modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-13 18:26:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
558 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-13 18:25:20
card
stringlengths
11
1.01M
allenai/aspire-contextualsentence-singlem-biomed
allenai
2022-10-03T21:16:38Z
166
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "en", "arxiv:2111.08366", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-04-23T14:18:20Z
--- language: en license: apache-2.0 --- ## Overview Model included in a paper for modeling fine grained similarity between documents: **Title**: "Multi-Vector Models with Textual Guidance for Fine-Grained Scientific Document Similarity" **Authors**: Sheshera Mysore, Arman Cohan, Tom Hope **Paper**: https://arxiv.org/abs/2111.08366 **Github**: https://github.com/allenai/aspire **Note**: In the context of the paper, this model is referred to as `tsAspire` and represents the papers proposed multi-vector model for fine-grained scientific document similarity. ## Model Card ### Model description This model is a BERT based multi-vector model trained for fine-grained similarity of biomedical scientific papers. This model inputs the title and abstract of a paper and represents a paper with a contextual sentence vectors obtained by averaging the token representations of individual sentences - the whole title and abstract are encoded with cross-attention in the encoder block before obtaining sentence embeddings. The model is trained by leveraging a novel form of textual supervision which leverages co-citation contexts to align the sentences of positive examples. Test time behavior ranks documents based on the smallest L2 distance of sentences between documents or the smallest L2 distance between a set of query sentences and a candidate document. ### Training data The model is trained on pairs of co-cited papers with their sentences aligned by the co-citation context in a contrastive learning setup. The model is trained on 1.2 million biomedical paper pairs. In training the model, negative examples for the contrastive loss are obtained as random in-batch negatives. Co-citations are obtained from the full text of papers. For example - the papers in brackets below are all co-cited and each pair of papers would be used as a training pair with the abstracts sentence aligned using the co-citation context. Here the context notes why the cited papers are similar: > The idea of distant supervision has been proposed and used widely in Relation Extraction (Mintz et al., 2009; Riedel et al., 2010; Hoffmann et al., 2011; Surdeanu et al., 2012) , where the source of labels is an external knowledge base. ### Training procedure The model was trained with the Adam Optimizer and a learning rate of 2e-5 with 1000 warm-up steps followed by linear decay of the learning rate. The model training convergence is checked with the loss on a held out dev set consisting of co-cited paper pairs. ### Intended uses & limitations This model is trained for fine-grained document similarity tasks in **biomedical** scientific text using multiple vectors per document. The model allows fine grained similarity by establishing sentence-to-sentence similarity between documents. The model is most well suited to an aspect conditional task formulation where a query might consist of sentence in a query document and candidates must be retrieved along this specified sentences. Here, the documents are the title and abstract of a paper. With appropriate fine-tuning the model can also be used for other tasks such as document or sentence level classification. Since the training data comes primarily from biomedicine, performance on other domains may be poorer. ### How to use This model can be used via the `transformers` library and some additional code to compute contextual sentence vectors. View example usage in the model github repo: https://github.com/allenai/aspire#tsaspire ### Variable and metrics This model is evaluated on information retrieval datasets with document level queries. Here we report performance on RELISH (biomedical/English), and TRECCOVID (biomedical/English). These are detailed on [github](https://github.com/allenai/aspire) and in our [paper](https://arxiv.org/abs/2111.08366). These datasets represent a abstract level retrieval task, where given a query scientific abstract the task requires the retrieval of relevant candidate abstracts. In using this sentence level model for abstract level retrieval we rank documents by the minimal L2 distance between the sentences in the query and candidate abstract. ### Evaluation results The released model `aspire-contextualsentence-singlem-biomed` is compared against `allenai/specter`, a bi-encoder baseline and `all-mpnet-base-v2` a strong non-contextual sentence-bert baseline model trained on ~1 billion training examples. `aspire-contextualsentence-singlem-biomed`<sup>*</sup> is the performance reported in our paper by averaging over 3 re-runs of the model. The released model `aspire-contextualsentence-singlem-biomed` is the single best run among the 3 re-runs. | | TRECCOVID | TRECCOVID | RELISH | RELISH | |-------------------------------------------:|:---------:|:-------:|:------:|:-------:| | | MAP | NDCG%20 | MAP | NDCG%20 | | `all-mpnet-base-v2` | 17.35 | 43.87 | 52.92 | 69.69 | | `specter` | 28.24 | 59.28 | 60.62 | 77.20 | | `aspire-contextualsentence-singlem-biomed`<sup>*</sup> | 26.24 | 56.55 | 61.29 | 77.89 | | `aspire-contextualsentence-singlem-biomed` | 26.68 | 57.21 | 61.06 | 77.70 | **Alternative models:** Besides the above models consider these alternative models also released in the Aspire paper: [`aspire-contextualsentence-singlem-compsci`](https://huggingface.co/allenai/aspire-contextualsentence-singlem-compsci): If you wanted to run on computer science papers and want to use a model trained to match a _single_ sentence between documents. [`aspire-contextualsentence-multim-biomed`](https://huggingface.co/allenai/aspire-contextualsentence-multim-biomed): If you wanted to run on biomedical papers and want to use a model trained to match _multiple_ sentences between documents. [`aspire-contextualsentence-multim-compsci`](https://huggingface.co/allenai/aspire-contextualsentence-multim-compsci): If you wanted to run on computer science papers and want to use a model trained to match _multiple_ sentences between documents.
allenai/transformer_qa
allenai
2022-10-03T21:12:21Z
12
3
allennlp
[ "allennlp", "tensorboard", "question-answering", "en", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en tags: - allennlp - question-answering --- A reading comprehension model patterned after the proposed model in Devlin et al, with improvements borrowed from the SQuAD model in the transformers project The model implements a reading comprehension model patterned after the proposed model in BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al, 2018), with improvements borrowed from the SQuAD model in the transformers project. It predicts start tokens and end tokens with a linear layer on top of word piece embeddings.
misterkilgore/distilbert-base-uncased-finetuned-disaster-tweet
misterkilgore
2022-10-03T20:09:45Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-30T12:51:56Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-disaster-tweet results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-disaster-tweet This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4052 - Accuracy: 0.8207 - F1: 0.8203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5056 | 1.0 | 96 | 0.4139 | 0.8188 | 0.8179 | | 0.3991 | 2.0 | 192 | 0.4052 | 0.8207 | 0.8203 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Arklyn/fine-tune-Wav2Vec2-XLS-R-300M-Indonesia-1
Arklyn
2022-10-03T20:00:31Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_10_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-10-03T07:36:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_10_0 model-index: - name: fine-tune-Wav2Vec2-XLS-R-300M-Indonesia-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tune-Wav2Vec2-XLS-R-300M-Indonesia-1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_10_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2114 - Wer: 0.1762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 36 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 72 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9372 | 4.0 | 460 | 2.8359 | 1.0 | | 2.2755 | 8.0 | 920 | 0.3708 | 0.3983 | | 0.6614 | 12.0 | 1380 | 0.2433 | 0.2636 | | 0.5071 | 16.0 | 1840 | 0.2347 | 0.2395 | | 0.4516 | 20.0 | 2300 | 0.2213 | 0.2185 | | 0.4206 | 24.0 | 2760 | 0.2222 | 0.2008 | | 0.3844 | 28.0 | 3220 | 0.2072 | 0.1887 | | 0.3678 | 32.0 | 3680 | 0.2071 | 0.1886 | | 0.3565 | 36.0 | 4140 | 0.2015 | 0.1851 | | 0.3388 | 40.0 | 4600 | 0.2137 | 0.1850 | | 0.3235 | 44.0 | 5060 | 0.2072 | 0.1791 | | 0.3173 | 48.0 | 5520 | 0.2095 | 0.1777 | | 0.3088 | 52.0 | 5980 | 0.2102 | 0.1784 | | 0.3 | 56.0 | 6440 | 0.2164 | 0.1772 | | 0.2957 | 60.0 | 6900 | 0.2114 | 0.1762 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.10.0+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
huggingtweets/morgen__shtern
huggingtweets
2022-10-03T19:49:34Z
118
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-03T19:47:38Z
--- language: en thumbnail: http://www.huggingtweets.com/morgen__shtern/1664826569898/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1567266375026053125/0cyfXyiF_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">MORGENSHTERN</div> <div style="text-align: center; font-size: 14px;">@morgen__shtern</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from MORGENSHTERN. | Data | MORGENSHTERN | | --- | --- | | Tweets downloaded | 3178 | | Retweets | 57 | | Short tweets | 1034 | | Tweets kept | 2087 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3n5yin9a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @morgen__shtern's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2w93y3gk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2w93y3gk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/morgen__shtern') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kkotkar1/finetuning-sentiment-model-3000-samples-kunal
kkotkar1
2022-10-03T19:33:19Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-30T21:23:09Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: finetuning-sentiment-model-3000-samples-kunal results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples-kunal This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
huggingtweets/elonmusk-medvedevrussia
huggingtweets
2022-10-03T19:16:02Z
120
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-03T19:12:36Z
--- language: en thumbnail: http://www.huggingtweets.com/elonmusk-medvedevrussia/1664824557368/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1572573363255525377/Xz3fufYY_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/2348558617/x0vh6bui3sq97vt4jd2n_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Дмитрий Медведев</div> <div style="text-align: center; font-size: 14px;">@elonmusk-medvedevrussia</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Дмитрий Медведев. | Data | Elon Musk | Дмитрий Медведев | | --- | --- | --- | | Tweets downloaded | 3200 | 1745 | | Retweets | 122 | 298 | | Short tweets | 976 | 50 | | Tweets kept | 2102 | 1397 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3bebrah3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-medvedevrussia's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/38bpbcfm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/38bpbcfm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-medvedevrussia') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
neelrr/xlm-roberta-base-finetuned-panx-ta
neelrr
2022-10-03T18:57:36Z
126
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-03T18:52:53Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-ta results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.ta metrics: - name: F1 type: f1 value: 0.8144578313253013 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-ta This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2183 - F1: 0.8145 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5477 | 1.0 | 209 | 0.2732 | 0.7305 | | 0.2506 | 2.0 | 418 | 0.2425 | 0.7626 | | 0.168 | 3.0 | 627 | 0.2183 | 0.8145 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
neelrr/xlm-roberta-base-finetuned-panx-hi-mr
neelrr
2022-10-03T18:44:54Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-03T18:37:10Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-hi-mr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-hi-mr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1942 - F1: 0.8710 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4628 | 1.0 | 417 | 0.2603 | 0.8062 | | 0.2064 | 2.0 | 834 | 0.1951 | 0.8492 | | 0.1289 | 3.0 | 1251 | 0.1942 | 0.8710 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
ad7/finetuning-sentiment-model-3000-samples
ad7
2022-10-03T18:18:09Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-03T18:08:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.77 - name: F1 type: f1 value: 0.7561837455830389 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.6587 - Accuracy: 0.77 - F1: 0.7562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
neelrr/xlm-roberta-base-finetuned-panx-hi
neelrr
2022-10-03T18:15:43Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-03T15:33:45Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-hi results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.hi metrics: - name: F1 type: f1 value: 0.8613782051282051 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-hi This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2211 - F1: 0.8614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.62 | 1.0 | 209 | 0.3914 | 0.7622 | | 0.2603 | 2.0 | 418 | 0.2665 | 0.8211 | | 0.1653 | 3.0 | 627 | 0.2211 | 0.8614 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
lilykaw/finetuning-sentiment-model-3000-samples
lilykaw
2022-10-03T18:14:03Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-03T18:04:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.6633333333333333 - name: F1 type: f1 value: 0.7247956403269755 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.6551 - Accuracy: 0.6633 - F1: 0.7248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
arminmehrabian/distilgpt2-finetuned-wikitext2-agu
arminmehrabian
2022-10-03T18:04:48Z
324
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-25T02:53:12Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2-agu results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2-agu This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.1869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 3.7357 | 1.0 | 13655 | 3.6781 | | 3.5721 | 2.0 | 27310 | 3.5302 | | 3.4961 | 3.0 | 40965 | 3.4658 | | 3.4406 | 4.0 | 54620 | 3.4242 | | 3.4043 | 5.0 | 68275 | 3.3943 | | 3.3789 | 6.0 | 81930 | 3.3726 | | 3.3576 | 7.0 | 95585 | 3.3538 | | 3.3389 | 8.0 | 109240 | 3.3389 | | 3.3151 | 9.0 | 122895 | 3.3270 | | 3.314 | 5.0 | 136545 | 3.3226 | | 3.3044 | 6.0 | 163854 | 3.3124 | | 3.2931 | 7.0 | 191163 | 3.3078 | | 3.2874 | 8.0 | 218472 | 3.3094 | | 3.2817 | 9.0 | 245781 | 3.2943 | | 3.269 | 10.0 | 273090 | 3.2785 | | 3.2423 | 11.0 | 300399 | 3.2651 | | 3.2253 | 12.0 | 327708 | 3.2530 | | 3.2096 | 13.0 | 355017 | 3.2435 | | 3.1939 | 14.0 | 382326 | 3.2326 | | 3.1786 | 15.0 | 409635 | 3.2225 | | 3.1625 | 16.0 | 436944 | 3.2198 | | 3.1619 | 17.0 | 464253 | 3.2180 | | 3.1521 | 18.0 | 491562 | 3.2164 | | 3.1555 | 19.0 | 518871 | 3.2152 | | 3.1523 | 20.0 | 546180 | 3.2164 | | 3.1639 | 21.0 | 573489 | 3.2133 | | 3.1483 | 22.0 | 600798 | 3.2113 | | 3.1497 | 23.0 | 628107 | 3.2077 | | 3.1468 | 24.0 | 655416 | 3.2066 | | 3.1461 | 25.0 | 682725 | 3.2052 | | 3.1391 | 26.0 | 710034 | 3.2039 | | 3.1384 | 27.0 | 737343 | 3.2031 | | 3.135 | 28.0 | 764652 | 3.2020 | | 3.1262 | 29.0 | 791961 | 3.2015 | | 3.1357 | 30.0 | 819270 | 3.2019 | | 3.1372 | 31.0 | 846579 | 3.2003 | | 3.1346 | 32.0 | 873888 | 3.1988 | | 3.134 | 33.0 | 901197 | 3.1975 | | 3.1256 | 34.0 | 928506 | 3.1965 | | 3.1261 | 35.0 | 955815 | 3.1950 | | 3.1255 | 36.0 | 983124 | 3.1945 | | 3.1278 | 37.0 | 1010433 | 3.1940 | | 3.1186 | 38.0 | 1037742 | 3.1934 | | 3.1136 | 39.0 | 1065051 | 3.1932 | | 3.12 | 40.0 | 1092360 | 3.1931 | | 3.12 | 41.0 | 1119669 | 3.1930 | | 3.1165 | 42.0 | 1146978 | 3.1914 | | 3.1166 | 43.0 | 1174287 | 3.1900 | | 3.1139 | 44.0 | 1201596 | 3.1892 | | 3.1135 | 45.0 | 1228905 | 3.1885 | | 3.1077 | 46.0 | 1256214 | 3.1881 | | 3.1097 | 47.0 | 1283523 | 3.1873 | | 3.1076 | 48.0 | 1310832 | 3.1872 | | 3.102 | 49.0 | 1338141 | 3.1870 | | 3.1086 | 50.0 | 1365450 | 3.1869 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
model-attribution-challenge/codegen-350M-multi
model-attribution-challenge
2022-10-03T16:18:49Z
108
2
transformers
[ "transformers", "pytorch", "codegen", "text-generation", "arxiv:2203.13474", "license:bsd-3-clause", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-26T13:36:04Z
--- license: bsd-3-clause --- # CodeGen (CodeGen-Multi 350M) ## Model description CodeGen is a family of autoregressive language models for **program synthesis** from the paper: [A Conversational Paradigm for Program Synthesis](https://arxiv.org/abs/2203.13474) by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong. The models are originally released in [this repository](https://github.com/salesforce/CodeGen), under 3 pre-training data variants (`NL`, `Multi`, `Mono`) and 4 model size variants (`350M`, `2B`, `6B`, `16B`). The checkpoint included in this repository is denoted as **CodeGen-Multi 350M** in the paper, where "Multi" means the model is initialized with *CodeGen-NL 350M* and further pre-trained on a dataset of multiple programming languages, and "350M" refers to the number of trainable parameters. ## Training data This checkpoint (CodeGen-Multi 350M) was firstly initialized with *CodeGen-NL 350M*, and then pre-trained on [BigQuery](https://console.cloud.google.com/marketplace/details/github/github-repos), a large-scale dataset of multiple programming languages from GitHub repositories. The data consists of 119.2B tokens and includes C, C++, Go, Java, JavaScript, and Python. ## Training procedure CodeGen was trained using cross-entropy loss to maximize the likelihood of sequential inputs. The family of models are trained using multiple TPU-v4-512 by Google, leveraging data and model parallelism. See Section 2.3 of the [paper](https://arxiv.org/abs/2203.13474) for more details. ## Evaluation results We evaluate our models on two code generation benchmark: HumanEval and MTPB. Please refer to the [paper](https://arxiv.org/abs/2203.13474) for more details. ## Intended Use and Limitations As an autoregressive language model, CodeGen is capable of extracting features from given natural language and programming language texts, and calculating the likelihood of them. However, the model is intended for and best at **program synthesis**, that is, generating executable code given English prompts, where the prompts should be in the form of a comment string. The model can complete partially-generated code as well. ## How to use This model can be easily loaded using the `AutoModelForCausalLM` functionality: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-multi") model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen-350M-multi") text = "def hello_world():" input_ids = tokenizer(text, return_tensors="pt").input_ids generated_ids = model.generate(input_ids, max_length=128) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` ## BibTeX entry and citation info ```bibtex @article{Nijkamp2022ACP, title={A Conversational Paradigm for Program Synthesis}, author={Nijkamp, Erik and Pang, Bo and Hayashi, Hiroaki and Tu, Lifu and Wang, Huan and Zhou, Yingbo and Savarese, Silvio and Xiong, Caiming}, journal={arXiv preprint}, year={2022} } ```
sd-concepts-library/jang-sung-rak-style
sd-concepts-library
2022-10-03T15:43:16Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-10-03T15:43:05Z
--- license: mit --- ### Jang-Sung-Rak-Style on Stable Diffusion This is the `<Jang-Sung-Rak-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<Jang-Sung-Rak-style> 0](https://huggingface.co/sd-concepts-library/jang-sung-rak-style/resolve/main/concept_images/1.jpeg) ![<Jang-Sung-Rak-style> 1](https://huggingface.co/sd-concepts-library/jang-sung-rak-style/resolve/main/concept_images/4.jpeg) ![<Jang-Sung-Rak-style> 2](https://huggingface.co/sd-concepts-library/jang-sung-rak-style/resolve/main/concept_images/2.jpeg) ![<Jang-Sung-Rak-style> 3](https://huggingface.co/sd-concepts-library/jang-sung-rak-style/resolve/main/concept_images/0.jpeg) ![<Jang-Sung-Rak-style> 4](https://huggingface.co/sd-concepts-library/jang-sung-rak-style/resolve/main/concept_images/3.jpeg) ![<Jang-Sung-Rak-style> 5](https://huggingface.co/sd-concepts-library/jang-sung-rak-style/resolve/main/concept_images/6.jpeg) ![<Jang-Sung-Rak-style> 6](https://huggingface.co/sd-concepts-library/jang-sung-rak-style/resolve/main/concept_images/5.jpeg)
qq895398111/ddjcd
qq895398111
2022-10-03T14:42:17Z
0
0
null
[ "region:us" ]
null
2022-10-03T14:41:19Z
The Victorian AgeBig chest woman
damilojohn/Bert2BertForTextDescrambling
damilojohn
2022-10-03T12:40:40Z
111
1
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-03T00:44:12Z
--- license: apache-2.0 --- This model receives scrambled or incoherent sentences as input and returns a meaningful sentence using the same words in the input . A form of grammar correction if you may . It was trained on a dataset of permutated sentences derived from wikipedia pages as input with the correct arrangement of words as labels . It is an encoder-decoder model that uses BERT's weight in both it's encoder and decoder .
cw1521/opus-mt-st-en
cw1521
2022-10-03T12:36:01Z
115
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-29T01:37:55Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: opus-mt-st-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-st-en This model is a fine-tuned version of [cw1521/opus-mt-st-en](https://huggingface.co/cw1521/opus-mt-st-en) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
cw1521/opus-mt-en-st
cw1521
2022-10-03T12:31:35Z
112
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-29T02:29:39Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: opus-mt-en-st results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-st This model is a fine-tuned version of [cw1521/opus-mt-en-st](https://huggingface.co/cw1521/opus-mt-en-st) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3710 - Bleu: 77.1725 - Gen Len: 60.3696 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.3768 | 1.0 | 969 | 0.3710 | 77.1725 | 60.3696 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/aadhav-face
sd-concepts-library
2022-10-03T12:22:50Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-03T12:22:47Z
--- license: mit --- ### aadhav face on Stable Diffusion This is the `<aadhav-face>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<aadhav-face> 0](https://huggingface.co/sd-concepts-library/aadhav-face/resolve/main/concept_images/1.jpeg) ![<aadhav-face> 1](https://huggingface.co/sd-concepts-library/aadhav-face/resolve/main/concept_images/2.jpeg) ![<aadhav-face> 2](https://huggingface.co/sd-concepts-library/aadhav-face/resolve/main/concept_images/0.jpeg) ![<aadhav-face> 3](https://huggingface.co/sd-concepts-library/aadhav-face/resolve/main/concept_images/3.jpeg)
Muennighoff/SGPT-5.8B-weightedmean-nli-bitfit
Muennighoff
2022-10-03T12:16:09Z
828
6
sentence-transformers
[ "sentence-transformers", "pytorch", "gptj", "feature-extraction", "sentence-similarity", "mteb", "arxiv:2202.08904", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:04Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb model-index: - name: SGPT-5.8B-weightedmean-nli-bitfit results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 metrics: - type: accuracy value: 74.07462686567165 - type: ap value: 37.44692407529112 - type: f1 value: 68.28971003916419 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (de) config: de split: test revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 metrics: - type: accuracy value: 66.63811563169165 - type: ap value: 78.57252079915924 - type: f1 value: 64.5543087846584 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en-ext) config: en-ext split: test revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 metrics: - type: accuracy value: 77.21889055472263 - type: ap value: 25.663426367826712 - type: f1 value: 64.26265688503176 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (ja) config: ja split: test revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 metrics: - type: accuracy value: 58.06209850107067 - type: ap value: 14.028219107023915 - type: f1 value: 48.10387189660778 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1 metrics: - type: accuracy value: 82.30920000000002 - type: ap value: 76.88786578621213 - type: f1 value: 82.15455656065011 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 41.584 - type: f1 value: 41.203137944390114 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (de) config: de split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 35.288000000000004 - type: f1 value: 34.672995558518096 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (es) config: es split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 38.34 - type: f1 value: 37.608755629529455 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (fr) config: fr split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 37.839999999999996 - type: f1 value: 36.86898201563507 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (ja) config: ja split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 30.936000000000003 - type: f1 value: 30.49401738527071 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 33.75 - type: f1 value: 33.38338946025617 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3 metrics: - type: map_at_1 value: 13.727 - type: map_at_10 value: 26.740000000000002 - type: map_at_100 value: 28.218 - type: map_at_1000 value: 28.246 - type: map_at_3 value: 21.728 - type: map_at_5 value: 24.371000000000002 - type: ndcg_at_1 value: 13.727 - type: ndcg_at_10 value: 35.07 - type: ndcg_at_100 value: 41.947 - type: ndcg_at_1000 value: 42.649 - type: ndcg_at_3 value: 24.484 - type: ndcg_at_5 value: 29.282999999999998 - type: precision_at_1 value: 13.727 - type: precision_at_10 value: 6.223 - type: precision_at_100 value: 0.9369999999999999 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 10.835 - type: precision_at_5 value: 8.848 - type: recall_at_1 value: 13.727 - type: recall_at_10 value: 62.233000000000004 - type: recall_at_100 value: 93.67 - type: recall_at_1000 value: 99.14699999999999 - type: recall_at_3 value: 32.504 - type: recall_at_5 value: 44.239 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8 metrics: - type: v_measure value: 40.553923271901695 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3 metrics: - type: v_measure value: 32.49323183712211 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c metrics: - type: map value: 55.89811361443445 - type: mrr value: 70.16235764850724 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: 9ee918f184421b6bd48b78f6c714d86546106103 metrics: - type: cos_sim_pearson value: 82.50506557805856 - type: cos_sim_spearman value: 79.50000423261176 - type: euclidean_pearson value: 75.76190885392926 - type: euclidean_spearman value: 76.7330737163434 - type: manhattan_pearson value: 75.825318036112 - type: manhattan_spearman value: 76.7415076434559 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (de-en) config: de-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 75.49060542797494 - type: f1 value: 75.15379262352123 - type: precision value: 74.99391092553932 - type: recall value: 75.49060542797494 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (fr-en) config: fr-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 0.4182258419546555 - type: f1 value: 0.4182258419546555 - type: precision value: 0.4182258419546555 - type: recall value: 0.4182258419546555 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (ru-en) config: ru-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 0.013855213023900243 - type: f1 value: 0.0115460108532502 - type: precision value: 0.010391409767925183 - type: recall value: 0.013855213023900243 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (zh-en) config: zh-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 0.315955766192733 - type: f1 value: 0.315955766192733 - type: precision value: 0.315955766192733 - type: recall value: 0.315955766192733 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 44fa15921b4c889113cc5df03dd4901b49161ab7 metrics: - type: accuracy value: 81.74025974025973 - type: f1 value: 81.66568824876 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55 metrics: - type: v_measure value: 33.59451202614059 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1 metrics: - type: v_measure value: 29.128241446157165 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 26.715 - type: map_at_10 value: 35.007 - type: map_at_100 value: 36.352000000000004 - type: map_at_1000 value: 36.51 - type: map_at_3 value: 32.257999999999996 - type: map_at_5 value: 33.595000000000006 - type: ndcg_at_1 value: 33.906 - type: ndcg_at_10 value: 40.353 - type: ndcg_at_100 value: 45.562999999999995 - type: ndcg_at_1000 value: 48.454 - type: ndcg_at_3 value: 36.349 - type: ndcg_at_5 value: 37.856 - type: precision_at_1 value: 33.906 - type: precision_at_10 value: 7.854 - type: precision_at_100 value: 1.29 - type: precision_at_1000 value: 0.188 - type: precision_at_3 value: 17.549 - type: precision_at_5 value: 12.561 - type: recall_at_1 value: 26.715 - type: recall_at_10 value: 49.508 - type: recall_at_100 value: 71.76599999999999 - type: recall_at_1000 value: 91.118 - type: recall_at_3 value: 37.356 - type: recall_at_5 value: 41.836 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 19.663 - type: map_at_10 value: 27.086 - type: map_at_100 value: 28.066999999999997 - type: map_at_1000 value: 28.18 - type: map_at_3 value: 24.819 - type: map_at_5 value: 26.332 - type: ndcg_at_1 value: 25.732 - type: ndcg_at_10 value: 31.613999999999997 - type: ndcg_at_100 value: 35.757 - type: ndcg_at_1000 value: 38.21 - type: ndcg_at_3 value: 28.332 - type: ndcg_at_5 value: 30.264000000000003 - type: precision_at_1 value: 25.732 - type: precision_at_10 value: 6.038 - type: precision_at_100 value: 1.034 - type: precision_at_1000 value: 0.149 - type: precision_at_3 value: 13.864 - type: precision_at_5 value: 10.241999999999999 - type: recall_at_1 value: 19.663 - type: recall_at_10 value: 39.585 - type: recall_at_100 value: 57.718 - type: recall_at_1000 value: 74.26700000000001 - type: recall_at_3 value: 29.845 - type: recall_at_5 value: 35.105 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 30.125 - type: map_at_10 value: 39.824 - type: map_at_100 value: 40.935 - type: map_at_1000 value: 41.019 - type: map_at_3 value: 37.144 - type: map_at_5 value: 38.647999999999996 - type: ndcg_at_1 value: 34.922 - type: ndcg_at_10 value: 45.072 - type: ndcg_at_100 value: 50.046 - type: ndcg_at_1000 value: 51.895 - type: ndcg_at_3 value: 40.251 - type: ndcg_at_5 value: 42.581 - type: precision_at_1 value: 34.922 - type: precision_at_10 value: 7.303999999999999 - type: precision_at_100 value: 1.0739999999999998 - type: precision_at_1000 value: 0.13 - type: precision_at_3 value: 17.994 - type: precision_at_5 value: 12.475999999999999 - type: recall_at_1 value: 30.125 - type: recall_at_10 value: 57.253 - type: recall_at_100 value: 79.35799999999999 - type: recall_at_1000 value: 92.523 - type: recall_at_3 value: 44.088 - type: recall_at_5 value: 49.893 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 16.298000000000002 - type: map_at_10 value: 21.479 - type: map_at_100 value: 22.387 - type: map_at_1000 value: 22.483 - type: map_at_3 value: 19.743 - type: map_at_5 value: 20.444000000000003 - type: ndcg_at_1 value: 17.740000000000002 - type: ndcg_at_10 value: 24.887 - type: ndcg_at_100 value: 29.544999999999998 - type: ndcg_at_1000 value: 32.417 - type: ndcg_at_3 value: 21.274 - type: ndcg_at_5 value: 22.399 - type: precision_at_1 value: 17.740000000000002 - type: precision_at_10 value: 3.932 - type: precision_at_100 value: 0.666 - type: precision_at_1000 value: 0.094 - type: precision_at_3 value: 8.927 - type: precision_at_5 value: 6.056 - type: recall_at_1 value: 16.298000000000002 - type: recall_at_10 value: 34.031 - type: recall_at_100 value: 55.769000000000005 - type: recall_at_1000 value: 78.19500000000001 - type: recall_at_3 value: 23.799999999999997 - type: recall_at_5 value: 26.562 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 10.958 - type: map_at_10 value: 16.999 - type: map_at_100 value: 17.979 - type: map_at_1000 value: 18.112000000000002 - type: map_at_3 value: 15.010000000000002 - type: map_at_5 value: 16.256999999999998 - type: ndcg_at_1 value: 14.179 - type: ndcg_at_10 value: 20.985 - type: ndcg_at_100 value: 26.216 - type: ndcg_at_1000 value: 29.675 - type: ndcg_at_3 value: 17.28 - type: ndcg_at_5 value: 19.301 - type: precision_at_1 value: 14.179 - type: precision_at_10 value: 3.968 - type: precision_at_100 value: 0.784 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 8.541 - type: precision_at_5 value: 6.468 - type: recall_at_1 value: 10.958 - type: recall_at_10 value: 29.903000000000002 - type: recall_at_100 value: 53.413 - type: recall_at_1000 value: 78.74799999999999 - type: recall_at_3 value: 19.717000000000002 - type: recall_at_5 value: 24.817 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 21.217 - type: map_at_10 value: 29.677 - type: map_at_100 value: 30.928 - type: map_at_1000 value: 31.063000000000002 - type: map_at_3 value: 26.611 - type: map_at_5 value: 28.463 - type: ndcg_at_1 value: 26.083000000000002 - type: ndcg_at_10 value: 35.217 - type: ndcg_at_100 value: 40.715 - type: ndcg_at_1000 value: 43.559 - type: ndcg_at_3 value: 30.080000000000002 - type: ndcg_at_5 value: 32.701 - type: precision_at_1 value: 26.083000000000002 - type: precision_at_10 value: 6.622 - type: precision_at_100 value: 1.115 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 14.629 - type: precision_at_5 value: 10.837 - type: recall_at_1 value: 21.217 - type: recall_at_10 value: 47.031 - type: recall_at_100 value: 70.378 - type: recall_at_1000 value: 89.704 - type: recall_at_3 value: 32.427 - type: recall_at_5 value: 39.31 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 19.274 - type: map_at_10 value: 26.398 - type: map_at_100 value: 27.711000000000002 - type: map_at_1000 value: 27.833000000000002 - type: map_at_3 value: 24.294 - type: map_at_5 value: 25.385 - type: ndcg_at_1 value: 24.886 - type: ndcg_at_10 value: 30.909 - type: ndcg_at_100 value: 36.941 - type: ndcg_at_1000 value: 39.838 - type: ndcg_at_3 value: 27.455000000000002 - type: ndcg_at_5 value: 28.828 - type: precision_at_1 value: 24.886 - type: precision_at_10 value: 5.6739999999999995 - type: precision_at_100 value: 1.0290000000000001 - type: precision_at_1000 value: 0.146 - type: precision_at_3 value: 13.242 - type: precision_at_5 value: 9.292 - type: recall_at_1 value: 19.274 - type: recall_at_10 value: 39.643 - type: recall_at_100 value: 66.091 - type: recall_at_1000 value: 86.547 - type: recall_at_3 value: 29.602 - type: recall_at_5 value: 33.561 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 18.653666666666666 - type: map_at_10 value: 25.606666666666666 - type: map_at_100 value: 26.669333333333334 - type: map_at_1000 value: 26.795833333333334 - type: map_at_3 value: 23.43433333333333 - type: map_at_5 value: 24.609666666666666 - type: ndcg_at_1 value: 22.742083333333333 - type: ndcg_at_10 value: 29.978333333333335 - type: ndcg_at_100 value: 34.89808333333333 - type: ndcg_at_1000 value: 37.806583333333336 - type: ndcg_at_3 value: 26.223666666666674 - type: ndcg_at_5 value: 27.91033333333333 - type: precision_at_1 value: 22.742083333333333 - type: precision_at_10 value: 5.397083333333334 - type: precision_at_100 value: 0.9340000000000002 - type: precision_at_1000 value: 0.13691666666666663 - type: precision_at_3 value: 12.331083333333332 - type: precision_at_5 value: 8.805499999999999 - type: recall_at_1 value: 18.653666666666666 - type: recall_at_10 value: 39.22625000000001 - type: recall_at_100 value: 61.31049999999999 - type: recall_at_1000 value: 82.19058333333334 - type: recall_at_3 value: 28.517333333333333 - type: recall_at_5 value: 32.9565 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 16.07 - type: map_at_10 value: 21.509 - type: map_at_100 value: 22.335 - type: map_at_1000 value: 22.437 - type: map_at_3 value: 19.717000000000002 - type: map_at_5 value: 20.574 - type: ndcg_at_1 value: 18.865000000000002 - type: ndcg_at_10 value: 25.135999999999996 - type: ndcg_at_100 value: 29.483999999999998 - type: ndcg_at_1000 value: 32.303 - type: ndcg_at_3 value: 21.719 - type: ndcg_at_5 value: 23.039 - type: precision_at_1 value: 18.865000000000002 - type: precision_at_10 value: 4.263999999999999 - type: precision_at_100 value: 0.696 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 9.866999999999999 - type: precision_at_5 value: 6.902 - type: recall_at_1 value: 16.07 - type: recall_at_10 value: 33.661 - type: recall_at_100 value: 54.001999999999995 - type: recall_at_1000 value: 75.564 - type: recall_at_3 value: 23.956 - type: recall_at_5 value: 27.264 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 10.847 - type: map_at_10 value: 15.518 - type: map_at_100 value: 16.384 - type: map_at_1000 value: 16.506 - type: map_at_3 value: 14.093 - type: map_at_5 value: 14.868 - type: ndcg_at_1 value: 13.764999999999999 - type: ndcg_at_10 value: 18.766 - type: ndcg_at_100 value: 23.076 - type: ndcg_at_1000 value: 26.344 - type: ndcg_at_3 value: 16.150000000000002 - type: ndcg_at_5 value: 17.373 - type: precision_at_1 value: 13.764999999999999 - type: precision_at_10 value: 3.572 - type: precision_at_100 value: 0.6779999999999999 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 7.88 - type: precision_at_5 value: 5.712 - type: recall_at_1 value: 10.847 - type: recall_at_10 value: 25.141999999999996 - type: recall_at_100 value: 44.847 - type: recall_at_1000 value: 68.92099999999999 - type: recall_at_3 value: 17.721999999999998 - type: recall_at_5 value: 20.968999999999998 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 18.377 - type: map_at_10 value: 26.005 - type: map_at_100 value: 26.996 - type: map_at_1000 value: 27.116 - type: map_at_3 value: 23.712 - type: map_at_5 value: 24.859 - type: ndcg_at_1 value: 22.201 - type: ndcg_at_10 value: 30.635 - type: ndcg_at_100 value: 35.623 - type: ndcg_at_1000 value: 38.551 - type: ndcg_at_3 value: 26.565 - type: ndcg_at_5 value: 28.28 - type: precision_at_1 value: 22.201 - type: precision_at_10 value: 5.41 - type: precision_at_100 value: 0.88 - type: precision_at_1000 value: 0.125 - type: precision_at_3 value: 12.531 - type: precision_at_5 value: 8.806 - type: recall_at_1 value: 18.377 - type: recall_at_10 value: 40.908 - type: recall_at_100 value: 63.563 - type: recall_at_1000 value: 84.503 - type: recall_at_3 value: 29.793999999999997 - type: recall_at_5 value: 34.144999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 20.246 - type: map_at_10 value: 27.528000000000002 - type: map_at_100 value: 28.78 - type: map_at_1000 value: 29.002 - type: map_at_3 value: 25.226 - type: map_at_5 value: 26.355 - type: ndcg_at_1 value: 25.099 - type: ndcg_at_10 value: 32.421 - type: ndcg_at_100 value: 37.2 - type: ndcg_at_1000 value: 40.693 - type: ndcg_at_3 value: 28.768 - type: ndcg_at_5 value: 30.23 - type: precision_at_1 value: 25.099 - type: precision_at_10 value: 6.245 - type: precision_at_100 value: 1.269 - type: precision_at_1000 value: 0.218 - type: precision_at_3 value: 13.767999999999999 - type: precision_at_5 value: 9.881 - type: recall_at_1 value: 20.246 - type: recall_at_10 value: 41.336 - type: recall_at_100 value: 63.098 - type: recall_at_1000 value: 86.473 - type: recall_at_3 value: 30.069000000000003 - type: recall_at_5 value: 34.262 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 14.054 - type: map_at_10 value: 20.25 - type: map_at_100 value: 21.178 - type: map_at_1000 value: 21.288999999999998 - type: map_at_3 value: 18.584999999999997 - type: map_at_5 value: 19.536 - type: ndcg_at_1 value: 15.527 - type: ndcg_at_10 value: 23.745 - type: ndcg_at_100 value: 28.610999999999997 - type: ndcg_at_1000 value: 31.740000000000002 - type: ndcg_at_3 value: 20.461 - type: ndcg_at_5 value: 22.072 - type: precision_at_1 value: 15.527 - type: precision_at_10 value: 3.882 - type: precision_at_100 value: 0.6930000000000001 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 9.181000000000001 - type: precision_at_5 value: 6.433 - type: recall_at_1 value: 14.054 - type: recall_at_10 value: 32.714 - type: recall_at_100 value: 55.723 - type: recall_at_1000 value: 79.72399999999999 - type: recall_at_3 value: 23.832 - type: recall_at_5 value: 27.754 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce metrics: - type: map_at_1 value: 6.122 - type: map_at_10 value: 11.556 - type: map_at_100 value: 12.998000000000001 - type: map_at_1000 value: 13.202 - type: map_at_3 value: 9.657 - type: map_at_5 value: 10.585 - type: ndcg_at_1 value: 15.049000000000001 - type: ndcg_at_10 value: 17.574 - type: ndcg_at_100 value: 24.465999999999998 - type: ndcg_at_1000 value: 28.511999999999997 - type: ndcg_at_3 value: 13.931 - type: ndcg_at_5 value: 15.112 - type: precision_at_1 value: 15.049000000000001 - type: precision_at_10 value: 5.831 - type: precision_at_100 value: 1.322 - type: precision_at_1000 value: 0.20500000000000002 - type: precision_at_3 value: 10.749 - type: precision_at_5 value: 8.365 - type: recall_at_1 value: 6.122 - type: recall_at_10 value: 22.207 - type: recall_at_100 value: 47.08 - type: recall_at_1000 value: 70.182 - type: recall_at_3 value: 13.416 - type: recall_at_5 value: 16.672 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: f097057d03ed98220bc7309ddb10b71a54d667d6 metrics: - type: map_at_1 value: 4.672 - type: map_at_10 value: 10.534 - type: map_at_100 value: 14.798 - type: map_at_1000 value: 15.927 - type: map_at_3 value: 7.317 - type: map_at_5 value: 8.726 - type: ndcg_at_1 value: 36.5 - type: ndcg_at_10 value: 26.098 - type: ndcg_at_100 value: 29.215999999999998 - type: ndcg_at_1000 value: 36.254999999999995 - type: ndcg_at_3 value: 29.247 - type: ndcg_at_5 value: 27.692 - type: precision_at_1 value: 47.25 - type: precision_at_10 value: 22.625 - type: precision_at_100 value: 7.042 - type: precision_at_1000 value: 1.6129999999999998 - type: precision_at_3 value: 34.083000000000006 - type: precision_at_5 value: 29.5 - type: recall_at_1 value: 4.672 - type: recall_at_10 value: 15.638 - type: recall_at_100 value: 36.228 - type: recall_at_1000 value: 58.831 - type: recall_at_3 value: 8.578 - type: recall_at_5 value: 11.18 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 829147f8f75a25f005913200eb5ed41fae320aa1 metrics: - type: accuracy value: 49.919999999999995 - type: f1 value: 45.37973678791632 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: 1429cf27e393599b8b359b9b72c666f96b2525f9 metrics: - type: map_at_1 value: 25.801000000000002 - type: map_at_10 value: 33.941 - type: map_at_100 value: 34.73 - type: map_at_1000 value: 34.793 - type: map_at_3 value: 31.705 - type: map_at_5 value: 33.047 - type: ndcg_at_1 value: 27.933000000000003 - type: ndcg_at_10 value: 38.644 - type: ndcg_at_100 value: 42.594 - type: ndcg_at_1000 value: 44.352000000000004 - type: ndcg_at_3 value: 34.199 - type: ndcg_at_5 value: 36.573 - type: precision_at_1 value: 27.933000000000003 - type: precision_at_10 value: 5.603000000000001 - type: precision_at_100 value: 0.773 - type: precision_at_1000 value: 0.094 - type: precision_at_3 value: 14.171 - type: precision_at_5 value: 9.786999999999999 - type: recall_at_1 value: 25.801000000000002 - type: recall_at_10 value: 50.876 - type: recall_at_100 value: 69.253 - type: recall_at_1000 value: 82.907 - type: recall_at_3 value: 38.879000000000005 - type: recall_at_5 value: 44.651999999999994 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be metrics: - type: map_at_1 value: 9.142 - type: map_at_10 value: 13.841999999999999 - type: map_at_100 value: 14.960999999999999 - type: map_at_1000 value: 15.187000000000001 - type: map_at_3 value: 11.966000000000001 - type: map_at_5 value: 12.921 - type: ndcg_at_1 value: 18.364 - type: ndcg_at_10 value: 18.590999999999998 - type: ndcg_at_100 value: 24.153 - type: ndcg_at_1000 value: 29.104000000000003 - type: ndcg_at_3 value: 16.323 - type: ndcg_at_5 value: 17.000999999999998 - type: precision_at_1 value: 18.364 - type: precision_at_10 value: 5.216 - type: precision_at_100 value: 1.09 - type: precision_at_1000 value: 0.193 - type: precision_at_3 value: 10.751 - type: precision_at_5 value: 7.932 - type: recall_at_1 value: 9.142 - type: recall_at_10 value: 22.747 - type: recall_at_100 value: 44.585 - type: recall_at_1000 value: 75.481 - type: recall_at_3 value: 14.602 - type: recall_at_5 value: 17.957 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: 766870b35a1b9ca65e67a0d1913899973551fc6c metrics: - type: map_at_1 value: 18.677 - type: map_at_10 value: 26.616 - type: map_at_100 value: 27.605 - type: map_at_1000 value: 27.711999999999996 - type: map_at_3 value: 24.396 - type: map_at_5 value: 25.627 - type: ndcg_at_1 value: 37.352999999999994 - type: ndcg_at_10 value: 33.995 - type: ndcg_at_100 value: 38.423 - type: ndcg_at_1000 value: 40.947 - type: ndcg_at_3 value: 29.885 - type: ndcg_at_5 value: 31.874999999999996 - type: precision_at_1 value: 37.352999999999994 - type: precision_at_10 value: 7.539999999999999 - type: precision_at_100 value: 1.107 - type: precision_at_1000 value: 0.145 - type: precision_at_3 value: 18.938 - type: precision_at_5 value: 12.943 - type: recall_at_1 value: 18.677 - type: recall_at_10 value: 37.698 - type: recall_at_100 value: 55.354000000000006 - type: recall_at_1000 value: 72.255 - type: recall_at_3 value: 28.406 - type: recall_at_5 value: 32.357 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4 metrics: - type: accuracy value: 74.3292 - type: ap value: 68.30186110189658 - type: f1 value: 74.20709636944783 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: validation revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849 metrics: - type: map_at_1 value: 6.889000000000001 - type: map_at_10 value: 12.321 - type: map_at_100 value: 13.416 - type: map_at_1000 value: 13.525 - type: map_at_3 value: 10.205 - type: map_at_5 value: 11.342 - type: ndcg_at_1 value: 7.092 - type: ndcg_at_10 value: 15.827 - type: ndcg_at_100 value: 21.72 - type: ndcg_at_1000 value: 24.836 - type: ndcg_at_3 value: 11.393 - type: ndcg_at_5 value: 13.462 - type: precision_at_1 value: 7.092 - type: precision_at_10 value: 2.7969999999999997 - type: precision_at_100 value: 0.583 - type: precision_at_1000 value: 0.08499999999999999 - type: precision_at_3 value: 5.019 - type: precision_at_5 value: 4.06 - type: recall_at_1 value: 6.889000000000001 - type: recall_at_10 value: 26.791999999999998 - type: recall_at_100 value: 55.371 - type: recall_at_1000 value: 80.12899999999999 - type: recall_at_3 value: 14.573 - type: recall_at_5 value: 19.557 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 89.6374829001368 - type: f1 value: 89.20878379358307 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (de) config: de split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 84.54212454212454 - type: f1 value: 82.81080100037023 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (es) config: es split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 86.46430953969313 - type: f1 value: 86.00019824223267 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (fr) config: fr split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 81.31850923896022 - type: f1 value: 81.07860454762863 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (hi) config: hi split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 58.23234134098243 - type: f1 value: 56.63845098081841 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (th) config: th split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 72.28571428571429 - type: f1 value: 70.95796714592039 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 70.68171454628363 - type: f1 value: 52.57188062729139 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (de) config: de split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 60.521273598196665 - type: f1 value: 42.70492970339204 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (es) config: es split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 64.32288192128087 - type: f1 value: 45.97360620220273 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (fr) config: fr split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 58.67209520826808 - type: f1 value: 42.82844991304579 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (hi) config: hi split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 41.95769092864826 - type: f1 value: 28.914127631431263 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (th) config: th split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 55.28390596745027 - type: f1 value: 38.33899250561289 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 70.00336247478144 - type: f1 value: 68.72041942191649 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.0268997982515 - type: f1 value: 75.29844481506652 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: dcefc037ef84348e49b0d29109e891c01067226b metrics: - type: v_measure value: 30.327566856300813 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc metrics: - type: v_measure value: 28.01650210863619 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.11041256752524 - type: mrr value: 32.14172939750204 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610 metrics: - type: map_at_1 value: 3.527 - type: map_at_10 value: 9.283 - type: map_at_100 value: 11.995000000000001 - type: map_at_1000 value: 13.33 - type: map_at_3 value: 6.223 - type: map_at_5 value: 7.68 - type: ndcg_at_1 value: 36.223 - type: ndcg_at_10 value: 28.255999999999997 - type: ndcg_at_100 value: 26.355 - type: ndcg_at_1000 value: 35.536 - type: ndcg_at_3 value: 31.962000000000003 - type: ndcg_at_5 value: 30.61 - type: precision_at_1 value: 37.771 - type: precision_at_10 value: 21.889 - type: precision_at_100 value: 7.1080000000000005 - type: precision_at_1000 value: 1.989 - type: precision_at_3 value: 30.857 - type: precision_at_5 value: 27.307 - type: recall_at_1 value: 3.527 - type: recall_at_10 value: 14.015 - type: recall_at_100 value: 28.402 - type: recall_at_1000 value: 59.795 - type: recall_at_3 value: 7.5969999999999995 - type: recall_at_5 value: 10.641 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c metrics: - type: map_at_1 value: 11.631 - type: map_at_10 value: 19.532 - type: map_at_100 value: 20.821 - type: map_at_1000 value: 20.910999999999998 - type: map_at_3 value: 16.597 - type: map_at_5 value: 18.197 - type: ndcg_at_1 value: 13.413 - type: ndcg_at_10 value: 24.628 - type: ndcg_at_100 value: 30.883 - type: ndcg_at_1000 value: 33.216 - type: ndcg_at_3 value: 18.697 - type: ndcg_at_5 value: 21.501 - type: precision_at_1 value: 13.413 - type: precision_at_10 value: 4.571 - type: precision_at_100 value: 0.812 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 8.845 - type: precision_at_5 value: 6.889000000000001 - type: recall_at_1 value: 11.631 - type: recall_at_10 value: 38.429 - type: recall_at_100 value: 67.009 - type: recall_at_1000 value: 84.796 - type: recall_at_3 value: 22.74 - type: recall_at_5 value: 29.266 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: 6205996560df11e3a3da9ab4f926788fc30a7db4 metrics: - type: map_at_1 value: 66.64 - type: map_at_10 value: 80.394 - type: map_at_100 value: 81.099 - type: map_at_1000 value: 81.122 - type: map_at_3 value: 77.289 - type: map_at_5 value: 79.25999999999999 - type: ndcg_at_1 value: 76.85 - type: ndcg_at_10 value: 84.68 - type: ndcg_at_100 value: 86.311 - type: ndcg_at_1000 value: 86.49900000000001 - type: ndcg_at_3 value: 81.295 - type: ndcg_at_5 value: 83.199 - type: precision_at_1 value: 76.85 - type: precision_at_10 value: 12.928999999999998 - type: precision_at_100 value: 1.51 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 35.557 - type: precision_at_5 value: 23.576 - type: recall_at_1 value: 66.64 - type: recall_at_10 value: 93.059 - type: recall_at_100 value: 98.922 - type: recall_at_1000 value: 99.883 - type: recall_at_3 value: 83.49499999999999 - type: recall_at_5 value: 88.729 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: b2805658ae38990172679479369a78b86de8c390 metrics: - type: v_measure value: 42.17131361041068 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: v_measure value: 48.01815621479994 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5 metrics: - type: map_at_1 value: 3.198 - type: map_at_10 value: 7.550999999999999 - type: map_at_100 value: 9.232 - type: map_at_1000 value: 9.51 - type: map_at_3 value: 5.2940000000000005 - type: map_at_5 value: 6.343999999999999 - type: ndcg_at_1 value: 15.8 - type: ndcg_at_10 value: 13.553999999999998 - type: ndcg_at_100 value: 20.776 - type: ndcg_at_1000 value: 26.204 - type: ndcg_at_3 value: 12.306000000000001 - type: ndcg_at_5 value: 10.952 - type: precision_at_1 value: 15.8 - type: precision_at_10 value: 7.180000000000001 - type: precision_at_100 value: 1.762 - type: precision_at_1000 value: 0.307 - type: precision_at_3 value: 11.333 - type: precision_at_5 value: 9.62 - type: recall_at_1 value: 3.198 - type: recall_at_10 value: 14.575 - type: recall_at_100 value: 35.758 - type: recall_at_1000 value: 62.317 - type: recall_at_3 value: 6.922000000000001 - type: recall_at_5 value: 9.767000000000001 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cos_sim_pearson value: 84.5217161312271 - type: cos_sim_spearman value: 79.58562467776268 - type: euclidean_pearson value: 76.69364353942403 - type: euclidean_spearman value: 74.68959282070473 - type: manhattan_pearson value: 76.81159265133732 - type: manhattan_spearman value: 74.7519444048176 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f metrics: - type: cos_sim_pearson value: 83.70403706922605 - type: cos_sim_spearman value: 74.28502198729447 - type: euclidean_pearson value: 83.32719404608066 - type: euclidean_spearman value: 75.92189433460788 - type: manhattan_pearson value: 83.35841543005293 - type: manhattan_spearman value: 75.94458615451978 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9 metrics: - type: cos_sim_pearson value: 84.94127878986795 - type: cos_sim_spearman value: 85.35148434923192 - type: euclidean_pearson value: 81.71127467071571 - type: euclidean_spearman value: 82.88240481546771 - type: manhattan_pearson value: 81.72826221967252 - type: manhattan_spearman value: 82.90725064625128 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b metrics: - type: cos_sim_pearson value: 83.1474704168523 - type: cos_sim_spearman value: 79.20612995350827 - type: euclidean_pearson value: 78.85993329596555 - type: euclidean_spearman value: 78.91956572744715 - type: manhattan_pearson value: 78.89999720522347 - type: manhattan_spearman value: 78.93956842550107 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6 metrics: - type: cos_sim_pearson value: 84.81255514055894 - type: cos_sim_spearman value: 85.5217140762934 - type: euclidean_pearson value: 82.15024353784499 - type: euclidean_spearman value: 83.04155334389833 - type: manhattan_pearson value: 82.18598945053624 - type: manhattan_spearman value: 83.07248357693301 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd metrics: - type: cos_sim_pearson value: 80.63248465157822 - type: cos_sim_spearman value: 82.53853238521991 - type: euclidean_pearson value: 78.33936863828221 - type: euclidean_spearman value: 79.16305579487414 - type: manhattan_pearson value: 78.3888359870894 - type: manhattan_spearman value: 79.18504473136467 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 90.09066290639687 - type: cos_sim_spearman value: 90.43893699357069 - type: euclidean_pearson value: 82.39520777222396 - type: euclidean_spearman value: 81.23948185395952 - type: manhattan_pearson value: 82.35529784653383 - type: manhattan_spearman value: 81.12681522483975 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 63.52752323046846 - type: cos_sim_spearman value: 63.19719780439462 - type: euclidean_pearson value: 58.29085490641428 - type: euclidean_spearman value: 58.975178656335046 - type: manhattan_pearson value: 58.183542772416985 - type: manhattan_spearman value: 59.190630462178994 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: 8913289635987208e6e7c72789e4be2fe94b6abd metrics: - type: cos_sim_pearson value: 85.45100366635687 - type: cos_sim_spearman value: 85.66816193002651 - type: euclidean_pearson value: 81.87976731329091 - type: euclidean_spearman value: 82.01382867690964 - type: manhattan_pearson value: 81.88260155706726 - type: manhattan_spearman value: 82.05258597906492 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: 56a6d0140cf6356659e2a7c1413286a774468d44 metrics: - type: map value: 77.53549990038017 - type: mrr value: 93.37474163454556 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: a75ae049398addde9b70f6b268875f5cbce99089 metrics: - type: map_at_1 value: 31.167 - type: map_at_10 value: 40.778 - type: map_at_100 value: 42.063 - type: map_at_1000 value: 42.103 - type: map_at_3 value: 37.12 - type: map_at_5 value: 39.205 - type: ndcg_at_1 value: 33.667 - type: ndcg_at_10 value: 46.662 - type: ndcg_at_100 value: 51.995999999999995 - type: ndcg_at_1000 value: 53.254999999999995 - type: ndcg_at_3 value: 39.397999999999996 - type: ndcg_at_5 value: 42.934 - type: precision_at_1 value: 33.667 - type: precision_at_10 value: 7.1 - type: precision_at_100 value: 0.993 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 16.111 - type: precision_at_5 value: 11.600000000000001 - type: recall_at_1 value: 31.167 - type: recall_at_10 value: 63.744 - type: recall_at_100 value: 87.156 - type: recall_at_1000 value: 97.556 - type: recall_at_3 value: 44.0 - type: recall_at_5 value: 52.556000000000004 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea metrics: - type: cos_sim_accuracy value: 99.55148514851486 - type: cos_sim_ap value: 80.535236573428 - type: cos_sim_f1 value: 75.01331912626532 - type: cos_sim_precision value: 80.27366020524515 - type: cos_sim_recall value: 70.39999999999999 - type: dot_accuracy value: 99.04851485148515 - type: dot_ap value: 28.505358821499726 - type: dot_f1 value: 36.36363636363637 - type: dot_precision value: 37.160751565762006 - type: dot_recall value: 35.6 - type: euclidean_accuracy value: 99.4990099009901 - type: euclidean_ap value: 74.95819047075476 - type: euclidean_f1 value: 71.15489874110564 - type: euclidean_precision value: 78.59733978234583 - type: euclidean_recall value: 65.0 - type: manhattan_accuracy value: 99.50198019801981 - type: manhattan_ap value: 75.02070096015086 - type: manhattan_f1 value: 71.20535714285712 - type: manhattan_precision value: 80.55555555555556 - type: manhattan_recall value: 63.800000000000004 - type: max_accuracy value: 99.55148514851486 - type: max_ap value: 80.535236573428 - type: max_f1 value: 75.01331912626532 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235 metrics: - type: v_measure value: 54.13314692311623 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0 metrics: - type: v_measure value: 31.115181648287145 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9 metrics: - type: map value: 44.771112666694336 - type: mrr value: 45.30415764790765 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122 metrics: - type: cos_sim_pearson value: 30.849429597669374 - type: cos_sim_spearman value: 30.384175038360194 - type: dot_pearson value: 29.030383429536823 - type: dot_spearman value: 28.03273624951732 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217 metrics: - type: map_at_1 value: 0.19499999999999998 - type: map_at_10 value: 1.0959999999999999 - type: map_at_100 value: 5.726 - type: map_at_1000 value: 13.611999999999998 - type: map_at_3 value: 0.45399999999999996 - type: map_at_5 value: 0.67 - type: ndcg_at_1 value: 71.0 - type: ndcg_at_10 value: 55.352999999999994 - type: ndcg_at_100 value: 40.797 - type: ndcg_at_1000 value: 35.955999999999996 - type: ndcg_at_3 value: 63.263000000000005 - type: ndcg_at_5 value: 60.14000000000001 - type: precision_at_1 value: 78.0 - type: precision_at_10 value: 56.99999999999999 - type: precision_at_100 value: 41.199999999999996 - type: precision_at_1000 value: 16.154 - type: precision_at_3 value: 66.667 - type: precision_at_5 value: 62.8 - type: recall_at_1 value: 0.19499999999999998 - type: recall_at_10 value: 1.3639999999999999 - type: recall_at_100 value: 9.317 - type: recall_at_1000 value: 33.629999999999995 - type: recall_at_3 value: 0.49300000000000005 - type: recall_at_5 value: 0.756 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b metrics: - type: map_at_1 value: 1.335 - type: map_at_10 value: 6.293 - type: map_at_100 value: 10.928 - type: map_at_1000 value: 12.359 - type: map_at_3 value: 3.472 - type: map_at_5 value: 4.935 - type: ndcg_at_1 value: 19.387999999999998 - type: ndcg_at_10 value: 16.178 - type: ndcg_at_100 value: 28.149 - type: ndcg_at_1000 value: 39.845000000000006 - type: ndcg_at_3 value: 19.171 - type: ndcg_at_5 value: 17.864 - type: precision_at_1 value: 20.408 - type: precision_at_10 value: 14.49 - type: precision_at_100 value: 6.306000000000001 - type: precision_at_1000 value: 1.3860000000000001 - type: precision_at_3 value: 21.088 - type: precision_at_5 value: 18.367 - type: recall_at_1 value: 1.335 - type: recall_at_10 value: 10.825999999999999 - type: recall_at_100 value: 39.251000000000005 - type: recall_at_1000 value: 74.952 - type: recall_at_3 value: 4.9110000000000005 - type: recall_at_5 value: 7.312 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 69.93339999999999 - type: ap value: 13.87476602492533 - type: f1 value: 53.867357615848555 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: 62146448f05be9e52a36b8ee9936447ea787eede metrics: - type: accuracy value: 62.43916242218449 - type: f1 value: 62.870386304954685 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4 metrics: - type: v_measure value: 37.202082549859796 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 83.65023544137807 - type: cos_sim_ap value: 65.99787692764193 - type: cos_sim_f1 value: 62.10650887573965 - type: cos_sim_precision value: 56.30901287553648 - type: cos_sim_recall value: 69.23482849604221 - type: dot_accuracy value: 79.10830303391549 - type: dot_ap value: 48.80109642320246 - type: dot_f1 value: 51.418744625967314 - type: dot_precision value: 40.30253107683091 - type: dot_recall value: 71.00263852242745 - type: euclidean_accuracy value: 82.45812719794957 - type: euclidean_ap value: 60.09969493259607 - type: euclidean_f1 value: 57.658573789246226 - type: euclidean_precision value: 55.62913907284768 - type: euclidean_recall value: 59.84168865435356 - type: manhattan_accuracy value: 82.46408773916671 - type: manhattan_ap value: 60.116199786815116 - type: manhattan_f1 value: 57.683903860160235 - type: manhattan_precision value: 53.41726618705036 - type: manhattan_recall value: 62.69129287598945 - type: max_accuracy value: 83.65023544137807 - type: max_ap value: 65.99787692764193 - type: max_f1 value: 62.10650887573965 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.34943920518494 - type: cos_sim_ap value: 84.5428891020442 - type: cos_sim_f1 value: 77.09709933923172 - type: cos_sim_precision value: 74.83150952967607 - type: cos_sim_recall value: 79.50415768401602 - type: dot_accuracy value: 84.53448208949432 - type: dot_ap value: 73.96328242371995 - type: dot_f1 value: 70.00553786515299 - type: dot_precision value: 63.58777665995976 - type: dot_recall value: 77.86418232214352 - type: euclidean_accuracy value: 86.87662514068381 - type: euclidean_ap value: 81.45499631520235 - type: euclidean_f1 value: 73.46567109816063 - type: euclidean_precision value: 69.71037533697381 - type: euclidean_recall value: 77.6485987064983 - type: manhattan_accuracy value: 86.88244654014825 - type: manhattan_ap value: 81.47180273946366 - type: manhattan_f1 value: 73.44624393136418 - type: manhattan_precision value: 70.80385852090032 - type: manhattan_recall value: 76.29350169387126 - type: max_accuracy value: 88.34943920518494 - type: max_ap value: 84.5428891020442 - type: max_f1 value: 77.09709933923172 --- # SGPT-5.8B-weightedmean-msmarco-specb-bitfit ## Usage For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt ## Evaluation Results For eval results, refer to our paper: https://arxiv.org/abs/2202.08904 ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 249592 with parameters: ``` {'batch_size': 2, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 5e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: GPTJModel (1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ```bibtex @article{muennighoff2022sgpt, title={SGPT: GPT Sentence Embeddings for Semantic Search}, author={Muennighoff, Niklas}, journal={arXiv preprint arXiv:2202.08904}, year={2022} } ```
olivebradshaw/dummy-model
olivebradshaw
2022-10-03T11:33:35Z
0
0
sentence-transformers
[ "sentence-transformers", "en", "region:us" ]
null
2022-10-01T12:22:27Z
--- language: - en tags: - sentence-transformers # Example: audio widget: - source_sentence: "That is a happy person" sentences: - "That is a happy dog" - "That is a very happy person" - "Today is a sunny day" example_title: "Happy" thumbnail: "https://www.google.com/search?q=cat&source=lnms&tbm=isch&sa=X&ved=2ahUKEwi85fKL5cP6AhWES8AKHbVQD-MQ_AUoAXoECAIQAw&biw=1440&bih=730&dpr=1#imgrc=ik9IXqP62Fi4sM" --- # This is the title ## This is a subtitle As titles and subtitles you may want to include: Model Description, Intended use and limitations, How to use, Limitations and bias, Training data, Training procedure, Preprocessing and Evaluation results. Along with anything else that seems relevant.
lewtun/my-awesome-setfit-model-3
lewtun
2022-10-03T09:06:25Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-03T09:06:17Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
tkubotake/distilbert-base-uncased-finetuned-emotion
tkubotake
2022-10-03T08:25:34Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-28T05:01:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.918 - name: F1 type: f1 value: 0.9179456491632857 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2263 - Accuracy: 0.918 - F1: 0.9179 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8566 | 1.0 | 250 | 0.3283 | 0.903 | 0.9002 | | 0.2607 | 2.0 | 500 | 0.2263 | 0.918 | 0.9179 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
PartiallyTyped/answerable_tydiqa_lm_pretrained_finnish
PartiallyTyped
2022-10-03T07:09:57Z
119
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "text generation", "fi", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-02T14:52:13Z
--- language: - fi tags: - text generation license: mit datasets: - answerable tydiqa --- # ReadMe This is a pretrained model based on [Finnish-NLP/gpt2-finnish](https://huggingface.co/Finnish-NLP/gpt2-finnish) that has been trained on [copenlu/answerable_tydiqa](https://huggingface.co/datasets/copenlu/answerable_tydiqa), specifically the text field of the Finnish samples for 2 epochs. To use the pretrained head, use: `AutoModelForCausalLM.from_pretrained`. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PartiallyTyped/answerable_tydiqa_lm_pretrained_finnish" model = AutoModelForCausalLM.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) ```
lokibots/vit-patch16-1280-gpt2-large-image-summary
lokibots
2022-10-03T04:43:49Z
43
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "image-to-text", "en", "endpoints_compatible", "region:us" ]
image-to-text
2022-10-01T11:32:08Z
--- language: - en tags: - image-to-text --- ## lokibots/vit-patch16-1280-gpt2-large-image-summary This model generates a summary from a given chart image. The model accepts an image of size 1280x768 (or less) and generates a summary describing the contents of the image. **However, training is still required.** ## sample inference code ```{python} from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, GPT2Tokenizer from PIL import Image model = VisionEncoderDecoderModel.from_pretrained("lokibots/vit-patch16-1280-gpt2-large-image-summary") feature_extractor = ViTFeatureExtractor.from_pretrained("lokibots/vit-patch16-1280-gpt2-large-image-summary") tokenizer = GPT2Tokenizer.from_pretrained('gpt2-large') image = Image.open("image_file").convert("RGB") pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values gen_kwargs = {"max_length": 1024, "num_beams": 4} output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) ```
sd-concepts-library/liminalspaces
sd-concepts-library
2022-10-03T04:23:32Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-10-03T04:23:28Z
--- license: mit --- ### Liminalspaces on Stable Diffusion This is the `<liminal image>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<liminal image> 0](https://huggingface.co/sd-concepts-library/liminalspaces/resolve/main/concept_images/1.jpeg) ![<liminal image> 1](https://huggingface.co/sd-concepts-library/liminalspaces/resolve/main/concept_images/4.jpeg) ![<liminal image> 2](https://huggingface.co/sd-concepts-library/liminalspaces/resolve/main/concept_images/2.jpeg) ![<liminal image> 3](https://huggingface.co/sd-concepts-library/liminalspaces/resolve/main/concept_images/0.jpeg) ![<liminal image> 4](https://huggingface.co/sd-concepts-library/liminalspaces/resolve/main/concept_images/3.jpeg) ![<liminal image> 5](https://huggingface.co/sd-concepts-library/liminalspaces/resolve/main/concept_images/5.jpeg)
NeelNanda/SoLU
NeelNanda
2022-10-03T02:22:57Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-09-03T22:11:14Z
--- license: bigscience-bloom-rail-1.0 ---
g30rv17ys/ddpm-geeve-cnv-1500-300ep
g30rv17ys
2022-10-03T01:51:32Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-10-02T16:17:04Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-cnv-1500-300ep ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-cnv-1500-300ep/tensorboard?#scalars)
quantumind/elonmusk-tweets-generator
quantumind
2022-10-03T01:32:25Z
0
1
null
[ "license:apache-2.0", "region:us" ]
null
2022-10-03T01:07:42Z
--- license: apache-2.0 --- A simple text generation model trained on 17+K "Elon Musk tweets" with an accuracy of 92%.
donymorph/donyface
donymorph
2022-10-03T01:07:08Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-10-03T01:07:08Z
--- license: creativeml-openrail-m ---
faceyacc/my-segmentation-model
faceyacc
2022-10-03T01:01:27Z
31
0
transformers
[ "transformers", "pytorch", "segformer", "endpoints_compatible", "region:us" ]
null
2022-10-02T15:00:45Z
## Sidewalk & Street Image Segmentation This model was pre-trained on *SegFormer model fine-tuned on ADE20k*, to segment images of sidewalks, pedestrian walkways, and streets/avenues. The goal of this model is build the "*eyes*" of a self-driving car ML model.
din0s/t5-small-fr-finetuned-en-to-it
din0s
2022-10-02T22:46:16Z
112
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:ccmatrix", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-02T22:08:17Z
--- tags: - generated_from_trainer datasets: - ccmatrix metrics: - bleu model-index: - name: t5-small_fr-finetuned-en-to-it results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: ccmatrix type: ccmatrix config: en-it split: train[3000:12000] args: en-it metrics: - name: Bleu type: bleu value: 7.4222 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small_fr-finetuned-en-to-it This model is a fine-tuned version of [din0s/t5-small-finetuned-en-to-fr](https://huggingface.co/din0s/t5-small-finetuned-en-to-fr) on the ccmatrix dataset. It achieves the following results on the evaluation set: - Loss: 2.3225 - Bleu: 7.4222 - Gen Len: 59.1127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 94 | 3.0406 | 3.2546 | 52.6127 | | No log | 2.0 | 188 | 2.9278 | 3.1206 | 62.774 | | No log | 3.0 | 282 | 2.8573 | 3.4206 | 63.6707 | | No log | 4.0 | 376 | 2.8030 | 3.4847 | 66.408 | | No log | 5.0 | 470 | 2.7602 | 3.8933 | 64.362 | | 3.2982 | 6.0 | 564 | 2.7185 | 3.9298 | 66.058 | | 3.2982 | 7.0 | 658 | 2.6842 | 4.0344 | 65.5773 | | 3.2982 | 8.0 | 752 | 2.6536 | 4.3243 | 65.0047 | | 3.2982 | 9.0 | 846 | 2.6233 | 4.5078 | 64.5813 | | 3.2982 | 10.0 | 940 | 2.5966 | 4.6657 | 63.654 | | 2.9837 | 11.0 | 1034 | 2.5743 | 4.7664 | 63.326 | | 2.9837 | 12.0 | 1128 | 2.5526 | 4.9535 | 62.7327 | | 2.9837 | 13.0 | 1222 | 2.5303 | 5.1386 | 63.5887 | | 2.9837 | 14.0 | 1316 | 2.5122 | 5.1037 | 64.1667 | | 2.9837 | 15.0 | 1410 | 2.4937 | 5.3304 | 63.116 | | 2.8416 | 16.0 | 1504 | 2.4797 | 5.5006 | 61.4953 | | 2.8416 | 17.0 | 1598 | 2.4627 | 5.5892 | 62.01 | | 2.8416 | 18.0 | 1692 | 2.4497 | 5.8497 | 61.42 | | 2.8416 | 19.0 | 1786 | 2.4372 | 6.0074 | 61.1587 | | 2.8416 | 20.0 | 1880 | 2.4256 | 6.1464 | 60.522 | | 2.8416 | 21.0 | 1974 | 2.4148 | 6.3117 | 59.5567 | | 2.7428 | 22.0 | 2068 | 2.4039 | 6.4626 | 59.532 | | 2.7428 | 23.0 | 2162 | 2.3939 | 6.5287 | 60.2307 | | 2.7428 | 24.0 | 2256 | 2.3857 | 6.6093 | 60.22 | | 2.7428 | 25.0 | 2350 | 2.3772 | 6.8004 | 59.396 | | 2.7428 | 26.0 | 2444 | 2.3703 | 6.9433 | 59.5027 | | 2.6779 | 27.0 | 2538 | 2.3631 | 7.0153 | 59.1433 | | 2.6779 | 28.0 | 2632 | 2.3575 | 7.1783 | 58.9793 | | 2.6779 | 29.0 | 2726 | 2.3514 | 7.1639 | 59.362 | | 2.6779 | 30.0 | 2820 | 2.3457 | 7.2176 | 58.9927 | | 2.6779 | 31.0 | 2914 | 2.3411 | 7.2599 | 59.1433 | | 2.6335 | 32.0 | 3008 | 2.3374 | 7.284 | 59.1787 | | 2.6335 | 33.0 | 3102 | 2.3339 | 7.3678 | 59.07 | | 2.6335 | 34.0 | 3196 | 2.3307 | 7.3364 | 58.9813 | | 2.6335 | 35.0 | 3290 | 2.3281 | 7.3318 | 58.96 | | 2.6335 | 36.0 | 3384 | 2.3259 | 7.394 | 59.0787 | | 2.6335 | 37.0 | 3478 | 2.3245 | 7.4133 | 59.0393 | | 2.609 | 38.0 | 3572 | 2.3232 | 7.383 | 59.1887 | | 2.609 | 39.0 | 3666 | 2.3227 | 7.4105 | 59.1227 | | 2.609 | 40.0 | 3760 | 2.3225 | 7.4222 | 59.1127 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.11.0
ChrisC1657/Aqua_tests
ChrisC1657
2022-10-02T20:33:02Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-02T17:06:56Z
--- license: mit --- Aqua_anime_girl_blk_reg_2000.ckpt # Dataset >Training: 16 images >Regularization: 400 images - black reg images # Info >Model Used: Waifu Diffusion 1.3 epoch 5 >Steps: 2000 >Keyword: Aqua (Use this in the prompt) >Class Phrase: Anime girl Aqua_animegirl_wrd_reg_2000.ckpt # Dataset >Training: 16 images >Regularization: 400 images - Waifu Research Department reg images # Info >Model Used: Waifu Diffusion 1.3 epoch 5 >Steps: 2000 >Keyword: Aqua (Use this in the prompt) >Class Phrase: Anime girl Aqua_CxRwMwCYViVz2JUH_blk_reg_2000.ckpt # Dataset >Training: 16 images >Regularization: 400 images - black reg images # Info >Model Used: Waifu Diffusion 1.3 epoch 5 >Steps: 2000 >Keyword: Aqua (Use this in the prompt) >Class Phrase: CxRwMwCYViVz2JUH Aqua_CxRwMwCYViVz2JUH_wrd_reg_2000.ckpt # Dataset >Training: 16 images >Regularization: 400 images - Waifu Research Department reg images # Info >Model Used: Waifu Diffusion 1.3 epoch 5 >Steps: 2000 >Keyword: Aqua (Use this in the prompt) >Class Phrase: CxRwMwCYViVz2JUH
ericntay/stbl_clinical_bert_ft_rs10
ericntay
2022-10-02T19:49:57Z
118
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-02T19:31:32Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: stbl_clinical_bert_ft_rs10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stbl_clinical_bert_ft_rs10 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0846 - F1: 0.9297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2834 | 1.0 | 101 | 0.0930 | 0.8446 | | 0.0669 | 2.0 | 202 | 0.0732 | 0.8938 | | 0.033 | 3.0 | 303 | 0.0676 | 0.9119 | | 0.0168 | 4.0 | 404 | 0.0703 | 0.9219 | | 0.0084 | 5.0 | 505 | 0.0742 | 0.9245 | | 0.006 | 6.0 | 606 | 0.0772 | 0.9252 | | 0.0033 | 7.0 | 707 | 0.0844 | 0.9239 | | 0.0023 | 8.0 | 808 | 0.0855 | 0.9272 | | 0.0019 | 9.0 | 909 | 0.0843 | 0.9296 | | 0.0013 | 10.0 | 1010 | 0.0878 | 0.9262 | | 0.0012 | 11.0 | 1111 | 0.0857 | 0.9266 | | 0.0008 | 12.0 | 1212 | 0.0846 | 0.9297 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
coastalcph/fairlex-ecthr-minilm
coastalcph
2022-10-02T19:30:00Z
114
2
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "legal", "fairlex", "en", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en pipeline_tag: fill-mask license: cc-by-nc-sa-4.0 tags: - legal - fairlex widget: - text: "The applicant submitted that her husband was subjected to treatment amounting to <mask> whilst in the custody of Adana Security Directorate" --- # FairLex: A multilingual benchmark for evaluating fairness in legal text processing We present a benchmark suite of four datasets for evaluating the fairness of pre-trained legal language models and the techniques used to fine-tune them for downstream tasks. Our benchmarks cover four jurisdictions (European Council, USA, Swiss, and Chinese), five languages (English, German, French, Italian and Chinese) and fairness across five attributes (gender, age, nationality/region, language, and legal area). In our experiments, we evaluate pre-trained language models using several group-robust fine-tuning techniques and show that performance group disparities are vibrant in many cases, while none of these techniques guarantee fairness, nor consistently mitigate group disparities. Furthermore, we provide a quantitative and qualitative analysis of our results, highlighting open challenges in the development of robustness methods in legal NLP. --- Ilias Chalkidis, Tommaso Passini, Sheng Zhang, Letizia Tomada, Sebastian Felix Schwemer, and Anders Søgaard. 2022. FairLex: A multilingual bench-mark for evaluating fairness in legal text processing. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland. --- ## Pre-training details For the purpose of this work, we release four domain-specific BERT models with continued pre-training on the corpora of the examined datasets (ECtHR, SCOTUS, FSCS, SPC). We train mini-sized BERT models with 6 Transformer blocks, 384 hidden units, and 12 attention heads. We warm-start all models from the public MiniLMv2 (Wang et al., 2021) using the distilled version of RoBERTa (Liu et al., 2019). For the English datasets (ECtHR, SCOTUS) and the one distilled from XLM-R (Conneau et al., 2021) for the rest (trilingual FSCS, and Chinese SPC). ## Models list | Model name | Training corpora | Language | |-----------------------------------|------------------|--------------------| | `coastalcph/fairlex-ecthr-minlm` | ECtHR | `en` | | `coastalcph/fairlex-scotus-minlm` | SCOTUS | `en` | | `coastalcph/fairlex-fscs-minlm` | FSCS | [`de`, `fr`, `it`] | | `coastalcph/fairlex-cail-minlm` | CAIL | `zh` | ## Load Pretrained Model ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("coastalcph/fairlex-ecthr-minilm") model = AutoModel.from_pretrained("coastalcph/fairlex-ecthr-minilm") ``` ## Evaluation on downstream tasks Consider the experiments in the article: _Ilias Chalkidis, Tommaso Passini, Sheng Zhang, Letizia Tomada, Sebastian Felix Schwemer, and Anders Søgaard. 2022. Fairlex: A multilingual bench-mark for evaluating fairness in legal text processing. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland._ ## Author - Publication ``` @inproceedings{chalkidis-2022-fairlex, author={Chalkidis, Ilias and Passini, Tommaso and Zhang, Sheng and Tomada, Letizia and Schwemer, Sebastian Felix and Søgaard, Anders}, title={FairLex: A Multilingual Benchmark for Evaluating Fairness in Legal Text Processing}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics}, year={2022}, address={Dublin, Ireland} } ``` Ilias Chalkidis on behalf of [CoAStaL NLP Group](https://coastalcph.github.io) | Github: [@ilias.chalkidis](https://github.com/iliaschalkidis) | Twitter: [@KiddoThe2B](https://twitter.com/KiddoThe2B) |
spicytaco17/model
spicytaco17
2022-10-02T17:53:15Z
112
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-03T14:43:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4500 - Accuracy: 0.7127 - F1: 0.7141 - Precision: 0.7157 - Recall: 0.7127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Finnish-NLP/t5-base-nl36-finnish
Finnish-NLP
2022-10-02T15:58:48Z
43
1
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "finnish", "t5x", "seq2seq", "fi", "dataset:Finnish-NLP/mc4_fi_cleaned", "dataset:wikipedia", "arxiv:1910.10683", "arxiv:2002.05202", "arxiv:2109.10686", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2022-04-15T10:50:33Z
--- language: - fi license: apache-2.0 tags: - finnish - t5 - t5x - seq2seq datasets: - Finnish-NLP/mc4_fi_cleaned - wikipedia inference: false --- # T5-base-nl36 for Finnish Pretrained T5 model on Finnish language using a span-based masked language modeling (MLM) objective. T5 was introduced in [this paper](https://arxiv.org/abs/1910.10683) and first released at [this page](https://github.com/google-research/text-to-text-transfer-transformer). **Note:** The Hugging Face inference widget is deactivated because this model needs a text-to-text fine-tuning on a specific downstream task to be useful in practice. As an example of a fine-tuned Finnish T5 model, you can check [Finnish-NLP/t5-small-nl24-casing-punctuation-correction](https://huggingface.co/Finnish-NLP/t5-small-nl24-casing-punctuation-correction) which has been fine-tuned to correct missing casing and punctuation for Finnish text. ## Model description T5 is an encoder-decoder model and treats all NLP problems in a text-to-text format. Finnish T5 is a transformers model pretrained on a very large corpus of Finnish data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and outputs from those texts. More precisely, it was pretrained with the span-based masked language modeling (MLM) objective. Spans of the input sequence are masked by so-called sentinel tokens (a.k.a unique mask tokens) and the output sequence is formed as a concatenation of the same sentinel tokens and the real masked tokens. This way, the model learns an inner representation of the Finnish language. This model used the [T5 v1.1](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) improvements compared to the original T5 model during the pretraining: - GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202) - Dropout was turned off in pretraining (quality win). Dropout should be re-enabled during fine-tuning - Pretrained on span-based masked language modeling (MLM) objective only without mixing in the downstream tasks - No parameter sharing between embedding and classifier layer This model also used the "efficient" T5 architecture findings presented in [this paper](https://arxiv.org/abs/2109.10686). In a nutshell, the paper indicates that a Deep-Narrow model architecture is favorable for downstream performance compared to other model architectures of similar parameter count. To be more precise, model depth is defined as the number of transformer blocks that are stacked sequentially. This model uses the [t5-efficient-base-nl36](https://huggingface.co/google/t5-efficient-base-nl36) architecture's layer depth which means both the encoder and the decoder have 36 transformer layers compared to the original T5 "base" model's architecture of 12 transformer layers. In total, this model has 814 million parameters. ## Intended uses & limitations This model was only pretrained in a self-supervised way excluding any supervised training. Therefore, this model has to be fine-tuned before it is usable on a downstream task, like text classification, unlike the Google's original T5 model. **Note:** You most likely need to fine-tune these T5 models without mixed precision so fine-tune them with full fp32 precision. You can also find more fine-tuning tips from [here](https://discuss.huggingface.co/t/t5-finetuning-tips), for example. ### How to use Here is how to use this model in PyTorch: ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Finnish-NLP/t5-base-nl36-finnish") model = T5ForConditionalGeneration.from_pretrained("Finnish-NLP/t5-base-nl36-finnish") ``` and in TensorFlow: ```python from transformers import T5Tokenizer, TFT5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Finnish-NLP/t5-base-nl36-finnish") model = T5ForConditionalGeneration.from_pretrained("Finnish-NLP/t5-base-nl36-finnish", from_pt=True) ``` ### Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model. ## Training data This Finnish T5 model was pretrained on the combination of six datasets: - [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo). - [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset - [Yle Finnish News Archive 2011-2018](http://urn.fi/urn:nbn:fi:lb-2017070501) - [Yle Finnish News Archive 2019-2020](http://urn.fi/urn:nbn:fi:lb-2021050401) - [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001) - [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803) Raw datasets were automatically cleaned to filter out bad quality and non-Finnish examples. Also, a [perplexity](https://huggingface.co/course/chapter7/3#perplexity-for-language-models) score was calculated for all texts with a KenLM model which was trained with very clean Finnish texts only. This perplexity score can then be used to determine how "clean" Finnish language the text contains. Lastly, all datasets were concatenated and the top 90% perplexity score was used as a filtering threshold to filter out the worst quality 10% of texts. Together these cleaned datasets were around 76GB of text. ## Training procedure ### Preprocessing The texts are tokenized using WordPiece and a vocabulary size of 32000. The inputs and the outputs are sequences of 512 consecutive tokens. Texts are not lower cased so this model is case-sensitive: it makes a difference between finnish and Finnish. ### Pretraining The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 1M steps with a batch size of 64 (in total 33B tokens). The optimizer used was a AdaFactor with learning rate warmup for 10K steps with a constant learning rate of 1e-2, and then an inverse square root decay (exponential decay) of the learning rate after. Training code was from the Google's Jax/Flax based [t5x framework](https://github.com/google-research/t5x) and also some t5x task definitions were adapted from [Per's t5x work](https://huggingface.co/pere). ## Evaluation results Evaluation was done by fine-tuning the model on a downstream text classification task with two different labeled Finnish datasets: [Yle News](https://github.com/spyysalo/yle-corpus) and [Eduskunta](https://github.com/aajanki/eduskunta-vkk). Classification fine-tuning was done with a sequence length of 128 tokens. When fine-tuned on those datasets, this model (the sixth row of the table) achieves the following accuracy results compared to our other T5 models and their parameter counts: | | Model parameters | Yle News accuracy | Eduskunta accuracy | |-------------------------------------------------------|------------------|---------------------|----------------------| |Finnish-NLP/t5-tiny-nl6-finnish | 31 million |92.80 |69.07 | |Finnish-NLP/t5-mini-nl8-finnish | 72 million |93.89 |71.43 | |Finnish-NLP/t5-small-nl16-finnish | 184 million |94.46 |74.00 | |Finnish-NLP/t5-small-nl24-finnish | 260 million |**94.68** |74.90 | |Finnish-NLP/byt5-base-finnish | 582 million |92.33 |73.13 | |Finnish-NLP/t5-base-nl36-finnish | 814 million |94.40 |**75.97** | |Finnish-NLP/t5-large-nl36-finnish | 1425 million |94.17 |73.50 | Fine-tuning Google's multilingual mT5 models on the same datasets we can clearly see that our monolingual Finnish T5 models achieve much better results on Finnish text classification: | | Model parameters | Yle News accuracy | Eduskunta accuracy | |-------------------------------------------------------|------------------|---------------------|----------------------| |google/mt5-small | 301 million |91.51 |64.10 | |google/mt5-base | 583 million |92.71 |68.40 | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
Finnish-NLP/t5-small-nl24-finnish
Finnish-NLP
2022-10-02T15:58:11Z
26
1
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "finnish", "t5x", "seq2seq", "fi", "dataset:Finnish-NLP/mc4_fi_cleaned", "dataset:wikipedia", "arxiv:1910.10683", "arxiv:2002.05202", "arxiv:2109.10686", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2022-04-03T16:37:27Z
--- language: - fi license: apache-2.0 tags: - finnish - t5 - t5x - seq2seq datasets: - Finnish-NLP/mc4_fi_cleaned - wikipedia inference: false --- # T5-small-nl24 for Finnish Pretrained T5 model on Finnish language using a span-based masked language modeling (MLM) objective. T5 was introduced in [this paper](https://arxiv.org/abs/1910.10683) and first released at [this page](https://github.com/google-research/text-to-text-transfer-transformer). **Note:** The Hugging Face inference widget is deactivated because this model needs a text-to-text fine-tuning on a specific downstream task to be useful in practice. As an example of a fine-tuned Finnish T5 model, you can check [Finnish-NLP/t5-small-nl24-casing-punctuation-correction](https://huggingface.co/Finnish-NLP/t5-small-nl24-casing-punctuation-correction) which has been fine-tuned to correct missing casing and punctuation for Finnish text. ## Model description T5 is an encoder-decoder model and treats all NLP problems in a text-to-text format. Finnish T5 is a transformers model pretrained on a very large corpus of Finnish data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and outputs from those texts. More precisely, it was pretrained with the span-based masked language modeling (MLM) objective. Spans of the input sequence are masked by so-called sentinel tokens (a.k.a unique mask tokens) and the output sequence is formed as a concatenation of the same sentinel tokens and the real masked tokens. This way, the model learns an inner representation of the Finnish language. This model used the [T5 v1.1](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) improvements compared to the original T5 model during the pretraining: - GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202) - Dropout was turned off in pretraining (quality win). Dropout should be re-enabled during fine-tuning - Pretrained on span-based masked language modeling (MLM) objective only without mixing in the downstream tasks - No parameter sharing between embedding and classifier layer This model also used the "efficient" T5 architecture findings presented in [this paper](https://arxiv.org/abs/2109.10686). In a nutshell, the paper indicates that a Deep-Narrow model architecture is favorable for downstream performance compared to other model architectures of similar parameter count. To be more precise, model depth is defined as the number of transformer blocks that are stacked sequentially. This model uses the [t5-efficient-small-nl24](https://huggingface.co/google/t5-efficient-small-nl24) architecture's layer depth which means both the encoder and the decoder have 24 transformer layers compared to the original T5 "small" model's architecture of 6 transformer layers. In total, this model has 260 million parameters. ## Intended uses & limitations This model was only pretrained in a self-supervised way excluding any supervised training. Therefore, this model has to be fine-tuned before it is usable on a downstream task, like text classification, unlike the Google's original T5 model. **Note:** You most likely need to fine-tune these T5 models without mixed precision so fine-tune them with full fp32 precision. You can also find more fine-tuning tips from [here](https://discuss.huggingface.co/t/t5-finetuning-tips), for example. ### How to use Here is how to use this model in PyTorch: ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Finnish-NLP/t5-small-nl24-finnish") model = T5ForConditionalGeneration.from_pretrained("Finnish-NLP/t5-small-nl24-finnish") ``` and in TensorFlow: ```python from transformers import T5Tokenizer, TFT5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Finnish-NLP/t5-small-nl24-finnish") model = T5ForConditionalGeneration.from_pretrained("Finnish-NLP/t5-small-nl24-finnish", from_pt=True) ``` ### Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model. ## Training data This Finnish T5 model was pretrained on the combination of six datasets: - [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo). - [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset - [Yle Finnish News Archive 2011-2018](http://urn.fi/urn:nbn:fi:lb-2017070501) - [Yle Finnish News Archive 2019-2020](http://urn.fi/urn:nbn:fi:lb-2021050401) - [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001) - [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803) Raw datasets were automatically cleaned to filter out bad quality and non-Finnish examples. Also, a [perplexity](https://huggingface.co/course/chapter7/3#perplexity-for-language-models) score was calculated for all texts with a KenLM model which was trained with very clean Finnish texts only. This perplexity score can then be used to determine how "clean" Finnish language the text contains. Lastly, all datasets were concatenated and the top 90% perplexity score was used as a filtering threshold to filter out the worst quality 10% of texts. Together these cleaned datasets were around 76GB of text. ## Training procedure ### Preprocessing The texts are tokenized using WordPiece and a vocabulary size of 32000. The inputs and the outputs are sequences of 512 consecutive tokens. Texts are not lower cased so this model is case-sensitive: it makes a difference between finnish and Finnish. ### Pretraining The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 500K steps with a batch size of 256 (in total 66B tokens). The optimizer used was a AdaFactor with learning rate warmup for 10K steps with a constant learning rate of 1e-2, and then an inverse square root decay (exponential decay) of the learning rate after. Training code was from the Google's Jax/Flax based [t5x framework](https://github.com/google-research/t5x) and also some t5x task definitions were adapted from [Per's t5x work](https://huggingface.co/pere). ## Evaluation results Evaluation was done by fine-tuning the model on a downstream text classification task with two different labeled Finnish datasets: [Yle News](https://github.com/spyysalo/yle-corpus) and [Eduskunta](https://github.com/aajanki/eduskunta-vkk). Classification fine-tuning was done with a sequence length of 128 tokens. When fine-tuned on those datasets, this model (the fourth row of the table) achieves the following accuracy results compared to our other T5 models and their parameter counts: | | Model parameters | Yle News accuracy | Eduskunta accuracy | |-------------------------------------------------------|------------------|---------------------|----------------------| |Finnish-NLP/t5-tiny-nl6-finnish | 31 million |92.80 |69.07 | |Finnish-NLP/t5-mini-nl8-finnish | 72 million |93.89 |71.43 | |Finnish-NLP/t5-small-nl16-finnish | 184 million |94.46 |74.00 | |Finnish-NLP/t5-small-nl24-finnish | 260 million |**94.68** |74.90 | |Finnish-NLP/byt5-base-finnish | 582 million |92.33 |73.13 | |Finnish-NLP/t5-base-nl36-finnish | 814 million |94.40 |**75.97** | |Finnish-NLP/t5-large-nl36-finnish | 1425 million |94.17 |73.50 | Fine-tuning Google's multilingual mT5 models on the same datasets we can clearly see that our monolingual Finnish T5 models achieve much better results on Finnish text classification: | | Model parameters | Yle News accuracy | Eduskunta accuracy | |-------------------------------------------------------|------------------|---------------------|----------------------| |google/mt5-small | 301 million |91.51 |64.10 | |google/mt5-base | 583 million |92.71 |68.40 | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
Sandipan1994/t5-small-finetuned-eli5-extra-finetune
Sandipan1994
2022-10-02T15:57:26Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-02T08:32:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-small-finetuned-eli5-extra-finetune results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 9.8647 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-eli5-extra-finetune This model is a fine-tuned version of [Sandipan1994/t5-small-finetuned-eli5](https://huggingface.co/Sandipan1994/t5-small-finetuned-eli5) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 3.6711 - Rouge1: 9.8647 - Rouge2: 1.9166 - Rougel: 7.9523 - Rougelsum: 9.1657 - Gen Len: 18.9981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 3.8865 | 1.0 | 17040 | 3.6929 | 9.9257 | 1.9075 | 8.026 | 9.2238 | 19.0 | | 3.8777 | 2.0 | 34080 | 3.6764 | 9.8568 | 1.9027 | 7.9443 | 9.1535 | 18.9981 | | 3.8667 | 3.0 | 51120 | 3.6711 | 9.8647 | 1.9166 | 7.9523 | 9.1657 | 18.9981 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Finnish-NLP/t5-mini-nl8-finnish
Finnish-NLP
2022-10-02T15:57:23Z
185
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "finnish", "t5x", "seq2seq", "fi", "dataset:Finnish-NLP/mc4_fi_cleaned", "dataset:wikipedia", "arxiv:1910.10683", "arxiv:2002.05202", "arxiv:2109.10686", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2022-03-31T10:43:36Z
--- language: - fi license: apache-2.0 tags: - finnish - t5 - t5x - seq2seq datasets: - Finnish-NLP/mc4_fi_cleaned - wikipedia inference: false --- # T5-mini-nl8 for Finnish Pretrained T5 model on Finnish language using a span-based masked language modeling (MLM) objective. T5 was introduced in [this paper](https://arxiv.org/abs/1910.10683) and first released at [this page](https://github.com/google-research/text-to-text-transfer-transformer). **Note:** The Hugging Face inference widget is deactivated because this model needs a text-to-text fine-tuning on a specific downstream task to be useful in practice. As an example of a fine-tuned Finnish T5 model, you can check [Finnish-NLP/t5-small-nl24-casing-punctuation-correction](https://huggingface.co/Finnish-NLP/t5-small-nl24-casing-punctuation-correction) which has been fine-tuned to correct missing casing and punctuation for Finnish text. ## Model description T5 is an encoder-decoder model and treats all NLP problems in a text-to-text format. Finnish T5 is a transformers model pretrained on a very large corpus of Finnish data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and outputs from those texts. More precisely, it was pretrained with the span-based masked language modeling (MLM) objective. Spans of the input sequence are masked by so-called sentinel tokens (a.k.a unique mask tokens) and the output sequence is formed as a concatenation of the same sentinel tokens and the real masked tokens. This way, the model learns an inner representation of the Finnish language. This model used the [T5 v1.1](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) improvements compared to the original T5 model during the pretraining: - GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202) - Dropout was turned off in pretraining (quality win). Dropout should be re-enabled during fine-tuning - Pretrained on span-based masked language modeling (MLM) objective only without mixing in the downstream tasks - No parameter sharing between embedding and classifier layer This model also used the "efficient" T5 architecture findings presented in [this paper](https://arxiv.org/abs/2109.10686). In a nutshell, the paper indicates that a Deep-Narrow model architecture is favorable for downstream performance compared to other model architectures of similar parameter count. To be more precise, model depth is defined as the number of transformer blocks that are stacked sequentially. This model uses the [t5-efficient-mini-nl8](https://huggingface.co/google/t5-efficient-mini-nl8) architecture's layer depth which means both the encoder and the decoder have 8 transformer layers compared to the original T5 "mini" model's architecture of 4 transformer layers. In total, this model has 72 million parameters. ## Intended uses & limitations This model was only pretrained in a self-supervised way excluding any supervised training. Therefore, this model has to be fine-tuned before it is usable on a downstream task, like text classification, unlike the Google's original T5 model. **Note:** You most likely need to fine-tune these T5 models without mixed precision so fine-tune them with full fp32 precision. You can also find more fine-tuning tips from [here](https://discuss.huggingface.co/t/t5-finetuning-tips), for example. ### How to use Here is how to use this model in PyTorch: ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Finnish-NLP/t5-mini-nl8-finnish") model = T5ForConditionalGeneration.from_pretrained("Finnish-NLP/t5-mini-nl8-finnish") ``` and in TensorFlow: ```python from transformers import T5Tokenizer, TFT5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Finnish-NLP/t5-mini-nl8-finnish") model = T5ForConditionalGeneration.from_pretrained("Finnish-NLP/t5-mini-nl8-finnish", from_pt=True) ``` ### Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model. ## Training data This Finnish T5 model was pretrained on the combination of six datasets: - [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo). - [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset - [Yle Finnish News Archive 2011-2018](http://urn.fi/urn:nbn:fi:lb-2017070501) - [Yle Finnish News Archive 2019-2020](http://urn.fi/urn:nbn:fi:lb-2021050401) - [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001) - [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803) Raw datasets were automatically cleaned to filter out bad quality and non-Finnish examples. Also, a [perplexity](https://huggingface.co/course/chapter7/3#perplexity-for-language-models) score was calculated for all texts with a KenLM model which was trained with very clean Finnish texts only. This perplexity score can then be used to determine how "clean" Finnish language the text contains. Lastly, all datasets were concatenated and the top 90% perplexity score was used as a filtering threshold to filter out the worst quality 10% of texts. Together these cleaned datasets were around 76GB of text. ## Training procedure ### Preprocessing The texts are tokenized using WordPiece and a vocabulary size of 32000. The inputs and the outputs are sequences of 512 consecutive tokens. Texts are not lower cased so this model is case-sensitive: it makes a difference between finnish and Finnish. ### Pretraining The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 500K steps with a batch size of 256 (in total 66B tokens). The optimizer used was a AdaFactor with learning rate warmup for 10K steps with a constant learning rate of 1e-2, and then an inverse square root decay (exponential decay) of the learning rate after. Training code was from the Google's Jax/Flax based [t5x framework](https://github.com/google-research/t5x) and also some t5x task definitions were adapted from [Per's t5x work](https://huggingface.co/pere). ## Evaluation results Evaluation was done by fine-tuning the model on a downstream text classification task with two different labeled Finnish datasets: [Yle News](https://github.com/spyysalo/yle-corpus) and [Eduskunta](https://github.com/aajanki/eduskunta-vkk). Classification fine-tuning was done with a sequence length of 128 tokens. When fine-tuned on those datasets, this model (the second row of the table) achieves the following accuracy results compared to our other T5 models and their parameter counts: | | Model parameters | Yle News accuracy | Eduskunta accuracy | |-------------------------------------------------------|------------------|---------------------|----------------------| |Finnish-NLP/t5-tiny-nl6-finnish | 31 million |92.80 |69.07 | |Finnish-NLP/t5-mini-nl8-finnish | 72 million |93.89 |71.43 | |Finnish-NLP/t5-small-nl16-finnish | 184 million |94.46 |74.00 | |Finnish-NLP/t5-small-nl24-finnish | 260 million |**94.68** |74.90 | |Finnish-NLP/byt5-base-finnish | 582 million |92.33 |73.13 | |Finnish-NLP/t5-base-nl36-finnish | 814 million |94.40 |**75.97** | |Finnish-NLP/t5-large-nl36-finnish | 1425 million |94.17 |73.50 | Fine-tuning Google's multilingual mT5 models on the same datasets we can clearly see that our monolingual Finnish T5 models achieve much better results on Finnish text classification: | | Model parameters | Yle News accuracy | Eduskunta accuracy | |-------------------------------------------------------|------------------|---------------------|----------------------| |google/mt5-small | 301 million |91.51 |64.10 | |google/mt5-base | 583 million |92.71 |68.40 | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
Finnish-NLP/t5-small-nl16-finnish
Finnish-NLP
2022-10-02T15:55:05Z
7
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "finnish", "t5x", "seq2seq", "fi", "dataset:Finnish-NLP/mc4_fi_cleaned", "dataset:wikipedia", "arxiv:1910.10683", "arxiv:2002.05202", "arxiv:2109.10686", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2022-08-18T10:51:43Z
--- language: - fi license: apache-2.0 tags: - finnish - t5 - t5x - seq2seq datasets: - Finnish-NLP/mc4_fi_cleaned - wikipedia inference: false --- # T5-small-nl16 for Finnish Pretrained T5 model on Finnish language using a span-based masked language modeling (MLM) objective. T5 was introduced in [this paper](https://arxiv.org/abs/1910.10683) and first released at [this page](https://github.com/google-research/text-to-text-transfer-transformer). **Note:** The Hugging Face inference widget is deactivated because this model needs a text-to-text fine-tuning on a specific downstream task to be useful in practice. As an example of a fine-tuned Finnish T5 model, you can check [Finnish-NLP/t5-small-nl24-casing-punctuation-correction](https://huggingface.co/Finnish-NLP/t5-small-nl24-casing-punctuation-correction) which has been fine-tuned to correct missing casing and punctuation for Finnish text. ## Model description T5 is an encoder-decoder model and treats all NLP problems in a text-to-text format. Finnish T5 is a transformers model pretrained on a very large corpus of Finnish data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and outputs from those texts. More precisely, it was pretrained with the span-based masked language modeling (MLM) objective. Spans of the input sequence are masked by so-called sentinel tokens (a.k.a unique mask tokens) and the output sequence is formed as a concatenation of the same sentinel tokens and the real masked tokens. This way, the model learns an inner representation of the Finnish language. This model used the [T5 v1.1](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#t511) improvements compared to the original T5 model during the pretraining: - GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202) - Dropout was turned off in pretraining (quality win). Dropout should be re-enabled during fine-tuning - Pretrained on span-based masked language modeling (MLM) objective only without mixing in the downstream tasks - No parameter sharing between embedding and classifier layer This model also used the "efficient" T5 architecture findings presented in [this paper](https://arxiv.org/abs/2109.10686). In a nutshell, the paper indicates that a Deep-Narrow model architecture is favorable for downstream performance compared to other model architectures of similar parameter count. To be more precise, model depth is defined as the number of transformer blocks that are stacked sequentially. This model uses the [t5-efficient-small-nl16](https://huggingface.co/google/t5-efficient-small-nl16) architecture's layer depth which means both the encoder and the decoder have 16 transformer layers compared to the original T5 "small" model's architecture of 6 transformer layers. In total, this model has 184 million parameters. ## Intended uses & limitations This model was only pretrained in a self-supervised way excluding any supervised training. Therefore, this model has to be fine-tuned before it is usable on a downstream task, like text classification, unlike the Google's original T5 model. **Note:** You most likely need to fine-tune these T5 models without mixed precision so fine-tune them with full fp32 precision. You can also find more fine-tuning tips from [here](https://discuss.huggingface.co/t/t5-finetuning-tips), for example. ### How to use Here is how to use this model in PyTorch: ```python from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Finnish-NLP/t5-small-nl16-finnish") model = T5ForConditionalGeneration.from_pretrained("Finnish-NLP/t5-small-nl16-finnish") ``` and in TensorFlow: ```python from transformers import T5Tokenizer, TFT5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("Finnish-NLP/t5-small-nl16-finnish") model = T5ForConditionalGeneration.from_pretrained("Finnish-NLP/t5-small-nl16-finnish", from_pt=True) ``` ### Limitations and bias The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model. ## Training data This Finnish T5 model was pretrained on the combination of six datasets: - [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo). - [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset - [Yle Finnish News Archive 2011-2018](http://urn.fi/urn:nbn:fi:lb-2017070501) - [Yle Finnish News Archive 2019-2020](http://urn.fi/urn:nbn:fi:lb-2021050401) - [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001) - [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803) Raw datasets were automatically cleaned to filter out bad quality and non-Finnish examples. Also, a [perplexity](https://huggingface.co/course/chapter7/3#perplexity-for-language-models) score was calculated for all texts with a KenLM model which was trained with very clean Finnish texts only. This perplexity score can then be used to determine how "clean" Finnish language the text contains. Lastly, all datasets were concatenated and the top 90% perplexity score was used as a filtering threshold to filter out the worst quality 10% of texts. Together these cleaned datasets were around 76GB of text. ## Training procedure ### Preprocessing The texts are tokenized using WordPiece and a vocabulary size of 32000. The inputs and the outputs are sequences of 512 consecutive tokens. Texts are not lower cased so this model is case-sensitive: it makes a difference between finnish and Finnish. ### Pretraining The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 500K steps with a batch size of 256 (in total 66B tokens). The optimizer used was a AdaFactor with learning rate warmup for 10K steps with a constant learning rate of 1e-2, and then an inverse square root decay (exponential decay) of the learning rate after. Training code was from the Google's Jax/Flax based [t5x framework](https://github.com/google-research/t5x) and also some t5x task definitions were adapted from [Per's t5x work](https://huggingface.co/pere). ## Evaluation results Evaluation was done by fine-tuning the model on a downstream text classification task with two different labeled Finnish datasets: [Yle News](https://github.com/spyysalo/yle-corpus) and [Eduskunta](https://github.com/aajanki/eduskunta-vkk). Classification fine-tuning was done with a sequence length of 128 tokens. When fine-tuned on those datasets, this model (the third row of the table) achieves the following accuracy results compared to our other T5 models and their parameter counts: | | Model parameters | Yle News accuracy | Eduskunta accuracy | |-------------------------------------------------------|------------------|---------------------|----------------------| |Finnish-NLP/t5-tiny-nl6-finnish | 31 million |92.80 |69.07 | |Finnish-NLP/t5-mini-nl8-finnish | 72 million |93.89 |71.43 | |Finnish-NLP/t5-small-nl16-finnish | 184 million |94.46 |74.00 | |Finnish-NLP/t5-small-nl24-finnish | 260 million |**94.68** |74.90 | |Finnish-NLP/byt5-base-finnish | 582 million |92.33 |73.13 | |Finnish-NLP/t5-base-nl36-finnish | 814 million |94.40 |**75.97** | |Finnish-NLP/t5-large-nl36-finnish | 1425 million |94.17 |73.50 | Fine-tuning Google's multilingual mT5 models on the same datasets we can clearly see that our monolingual Finnish T5 models achieve much better results on Finnish text classification: | | Model parameters | Yle News accuracy | Eduskunta accuracy | |-------------------------------------------------------|------------------|---------------------|----------------------| |google/mt5-small | 301 million |91.51 |64.10 | |google/mt5-base | 583 million |92.71 |68.40 | ## Acknowledgements This project would not have been possible without compute generously provided by Google through the [TPU Research Cloud](https://sites.research.google/trc/). ## Team Members - Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/) - Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/) Feel free to contact us for more details 🤗
jamesesguerra/mt5-small-finetuned-1.1.0
jamesesguerra
2022-10-02T12:52:58Z
111
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-02T12:23:36Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-1.1.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-1.1.0 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.5550 - Rouge1: 18.5458 - Rouge2: 5.7454 - Rougel: 15.5515 - Rougelsum: 15.7806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 15.4799 | 1.0 | 97 | 6.9041 | 16.3755 | 5.6407 | 13.8081 | 13.8801 | | 9.8046 | 2.0 | 194 | 4.5550 | 18.5458 | 5.7454 | 15.5515 | 15.7806 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
huggingtweets/evelynisepic
huggingtweets
2022-10-02T11:55:16Z
119
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-02T11:53:59Z
--- language: en thumbnail: http://www.huggingtweets.com/evelynisepic/1664711711588/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1559633536130465798/8RaUnaJl_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Evelyn 🏳️‍⚧️</div> <div style="text-align: center; font-size: 14px;">@evelynisepic</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Evelyn 🏳️‍⚧️. | Data | Evelyn 🏳️‍⚧️ | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 32 | | Short tweets | 838 | | Tweets kept | 2376 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ej5kc1v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @evelynisepic's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3bpnoglx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3bpnoglx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/evelynisepic') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
justinpinkney/stylegan3-t-lhq-256
justinpinkney
2022-10-02T11:18:54Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-10-02T11:14:34Z
--- license: mit inference: false --- ## StyleGAN3-t LHQ 256 ![142219592-657e1141-33b4-46ea-b501-8999805d1503.jpg](https://s3.amazonaws.com/moonup/production/uploads/1664709465050-62bd5f951e22ec84279820e8.jpeg) - Name: LHQ-256 - Author: Justin Pinkney/LambdaLabs - Author URL: https://www.justinpinkney.com/ https://lambdalabs.com/ - Dataset: LHQ - Source URL: https://twitter.com/Buntworthy/status/1460980442409185287?s=20 - Resolution: 256x256 - Config: T - Notes: FID=2.31, trained 25 Mimgs, gamma=2, mapping layers=2 For more models see the [Awesome Pretrained StyleGAN3 repo](https://github.com/justinpinkney/awesome-pretrained-stylegan3).
Den4ikAI/rubert-tiny-squad
Den4ikAI
2022-10-02T11:03:32Z
142
0
transformers
[ "transformers", "pytorch", "bert", "pretraining", "question-answering", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-09-11T15:49:10Z
--- license: mit pipeline_tag: question-answering widget: - context: "Пушкин родился 6 июля 1799 года" - text: "Когда родился Пушкин?" example_title: "test" --- обученный rubert от cointegrated/rubert-tiny2. размер выборки - 4. Эпохи - 16. ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="Den4ikAI/rubert-tiny-squad", tokenizer="Den4ikAI/rubert-tiny-squad" ) predictions = qa_pipeline({ 'context': "Пушкин родился 6 июля 1799 года", 'question': "Когда родился Пушкин?" }) print(predictions) # output: #{'score': 0.9413797664642334, 'start': 15, 'end': 31, 'answer': '6 июля 1799 года'} ```
Den4ikAI/rubert_large_squad_2
Den4ikAI
2022-10-02T11:03:11Z
245
4
transformers
[ "transformers", "pytorch", "bert", "question-answering", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-09-12T03:08:58Z
--- license: mit pipeline_tag: question-answering widget: - context: "Пушкин родился 6 июля 1799 года" - text: "Когда родился Пушкин?" example_title: "test" --- обученный rubert от sberbank-ai/ruBert-base. размер выборки - 4. Эпохи - 4. ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="Den4ikAI/rubert_large_squad_2", tokenizer="Den4ikAI/rubert_large_squad_2" ) predictions = qa_pipeline({ 'context': "Пушкин родился 6 июля 1799 года", 'question': "Когда родился Пушкин?" }) print(predictions) # output: #{'score': 0.8013797664642334, 'start': 15, 'end': 31, 'answer': '6 июля 1799 года'} ```
Den4ikAI/rubert-large-squad
Den4ikAI
2022-10-02T11:00:22Z
154
0
transformers
[ "transformers", "pytorch", "question-answering", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-09-09T01:31:51Z
--- license: mit pipeline_tag: question-answering widget: - context: "Пушкин родился 6 июля 1799 года" - text: "Когда родился Пушкин?" example_title: "test" --- обученный rubert от sberbank-ai/ruBert-base. размер выборки - 4. Эпохи - 2. ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="Den4ikAI/rubert-large-squad", tokenizer="Den4ikAI/rubert-large-squad" ) predictions = qa_pipeline({ 'context': "Пушкин родился 6 июля 1799 года", 'question': "Когда родился Пушкин?" }) print(predictions) # output: #{'score': 0.9613797664642334, 'start': 15, 'end': 31, 'answer': '6 июля 1799 года'} ```
Den4ikAI/russian_sensitive_topics
Den4ikAI
2022-10-02T10:42:13Z
331
2
transformers
[ "transformers", "pytorch", "bert", "text-classification", "ru", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-02T10:27:58Z
--- license: mit widget: - text: "Я трахну тебя и убью" example_title: "test_1" - text: "Завтра я приду в эту школу и убью всех" example_title: "test_2" - text: "Я убью тебя с ак47" example_title: "test_2" language: - ru --- Обученный ruBert-large от sberbank-ai Обучался до 10 эпох
rwheel/q-FrozenLake-v1-8x8-no_slippery
rwheel
2022-10-02T10:08:53Z
0
0
null
[ "FrozenLake-v1-8x8-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-02T10:08:47Z
--- tags: - FrozenLake-v1-8x8-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-no_slippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8-no_slippery type: FrozenLake-v1-8x8-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="rwheel/q-FrozenLake-v1-8x8-no_slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
farisk263/PPO
farisk263
2022-10-02T09:24:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-02T08:45:12Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 235.00 +/- 23.78 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Imran1/sentimen_analysis_yelp
Imran1
2022-10-02T07:46:30Z
101
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-22T07:22:34Z
--- #Yelp reviews example_1: the food is not good. example_2: I like this dish. ---
worachot-n/WangchanBERTa_LimeSoda_FakeNews
worachot-n
2022-10-02T07:41:21Z
104
1
transformers
[ "transformers", "pytorch", "camembert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-02T07:25:59Z
Label: - LABEL 0: Fact - LABEL 1: Fake
FIT17/Reinforce-Pixelcopter-PLE-v0
FIT17
2022-10-02T05:42:42Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-10-02T05:42:35Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: -0.20 +/- 1.83 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
FIT17/Reinforce-CartPole-v1
FIT17
2022-10-02T05:41:02Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-10-02T05:40:23Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 127.50 +/- 35.97 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
pedrocaribe/DialoGPT-medium-LL
pedrocaribe
2022-10-02T05:39:12Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-02T04:11:17Z
--- tags: - conversational --- # DialoGPT Model trained based on testimonial given during Brazilian's ex-president trial.
kvssetty/kvs-image-classification
kvssetty
2022-10-02T05:01:19Z
0
0
keras
[ "keras", "Image Classification", "Keras", "TensorFlow", "region:us" ]
null
2022-10-01T12:09:49Z
--- version: 1.0.0 library_name: keras tags: - Image Classification - Keras - TensorFlow extra_gated_prompt: "You agree to not use the model to conduct experiments that cause harm to human subjects." extra_gated_fields: Company: text Country: text I agree to use this model for non-commerical use ONLY: checkbox --- ## Welcome to KVS's Computer Vision Image Classification Model repo This is my first model repository in hugging face and it is a test repo, so you may not find anything interesting in this repo. Anyway, I am trying to implement an image classification model here using CNN architecture and use the TensorFlow python library for implementation.
yuntian-deng/latex2im_ss_100
yuntian-deng
2022-10-02T04:37:34Z
2
0
diffusers
[ "diffusers", "en", "dataset:yuntian-deng/im2latex-100k", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-10-02T04:36:55Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: yuntian-deng/im2latex-100k metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # latex2im_ss_100 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `yuntian-deng/im2latex-100k` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: no ### Training results 📈 [TensorBoard logs](https://huggingface.co/yuntian-deng/latex2im_ss_100/tensorboard?#scalars)
waifu-research-department/Ryougi-Shiki
waifu-research-department
2022-10-02T04:24:36Z
0
1
null
[ "region:us" ]
null
2022-10-02T03:04:57Z
# Description Trainer: naotsue Ryougi Shiki from Kara no Kyoukai # Dataset >Training: 26 images >Regularization: 100 images # Info >Model Used: Waifu Diffusion 1.3 (Epoch 5) >Steps: 3000 >Keyword: SHIKI (Use this in the prompt) >Class Phrase: 1girl ![Sak](https://c4.wallpaperflare.com/wallpaper/245/997/170/kara-no-kyoukai-ryougi-shiki-anime-girls-wallpaper-preview.jpg)
Sandipan1994/t5-small-finetuned-eli5
Sandipan1994
2022-10-02T01:30:41Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-26T03:25:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-small-finetuned-eli5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 9.944 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-eli5 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 3.7275 - Rouge1: 9.944 - Rouge2: 1.908 - Rougel: 8.0145 - Rougelsum: 9.2275 - Gen Len: 18.9988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 3.9806 | 1.0 | 17040 | 3.7726 | 9.8475 | 1.872 | 7.9462 | 9.1258 | 18.9972 | | 3.9458 | 2.0 | 34080 | 3.7369 | 9.9232 | 1.8981 | 7.9922 | 9.2061 | 18.9988 | | 3.9355 | 3.0 | 51120 | 3.7275 | 9.944 | 1.908 | 8.0145 | 9.2275 | 18.9988 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
waifu-research-department/Cirno
waifu-research-department
2022-10-02T00:22:30Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-10-01T23:55:26Z
--- license: mit --- # Description Trainer: Hank Cirno from Touhou # Dataset >Training: 16 images >Regularization: 18 images # Info >Model Used: Waifu Diffusion 1.2 >Steps: 3k >Keyword: A photo of sks (Use this in the prompt) >Class Phrase: ice_fairy ![9z6FEbEmxL.jpg](https://s3.amazonaws.com/moonup/production/uploads/1664669210489-6303fe3cd14428368d1a4137.jpeg)
IIIT-L/roberta-large-finetuned-TRAC-DS
IIIT-L
2022-10-01T20:45:23Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-01T17:17:37Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-large-finetuned-TRAC-DS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-finetuned-TRAC-DS This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8198 - Accuracy: 0.7190 - Precision: 0.6955 - Recall: 0.6979 - F1: 0.6963 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.9538 | 1.0 | 612 | 0.8083 | 0.6111 | 0.6192 | 0.6164 | 0.5994 | | 0.7924 | 2.0 | 1224 | 0.7594 | 0.6601 | 0.6688 | 0.6751 | 0.6424 | | 0.6844 | 3.0 | 1836 | 0.6986 | 0.7042 | 0.6860 | 0.6969 | 0.6858 | | 0.5715 | 3.99 | 2448 | 0.7216 | 0.7075 | 0.6957 | 0.6978 | 0.6925 | | 0.45 | 4.99 | 3060 | 0.7963 | 0.7288 | 0.7126 | 0.7074 | 0.7073 | | 0.352 | 5.99 | 3672 | 1.0824 | 0.7141 | 0.6999 | 0.6774 | 0.6818 | | 0.2546 | 6.99 | 4284 | 1.0884 | 0.7230 | 0.7006 | 0.7083 | 0.7028 | | 0.1975 | 7.99 | 4896 | 1.5338 | 0.7337 | 0.7090 | 0.7063 | 0.7074 | | 0.1656 | 8.99 | 5508 | 1.8182 | 0.7100 | 0.6882 | 0.6989 | 0.6896 | | 0.1358 | 9.98 | 6120 | 2.1623 | 0.7173 | 0.6917 | 0.6959 | 0.6934 | | 0.1235 | 10.98 | 6732 | 2.3249 | 0.7141 | 0.6881 | 0.6914 | 0.6888 | | 0.1003 | 11.98 | 7344 | 2.3474 | 0.7124 | 0.6866 | 0.6920 | 0.6887 | | 0.0826 | 12.98 | 7956 | 2.3574 | 0.7083 | 0.6853 | 0.6959 | 0.6874 | | 0.0727 | 13.98 | 8568 | 2.4989 | 0.7116 | 0.6858 | 0.6934 | 0.6883 | | 0.0553 | 14.98 | 9180 | 2.8090 | 0.7026 | 0.6747 | 0.6710 | 0.6725 | | 0.0433 | 15.97 | 9792 | 2.6647 | 0.7255 | 0.7010 | 0.7028 | 0.7018 | | 0.0449 | 16.97 | 10404 | 2.6568 | 0.7247 | 0.7053 | 0.6997 | 0.7010 | | 0.0373 | 17.97 | 11016 | 2.7632 | 0.7149 | 0.6888 | 0.6938 | 0.6909 | | 0.0278 | 18.97 | 11628 | 2.8245 | 0.7124 | 0.6866 | 0.6930 | 0.6889 | | 0.0288 | 19.97 | 12240 | 2.8198 | 0.7190 | 0.6955 | 0.6979 | 0.6963 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
rojamet/mora
rojamet
2022-10-01T20:43:34Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-10-01T20:43:34Z
--- license: bigscience-openrail-m ---
Bistolero/du_ge_all_2
Bistolero
2022-10-01T20:28:17Z
109
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-01T20:10:50Z
--- tags: - generated_from_trainer model-index: - name: du_ge_all_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # du_ge_all_2 This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 20 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Bistolero/nl3
Bistolero
2022-10-01T20:26:52Z
110
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-01T20:09:24Z
--- tags: - generated_from_trainer model-index: - name: nl3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nl3 This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 25 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
MoososCap/SpongeBob-SquarePants-Diffusion
MoososCap
2022-10-01T19:15:12Z
0
2
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-10-01T18:20:25Z
--- license: creativeml-openrail-m --- Modified from original model:CompVis/stable-diffusion-v-1-4-original training using images: https://i.imgur.com/D76R0eV.jpg https://i.imgur.com/7zQ6f72.jpg https://i.imgur.com/T2vcv5K.jpg https://i.imgur.com/T4RsGHU.jpg https://i.imgur.com/CRrskPZ.jpg https://i.imgur.com/HG9Ba3q.jpg https://i.imgur.com/X0XV8sG.jpg https://i.imgur.com/RTnZIMr.jpg https://i.imgur.com/4QVQodx.jpg https://i.imgur.com/VTsdYj8.jpg https://i.imgur.com/MM4ng1M.jpg If you will not import the model, feel free to use the COLAB below https://colab.research.google.com/drive/1MJ96yoU5J8h1fBWzabBNYBmK_MvNtx71?usp=sharing
sd-concepts-library/852style-girl
sd-concepts-library
2022-10-01T19:07:34Z
0
23
null
[ "license:mit", "region:us" ]
null
2022-10-01T19:07:30Z
--- license: mit --- ### <852style-girl> on Stable Diffusion This is the `<852style-girl>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<852style-girl> 0](https://huggingface.co/sd-concepts-library/852style-girl/resolve/main/concept_images/1.jpeg) ![<852style-girl> 1](https://huggingface.co/sd-concepts-library/852style-girl/resolve/main/concept_images/2.jpeg) ![<852style-girl> 2](https://huggingface.co/sd-concepts-library/852style-girl/resolve/main/concept_images/0.jpeg) ![<852style-girl> 3](https://huggingface.co/sd-concepts-library/852style-girl/resolve/main/concept_images/3.jpeg)
huggingtweets/luisbetx9-microversoslt
huggingtweets
2022-10-01T19:00:42Z
119
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-01T18:54:23Z
--- language: en thumbnail: http://www.huggingtweets.com/luisbetx9-microversoslt/1664650577553/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1572306079282872326/rX5Nbrid_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1296918435469897732/ctOlkbD3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BetaP̾e̾t̾r̾a̾ 🅼²🆙 & MicroversosLT</div> <div style="text-align: center; font-size: 14px;">@luisbetx9-microversoslt</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from BetaP̾e̾t̾r̾a̾ 🅼²🆙 & MicroversosLT. | Data | BetaP̾e̾t̾r̾a̾ 🅼²🆙 | MicroversosLT | | --- | --- | --- | | Tweets downloaded | 3248 | 1105 | | Retweets | 1892 | 709 | | Short tweets | 644 | 185 | | Tweets kept | 712 | 211 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zzml0e6d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @luisbetx9-microversoslt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ewz96ki7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ewz96ki7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/luisbetx9-microversoslt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
LunNova/sd1.4-pony-finetune
LunNova
2022-10-01T18:35:14Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-10-01T18:35:14Z
--- license: creativeml-openrail-m ---
gabrielgmendonca/bert-base-portuguese-cased-finetuned-chico-xavier-finetuned-chico-xavier
gabrielgmendonca
2022-10-01T18:10:15Z
75
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-28T11:15:15Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: gabrielgmendonca/bert-base-portuguese-cased-finetuned-chico-xavier-finetuned-chico-xavier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # gabrielgmendonca/bert-base-portuguese-cased-finetuned-chico-xavier-finetuned-chico-xavier This model is a fine-tuned version of [gabrielgmendonca/bert-base-portuguese-cased-finetuned-chico-xavier](https://huggingface.co/gabrielgmendonca/bert-base-portuguese-cased-finetuned-chico-xavier) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.8630 - Validation Loss: 1.7215 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3430, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.8630 | 1.7215 | 0 | ### Framework versions - Transformers 4.22.2 - TensorFlow 2.8.2 - Datasets 2.5.1 - Tokenizers 0.12.1
waifu-research-department/Aqua
waifu-research-department
2022-10-01T16:14:03Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-10-01T15:54:14Z
--- license: mit --- # Description Trainer: Chris Aqua from Konosuba # Dataset >Training: 16 images >Regularization: 3249 images - waifu-research-department reg images # Info >Model Used: Waifu Diffusion 1.3 epoch 5 >Steps: 3000 >Keyword: Aqua (Use this in the prompt) >Class Phrase: Useless_Goddess
huggingtweets/elonmusk-nftfreaks-nftgirl
huggingtweets
2022-10-01T13:26:17Z
119
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-01T13:24:06Z
--- language: en thumbnail: http://www.huggingtweets.com/elonmusk-nftfreaks-nftgirl/1664630772232/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1572573363255525377/Xz3fufYY_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1524408283674591232/ZcdTVEPl_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1384551299681714177/fHRGvDJR_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & NFT Freaks 🗝🏰🦸🏿‍♂️ & NFTGirl 🖼</div> <div style="text-align: center; font-size: 14px;">@elonmusk-nftfreaks-nftgirl</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & NFT Freaks 🗝🏰🦸🏿‍♂️ & NFTGirl 🖼. | Data | Elon Musk | NFT Freaks 🗝🏰🦸🏿‍♂️ | NFTGirl 🖼 | | --- | --- | --- | --- | | Tweets downloaded | 3200 | 3247 | 2210 | | Retweets | 121 | 1753 | 298 | | Short tweets | 984 | 306 | 395 | | Tweets kept | 2095 | 1188 | 1517 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3aevkd35/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-nftfreaks-nftgirl's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/al5jjb8v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/al5jjb8v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-nftfreaks-nftgirl') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Betka/finetuning-sentiment-model-3000-samples
Betka
2022-10-01T10:17:53Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-01T10:06:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.87248322147651 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2850 - Accuracy: 0.8733 - F1: 0.8725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
philschmid/distilbert-onnx-banking77
philschmid
2022-10-01T07:40:53Z
27
5
generic
[ "generic", "onnx", "text-classification", "endpoints-template", "optimum", "endpoints_compatible", "region:us" ]
text-classification
2022-06-24T19:53:29Z
--- tags: - text-classification - endpoints-template - optimum library_name: generic --- # Optimized and Quantized DistilBERT with a custom pipeline with handler.py > NOTE: Blog post coming soon This is a template repository for Text Classification using Optimum and onnxruntime to support generic inference with Hugging Face Hub generic Inference API. There are two required steps: 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `handler.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload the optimum model and tokenizers as well as the `text-classification` pipeline needed for inference. This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. add ``` library_name: generic ``` to the readme. _note: the `generic` community image currently only support `inputs` as parameter and no parameter._
Bistolero/german_dutchall_mixed2ep
Bistolero
2022-10-01T03:53:57Z
109
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-01T03:34:34Z
--- tags: - generated_from_trainer model-index: - name: german_dutchall_mixed2ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # german_dutchall_mixed2ep This model is a fine-tuned version of [Bistolero/nl_ge_alltr](https://huggingface.co/Bistolero/nl_ge_alltr) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/crb-portraits
sd-concepts-library
2022-10-01T01:57:47Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-10-01T01:57:36Z
--- license: mit --- ### CRB Portraits on Stable Diffusion This is the `<crbportrait>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<crbportrait> 0](https://huggingface.co/sd-concepts-library/crb-portraits/resolve/main/concept_images/1.jpeg) ![<crbportrait> 1](https://huggingface.co/sd-concepts-library/crb-portraits/resolve/main/concept_images/4.jpeg) ![<crbportrait> 2](https://huggingface.co/sd-concepts-library/crb-portraits/resolve/main/concept_images/7.jpeg) ![<crbportrait> 3](https://huggingface.co/sd-concepts-library/crb-portraits/resolve/main/concept_images/2.jpeg) ![<crbportrait> 4](https://huggingface.co/sd-concepts-library/crb-portraits/resolve/main/concept_images/0.jpeg) ![<crbportrait> 5](https://huggingface.co/sd-concepts-library/crb-portraits/resolve/main/concept_images/3.jpeg) ![<crbportrait> 6](https://huggingface.co/sd-concepts-library/crb-portraits/resolve/main/concept_images/6.jpeg) ![<crbportrait> 7](https://huggingface.co/sd-concepts-library/crb-portraits/resolve/main/concept_images/5.jpeg) ![<crbportrait> 8](https://huggingface.co/sd-concepts-library/crb-portraits/resolve/main/concept_images/8.jpeg)
athugodage/T5-RLS500
athugodage
2022-10-01T01:47:15Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-01T01:05:45Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: ru_t5model_for_legalsimplification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ru_t5model_for_legalsimplification This model is a fine-tuned version of [IlyaGusev/rut5_base_sum_gazeta](https://huggingface.co/IlyaGusev/rut5_base_sum_gazeta) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.5364 - Rouge2: 0.1481 - Rougel: 0.506 - Rougelsum: 0.4917 - Gen Len: 163.03 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 157 | nan | 0.5364 | 0.1481 | 0.506 | 0.4917 | 163.03 | | No log | 2.0 | 314 | nan | 0.5364 | 0.1481 | 0.506 | 0.4917 | 163.03 | | No log | 3.0 | 471 | nan | 0.5364 | 0.1481 | 0.506 | 0.4917 | 163.03 | | 0.0 | 4.0 | 628 | nan | 0.5364 | 0.1481 | 0.506 | 0.4917 | 163.03 | | 0.0 | 5.0 | 785 | nan | 0.5364 | 0.1481 | 0.506 | 0.4917 | 163.03 | | 0.0 | 6.0 | 942 | nan | 0.5364 | 0.1481 | 0.506 | 0.4917 | 163.03 | | 0.0 | 7.0 | 1099 | nan | 0.5364 | 0.1481 | 0.506 | 0.4917 | 163.03 | | 0.0 | 8.0 | 1256 | nan | 0.5364 | 0.1481 | 0.506 | 0.4917 | 163.03 | | 0.0 | 9.0 | 1413 | nan | 0.5364 | 0.1481 | 0.506 | 0.4917 | 163.03 | | 0.0 | 10.0 | 1570 | nan | 0.5364 | 0.1481 | 0.506 | 0.4917 | 163.03 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
rajistics/california_housing
rajistics
2022-09-30T23:53:36Z
0
2
sklearn
[ "sklearn", "skops", "tabular-regression", "region:us" ]
tabular-regression
2022-09-30T23:44:07Z
--- library_name: sklearn tags: - sklearn - skops - tabular-regression widget: structuredData: AveBedrms: - 0.9806451612903225 - 1.0379746835443038 - 0.9601449275362319 AveOccup: - 2.587096774193548 - 2.8658227848101268 - 2.6449275362318843 AveRooms: - 7.275268817204301 - 5.39493670886076 - 6.536231884057971 HouseAge: - 38.0 - 25.0 - 39.0 Latitude: - 37.44 - 37.31 - 34.16 Longitude: - -122.19 - -122.03 - -118.07 MedInc: - 9.3198 - 5.3508 - 6.4761 Population: - 1203.0 - 1132.0 - 730.0 --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |--------------------------|---------------| | bootstrap | True | | ccp_alpha | 0.0 | | criterion | squared_error | | max_depth | | | max_features | 1.0 | | max_leaf_nodes | | | max_samples | | | min_impurity_decrease | 0.0 | | min_samples_leaf | 1 | | min_samples_split | 2 | | min_weight_fraction_leaf | 0.0 | | n_estimators | 100 | | n_jobs | | | oob_score | False | | random_state | | | verbose | 0 | | warm_start | False | </details> ### Model Plot The model plot is below. <style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-2" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>RandomForestRegressor()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" checked><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">RandomForestRegressor</label><div class="sk-toggleable__content"><pre>RandomForestRegressor()</pre></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|---------| # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python [More Information Needed] ``` </details> # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ```
Bistolero/genlen2ep
Bistolero
2022-09-30T23:29:34Z
113
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-30T23:12:28Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: genlen2ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # genlen2ep This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 25 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/baluchitherian
sd-concepts-library
2022-09-30T21:10:04Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-30T21:09:58Z
--- license: mit --- ### Baluchitherian on Stable Diffusion This is the `<baluchiter>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<baluchiter> 0](https://huggingface.co/sd-concepts-library/baluchitherian/resolve/main/concept_images/1.jpeg) ![<baluchiter> 1](https://huggingface.co/sd-concepts-library/baluchitherian/resolve/main/concept_images/4.jpeg) ![<baluchiter> 2](https://huggingface.co/sd-concepts-library/baluchitherian/resolve/main/concept_images/2.jpeg) ![<baluchiter> 3](https://huggingface.co/sd-concepts-library/baluchitherian/resolve/main/concept_images/0.jpeg) ![<baluchiter> 4](https://huggingface.co/sd-concepts-library/baluchitherian/resolve/main/concept_images/3.jpeg)
stevhliu/my_awesome_wnut_model
stevhliu
2022-09-30T18:27:37Z
176
1
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-30T17:31:41Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: stevhliu/my_awesome_wnut_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # stevhliu/my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1210 - Validation Loss: 0.2698 - Train Precision: 0.5099 - Train Recall: 0.3995 - Train F1: 0.4480 - Train Accuracy: 0.9444 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 636, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.3233 | 0.3099 | 0.4155 | 0.2117 | 0.2805 | 0.9333 | 0 | | 0.1600 | 0.2743 | 0.5111 | 0.3589 | 0.4216 | 0.9416 | 1 | | 0.1210 | 0.2698 | 0.5099 | 0.3995 | 0.4480 | 0.9444 | 2 | ### Framework versions - Transformers 4.22.2 - TensorFlow 2.8.2 - Datasets 2.5.1 - Tokenizers 0.12.1
ankurani/bert-base-cased-finetuned-ner
ankurani
2022-09-30T18:09:12Z
5
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-24T14:53:51Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
abu2sid/t5-small-finetuned-xsum_v3
abu2sid
2022-09-30T17:48:27Z
35
1
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-30T17:47:42Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: t5-small-finetuned-xsum_v3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum_v3 This model is a fine-tuned version of [Rocketknight1/t5-small-finetuned-xsum](https://huggingface.co/Rocketknight1/t5-small-finetuned-xsum) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.22.2 - TensorFlow 2.8.2 - Datasets 2.5.1 - Tokenizers 0.12.1
cardiffnlp/roberta-base-tweet-topic-single-2020
cardiffnlp
2022-09-30T17:45:15Z
54
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "dataset:cardiffnlp/tweet_topic_single", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-30T07:32:09Z
--- datasets: - cardiffnlp/tweet_topic_single metrics: - f1 - accuracy model-index: - name: cardiffnlp/roberta-base-tweet-topic-single-2020 results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_topic_single type: cardiffnlp/tweet_topic_single args: cardiffnlp/tweet_topic_single split: test_2021 metrics: - name: F1 type: f1 value: 0.8682811577082102 - name: F1 (macro) type: f1_macro value: 0.7296667105332716 - name: Accuracy type: accuracy value: 0.8682811577082102 pipeline_tag: text-classification widget: - text: "I'm sure the {@Tampa Bay Lightning@} would’ve rather faced the Flyers but man does their experience versus the Blue Jackets this year and last help them a lot versus this Islanders team. Another meat grinder upcoming for the good guys" example_title: "Example 1" - text: "Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US." example_title: "Example 2" --- # cardiffnlp/roberta-base-tweet-topic-single-2020 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the [tweet_topic_single](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single). This model is fine-tuned on `train_2020` split and validated on `test_2021` split of tweet_topic. Fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single/blob/main/lm_finetuning.py). It achieves the following results on the test_2021 set: - F1 (micro): 0.8682811577082102 - F1 (macro): 0.7296667105332716 - Accuracy: 0.8682811577082102 ### Usage ```python from transformers import pipeline pipe = pipeline("text-classification", "cardiffnlp/roberta-base-tweet-topic-single-2020") topic = pipe("Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US.") print(topic) ``` ### Reference ``` @inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" } ```
ankurani/roberta-base-finetuned-ner
ankurani
2022-09-30T17:16:39Z
48
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-09T08:13:34Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-ner This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-dreambooth-library/rollerbeetle
sd-dreambooth-library
2022-09-30T17:02:57Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-30T17:02:54Z
--- license: mit --- ### rollerbeetle on Stable Diffusion via Dreambooth #### model by killer415tv This your the Stable Diffusion model fine-tuned the rollerbeetle concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **a photo of rollerbeetle mount** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/sd-dreambooth-library/rollerbeetle/resolve/main/concept_images/0.jpeg) ![image 1](https://huggingface.co/sd-dreambooth-library/rollerbeetle/resolve/main/concept_images/7.jpeg) ![image 2](https://huggingface.co/sd-dreambooth-library/rollerbeetle/resolve/main/concept_images/3.jpeg) ![image 3](https://huggingface.co/sd-dreambooth-library/rollerbeetle/resolve/main/concept_images/4.jpeg) ![image 4](https://huggingface.co/sd-dreambooth-library/rollerbeetle/resolve/main/concept_images/5.jpeg) ![image 5](https://huggingface.co/sd-dreambooth-library/rollerbeetle/resolve/main/concept_images/1.jpeg) ![image 6](https://huggingface.co/sd-dreambooth-library/rollerbeetle/resolve/main/concept_images/6.jpeg) ![image 7](https://huggingface.co/sd-dreambooth-library/rollerbeetle/resolve/main/concept_images/2.jpeg) ![image 8](https://huggingface.co/sd-dreambooth-library/rollerbeetle/resolve/main/concept_images/8.jpeg)
IIIT-L/roberta-large-finetuned-combined-DS
IIIT-L
2022-09-30T16:42:23Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-30T12:53:23Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-large-finetuned-combined-DS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-finetuned-combined-DS This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2062 - Accuracy: 0.7001 - Precision: 0.6703 - Recall: 0.6700 - F1: 0.6701 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.8804 | 1.0 | 711 | 0.8517 | 0.6573 | 0.6786 | 0.6253 | 0.6231 | | 0.6949 | 2.0 | 1422 | 0.7444 | 0.6833 | 0.6609 | 0.6647 | 0.6604 | | 0.5674 | 3.0 | 2133 | 0.8379 | 0.6798 | 0.6571 | 0.6659 | 0.6575 | | 0.433 | 3.99 | 2844 | 0.8703 | 0.7079 | 0.6947 | 0.6801 | 0.6809 | | 0.3314 | 4.99 | 3555 | 1.1792 | 0.6861 | 0.6672 | 0.6558 | 0.6569 | | 0.2519 | 5.99 | 4266 | 1.5574 | 0.6966 | 0.6761 | 0.6639 | 0.6662 | | 0.2083 | 6.99 | 4977 | 1.8781 | 0.6952 | 0.6681 | 0.6592 | 0.6619 | | 0.1773 | 7.99 | 5688 | 1.8687 | 0.6959 | 0.6677 | 0.6748 | 0.6675 | | 0.1536 | 8.99 | 6399 | 2.2483 | 0.7037 | 0.6788 | 0.6674 | 0.6694 | | 0.1305 | 9.99 | 7110 | 2.4602 | 0.6875 | 0.6597 | 0.6681 | 0.6612 | | 0.0982 | 10.98 | 7821 | 2.5573 | 0.6994 | 0.6705 | 0.6728 | 0.6709 | | 0.0858 | 11.98 | 8532 | 2.8048 | 0.6994 | 0.6765 | 0.6730 | 0.6737 | | 0.0734 | 12.98 | 9243 | 3.0408 | 0.6945 | 0.6640 | 0.6628 | 0.6626 | | 0.0625 | 13.98 | 9954 | 3.0047 | 0.7037 | 0.6784 | 0.6757 | 0.6764 | | 0.0434 | 14.98 | 10665 | 3.0789 | 0.6987 | 0.6737 | 0.6669 | 0.6691 | | 0.0432 | 15.98 | 11376 | 2.9647 | 0.6945 | 0.6649 | 0.6684 | 0.6663 | | 0.0326 | 16.98 | 12087 | 3.3076 | 0.6931 | 0.6630 | 0.6563 | 0.6583 | | 0.032 | 17.97 | 12798 | 3.1890 | 0.7022 | 0.6737 | 0.6702 | 0.6717 | | 0.0275 | 18.97 | 13509 | 3.1798 | 0.7029 | 0.6738 | 0.6750 | 0.6744 | | 0.0251 | 19.97 | 14220 | 3.2062 | 0.7001 | 0.6703 | 0.6700 | 0.6701 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
Bistolero/german4ep_4b
Bistolero
2022-09-30T16:33:12Z
54
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-30T16:12:32Z
--- tags: - generated_from_trainer model-index: - name: german4ep_4b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # german4ep_4b This model is a fine-tuned version of [Bistolero/german_2EP](https://huggingface.co/Bistolero/german_2EP) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 25 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
ioanfr/distilbert-base-uncased-finetuned-cola
ioanfr
2022-09-30T16:28:22Z
44
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-30T14:09:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5340667882909217 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8124 - Matthews Correlation: 0.5341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5227 | 1.0 | 535 | 0.5222 | 0.4210 | | 0.3467 | 2.0 | 1070 | 0.5046 | 0.4855 | | 0.2335 | 3.0 | 1605 | 0.5637 | 0.5173 | | 0.1813 | 4.0 | 2140 | 0.7634 | 0.5200 | | 0.1334 | 5.0 | 2675 | 0.8124 | 0.5341 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.5.1 - Tokenizers 0.13.0
ericntay/stbl_clinical_bert_ft_rs7
ericntay
2022-09-30T16:07:57Z
51
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-30T15:49:48Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: stbl_clinical_bert_ft_rs7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stbl_clinical_bert_ft_rs7 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0848 - F1: 0.9208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2755 | 1.0 | 101 | 0.0986 | 0.8484 | | 0.0655 | 2.0 | 202 | 0.0780 | 0.8873 | | 0.0299 | 3.0 | 303 | 0.0622 | 0.9047 | | 0.0145 | 4.0 | 404 | 0.0675 | 0.9110 | | 0.0097 | 5.0 | 505 | 0.0706 | 0.9141 | | 0.0057 | 6.0 | 606 | 0.0753 | 0.9174 | | 0.0032 | 7.0 | 707 | 0.0755 | 0.9182 | | 0.0024 | 8.0 | 808 | 0.0835 | 0.9219 | | 0.0014 | 9.0 | 909 | 0.0838 | 0.9197 | | 0.0013 | 10.0 | 1010 | 0.0838 | 0.9204 | | 0.0009 | 11.0 | 1111 | 0.0850 | 0.9183 | | 0.0009 | 12.0 | 1212 | 0.0848 | 0.9208 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
anas-awadalla/bart-large-finetuned-squad-seq2seq
anas-awadalla
2022-09-30T16:02:03Z
51
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-29T19:23:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-large-finetuned-squad-seq2seq results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-finetuned-squad-seq2seq This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
mpapucci/it5-topic-classification-tag-it
mpapucci
2022-09-30T15:05:59Z
58
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "Text Classification", "it", "dataset:TAG-IT", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-01T10:07:10Z
--- language: - it tags: - Text Classification datasets: - TAG-IT --- Write an italian sentence with the prefix "Classifica Argomento: " to get a topic classification of the sentence. The dataset used for the task is: [TAG-IT](https://sites.google.com/view/tag-it-2020/). The model is a fine tuned version of [IT5-base](https://huggingface.co/gsarti/it5-base) of Sarti and Nissim.
mpapucci/it5-multitask-classification-topic-age-gender-tag-it
mpapucci
2022-09-30T15:05:42Z
53
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "Text Classification", "it", "dataset:TAG-IT", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-01T21:03:28Z
--- language: - it tags: - Text Classification datasets: - TAG-IT --- Write an italian sentence with one of the following prefixes: * "Classifica Età: " to get an age classification of the sentence; * "Classifica Argomento: " to get a topic classification of the sentence; * "Classifica Genere: " to get a gender classification of the sentence; The dataset used for the task is: [TAG-IT](https://sites.google.com/view/tag-it-2020/). The model is a fine tuned version of [IT5-base](https://huggingface.co/gsarti/it5-base) of Sarti and Nissim.
mfreihaut/refinement-finetuned-mnli-2
mfreihaut
2022-09-30T13:55:53Z
5
0
transformers
[ "transformers", "pytorch", "bart", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-29T16:36:24Z
--- license: mit tags: - generated_from_trainer model-index: - name: refinement-finetuned-mnli-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # refinement-finetuned-mnli-2 This model is a fine-tuned version of [mfreihaut/refinement-finetuned-mnli-1](https://huggingface.co/mfreihaut/refinement-finetuned-mnli-1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 1.0 | 303 | 0.3730 | | 1.1146 | 2.0 | 606 | 0.9860 | | 1.1146 | 3.0 | 909 | 0.7304 | | 1.0018 | 4.0 | 1212 | 0.6386 | | 1.0045 | 5.0 | 1515 | 0.4228 | | 1.0045 | 6.0 | 1818 | 0.6769 | | 0.9618 | 7.0 | 2121 | 0.3008 | | 0.9618 | 8.0 | 2424 | 0.4496 | | 0.964 | 9.0 | 2727 | 0.1826 | | 0.9586 | 10.0 | 3030 | 0.0367 | | 0.9586 | 11.0 | 3333 | 0.1811 | | 1.0467 | 12.0 | 3636 | 0.1352 | | 1.0467 | 13.0 | 3939 | 0.0612 | | 1.0047 | 14.0 | 4242 | 0.1702 | | 1.0012 | 15.0 | 4545 | 0.0622 | | 1.0012 | 16.0 | 4848 | 0.7077 | | 1.0514 | 17.0 | 5151 | 0.2146 | | 1.0514 | 18.0 | 5454 | 0.5531 | | 0.9389 | 19.0 | 5757 | 1.2304 | | 0.9229 | 20.0 | 6060 | 0.6252 | | 0.9229 | 21.0 | 6363 | 0.6844 | | 0.9334 | 22.0 | 6666 | 0.5663 | | 0.9334 | 23.0 | 6969 | 0.9912 | | 0.9312 | 24.0 | 7272 | 0.3112 | | 0.8971 | 25.0 | 7575 | 0.4511 | | 0.8971 | 26.0 | 7878 | 0.3860 | | 0.9022 | 27.0 | 8181 | 0.5904 | | 0.9022 | 28.0 | 8484 | 0.4710 | | 0.7568 | 29.0 | 8787 | 0.8233 | | 0.6753 | 30.0 | 9090 | 0.6951 | | 0.6753 | 31.0 | 9393 | 0.6363 | | 0.5802 | 32.0 | 9696 | 0.8018 | | 0.5802 | 33.0 | 9999 | 0.9381 | | 0.5323 | 34.0 | 10302 | 0.9941 | | 0.5218 | 35.0 | 10605 | 0.9418 | | 0.5218 | 36.0 | 10908 | 0.9236 | | 0.4558 | 37.0 | 11211 | 0.4542 | | 0.4247 | 38.0 | 11514 | 0.9279 | | 0.4247 | 39.0 | 11817 | 0.9567 | | 0.43 | 40.0 | 12120 | 0.8077 | | 0.43 | 41.0 | 12423 | 0.9595 | | 0.352 | 42.0 | 12726 | 0.9189 | | 0.3393 | 43.0 | 13029 | 0.8762 | | 0.3393 | 44.0 | 13332 | 1.0505 | | 0.316 | 45.0 | 13635 | 0.9273 | | 0.316 | 46.0 | 13938 | 1.0716 | | 0.2983 | 47.0 | 14241 | 1.0084 | | 0.2503 | 48.0 | 14544 | 1.1027 | | 0.2503 | 49.0 | 14847 | 1.0478 | | 0.2462 | 50.0 | 15150 | 1.0242 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.10.0 - Datasets 2.5.1 - Tokenizers 0.12.1
Myashka/GPT_neo_python_QA
Myashka
2022-09-30T13:44:05Z
0
0
null
[ "region:us" ]
null
2022-09-30T13:37:19Z
# GPT neo tuned for QA about Python abstract ## About The model is the GPT_neo with 1,2B parameters. Was fine-tuned at 10% sample from SO dataset for QA task. Base Promt: "Question: ...\nAnswer:"
facebook/vit-msn-large
facebook
2022-09-30T13:22:41Z
483
1
transformers
[ "transformers", "pytorch", "vit_msn", "image-feature-extraction", "vision", "dataset:imagenet-1k", "arxiv:2204.07141", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-feature-extraction
2022-09-09T06:09:09Z
--- license: apache-2.0 tags: - vision datasets: - imagenet-1k --- # Vision Transformer (large-sized model) pre-trained with MSN Vision Transformer (ViT) model pre-trained using the MSN method. It was introduced in the paper [Masked Siamese Networks for Label-Efficient Learning](https://arxiv.org/abs/2204.07141) by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas and first released in [this repository](https://github.com/facebookresearch/msn). Disclaimer: The team releasing MSN did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like). Images are presented to the model as a sequence of fixed-size patches. MSN presents a joint-embedding architecture to match the prototypes of masked patches with that of the unmasked patches. With this setup, their method yields excellent performance in the low-shot and extreme low-shot regimes. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. ## Intended uses & limitations You can use the raw model for downstream tasks like image classification. See the [model hub](https://huggingface.co/models?filter=vit_msn) to look for different versions of MSN pre-trained models that interest you. The model is particularly beneficial when you have a few labeled samples in your training set. ### How to use Here is how to use this backbone encoder: ```python from transformers import AutoFeatureExtractor, ViTMSNModel import torch from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/vit-msn-large") model = ViTMSNModel.from_pretrained("facebook/vit-msn-large") inputs = feature_extractor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` For fine-tuning on image classification use the `ViTMSNForImageClassification` class: ```python from transformers import AutoFeatureExtractor, ViTMSNForImageClassification import torch from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/vit-msn-large") model = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-large") ... ``` ### Citation ```bibtex @article{assran2022masked, title={Masked Siamese Networks for Label-Efficient Learning}, author={Assran, Mahmoud, and Caron, Mathilde, and Misra, Ishan, and Bojanowski, Piotr, and Bordes, Florian and Vincent, Pascal, and Joulin, Armand, and Rabbat, Michael, and Ballas, Nicolas}, journal={arXiv preprint arXiv:2204.07141}, year={2022} } ```
Bistolero/italian2ep
Bistolero
2022-09-30T13:13:34Z
54
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-30T12:51:04Z
--- tags: - generated_from_trainer model-index: - name: italian2ep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # italian2ep This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
anas-awadalla/bart-base-few-shot-k-512-finetuned-squad-seed-4
anas-awadalla
2022-09-30T12:37:18Z
46
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-30T12:32:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-512-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-512-finetuned-squad-seed-4 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-base-few-shot-k-512-finetuned-squad-seed-2
anas-awadalla
2022-09-30T12:30:21Z
49
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-30T12:26:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-512-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-512-finetuned-squad-seed-2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-base-few-shot-k-512-finetuned-squad-seed-0
anas-awadalla
2022-09-30T12:24:07Z
51
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-30T12:19:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-512-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-512-finetuned-squad-seed-0 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6