO and the comparison_gpt4 dataset and the model prompt is similar to the original Guanaco model. This repo contains the merged fp16 model. **Legal Disclaimer: This model is bound by the usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.** --- - license: - llama2 <br> - datasets: - comparison_gpt4 <br> - language: - en <br> - reference: https://github.com/hiyouga/LLaMA-Efficient-Tuning/tree/main ---
bigmorning/whisper_charsplit_new_round3__0048
bigmorning
2023-08-14T06:45:00Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T06:44:51Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0048 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0048 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 7.8106 - Validation Loss: 0.5680 - Validation Accuracy: 0.0772 - Validation Wermet: 6.9293 - Epoch: 47 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
foduucom/product-detection-in-shelf-yolov8
foduucom
2023-08-14T06:44:19Z
36
13
ultralytics
[ "ultralytics", "tensorboard", "v8", "ultralyticsplus", "yolov8", "yolo", "vision", "object-detection", "pytorch", "retail", "shelf-detection", "mart", "mall", "inventory-management", "en", "model-index", "region:us" ]
object-detection
2023-08-12T14:11:30Z
--- tags: - ultralyticsplus - yolov8 - ultralytics - yolo - vision - object-detection - pytorch - retail - shelf-detection - mart - mall - inventory-management library_name: ultralytics library_version: 8.0.43 inference: false model-index: - name: foduucom/shelf-object-detection-yolov8 results: - task: type: object-detection metrics: - type: precision value: 0.91 name: mAP@0.5(box) language: - en pipeline_tag: object-detection --- <div align="center"> <img width="640" alt="foduucom/product-detection-in-shelf-yolov8" src="https://huggingface.co/foduucom/product-detection-in-shelf-yolov8/resolve/main/thumbnail.jpg"> </div> # Model Card for YOLOv8 Shelf Object Detection in Retail Environments ## Model Enthusiasm 🎉 Hey there, retail rockstar! 👋 If you're ready to make your mart or mall experience a whole lot cooler, give this YOLOv8 Shelf Object Detection model a virtual high-five! 🙌 Your shelves will never be the same again, and neither will your customers' smiles. ## Model Magic ✨ The YOLOv8 Shelf Object Detection model is your new retail sidekick! It doesn't just detect objects; it's got a sixth sense for finding what you need on those shelves. Whether it's a jar of pickles or the latest gadget, this model's got you covered. And hey, it's a pro at counting too! So, say goodbye to empty spaces and hello to perfectly organized retail enchantment. ## Supported Labels 🏬 ``` ['Empty Shelves', 'Magical Products'] ``` ## Collaboration Love ❤️ We're all about that collaboration groove! If you're as excited about this model as we are (and trust us, it's hard not to be), show some love with a thumbs up 👍. Let's work together to make retail dreams come true! ## Uses ### Direct Use Integrate this model into your retail kingdom for real-time inventory harmony, shelf perfection, and automated restocking magic. ### Downstream Wonder Want to optimize shelf layouts, unravel product placement mysteries, and sprinkle some sparkle into your customers' lives? This model's got your back! ### Not-So-Magic Disclaimers ⚡ Just like a trusty wizard, this model might have its quirky moments: - It might not be in sync with tricky lighting and shelf chaos. Keep those shelves tidy! - Rapid changes in product vibes and shelf dances could affect its accuracy and spellcasting. ### Human Touch & Wizard Wisdom 🧙 Remember, every spellcaster has their quirks. Test and twirl within your retail realm before letting it loose on the magical stage. ## How to Join the Magic To dive into the retail wizardry with the YOLOv8 Shelf Object Detection model, follow these enchanted steps: ```bash pip install ultralyticsplus==0.0.28 ultralytics==8.0.43 ``` - Summon the model and unveil its secrets: ```python # Wave your wand (or keyboard) to get started! from ultralyticsplus import YOLO, render_result import cv2 # Cast a spell to summon the model model = YOLO('foduucom/shelf-object-detection-yolov8') # Tweak the magical parameters model.overrides['conf'] = 0.25 # NMS confidence threshold model.overrides['iou'] = 0.45 # NMS IoU threshold model.overrides['agnostic_nms'] = False # NMS class-agnostic model.overrides['max_det'] = 1000 # maximum number of detections per image # set image image = "path/to/your/shelf/image" #you can pass live camera streaming or video # Begin the mystical journey through video frames # (Remember to have your retail tapestry ready) while cap.isOpened(): # Read a frame from the video success, frame = cap.read() if success: # Unleash the magic of YOLOv8 results = model(frame) # Showcase the magic on the frame annotated_frame = results[0].plot() # Present the enchanted frame cv2.imshow("YOLOv8 Retail Wizardry", annotated_frame) # Dispel the spell if 'q' is pressed if cv2.waitKey(1) & 0xFF == ord("q"): break else: # Return to reality when the video ends break # Release your captive video and close the portal cap.release() cv2.destroyAllWindows() ``` ## Model Masters 🧙‍♂️ The mystical YOLOv8 Shelf Object Detection model was crafted by wizards at FODUU AI. ```bibtex @ModelCard{ author = {Nehul Agrawal and Pranjal Singh Thakur}, title = {YOLOv8 Shelf Object Detection in Retail Environments}, year = {2023} } ``` Join the retail magic and send your owl to info@foduu.com for any questions or enchanting contributions. Feel free to adjust the humor and tone as needed to match the vibe you want for your model card. Enjoy your retail adventures! 🛒✨
bjfxs/llama2-7b-200steps-finetunined-sxl-1
bjfxs
2023-08-14T06:41:24Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-14T06:41:17Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round3__0047
bigmorning
2023-08-14T06:40:45Z
61
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T06:40:37Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0047 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0047 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 7.7962 - Validation Loss: 0.5659 - Validation Accuracy: 0.0772 - Validation Wermet: 6.9091 - Epoch: 46 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
msthil2/distilhubert-finetuned-gtzan
msthil2
2023-08-14T06:29:19Z
159
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-13T20:35:13Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.84 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5620 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9979 | 1.0 | 113 | 1.8250 | 0.39 | | 1.3648 | 2.0 | 226 | 1.3015 | 0.58 | | 1.0783 | 3.0 | 339 | 0.9586 | 0.78 | | 0.8267 | 4.0 | 452 | 0.8479 | 0.74 | | 0.7503 | 5.0 | 565 | 0.7404 | 0.76 | | 0.404 | 6.0 | 678 | 0.6402 | 0.81 | | 0.4935 | 7.0 | 791 | 0.5936 | 0.81 | | 0.2201 | 8.0 | 904 | 0.5934 | 0.82 | | 0.2689 | 9.0 | 1017 | 0.5614 | 0.81 | | 0.1843 | 10.0 | 1130 | 0.5620 | 0.84 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0044
bigmorning
2023-08-14T06:28:19Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T06:28:11Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0044 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0044 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 7.7423 - Validation Loss: 0.5600 - Validation Accuracy: 0.0772 - Validation Wermet: 6.8518 - Epoch: 43 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
samaksh-khatri-crest-data/gmra_model_gpt2_14082023T112228
samaksh-khatri-crest-data
2023-08-14T06:27:56Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-classification", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-08-14T05:52:28Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: gmra_model_gpt2_14082023T112228 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gmra_model_gpt2_14082023T112228 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3424 - Accuracy: 0.9016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 71 | 0.7440 | 0.7636 | | No log | 1.99 | 142 | 0.5466 | 0.8278 | | No log | 2.99 | 213 | 0.4379 | 0.8656 | | No log | 4.0 | 285 | 0.3959 | 0.8787 | | No log | 5.0 | 356 | 0.3560 | 0.8919 | | No log | 5.99 | 427 | 0.3442 | 0.8946 | | No log | 6.99 | 498 | 0.3535 | 0.8954 | | 0.5012 | 8.0 | 570 | 0.3232 | 0.9007 | | 0.5012 | 9.0 | 641 | 0.3364 | 0.8989 | | 0.5012 | 9.96 | 710 | 0.3424 | 0.9016 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
sara98/bert-finetuned-mrpc-trainerclass
sara98
2023-08-14T06:24:18Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-14T06:08:34Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - glue model-index: - name: bert-finetuned-mrpc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-mrpc This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3
morell23/crrysxmrky
morell23
2023-08-14T06:20:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-14T06:15:44Z
--- license: creativeml-openrail-m ---
ColDan/ppo-LunarLander-v2
ColDan
2023-08-14T06:17:56Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-14T06:17:37Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 263.29 +/- 23.28 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bigmorning/whisper_charsplit_new_round3__0041
bigmorning
2023-08-14T06:15:42Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T06:15:35Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0041 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0041 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 7.6623 - Validation Loss: 0.5535 - Validation Accuracy: 0.0771 - Validation Wermet: 6.7829 - Epoch: 40 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
anikesh-mane/prefix-tuned-flan-t5-large
anikesh-mane
2023-08-14T06:13:10Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-14T06:13:09Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
CyberHarem/haruno_sakura_naruto
CyberHarem
2023-08-14T06:10:12Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/haruno_sakura_naruto", "license:mit", "region:us" ]
text-to-image
2023-08-14T06:06:00Z
--- license: mit datasets: - CyberHarem/haruno_sakura_naruto pipeline_tag: text-to-image tags: - art --- # Lora of haruno_sakura_naruto This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/haruno_sakura_naruto.pt` as the embedding and `1500/haruno_sakura_naruto.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `haruno_sakura_naruto`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/haruno_sakura_naruto.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/haruno_sakura_naruto.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/haruno_sakura_naruto.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/haruno_sakura_naruto.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/haruno_sakura_naruto.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/haruno_sakura_naruto.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/haruno_sakura_naruto.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/haruno_sakura_naruto.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/haruno_sakura_naruto.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/haruno_sakura_naruto.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/haruno_sakura_naruto.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/haruno_sakura_naruto.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/haruno_sakura_naruto.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/haruno_sakura_naruto.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/haruno_sakura_naruto.zip) |
bigmorning/whisper_charsplit_new_round3__0034
bigmorning
2023-08-14T05:46:38Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T05:46:30Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0034 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0034 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 8.2872 - Validation Loss: 0.5744 - Validation Accuracy: 0.0772 - Validation Wermet: 7.2069 - Epoch: 33 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0033
bigmorning
2023-08-14T05:42:28Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T05:42:19Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0033 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0033 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 8.3059 - Validation Loss: 0.5721 - Validation Accuracy: 0.0772 - Validation Wermet: 7.2341 - Epoch: 32 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0031
bigmorning
2023-08-14T05:34:02Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T05:33:54Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0031 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0031 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 8.2607 - Validation Loss: 0.5689 - Validation Accuracy: 0.0771 - Validation Wermet: 7.2107 - Epoch: 30 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0030
bigmorning
2023-08-14T05:29:51Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T05:29:43Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0030 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0030 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 8.2571 - Validation Loss: 0.5667 - Validation Accuracy: 0.0771 - Validation Wermet: 7.1787 - Epoch: 29 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
Yntec/QToriReloaded
Yntec
2023-08-14T05:20:14Z
640
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "agntperseus", "TkskKurumi", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-28T22:27:49Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image - agntperseus - TkskKurumi --- # QTori Reloaded QTori LORA merged in with RMHF 2.5D-V2. Original pages: https://civitai.com/models/15179/qtori-style-lora https://civitai.com/models/101518?modelVersionId=110456
CyberHarem/uzumaki_kushina_naruto
CyberHarem
2023-08-14T05:17:45Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/uzumaki_kushina_naruto", "license:mit", "region:us" ]
text-to-image
2023-08-14T05:13:40Z
--- license: mit datasets: - CyberHarem/uzumaki_kushina_naruto pipeline_tag: text-to-image tags: - art --- # Lora of uzumaki_kushina_naruto This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/uzumaki_kushina_naruto.pt` as the embedding and `1500/uzumaki_kushina_naruto.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `uzumaki_kushina_naruto`.** These are available steps: | Steps | pattern_1 | pattern_2 | bikini | free | nude | Download | |--------:|:-----------------------------------------------|:----------------------------------------------------|:-------------------------------------------------|:-------------------------------------|:-----------------------------------------------|:--------------------------------------------| | 1500 | ![pattern_1-1500](1500/previews/pattern_1.png) | [<NSFW, click to see>](1500/previews/pattern_2.png) | [<NSFW, click to see>](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/uzumaki_kushina_naruto.zip) | | 1400 | ![pattern_1-1400](1400/previews/pattern_1.png) | [<NSFW, click to see>](1400/previews/pattern_2.png) | [<NSFW, click to see>](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/uzumaki_kushina_naruto.zip) | | 1300 | ![pattern_1-1300](1300/previews/pattern_1.png) | [<NSFW, click to see>](1300/previews/pattern_2.png) | [<NSFW, click to see>](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/uzumaki_kushina_naruto.zip) | | 1200 | ![pattern_1-1200](1200/previews/pattern_1.png) | [<NSFW, click to see>](1200/previews/pattern_2.png) | [<NSFW, click to see>](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/uzumaki_kushina_naruto.zip) | | 1100 | ![pattern_1-1100](1100/previews/pattern_1.png) | [<NSFW, click to see>](1100/previews/pattern_2.png) | [<NSFW, click to see>](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/uzumaki_kushina_naruto.zip) | | 1000 | ![pattern_1-1000](1000/previews/pattern_1.png) | [<NSFW, click to see>](1000/previews/pattern_2.png) | [<NSFW, click to see>](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/uzumaki_kushina_naruto.zip) | | 900 | ![pattern_1-900](900/previews/pattern_1.png) | [<NSFW, click to see>](900/previews/pattern_2.png) | [<NSFW, click to see>](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/uzumaki_kushina_naruto.zip) | | 800 | ![pattern_1-800](800/previews/pattern_1.png) | [<NSFW, click to see>](800/previews/pattern_2.png) | [<NSFW, click to see>](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/uzumaki_kushina_naruto.zip) | | 700 | ![pattern_1-700](700/previews/pattern_1.png) | [<NSFW, click to see>](700/previews/pattern_2.png) | [<NSFW, click to see>](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/uzumaki_kushina_naruto.zip) | | 600 | ![pattern_1-600](600/previews/pattern_1.png) | [<NSFW, click to see>](600/previews/pattern_2.png) | [<NSFW, click to see>](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/uzumaki_kushina_naruto.zip) | | 500 | ![pattern_1-500](500/previews/pattern_1.png) | [<NSFW, click to see>](500/previews/pattern_2.png) | [<NSFW, click to see>](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/uzumaki_kushina_naruto.zip) | | 400 | ![pattern_1-400](400/previews/pattern_1.png) | [<NSFW, click to see>](400/previews/pattern_2.png) | [<NSFW, click to see>](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/uzumaki_kushina_naruto.zip) | | 300 | ![pattern_1-300](300/previews/pattern_1.png) | [<NSFW, click to see>](300/previews/pattern_2.png) | [<NSFW, click to see>](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/uzumaki_kushina_naruto.zip) | | 200 | ![pattern_1-200](200/previews/pattern_1.png) | [<NSFW, click to see>](200/previews/pattern_2.png) | [<NSFW, click to see>](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/uzumaki_kushina_naruto.zip) | | 100 | ![pattern_1-100](100/previews/pattern_1.png) | [<NSFW, click to see>](100/previews/pattern_2.png) | [<NSFW, click to see>](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/uzumaki_kushina_naruto.zip) |
bigmorning/whisper_charsplit_new_round3__0027
bigmorning
2023-08-14T05:17:24Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T05:17:16Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0027 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0027 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 8.2151 - Validation Loss: 0.5614 - Validation Accuracy: 0.0771 - Validation Wermet: 7.1972 - Epoch: 26 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0026
bigmorning
2023-08-14T05:13:16Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T05:13:08Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0026 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0026 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0001 - Train Accuracy: 0.0795 - Train Wermet: 8.1494 - Validation Loss: 0.5589 - Validation Accuracy: 0.0771 - Validation Wermet: 7.1609 - Epoch: 25 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0025
bigmorning
2023-08-14T05:09:05Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T05:08:57Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0025 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0025 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0002 - Train Accuracy: 0.0795 - Train Wermet: 8.1738 - Validation Loss: 0.5604 - Validation Accuracy: 0.0771 - Validation Wermet: 7.1617 - Epoch: 24 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
chriskim2273/IOTNation_QA_Model_2.01_DistilBert_NO_UNK_DATASET_FOR_COMPARISON
chriskim2273
2023-08-14T05:05:13Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-14T04:34:38Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: IOTNation_QA_Model_2.01_DistilBert_NO_UNK_DATASET_FOR_COMPARISON results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IOTNation_QA_Model_2.01_DistilBert_NO_UNK_DATASET_FOR_COMPARISON This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0022
bigmorning
2023-08-14T04:56:26Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T04:56:08Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0022 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0022 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0013 - Train Accuracy: 0.0795 - Train Wermet: 8.2537 - Validation Loss: 0.5574 - Validation Accuracy: 0.0770 - Validation Wermet: 6.7708 - Epoch: 21 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
potatomine/keras-dummy-sequential-demo-test
potatomine
2023-08-14T04:52:51Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-08-14T04:46:38Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | False | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 |
muhammadravi251001/fine-tuned-KoreanNLI-KorNLI-with-xlm-roberta-large
muhammadravi251001
2023-08-14T04:47:32Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-11T06:40:57Z
--- license: mit base_model: xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: fine-tuned-KoreanNLI-KorNLI-with-xlm-roberta-large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-KoreanNLI-KorNLI-with-xlm-roberta-large This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4428 - Accuracy: 0.8439 - F1: 0.8445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.4595 | 0.5 | 3654 | 0.4630 | 0.8064 | 0.8089 | | 0.4138 | 1.0 | 7308 | 0.4497 | 0.8146 | 0.8165 | | 0.3748 | 1.5 | 10962 | 0.4280 | 0.8420 | 0.8422 | | 0.3687 | 2.0 | 14616 | 0.4161 | 0.8363 | 0.8376 | | 0.3265 | 2.5 | 18270 | 0.4209 | 0.8459 | 0.8465 | | 0.3392 | 3.0 | 21924 | 0.4107 | 0.8459 | 0.8453 | | 0.2928 | 3.5 | 25578 | 0.4479 | 0.8395 | 0.8401 | | 0.2975 | 4.0 | 29232 | 0.4428 | 0.8439 | 0.8445 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.13.1 - Datasets 2.14.4 - Tokenizers 0.13.3
chriskim2273/IOTNation_Classification_Model_0.75_5K_AND_ORIGINAL_DATASET_BERT
chriskim2273
2023-08-14T04:44:35Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-13T08:25:38Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: IOTNation_Classification_Model_0.75_5K_AND_ORIGINAL_DATASET_BERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IOTNation_Classification_Model_0.75_5K_AND_ORIGINAL_DATASET_BERT This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0178 - Accuracy: 0.9958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0019
bigmorning
2023-08-14T04:43:40Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T04:43:33Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0019 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0019 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 7.7427 - Validation Loss: 0.5796 - Validation Accuracy: 0.0771 - Validation Wermet: 6.8406 - Epoch: 18 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0018
bigmorning
2023-08-14T04:39:33Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T04:39:25Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0018 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0018 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 7.7109 - Validation Loss: 0.5784 - Validation Accuracy: 0.0771 - Validation Wermet: 6.8560 - Epoch: 17 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0017
bigmorning
2023-08-14T04:35:18Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T04:35:08Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0017 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0017 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 7.7355 - Validation Loss: 0.5765 - Validation Accuracy: 0.0771 - Validation Wermet: 6.8447 - Epoch: 16 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
chriskim2273/IOTNation_QA_Model_2.0_DistilBert_UNK_DATASET_50_ENTRIES
chriskim2273
2023-08-14T04:32:00Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-14T04:21:05Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: IOTNation_QA_Model_2.0_DistilBert_UNK_DATASET_50_ENTRIES results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IOTNation_QA_Model_2.0_DistilBert_UNK_DATASET_50_ENTRIES This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7674 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0016
bigmorning
2023-08-14T04:30:56Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T04:30:48Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0016 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0016 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 7.7277 - Validation Loss: 0.5752 - Validation Accuracy: 0.0771 - Validation Wermet: 6.8671 - Epoch: 15 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
gregorgabrovsek/SloBertAA_Top20_WithOOC_082023
gregorgabrovsek
2023-08-14T04:23:10Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "text-classification", "generated_from_trainer", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-13T17:09:23Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SloBertAA_Top20_WithOOC_082023 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SloBertAA_Top20_WithOOC_082023 This model is a fine-tuned version of [EMBEDDIA/sloberta](https://huggingface.co/EMBEDDIA/sloberta) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0247 - Accuracy: 0.8659 - F1: 0.8642 - Precision: 0.8642 - Recall: 0.8659 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5972 | 1.0 | 23853 | 0.5451 | 0.8293 | 0.8264 | 0.8276 | 0.8293 | | 0.4728 | 2.0 | 47706 | 0.5189 | 0.8435 | 0.8380 | 0.8458 | 0.8435 | | 0.3736 | 3.0 | 71559 | 0.5216 | 0.8512 | 0.8499 | 0.8507 | 0.8512 | | 0.2785 | 4.0 | 95412 | 0.6074 | 0.8526 | 0.8500 | 0.8528 | 0.8526 | | 0.2002 | 5.0 | 119265 | 0.6906 | 0.8561 | 0.8534 | 0.8552 | 0.8561 | | 0.1719 | 6.0 | 143118 | 0.7822 | 0.8600 | 0.8580 | 0.8588 | 0.8600 | | 0.1337 | 7.0 | 166971 | 0.8742 | 0.8623 | 0.8607 | 0.8612 | 0.8623 | | 0.0826 | 8.0 | 190824 | 0.9613 | 0.8627 | 0.8602 | 0.8605 | 0.8627 | | 0.0603 | 9.0 | 214677 | 1.0092 | 0.8632 | 0.8617 | 0.8620 | 0.8632 | | 0.0359 | 10.0 | 238530 | 1.0247 | 0.8659 | 0.8642 | 0.8642 | 0.8659 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.8.0 - Datasets 2.10.1 - Tokenizers 0.13.2
bigmorning/whisper_charsplit_new_round3__0012
bigmorning
2023-08-14T04:14:15Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T04:14:07Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0012 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0012 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0001 - Train Accuracy: 0.0795 - Train Wermet: 7.7540 - Validation Loss: 0.5725 - Validation Accuracy: 0.0771 - Validation Wermet: 6.9281 - Epoch: 11 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
byc3230/ko_en_translation_9
byc3230
2023-08-14T04:08:41Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-14T00:59:50Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: ko_en_translation_9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ko_en_translation_9 This model is a fine-tuned version of [inhee/opus-mt-ko-en-finetuned-ko-to-en5](https://huggingface.co/inhee/opus-mt-ko-en-finetuned-ko-to-en5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8852 - Bleu: 45.395 - Gen Len: 38.8647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.2529 | 1.0 | 4900 | 1.0958 | 40.5188 | 38.6684 | | 1.0565 | 2.0 | 9800 | 0.9885 | 42.7968 | 38.6141 | | 0.9518 | 3.0 | 14700 | 0.9370 | 43.8495 | 38.7762 | | 0.8798 | 4.0 | 19600 | 0.9119 | 44.7342 | 38.7903 | | 0.8401 | 5.0 | 24500 | 0.8958 | 45.2518 | 38.8909 | | 0.8075 | 6.0 | 29400 | 0.8883 | 45.326 | 38.8503 | | 0.7934 | 7.0 | 34300 | 0.8852 | 45.395 | 38.8647 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0010
bigmorning
2023-08-14T04:05:45Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T04:05:37Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0010 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0004 - Train Accuracy: 0.0795 - Train Wermet: 7.3807 - Validation Loss: 0.5698 - Validation Accuracy: 0.0770 - Validation Wermet: 7.0671 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0009
bigmorning
2023-08-14T04:01:32Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T04:01:25Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0009 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0009 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0010 - Train Accuracy: 0.0795 - Train Wermet: 7.5822 - Validation Loss: 0.5755 - Validation Accuracy: 0.0769 - Validation Wermet: 6.6613 - Epoch: 8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
lmdeploy/llama2-chat-13b-w4
lmdeploy
2023-08-14T04:00:23Z
15
4
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "license:llama2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T14:32:44Z
--- license: llama2 pipeline_tag: text-generation tags: - text-generation-inference --- <div align="center"> <img src="https://cdn-uploads.huggingface.co/production/uploads/64ccdc322e592905f922a06e/VhwQtaklohkUXFWkjA-3M.png" width="450"/> English | [简体中文](README_zh-CN.md) </div> <p align="center"> 👋 join us on <a href="https://twitter.com/intern_lm" target="_blank">Twitter</a>, <a href="https://discord.gg/xa29JuW87d" target="_blank">Discord</a> and <a href="https://r.vansin.top/?r=internwx" target="_blank">WeChat</a> </p> # W4A16 LLM Model Deployment LMDeploy supports LLM model inference of 4-bit weight, with the minimum requirement for NVIDIA graphics cards being sm80. Before proceeding with the inference, please ensure that lmdeploy(>=v0.0.4) is installed. ```shell pip install lmdeploy ``` ## 4-bit LLM model Inference You can download the pre-quantized 4-bit weight models from LMDeploy's [model zoo](https://huggingface.co/lmdeploy) and conduct inference using the following command. Alternatively, you can quantize 16-bit weights to 4-bit weights following the ["4-bit Weight Quantization"](#4-bit-weight-quantization) section, and then perform inference as per the below instructions. Take the 4-bit Llama-2-13B model from the model zoo as an example: ```shell git-lfs install git clone https://huggingface.co/lmdeploy/llama2-chat-13b-w4 ``` As demonstrated in the command below, first convert the model's layout using `turbomind.deploy`, and then you can interact with the AI assistant in the terminal ```shell ## Convert the model's layout and store it in the default path, ./workspace. python3 -m lmdeploy.serve.turbomind.deploy \ --model-name llama2 \ --model-path ./llama2-chat-13b-w4 \ --model-format awq \ --group-size 128 ## inference python3 -m lmdeploy.turbomind.chat ./workspace ``` ## Serve with gradio If you wish to interact with the model via web ui, please initiate the gradio server as indicated below: ```shell python3 -m lmdeploy.serve.turbomind ./workspace --server_name {ip_addr} ----server_port {port} ``` Subsequently, you can open the website `http://{ip_addr}:{port}` in your browser and interact with the model ## Inference Performance We benchmarked the Llama 2 7B and 13B with 4-bit quantization on NVIDIA GeForce RTX 4090 using [profile_generation.py](https://github.com/InternLM/lmdeploy/blob/main/benchmark/profile_generation.py). And we measure the token generation throughput (tokens/s) by setting a single prompt token and generating 512 tokens. All the results are measured for single batch inference. | model | llm-awq | mlc-llm | turbomind | | ----------- | ------- | ------- | --------- | | Llama 2 7B | 112.9 | 159.4 | 206.4 | | Llama 2 13B | N/A | 90.7 | 115.8 | ```shell python benchmark/profile_generation.py \ ./workspace \ --concurrency 1 --input_seqlen 1 --output_seqlen 512 ``` ## 4-bit Weight Quantization It includes two steps: - generate quantization parameter - quantize model according to the parameter ### Step 1: Generate Quantization Parameter ```shell python3 -m lmdeploy.lite.apis.calibrate \ --model $HF_MODEL \ --calib_dataset 'c4' \ # Calibration dataset, supports c4, ptb, wikitext2, pileval --calib_samples 128 \ # Number of samples in the calibration set, if memory is insufficient, you can appropriately reduce this --calib_seqlen 2048 \ # Length of a single piece of text, if memory is insufficient, you can appropriately reduce this --work_dir $WORK_DIR \ # Folder storing Pytorch format quantization statistics parameters and post-quantization weight ``` ### Step2: Quantize Weights LMDeploy employs AWQ algorithm for model weight quantization. ```shell python3 -m lmdeploy.lite.apis.auto_awq \ --model $HF_MODEL \ --w_bits 4 \ # Bit number for weight quantization --w_sym False \ # Whether to use symmetric quantization for weights --w_group_size 128 \ # Group size for weight quantization statistics --work_dir $WORK_DIR \ # Directory saving quantization parameters from Step 1 ``` After the quantization is complete, the quantized model is saved to `$WORK_DIR`. Then you can proceed with model inference according to the instructions in the ["4-Bit Weight Model Inference"](#4-bit-llm-model-inference) section.
bigmorning/whisper_charsplit_new_round3__0007
bigmorning
2023-08-14T03:53:08Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T03:53:01Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0007 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0007 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0008 - Train Accuracy: 0.0795 - Train Wermet: 7.3468 - Validation Loss: 0.5734 - Validation Accuracy: 0.0769 - Validation Wermet: 6.1909 - Epoch: 6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
AltairXz/q-FrozenLake-v1-4x4-noSlippery
AltairXz
2023-08-14T03:52:22Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-14T03:52:20Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="AltairXz/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
hw2942/bert-base-chinese-SSEC
hw2942
2023-08-14T03:38:11Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-chinese", "base_model:finetune:google-bert/bert-base-chinese", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-14T03:25:44Z
--- base_model: bert-base-chinese tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-chinese-wallstreetcn-morning-news-market-overview-SSEC-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-chinese-wallstreetcn-morning-news-market-overview-SSEC-v3 This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1007 - Accuracy: 0.6875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 34 | 2.2173 | 0.7188 | | No log | 2.0 | 68 | 1.8368 | 0.7188 | | No log | 3.0 | 102 | 2.7822 | 0.625 | | No log | 4.0 | 136 | 2.3597 | 0.7188 | | No log | 5.0 | 170 | 3.3032 | 0.5312 | | No log | 6.0 | 204 | 2.9527 | 0.6562 | | No log | 7.0 | 238 | 2.7575 | 0.6875 | | No log | 8.0 | 272 | 2.9714 | 0.6875 | | No log | 9.0 | 306 | 3.0941 | 0.6875 | | No log | 10.0 | 340 | 3.1007 | 0.6875 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0002
bigmorning
2023-08-14T03:32:20Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T03:32:13Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0002 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0002 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0015 - Train Accuracy: 0.0795 - Train Wermet: 8.4221 - Validation Loss: 0.5756 - Validation Accuracy: 0.0769 - Validation Wermet: 7.1487 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
huanhkv/llama-2-7b-instruction-tuning_full
huanhkv
2023-08-14T03:10:41Z
4
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-13T23:39:43Z
# How it works Base model is NousResearch/Llama-2-7b-chat-hf # How to use ```python import torch import textwrap from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" if torch.cuda.is_available() else "cpu" EVAL_PROMPTS = [ "Hãy viết một phản hồi thích hợp cho chỉ dẫn dưới đây.\n\n### Instruction: Messi đã đạt bao nhiêu quả bóng vàng? \n\n### Response: ", "Hãy viết một phản hồi thích hợp cho chỉ dẫn dưới đây.\n\n### Instruction: Thủ đô nào đông dân nhất châu Á? \n\n### Response: ", "Hãy viết một phản hồi thích hợp cho chỉ dẫn dưới đây.\n\n### Instruction: Quốc gia nào có đường biển dài nhất? \n\n### Response: ", ] def generate_eval(model: AutoModelForCausalLM, tokenizer: AutoTokenizer): print("Starting Evaluation...") model = model.to(device) model.eval() for eval_prompt in EVAL_PROMPTS: batch = tokenizer(eval_prompt, return_tensors="pt").to(device) with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=128) print("\n\n", textwrap.fill(tokenizer.decode(output_tokens[0], skip_special_tokens=False))) print("*"*100) # Load the Lora model model = AutoModelForCausalLM.from_pretrained("huanhkv/llama-2-7b-instruction-tuning_full") tokenizer = AutoTokenizer.from_pretrained("huanhkv/llama-2-7b-instruction-tuning_full") generate_eval(model, tokenizer) ``` The output should be: ``` <s> Hãy viết một phản hồi thích hợp cho chỉ dẫn dưới đây. ### Instruction: Messi đã đạt bao nhiêu quả bóng vàng? ### Response: 7</s> ****************************** <s> Hãy viết một phản hồi thích hợp cho chỉ dẫn dưới đây. ### Instruction: Thủ đô nào đông dân nhất châu Á? ### Response: Đông Đông Dương là thủ đô nhất châu Á về dân số.</s> ****************************** <s> Hãy viết một phản hồi thích hợp cho chỉ dẫn dưới đây. ### Instruction: Quốc gia nào có đường biển dài nhất? ### Response: Đường biển dài nhất trên thế giới là đường biển Ấn Độ Dương, dài khoảng 65.000 km.</s> ```
okxooxoo/donut-base-sroie
okxooxoo
2023-08-14T03:04:37Z
1
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-08-13T06:51:45Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1 - Datasets 2.14.3 - Tokenizers 0.11.0
wangjin2000/git-base-finetune-Aug142023_03
wangjin2000
2023-08-14T03:01:21Z
31
0
transformers
[ "transformers", "pytorch", "git", "image-text-to-text", "image-to-text", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
image-to-text
2023-08-14T01:38:50Z
--- pipeline_tag: image-to-text --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] microsoft/git_base ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mrkusypl/Miroslaw-Stabinski
mrkusypl
2023-08-14T02:53:11Z
0
0
null
[ "pl", "region:us" ]
null
2023-08-07T20:26:39Z
--- language: - pl --- <center> <img src="https://cdn.discordapp.com/attachments/1138209218969731183/1138209219384979597/240774873_122099140169811_8790049852222389754_n.jpg"></img> <h1>Mirosław Stabiński (RVC v2) (Mangio Crepe 64) (1125 Epochs)</h1> **Model by:** kusy <br/> **Voice Actor:** Mirosław Stabiński <br/> **Dataset:** 00:21:47 <br/> <audio controls> <source src="https://cdn.discordapp.com/attachments/1138209218969731183/1138209243686776903/example.mp3" type="audio/mpeg"> </audio><br /> <audio controls> <source src="https://cdn.discordapp.com/attachments/1138209218969731183/1138211956268998697/gadanie.wav" type="audio/wav"> </audio> <a href="https://huggingface.co/mrkusypl/Miroslaw-Stabinski/resolve/main/Miros%C5%82aw%20Stabi%C5%84ski%20%5B1125%20epoch%20%2B%20RVC%20v2%5D.zip">Download or copy the link</a> </center>
AARon99/MedText-llama-2-70b-Guanaco-QLoRA-fp16
AARon99
2023-08-14T02:49:27Z
0
3
null
[ "license:other", "region:us" ]
null
2023-07-28T18:18:28Z
--- license: other --- I am learning how to make LoRAs with Oobabooga, these data are for experimental and research purposes. This is a Medical Knowledge LoRA made for use with this model: llama-2-70b-Guanaco-QLoRA-fp16 https://huggingface.co/TheBloke/llama-2-70b-Guanaco-QLoRA-fp16) (quantized and merged models coming soon). --- Model lineage: https://huggingface.co/timdettmers/guanaco-65b -> https://huggingface.co/Mikael110/llama-2-70b-guanaco-qlora -> https://huggingface.co/TheBloke/llama-2-70b-Guanaco-QLoRA-fp16 --- Training Data and Formatting: Training data are garnered from: https://huggingface.co/datasets/BI55/MedText These training data were then formatted for use with the "Raw text file" training option in the Oobabooga text-generation-webui: (https://github.com/oobabooga/text-generation-webui) Training parameters are in the training_parameters.json file and there is a screenshot of the UI with the correct settings. --- Examples and Additional Information: Check out the png files in the repo for an example conversation as well as other pieces of information that beginners might find useful. ![Conversation Example](https://huggingface.co/AARon99/MedText-llama-2-70b-Guanaco-QLoRA-fp16/resolve/main/ConvoExample.png) --- Current/Future Work: 1. Finish training with "Structed Dataset" I have a .json file with a structured dataset for the Guanaco model, but it takes significantly longer to process in the Oobabooga webui. 2. Train the vanilla LlamaV2 70B model, with Raw and Structured data. 3. Merge LoRA with LLM so you don't need to load the LoRA seperately. --- Use at own risk, I am using this repo to both organize my results and potentially help others with LoRA training. It is not the intention of this repo to purport medical information. Refer to the reference material for licensing guidance. I don't care how you use this LoRA, but you should reference the licensing requirments of the reference material if you indend on using this for anything other than personal use. I want to thank and acknowledge the hard work of the people involved in the creation of the dataset and Guanaco models/LoRA! Your work is greatly appreciated <3
Thamer/wav2vec-fine_tuned-speech_command2
Thamer
2023-08-14T02:27:06Z
167
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:speech_commands", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-13T19:01:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - speech_commands metrics: - accuracy model-index: - name: wav2vec-fine_tuned-speech_command2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec-fine_tuned-speech_command2 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the speech_commands dataset. It achieves the following results on the evaluation set: - Loss: 0.1040 - Accuracy: 0.9735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3874 | 1.0 | 50 | 0.9633 | 0.9229 | | 0.5144 | 2.0 | 100 | 0.4398 | 0.9138 | | 0.3538 | 3.0 | 150 | 0.1688 | 0.9651 | | 0.2956 | 4.0 | 200 | 0.1622 | 0.9623 | | 0.2662 | 5.0 | 250 | 0.1425 | 0.9665 | | 0.2122 | 6.0 | 300 | 0.1301 | 0.9682 | | 0.1948 | 7.0 | 350 | 0.1232 | 0.9693 | | 0.1837 | 8.0 | 400 | 0.1116 | 0.9734 | | 0.1631 | 9.0 | 450 | 0.1041 | 0.9734 | | 0.1441 | 10.0 | 500 | 0.1040 | 0.9735 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
Evan-Lin/Bart-large-abs-amazon-entailment
Evan-Lin
2023-08-14T01:55:53Z
47
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-08-14T01:43:21Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="Evan-Lin//tmp/tmpetrgbosh/Evan-Lin/Bart-large-abs-amazon-entailment") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("Evan-Lin//tmp/tmpetrgbosh/Evan-Lin/Bart-large-abs-amazon-entailment") model = AutoModelForCausalLMWithValueHead.from_pretrained("Evan-Lin//tmp/tmpetrgbosh/Evan-Lin/Bart-large-abs-amazon-entailment") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
Evan-Lin/Bart-large-abs-amazon-entailment2-rouge
Evan-Lin
2023-08-14T01:33:15Z
45
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "trl", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-08-14T01:15:41Z
--- license: apache-2.0 tags: - trl - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="Evan-Lin//tmp/tmpghor1ugg/Evan-Lin/Bart-large-abs-amazon-entailment2-rouge") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("Evan-Lin//tmp/tmpghor1ugg/Evan-Lin/Bart-large-abs-amazon-entailment2-rouge") model = AutoModelForCausalLMWithValueHead.from_pretrained("Evan-Lin//tmp/tmpghor1ugg/Evan-Lin/Bart-large-abs-amazon-entailment2-rouge") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
csukuangfj/sherpa-onnx-streaming-paraformer-bilingual-zh-en
csukuangfj
2023-08-14T01:27:14Z
0
1
null
[ "onnx", "license:apache-2.0", "region:us" ]
null
2023-08-14T01:25:23Z
--- license: apache-2.0 --- `*.onnx` models are converted from https://www.modelscope.cn/models/damo/speech_paraformer_asr_nat-zh-cn-16k-common-vocab8404-online/summary See also https://huggingface.co/csukuangfj/streaming-paraformer-zh Note: We have used https://huggingface.co/csukuangfj/streaming-paraformer-zh/blob/main/add-model-metadata.py to add meta data to `model.onnx` and renamed it to `encoder.onnx`.
FYP19/my_model-2
FYP19
2023-08-14T01:01:33Z
9
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-12T14:57:54Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: my_model-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_model-2 This model is a fine-tuned version of [FYP19/t5-small-finetuned-wikisql](https://huggingface.co/FYP19/t5-small-finetuned-wikisql) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0847 - Rouge2 Precision: 0.8004 - Rouge2 Recall: 0.4506 - Rouge2 Fmeasure: 0.5172 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.0414 | 1.0 | 1832 | 0.0620 | 0.7123 | 0.3937 | 0.4486 | | 0.0255 | 2.0 | 3664 | 0.0669 | 0.7301 | 0.4035 | 0.4621 | | 0.0217 | 3.0 | 5496 | 0.0697 | 0.7895 | 0.4469 | 0.511 | | 0.0161 | 4.0 | 7328 | 0.0712 | 0.7569 | 0.4217 | 0.4827 | | 0.0115 | 5.0 | 9160 | 0.0763 | 0.7778 | 0.435 | 0.4992 | | 0.009 | 6.0 | 10992 | 0.0785 | 0.7751 | 0.4306 | 0.4945 | | 0.0057 | 7.0 | 12824 | 0.0825 | 0.7755 | 0.4326 | 0.4963 | | 0.0045 | 8.0 | 14656 | 0.0847 | 0.8004 | 0.4506 | 0.5172 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
brunoboat/ppo-LunarLander-8
brunoboat
2023-08-14T00:42:45Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-08-14T00:11:54Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -145.84 +/- 70.15 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'brunoboat/ppo-LunarLander-8' 'batch_size': 512 'minibatch_size': 128} ```
MichaelYxWang/Taxi-v3
MichaelYxWang
2023-08-14T00:26:31Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-14T00:26:28Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="MichaelYxWang/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
C-Lo/balanced_gendered-dataset
C-Lo
2023-08-14T00:21:59Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-14T00:18:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: balanced_gendered-dataset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # balanced_gendered-dataset This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
MichaelYxWang/q-FrozenLake-v1-4x4-noSlippery
MichaelYxWang
2023-08-14T00:21:36Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-14T00:21:34Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="MichaelYxWang/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
HexHands/finishABOUTME
HexHands
2023-08-14T00:04:07Z
153
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "en", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-01T01:56:24Z
--- license: cc-by-4.0 language: en tags: - text-generation pipeline_tag: text-generation widget: - text: "My name is " - text: "I believe that I need to be more friendly." - text: "Follow @griffpatch!" - text: "How will my projects get better?" --- # finishABOUTME finishABOUTME is a torch model which was trained on 2000 Scratch About Me sections. It is meant to finish any About Me section! # Example Input: This Scratch Studio will reach 100 followers in a few days!\n Output: This Scratch Studio will reach 100 followers in a few days!\nThis studio here so much slower. Sorry for the inconveni have all, but we get every monday feel free to add projects about duckling Pond!\n\nThe Duckling Pond
ckandemir/ML-Agents-Pyramids
ckandemir
2023-08-13T23:58:35Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-13T23:58:32Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ckandemir/ML-Agents-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
nihal-tw/finetuned-f7b
nihal-tw
2023-08-13T23:49:41Z
31
0
peft
[ "peft", "medical", "text-generation", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2023-08-13T23:11:52Z
--- library_name: peft license: apache-2.0 pipeline_tag: text-generation tags: - medical --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
lockiultra/rating_model
lockiultra
2023-08-13T23:48:40Z
67
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-13T23:45:04Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: rating_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # rating_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
johnmarx/lora-trained-xl
johnmarx
2023-08-13T23:39:43Z
0
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-13T22:56:50Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: znoelleb tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - johnmarx/lora-trained-xl These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on znoelleb using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
AOLCDROM/WAV2LIP-HQ-Updated-MIRROR
AOLCDROM
2023-08-13T23:22:41Z
0
3
null
[ "region:us" ]
null
2023-08-13T23:14:06Z
This is a mirror of the weights for the Wav2Lip-HQ-Updated repo, because the linked files on Google Drive appear to be incorrect or down. License follows oriignal authors intent. --- license: other ---
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e9_s108_v4_l5_v50
KingKazma
2023-08-13T23:20:22Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T23:20:21Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e8_s108_v4_l5_v50
KingKazma
2023-08-13T23:12:23Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T23:12:21Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
FireHead90544/RudraRVCs
FireHead90544
2023-08-13T23:08:19Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-08-09T15:39:45Z
--- license: openrail --- # RVCs - Some of the voices I trained **Seiya Ryuuguuin - The Hero Is Overpowered But Overly Cautious (JP VA: Yuuichirou Umehara)** Currently, these ones are available: - ## [Seiya Ryuuguuin RVC v2 Mangio-Crepe (340 Epochs, 5440 Steps)](https://huggingface.co/FireHead90544/RudraRVCs/resolve/main/SeiyaRyuuguuinRVC.zip) - ## [Seiya Ryuuguuin RVC v2 RMVPE (300 Epochs, 6300 Steps)](https://huggingface.co/FireHead90544/RudraRVCs/resolve/main/SeiyaRyuuguuinV2.zip) # This seems to perform better - ## [Seiya Ryuuguuin Max RVC v2 RMVPE (400 Epochs, 8400 Steps)](https://huggingface.co/FireHead90544/RudraRVCs/resolve/main/SeiyaRyuuguuinMax.zip) # Probably the best one ## Samples - ### Mangio-Crepe - [NEFFEX - Cold](https://cdn.discordapp.com/attachments/1090766429785178142/1138861234561753249/Seiya_Ryuuguuin_-_Cold.mp3) - [Kenshi Yonezu - Kick Back](https://cdn.discordapp.com/attachments/1090766429785178142/1138861234951819264/Seiya_Ryuuguuin_-_Kick_Back.mp3) - ### RMVPE - [YOASOBI - Running Into The Night](https://cdn.discordapp.com/attachments/549264174753120267/1138908849076703332/Seiya_Ryuuguuin_-_Racing_Into_The_Night.mp3) - [Tk From Ling Tosite Sigure - Unravel](https://cdn.discordapp.com/attachments/549264174753120267/1138908849789734972/Seiya_Ryuuguuin_-_Unravel.mp3) - [Jin Hashimoto - Stand Proud](https://cdn.discordapp.com/attachments/549264174753120267/1138908849424834741/Seiya_Ryuuguuin_-_Stand_Proud.mp3) - [KSUKE - Contradiction](https://cdn.discordapp.com/attachments/549264174753120267/1138908848749551636/Seiya_Ryuuguuin_-_Contradiction.mp3) - [Smash Mouth - All Star](https://cdn.discordapp.com/attachments/549264174753120267/1138908850137858189/Seiya_Ryuuguuin_-_All_Star.mp3) - [OxT - Clattanoia](https://cdn.discordapp.com/attachments/549264174753120267/1138908850469216327/Seiya_Ryuuguuin_-_Clattanoia.mp3) - <video controls width="640" height="360"> <source src="https://cdn.discordapp.com/attachments/1138965403658362910/1139679982717767870/Cupid.mp4" type="video/mp4"> Your browser does not support the video tag. </video> - <video controls width="640" height="360"> <source src="https://cdn.discordapp.com/attachments/1138965403658362910/1140419271772606474/Yoru_Ni_Kakeru.mp4" type="video/mp4"> Your browser does not support the video tag. </video>
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e7_s55555_v4_l5_v50
KingKazma
2023-08-13T23:08:18Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T23:08:14Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e6_s55555_v4_l5_v50
KingKazma
2023-08-13T23:00:47Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T23:00:44Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e6_s108_v4_l5_v50
KingKazma
2023-08-13T22:56:27Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T22:56:26Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e5_s55555_v4_l5_v50
KingKazma
2023-08-13T22:53:17Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T22:53:13Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e4_s55555_v4_l5_v50
KingKazma
2023-08-13T22:45:46Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T22:45:43Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
platzi/platzi-vit-model-andres-grimaldos
platzi
2023-08-13T22:42:06Z
215
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-13T00:51:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans metrics: - accuracy widget: - src: https://huggingface.co/platzi/platzi-vit-model-andres-grimaldos/resolve/main/healthy.jpeg example_title: Healthy - src: https://huggingface.co/platzi/platzi-vit-model-andres-grimaldos/resolve/main/been-rust.jpeg example_title: Bean Rust model-index: - name: platzi-vit-model-andres-grimaldos results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9924812030075187 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # platzi-vit-model-andres-grimaldos This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0166 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1458 | 3.85 | 500 | 0.0166 | 0.9925 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
gregorgabrovsek/SloBertAA_Top5_WithOOC_082023
gregorgabrovsek
2023-08-13T22:41:27Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "camembert", "text-classification", "generated_from_trainer", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-13T17:09:23Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: SloBertAA_Top5_WithOOC_082023 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SloBertAA_Top5_WithOOC_082023 This model is a fine-tuned version of [EMBEDDIA/sloberta](https://huggingface.co/EMBEDDIA/sloberta) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7870 - Accuracy: 0.9013 - F1: 0.9010 - Precision: 0.9013 - Recall: 0.9013 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.381 | 1.0 | 10508 | 0.3981 | 0.8665 | 0.8636 | 0.8666 | 0.8665 | | 0.2912 | 2.0 | 21016 | 0.3497 | 0.8855 | 0.8854 | 0.8868 | 0.8855 | | 0.2352 | 3.0 | 31524 | 0.3778 | 0.8906 | 0.8901 | 0.8908 | 0.8906 | | 0.1875 | 4.0 | 42032 | 0.4656 | 0.8903 | 0.8902 | 0.8920 | 0.8903 | | 0.1447 | 5.0 | 52540 | 0.5620 | 0.8944 | 0.8949 | 0.8969 | 0.8944 | | 0.0938 | 6.0 | 63048 | 0.6150 | 0.8975 | 0.8975 | 0.8980 | 0.8975 | | 0.0685 | 7.0 | 73556 | 0.7084 | 0.8950 | 0.8945 | 0.8953 | 0.8950 | | 0.0449 | 8.0 | 84064 | 0.7499 | 0.8997 | 0.8992 | 0.8995 | 0.8997 | | 0.0267 | 9.0 | 94572 | 0.7734 | 0.8987 | 0.8983 | 0.8990 | 0.8987 | | 0.021 | 10.0 | 105080 | 0.7870 | 0.9013 | 0.9010 | 0.9013 | 0.9013 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.8.0 - Datasets 2.10.1 - Tokenizers 0.13.2
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e4_s108_v4_l5_v50
KingKazma
2023-08-13T22:40:30Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T22:40:28Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e3_s55555_v4_l5_v50
KingKazma
2023-08-13T22:38:16Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T22:38:13Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e3_s108_v4_l5_v50
KingKazma
2023-08-13T22:32:31Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T22:32:30Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
redstonehero/meinahentai_v4
redstonehero
2023-08-13T22:29:04Z
29
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-13T20:13:29Z
--- license: creativeml-openrail-m library_name: diffusers ---
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e1_s55555_v4_l5_v50
KingKazma
2023-08-13T22:23:15Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T22:23:12Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
ckandemir/ppo-SnowballTarget
ckandemir
2023-08-13T22:16:59Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-08-13T22:16:57Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ckandemir/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e-1_s55555_v4_l5_v50
KingKazma
2023-08-13T22:08:18Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T22:08:15Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_p_tuning_500_10_3000_8_e-1_s108_v4_l5_v50
KingKazma
2023-08-13T22:00:43Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-13T22:00:41Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e9_s55555_v4_l4_v100
KingKazma
2023-08-13T21:55:36Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T21:55:21Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prefix_tuning_500_10_3000_8_e8_s55555_v4_l4_v100
KingKazma
2023-08-13T21:48:38Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T21:48:22Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
KingKazma/xsum_gpt2_prompt_tuning_500_10_3000_8_e9_s55555_v4_l5_v50
KingKazma
2023-08-13T21:47:40Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-13T21:47:38Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
Wanaldino/lora-trained-xl-colab
Wanaldino
2023-08-13T21:43:30Z
0
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-13T19:54:46Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of a women tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Wanaldino/lora-trained-xl-colab These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of a women using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
redstonehero/perfectworld_v5
redstonehero
2023-08-13T21:42:07Z
30
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-13T20:13:35Z
--- license: creativeml-openrail-m library_name: diffusers ---