modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-12 12:31:00
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 555
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-12 12:28:53
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
abdelhamidmalki/taxi-v3-repo
|
abdelhamidmalki
| 2023-08-10T11:03:56Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T11:03:54Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: taxi-v3-repo
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="abdelhamidmalki/taxi-v3-repo", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
skshreyas714/lora-trained-xl-colab
|
skshreyas714
| 2023-08-10T11:01:49Z | 0 | 1 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2023-08-10T08:58:39Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of sks dog
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - skshreyas714/lora-trained-xl-colab
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
geranio/q-Taxi-v3
|
geranio
| 2023-08-10T10:57:53Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T10:57:51Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="geranio/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
abdelhamidmalki/q-FrozenLake-v1-4x4-noSlippery
|
abdelhamidmalki
| 2023-08-10T10:57:17Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T10:57:14Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="abdelhamidmalki/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
ui-chope/distilbert-base-uncased-finetuned-ner
|
ui-chope
| 2023-08-10T10:56:37Z | 482 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-05-31T03:21:56Z |
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1660
- Precision: 0.9701
- Recall: 0.9679
- F1: 0.9690
- Accuracy: 0.9863
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 11
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0091 | 1.0 | 5372 | 0.1034 | 0.9693 | 0.9649 | 0.9671 | 0.9858 |
| 0.0052 | 2.0 | 10744 | 0.1362 | 0.9715 | 0.9679 | 0.9697 | 0.9868 |
| 0.0064 | 3.0 | 16116 | 0.1415 | 0.9715 | 0.9657 | 0.9686 | 0.9844 |
| 0.0026 | 4.0 | 21488 | 0.1629 | 0.9709 | 0.9701 | 0.9705 | 0.9870 |
| 0.0034 | 5.0 | 26860 | 0.1345 | 0.9737 | 0.9687 | 0.9712 | 0.9851 |
| 0.0019 | 6.0 | 32232 | 0.1297 | 0.9700 | 0.9649 | 0.9675 | 0.9841 |
| 0.0031 | 7.0 | 37604 | 0.1543 | 0.9716 | 0.9701 | 0.9709 | 0.9868 |
| 0.0021 | 8.0 | 42976 | 0.0605 | 0.9782 | 0.9716 | 0.9749 | 0.9903 |
| 0.0023 | 9.0 | 48348 | 0.1506 | 0.9731 | 0.9701 | 0.9716 | 0.9877 |
| 0.0021 | 10.0 | 53720 | 0.1714 | 0.9693 | 0.9672 | 0.9682 | 0.9860 |
| 0.0015 | 11.0 | 59092 | 0.1660 | 0.9701 | 0.9679 | 0.9690 | 0.9863 |
### Framework versions
- Transformers 4.30.2
- Pytorch 1.13.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|
shajahan123/my-pet-cat
|
shajahan123
| 2023-08-10T10:52:52Z | 0 | 0 | null |
[
"NxtWave-GenAI-Webinar",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-08-10T10:49:39Z |
---
license: creativeml-openrail-m
tags:
- NxtWave-GenAI-Webinar
- text-to-image
- stable-diffusion
---
### My-Pet-Cat Dreambooth model trained by shajahan123 following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: VJCET91
Sample pictures of this concept:
.jpg)
|
StofEzz/whisper-tiny-fr
|
StofEzz
| 2023-08-10T10:49:32Z | 92 | 0 |
transformers
|
[
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:openai/whisper-tiny",
"base_model:finetune:openai/whisper-tiny",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-10T06:33:39Z |
---
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-tiny-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-tiny-fr
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8198
- Wer: 0.8502
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 6250
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.6223 | 1.0 | 250 | 0.7567 | 0.7225 |
| 0.475 | 2.0 | 500 | 0.6213 | 0.5461 |
| 0.2938 | 3.0 | 750 | 0.5860 | 0.5383 |
| 0.1613 | 4.0 | 1000 | 0.5903 | 0.4384 |
| 0.1026 | 5.0 | 1250 | 0.5992 | 0.4451 |
| 0.0615 | 6.0 | 1500 | 0.6322 | 0.5383 |
| 0.0422 | 7.0 | 1750 | 0.6398 | 0.4373 |
| 0.019 | 8.0 | 2000 | 0.6682 | 0.5239 |
| 0.0125 | 9.0 | 2250 | 0.6980 | 0.6681 |
| 0.0069 | 10.0 | 2500 | 0.7335 | 0.8679 |
| 0.0039 | 11.0 | 2750 | 0.7354 | 0.6238 |
| 0.0026 | 12.0 | 3000 | 0.7458 | 0.6315 |
| 0.0021 | 13.0 | 3250 | 0.7599 | 0.6715 |
| 0.0018 | 14.0 | 3500 | 0.7682 | 0.7103 |
| 0.0015 | 15.0 | 3750 | 0.7750 | 0.7081 |
| 0.0013 | 16.0 | 4000 | 0.7846 | 0.7125 |
| 0.0012 | 17.0 | 4250 | 0.7897 | 0.7114 |
| 0.001 | 18.0 | 4500 | 0.7962 | 0.9345 |
| 0.0009 | 19.0 | 4750 | 0.8001 | 0.7170 |
| 0.0009 | 20.0 | 5000 | 0.8074 | 0.8335 |
| 0.0008 | 21.0 | 5250 | 0.8107 | 0.8424 |
| 0.0007 | 22.0 | 5500 | 0.8152 | 0.8402 |
| 0.0007 | 23.0 | 5750 | 0.8181 | 0.8446 |
| 0.0007 | 24.0 | 6000 | 0.8187 | 0.8479 |
| 0.0007 | 25.0 | 6250 | 0.8198 | 0.8502 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
GrazittiInteractive/llama-2-13b
|
GrazittiInteractive
| 2023-08-10T10:49:14Z | 8 | 1 |
transformers
|
[
"transformers",
"llama",
"text-generation",
"facebook",
"meta",
"pytorch",
"llama-2",
"en",
"dataset:meta-llama/Llama-2-13b",
"license:other",
"autotrain_compatible",
"region:us"
] |
text-generation
| 2023-08-01T07:39:26Z |
---
inference: false
language:
- en
pipeline_tag: text-generation
datasets:
- meta-llama/Llama-2-13b
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
model_type: llama
license: other
---
# Meta's Llama 2 13B GGML
A 4 Bit GGML format quantized version of base mode Llama-2-13b taken from https://huggingface.co/meta-llama/Llama-2-13b, reduced from 24.2 GB to 7.37GB
These files are GGML format model files for [Meta's Llama 2 13B](https://huggingface.co/meta-llama/Llama-2-13b).
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a powerful GGML web UI with full GPU acceleration out of the box. Especially good for story telling.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with GPU acceleration via the c_transformers backend.
* [LM Studio](https://lmstudio.ai/), a fully featured local GUI. Supports full GPU accel on macOS. Also supports Windows, without GPU accel.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI. Requires extra steps to enable GPU accel via llama.cpp backend.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with LangChain support and OpenAI-compatible AI server.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with OpenAI-compatible API server.
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| ggml-model-q4_0.bin | q4_0 | 4 | 6.85 GB| 9.118 GB | Original quant method, 4-bit. |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `llama.cpp`
we used langchain with llama-cpp-python, adjust for your tastes and needs:
How to use this Llama-2-13b model from Python code and langchain
First, make sure you have langchain and llama-cpp installed:
```
pip install llama-cpp-python
```
```
# Make sure the model path is correct for your system!
llm = LlamaCpp(
model_path="/Users/rlm/Desktop/Code/llama/llama-2-13b-ggml/ggml-model-q4_0.bin",
input={"temperature": 0.75, "max_length": 2000, "top_p": 1},
callback_manager=callback_manager,
verbose=True,
)
```
# Original model card: Meta's Llama 2 13B
---
extra_gated_heading: Access Llama 2 on Hugging Face
extra_gated_description: >-
This is a form to enable access to Llama 2 on Hugging Face after you have been
granted access from Meta. Please visit the [Meta website](https://ai.meta.com/resources/models-and-libraries/llama-downloads) and accept our
license terms and acceptable use policy before submitting this form. Requests
will be processed in 1-2 days.
extra_gated_button_content: Submit
extra_gated_fields:
I agree to share my name, email address and username with Meta and confirm that I have already been granted download access on the Meta website: checkbox
language:
- en
pipeline_tag: text-generation
inference: false
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
---
# **Llama 2**
Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. This is the repository for the 7B pretrained model, converted for the Hugging Face Transformers format. Links to other models can be found in the index at the bottom.
## Model Details
*Note: Use of this model is governed by the Meta license. In order to download the model weights and tokenizer, please visit the [website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and accept our License before requesting access here.*
Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM.
**Model Developers** Meta
**Variations** Llama 2 comes in a range of parameter sizes — 7B, 13B, and 70B — as well as pretrained and fine-tuned variations.
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety.
||Training Data|Params|Content Length|GQA|Tokens|LR|
|---|---|---|---|---|---|---|
|Llama 2|*A new mix of publicly available online data*|7B|4k|✗|2.0T|3.0 x 10<sup>-4</sup>|
|Llama 2|*A new mix of publicly available online data*|13B|4k|✗|2.0T|3.0 x 10<sup>-4</sup>|
|Llama 2|*A new mix of publicly available online data*|70B|4k|✔|2.0T|1.5 x 10<sup>-4</sup>|
*Llama 2 family of models.* Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. Bigger models - 70B -- use Grouped-Query Attention (GQA) for improved inference scalability.
**Model Dates** Llama 2 was trained between January 2023 and July 2023.
**Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
## Intended Use
**Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
To get the expected features and performance for the chat versions, a specific formatting needs to be followed, including the `INST` and `<<SYS>>` tags, `BOS` and `EOS` tokens, and the whitespaces and breaklines in between (we recommend calling `strip()` on inputs to avoid double-spaces). See our reference code in github for details: [`chat_completion`](https://github.com/facebookresearch/llama/blob/main/llama/generation.py#L212).
**Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws).Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2.
## Hardware and Software
**Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
**Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program.
||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)|
|---|---|---|---|
|Llama 2 7B|184320|400|31.22|
|Llama 2 13B|368640|400|62.44|
|Llama 2 70B|1720320|400|291.42|
|Total|3311616||539.00|
**CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
## Training Data
**Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
**Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023.
## Evaluation Results
In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.For all the evaluations, we use our internal evaluations library.
|Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval|
|---|---|---|---|---|---|---|---|---|---|
|Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9|
|Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9|
|Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7|
|Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6|
|Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3|
|Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1|
|Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**|
**Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1.
|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama 1|7B|27.42|23.00|
|Llama 1|13B|41.74|23.08|
|Llama 1|33B|44.19|22.57|
|Llama 1|65B|48.71|21.77|
|Llama 2|7B|33.29|**21.25**|
|Llama 2|13B|41.86|26.10|
|Llama 2|70B|**50.18**|24.60|
**Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better).
|||TruthfulQA|Toxigen|
|---|---|---|---|
|Llama-2-Chat|7B|57.04|**0.00**|
|Llama-2-Chat|13B|62.18|**0.00**|
|Llama-2-Chat|70B|**64.14**|0.01|
**Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above.
## Ethical Considerations and Limitations
Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model.
Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide)
## Reporting Issues
Please report any software “bug,” or other problems with the models through one of the following means:
- Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama)
- Reporting problematic content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)
- Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)
## Llama Model Index
|Model|Llama2|Llama2-hf|Llama2-chat|Llama2-chat-hf|
|---|---|---|---|---|
|7B| [Link](https://huggingface.co/llamaste/Llama-2-7b) | [Link](https://huggingface.co/llamaste/Llama-2-7b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-7b-chat-hf)|
|13B| [Link](https://huggingface.co/llamaste/Llama-2-13b) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-13b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-13b-hf)|
|70B| [Link](https://huggingface.co/llamaste/Llama-2-70b) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf) | [Link](https://huggingface.co/llamaste/Llama-2-70b-chat) | [Link](https://huggingface.co/llamaste/Llama-2-70b-hf)|
|
albagon/q-Taxi-v3
|
albagon
| 2023-08-10T10:48:16Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T10:47:24Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.73
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="albagon/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
MrD05/otherhalf-pt
|
MrD05
| 2023-08-10T10:47:56Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gptj",
"text-generation",
"text generation",
"en",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-10T10:20:35Z |
---
license: creativeml-openrail-m
language:
- en
thumbnail: null
tags:
- text generation
---
|
morell23/anyamelfisa
|
morell23
| 2023-08-10T10:47:00Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-08-10T10:46:32Z |
---
license: creativeml-openrail-m
---
|
Ian-14/model_test
|
Ian-14
| 2023-08-10T10:46:45Z | 156 | 0 |
transformers
|
[
"transformers",
"pytorch",
"chatglm",
"text-generation",
"custom_code",
"zh",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-10T01:03:03Z |
---
pipeline_tag: text-generation
license: apache-2.0
language:
- zh
widget:
- text: "你好啊,O(∩_∩)O哈哈~"
example_title: "Sentiment analysis"
- text: "Barack Obama nominated Hilary Clinton as his secretary of state on Monday. He chose her because she had ..."
example_title: "向量化"
- text: "On a shelf, there are five books: a gray book, a red book, a purple book, a blue book, and a black book ..."
example_title: "Logic puzzles"
- text: "The two men running to become New York City's next mayor will face off in their first debate Wednesday night ..."
example_title: "Reading comprehension"
---
### How to use
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b-int4", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm2-6b-int4", trust_remote_code=True).half().cuda()
model = model.eval()
text = "你好"
response, history = model.chat(tokenizer, text, history=[])
response
```
|
jordyvl/dit-base-finetuned-rvlcdip-small_rvl_cdip-NK1000_kd
|
jordyvl
| 2023-08-10T10:45:34Z | 164 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-07-31T13:04:43Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: dit-base-finetuned-rvlcdip-small_rvl_cdip-NK1000_kd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dit-base-finetuned-rvlcdip-small_rvl_cdip-NK1000_kd
This model is a fine-tuned version of [WinKawaks/vit-small-patch16-224](https://huggingface.co/WinKawaks/vit-small-patch16-224) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5198
- Accuracy: 0.833
- Brier Loss: 0.2560
- Nll: 1.1465
- F1 Micro: 0.833
- F1 Macro: 0.8328
- Ece: 0.0719
- Aurc: 0.0425
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
| No log | 1.0 | 125 | 1.0816 | 0.622 | 0.5119 | 2.5026 | 0.622 | 0.6194 | 0.0740 | 0.1657 |
| No log | 2.0 | 250 | 0.8028 | 0.715 | 0.3936 | 2.1454 | 0.715 | 0.7158 | 0.0651 | 0.1017 |
| No log | 3.0 | 375 | 0.7104 | 0.7505 | 0.3455 | 2.0393 | 0.7505 | 0.7464 | 0.0456 | 0.0765 |
| 0.9841 | 4.0 | 500 | 0.6747 | 0.7682 | 0.3267 | 1.9784 | 0.7682 | 0.7703 | 0.0455 | 0.0682 |
| 0.9841 | 5.0 | 625 | 0.6619 | 0.7782 | 0.3169 | 1.9299 | 0.7782 | 0.7752 | 0.0391 | 0.0649 |
| 0.9841 | 6.0 | 750 | 0.6416 | 0.7897 | 0.3058 | 1.8240 | 0.7897 | 0.7923 | 0.0483 | 0.0683 |
| 0.9841 | 7.0 | 875 | 0.6481 | 0.786 | 0.3016 | 1.8855 | 0.786 | 0.7855 | 0.0501 | 0.0640 |
| 0.259 | 8.0 | 1000 | 0.6273 | 0.7963 | 0.2970 | 1.7135 | 0.7963 | 0.7970 | 0.0454 | 0.0633 |
| 0.259 | 9.0 | 1125 | 0.6484 | 0.7927 | 0.3044 | 1.7079 | 0.7927 | 0.7911 | 0.0601 | 0.0647 |
| 0.259 | 10.0 | 1250 | 0.6504 | 0.7925 | 0.3046 | 1.8241 | 0.7925 | 0.7931 | 0.0577 | 0.0674 |
| 0.259 | 11.0 | 1375 | 0.6137 | 0.7975 | 0.2914 | 1.6742 | 0.7975 | 0.7996 | 0.0567 | 0.0675 |
| 0.133 | 12.0 | 1500 | 0.6092 | 0.7993 | 0.2928 | 1.6077 | 0.7993 | 0.8023 | 0.0600 | 0.0654 |
| 0.133 | 13.0 | 1625 | 0.5905 | 0.805 | 0.2842 | 1.5790 | 0.805 | 0.8074 | 0.0589 | 0.0623 |
| 0.133 | 14.0 | 1750 | 0.5794 | 0.8077 | 0.2797 | 1.4947 | 0.8077 | 0.8090 | 0.0533 | 0.0579 |
| 0.133 | 15.0 | 1875 | 0.5683 | 0.8075 | 0.2777 | 1.4518 | 0.8075 | 0.8076 | 0.0594 | 0.0565 |
| 0.1032 | 16.0 | 2000 | 0.5762 | 0.8125 | 0.2794 | 1.3998 | 0.8125 | 0.8146 | 0.0633 | 0.0551 |
| 0.1032 | 17.0 | 2125 | 0.5529 | 0.8115 | 0.2748 | 1.3595 | 0.8115 | 0.8126 | 0.0638 | 0.0519 |
| 0.1032 | 18.0 | 2250 | 0.5669 | 0.8133 | 0.2759 | 1.3803 | 0.8133 | 0.8143 | 0.0603 | 0.0547 |
| 0.1032 | 19.0 | 2375 | 0.5549 | 0.8177 | 0.2716 | 1.3258 | 0.8178 | 0.8186 | 0.0625 | 0.0527 |
| 0.0832 | 20.0 | 2500 | 0.5576 | 0.8147 | 0.2737 | 1.3814 | 0.8148 | 0.8183 | 0.0627 | 0.0513 |
| 0.0832 | 21.0 | 2625 | 0.5336 | 0.8247 | 0.2609 | 1.2941 | 0.8247 | 0.8243 | 0.0626 | 0.0476 |
| 0.0832 | 22.0 | 2750 | 0.5276 | 0.8257 | 0.2595 | 1.2491 | 0.8257 | 0.8262 | 0.0633 | 0.0455 |
| 0.0832 | 23.0 | 2875 | 0.5313 | 0.8193 | 0.2603 | 1.2685 | 0.8193 | 0.8198 | 0.0618 | 0.0466 |
| 0.0715 | 24.0 | 3000 | 0.5208 | 0.826 | 0.2575 | 1.2280 | 0.826 | 0.8266 | 0.0644 | 0.0468 |
| 0.0715 | 25.0 | 3125 | 0.5205 | 0.8233 | 0.2591 | 1.2235 | 0.8233 | 0.8235 | 0.0615 | 0.0459 |
| 0.0715 | 26.0 | 3250 | 0.5067 | 0.8293 | 0.2536 | 1.2028 | 0.8293 | 0.8298 | 0.0630 | 0.0433 |
| 0.0715 | 27.0 | 3375 | 0.5207 | 0.8245 | 0.2591 | 1.2148 | 0.8245 | 0.8256 | 0.0692 | 0.0449 |
| 0.0647 | 28.0 | 3500 | 0.5197 | 0.824 | 0.2596 | 1.1765 | 0.824 | 0.8242 | 0.0690 | 0.0469 |
| 0.0647 | 29.0 | 3625 | 0.5086 | 0.8315 | 0.2531 | 1.1762 | 0.8315 | 0.8319 | 0.0704 | 0.0428 |
| 0.0647 | 30.0 | 3750 | 0.5025 | 0.8313 | 0.2509 | 1.1560 | 0.8313 | 0.8314 | 0.0687 | 0.0439 |
| 0.0647 | 31.0 | 3875 | 0.5073 | 0.832 | 0.2527 | 1.1743 | 0.832 | 0.8323 | 0.0662 | 0.0426 |
| 0.0618 | 32.0 | 4000 | 0.5068 | 0.8303 | 0.2526 | 1.1644 | 0.8303 | 0.8304 | 0.0679 | 0.0422 |
| 0.0618 | 33.0 | 4125 | 0.5086 | 0.8325 | 0.2526 | 1.1658 | 0.8325 | 0.8326 | 0.0671 | 0.0415 |
| 0.0618 | 34.0 | 4250 | 0.5114 | 0.833 | 0.2540 | 1.1694 | 0.833 | 0.8326 | 0.0649 | 0.0440 |
| 0.0618 | 35.0 | 4375 | 0.5104 | 0.8305 | 0.2541 | 1.1399 | 0.8305 | 0.8309 | 0.0666 | 0.0426 |
| 0.0601 | 36.0 | 4500 | 0.5122 | 0.8307 | 0.2547 | 1.1755 | 0.8308 | 0.8309 | 0.0689 | 0.0435 |
| 0.0601 | 37.0 | 4625 | 0.5122 | 0.8323 | 0.2543 | 1.1448 | 0.8323 | 0.8326 | 0.0698 | 0.0429 |
| 0.0601 | 38.0 | 4750 | 0.5144 | 0.8307 | 0.2554 | 1.1444 | 0.8308 | 0.8308 | 0.0699 | 0.0414 |
| 0.0601 | 39.0 | 4875 | 0.5155 | 0.8307 | 0.2553 | 1.1524 | 0.8308 | 0.8308 | 0.0722 | 0.0430 |
| 0.0593 | 40.0 | 5000 | 0.5132 | 0.8315 | 0.2543 | 1.1554 | 0.8315 | 0.8318 | 0.0721 | 0.0423 |
| 0.0593 | 41.0 | 5125 | 0.5153 | 0.8335 | 0.2551 | 1.1557 | 0.8335 | 0.8332 | 0.0700 | 0.0423 |
| 0.0593 | 42.0 | 5250 | 0.5141 | 0.8313 | 0.2545 | 1.1530 | 0.8313 | 0.8314 | 0.0728 | 0.0419 |
| 0.0593 | 43.0 | 5375 | 0.5159 | 0.8313 | 0.2551 | 1.1434 | 0.8313 | 0.8312 | 0.0756 | 0.0425 |
| 0.0587 | 44.0 | 5500 | 0.5164 | 0.833 | 0.2548 | 1.1469 | 0.833 | 0.8329 | 0.0688 | 0.0428 |
| 0.0587 | 45.0 | 5625 | 0.5170 | 0.8325 | 0.2553 | 1.1486 | 0.8325 | 0.8324 | 0.0723 | 0.0426 |
| 0.0587 | 46.0 | 5750 | 0.5188 | 0.8325 | 0.2559 | 1.1478 | 0.8325 | 0.8324 | 0.0731 | 0.0423 |
| 0.0587 | 47.0 | 5875 | 0.5188 | 0.8325 | 0.2557 | 1.1515 | 0.8325 | 0.8323 | 0.0702 | 0.0424 |
| 0.0583 | 48.0 | 6000 | 0.5195 | 0.8327 | 0.2559 | 1.1477 | 0.8327 | 0.8325 | 0.0702 | 0.0427 |
| 0.0583 | 49.0 | 6125 | 0.5194 | 0.8325 | 0.2559 | 1.1464 | 0.8325 | 0.8324 | 0.0713 | 0.0426 |
| 0.0583 | 50.0 | 6250 | 0.5198 | 0.833 | 0.2560 | 1.1465 | 0.833 | 0.8328 | 0.0719 | 0.0425 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Seappa/xlm-roberta-base-finetuned-panx-all
|
Seappa
| 2023-08-10T10:40:11Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-base",
"base_model:finetune:FacebookAI/xlm-roberta-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-08-10T10:26:46Z |
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-all
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-all
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1764
- F1: 0.8572
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.297 | 1.0 | 835 | 0.1950 | 0.8093 |
| 0.1555 | 2.0 | 1670 | 0.1687 | 0.8455 |
| 0.1 | 3.0 | 2505 | 0.1764 | 0.8572 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
morell23/ghblistloff
|
morell23
| 2023-08-10T10:38:02Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-08-10T10:35:45Z |
---
license: creativeml-openrail-m
---
|
sd-concepts-library/animal-toy
|
sd-concepts-library
| 2023-08-10T10:33:22Z | 0 | 2 | null |
[
"base_model:stabilityai/stable-diffusion-2",
"base_model:finetune:stabilityai/stable-diffusion-2",
"license:mit",
"region:us"
] | null | 2023-08-10T10:10:16Z |
---
license: mit
base_model: stabilityai/stable-diffusion-2
---
### animal-toy on Stable Diffusion
This is the `<animal-toy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb).
Here is the new concept you will be able to use as an `object`:










|
DrishtiSharma/wav2vec2-base-finetuned-gtzan-bs-16
|
DrishtiSharma
| 2023-08-10T10:30:05Z | 159 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"audio-classification",
"generated_from_trainer",
"dataset:marsyas/gtzan",
"base_model:facebook/wav2vec2-base",
"base_model:finetune:facebook/wav2vec2-base",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2023-08-08T02:35:30Z |
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-gtzan-bs-16
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.88
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-finetuned-gtzan-bs-16
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5497
- Accuracy: 0.88
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0557 | 1.0 | 57 | 1.9783 | 0.34 |
| 1.6173 | 2.0 | 114 | 1.6407 | 0.55 |
| 1.3884 | 3.0 | 171 | 1.2228 | 0.65 |
| 1.1082 | 4.0 | 228 | 1.0989 | 0.7 |
| 0.9112 | 5.0 | 285 | 0.8724 | 0.8 |
| 0.7985 | 6.0 | 342 | 0.8715 | 0.76 |
| 0.5456 | 7.0 | 399 | 0.6832 | 0.82 |
| 0.4842 | 8.0 | 456 | 0.6566 | 0.85 |
| 0.3419 | 9.0 | 513 | 0.6485 | 0.84 |
| 0.5821 | 10.0 | 570 | 0.5636 | 0.85 |
| 0.2112 | 11.0 | 627 | 0.4572 | 0.89 |
| 0.2005 | 12.0 | 684 | 0.5405 | 0.87 |
| 0.1314 | 13.0 | 741 | 0.4695 | 0.9 |
| 0.0866 | 14.0 | 798 | 0.5545 | 0.88 |
| 0.0594 | 15.0 | 855 | 0.5497 | 0.88 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.3
- Tokenizers 0.13.3
|
aura-tfn/q-FrozenLake-v1-4x4-noSlippery
|
aura-tfn
| 2023-08-10T10:27:11Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T10:27:09Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="aura-tfn/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Sunny98/LunarLander-v2
|
Sunny98
| 2023-08-10T10:15:37Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T10:15:17Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 260.70 +/- 25.46
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
RyangRyang/distilbert-base-uncased-finetuned-emotion
|
RyangRyang
| 2023-08-10T10:10:13Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-10T08:29:26Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: F1
type: f1
value: 0.9192696693027332
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2198
- Accuacy: 0.9195
- F1: 0.9193
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuacy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|
| 0.8401 | 1.0 | 250 | 0.3257 | 0.906 | 0.9036 |
| 0.2584 | 2.0 | 500 | 0.2198 | 0.9195 | 0.9193 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
pknayak/whisper-small-dv
|
pknayak
| 2023-08-10T10:06:47Z | 74 | 0 |
transformers
|
[
"transformers",
"pytorch",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"dv",
"dataset:mozilla-foundation/common_voice_13_0",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-09T14:31:45Z |
---
language:
- dv
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Small Dv - pkn
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: 'Common Voice 13 - pkn '
type: mozilla-foundation/common_voice_13_0
config: dv
split: test
args: dv
metrics:
- name: Wer
type: wer
value: 13.290677052543728
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Dv - pkn
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 - pkn dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1689
- Wer Ortho: 62.8317
- Wer: 13.2907
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 0.1252 | 1.63 | 500 | 0.1689 | 62.8317 | 13.2907 |
### Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
rishabguha/lora-trained-xl-colab_agsts_cat
|
rishabguha
| 2023-08-10T10:01:01Z | 11 | 1 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2023-08-09T19:43:38Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of agsts cat
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - rishabguha/lora-trained-xl-colab_agsts_cat
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of agsts cat using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.




LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
yezune/xlm-roberta-base-finetuned-panx-en
|
yezune
| 2023-08-10T09:55:26Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-08-10T09:54:05Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-en
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
config: PAN-X.en
split: validation
args: PAN-X.en
metrics:
- name: F1
type: f1
value: 0.6877426511369938
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-en
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3900
- F1: 0.6877
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1495 | 1.0 | 50 | 0.5817 | 0.4923 |
| 0.5096 | 2.0 | 100 | 0.4302 | 0.6313 |
| 0.3706 | 3.0 | 150 | 0.3900 | 0.6877 |
### Framework versions
- Transformers 4.30.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.2
- Tokenizers 0.13.3
|
iliyaML/t5-small-billsum
|
iliyaML
| 2023-08-10T09:52:25Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:billsum",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-08-10T09:42:37Z |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- billsum
metrics:
- rouge
model-index:
- name: t5-small-billsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: billsum
type: billsum
config: default
split: ca_test
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.1528
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-billsum
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5246
- Rouge1: 0.1528
- Rouge2: 0.0586
- Rougel: 0.1291
- Rougelsum: 0.1292
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 62 | 2.8551 | 0.1284 | 0.0348 | 0.1081 | 0.1085 | 19.0 |
| No log | 2.0 | 124 | 2.6404 | 0.1373 | 0.0453 | 0.1147 | 0.1147 | 19.0 |
| No log | 3.0 | 186 | 2.5665 | 0.1423 | 0.0494 | 0.1195 | 0.1192 | 19.0 |
| No log | 4.0 | 248 | 2.5342 | 0.149 | 0.055 | 0.1259 | 0.1257 | 19.0 |
| No log | 5.0 | 310 | 2.5246 | 0.1528 | 0.0586 | 0.1291 | 0.1292 | 19.0 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
yezune/xlm-roberta-base-finetuned-panx-fr
|
yezune
| 2023-08-10T09:52:25Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-08-10T09:50:25Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-fr
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
config: PAN-X.fr
split: validation
args: PAN-X.fr
metrics:
- name: F1
type: f1
value: 0.8341708542713568
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-fr
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2671
- F1: 0.8342
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5836 | 1.0 | 191 | 0.3316 | 0.7831 |
| 0.26 | 2.0 | 382 | 0.2738 | 0.8256 |
| 0.1681 | 3.0 | 573 | 0.2671 | 0.8342 |
### Framework versions
- Transformers 4.30.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.2
- Tokenizers 0.13.3
|
chunwoolee0/t5_small_billsum
|
chunwoolee0
| 2023-08-10T09:52:24Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:billsum",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-08-10T09:43:49Z |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- billsum
metrics:
- rouge
model-index:
- name: t5_small_billsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: billsum
type: billsum
config: default
split: ca_test
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.1508
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5_small_billsum
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3947
- Rouge1: 0.1508
- Rouge2: 0.0616
- Rougel: 0.1266
- Rougelsum: 0.1266
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 62 | 2.5233 | 0.1285 | 0.0432 | 0.1093 | 0.109 | 19.0 |
| No log | 2.0 | 124 | 2.4402 | 0.1379 | 0.0519 | 0.1165 | 0.1161 | 19.0 |
| No log | 3.0 | 186 | 2.4054 | 0.1477 | 0.0592 | 0.1242 | 0.1242 | 19.0 |
| No log | 4.0 | 248 | 2.3947 | 0.1508 | 0.0616 | 0.1266 | 0.1266 | 19.0 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
stoyky/q-FrozenLake-v1-4x4-noSlippery
|
stoyky
| 2023-08-10T09:32:21Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T09:32:18Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="stoyky/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
trieudemo11/llama_7b_attributes_prompt_alpaca_2_stable_tested
|
trieudemo11
| 2023-08-10T09:31:48Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-09T17:44:36Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
- PEFT 0.5.0.dev0
- PEFT 0.5.0.dev0
- PEFT 0.5.0.dev0
- PEFT 0.5.0.dev0
- PEFT 0.5.0.dev0
- PEFT 0.5.0.dev0
- PEFT 0.5.0.dev0
|
WinSenX/sd-class-butterflies-32
|
WinSenX
| 2023-08-10T09:27:17Z | 30 | 0 |
diffusers
|
[
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2023-08-10T09:26:59Z |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('WinSenX/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
tmeskuti/distilbase-trained-sts-uncased
|
tmeskuti
| 2023-08-10T09:23:28Z | 1 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2023-08-10T09:18:44Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 360 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 4,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 144,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
MRNH/proximal-policy-optimization-LunarLander-v2
|
MRNH
| 2023-08-10T09:15:05Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T08:27:37Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 275.81 +/- 26.46
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
KeKu/llama2-french
|
KeKu
| 2023-08-10T09:06:12Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-10T09:06:06Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
Dytorch/textual_inversion_cat
|
Dytorch
| 2023-08-10T08:50:46Z | 3 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"textual_inversion",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-08-09T02:43:24Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- textual_inversion
inference: true
---
# Textual inversion text2image fine-tuning - Dytorch/textual_inversion_cat
These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
|
rainishere/llama2-qlora-finetunined-french-test-rainishere
|
rainishere
| 2023-08-10T08:45:03Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-10T08:44:54Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
NickTheSickDick/David-Draiman-V1-RVC
|
NickTheSickDick
| 2023-08-10T08:44:36Z | 0 | 0 | null |
[
"license:openrail",
"region:us"
] | null | 2023-08-06T18:30:29Z |
---
license: openrail
---
The first version of my David Draiman model.
Trained in RVC on a custom dataset, 220 Epochs, mangio-crepe
|
TigerResearch/tigerbot-7b-sft-v1-4bit
|
TigerResearch
| 2023-08-10T08:43:46Z | 7 | 6 |
transformers
|
[
"transformers",
"bloom",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-01T03:38:20Z |
---
license: apache-2.0
---
<div style="width: 100%;">
<img src="https://github.com/TigerResearch/TigerBot/blob/main/image/logo_core.png" alt="TigerBot" style="width: 20%; display: block; margin: auto;">
</div>
<p align="center">
<font face="黑体" size=5"> A cutting-edge foundation for your very own LLM. </font>
</p>
<p align="center">
🌐 <a href="https://tigerbot.com/" target="_blank">TigerBot</a> • 🤗 <a href="https://huggingface.co/TigerResearch" target="_blank">Hugging Face</a>
</p>
This is a 4-bit GPTQ version of the [Tigerbot 7B sft](https://huggingface.co/TigerResearch/tigerbot-7b-sft).
It was quantized to 4bit using: https://github.com/TigerResearch/TigerBot/tree/main/gptq
## How to download and use this model in github: https://github.com/TigerResearch/TigerBot
Here are commands to clone the TigerBot and install.
```
conda create --name tigerbot python=3.8
conda activate tigerbot
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
git clone https://github.com/TigerResearch/TigerBot
cd TigerBot
pip install -r requirements.txt
```
Inference with command line interface
```
cd TigerBot/gptq
CUDA_VISIBLE_DEVICES=0 python tigerbot_infer.py TigerResearch/tigerbot-7b-sft-4bit-128g --wbits 4 --groupsize 128 --load TigerResearch/tigerbot-7b-sft-4bit-128g/tigerbot-7b-4bit-128g.pt
```
|
iliyaML/falcon-7b-openassistant-guanaco
|
iliyaML
| 2023-08-10T08:42:24Z | 0 | 0 | null |
[
"tensorboard",
"generated_from_trainer",
"base_model:ybelkada/falcon-7b-sharded-bf16",
"base_model:finetune:ybelkada/falcon-7b-sharded-bf16",
"region:us"
] | null | 2023-08-10T05:08:03Z |
---
base_model: ybelkada/falcon-7b-sharded-bf16
tags:
- generated_from_trainer
model-index:
- name: falcon-7b-openassistant-guanaco
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# falcon-7b-openassistant-guanaco
This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 500
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
smangrul/peft-lora-starcoderbase3b-personal-copilot-A100-40GB-colab
|
smangrul
| 2023-08-10T08:35:19Z | 15 | 0 |
peft
|
[
"peft",
"generated_from_trainer",
"base_model:bigcode/starcoderbase-3b",
"base_model:adapter:bigcode/starcoderbase-3b",
"license:bigcode-openrail-m",
"region:us"
] | null | 2023-08-09T20:17:40Z |
---
license: bigcode-openrail-m
base_model: bigcode/starcoderbase-3b
tags:
- generated_from_trainer
model-index:
- name: peft-lora-starcoderbase3b-personal-copilot-A100-40GB-colab
results: []
library_name: peft
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# peft-lora-starcoderbase3b-personal-copilot-A100-40GB-colab
This model is a fine-tuned version of [bigcode/starcoderbase-3b](https://huggingface.co/bigcode/starcoderbase-3b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5038
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 30
- training_steps: 2000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.8168 | 0.05 | 100 | 0.7807 |
| 0.7961 | 0.1 | 200 | 0.7197 |
| 0.7837 | 0.15 | 300 | 0.6603 |
| 0.7053 | 0.2 | 400 | 0.6371 |
| 0.6132 | 0.25 | 500 | 0.6282 |
| 0.6584 | 0.3 | 600 | 0.6107 |
| 0.621 | 0.35 | 700 | 0.5934 |
| 0.6961 | 0.4 | 800 | 0.5877 |
| 0.592 | 0.45 | 900 | 0.5833 |
| 0.6967 | 0.5 | 1000 | 0.5746 |
| 0.6382 | 0.55 | 1100 | 0.5563 |
| 0.6815 | 0.6 | 1200 | 0.5436 |
| 0.5483 | 0.65 | 1300 | 0.5439 |
| 0.7172 | 0.7 | 1400 | 0.5401 |
| 0.5479 | 0.75 | 1500 | 0.5390 |
| 0.9422 | 0.8 | 1600 | 0.5357 |
| 0.5503 | 0.85 | 1700 | 0.5303 |
| 0.5928 | 0.9 | 1800 | 0.5322 |
| 0.5513 | 0.95 | 1900 | 0.5176 |
| 0.6314 | 1.0 | 2000 | 0.5038 |
### Framework versions
- PEFT 0.5.0.dev0
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
Hemanth-thunder/stable_diffusion_lora
|
Hemanth-thunder
| 2023-08-10T08:21:14Z | 3 | 1 |
diffusers
|
[
"diffusers",
"tensorboard",
"text-to-image",
"autotrain",
"base_model:SG161222/Realistic_Vision_V1.4",
"base_model:finetune:SG161222/Realistic_Vision_V1.4",
"region:us"
] |
text-to-image
| 2023-08-06T05:52:45Z |
---
base_model: SG161222/Realistic_Vision_V1.4
instance_prompt: hmat
tags:
- text-to-image
- diffusers
- autotrain
inference: true
---
# DreamBooth trained by AutoTrain
Test enoder was trained.
|
MochaPixel/Lia
|
MochaPixel
| 2023-08-10T08:19:50Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-18T11:55:18Z |
---
license: creativeml-openrail-m
---
|
ThuyNT03/distilbert-base-uncased-multil-cls-legal
|
ThuyNT03
| 2023-08-10T08:05:47Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-10T00:09:04Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-multil-cls-legal
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-multil-cls-legal
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5448
- Accuracy: 0.9022
- F1: 0.9015
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 2.67 | 1.0 | 396 | 1.9327 | 0.5209 | 0.4806 |
| 1.5362 | 2.0 | 792 | 1.0998 | 0.7061 | 0.6869 |
| 0.8991 | 3.0 | 1188 | 0.7546 | 0.8013 | 0.7975 |
| 0.5899 | 4.0 | 1584 | 0.6136 | 0.8403 | 0.8392 |
| 0.4082 | 5.0 | 1980 | 0.5527 | 0.8601 | 0.8589 |
| 0.2874 | 6.0 | 2376 | 0.5200 | 0.8736 | 0.8731 |
| 0.2136 | 7.0 | 2772 | 0.4991 | 0.8831 | 0.8815 |
| 0.1564 | 8.0 | 3168 | 0.4946 | 0.8853 | 0.8843 |
| 0.1123 | 9.0 | 3564 | 0.4814 | 0.8928 | 0.8920 |
| 0.0866 | 10.0 | 3960 | 0.4959 | 0.8912 | 0.8908 |
| 0.0685 | 11.0 | 4356 | 0.5060 | 0.8928 | 0.8923 |
| 0.0508 | 12.0 | 4752 | 0.5114 | 0.8997 | 0.8989 |
| 0.037 | 13.0 | 5148 | 0.5199 | 0.8978 | 0.8971 |
| 0.0316 | 14.0 | 5544 | 0.5236 | 0.9003 | 0.8993 |
| 0.0243 | 15.0 | 5940 | 0.5253 | 0.9022 | 0.9015 |
| 0.021 | 16.0 | 6336 | 0.5385 | 0.9025 | 0.9019 |
| 0.0177 | 17.0 | 6732 | 0.5396 | 0.9038 | 0.9032 |
| 0.014 | 18.0 | 7128 | 0.5449 | 0.9025 | 0.9018 |
| 0.014 | 19.0 | 7524 | 0.5467 | 0.9010 | 0.9002 |
| 0.0103 | 20.0 | 7920 | 0.5448 | 0.9022 | 0.9015 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
jubanbhura/lora-trained-xl-colab
|
jubanbhura
| 2023-08-10T08:02:11Z | 2 | 1 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2023-08-10T06:14:27Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: digital badge designs
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - jubanbhura/lora-trained-xl-colab
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on digital badge designs using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
Geotrend/distilbert-base-en-es-zh-cased
|
Geotrend
| 2023-08-10T08:02:08Z | 142 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"distilbert",
"fill-mask",
"multilingual",
"en",
"es",
"zh",
"dataset:wikipedia",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
---
language:
- multilingual
- en
- es
- zh
datasets: wikipedia
license: apache-2.0
---
# distilbert-base-en-es-zh-cased
We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages.
Our versions give exactly the same representations produced by the original model which preserves the original accuracy.
For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf).
## How to use
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-es-zh-cased")
model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-es-zh-cased")
```
To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers).
### How to cite
```bibtex
@inproceedings{smallermdistilbert,
title={Load What You Need: Smaller Versions of Mutlilingual BERT},
author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire},
booktitle={SustaiNLP / EMNLP},
year={2020}
}
```
## Contact
Please contact amine@geotrend.fr for any question, feedback or request.
|
perion/ai-avatar
|
perion
| 2023-08-10T07:55:27Z | 11 | 5 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-02-22T16:05:50Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
Test prompt: Portrait of perion man as thomas shelby in peaky blinders, highly detailed digital painting, artstation, concept art, smooth, sharp focus, illustration
Sample images:

|
FYP19/t5-small-finetuned-sql3
|
FYP19
| 2023-08-10T07:43:28Z | 16 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-02-24T15:24:43Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: t5-small-finetuned-sql3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-sql3
This model is a fine-tuned version of [FYP19/t5-small-finetuned-wikisql](https://huggingface.co/FYP19/t5-small-finetuned-wikisql) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0703
- Rouge2 Precision: 0.6901
- Rouge2 Recall: 0.4476
- Rouge2 Fmeasure: 0.5124
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
| 0.0456 | 1.0 | 916 | 0.0626 | 0.5941 | 0.3852 | 0.4383 |
| 0.0277 | 2.0 | 1832 | 0.0629 | 0.6361 | 0.4106 | 0.469 |
| 0.0191 | 3.0 | 2748 | 0.0654 | 0.6731 | 0.4436 | 0.5048 |
| 0.0142 | 4.0 | 3664 | 0.0678 | 0.6767 | 0.4365 | 0.5001 |
| 0.01 | 5.0 | 4580 | 0.0703 | 0.6901 | 0.4476 | 0.5124 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
jakezou/rl_course_vizdoom_health_gathering_supreme
|
jakezou
| 2023-08-10T07:41:19Z | 0 | 0 |
sample-factory
|
[
"sample-factory",
"tensorboard",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T07:41:13Z |
---
library_name: sample-factory
tags:
- deep-reinforcement-learning
- reinforcement-learning
- sample-factory
model-index:
- name: APPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: doom_health_gathering_supreme
type: doom_health_gathering_supreme
metrics:
- type: mean_reward
value: 10.63 +/- 5.23
name: mean_reward
verified: false
---
A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
## Downloading the model
After installing Sample-Factory, download the model with:
```
python -m sample_factory.huggingface.load_from_hub -r jakezou/rl_course_vizdoom_health_gathering_supreme
```
## Using the model
To run the model after download, use the `enjoy` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
```
You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
## Training with this model
To continue training with this model, use the `train` script corresponding to this environment:
```
python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
```
Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
|
HeejaeShin/sd-class-butterflies-32
|
HeejaeShin
| 2023-08-10T07:40:49Z | 30 | 0 |
diffusers
|
[
"diffusers",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2023-08-10T07:40:37Z |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('HeejaeShin/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
newronai/llama-2-7b-Chat-QLoRA-Trial1
|
newronai
| 2023-08-10T07:32:04Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-10T07:31:16Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
rossevine/wav2vec2_indonesia_6
|
rossevine
| 2023-08-10T07:27:07Z | 109 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-08-10T05:34:45Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2_Indonesia_6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2_Indonesia_6
This model is a fine-tuned version of [facebook/wav2vec2-base-100h](https://huggingface.co/facebook/wav2vec2-base-100h) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7559
- Wer: 1.0232
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.1807 | 3.23 | 400 | 1.3655 | 1.0052 |
| 0.5608 | 6.45 | 800 | 1.3604 | 1.0312 |
| 0.3302 | 9.68 | 1200 | 1.3724 | 1.0355 |
| 0.2405 | 12.9 | 1600 | 1.4350 | 1.0142 |
| 0.1883 | 16.13 | 2000 | 1.5079 | 1.0213 |
| 0.1535 | 19.35 | 2400 | 1.5038 | 1.0251 |
| 0.1307 | 22.58 | 2800 | 1.7026 | 1.0189 |
| 0.1104 | 25.81 | 3200 | 1.7072 | 1.0090 |
| 0.0921 | 29.03 | 3600 | 1.7559 | 1.0232 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.10.3
|
kuangyebinbaba/sd
|
kuangyebinbaba
| 2023-08-10T07:21:30Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-08-10T07:20:57Z |
https://50f27352367144b604.gradio.live
|
yyyy1992/my_awesome_wnut_model
|
yyyy1992
| 2023-08-10T06:58:22Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"token-classification",
"generated_from_trainer",
"dataset:wnut_17",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-08-10T06:51:33Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- wnut_17
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_awesome_wnut_model
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wnut_17
type: wnut_17
config: wnut_17
split: test
args: wnut_17
metrics:
- name: Precision
type: precision
value: 0.5096660808435852
- name: Recall
type: recall
value: 0.26876737720111216
- name: F1
type: f1
value: 0.35194174757281554
- name: Accuracy
type: accuracy
value: 0.9392501389423282
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_wnut_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0772
- Precision: 0.5097
- Recall: 0.2688
- F1: 0.3519
- Accuracy: 0.9393
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 213 | 0.0816 | 0.4192 | 0.1779 | 0.2498 | 0.9351 |
| No log | 2.0 | 426 | 0.0772 | 0.5097 | 0.2688 | 0.3519 | 0.9393 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.11.0
- Tokenizers 0.13.3
|
weiren119/traditional_chinese_qlora_llama2_13b_adapter
|
weiren119
| 2023-08-10T06:57:43Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-10T06:56:58Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.4.0
- PEFT 0.4.0
|
reinhardfr/bloomz-560m_PROMPT_TUNING_CAUSAL_LM
|
reinhardfr
| 2023-08-10T06:53:25Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-10T05:52:22Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0
|
leahsuperb/Reinforce-CartPole-v1
|
leahsuperb
| 2023-08-10T06:53:10Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T06:53:01Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
cuixing/textual_inversion_object_style_vangogh08101212-newstyle
|
cuixing
| 2023-08-10T06:51:27Z | 4 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"textual_inversion",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-08-10T04:12:51Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- textual_inversion
inference: true
---
# Textual inversion text2image fine-tuning - cuixing/textual_inversion_object_style_vangogh08101212-newstyle
These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
|
jakezou/a2c-PandaReachDense-v3
|
jakezou
| 2023-08-10T06:38:05Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T06:31:17Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v3
type: PandaReachDense-v3
metrics:
- type: mean_reward
value: -0.23 +/- 0.13
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v3**
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
kasperchen/q-Taxi-v3
|
kasperchen
| 2023-08-10T06:36:12Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T06:36:10Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.48 +/- 2.79
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="kasperchen/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
dminhk/dog-example-sdxl-lora
|
dminhk
| 2023-08-10T06:35:42Z | 5 | 1 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2023-08-10T05:43:30Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of sks dog
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - dminhk/dog-example-sdxl-lora
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.
LoRA for the text encoder was enabled: False.
Special VAE used for training: None.
Data set: https://huggingface.co/datasets/diffusers/dog-example
Example images:




|
Roy61/textual_inversion_H3D
|
Roy61
| 2023-08-10T06:35:31Z | 11 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"textual_inversion",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-08-08T08:31:19Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- textual_inversion
inference: true
---
# Textual inversion text2image fine-tuning - Roy61/textual_inversion_H3D
These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.




|
openerotica/mpt-7b-8k-GPTQ
|
openerotica
| 2023-08-10T06:30:59Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mpt",
"text-generation",
"Composer",
"MosaicML",
"llm-foundry",
"StreamingDatasets",
"custom_code",
"dataset:mc4",
"dataset:c4",
"dataset:togethercomputer/RedPajama-Data-1T",
"dataset:bigcode/the-stack",
"dataset:allenai/s2orc",
"arxiv:2108.12409",
"arxiv:2302.13971",
"arxiv:2205.14135",
"arxiv:2010.04245",
"arxiv:1909.08053",
"arxiv:2302.06675",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-08-10T06:08:21Z |
---
license: apache-2.0
tags:
- Composer
- MosaicML
- llm-foundry
- StreamingDatasets
datasets:
- mc4
- c4
- togethercomputer/RedPajama-Data-1T
- bigcode/the-stack
- allenai/s2orc
inference: false
---
# MPT-7B-8k
MPT-7B-8k is a decoder-style transformer pretrained starting from MPT-7B, but updating the sequence length to 8k and training for an additional 500B tokens, resulting in a total of 1.5T tokens of text and code.
This model was trained by [MosaicML](https://www.mosaicml.com).
MPT-7B-8k is part of the family of Mosaic Pretrained Transformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference.
These architectural changes include performance-optimized layer implementations and the elimination of context length limits by replacing
positional embeddings with Attention with Linear Biases ([ALiBi](https://arxiv.org/abs/2108.12409)).
Thanks to these modifications, MPT models can be trained with high throughput efficiency and stable convergence.
MPT models can also be served efficiently with both standard HuggingFace pipelines and NVIDIA's [FasterTransformer](https://github.com/NVIDIA/FasterTransformer).
This model uses the MosaicML LLM codebase, which can be found in the [llm-foundry repository](https://github.com/mosaicml/llm-foundry). It was trained by MosaicML’s NLP team on the [MosaicML platform](https://www.mosaicml.com/training) for LLM pretraining, finetuning, and inference.
### How is this model different?
MPT-7B-8k is
* **Licensed for the possibility of commercial use.**
* **Trained on a large amount of data** (1.5T tokens like [XGen](https://huggingface.co/Salesforce/xgen-7b-8k-base) vs. 1T for [LLaMA](https://arxiv.org/abs/2302.13971), 1T for [MPT-7B](https://www.mosaicml.com/blog/mpt-7b), 300B for [Pythia](https://github.com/EleutherAI/pythia), 300B for [OpenLLaMA](https://github.com/openlm-research/open_llama), and 800B for [StableLM](https://github.com/Stability-AI/StableLM)).
* **Prepared to handle long inputs** thanks to [ALiBi](https://arxiv.org/abs/2108.12409). With ALiBi, the model can extrapolate beyond the 8k training sequence length to up to 10k, and with a few million tokens it can be finetuned to extrapolate much further.
* **Capable of fast training and inference** via [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) and [FasterTransformer](https://github.com/NVIDIA/FasterTransformer)
* **Equipped with highly efficient open-source training code** via the [llm-foundry repository](https://github.com/mosaicml/llm-foundry)
### Models finetuned off MPT-7B-8k:
The following models are finetuned on MPT-7B-8k:
* [MPT-7B-8k-Instruct](https://huggingface.co/mosaicml/mpt-7b-8k-instruct): a model for long-form instruction following (especially summarization and question-answering).
Built by finetuning MPT-7B-8k on several carefully curated datasets.
* License: _CC-BY-SA-3.0_
* [MPT-7B-8k-Chat](https://huggingface.co/mosaicml/mpt-7b-8k-chat): a chatbot-like model for dialogue generation.
Built by finetuning MPT-7B-8k on approximately 1.5B tokens of chat data.
* License: _CC-By-NC-SA-4.0_
## Model Date
July 18, 2023
## Model License
Apache-2.0
## Documentation
* [Blog post: MPT-7B-8k](https://www.mosaicml.com/blog/long-context-mpt-7b-8k)
* [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/)
* Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)!
## How to Use
This model is best used with the MosaicML [llm-foundry repository](https://github.com/mosaicml/llm-foundry) for training and finetuning.
```python
import transformers
model = transformers.AutoModelForCausalLM.from_pretrained(
'mosaicml/mpt-7b-8k',
trust_remote_code=True
)
```
Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method.
This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package.
`MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more.
To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision:
```python
import torch
import transformers
name = 'mosaicml/mpt-7b-8k'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.attn_config['attn_impl'] = 'triton'
config.init_device = 'cuda:0' # For fast initialization directly on GPU!
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
torch_dtype=torch.bfloat16, # Load model weights in bfloat16
trust_remote_code=True
)
```
Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example:
```python
import transformers
name = 'mosaicml/mpt-7b-8k'
config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True)
config.max_seq_len = 10000 # (input + output) tokens can now be up to 10000
model = transformers.AutoModelForCausalLM.from_pretrained(
name,
config=config,
trust_remote_code=True
)
```
This model was trained with the MPT-7B-8k tokenizer which is identical to the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer.
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('mosaicml/mpt-7b-8k')
```
The model can then be used, for example, within a text-generation pipeline.
Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).
```python
from transformers import pipeline
with torch.autocast('cuda', dtype=torch.bfloat16):
inputs = tokenizer('Here is a recipe for vegan banana bread:\n', return_tensors="pt").to('cuda')
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
# or using the HF pipeline
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
with torch.autocast('cuda', dtype=torch.bfloat16):
print(
pipe('Here is a recipe for vegan banana bread:\n',
max_new_tokens=100,
do_sample=True,
use_cache=True))
```
## Model Description
The architecture is a modification of a standard decoder-only transformer.
The model has been modified from a standard transformer in the following ways:
* It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf)
* It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings
* It does not use biases
| Hyperparameter | Value |
|----------------|-------|
|n_parameters | 6.7B |
|n_layers | 32 |
| n_heads | 32 |
| d_model | 4096 |
| vocab size | 50432 |
| sequence length | 2048 |
## Training Data
### Streaming Datasets
Data was formatted using the MosaicML [StreamingDataset](https://github.com/mosaicml/streaming) library to host our data in object storage and efficiently stream it to our compute cluster during training.
StreamingDataset obviates the need to download the whole dataset before starting training, and allows instant resumption of training from any point in the dataset.
### Data Mix
The model was trained for ___T tokens. First it was trained for 1T tokens (with batch size 1760 and sequence length 2048) on the following data mix:
#### Data Mix for Original 1T Tokens Used to Train MPT-7B
| Data Source | Number of Tokens in Source | Proportion | Effective Number of Tokens | Epochs |
|-------------|----------------------------|------------|----------------------------|--------|
| mC4 3.1.0 - English | 417.99 B | 0.33 | 330 B | 0.14 |
| C4 - English - SemDedup 80% | 100.42 B | 0.299 | 299 B | 2.98 |
| RedPajama - CommonCrawl | 878.45 B | 0.1 | 100 B | 0.11 |
| The Stack - Selected Languages | 463.78 B | 0.1 | 100 B | 0.22 |
| RedPajama - Wikipedia - En | 4.87 B | 0.04 | 40 B | 8.21 |
| The Stack - Markdown | 107.07 B | 0.035 | 35 B | 0.33 |
| S2ORC | 48.85 B | 0.033 | 33 B | 0.68 |
| RedPajama - Books | 26.02 B | 0.03 | 30B | 1.15 |
| RedPajama - arXiv | 28.10 B | 0.019 | 19 B | 0.68 |
| RedPajama - StackExchange | 20.54 B | 0.014 | 14 B |0.68 |
#### Data Mix for Additional 500B Tokens Used to Further Train MPT-7B-8k
We took 80B tokens from document samples that were longer than 4096 tokens, and 120B tokens with varying document sample lengths that matched the "baseline" length distribution for a total of 200B tokens in a single dataset.
We then trained MPT-7B for 500B tokens with a maximum sequence length of 8192, resulting in MPT-7B-8k. Since we trained for 500B tokens using 200B tokens, nearly every subset was trained on for exactly 2.5 epochs.
| Sequence Length Distribution | Number of Tokens in Source (Billion) | Proportion | Effective Number of Tokens (Billion) | Epochs |
|---|---|---|---|---|
| mC4 3.1.0 - English (200+ words) - Baseline | 33.60 | 16.80% | 84.00 | 2.50 |
| mC4 3.1.0 - English (200+ words) - ≥4096 tokens | 23.04 | 11.52% | 57.60 | 2.50 |
| c4 - English - SemDedup 80% - Baseline | 30.12 | 15.06% | 75.30 | 2.50 |
| c4 - English - SemDedup 80% - ≥4096 tokens | 0.92 | 0.46% | 2.30 | 2.50 |
| RedPajama - CommonCrawl - Baseline | 8.52 | 4.26% | 21.30 | 2.50 |
| RedPajama - CommonCrawl - ≥4096 tokens | 12.80 | 6.40% | 32.00 | 2.50 |
| The Stack - Selected Languages - Baseline | 30.00 | 15.00% | 75.00 | 2.50 |
| The Stack - Selected Languages - ≥4096 tokens | 10.00 | 5.00% | 25.00 | 2.50 |
| RedPajama - Wikipedia - Baseline | 3.60 | 1.80% | 9.00 | 2.50 |
| RedPajama - Wikipedia - ≥4096 tokens | 1.04 | 0.52% | 2.60 | 2.50 |
| The Stack - Markdown - Baseline | 4.50 | 2.25% | 11.25 | 2.50 |
| The Stack - Markdown - ≥4096 tokens | 8.00 | 4.00% | 20.00 | 2.50 |
| Semantic Scholar ORC - Baseline | 3.30 | 1.65% | 8.25 | 2.50 |
| Semantic Scholar ORC - ≥4096 tokens | 8.00 | 4.00% | 20.00 | 2.50 |
| RedPajama - Books - Baseline | 3.00 | 1.50% | 7.50 | 2.50 |
| RedPajama - Books - ≥4096 tokens | 8.00 | 4.00% | 20.00 | 2.50 |
| RedPajama - arXiv - Baseline | 1.92 | 0.96% | 4.80 | 2.50 |
| RedPajama - arXiv - ≥4096 tokens | 5.40 | 2.70% | 13.50 | 2.50 |
| RedPajama - StackExchange - Baseline | 1.44 | 0.72% | 3.60 | 2.50 |
| RedPajama - StackExchange - ≥4096 tokens | 1.52 | 1.40% | 7.00 | 4.60 |
| N Training Tokens | 200 | 100.00% | | 2.5 epochs * 200B = 500B tokens |
Samples for each batch were selected from one of the datasets with the probability specified above.
The examples were shuffled within each dataset, and each example was constructed from as many sequences from that dataset as were necessary to fill the 2048 sequence length.
The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. This BPE tokenizer has a number of desirable characteristics,
most of which are relevant for tokenizing code:
(1) It was trained on a diverse mix of data that includes code (The Pile)
(2) It applies consistent space delimitation, unlike the GPT2 tokenizer which tokenizes inconsistently depending on the presence of prefix spaces
(3) It contains tokens for repeated space characters, which allows superior compression of text with large amounts of repeated space characters.
The model vocabulary size of 50432 was set to be a multiple of 128 (as in [MEGATRON-LM](https://arxiv.org/abs/1909.08053)), model flop utilization (MFU) increased by up to four percentage points.
### Training Configuration
This model was trained on 440 A100-40GBs for about 9.5 days using the [MosaicML Platform](https://www.mosaicml.com/platform).
The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the [LION](https://arxiv.org/abs/2302.06675) optimizer.
## Limitations and Biases
_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
MPT-7B-8k is **not** intended for deployment without finetuning.
It should not be used for human-facing interactions without further guardrails and user consent.
MPT-7B-8k can produce factually incorrect output, and should not be relied on to produce factually accurate information.
MPT-7B-8k was trained on various public datasets.
While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
## MosaicML Platform
If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://www.mosaicml.com/get-started?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b-8k).
## Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.
## Citation
Please cite this model using the following format:
```
@online{MosaicML2023Introducing,
author = {MosaicML NLP Team},
title = {Introducing MPT-7B: A New Standard for Open-Source,
ly Usable LLMs},
year = {2023},
url = {www.mosaicml.com/blog/mpt-7b},
note = {Accessed: 2023-03-28}, % change this date
urldate = {2023-03-28} % change this date
}
```
|
deepvk/bert-base-uncased
|
deepvk
| 2023-08-10T06:23:07Z | 756 | 1 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"bert",
"feature-extraction",
"ru",
"en",
"license:apache-2.0",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2023-02-07T14:51:11Z |
---
license: apache-2.0
language:
- ru
- en
library_name: transformers
pipeline_tag: feature-extraction
---
# BERT-base
<!-- Provide a quick summary of what the model is/does. -->
Pretrained bidirectional encoder for russian language.
The model was trained using standard MLM objective on large text corpora including open social data.
See `Training Details` section for more information.
⚠️ This model contains only the encoder part without any pretrained head.
- **Developed by:** [deepvk](https://vk.com/deepvk)
- **Model type:** BERT
- **Languages:** Mostly russian and small fraction of other languages
- **License:** Apache 2.0
## How to Get Started with the Model
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("deepvk/bert-base-uncased")
model = AutoModel.from_pretrained("deepvk/bert-base-uncased")
text = "Привет, мир!"
inputs = tokenizer(text, return_tensors='pt')
predictions = model(**inputs)
```
## Training Details
The model was trained using the NVIDIA source code. See the [pretraining documentation](https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/README.md#training-process) for details.
### Training Data
250 GB of filtered texts in total.
A mix of the following data: Wikipedia, Books and Social corpus.
### Architecture details
| Argument | Value |
|-------------------------|----------------|
|Encoder layers | 12 |
|Encoder attention heads | 12 |
|Encoder embed dim | 768 |
|Encoder ffn embed dim | 3,072 |
|Activation function | GeLU |
|Attention dropout | 0.1 |
|Dropout | 0.1 |
|Max positions | 512 |
|Vocab size | 36000 |
|Tokenizer type | BertTokenizer |
## Evaluation
We evaluated the model on [Russian Super Glue](https://russiansuperglue.com/) dev set.
The best result in each task is marked in bold.
All models have the same size except the distilled version of DeBERTa.
| Model | RCB | PARus | MuSeRC | TERRa | RUSSE | RWSD | DaNetQA | Score |
|------------------------------------------------------------------------|-----------|--------|---------|-------|---------|---------|---------|-----------|
| [vk-deberta-distill](https://huggingface.co/deepvk/deberta-v1-distill) | 0.433 | 0.56 | 0.625 | 0.59 | 0.943 | 0.569 | 0.726 | 0.635 |
| [vk-roberta-base](https://huggingface.co/deepvk/roberta-base) | 0.46 | 0.56 | 0.679 | 0.769 | 0.960 | 0.569 | 0.658 | 0.665 |
| [vk-deberta-base](https://huggingface.co/deepvk/deberta-v1-base) | 0.450 |**0.61**|**0.722**| 0.704 | 0.948 | 0.578 |**0.76** |**0.682** |
| [vk-bert-base](https://huggingface.co/deepvk/bert-base-uncased) | 0.467 | 0.57 | 0.587 | 0.704 | 0.953 |**0.583**| 0.737 | 0.657 |
| [sber-bert-base](https://huggingface.co/ai-forever/ruBert-base) | **0.491** |**0.61**| 0.663 | 0.769 |**0.962**| 0.574 | 0.678 | 0.678 |
|
nullday/immersiveL-exp
|
nullday
| 2023-08-10T06:21:53Z | 64 | 4 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"bloom",
"text-generation",
"translation",
"gpt-style",
"chinese",
"english",
"zh",
"en",
"license:bigscience-bloom-rail-1.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-08-07T07:30:25Z |
---
language:
- zh
- en
tags:
- translation
- gpt-style
- chinese
- english
license: "bigscience-bloom-rail-1.0"
---
## English:
### ImmersiveL Model on Hugging Face
This model, available on Hugging Face under `funstoryai/immersiveL-exp`, is a GPT-like model designed specifically for English-Chinese and Chinese-English translations.
**Recommended Prompts:**
For English to Chinese:
```
下面是一段英文文本,请将它翻译成中文。
{terms}
#英文文本:
{input}
#中文翻译:
```
For Chinese to English:
```
下面是一段中文文本,请将它翻译成英文。
{terms}
#中文文本:
{input}
#英文翻译:
```
For the corresponding GitHub project, please visit: [ImmersiveL on GitHub](https://github.com/immersive-translate/ImmersiveL).
<https://github.com/immersive-translate/ImmersiveL>
---
## 中文:
### Hugging Face 上的 ImmersiveL 模型
此模型在 Hugging Face 的 `funstoryai/immersiveL-exp` 下可用,是专为英汉和汉英翻译设计的类GPT模型。
**推荐提示词:**
英译中:
```
下面是一段英文文本,请将它翻译成中文。
{terms}
#英文文本:
{input}
#中文翻译:
```
中译英:
```
下面是一段中文文本,请将它翻译成英文。
{terms}
#中文文本:
{input}
#英文翻译:
```
对应的 GitHub 项目地址为: [ImmersiveL on GitHub](https://github.com/immersive-translate/ImmersiveL).
<https://github.com/immersive-translate/ImmersiveL>
|
TheTravellingEngineer/llama2-7b-chat-hf-v3
|
TheTravellingEngineer
| 2023-08-10T06:21:28Z | 1,536 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-10T06:03:25Z |
The base model is meta's Llama-2-7b-chat-hf. It was finetuned using SFT and the Anthropic/hh-rlhf dataset and the model prompt is similar to the original Guanaco model.
This repo contains the merged fp16 model.
**Legal Disclaimer: This model is bound by the usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.**
---
- license:
- llama2 <br>
- datasets:
- Anthropic/hh-rlhf <br>
- language:
- en <br>
- reference: https://gist.github.com/younesbelkada/9f7f75c94bdc1981c8ca5cc937d4a4da
---
|
AshutoshShrivastava/sdxl-db-lionelmessi
|
AshutoshShrivastava
| 2023-08-10T06:17:43Z | 2 | 3 |
diffusers
|
[
"diffusers",
"text-to-image",
"autotrain",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"region:us"
] |
text-to-image
| 2023-08-10T06:17:36Z |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: photo of a sks leoandresmessi
tags:
- text-to-image
- diffusers
- autotrain
inference: true
---
# DreamBooth trained by AutoTrain
Test enoder was not trained.
|
Bastian1111/dqn-SpaceInvadersNoFrameskip-v4
|
Bastian1111
| 2023-08-10T05:52:53Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-06T04:19:13Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 762.50 +/- 300.08
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Bastian1111 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Bastian1111 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Bastian1111
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 10000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
DAMO-NLP-MT/polylm-13b
|
DAMO-NLP-MT
| 2023-08-10T05:50:39Z | 1,615 | 53 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"custom_code",
"zh",
"en",
"es",
"fr",
"pt",
"ru",
"de",
"it",
"ar",
"ja",
"ko",
"th",
"vi",
"id",
"nl",
"pl",
"tr",
"he",
"arxiv:2307.06018",
"arxiv:2104.09864",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-13T13:48:44Z |
---
language:
- zh
- en
- es
- fr
- pt
- ru
- de
- it
- ar
- ja
- ko
- th
- vi
- id
- nl
- pl
- tr
- he
tags:
- text-generation
license: apache-2.0
---
# Model Card for PolyLM (a polyglot large language model)
## Table of Contents
1. [Model Details](#model-details)
2. [Usage](#usage)
3. [Uses](#uses)
4. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
5. [Next Steps](#next-steps)
6. [Citation](#citation)
# Model Details
## Abstract
> Large language models (LLMs) demonstrate remarkable ability to comprehend, reason, and generate following nature language instructions. However, the development of LLMs has been primarily focused on high-resource languages, such as English, thereby limiting their applicability and research in other languages. Consequently, we present PolyLM, a multilingual LLM trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B. To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training. Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning. To assess the model's performance, we collect several existing multilingual tasks, including multilingual understanding, question answering, generation, and translation. Extensive experiments show that PolyLM surpasses other open-source models such as LLaMA and BLOOM on multilingual tasks while maintaining comparable performance in English.
## Model Description
- **Model type:** Decoder-only Language model
- **Language(s) (NLP):** Chinese, English, Spanish, German, French, Portuguese, Russian, Italian, Arabic, Japanese, Korean, Thai, Vietnamese, Indonesian, Polish, Turkish, Dutch, Hebrew
- **License:** Apache 2.0
- **Original Checkpoints:** [Modelscope DAMO PolyLM-13B](https://www.modelscope.cn/models/damo/nlp_polylm_13b_text_generation/summary)
- **Link to paper:** [here](https://arxiv.org/pdf/2307.06018.pdf)
- **Number fotmat:** bf16
- **Total seen tokens:** 640 billion tokens
- **Version:** Version 1.0 / 12 July 2023
# Usage
Find below some example scripts on how to use the model in `transformers`:
<details>
<summary> Click to expand </summary>
```python
# pip install accelerate
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("DAMO-NLP-MT/polylm-13b", legacy=False, use_fast=False)
model = AutoModelForCausalLM.from_pretrained("DAMO-NLP-MT/polylm-13b", device_map="auto", trust_remote_code=True)
model.eval()
input_doc = f"Beijing is the capital of China.\nTranslate this sentence from English to Chinese."
inputs = tokenizer(input_doc, return_tensors="pt")
generate_ids = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
do_sample=False,
num_beams=4,
max_length=128,
early_stopping=True
)
decoded = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(f">>> {decoded}")
### results
### Beijing is the capital of China.\nTranslate this sentence from English to Chinese.\\n北京是中华人民共和国的首都。\n ...
```
</details>
# Uses
## Direct Use and Downstream Use
> The primary use is research on language models, including: research on zero-shot NLP tasks and in-context few-shot learning NLP tasks, such as reasoning, and question answering; advancing fairness and safety research, and understanding limitations of current large language models
See the [research paper](https://arxiv.org/pdf/2307.06018.pdf) for further details.
## Out-of-Scope Use
More information needed.
# Bias, Risks, and Limitations
The information below in this section are copied from the model's [official model card](https://arxiv.org/pdf/2307.06018.pdf):
> Our contributions are fully methodological: adding the support of multilingualism to LLM during training and SFT phases. It is unavoidable that PolyLM might exhibit several common deficiencies of language models, e.g. hallucination and toxicity. PolyLM should not be used directly in any application, without a prior assessment of safety and fairness concerns specific to the application.
# Next Steps
We are continuously enhancing the capabilities of PolyLM by focusing on the following aspects:
1. Replacement of absolute position embeddings with RoPE, as outlined in the research paper [here](https://arxiv.org/abs/2104.09864).
2. Expansion of window size to more than 10,000.
3. Verification of lightweight techniques to quickly enhance multilingual quality, especially for low-resource languages.
# Citation
**BibTeX:**
```bibtex
@misc{wei2023polylm,
title={PolyLM: An Open Source Polyglot Large Language Model},
author={Xiangpeng Wei and Haoran Wei and Huan Lin and Tianhao Li and Pei Zhang and Xingzhang Ren and Mei Li and Yu Wan and Zhiwei Cao and Binbin Xie and Tianxiang Hu and Shangjie Li and Binyuan Hui and Bowen Yu and Dayiheng Liu and Baosong Yang and Fei Huang and Jun Xie},
year={2023},
eprint={2307.06018},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
mchablani/Llama-2-7b-chat-hf-mini-lawyer-chat
|
mchablani
| 2023-08-10T05:36:12Z | 2 | 0 |
peft
|
[
"peft",
"pytorch",
"llama",
"region:us"
] | null | 2023-08-05T03:54:19Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
- PEFT 0.4.0
|
jonalkw/Reinforce-pixelcopter
|
jonalkw
| 2023-08-10T05:25:14Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T05:25:11Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-pixelcopter
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 9.60 +/- 12.56
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
nanirudh/qa_model_v3
|
nanirudh
| 2023-08-10T05:23:57Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-10T05:23:48Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
rodriguezj314/path_to_folder
|
rodriguezj314
| 2023-08-10T05:05:40Z | 23 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"dreambooth",
"base_model:CompVis/stable-diffusion-v1-4",
"base_model:finetune:CompVis/stable-diffusion-v1-4",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-08-10T04:51:00Z |
---
license: creativeml-openrail-m
base_model: CompVis/stable-diffusion-v1-4
instance_prompt: a photo of sks dog
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- dreambooth
inference: true
---
# DreamBooth - rodriguezj314/path_to_folder
This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: False.
|
calvpang/distilhubert-finetuned-gtzan-finetuned-gtzan
|
calvpang
| 2023-08-10T05:04:13Z | 160 | 0 |
transformers
|
[
"transformers",
"pytorch",
"hubert",
"audio-classification",
"generated_from_trainer",
"dataset:marsyas/gtzan",
"base_model:VinayHajare/distilhubert-finetuned-gtzan",
"base_model:finetune:VinayHajare/distilhubert-finetuned-gtzan",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2023-08-10T03:51:48Z |
---
license: apache-2.0
base_model: VinayHajare/distilhubert-finetuned-gtzan
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.89
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan-finetuned-gtzan
This model is a fine-tuned version of [VinayHajare/distilhubert-finetuned-gtzan](https://huggingface.co/VinayHajare/distilhubert-finetuned-gtzan) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5147
- Accuracy: 0.89
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4687 | 1.0 | 113 | 0.5210 | 0.89 |
| 0.5003 | 2.0 | 226 | 0.5186 | 0.89 |
| 0.3839 | 3.0 | 339 | 0.5186 | 0.89 |
| 0.4082 | 4.0 | 452 | 0.5183 | 0.89 |
| 0.4479 | 5.0 | 565 | 0.5183 | 0.89 |
| 0.4078 | 6.0 | 678 | 0.5171 | 0.89 |
| 0.3089 | 7.0 | 791 | 0.5156 | 0.89 |
| 0.3432 | 8.0 | 904 | 0.5152 | 0.89 |
| 0.4122 | 9.0 | 1017 | 0.5148 | 0.89 |
| 0.4231 | 10.0 | 1130 | 0.5147 | 0.89 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.14.4
- Tokenizers 0.13.3
|
kasperchen/q-FrozenLake-v1-4x4-noSlippery
|
kasperchen
| 2023-08-10T05:00:06Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T04:11:41Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="kasperchen/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
bookbot/byt5-small-wikipron-eng-latn-us-broad-p2g
|
bookbot
| 2023-08-10T04:54:35Z | 108 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-04-19T04:07:16Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: byt5-small-wikipron-eng-latn-us-broad-p2g
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# byt5-small-wikipron-eng-latn-us-broad-p2g
This model is a fine-tuned version of [google/byt5-small](https://huggingface.co/google/byt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2595
- Per: 0.4628
- Gen Len: 8.4996
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 128
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Per | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| 2.4797 | 1.0 | 382 | 0.4371 | 0.6951 | 8.4302 |
| 0.4823 | 2.0 | 764 | 0.3543 | 0.5974 | 8.4338 |
| 0.3878 | 3.0 | 1146 | 0.3081 | 0.545 | 8.4394 |
| 0.3378 | 4.0 | 1528 | 0.2904 | 0.518 | 8.449 |
| 0.3061 | 5.0 | 1910 | 0.2736 | 0.5004 | 8.4612 |
| 0.2823 | 6.0 | 2292 | 0.2664 | 0.4893 | 8.4734 |
| 0.265 | 7.0 | 2674 | 0.2626 | 0.4747 | 8.4721 |
| 0.2502 | 8.0 | 3056 | 0.2612 | 0.4697 | 8.4945 |
| 0.2388 | 9.0 | 3438 | 0.2592 | 0.4633 | 8.489 |
| 0.231 | 10.0 | 3820 | 0.2595 | 0.4628 | 8.4996 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.11.1.dev0
- Tokenizers 0.13.2
|
nicbull/DialoGPT-medium-leric
|
nicbull
| 2023-08-10T04:37:18Z | 150 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"gpt2",
"text-generation",
"chat",
"conversational",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-10T04:25:26Z |
---
language:
- en
pipeline_tag: conversational
tags:
- chat
---
|
jonalkw/Reinforce-CartPole
|
jonalkw
| 2023-08-10T04:24:00Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T04:23:47Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
chunwoolee0/keti-air-ke-t5-base-en-to-ko
|
chunwoolee0
| 2023-08-10T04:00:42Z | 114 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"base_model:KETI-AIR/ke-t5-base",
"base_model:finetune:KETI-AIR/ke-t5-base",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-08-10T03:27:30Z |
---
license: apache-2.0
base_model: KETI-AIR/ke-t5-base
tags:
- translation
- generated_from_trainer
datasets:
- kde4
model-index:
- name: keti-air-ke-t5-base-en-to-ko
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# keti-air-ke-t5-base-en-to-ko
This model is a fine-tuned version of [KETI-AIR/ke-t5-base](https://huggingface.co/KETI-AIR/ke-t5-base) on the kde4 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
debjxt/tlx-bzx-btz
|
debjxt
| 2023-08-10T03:45:14Z | 1 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-08-10T03:32:22Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### tlx_bzx_btz Dreambooth model trained by debjxt with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
Pixel390/NEWKUA
|
Pixel390
| 2023-08-10T03:27:24Z | 5 | 1 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"lora",
"base_model:Meina/MeinaMix_V10",
"base_model:adapter:Meina/MeinaMix_V10",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-08-10T03:07:57Z |
---
license: creativeml-openrail-m
base_model: Meina/MeinaMix_V10
instance_prompt: a uxz man
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - Pixel390/NEWKUA
These are LoRA adaption weights for Meina/MeinaMix_V10. The weights were trained on a uxz man using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.
LoRA for the text encoder was enabled: True.
|
dangkhoadl/AudioResNet
|
dangkhoadl
| 2023-08-10T03:21:17Z | 38 | 0 |
transformers
|
[
"transformers",
"pytorch",
"resnet",
"endpoints_compatible",
"region:us"
] | null | 2023-08-08T01:50:29Z |
# Input tensor shape
[batch_size, Cin, num_feats, num_frames]
|
EkoMickA/distilroberta-base-finetuned-wikitext2
|
EkoMickA
| 2023-08-10T03:14:19Z | 162 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"base_model:distilbert/distilroberta-base",
"base_model:finetune:distilbert/distilroberta-base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2023-08-10T03:03:02Z |
---
license: apache-2.0
base_model: distilroberta-base
tags:
- generated_from_trainer
model-index:
- name: distilroberta-base-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-base-finetuned-wikitext2
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8251
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.0909 | 1.0 | 2406 | 1.9271 |
| 1.9984 | 2.0 | 4812 | 1.8671 |
| 1.941 | 3.0 | 7218 | 1.8546 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
EkoMickA/distilgpt2-finetuned-wikitext2
|
EkoMickA
| 2023-08-10T02:55:06Z | 216 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"base_model:distilbert/distilgpt2",
"base_model:finetune:distilbert/distilgpt2",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-10T02:31:24Z |
---
license: apache-2.0
base_model: distilgpt2
tags:
- generated_from_trainer
model-index:
- name: distilgpt2-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6423
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.7553 | 1.0 | 2334 | 3.6644 |
| 3.6393 | 2.0 | 4668 | 3.6485 |
| 3.5938 | 3.0 | 7002 | 3.6423 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
rriverar75/vit-model
|
rriverar75
| 2023-08-10T02:34:32Z | 193 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:beans",
"base_model:google/vit-base-patch16-224-in21k",
"base_model:finetune:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2023-08-10T02:08:37Z |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- image-classification
- generated_from_trainer
datasets:
- beans
metrics:
- accuracy
widget:
- src: >-
https://huggingface.co/rriverar75/vit-model/resolve/main/healthy.jpeg
example_title: Healthy
- src: >-
https://huggingface.co/rriverar75/vit-model/resolve/main/bean_rust.jpeg
example_title: Bean Rust
model-index:
- name: vit-model
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: beans
type: beans
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-model
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0189
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1527 | 3.85 | 500 | 0.0189 | 1.0 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|
Phaaarus/QLoRA_replica_8rank_QKadap_1epoch
|
Phaaarus
| 2023-08-10T02:33:13Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-10T02:32:51Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.5.0.dev0
|
wangxso/q-taxi-v3
|
wangxso
| 2023-08-10T02:28:47Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T02:28:44Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.70
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="wangxso/q-taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
TheTravellingEngineer/bloom-1b1-RLHF-v2
|
TheTravellingEngineer
| 2023-08-10T01:39:33Z | 1,662 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bloom",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-08-10T01:30:21Z |
The base model is bigscience/bloom-1b1. It was finetuned using RLHF and the dataset and the model prompt is similar to the original model.
This repo contains the merged fp16 model.
**Legal Disclaimer: This model is bound by the usage restrictions of the original BLOOM model. And comes with no warranty or gurantees of any kind.**
---
- license:
- bigscience-bloom-rail-1.0 <br>
- datasets:
- Anthropic/hh-rlhf <br>
- language:
- en <br>
- reference: https://github.com/hiyouga/LLaMA-Efficient-Tuning/tree/main
---
|
tianpf/llama2-qlora-finetunined-law
|
tianpf
| 2023-08-10T01:38:54Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-10T01:38:51Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.5.0.dev0
|
Kappa7077/clip-finetuned-lora-organ
|
Kappa7077
| 2023-08-10T01:21:03Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-08-10T01:17:51Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.5.0.dev0
|
dana11235/ppo-Huggy
|
dana11235
| 2023-08-10T01:16:01Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-08-10T01:15:51Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: dana11235/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
mani05/Taxi-v3
|
mani05
| 2023-08-10T01:08:38Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T01:08:34Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="mani05/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
mani05/q-FrozenLake-v1-4x4-noSlippery
|
mani05
| 2023-08-10T01:06:06Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T01:06:02Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="mani05/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
toastedshibe/lora-trained-xl-colab
|
toastedshibe
| 2023-08-10T01:04:48Z | 5 | 1 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2023-08-09T23:49:50Z |
---
license: openrail++
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of sks dog
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - toastedshibe/lora-trained-xl-colab
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
|
thomaspries/ppo-LunarLander-v2
|
thomaspries
| 2023-08-10T00:41:07Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-08-10T00:40:44Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 253.92 +/- 19.01
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
Notespeak/ariadnetestn
|
Notespeak
| 2023-08-10T00:35:42Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"gpt",
"llm",
"large language model",
"h2o-llmstudio",
"en",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-08-10T00:28:25Z |
---
language:
- en
library_name: transformers
tags:
- gpt
- llm
- large language model
- h2o-llmstudio
inference: false
thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
---
# Model Card
## Summary
This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
- Base model: [ai-forever/ruGPT-3.5-13B](https://huggingface.co/ai-forever/ruGPT-3.5-13B)
## Usage
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` library installed.
```bash
pip install transformers==4.31.0
```
Also make sure you are providing your huggingface token to the pipeline if the model is lying in a private repo.
- Either leave `token=True` in the `pipeline` and login to hugginface_hub by running
```python
import huggingface_hub
huggingface_hub.login(<ACCES_TOKEN>)
```
- Or directly pass your <ACCES_TOKEN> to `token` in the `pipeline`
```python
from transformers import pipeline
generate_text = pipeline(
model="Notespeak/ariadnetestn",
torch_dtype="auto",
trust_remote_code=True,
use_fast=True,
device_map={"": "cuda:0"},
token=True,
)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)
print(res[0]["generated_text"])
```
You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer:
```python
print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
```
```bash
<|prompt|>Why is drinking water so healthy?</s><|answer|>
```
Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`.
```python
from h2oai_pipeline import H2OTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"Notespeak/ariadnetestn",
use_fast=True,
padding_side="left",
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
"Notespeak/ariadnetestn",
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=True,
)
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
res = generate_text(
"Why is drinking water so healthy?",
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)
print(res[0]["generated_text"])
```
You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Notespeak/ariadnetestn" # either local folder or huggingface model name
# Important: The prompt needs to be in the same format the model was trained with.
# You can find an example prompt in the experiment logs.
prompt = "<|prompt|>How are you?</s><|answer|>"
tokenizer = AutoTokenizer.from_pretrained(
model_name,
use_fast=True,
trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map={"": "cuda:0"},
trust_remote_code=True,
)
model.cuda().eval()
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
# generate configuration can be modified to your needs
tokens = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
min_new_tokens=2,
max_new_tokens=256,
do_sample=False,
num_beams=1,
temperature=float(0.3),
repetition_penalty=float(1.2),
renormalize_logits=True
)[0]
tokens = tokens[inputs["input_ids"].shape[1]:]
answer = tokenizer.decode(tokens, skip_special_tokens=True)
print(answer)
```
## Quantization and sharding
You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```.
## Model Architecture
```
GPT2LMHeadModel(
(transformer): GPT2Model(
(wte): Embedding(50272, 5120)
(wpe): Embedding(2048, 5120)
(drop): Dropout(p=0.1, inplace=False)
(h): ModuleList(
(0-39): 40 x GPT2Block(
(ln_1): LayerNorm((5120,), eps=1e-05, elementwise_affine=True)
(attn): GPT2Attention(
(c_attn): Conv1D()
(c_proj): Conv1D()
(attn_dropout): Dropout(p=0.1, inplace=False)
(resid_dropout): Dropout(p=0.1, inplace=False)
)
(ln_2): LayerNorm((5120,), eps=1e-05, elementwise_affine=True)
(mlp): GPT2MLP(
(c_fc): Conv1D()
(c_proj): Conv1D()
(act): NewGELUActivation()
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
(ln_f): LayerNorm((5120,), eps=1e-05, elementwise_affine=True)
)
(lm_head): Linear(in_features=5120, out_features=50272, bias=False)
)
```
## Model Configuration
This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
## Disclaimer
Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
- Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
- Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
- Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
- Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
- Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
- Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.
By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
|
Precious1/Clinical-Biomedical-Named-Entity-Recognition-Using-Scispacy
|
Precious1
| 2023-08-10T00:30:41Z | 0 | 1 | null |
[
"license:bigscience-openrail-m",
"region:us"
] | null | 2023-08-10T00:25:26Z |
---
license: bigscience-openrail-m
---
|
off-topic-team/llama-2-13b-off-topic
|
off-topic-team
| 2023-08-10T00:17:48Z | 0 | 1 | null |
[
"llama",
"eleutherai",
"llama-2",
"region:us"
] | null | 2023-08-09T23:44:20Z |
---
tags:
- llama
- eleutherai
- llama-2
---
It had to be done.
Sample of data:
```
Hyperion: when it's dysfunctional you just yolo deploy into prod
Fleetwood: remove the middle clause - fuck loyalty to ~~ companies~~ most companies
Zippy: nono- like- it's more that- it works, but- there needs to be a dude who understands it and can move it to new servers, or make small patches for new functionality, etc-...
⭐ 1 <:sus:869276863414014052> 1 <:guilty:745897670534627369> 2 AI_WAIFU: oh and if you fuck up the wrong system you may get dragged to washington DC to explain what happened
```
also sorry about the reaction formatting having the IDs in it I didn't realize how annoying that would be with Llama's tokenizer :c
|
Pixel390/GIRLKAY
|
Pixel390
| 2023-08-09T23:53:42Z | 1 | 1 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"lora",
"base_model:Meina/MeinaMix_V10",
"base_model:adapter:Meina/MeinaMix_V10",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-08-09T23:09:34Z |
---
license: creativeml-openrail-m
base_model: Meina/MeinaMix_V10
instance_prompt: a uxz girl
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA DreamBooth - Pixel390/GIRLKAY
These are LoRA adaption weights for Meina/MeinaMix_V10. The weights were trained on a uxz girl using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following.
LoRA for the text encoder was enabled: True.
|
tingchih/pretrain_doc_concat
|
tingchih
| 2023-08-09T23:38:40Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-07-31T05:04:43Z |
This is a pre-train baseline model for summarization. Input is to concatenate all articles in one cluster.
the example.json is the example result.
pipeline:
input -> sum tokenizer -> perceiver -> sum model -> summary
|
agustinl/ppo-Pyramids
|
agustinl
| 2023-08-09T23:36:42Z | 4 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-08-09T23:13:56Z |
---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: agustinl/ppo-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
cjohlmacher/ppo-Pyramids
|
cjohlmacher
| 2023-08-09T23:30:56Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-08-09T21:01:25Z |
---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: cjohlmacher/ppo-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
good-gaming/distilbert-base-uncased-finetuned-emotion
|
good-gaming
| 2023-08-09T23:21:58Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-08-09T22:48:26Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.927
- name: F1
type: f1
value: 0.9272353554627635
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2133
- Accuracy: 0.927
- F1: 0.9272
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8118 | 1.0 | 250 | 0.3108 | 0.905 | 0.9056 |
| 0.2485 | 2.0 | 500 | 0.2133 | 0.927 | 0.9272 |
### Framework versions
- Transformers 4.31.0
- Pytorch 1.12.1
- Datasets 1.16.1
- Tokenizers 0.13.3
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.