modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 18:33:19
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 18:33:14
card
stringlengths
11
1.01M
hhffxx/pegasus-samsum
hhffxx
2022-08-29T10:52:44Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-29T06:48:07Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [stas/pegasus-cnn_dailymail-tiny-random](https://huggingface.co/stas/pegasus-cnn_dailymail-tiny-random) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 7.5735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.6148 | 0.54 | 500 | 7.5735 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.12.1
autoevaluate/image-multi-class-classification
autoevaluate
2022-08-29T10:11:22Z
118
1
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:mnist", "dataset:autoevaluate/mnist-sample", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-21T08:52:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - mnist - autoevaluate/mnist-sample metrics: - accuracy model-index: - name: image-classification results: - task: name: Image Classification type: image-classification dataset: name: mnist type: mnist args: mnist metrics: - name: Accuracy type: accuracy value: 0.9833333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image-classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the mnist dataset. It achieves the following results on the evaluation set: - Loss: 0.0556 - Accuracy: 0.9833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3743 | 1.0 | 422 | 0.0556 | 0.9833 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
autoevaluate/translation
autoevaluate
2022-08-29T10:08:28Z
25
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "dataset:autoevaluate/wmt16-sample", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-28T14:14:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 - autoevaluate/wmt16-sample metrics: - bleu model-index: - name: translation results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 28.5866 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # translation This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.3170 - Bleu: 28.5866 - Gen Len: 33.9575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.8302 | 0.03 | 1000 | 1.3170 | 28.5866 | 33.9575 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
artfrontier/ddpm-butterflies-128
artfrontier
2022-08-29T09:07:51Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-29T07:14:18Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/artfrontier/ddpm-butterflies-128/tensorboard?#scalars)
kingabzpro/Reinforce-CartPole-v1
kingabzpro
2022-08-29T08:58:15Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-29T08:56:09Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Arashasg/WikiBert2WikiBert
Arashasg
2022-08-29T08:34:49Z
17
1
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "Wikipedia", "Summarizer", "bert2bert", "Summarization", "fa", "dataset:pn-summary", "dataset:XL-Sum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T12:17:42Z
--- language: - fa tags: - Wikipedia - Summarizer - bert2bert - Summarization task_categories: - Summarization - text generation task_ids: - news-articles-summarization license: - apache-2.0 multilinguality: - monolingual datasets: - pn-summary - XL-Sum metrics: - rouge-1 - rouge-2 - rouge-l --- # WikiBert2WikiBert Bert language models can be employed for Summarization tasks. WikiBert2WikiBert is an encoder-decoder transformer model that is initialized using the Persian WikiBert Model weights. The WikiBert Model is a Bert language model which is fine-tuned on Persian Wikipedia. After using the WikiBert weights for initialization, the model is trained for five epochs on PN-summary and Persian BBC datasets. ## How to Use: You can use the code below to get the model's outputs, or you can simply use the demo on the right. ``` from transformers import ( BertTokenizerFast, EncoderDecoderConfig, EncoderDecoderModel, BertConfig ) model_name = 'Arashasg/WikiBert2WikiBert' tokenizer = BertTokenizerFast.from_pretrained(model_name) config = EncoderDecoderConfig.from_pretrained(model_name) model = EncoderDecoderModel.from_pretrained(model_name, config=config) def generate_summary(text): inputs = tokenizer(text, padding="max_length", truncation=True, max_length=512, return_tensors="pt") input_ids = inputs.input_ids.to("cuda") attention_mask = inputs.attention_mask.to("cuda") outputs = model.generate(input_ids, attention_mask=attention_mask) output_str = tokenizer.batch_decode(outputs, skip_special_tokens=True) return output_str input = 'your input comes here' summary = generate_summary(input) ``` ## Evaluation I separated 5 percent of the pn-summary for evaluation of the model. The rouge scores of the model are as follows: | Rouge-1 | Rouge-2 | Rouge-l | | ------------- | ------------- | ------------- | | 38.97% | 18.42% | 34.50% |
dav3794/demo_knots_1_2
dav3794
2022-08-29T08:26:35Z
107
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "unk", "dataset:dav3794/autotrain-data-demo-knots-1-2_bis", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-29T08:21:00Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - dav3794/autotrain-data-demo-knots-1-2_bis co2_eq_emissions: emissions: 0.04019334522125584 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1328150718 - CO2 Emissions (in grams): 0.0402 ## Validation Metrics - Loss: 0.381 - Accuracy: 0.857 - Precision: 0.842 - Recall: 0.970 - AUC: 0.889 - F1: 0.901 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/dav3794/autotrain-demo-knots-1-2_bis-1328150718 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("dav3794/autotrain-demo-knots-1-2_bis-1328150718", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("dav3794/autotrain-demo-knots-1-2_bis-1328150718", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
hieule/bert-finetuned-ner
hieule
2022-08-29T07:32:11Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-29T06:30:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Recall type: recall value: 0.9522046449007069 - name: F1 type: f1 value: 0.9441802252816022 - name: Accuracy type: accuracy value: 0.9866221227997881 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0858 - Precition: 0.9363 - Recall: 0.9522 - F1: 0.9442 - Accuracy: 0.9866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precition | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0081 | 1.0 | 1756 | 0.0914 | 0.9273 | 0.9446 | 0.9359 | 0.9848 | | 0.012 | 2.0 | 3512 | 0.0852 | 0.9321 | 0.9478 | 0.9399 | 0.9857 | | 0.0036 | 3.0 | 5268 | 0.0858 | 0.9363 | 0.9522 | 0.9442 | 0.9866 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
pinot/wav2vec2-large-xls-r-300m-ja-colab-new
pinot
2022-08-29T07:21:29Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_10_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-28T16:18:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_10_0 model-index: - name: wav2vec2-large-xls-r-300m-ja-colab-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ja-colab-new This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_10_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.1931 - Wer: 0.2584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 637 | 5.3089 | 0.9670 | | No log | 2.0 | 1274 | 3.2716 | 0.6123 | | No log | 3.0 | 1911 | 2.1797 | 0.4708 | | No log | 4.0 | 2548 | 1.8331 | 0.4113 | | 6.3938 | 5.0 | 3185 | 1.5111 | 0.3460 | | 6.3938 | 6.0 | 3822 | 1.3575 | 0.3132 | | 6.3938 | 7.0 | 4459 | 1.2946 | 0.2957 | | 6.3938 | 8.0 | 5096 | 1.2346 | 0.2762 | | 1.023 | 9.0 | 5733 | 1.2053 | 0.2653 | | 1.023 | 10.0 | 6370 | 1.1931 | 0.2584 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.10.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
brilianputraa/q-Taxi-v3
brilianputraa
2022-08-29T07:15:46Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-29T07:10:31Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
akrisroof/ddpm-butterflies-128
akrisroof
2022-08-29T04:18:07Z
2
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-29T03:37:31Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/akrisroof/ddpm-butterflies-128/tensorboard?#scalars)
JAlexis/ajuste_02
JAlexis
2022-08-29T02:11:02Z
106
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-08-29T02:08:03Z
--- widget: - text: "How can I protect myself against covid-19?" context: "Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. " - text: "What are the risk factors for covid-19?" context: "To identify risk factors for hospital deaths from COVID-19, the OpenSAFELY platform examined electronic health records from 17.4 million UK adults. The authors used multivariable Cox proportional hazards model to identify the association of risk of death with older age, lower socio-economic status, being male, non-white ethnic background and certain clinical conditions (diabetes, obesity, cancer, respiratory diseases, heart, kidney, liver, neurological and autoimmune conditions). Notably, asthma was identified as a risk factor, despite prior suggestion of a potential protective role. Interestingly, higher risks due to ethnicity or lower socio-economic status could not be completely attributed to pre-existing health conditions." ---
JAlexis/ajuste_01
JAlexis
2022-08-29T01:10:25Z
5
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-08-29T00:29:25Z
--- widget: - text: "How can I protect myself against covid-19?" context: "Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. " - text: "What are the risk factors for covid-19?" context: "To identify risk factors for hospital deaths from COVID-19, the OpenSAFELY platform examined electronic health records from 17.4 million UK adults. The authors used multivariable Cox proportional hazards model to identify the association of risk of death with older age, lower socio-economic status, being male, non-white ethnic background and certain clinical conditions (diabetes, obesity, cancer, respiratory diseases, heart, kidney, liver, neurological and autoimmune conditions). Notably, asthma was identified as a risk factor, despite prior suggestion of a potential protective role. Interestingly, higher risks due to ethnicity or lower socio-economic status could not be completely attributed to pre-existing health conditions." --- ## Model description This model was obtained by fine-tuning deepset/bert-base-cased-squad2 on Cord19 Dataset. ## How to use ```python from transformers.pipelines import pipeline model_name = "JAlexis/ajuste_01" nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) inputs = { 'question': 'What are the risk factors for covid-19?', 'context': 'To identify risk factors for hospital deaths from COVID-19, the OpenSAFELY platform examined electronic health records from 17.4 million UK adults. The authors used multivariable Cox proportional hazards model to identify the association of risk of death with older age, lower socio-economic status, being male, non-white ethnic background and certain clinical conditions (diabetes, obesity, cancer, respiratory diseases, heart, kidney, liver, neurological and autoimmune conditions). Notably, asthma was identified as a risk factor, despite prior suggestion of a potential protective role. Interestingly, higher risks due to ethnicity or lower socio-economic status could not be completely attributed to pre-existing health conditions.', } nlp(inputs) ```
silviacamplani/distilbert-finetuned-dapt_tapt-lm-music
silviacamplani
2022-08-28T22:28:18Z
55
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-28T18:43:22Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert-finetuned-dapt_tapt-lm-music results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-finetuned-dapt_tapt-lm-music This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8680 - Validation Loss: 2.4306 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 32918, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.8680 | 2.4306 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
mabrouk/distilbert-base-uncased-finetuned-emotion
mabrouk
2022-08-28T22:07:48Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T21:36:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9255 - name: F1 type: f1 value: 0.9254357449049359 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2206 - Accuracy: 0.9255 - F1: 0.9254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8523 | 1.0 | 250 | 0.3186 | 0.908 | 0.9064 | | 0.247 | 2.0 | 500 | 0.2206 | 0.9255 | 0.9254 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ChaoLi/xlm-roberta-base-finetuned-panx-it
ChaoLi
2022-08-28T19:55:33Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T19:52:28Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8224755700325732 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2521 - F1: 0.8225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8088 | 1.0 | 70 | 0.3423 | 0.7009 | | 0.2844 | 2.0 | 140 | 0.2551 | 0.8027 | | 0.1905 | 3.0 | 210 | 0.2521 | 0.8225 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
ChaoLi/xlm-roberta-base-finetuned-panx-de-fr
ChaoLi
2022-08-28T19:46:37Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T19:37:01Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1643 - F1: 0.8626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2891 | 1.0 | 715 | 0.1780 | 0.8288 | | 0.1472 | 2.0 | 1430 | 0.1633 | 0.8488 | | 0.0948 | 3.0 | 2145 | 0.1643 | 0.8626 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
baudm/crnn
baudm
2022-08-28T19:06:36Z
0
0
null
[ "pytorch", "image-to-text", "en", "license:apache-2.0", "region:us" ]
image-to-text
2022-08-28T19:03:22Z
--- language: - en license: apache-2.0 tags: - image-to-text --- # CRNN v1.0 CRNN model pre-trained on various real [STR datasets](https://github.com/baudm/parseq/blob/main/Datasets.md) at image size 128x32. Disclaimer: this model card was not written by the original authors. ## Model description *TODO* ## Intended uses & limitations You can use the model for STR on images containing Latin characters (62 case-sensitive alphanumeric + 32 punctuation marks). ### How to use *TODO* ### BibTeX entry and citation info ```bibtex @article{shi2016end, title={An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition}, author={Shi, Baoguang and Bai, Xiang and Yao, Cong}, journal={IEEE transactions on pattern analysis and machine intelligence}, volume={39}, number={11}, pages={2298--2304}, year={2016}, publisher={IEEE} } ```
baudm/trba
baudm
2022-08-28T19:03:01Z
0
0
null
[ "pytorch", "image-to-text", "en", "license:apache-2.0", "region:us" ]
image-to-text
2022-08-28T19:01:11Z
--- language: - en license: apache-2.0 tags: - image-to-text --- # TRBA v1.0 TRBA model pre-trained on various real [STR datasets](https://github.com/baudm/parseq/blob/main/Datasets.md) at image size 128x32. Disclaimer: this model card was not written by the original authors. ## Model description *TODO* ## Intended uses & limitations You can use the model for STR on images containing Latin characters (62 case-sensitive alphanumeric + 32 punctuation marks). ### How to use *TODO* ### BibTeX entry and citation info ```bibtex @InProceedings{Baek_2019_ICCV, author = {Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk}, title = {What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {10}, year = {2019} } ```
baudm/abinet-lv
baudm
2022-08-28T19:00:28Z
0
0
null
[ "pytorch", "image-to-text", "en", "license:apache-2.0", "region:us" ]
image-to-text
2022-08-28T18:55:28Z
--- language: - en license: apache-2.0 tags: - image-to-text --- # ABINet-LV v1.0 ABINet model pre-trained on various real [STR datasets](https://github.com/baudm/parseq/blob/main/Datasets.md) at image size 128x32. Disclaimer: this model card was not written by the original authors. ## Model description *TODO* ## Intended uses & limitations You can use the model for STR on images containing Latin characters (62 case-sensitive alphanumeric + 32 punctuation marks). ### How to use *TODO* ### BibTeX entry and citation info ```bibtex @InProceedings{Fang_2021_CVPR, author = {Fang, Shancheng and Xie, Hongtao and Wang, Yuxin and Mao, Zhendong and Zhang, Yongdong}, title = {Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {6}, year = {2021}, pages = {7098-7107} } ```
baudm/vitstr-small
baudm
2022-08-28T18:47:40Z
0
0
null
[ "pytorch", "image-to-text", "en", "license:apache-2.0", "region:us" ]
image-to-text
2022-08-28T18:41:54Z
--- language: - en license: apache-2.0 tags: - image-to-text --- # ViTSTR small v1.0 ViTSTR model pre-trained on various real [STR datasets](https://github.com/baudm/parseq/blob/main/Datasets.md) at image size 128x32 with a patch size of 8x4. Disclaimer: this model card was not written by the original author. ## Model description *TODO* ## Intended uses & limitations You can use the model for STR on images containing Latin characters (62 case-sensitive alphanumeric + 32 punctuation marks). ### How to use *TODO* ### BibTeX entry and citation info ```bibtex @InProceedings{atienza2021vision, title={Vision transformer for fast and efficient scene text recognition}, author={Atienza, Rowel}, booktitle={International Conference on Document Analysis and Recognition}, pages={319--334}, year={2021}, organization={Springer} } ```
caffsean/t5-base-finetuned-keyword-to-text-generation
caffsean
2022-08-28T18:36:02Z
11
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-27T23:29:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-base-finetuned-keyword-to-text-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-keyword-to-text-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.4643 - Rouge1: 2.1108 - Rouge2: 0.3331 - Rougel: 1.7368 - Rougelsum: 1.7391 - Gen Len: 16.591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 375 | 3.4862 | 2.0718 | 0.326 | 1.7275 | 1.7308 | 16.7995 | | 3.5928 | 2.0 | 750 | 3.4761 | 2.0829 | 0.3253 | 1.7192 | 1.7224 | 16.773 | | 3.5551 | 3.0 | 1125 | 3.4701 | 2.1028 | 0.3272 | 1.7274 | 1.7296 | 16.6505 | | 3.5225 | 4.0 | 1500 | 3.4671 | 2.11 | 0.3305 | 1.7343 | 1.7362 | 16.699 | | 3.5225 | 5.0 | 1875 | 3.4653 | 2.1134 | 0.3319 | 1.7418 | 1.7437 | 16.5485 | | 3.4987 | 6.0 | 2250 | 3.4643 | 2.1108 | 0.3331 | 1.7368 | 1.7391 | 16.591 | | 3.4939 | 7.0 | 2625 | 3.4643 | 2.1108 | 0.3331 | 1.7368 | 1.7391 | 16.591 | | 3.498 | 8.0 | 3000 | 3.4643 | 2.1108 | 0.3331 | 1.7368 | 1.7391 | 16.591 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
baudm/parseq-tiny
baudm
2022-08-28T18:31:35Z
0
2
null
[ "pytorch", "image-to-text", "en", "license:apache-2.0", "region:us" ]
image-to-text
2022-08-28T18:31:35Z
--- language: - en license: apache-2.0 tags: - image-to-text --- # PARSeq tiny v1.0 PARSeq model pre-trained on various real [STR datasets](https://github.com/baudm/parseq/blob/main/Datasets.md) at image size 128x32 with a patch size of 8x4. ## Model description PARSeq (Permuted Autoregressive Sequence) models unify the prevailing modeling/decoding schemes in Scene Text Recognition (STR). In particular, with a single model, it allows for context-free non-autoregressive inference (like CRNN and ViTSTR), context-aware autoregressive inference (like TRBA), and bidirectional iterative refinement (like ABINet). ![model image](https://github.com/baudm/parseq/raw/main/.github/system.png) ## Intended uses & limitations You can use the model for STR on images containing Latin characters (62 case-sensitive alphanumeric + 32 punctuation marks). ### How to use *TODO* ### BibTeX entry and citation info ```bibtex @InProceedings{bautista2022parseq, author={Bautista, Darwin and Atienza, Rowel}, title={Scene Text Recognition with Permuted Autoregressive Sequence Models}, booktitle={Proceedings of the 17th European Conference on Computer Vision (ECCV)}, month={10}, year={2022}, publisher={Springer International Publishing}, address={Cham} } ```
vikram71198/roberta-base-finetuned-irony
vikram71198
2022-08-28T18:19:31Z
106
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "Irony Detection", "Text Classification", "tweet_eval", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T17:36:41Z
--- license: apache-2.0 tags: - Irony Detection - Text Classification - tweet_eval #metrics: #- accuracy model-index: - name: roberta-base-finetuned-irony results: [] --- # roberta-base-finetuned-irony This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the Irony Dataset from [Tweet_Eval](https://huggingface.co/datasets/tweet_eval). This is the classification report after training for 10 full epochs: | | Precision | Recall | F-1 Score | Support | |:-------------:|:-----:|:----:|:---------------:|:--------:| | Not Irony (0) | 0.73 | 0.78| 0.75 | 473 | | Irony (1) | 0.62 | 0.56 | 0.59 | 311 | | accuracy | | | 0.69 | 784 | | macro avg | 0.68 | 0.67 | 0.67 | 784 | | weighted avg | 0.69 | 0.69 | 0.69 | 784 | ## Training and evaluation data All of the process to train this model is available in [this](https://github.com/vikram71198/Transformers/tree/main/Irony%20Detection) repository. The dataset has been split into 2,862 examples for training, 955 for validation & 784 for testing. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - optimizer: default AdamW Optimizer - num_epochs: 10 - warmup_steps: 500 - weight_decay: 0.01 - random seed: 42 I also trained for 10 full epochs on Colab's Tesla P100-PCIE-16GB GPU. ### Training results | Epoch | Training Loss | Validation Loss | |:-------------:|:----:|:---------------:| | 1 | 0.691600 |0.6738196 | | 2 | 0.621800 | 0.611911 | | 3 | 0.510800 | 0.516174 | | 4 | 0.384700 | 0.574607 | | 5 | 0.273900 | 0.644613 | | 6 | 0.162300 | 0.846262 | | 7 | 0.119000 | 0.869178 | | 8 | 0.079700 | 1.131574 | | 9 | 0.035800 | 1.5123457 | | 10 | 0.013600 |1.5706617 | ## Model in Action 🚀 ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch.nn as nn tokenizer = AutoTokenizer.from_pretrained("vikram71198/roberta-base-finetuned-irony") model = AutoModelForSequenceClassification.from_pretrained("vikram71198/roberta-base-finetuned-irony") #Following the same truncation & padding strategy used while training encoded_input = tokenizer("Enter any text/tweet to be classified. Can input a list of tweets too.", padding = True, return_tensors='pt') output = model(**encoded_input)["logits"] #detaching the output from the computation graph detached_output = output.detach() #Applying softmax here for single label classification softmax = nn.Softmax(dim = 1) prediction_probabilities = list(softmax(detached_output).detach().numpy()) predictions = [] for x,y in prediction_probabilities: predictions.append("not_irony") if x > y else predictions.append("irony") print(predictions) ``` Please note that if you're performing inference on a lengthy dataset, split it up into multiple batches, otherwise your RAM will overflow, unless you're using a really high end GPU/TPU setup. I'd recommend a batch length of 50, if you're working with a vanilla GPU setup. ### Framework versions - Transformers 4.12.5 - Pytorch 1.11.0 - Datasets 1.17.0 - Tokenizers 0.10.3
muhtasham/bert-small-eurlex
muhtasham
2022-08-28T17:47:16Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "generated_from_trainer", "dataset:eurlex", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-08-27T21:06:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eurlex model-index: - name: bert-small-eurlex results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-eurlex This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the eurlex dataset. It achieves the following results on the evaluation set: - Loss: 1.4260 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 80 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9536 | 1.5 | 1000 | 2.0670 | | 2.0331 | 3.0 | 2000 | 1.7540 | | 1.8046 | 4.5 | 3000 | 1.5993 | | 1.678 | 6.0 | 4000 | 1.5039 | | 1.6074 | 7.5 | 5000 | 1.4544 | | 1.5664 | 8.99 | 6000 | 1.4260 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
silviacamplani/distilbert-finetuned-tapt-lm-music
silviacamplani
2022-08-28T16:28:36Z
7
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-28T16:24:24Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert-finetuned-tapt-lm-music results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-finetuned-tapt-lm-music This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -1000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
aware-ai/wav2vec2-xls-r-300m-english
aware-ai
2022-08-28T16:15:04Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_10_0", "generated_from_trainer", "de", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-26T12:31:54Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_10_0 - generated_from_trainer model-index: - name: wav2vec2-xls-r-300m-english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-english This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_10_0 - DE dataset. It achieves the following results on the evaluation set: - Loss: 0.5577 - Wer: 0.3864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.317 | 1.0 | 7194 | 0.5577 | 0.3864 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.12.1
antoinev17/xlm-roberta-base-finetuned-panx-de
antoinev17
2022-08-28T16:01:00Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T14:59:32Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8658245134858313 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1455 - F1: 0.8658 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.259 | 1.0 | 1258 | 0.1906 | 0.8256 | | 0.1332 | 2.0 | 2516 | 0.1491 | 0.8495 | | 0.0841 | 3.0 | 3774 | 0.1455 | 0.8658 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.10.3
rajistics/layoutlmv2-finetuned-cord_100
rajistics
2022-08-28T15:48:40Z
79
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "dataset:cord-layoutlmv3", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T01:37:57Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 model-index: - name: layoutlmv2-finetuned-cord_100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the cord-layoutlmv3 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.21.2 - Pytorch 1.10.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
silviacamplani/distilbert-finetuned-dapt-lm-music
silviacamplani
2022-08-28T15:42:41Z
65
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-28T11:31:06Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert-finetuned-dapt-lm-music results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-finetuned-dapt-lm-music This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 32911, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
buddhist-nlp/mbart-buddhist-chinese-to-eng
buddhist-nlp
2022-08-28T15:27:25Z
10
2
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "translation", "zh", "en", "autotrain_compatible", "region:us" ]
translation
2022-08-28T10:39:38Z
--- language: - zh - en tags: - translation widget: - text: "如是我闻:一时,佛在舍卫国只树花林窟,与大比丘众千二百五十人俱。" inference: false --- This model is based on MBART and translates Buddhist Chinese to English. It is optimized for a sequence length of 300 (Buddhist Chinese input sequences shouldn't exceed 150 characters). This model uses "#" with a space before and after as delimiter between sentences (in addition to the normal Chinese punctuation). Input should be converted to simplified Chinese before running. The model also doesn't like short sequences very much, for best results supply input sequences between 100 and 150 characters in length. The model shows good performance on Sūtra texts and does perform not too bad on Abhidharma and Yogācāra. However, it does have the usual problems that NMT systems have with named entities (names of persons and places). Also it shows a tendency to hallucinate at times, i.e. generating a translation that has no direct relationship with the input.
buddhist-nlp/sanstib
buddhist-nlp
2022-08-28T15:02:42Z
104
2
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "license:lgpl-lr", "endpoints_compatible", "region:us" ]
feature-extraction
2022-04-22T08:35:32Z
--- license: lgpl-lr --- This model creates Sanskrit and Tibetan sentence embeddings and can be used for semantic similarity tasks. Sanskrit needs to be segmented first and converted into internal transliteration (I will upload the according script here soon). The Tibetan needs to be converted into wylie transliteration.
tanvirkhan/distilbert-base-uncased-finetuned-imdb
tanvirkhan
2022-08-28T14:59:47Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-28T11:50:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
yirmibesogluz/t2t-ner-ade-balanced
yirmibesogluz
2022-08-28T12:59:14Z
13
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "adverse-drug-events", "twitter", "social-media-mining-for-health", "SMM4H", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-28T12:30:48Z
--- license: mit language: en tags: - adverse-drug-events - twitter - social-media-mining-for-health - SMM4H widget: - text: "ner ade: i'm so irritable when my vyvanse wears off" example_title: "ADE" - text: "ner ade: bout to have a kick ass summer then it's time to get serious fer school #vyvanse #geekmode" example_title: "noADE" --- ## t2t-ner-ade-balanced t2t-ner-ade-balanced is a text-to-text (**t2t**) adverse drug event (**ade**) extraction (NER) model trained with over- and undersampled (balanced) English tweets reporting adverse drug events. It is trained as part of BOUN-TABI system for the Social Media Mining for Health (SMM4H) 2022 shared task. The system description paper has been accepted for publication in *Proceedings of the Seventh Social Media Mining for Health (#SMM4H) Workshop and Shared Task* and will be available soon. The source code has been released on GitHub at [https://github.com/gokceuludogan/boun-tabi-smm4h22](https://github.com/gokceuludogan/boun-tabi-smm4h22). The model utilizes the T5 model and its text-to-text formulation. The inputs are fed to the model with the task prefix "ner ade:", followed with a sentence/tweet. In turn, either the extracted adverse event span is returned, or "none". ## Requirements ``` sentencepiece transformers ``` ## Usage ```python from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("yirmibesogluz/t2t-ner-ade-balanced") model = AutoModelForSeq2SeqLM.from_pretrained("yirmibesogluz/t2t-ner-ade-balanced") predictor = pipeline("text2text-generation", model=model, tokenizer=tokenizer) predictor("ner ade: i'm so irritable when my vyvanse wears off") ``` ## Citation ```bibtex @inproceedings{uludogan-gokce-yirmibesoglu-zeynep-2022-boun-tabi-smm4h22, title = "{BOUN}-{TABI}@{SMM4H}'22: Text-to-{T}ext {A}dverse {D}rug {E}vent {E}xtraction with {D}ata {B}alancing and {P}rompting", author = "Uludo{\u{g}}an, G{\"{o}}k{\c{c}}e and Yirmibe{\c{s}}o{\u{g}}lu, Zeynep", booktitle = "Proceedings of the Seventh Social Media Mining for Health ({\#}SMM4H) Workshop and Shared Task", year = "2022", } ```
yirmibesogluz/t2t-assert-ade-balanced
yirmibesogluz
2022-08-28T12:02:18Z
16
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "adverse-drug-events", "twitter", "social-media-mining-for-health", "SMM4H", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-28T11:13:39Z
--- license: mit language: en tags: - adverse-drug-events - twitter - social-media-mining-for-health - SMM4H widget: - text: "assert ade: joints killing me now i have gone back up on the lamotrigine. sick of side effects. sick of meds. want my own self back. knackered today" example_title: "ADE" - text: "assert ade: bout to have a kick ass summer then it's time to get serious fer school #vyvanse #geekmode" example_title: "noADE" --- ## t2t-assert-ade-balanced t2t-assert-ade-balanced is a text-to-text (**t2t**) adverse drug event (**ade**) detection model trained with over- and undersampled (balanced) English tweets reporting adverse drug events. It is trained as part of BOUN-TABI system for the Social Media Mining for Health (SMM4H) 2022 shared task. The system description paper has been accepted for publication in *Proceedings of the Seventh Social Media Mining for Health (#SMM4H) Workshop and Shared Task* and will be available soon. The source code has been released on GitHub at [https://github.com/gokceuludogan/boun-tabi-smm4h22](https://github.com/gokceuludogan/boun-tabi-smm4h22). The model utilizes the T5 model and its text-to-text formulation. The inputs are fed to the model with the task prefix "assert ade:", followed with a sentence/tweet. In turn, the output "adverse event problem" or "healthy okay" is received. ## Requirements ``` sentencepiece transformers ``` ## Usage ```python from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("yirmibesogluz/t2t-assert-ade-balanced") model = AutoModelForSeq2SeqLM.from_pretrained("yirmibesogluz/t2t-assert-ade-balanced") predictor = pipeline("text2text-generation", model=model, tokenizer=tokenizer) predictor("assert ade: joints killing me now i have gone back up on the lamotrigine. sick of side effects. sick of meds. want my own self back. knackered today") ``` ## Citation ```bibtex @inproceedings{uludogan-gokce-yirmibesoglu-zeynep-2022-boun-tabi-smm4h22, title = "{BOUN}-{TABI}@{SMM4H}'22: Text-to-{T}ext {A}dverse {D}rug {E}vent {E}xtraction with {D}ata {B}alancing and {P}rompting", author = "Uludo{\u{g}}an, G{\"{o}}k{\c{c}}e and Yirmibe{\c{s}}o{\u{g}}lu, Zeynep", booktitle = "Proceedings of the Seventh Social Media Mining for Health ({\#}SMM4H) Workshop and Shared Task", year = "2022", } ```
Shivus/q-FrozenLake-v1-4x4-noSlippery
Shivus
2022-08-28T11:25:26Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-28T11:25:18Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Shivus/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
flair/ner-german-large
flair
2022-08-28T09:08:06Z
221,703
39
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "de", "dataset:conll2003", "arxiv:2011.06993", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - flair - token-classification - sequence-tagger-model language: de datasets: - conll2003 widget: - text: "George Washington ging nach Washington" --- ## German NER in Flair (large model) This is the large 4-class NER model for German that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **92,31** (CoNLL-03 German revised) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on document-level XLM-R embeddings and [FLERT](https://arxiv.org/pdf/2011.06993v1.pdf). --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-german-large") # make example sentence sentence = Sentence("George Washington ging nach Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2]: "George Washington" [− Labels: PER (1.0)] Span [5]: "Washington" [− Labels: LOC (1.0)] ``` So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging nach Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python import torch # 1. get the corpus from flair.datasets import CONLL_03_GERMAN corpus = CONLL_03_GERMAN() # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize fine-tuneable transformer embeddings WITH document context from flair.embeddings import TransformerWordEmbeddings embeddings = TransformerWordEmbeddings( model='xlm-roberta-large', layers="-1", subtoken_pooling="first", fine_tune=True, use_context=True, ) # 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection) from flair.models import SequenceTagger tagger = SequenceTagger( hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type='ner', use_crf=False, use_rnn=False, reproject_embeddings=False, ) # 6. initialize trainer with AdamW optimizer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW) # 7. run training with XLM parameters (20 epochs, small LR) from torch.optim.lr_scheduler import OneCycleLR trainer.train('resources/taggers/ner-german-large', learning_rate=5.0e-6, mini_batch_size=4, mini_batch_chunk_size=1, max_epochs=20, scheduler=OneCycleLR, embeddings_storage_mode='none', weight_decay=0., ) ) ``` --- ### Cite Please cite the following paper when using this model. ``` @misc{schweter2020flert, title={FLERT: Document-Level Features for Named Entity Recognition}, author={Stefan Schweter and Alan Akbik}, year={2020}, eprint={2011.06993}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
paola-md/recipe-lr1e05-wd0.1-bs32
paola-md
2022-08-28T08:13:25Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T07:45:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr1e05-wd0.1-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr1e05-wd0.1-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2756 - Rmse: 0.5250 - Mse: 0.2756 - Mae: 0.4181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2769 | 1.0 | 623 | 0.2768 | 0.5261 | 0.2768 | 0.4281 | | 0.2743 | 2.0 | 1246 | 0.2739 | 0.5234 | 0.2739 | 0.4152 | | 0.2732 | 3.0 | 1869 | 0.2760 | 0.5253 | 0.2760 | 0.4229 | | 0.2719 | 4.0 | 2492 | 0.2749 | 0.5243 | 0.2749 | 0.4041 | | 0.271 | 5.0 | 3115 | 0.2761 | 0.5255 | 0.2761 | 0.4238 | | 0.2699 | 6.0 | 3738 | 0.2756 | 0.5250 | 0.2756 | 0.4181 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
yoyoyo1118/xlm-roberta-base-finetuned-panx-de-fr
yoyoyo1118
2022-08-28T07:53:58Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T07:31:23Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1654 - F1: 0.8590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2845 | 1.0 | 715 | 0.1831 | 0.8249 | | 0.1449 | 2.0 | 1430 | 0.1643 | 0.8479 | | 0.0929 | 3.0 | 2145 | 0.1654 | 0.8590 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
paola-md/recipe-lr1e05-wd0.005-bs32
paola-md
2022-08-28T07:45:24Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T07:17:41Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr1e05-wd0.005-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr1e05-wd0.005-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2756 - Rmse: 0.5250 - Mse: 0.2756 - Mae: 0.4181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2769 | 1.0 | 623 | 0.2768 | 0.5261 | 0.2768 | 0.4281 | | 0.2743 | 2.0 | 1246 | 0.2739 | 0.5234 | 0.2739 | 0.4153 | | 0.2732 | 3.0 | 1869 | 0.2760 | 0.5253 | 0.2760 | 0.4229 | | 0.2719 | 4.0 | 2492 | 0.2749 | 0.5243 | 0.2749 | 0.4041 | | 0.271 | 5.0 | 3115 | 0.2761 | 0.5255 | 0.2761 | 0.4238 | | 0.2699 | 6.0 | 3738 | 0.2756 | 0.5250 | 0.2756 | 0.4181 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr1e05-wd0.01-bs32
paola-md
2022-08-28T07:17:08Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T06:49:39Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr1e05-wd0.01-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr1e05-wd0.01-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2756 - Rmse: 0.5250 - Mse: 0.2756 - Mae: 0.4181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2769 | 1.0 | 623 | 0.2768 | 0.5261 | 0.2768 | 0.4282 | | 0.2743 | 2.0 | 1246 | 0.2739 | 0.5234 | 0.2739 | 0.4152 | | 0.2732 | 3.0 | 1869 | 0.2760 | 0.5253 | 0.2760 | 0.4229 | | 0.2719 | 4.0 | 2492 | 0.2749 | 0.5243 | 0.2749 | 0.4041 | | 0.271 | 5.0 | 3115 | 0.2761 | 0.5255 | 0.2761 | 0.4238 | | 0.2699 | 6.0 | 3738 | 0.2756 | 0.5250 | 0.2756 | 0.4181 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
Minds/rare-puppers
Minds
2022-08-28T06:54:12Z
45
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-28T06:54:01Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8888888955116272 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### fresh leaf of plant ![fresh leaf of plant](images/fresh_leaf_of_plant.jpg) #### plant diseases ![plant diseases](images/plant_diseases.jpg)
paola-md/recipe-lr8e06-wd0.1-bs32
paola-md
2022-08-28T06:21:06Z
167
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T05:53:35Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.1-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.1-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2752 - Rmse: 0.5246 - Mse: 0.2752 - Mae: 0.4184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2769 | 1.0 | 623 | 0.2773 | 0.5266 | 0.2773 | 0.4297 | | 0.2745 | 2.0 | 1246 | 0.2739 | 0.5233 | 0.2739 | 0.4144 | | 0.2733 | 3.0 | 1869 | 0.2752 | 0.5246 | 0.2752 | 0.4215 | | 0.2722 | 4.0 | 2492 | 0.2744 | 0.5238 | 0.2744 | 0.4058 | | 0.2714 | 5.0 | 3115 | 0.2758 | 0.5252 | 0.2758 | 0.4233 | | 0.2705 | 6.0 | 3738 | 0.2752 | 0.5246 | 0.2752 | 0.4184 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
yoyoyo1118/xlm-roberta-base-finetuned-panx-de
yoyoyo1118
2022-08-28T06:05:49Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T05:45:44Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.863677639046538 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1343 - F1: 0.8637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2578 | 1.0 | 525 | 0.1562 | 0.8273 | | 0.1297 | 2.0 | 1050 | 0.1330 | 0.8474 | | 0.0809 | 3.0 | 1575 | 0.1343 | 0.8637 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
rebolforces/Reinforce-CartPole-v1-exp2
rebolforces
2022-08-28T05:35:42Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-28T05:35:26Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1-exp2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
paola-md/recipe-lr8e06-wd0.01-bs32
paola-md
2022-08-28T05:25:05Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T04:57:33Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.01-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.01-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2753 - Rmse: 0.5246 - Mse: 0.2753 - Mae: 0.4184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2769 | 1.0 | 623 | 0.2774 | 0.5266 | 0.2774 | 0.4296 | | 0.2745 | 2.0 | 1246 | 0.2739 | 0.5233 | 0.2739 | 0.4145 | | 0.2733 | 3.0 | 1869 | 0.2752 | 0.5246 | 0.2752 | 0.4215 | | 0.2722 | 4.0 | 2492 | 0.2744 | 0.5238 | 0.2744 | 0.4058 | | 0.2714 | 5.0 | 3115 | 0.2758 | 0.5251 | 0.2758 | 0.4232 | | 0.2705 | 6.0 | 3738 | 0.2753 | 0.5246 | 0.2753 | 0.4184 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
rebolforces/Reinforce-CartPole-v1-exp1
rebolforces
2022-08-28T05:11:04Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-28T05:10:50Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1-exp1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 458.90 +/- 80.57 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
paola-md/distilroberta-recipes
paola-md
2022-08-28T04:57:01Z
7
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T04:29:21Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr2e05-wd0.02-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr2e05-wd0.02-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2784 - Rmse: 0.5277 - Mse: 0.2784 - Mae: 0.4161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2774 | 1.0 | 623 | 0.2749 | 0.5243 | 0.2749 | 0.4184 | | 0.2741 | 2.0 | 1246 | 0.2741 | 0.5235 | 0.2741 | 0.4173 | | 0.2724 | 3.0 | 1869 | 0.2855 | 0.5343 | 0.2855 | 0.4428 | | 0.2713 | 4.0 | 2492 | 0.2758 | 0.5252 | 0.2758 | 0.4013 | | 0.2695 | 5.0 | 3115 | 0.2777 | 0.5270 | 0.2777 | 0.4245 | | 0.2674 | 6.0 | 3738 | 0.2784 | 0.5277 | 0.2784 | 0.4161 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr2e05-wd0.1-bs32
paola-md
2022-08-28T04:28:49Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T04:15:07Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr2e05-wd0.1-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr2e05-wd0.1-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2861 - Rmse: 0.5349 - Mse: 0.2861 - Mae: 0.4436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2775 | 1.0 | 623 | 0.2744 | 0.5238 | 0.2744 | 0.4159 | | 0.274 | 2.0 | 1246 | 0.2737 | 0.5232 | 0.2737 | 0.4163 | | 0.2724 | 3.0 | 1869 | 0.2861 | 0.5349 | 0.2861 | 0.4436 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
rebolforces/Reinforce-CartPole-v1-baseline
rebolforces
2022-08-28T04:16:35Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-28T04:14:35Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1-baseline results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 215.80 +/- 39.04 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
paola-md/recipe-lr1e05-wd0.02-bs8
paola-md
2022-08-28T03:44:00Z
140
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T03:18:59Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr1e05-wd0.02-bs8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr1e05-wd0.02-bs8 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2781 - Rmse: 0.5273 - Mse: 0.2781 - Mae: 0.4279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2766 | 1.0 | 2490 | 0.2740 | 0.5234 | 0.2740 | 0.4172 | | 0.2738 | 2.0 | 4980 | 0.2783 | 0.5276 | 0.2783 | 0.4297 | | 0.2724 | 3.0 | 7470 | 0.2781 | 0.5273 | 0.2781 | 0.4279 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/pink_rodent
huggingtweets
2022-08-28T02:33:36Z
107
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-28T02:32:47Z
--- language: en thumbnail: http://www.huggingtweets.com/pink_rodent/1661654012124/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1558011857838931968/JdtfxNhf_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">mouse</div> <div style="text-align: center; font-size: 14px;">@pink_rodent</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from mouse. | Data | mouse | | --- | --- | | Tweets downloaded | 242 | | Retweets | 48 | | Short tweets | 55 | | Tweets kept | 139 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/182s7hgh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pink_rodent's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/35lwy7go) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/35lwy7go/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pink_rodent') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
paola-md/recipe-lr8e06-wd0.02-bs8
paola-md
2022-08-28T02:02:34Z
161
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T01:38:14Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.02-bs8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.02-bs8 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2778 - Rmse: 0.5271 - Mse: 0.2778 - Mae: 0.4289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2766 | 1.0 | 2490 | 0.2739 | 0.5233 | 0.2739 | 0.4160 | | 0.2739 | 2.0 | 4980 | 0.2770 | 0.5263 | 0.2770 | 0.4279 | | 0.2726 | 3.0 | 7470 | 0.2778 | 0.5271 | 0.2778 | 0.4289 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr8e06-wd0.1-bs8
paola-md
2022-08-28T01:37:28Z
164
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T01:13:07Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.1-bs8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.1-bs8 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2778 - Rmse: 0.5270 - Mse: 0.2778 - Mae: 0.4290 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2766 | 1.0 | 2490 | 0.2741 | 0.5235 | 0.2741 | 0.4176 | | 0.2739 | 2.0 | 4980 | 0.2773 | 0.5266 | 0.2773 | 0.4286 | | 0.2726 | 3.0 | 7470 | 0.2778 | 0.5270 | 0.2778 | 0.4290 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
anas-awadalla/distilroberta-base-task-specific-distilation-on-squad
anas-awadalla
2022-08-28T01:17:22Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-27T23:50:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilroberta-base-task-specific-distilation-on-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-task-specific-distilation-on-squad This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
infiniteperplexity/xlm-roberta-base-finetuned-panx-de
infiniteperplexity
2022-08-28T01:09:17Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T00:45:38Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
paola-md/recipe-lr8e06-wd0.01-bs8
paola-md
2022-08-28T00:47:15Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T00:22:58Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.01-bs8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.01-bs8 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2782 - Rmse: 0.5274 - Mse: 0.2782 - Mae: 0.4299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2766 | 1.0 | 2490 | 0.2739 | 0.5234 | 0.2739 | 0.4152 | | 0.2739 | 2.0 | 4980 | 0.2769 | 0.5262 | 0.2769 | 0.4274 | | 0.2725 | 3.0 | 7470 | 0.2782 | 0.5274 | 0.2782 | 0.4299 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
jfrojanoj/distilbert-base-uncased-finetuned-emotion
jfrojanoj
2022-08-28T00:01:30Z
110
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T23:33:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9257579044598276 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2140 - Accuracy: 0.926 - F1: 0.9258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8453 | 1.0 | 250 | 0.3075 | 0.9115 | 0.9083 | | 0.2467 | 2.0 | 500 | 0.2140 | 0.926 | 0.9258 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
paola-md/recipe-lr2e05-wd0.1-bs8
paola-md
2022-08-27T23:57:08Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T23:32:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr2e05-wd0.1-bs8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr2e05-wd0.1-bs8 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2768 - Rmse: 0.5262 - Mse: 0.2768 - Mae: 0.4258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.277 | 1.0 | 2490 | 0.2745 | 0.5239 | 0.2745 | 0.4180 | | 0.2739 | 2.0 | 4980 | 0.2814 | 0.5304 | 0.2814 | 0.4321 | | 0.2723 | 3.0 | 7470 | 0.2768 | 0.5262 | 0.2768 | 0.4258 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr2e05-wd0.005-bs8
paola-md
2022-08-27T23:32:03Z
162
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T23:07:51Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr2e05-wd0.005-bs8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr2e05-wd0.005-bs8 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2771 - Rmse: 0.5264 - Mse: 0.2771 - Mae: 0.4266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.277 | 1.0 | 2490 | 0.2746 | 0.5240 | 0.2746 | 0.4202 | | 0.274 | 2.0 | 4980 | 0.2827 | 0.5317 | 0.2827 | 0.4360 | | 0.2723 | 3.0 | 7470 | 0.2771 | 0.5264 | 0.2771 | 0.4266 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
theojolliffe/bart-paraphrase-v4-e1-feedback
theojolliffe
2022-08-27T22:37:46Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-26T22:26:20Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-paraphrase-v4-e1-feedback results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrase-v4-e1-feedback This model is a fine-tuned version of [theojolliffe/bart-paraphrase-v4-e1](https://huggingface.co/theojolliffe/bart-paraphrase-v4-e1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 27 | 3.9313 | 67.6687 | 57.1881 | 66.7507 | 66.2643 | 20.0 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0 - Datasets 1.18.0 - Tokenizers 0.10.3
paola-md/recipe-lr1e05-wd0.1-bs16
paola-md
2022-08-27T22:24:30Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T22:07:17Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr1e05-wd0.1-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr1e05-wd0.1-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2794 - Rmse: 0.5286 - Mse: 0.2794 - Mae: 0.4343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2767 | 1.0 | 1245 | 0.2744 | 0.5239 | 0.2744 | 0.4124 | | 0.2739 | 2.0 | 2490 | 0.2757 | 0.5250 | 0.2757 | 0.4211 | | 0.2727 | 3.0 | 3735 | 0.2794 | 0.5286 | 0.2794 | 0.4343 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
jackoyoungblood/Reinforce-PongPolGrad
jackoyoungblood
2022-08-27T21:43:41Z
0
0
null
[ "Pong-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-27T21:41:20Z
--- tags: - Pong-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PongPolGrad results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-PLE-v0 type: Pong-PLE-v0 metrics: - type: mean_reward value: -16.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pong-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pong-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
paola-md/recipe-lr8e06-wd0.02-bs16
paola-md
2022-08-27T21:31:07Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T21:13:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.02-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.02-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2795 - Rmse: 0.5287 - Mse: 0.2795 - Mae: 0.4342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2767 | 1.0 | 1245 | 0.2745 | 0.5239 | 0.2745 | 0.4140 | | 0.2741 | 2.0 | 2490 | 0.2760 | 0.5254 | 0.2760 | 0.4222 | | 0.2729 | 3.0 | 3735 | 0.2795 | 0.5287 | 0.2795 | 0.4342 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
RohanK447/swin-tiny-patch4-window7-224-finetuned-eurosat
RohanK447
2022-08-27T21:27:21Z
66
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-27T21:03:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9748148148148148 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0741 - Accuracy: 0.9748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2868 | 1.0 | 190 | 0.1234 | 0.9574 | | 0.1519 | 2.0 | 380 | 0.0741 | 0.9748 | | 0.1211 | 3.0 | 570 | 0.0724 | 0.9744 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Bahushruth/distilbert-base-uncased-distilled-clinc
Bahushruth
2022-08-27T21:15:24Z
107
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T20:55:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos model-index: - name: distilbert-base-uncased-distilled-clinc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
paola-md/recipe-lr2e05-wd0.1-bs16
paola-md
2022-08-27T20:01:59Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T19:44:53Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr2e05-wd0.1-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr2e05-wd0.1-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2783 - Rmse: 0.5275 - Mse: 0.2783 - Mae: 0.4319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2771 | 1.0 | 1245 | 0.2744 | 0.5238 | 0.2744 | 0.4105 | | 0.2738 | 2.0 | 2490 | 0.2819 | 0.5309 | 0.2819 | 0.4298 | | 0.2724 | 3.0 | 3735 | 0.2783 | 0.5275 | 0.2783 | 0.4319 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr2e05-wd0.005-bs16
paola-md
2022-08-27T19:44:18Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T19:27:13Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr2e05-wd0.005-bs16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr2e05-wd0.005-bs16 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2780 - Rmse: 0.5272 - Mse: 0.2780 - Mae: 0.4314 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.277 | 1.0 | 1245 | 0.2743 | 0.5237 | 0.2743 | 0.4112 | | 0.2738 | 2.0 | 2490 | 0.2811 | 0.5302 | 0.2811 | 0.4288 | | 0.2724 | 3.0 | 3735 | 0.2780 | 0.5272 | 0.2780 | 0.4314 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
theojolliffe/T5-model-1-feedback
theojolliffe
2022-08-27T19:25:07Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-26T21:31:43Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: T5-model-1-feedback results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-model-1-feedback This model is a fine-tuned version of [theojolliffe/T5-model-1-d-4](https://huggingface.co/theojolliffe/T5-model-1-d-4) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 130 | 0.4120 | 61.7277 | 46.2681 | 61.1325 | 61.2797 | 13.2632 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0 - Datasets 1.18.0 - Tokenizers 0.10.3
BigSalmon/Infill2
BigSalmon
2022-08-27T19:24:38Z
163
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-27T19:08:51Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/Infill2") model = AutoModelForCausalLM.from_pretrained("BigSalmon/Infill2") ``` ``` Demo: https://huggingface.co/spaces/BigSalmon/FormalInformalConciseWordy ``` ``` prompt = """few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep]""" input_ids = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(input_ids=input_ids, max_length=10 + len(prompt), temperature=1.0, top_k=50, top_p=0.95, do_sample=True, num_return_sequences=5, early_stopping=True) for i in range(5): print(tokenizer.decode(outputs[i])) ``` Most likely outputs (Disclaimer: I highly recommend using this over just generating): ``` prompt = """few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep]""" text = tokenizer.encode(prompt) myinput, past_key_values = torch.tensor([text]), None myinput = myinput myinput= myinput.to(device) logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False) logits = logits[0,-1] probabilities = torch.nn.functional.softmax(logits) best_logits, best_indices = logits.topk(250) best_words = [tokenizer.decode([idx.item()]) for idx in best_indices] text.append(best_indices[0].item()) best_probabilities = probabilities[best_indices].tolist() words = [] print(best_words) ``` Infill / Infilling / Masking / Phrase Masking ``` his contention [blank] by the evidence [sep] was refuted [answer] *** few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep] synonymous with [answer] *** when rick won the lottery, all of his distant relatives [blank] his winnings [sep] clamored for [answer] *** the library’s quiet atmosphere encourages visitors to [blank] in their work [sep] immerse themselves [answer] *** ``` ``` original: Other film stars to have appeared in Scrubs include Heather Graham, while Friends actor Matthew Perry has guest-starred and directed an episode of the [MASK] star, who recently played the title role in historical blockbuster Alexander, will make a cameo appearance as an unruly Irishman. Its leading star, Zach Braff, has recently [MASK] the big screen in Garden State, which he also directed. Farrell is pencilled in to [MASK] of Crockett in a film version of 1980s police [MASK] Farrell's appearance is said to be a result of his friendship with Zach Braff, who stars in the programme. infill: Other film stars to have appeared in Scrubs include Heather Graham, while Friends actor Matthew Perry has guest-starred and directed an episode of the show. The film star, who recently played the title role in historical blockbuster Alexander, will make a cameo appearance as an unruly Irishman. Its leading star, Zach Braff, has recently been seen on the big screen in Garden State, which he also directed. Farrell is pencilled in to play the role of Crockett in a film version of 1980s police drama Miami Vice. Farrell's appearance is said to be a result of his friendship with Zach Braff, who stars in the programme. ```
Bahushruth/distilbert-base-uncased-finetuned-clinc
Bahushruth
2022-08-27T19:19:43Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T18:37:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9174193548387096 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7711 - Accuracy: 0.9174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2892 | 1.0 | 318 | 3.2830 | 0.7426 | | 2.627 | 2.0 | 636 | 1.8728 | 0.8410 | | 1.5429 | 3.0 | 954 | 1.1555 | 0.8913 | | 1.0089 | 4.0 | 1272 | 0.8530 | 0.9126 | | 0.7939 | 5.0 | 1590 | 0.7711 | 0.9174 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
ChaoLi/nlp_for_transformer_book_distilbert-base-uncased-finetuned-emotion
ChaoLi
2022-08-27T19:17:37Z
103
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T19:01:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: nlp_for_transformer_book_distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9242101664142519 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nlp_for_transformer_book_distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2189 - Accuracy: 0.9245 - F1: 0.9242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8191 | 1.0 | 250 | 0.3159 | 0.9065 | 0.9046 | | 0.2411 | 2.0 | 500 | 0.2189 | 0.9245 | 0.9242 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
curt-tigges/ppo-LunarLander-v2
curt-tigges
2022-08-27T19:12:38Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-27T19:12:10Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 252.72 +/- 21.52 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
paola-md/recipe-gauss-wo-outliers
paola-md
2022-08-27T17:24:48Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-27T16:33:27Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-gauss-wo-outliers results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-gauss-wo-outliers This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2885 - Rmse: 0.5371 - Mse: 0.2885 - Mae: 0.4213 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:| | 0.2768 | 1.0 | 1245 | 0.2747 | 0.5241 | 0.2747 | 0.4081 | | 0.2737 | 2.0 | 2490 | 0.2793 | 0.5285 | 0.2793 | 0.4288 | | 0.2722 | 3.0 | 3735 | 0.2792 | 0.5284 | 0.2792 | 0.4332 | | 0.2703 | 4.0 | 4980 | 0.2770 | 0.5263 | 0.2770 | 0.4000 | | 0.2682 | 5.0 | 6225 | 0.2758 | 0.5252 | 0.2758 | 0.4183 | | 0.2658 | 6.0 | 7470 | 0.2792 | 0.5284 | 0.2792 | 0.4212 | | 0.2631 | 7.0 | 8715 | 0.2769 | 0.5262 | 0.2769 | 0.4114 | | 0.2599 | 8.0 | 9960 | 0.2802 | 0.5294 | 0.2802 | 0.4107 | | 0.2572 | 9.0 | 11205 | 0.2885 | 0.5371 | 0.2885 | 0.4213 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
wannaphong/khanomtan-tts-v1.1
wannaphong
2022-08-27T16:41:51Z
10
3
transformers
[ "transformers", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-08-26T15:17:07Z
--- license: apache-2.0 --- # KhanomTan TTS v1.1 KhanomTan TTS (ขนมตาล) is an open-source Thai text-to-speech model that supports multilingual speakers such as Thai, English, and others. KhanomTan TTS v1.1 is a YourTTS model trained on multilingual languages that supports Thai. We use Thai speech corpora, TSync 1* and TSync 2* [mbarnig/lb-de-fr-en-pt-12800-TTS-CORPUS](https://huggingface.co/datasets/mbarnig/lb-de-fr-en-pt-12800-TTS-CORPUS) to train the YourTTS model by using code from the 🐸 Coqui-TTS and remove the voice that have the license's problem (All voice that doesn't use CC-0 or public license) from model, so the model's license is apache-2.0. ## Speakers - Linda (English, female, [LJSpeech](https://keithito.com/LJ-Speech-Dataset/)) - Bernard (fr-fr, male, [m-ailabs](https://www.caito.de/2019/01/03/the-m-ailabs-speech-dataset/)) - Kerstin (x-de, female, [Rhasspy](https://github.com/rhasspy/dataset-voice-kerstin)) - Thorsten (x-de, male, [Thorsten](https://www.thorsten-voice.de/)) ## Language - th-th: Thai - en: English - fr-fr: French language - pt-br: Portuguese - x-de: Danish - x-lb: Luxembourgish *Note: Those are not complete corpus. We can access the public corpus only.
espnet/americasnlp22-asr-bzd
espnet
2022-08-27T16:17:43Z
3
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "bzd", "dataset:americasnlp22", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-06-06T19:06:19Z
--- tags: - espnet - audio - automatic-speech-recognition language: bzd datasets: - americasnlp22 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/americasnlp22-asr-bzd` This model was trained by Pavel Denisov using americasnlp22 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 66ca5df9f08b6084dbde4d9f312fa8ba0a47ecfc pip install -e . cd egs2/americasnlp22/asr1 ./run.sh \ --skip_data_prep false \ --skip_train true \ --download_model espnet/americasnlp22-asr-bzd \ --lang bzd \ --local_data_opts "--lang bzd" \ --train_set train_bzd \ --valid_set dev_bzd \ --test_sets dev_bzd \ --gpu_inference false \ --inference_nj 8 \ --lm_train_text data/train_bzd/text \ --bpe_train_text data/train_bzd/text ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sun Jun 5 01:31:26 CEST 2022` - python version: `3.9.13 (main, May 18 2022, 00:00:00) [GCC 11.3.1 20220421 (Red Hat 11.3.1-2)]` - espnet version: `espnet 202204` - pytorch version: `pytorch 1.11.0+cu115` - Git hash: `d55704daa36d3dd2ca24ae3162ac40d81957208c` - Commit date: `Wed Jun 1 02:33:09 2022 +0200` ## asr_train_asr_transformer_raw_bzd_bpe100_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_bzd|250|2056|15.3|65.1|19.6|7.5|92.3|100.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_bzd|250|10083|64.0|15.1|20.9|9.2|45.2|100.0| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_bzd|250|7203|52.4|27.9|19.7|7.4|55.1|100.0| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_transformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_raw_bzd_bpe100_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - cer_ctc - min keep_nbest_models: 1 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream.model.feature_extractor - frontend.upstream.model.encoder.layers.0 - frontend.upstream.model.encoder.layers.1 - frontend.upstream.model.encoder.layers.2 - frontend.upstream.model.encoder.layers.3 - frontend.upstream.model.encoder.layers.4 - frontend.upstream.model.encoder.layers.5 - frontend.upstream.model.encoder.layers.6 - frontend.upstream.model.encoder.layers.7 - frontend.upstream.model.encoder.layers.8 - frontend.upstream.model.encoder.layers.9 - frontend.upstream.model.encoder.layers.10 - frontend.upstream.model.encoder.layers.11 - frontend.upstream.model.encoder.layers.12 - frontend.upstream.model.encoder.layers.13 - frontend.upstream.model.encoder.layers.14 - frontend.upstream.model.encoder.layers.15 - frontend.upstream.model.encoder.layers.16 - frontend.upstream.model.encoder.layers.17 - frontend.upstream.model.encoder.layers.18 - frontend.upstream.model.encoder.layers.19 - frontend.upstream.model.encoder.layers.20 - frontend.upstream.model.encoder.layers.21 num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 200000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_bzd_bpe100_sp/train/speech_shape - exp/asr_stats_raw_bzd_bpe100_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_bzd_bpe100_sp/valid/speech_shape - exp/asr_stats_raw_bzd_bpe100_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_bzd_sp/wav.scp - speech - sound - - dump/raw/train_bzd_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_bzd/wav.scp - speech - sound - - dump/raw/dev_bzd/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adamw optim_conf: lr: 0.0001 scheduler: warmuplr scheduler_conf: warmup_steps: 300 token_list: - <blank> - <unk> - ̠ - '''' - ▁e - ▁ - e - a - r - k - ö - i - l - ̀ - t - s - ▁i - ▁a - è - á - u - ▁y - ▁ta - é - w - à - m - ▁d - ́ - ë - ▁k - ▁s - ke - ▁se - o - ì - ▁b - ▁sa - n - ▁ts - í - ▁ie - ▁m - b - la - ▁tö - ▁ka - ▁kë - ▁ku - kö - ▁ki - na - ▁é - ka - ta - ▁dör - ▁wö - ne - ▁wa - ú - ki - ù - pa - ▁ma - ▁ñ - ▁ch - j - ñ - ▁í - ▁kiè - ▁ì - ▁wé - ▁ë - ch - î - ▁u - ▁bu - ▁sö - ▁p - p - ▁wè - 'no' - ê - ▁ajk - ▁irir - â - ̂ - y - ó - ò - d - c - û - ô - v - z - q - g - h - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null use_preprocessor: true token_type: bpe bpemodel: data/bzd_token_list/bpe_unigram100/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: wav2vec2_url upstream_ckpt: https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr2_300m.pt download_dir: ./hub multilayer_feature: true fs: 16k specaug: null specaug_conf: {} normalize: utterance_mvn normalize_conf: {} model: espnet model_conf: ctc_weight: 1.0 lsm_weight: 0.0 length_normalized_loss: false extract_feats_in_collect_stats: false preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: transformer encoder_conf: input_layer: conv2d2 num_blocks: 1 linear_units: 2048 dropout_rate: 0.2 output_size: 256 attention_heads: 8 attention_dropout_rate: 0.2 postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: {} required: - output_dir - token_list version: '202204' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/americasnlp22-asr-gvc
espnet
2022-08-27T16:15:08Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "gvc", "dataset:americasnlp22", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-06-06T19:07:35Z
--- tags: - espnet - audio - automatic-speech-recognition language: gvc datasets: - americasnlp22 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/americasnlp22-asr-gvc` This model was trained by Pavel Denisov using americasnlp22 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 66ca5df9f08b6084dbde4d9f312fa8ba0a47ecfc pip install -e . cd egs2/americasnlp22/asr1 ./run.sh \ --skip_data_prep false \ --skip_train true \ --download_model espnet/americasnlp22-asr-gvc \ --lang gvc \ --local_data_opts "--lang gvc" \ --train_set train_gvc \ --valid_set dev_gvc \ --test_sets dev_gvc \ --gpu_inference false \ --inference_nj 8 \ --lm_train_text data/train_gvc/text \ --bpe_train_text data/train_gvc/text ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sun Jun 5 03:29:33 CEST 2022` - python version: `3.9.13 (main, May 18 2022, 00:00:00) [GCC 11.3.1 20220421 (Red Hat 11.3.1-2)]` - espnet version: `espnet 202204` - pytorch version: `pytorch 1.11.0+cu115` - Git hash: `d55704daa36d3dd2ca24ae3162ac40d81957208c` - Commit date: `Wed Jun 1 02:33:09 2022 +0200` ## asr_train_asr_transformer_raw_gvc_bpe100_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_gvc|253|2206|12.4|72.4|15.1|6.7|94.2|99.6| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_gvc|253|13453|64.7|15.5|19.9|10.2|45.6|99.6| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_gvc|253|10229|58.3|22.3|19.4|11.0|52.7|99.6| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_transformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_raw_gvc_bpe100_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - cer_ctc - min keep_nbest_models: 1 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream.model.feature_extractor - frontend.upstream.model.encoder.layers.0 - frontend.upstream.model.encoder.layers.1 - frontend.upstream.model.encoder.layers.2 - frontend.upstream.model.encoder.layers.3 - frontend.upstream.model.encoder.layers.4 - frontend.upstream.model.encoder.layers.5 - frontend.upstream.model.encoder.layers.6 - frontend.upstream.model.encoder.layers.7 - frontend.upstream.model.encoder.layers.8 - frontend.upstream.model.encoder.layers.9 - frontend.upstream.model.encoder.layers.10 - frontend.upstream.model.encoder.layers.11 - frontend.upstream.model.encoder.layers.12 - frontend.upstream.model.encoder.layers.13 - frontend.upstream.model.encoder.layers.14 - frontend.upstream.model.encoder.layers.15 - frontend.upstream.model.encoder.layers.16 - frontend.upstream.model.encoder.layers.17 - frontend.upstream.model.encoder.layers.18 - frontend.upstream.model.encoder.layers.19 - frontend.upstream.model.encoder.layers.20 - frontend.upstream.model.encoder.layers.21 num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 200000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_gvc_bpe100_sp/train/speech_shape - exp/asr_stats_raw_gvc_bpe100_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_gvc_bpe100_sp/valid/speech_shape - exp/asr_stats_raw_gvc_bpe100_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_gvc_sp/wav.scp - speech - sound - - dump/raw/train_gvc_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_gvc/wav.scp - speech - sound - - dump/raw/dev_gvc/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adamw optim_conf: lr: 0.0001 scheduler: warmuplr scheduler_conf: warmup_steps: 300 token_list: - <blank> - <unk> - ▁ - a - '''' - u - i - o - h - U - . - ro - re - ri - ka - s - na - p - e - ▁ti - t - ':' - d - ha - 'no' - ▁hi - m - ▁ni - '~' - ã - ta - ▁wa - ti - ',' - ▁to - b - n - ▁kh - ma - r - se - w - l - k - '"' - ñ - õ - g - ( - ) - v - f - '?' - A - K - z - é - T - '!' - D - ó - N - á - R - P - ú - '0' - í - I - '1' - L - '-' - '8' - E - S - Ã - F - '9' - '6' - G - C - x - '3' - '2' - B - W - J - H - Y - M - j - ç - q - c - Ñ - '4' - '7' - O - y - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null use_preprocessor: true token_type: bpe bpemodel: data/gvc_token_list/bpe_unigram100/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: wav2vec2_url upstream_ckpt: https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr2_300m.pt download_dir: ./hub multilayer_feature: true fs: 16k specaug: null specaug_conf: {} normalize: utterance_mvn normalize_conf: {} model: espnet model_conf: ctc_weight: 1.0 lsm_weight: 0.0 length_normalized_loss: false extract_feats_in_collect_stats: false preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: transformer encoder_conf: input_layer: conv2d2 num_blocks: 1 linear_units: 2048 dropout_rate: 0.2 output_size: 256 attention_heads: 8 attention_dropout_rate: 0.2 postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: {} required: - output_dir - token_list version: '202204' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/americasnlp22-asr-tav
espnet
2022-08-27T16:12:23Z
4
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "tav", "dataset:americasnlp22", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-06-06T19:08:34Z
--- tags: - espnet - audio - automatic-speech-recognition language: tav datasets: - americasnlp22 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/americasnlp22-asr-tav` This model was trained by Pavel Denisov using americasnlp22 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 66ca5df9f08b6084dbde4d9f312fa8ba0a47ecfc pip install -e . cd egs2/americasnlp22/asr1 ./run.sh \ --skip_data_prep false \ --skip_train true \ --download_model espnet/americasnlp22-asr-tav \ --lang tav \ --local_data_opts "--lang tav" \ --train_set train_tav \ --valid_set dev_tav \ --test_sets dev_tav \ --gpu_inference false \ --inference_nj 8 \ --lm_train_text data/train_tav/text \ --bpe_train_text data/train_tav/text ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sun Jun 5 02:36:59 CEST 2022` - python version: `3.9.13 (main, May 18 2022, 00:00:00) [GCC 11.3.1 20220421 (Red Hat 11.3.1-2)]` - espnet version: `espnet 202204` - pytorch version: `pytorch 1.11.0+cu115` - Git hash: `d55704daa36d3dd2ca24ae3162ac40d81957208c` - Commit date: `Wed Jun 1 02:33:09 2022 +0200` ## asr_train_asr_transformer_raw_tav_bpe100_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_tav|250|1201|3.0|83.1|13.9|17.0|114.0|99.6| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_tav|250|8606|57.5|19.9|22.7|12.0|54.5|99.6| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_tav|250|6741|49.2|28.5|22.3|12.6|63.4|99.6| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_transformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_raw_tav_bpe100_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - cer_ctc - min keep_nbest_models: 1 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream.model.feature_extractor - frontend.upstream.model.encoder.layers.0 - frontend.upstream.model.encoder.layers.1 - frontend.upstream.model.encoder.layers.2 - frontend.upstream.model.encoder.layers.3 - frontend.upstream.model.encoder.layers.4 - frontend.upstream.model.encoder.layers.5 - frontend.upstream.model.encoder.layers.6 - frontend.upstream.model.encoder.layers.7 - frontend.upstream.model.encoder.layers.8 - frontend.upstream.model.encoder.layers.9 - frontend.upstream.model.encoder.layers.10 - frontend.upstream.model.encoder.layers.11 - frontend.upstream.model.encoder.layers.12 - frontend.upstream.model.encoder.layers.13 - frontend.upstream.model.encoder.layers.14 - frontend.upstream.model.encoder.layers.15 - frontend.upstream.model.encoder.layers.16 - frontend.upstream.model.encoder.layers.17 - frontend.upstream.model.encoder.layers.18 - frontend.upstream.model.encoder.layers.19 - frontend.upstream.model.encoder.layers.20 - frontend.upstream.model.encoder.layers.21 num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 200000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_tav_bpe100_sp/train/speech_shape - exp/asr_stats_raw_tav_bpe100_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_tav_bpe100_sp/valid/speech_shape - exp/asr_stats_raw_tav_bpe100_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_tav_sp/wav.scp - speech - sound - - dump/raw/train_tav_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_tav/wav.scp - speech - sound - - dump/raw/dev_tav/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adamw optim_conf: lr: 0.0001 scheduler: warmuplr scheduler_conf: warmup_steps: 300 token_list: - <blank> - <unk> - ▁ - a - '''' - i - h - o - e - u - U - do - ':' - li - na - sa - ▁ti - n - k - ',' - '~' - p - ye - le - ka - ta - pe - ▁ni - ti - ▁ihi - ▁ma - ▁~ - 'no' - ya - s - ▁wa - aye - t - . - y - m - g - d - r - ã - '"' - õ - ( - ) - l - '!' - c - '0' - I - '[' - ']' - '2' - '-' - ç - M - '6' - f - A - D - '?' - J - j - Y - z - Õ - K - '`' - Ã - O - N - F - C - '1' - S - P - L - T - G - v - ñ - b - H - E - '3' - '4' - '5' - '7' - B - W - é - ó - ́ - w - í - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null use_preprocessor: true token_type: bpe bpemodel: data/tav_token_list/bpe_unigram100/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: wav2vec2_url upstream_ckpt: https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr2_300m.pt download_dir: ./hub multilayer_feature: true fs: 16k specaug: null specaug_conf: {} normalize: utterance_mvn normalize_conf: {} model: espnet model_conf: ctc_weight: 1.0 lsm_weight: 0.0 length_normalized_loss: false extract_feats_in_collect_stats: false preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: transformer encoder_conf: input_layer: conv2d2 num_blocks: 1 linear_units: 2048 dropout_rate: 0.2 output_size: 256 attention_heads: 8 attention_dropout_rate: 0.2 postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: {} required: - output_dir - token_list version: '202204' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
espnet/americasnlp22-asr-gn
espnet
2022-08-27T16:09:50Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "gn", "dataset:americasnlp22", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-06-13T17:11:45Z
--- tags: - espnet - audio - automatic-speech-recognition language: gn datasets: - americasnlp22 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/americasnlp22-asr-gn` This model was trained by Pavel Denisov using americasnlp22 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout fc62b1ce3e50c5ef8a2ac8cedb0d92ac41df54ca pip install -e . cd egs2/americasnlp22/asr1 ./run.sh \ --skip_data_prep false \ --skip_train true \ --download_model espnet/americasnlp22-asr-gn \ --lang gn \ --local_data_opts "--lang gn" \ --train_set train_gn \ --valid_set dev_gn \ --test_sets dev_gn \ --gpu_inference false \ --inference_nj 8 \ --lm_train_text data/train_gn/text \ --bpe_train_text data/train_gn/text ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sun Jun 5 12:17:58 CEST 2022` - python version: `3.9.13 (main, May 18 2022, 00:00:00) [GCC 11.3.1 20220421 (Red Hat 11.3.1-2)]` - espnet version: `espnet 202204` - pytorch version: `pytorch 1.11.0+cu115` - Git hash: `d55704daa36d3dd2ca24ae3162ac40d81957208c` - Commit date: `Wed Jun 1 02:33:09 2022 +0200` ## asr_train_asr_transformer_raw_gn_bpe100_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_gn|93|391|11.5|73.7|14.8|12.5|101.0|100.0| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_gn|93|2946|83.4|7.9|8.7|8.7|25.3|100.0| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_asr_model_valid.cer_ctc.best/dev_gn|93|2439|76.6|13.5|9.9|8.7|32.1|100.0| ## ASR config <details><summary>expand</summary> ``` config: conf/train_asr_transformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_transformer_raw_gn_bpe100_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - cer_ctc - min keep_nbest_models: 1 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream.model.feature_extractor - frontend.upstream.model.encoder.layers.0 - frontend.upstream.model.encoder.layers.1 - frontend.upstream.model.encoder.layers.2 - frontend.upstream.model.encoder.layers.3 - frontend.upstream.model.encoder.layers.4 - frontend.upstream.model.encoder.layers.5 - frontend.upstream.model.encoder.layers.6 - frontend.upstream.model.encoder.layers.7 - frontend.upstream.model.encoder.layers.8 - frontend.upstream.model.encoder.layers.9 - frontend.upstream.model.encoder.layers.10 - frontend.upstream.model.encoder.layers.11 - frontend.upstream.model.encoder.layers.12 - frontend.upstream.model.encoder.layers.13 - frontend.upstream.model.encoder.layers.14 - frontend.upstream.model.encoder.layers.15 - frontend.upstream.model.encoder.layers.16 - frontend.upstream.model.encoder.layers.17 - frontend.upstream.model.encoder.layers.18 - frontend.upstream.model.encoder.layers.19 - frontend.upstream.model.encoder.layers.20 - frontend.upstream.model.encoder.layers.21 num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 200000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_gn_bpe100_sp/train/speech_shape - exp/asr_stats_raw_gn_bpe100_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_gn_bpe100_sp/valid/speech_shape - exp/asr_stats_raw_gn_bpe100_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_gn_sp/wav.scp - speech - sound - - dump/raw/train_gn_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev_gn/wav.scp - speech - sound - - dump/raw/dev_gn/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adamw optim_conf: lr: 0.0001 scheduler: warmuplr scheduler_conf: warmup_steps: 300 token_list: - <blank> - <unk> - ▁ - a - i - e - o - '''' - . - u - '"' - p - r - n - y - h - ▁" - ▁o - é - re - va - pe - s - ra - á - he - t - mb - g - ka - ã - v - ve - je - ▁ha - te - k - ñ - ha - py - ta - ku - ẽ - ja - pa - O - mi - ó - mo - j - ko - ʼ - ña - me - ma - c - M - í - H - ú - A - ̃ - õ - ý - m - P - U - ',' - ũ - l - ỹ - N - ĩ - E - I - J - L - Á - V - S - z - '-' - '?' - Ñ - R - G - Y - T - K - C - d - “ - B - ’ - ” - D - b - f - q - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: null use_preprocessor: true token_type: bpe bpemodel: data/gn_token_list/bpe_unigram100/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: s3prl frontend_conf: frontend_conf: upstream: wav2vec2_url upstream_ckpt: https://dl.fbaipublicfiles.com/fairseq/wav2vec/xlsr2_300m.pt download_dir: ./hub multilayer_feature: true fs: 16k specaug: null specaug_conf: {} normalize: utterance_mvn normalize_conf: {} model: espnet model_conf: ctc_weight: 1.0 lsm_weight: 0.0 length_normalized_loss: false extract_feats_in_collect_stats: false preencoder: linear preencoder_conf: input_size: 1024 output_size: 80 encoder: transformer encoder_conf: input_layer: conv2d2 num_blocks: 1 linear_units: 2048 dropout_rate: 0.2 output_size: 256 attention_heads: 8 attention_dropout_rate: 0.2 postencoder: null postencoder_conf: {} decoder: rnn decoder_conf: {} required: - output_dir - token_list version: '202204' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
danieladejumo/Reinforce-Pixelcopter-PLE-v0
danieladejumo
2022-08-27T16:05:55Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-27T16:05:49Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 9.30 +/- 8.66 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
huggingtweets/tojibaceo-tojibawhiteroom
huggingtweets
2022-08-27T15:47:39Z
107
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-26T15:54:01Z
--- language: en thumbnail: http://www.huggingtweets.com/tojibaceo-tojibawhiteroom/1661615254424/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1508824472924659725/267f4Lkm_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1509337156787003394/WjOdf_-m_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tojiba CPU Corp BUDDIES MINTING NOW (🏭,🏭) & Tojiba White Room (T__T).1</div> <div style="text-align: center; font-size: 14px;">@tojibaceo-tojibawhiteroom</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tojiba CPU Corp BUDDIES MINTING NOW (🏭,🏭) & Tojiba White Room (T__T).1. | Data | Tojiba CPU Corp BUDDIES MINTING NOW (🏭,🏭) | Tojiba White Room (T__T).1 | | --- | --- | --- | | Tweets downloaded | 1613 | 704 | | Retweets | 774 | 0 | | Short tweets | 279 | 82 | | Tweets kept | 560 | 622 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1kju2ojf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tojibaceo-tojibawhiteroom's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15twdubf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15twdubf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tojibaceo-tojibawhiteroom') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
brightink/Stable_Diffusion_Demo
brightink
2022-08-27T14:51:44Z
0
0
null
[ "license:afl-3.0", "region:us" ]
null
2022-08-27T14:49:16Z
--- title: Stable Diffusion emoji: 🏃 colorFrom: red colorTo: red sdk: gradio sdk_version: 3.1.7 app_file: app.py pinned: false license: afl-3.0 --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
theojolliffe/T5-model-1-d-4
theojolliffe
2022-08-27T14:20:07Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-26T21:54:25Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: T5-model-1-d-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-model-1-d-4 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0456 - Rouge1: 93.3486 - Rouge2: 82.1873 - Rougel: 92.8611 - Rougelsum: 92.7768 - Gen Len: 14.9953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.0873 | 1.0 | 8043 | 0.0456 | 93.3486 | 82.1873 | 92.8611 | 92.7768 | 14.9953 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Tokenizers 0.12.1
Dallasmorningstar/Hb
Dallasmorningstar
2022-08-27T14:11:54Z
0
0
null
[ "region:us" ]
null
2022-07-29T08:51:13Z
git lfs install git clone https://huggingface.co/Dallasmorningstar/Hb
huggingtweets/nickjr-paramountplus-sesamestreet
huggingtweets
2022-08-27T14:08:32Z
107
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-27T14:08:26Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1326222819248791552/u6HtLEIV_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1478805340212838413/YAJM_fei_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1508543786737090570/k9hp_5-2_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sesame Street & Nick Jr. & Paramount+</div> <div style="text-align: center; font-size: 14px;">@nickjr-paramountplus-sesamestreet</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Sesame Street & Nick Jr. & Paramount+. | Data | Sesame Street | Nick Jr. | Paramount+ | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3250 | 3250 | | Retweets | 746 | 51 | 60 | | Short tweets | 41 | 754 | 40 | | Tweets kept | 2463 | 2445 | 3150 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3lbv4k51/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nickjr-paramountplus-sesamestreet's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/339dkoxu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/339dkoxu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nickjr-paramountplus-sesamestreet') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nrazavi/xlm-roberta-base-finetuned-panx-en
nrazavi
2022-08-27T14:01:26Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-27T13:50:42Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.en split: train args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6833890746934226 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4085 - F1: 0.6834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1943 | 1.0 | 50 | 0.6081 | 0.5020 | | 0.5325 | 2.0 | 100 | 0.4455 | 0.6193 | | 0.3915 | 3.0 | 150 | 0.4085 | 0.6834 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
nrazavi/xlm-roberta-base-finetuned-panx-it
nrazavi
2022-08-27T13:50:27Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-27T13:39:29Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.it split: train args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8094848732624693 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2619 - F1: 0.8095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7908 | 1.0 | 70 | 0.3093 | 0.7437 | | 0.2824 | 2.0 | 140 | 0.2580 | 0.8015 | | 0.1834 | 3.0 | 210 | 0.2619 | 0.8095 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
nrazavi/xlm-roberta-base-finetuned-panx-fr
nrazavi
2022-08-27T13:39:10Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-27T13:27:06Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.fr split: train args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8367792906370819 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2772 - F1: 0.8368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.581 | 1.0 | 191 | 0.3798 | 0.7573 | | 0.2625 | 2.0 | 382 | 0.2806 | 0.8260 | | 0.1748 | 3.0 | 573 | 0.2772 | 0.8368 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
chum76/chiron0076
chum76
2022-08-27T12:27:38Z
0
0
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2022-08-27T12:27:38Z
--- license: cc-by-nc-sa-4.0 ---
akkasayaz/q-FrozenLake-v1-4x4-noSlippery
akkasayaz
2022-08-27T12:22:50Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-27T12:22:44Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="akkasayaz/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Shamus/mBART_skr-en_longerrun
Shamus
2022-08-27T11:28:03Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-27T07:38:38Z
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: mBART_skr-en_longerrun results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mBART_skr-en_longerrun This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4577 - Bleu: 30.8071 - Gen Len: 34.548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.5444 | 0.72 | 500 | 1.3416 | 28.7505 | 34.228 | | 0.8576 | 1.45 | 1000 | 1.3411 | 30.1776 | 34.328 | | 0.6422 | 2.18 | 1500 | 1.3882 | 30.2815 | 34.164 | | 0.532 | 2.9 | 2000 | 1.3716 | 30.8947 | 34.556 | | 0.4473 | 3.63 | 2500 | 1.4577 | 30.8071 | 34.548 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
silviacamplani/distilbert-finetuned-dapt_tapt-ner-ai
silviacamplani
2022-08-27T11:12:23Z
65
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-27T11:09:10Z
--- tags: - generated_from_keras_callback model-index: - name: silviacamplani/distilbert-finetuned-dapt_tapt-ner-ai results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # silviacamplani/distilbert-finetuned-dapt_tapt-ner-ai This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.8595 - Validation Loss: 0.8604 - Train Precision: 0.3378 - Train Recall: 0.3833 - Train F1: 0.3591 - Train Accuracy: 0.7860 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 350, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 2.5333 | 1.7392 | 0.0 | 0.0 | 0.0 | 0.6480 | 0 | | 1.5890 | 1.4135 | 0.0 | 0.0 | 0.0 | 0.6480 | 1 | | 1.3635 | 1.2627 | 0.0 | 0.0 | 0.0 | 0.6483 | 2 | | 1.2366 | 1.1526 | 0.1538 | 0.0920 | 0.1151 | 0.6921 | 3 | | 1.1296 | 1.0519 | 0.2147 | 0.2147 | 0.2147 | 0.7321 | 4 | | 1.0374 | 0.9753 | 0.2743 | 0.2981 | 0.2857 | 0.7621 | 5 | | 0.9639 | 0.9202 | 0.3023 | 0.3373 | 0.3188 | 0.7693 | 6 | | 0.9097 | 0.8829 | 0.3215 | 0.3714 | 0.3447 | 0.7795 | 7 | | 0.8756 | 0.8635 | 0.3280 | 0.3850 | 0.3542 | 0.7841 | 8 | | 0.8595 | 0.8604 | 0.3378 | 0.3833 | 0.3591 | 0.7860 | 9 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
Shamus/mbart-large-50-many-to-many-mmt-finetuned-acw-to-en
Shamus
2022-08-27T07:46:17Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-23T02:45:09Z
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: mbart-large-50-many-to-many-mmt-finetuned-acw-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-50-many-to-many-mmt-finetuned-ar-to-en This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5204 - Bleu: 34.8213 - Gen Len: 33.544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 1.4657 | 1.0 | 816 | 1.1739 | 30.1212 | 32.868 | | 0.8541 | 2.0 | 1632 | 1.1190 | 33.0098 | 32.808 | | 0.6176 | 3.0 | 2448 | 1.1681 | 33.3634 | 32.756 | | 0.3397 | 4.0 | 3264 | 1.3327 | 33.2941 | 33.6 | | 0.2227 | 5.0 | 4080 | 1.4211 | 33.9298 | 33.128 | | 0.1597 | 6.0 | 4896 | 1.5157 | 34.7405 | 33.496 | | 0.1426 | 6.13 | 5000 | 1.5204 | 34.8213 | 33.544 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Shamus/mbart-large-50-many-to-many-mmt-finetuned-skr-en_2.8k
Shamus
2022-08-27T07:22:46Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T03:12:18Z
--- tags: - generated_from_trainer metrics: - bleu model-index: - name: mbart-large-50-many-to-many-mmt-finetuned-skr-en_2.8k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-50-many-to-many-mmt-finetuned-ar_AR-to-en_XX This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2315 - Bleu: 28.2149 - Gen Len: 35.188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 1.3194 | 1.0 | 2759 | 1.2315 | 28.2149 | 35.188 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
pinot/wav2vec2-large-xls-r-300m-ja-colab-3
pinot
2022-08-27T06:14:51Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_10_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-26T23:39:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_10_0 model-index: - name: wav2vec2-large-xls-r-300m-ja-colab-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ja-colab-3 This model is a fine-tuned version of [pinot/wav2vec2-large-xls-r-300m-ja-colab-2](https://huggingface.co/pinot/wav2vec2-large-xls-r-300m-ja-colab-2) on the common_voice_10_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.2696 - Wer: 0.2299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 637 | 1.4666 | 0.2862 | | No log | 2.0 | 1274 | 1.4405 | 0.2866 | | No log | 3.0 | 1911 | 1.4162 | 0.2762 | | No log | 4.0 | 2548 | 1.4128 | 0.2709 | | 0.2814 | 5.0 | 3185 | 1.3927 | 0.2613 | | 0.2814 | 6.0 | 3822 | 1.3629 | 0.2536 | | 0.2814 | 7.0 | 4459 | 1.3349 | 0.2429 | | 0.2814 | 8.0 | 5096 | 1.3116 | 0.2356 | | 0.1624 | 9.0 | 5733 | 1.2774 | 0.2307 | | 0.1624 | 10.0 | 6370 | 1.2696 | 0.2299 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.10.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
bnsh/ddpm-butterflies-128
bnsh
2022-08-27T05:56:30Z
5
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-27T04:43:24Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/bnsh/ddpm-butterflies-128/tensorboard?#scalars)
rajistics/layoutlmv2-finetuned-cord
rajistics
2022-08-27T04:45:12Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-27T03:25:11Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: layoutlmv2-finetuned-cord results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-cord This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.2 - Pytorch 1.10.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
JNK789/distilbert-base-uncased-finetuned-emotion
JNK789
2022-08-27T03:55:45Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-31T18:53:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9305 - name: F1 type: f1 value: 0.9307950942842982 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1712 - Accuracy: 0.9305 - F1: 0.9308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7721 | 1.0 | 250 | 0.2778 | 0.9145 | 0.9131 | | 0.2103 | 2.0 | 500 | 0.1818 | 0.925 | 0.9249 | | 0.1446 | 3.0 | 750 | 0.1712 | 0.9305 | 0.9308 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
mindofmadness/faces01
mindofmadness
2022-08-27T02:11:32Z
0
0
null
[ "region:us" ]
null
2022-08-27T02:08:30Z
short narrow face, mid size lips, light freckles on upper cheeks, light grey eyes, brunette hair, nerd glasses
theojolliffe/T5-model-1-d-6
theojolliffe
2022-08-27T00:15:29Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-26T22:53:31Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: T5-model-1-d-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-model-1-d-6 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0229 - Rouge1: 94.972 - Rouge2: 84.9842 - Rougel: 94.7792 - Rougelsum: 94.758 - Gen Len: 15.0918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:-------:|:---------:|:-------:| | 0.0449 | 1.0 | 16085 | 0.0229 | 94.972 | 84.9842 | 94.7792 | 94.758 | 15.0918 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1