modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-13 00:37:47
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-13 00:35:18
card
stringlengths
11
1.01M
sd-concepts-library/fish
sd-concepts-library
2022-09-18T06:57:04Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-18T06:56:57Z
--- license: mit --- ### fish on Stable Diffusion This is the `<fish>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<fish> 0](https://huggingface.co/sd-concepts-library/fish/resolve/main/concept_images/3.jpeg) ![<fish> 1](https://huggingface.co/sd-concepts-library/fish/resolve/main/concept_images/0.jpeg) ![<fish> 2](https://huggingface.co/sd-concepts-library/fish/resolve/main/concept_images/1.jpeg) ![<fish> 3](https://huggingface.co/sd-concepts-library/fish/resolve/main/concept_images/2.jpeg)
sd-concepts-library/dsmuses
sd-concepts-library
2022-09-18T06:37:28Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-18T06:37:17Z
--- license: mit --- ### DSmuses on Stable Diffusion This is the `<DSmuses>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<DSmuses> 0](https://huggingface.co/sd-concepts-library/dsmuses/resolve/main/concept_images/0.jpeg)
roupenminassian/swin-tiny-patch4-window7-224-finetuned-eurosat
roupenminassian
2022-09-18T06:29:15Z
221
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-18T05:56:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.587248322147651 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6712 - Accuracy: 0.5872 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6811 | 1.0 | 21 | 0.6773 | 0.5604 | | 0.667 | 2.0 | 42 | 0.6743 | 0.5805 | | 0.6521 | 3.0 | 63 | 0.6712 | 0.5872 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/threestooges
sd-concepts-library
2022-09-18T05:40:11Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-18T05:40:07Z
--- license: mit --- ### threestooges on Stable Diffusion This is the `<threestooges>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<threestooges> 0](https://huggingface.co/sd-concepts-library/threestooges/resolve/main/concept_images/3.jpeg) ![<threestooges> 1](https://huggingface.co/sd-concepts-library/threestooges/resolve/main/concept_images/0.jpeg) ![<threestooges> 2](https://huggingface.co/sd-concepts-library/threestooges/resolve/main/concept_images/1.jpeg) ![<threestooges> 3](https://huggingface.co/sd-concepts-library/threestooges/resolve/main/concept_images/2.jpeg) ![<threestooges> 4](https://huggingface.co/sd-concepts-library/threestooges/resolve/main/concept_images/4.jpeg)
gogin333/model
gogin333
2022-09-18T04:49:52Z
0
0
null
[ "region:us" ]
null
2022-09-18T04:47:39Z
летучий глаз с монолизай
rosskrasner/testcatdog
rosskrasner
2022-09-18T03:56:03Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-09-14T03:29:28Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
tkuye/binary-skills-classifier
tkuye
2022-09-17T23:11:29Z
108
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-17T20:42:34Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: binary-skills-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # binary-skills-classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1373 - Accuracy: 0.9702 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.098 | 1.0 | 1557 | 0.0917 | 0.9663 | | 0.0678 | 2.0 | 3114 | 0.0982 | 0.9712 | | 0.0344 | 3.0 | 4671 | 0.1140 | 0.9712 | | 0.0239 | 4.0 | 6228 | 0.1373 | 0.9702 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
reinoudbosch/pegasus-samsum
reinoudbosch
2022-09-17T23:03:24Z
99
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-17T22:26:31Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7052 | 0.54 | 500 | 1.4814 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.0
sd-concepts-library/cgdonny1
sd-concepts-library
2022-09-17T22:24:07Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-17T22:24:00Z
--- license: mit --- ### cgdonny1 on Stable Diffusion This is the `<donny1>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<donny1> 0](https://huggingface.co/sd-concepts-library/cgdonny1/resolve/main/concept_images/3.jpeg) ![<donny1> 1](https://huggingface.co/sd-concepts-library/cgdonny1/resolve/main/concept_images/0.jpeg) ![<donny1> 2](https://huggingface.co/sd-concepts-library/cgdonny1/resolve/main/concept_images/1.jpeg) ![<donny1> 3](https://huggingface.co/sd-concepts-library/cgdonny1/resolve/main/concept_images/2.jpeg) ![<donny1> 4](https://huggingface.co/sd-concepts-library/cgdonny1/resolve/main/concept_images/4.jpeg)
anechaev/Reinforce-U5Pixelcopter
anechaev
2022-09-17T22:11:25Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-17T22:11:15Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-U5Pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 17.10 +/- 15.09 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
sd-concepts-library/r-crumb-style
sd-concepts-library
2022-09-17T21:15:16Z
0
5
null
[ "license:mit", "region:us" ]
null
2022-09-17T21:15:11Z
--- license: mit --- ### r crumb style on Stable Diffusion This is the `<rcrumb>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<rcrumb> 0](https://huggingface.co/sd-concepts-library/r-crumb-style/resolve/main/concept_images/3.jpeg) ![<rcrumb> 1](https://huggingface.co/sd-concepts-library/r-crumb-style/resolve/main/concept_images/6.jpeg) ![<rcrumb> 2](https://huggingface.co/sd-concepts-library/r-crumb-style/resolve/main/concept_images/0.jpeg) ![<rcrumb> 3](https://huggingface.co/sd-concepts-library/r-crumb-style/resolve/main/concept_images/5.jpeg) ![<rcrumb> 4](https://huggingface.co/sd-concepts-library/r-crumb-style/resolve/main/concept_images/1.jpeg) ![<rcrumb> 5](https://huggingface.co/sd-concepts-library/r-crumb-style/resolve/main/concept_images/2.jpeg) ![<rcrumb> 6](https://huggingface.co/sd-concepts-library/r-crumb-style/resolve/main/concept_images/4.jpeg)
sd-concepts-library/3d-female-cyborgs
sd-concepts-library
2022-09-17T20:15:59Z
0
39
null
[ "license:mit", "region:us" ]
null
2022-09-17T20:15:45Z
--- license: mit --- ### 3d Female Cyborgs on Stable Diffusion This is the `<A female cyborg>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<A female cyborg> 0](https://huggingface.co/sd-concepts-library/3d-female-cyborgs/resolve/main/concept_images/3.jpeg) ![<A female cyborg> 1](https://huggingface.co/sd-concepts-library/3d-female-cyborgs/resolve/main/concept_images/0.jpeg) ![<A female cyborg> 2](https://huggingface.co/sd-concepts-library/3d-female-cyborgs/resolve/main/concept_images/1.jpeg) ![<A female cyborg> 3](https://huggingface.co/sd-concepts-library/3d-female-cyborgs/resolve/main/concept_images/2.jpeg) ![<A female cyborg> 4](https://huggingface.co/sd-concepts-library/3d-female-cyborgs/resolve/main/concept_images/4.jpeg)
tkuye/skills-classifier
tkuye
2022-09-17T19:16:20Z
117
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-17T17:56:54Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: skills-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # skills-classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3051 - Accuracy: 0.9242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 312 | 0.2713 | 0.9058 | | 0.361 | 2.0 | 624 | 0.2539 | 0.9182 | | 0.361 | 3.0 | 936 | 0.2802 | 0.9238 | | 0.1532 | 4.0 | 1248 | 0.3058 | 0.9202 | | 0.0899 | 5.0 | 1560 | 0.3051 | 0.9242 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/wish-artist-stile
sd-concepts-library
2022-09-17T19:03:21Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-17T19:03:15Z
--- license: mit --- ### Wish artist stile on Stable Diffusion This is the `<wish-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<wish-style> 0](https://huggingface.co/sd-concepts-library/wish-artist-stile/resolve/main/concept_images/3.jpeg) ![<wish-style> 1](https://huggingface.co/sd-concepts-library/wish-artist-stile/resolve/main/concept_images/0.jpeg) ![<wish-style> 2](https://huggingface.co/sd-concepts-library/wish-artist-stile/resolve/main/concept_images/1.jpeg) ![<wish-style> 3](https://huggingface.co/sd-concepts-library/wish-artist-stile/resolve/main/concept_images/2.jpeg) ![<wish-style> 4](https://huggingface.co/sd-concepts-library/wish-artist-stile/resolve/main/concept_images/4.jpeg)
Tritkoman/Kvenfinnishtranslator
Tritkoman
2022-09-17T18:38:22Z
103
0
transformers
[ "transformers", "pytorch", "autotrain", "translation", "en", "fi", "dataset:Tritkoman/autotrain-data-wnkeknrr", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
translation
2022-09-17T18:36:53Z
--- tags: - autotrain - translation language: - en - fi datasets: - Tritkoman/autotrain-data-wnkeknrr co2_eq_emissions: emissions: 0.007023045912239053 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 1495654541 - CO2 Emissions (in grams): 0.0070 ## Validation Metrics - Loss: 2.873 - SacreBLEU: 22.653 - Gen len: 7.114
dumitrescustefan/gpt-neo-romanian-780m
dumitrescustefan
2022-09-17T18:24:19Z
260
12
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "romanian", "text generation", "causal lm", "gpt-neo", "ro", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-08-29T15:31:26Z
--- language: - ro license: mit # Example: apache-2.0 or any license from https://hf.co/docs/hub/repositories-licenses tags: - romanian - text generation - causal lm - gpt-neo --- # GPT-Neo Romanian 780M This model is a GPT-Neo transformer decoder model designed using EleutherAI's replication of the GPT-3 architecture. It was trained on a thoroughly cleaned corpus of Romanian text of about 40GB composed of Oscar, Opus, Wikipedia, literature and various other bits and pieces of text, joined together and deduplicated. It was trained for about a month, totaling 1.5M steps on a v3-32 TPU machine. ### Authors: * Dumitrescu Stefan * Mihai Ilie ### Evaluation Evaluation to be added soon, also on [https://github.com/dumitrescustefan/Romanian-Transformers](https://github.com/dumitrescustefan/Romanian-Transformers) ### Acknowledgements Thanks [TPU Research Cloud](https://sites.research.google/trc/about/) for the TPUv3 machine needed to train this model!
sd-concepts-library/hiten-style-nao
sd-concepts-library
2022-09-17T17:52:12Z
0
26
null
[ "license:mit", "region:us" ]
null
2022-09-17T17:43:38Z
--- license: mit --- ### NOTE: USED WAIFU DIFFUSION <https://huggingface.co/hakurei/waifu-diffusion> ### hiten-style-nao on Stable Diffusion Artist: <https://www.pixiv.net/en/users/490219> This is the `<hiten-style-nao>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<hiten-style-nao> 0](https://huggingface.co/sd-concepts-library/hiten-style-nao/resolve/main/concept_images/3.jpeg) ![<hiten-style-nao> 1](https://huggingface.co/sd-concepts-library/hiten-style-nao/resolve/main/concept_images/6.jpeg) ![<hiten-style-nao> 2](https://huggingface.co/sd-concepts-library/hiten-style-nao/resolve/main/concept_images/0.jpeg) ![<hiten-style-nao> 3](https://huggingface.co/sd-concepts-library/hiten-style-nao/resolve/main/concept_images/7.jpeg) ![<hiten-style-nao> 4](https://huggingface.co/sd-concepts-library/hiten-style-nao/resolve/main/concept_images/5.jpeg) ![<hiten-style-nao> 5](https://huggingface.co/sd-concepts-library/hiten-style-nao/resolve/main/concept_images/1.jpeg) ![<hiten-style-nao> 6](https://huggingface.co/sd-concepts-library/hiten-style-nao/resolve/main/concept_images/2.jpeg) ![<hiten-style-nao> 7](https://huggingface.co/sd-concepts-library/hiten-style-nao/resolve/main/concept_images/4.jpeg)
sd-concepts-library/mechasoulall
sd-concepts-library
2022-09-17T17:44:02Z
0
21
null
[ "license:mit", "region:us" ]
null
2022-09-17T17:43:55Z
--- license: mit --- ### mechasoulall on Stable Diffusion This is the `<mechasoulall>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<mechasoulall> 0](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/24.jpeg) ![<mechasoulall> 1](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/34.jpeg) ![<mechasoulall> 2](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/30.jpeg) ![<mechasoulall> 3](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/32.jpeg) ![<mechasoulall> 4](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/3.jpeg) ![<mechasoulall> 5](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/36.jpeg) ![<mechasoulall> 6](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/6.jpeg) ![<mechasoulall> 7](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/29.jpeg) ![<mechasoulall> 8](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/0.jpeg) ![<mechasoulall> 9](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/19.jpeg) ![<mechasoulall> 10](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/26.jpeg) ![<mechasoulall> 11](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/17.jpeg) ![<mechasoulall> 12](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/37.jpeg) ![<mechasoulall> 13](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/33.jpeg) ![<mechasoulall> 14](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/22.jpeg) ![<mechasoulall> 15](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/7.jpeg) ![<mechasoulall> 16](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/25.jpeg) ![<mechasoulall> 17](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/28.jpeg) ![<mechasoulall> 18](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/5.jpeg) ![<mechasoulall> 19](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/39.jpeg) ![<mechasoulall> 20](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/8.jpeg) ![<mechasoulall> 21](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/14.jpeg) ![<mechasoulall> 22](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/15.jpeg) ![<mechasoulall> 23](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/9.jpeg) ![<mechasoulall> 24](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/16.jpeg) ![<mechasoulall> 25](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/27.jpeg) ![<mechasoulall> 26](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/13.jpeg) ![<mechasoulall> 27](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/20.jpeg) ![<mechasoulall> 28](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/41.jpeg) ![<mechasoulall> 29](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/12.jpeg) ![<mechasoulall> 30](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/1.jpeg) ![<mechasoulall> 31](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/10.jpeg) ![<mechasoulall> 32](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/40.jpeg) ![<mechasoulall> 33](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/35.jpeg) ![<mechasoulall> 34](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/2.jpeg) ![<mechasoulall> 35](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/23.jpeg) ![<mechasoulall> 36](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/18.jpeg) ![<mechasoulall> 37](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/11.jpeg) ![<mechasoulall> 38](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/21.jpeg) ![<mechasoulall> 39](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/38.jpeg) ![<mechasoulall> 40](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/4.jpeg) ![<mechasoulall> 41](https://huggingface.co/sd-concepts-library/mechasoulall/resolve/main/concept_images/31.jpeg)
sd-concepts-library/durer-style
sd-concepts-library
2022-09-17T16:36:56Z
0
7
null
[ "license:mit", "region:us" ]
null
2022-09-17T16:36:49Z
--- license: mit --- ### durer style on Stable Diffusion This is the `<drr-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<drr-style> 0](https://huggingface.co/sd-concepts-library/durer-style/resolve/main/concept_images/3.jpeg) ![<drr-style> 1](https://huggingface.co/sd-concepts-library/durer-style/resolve/main/concept_images/0.jpeg) ![<drr-style> 2](https://huggingface.co/sd-concepts-library/durer-style/resolve/main/concept_images/1.jpeg) ![<drr-style> 3](https://huggingface.co/sd-concepts-library/durer-style/resolve/main/concept_images/2.jpeg) ![<drr-style> 4](https://huggingface.co/sd-concepts-library/durer-style/resolve/main/concept_images/4.jpeg)
sd-concepts-library/led-toy
sd-concepts-library
2022-09-17T16:33:57Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-17T16:33:50Z
--- license: mit --- ### led-toy on Stable Diffusion This is the `<led-toy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<led-toy> 0](https://huggingface.co/sd-concepts-library/led-toy/resolve/main/concept_images/3.jpeg) ![<led-toy> 1](https://huggingface.co/sd-concepts-library/led-toy/resolve/main/concept_images/0.jpeg) ![<led-toy> 2](https://huggingface.co/sd-concepts-library/led-toy/resolve/main/concept_images/1.jpeg) ![<led-toy> 3](https://huggingface.co/sd-concepts-library/led-toy/resolve/main/concept_images/2.jpeg)
sd-concepts-library/she-hulk-law-art
sd-concepts-library
2022-09-17T16:10:47Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-17T16:10:35Z
--- license: mit --- ### She-Hulk Law Art on Stable Diffusion This is the `<shehulk-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<shehulk-style> 0](https://huggingface.co/sd-concepts-library/she-hulk-law-art/resolve/main/concept_images/3.jpeg) ![<shehulk-style> 1](https://huggingface.co/sd-concepts-library/she-hulk-law-art/resolve/main/concept_images/0.jpeg) ![<shehulk-style> 2](https://huggingface.co/sd-concepts-library/she-hulk-law-art/resolve/main/concept_images/1.jpeg) ![<shehulk-style> 3](https://huggingface.co/sd-concepts-library/she-hulk-law-art/resolve/main/concept_images/2.jpeg) ![<shehulk-style> 4](https://huggingface.co/sd-concepts-library/she-hulk-law-art/resolve/main/concept_images/4.jpeg)
theojolliffe/pegasus-model-3-x25
theojolliffe
2022-09-17T15:48:03Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-17T14:27:08Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-model-3-x25 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-model-3-x25 This model is a fine-tuned version of [theojolliffe/pegasus-cnn_dailymail-v4-e1-e4-feedback](https://huggingface.co/theojolliffe/pegasus-cnn_dailymail-v4-e1-e4-feedback) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5668 - Rouge1: 61.9972 - Rouge2: 48.1531 - Rougel: 48.845 - Rougelsum: 59.5019 - Gen Len: 123.0814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:|:---------:|:--------:| | 1.144 | 1.0 | 883 | 0.5668 | 61.9972 | 48.1531 | 48.845 | 59.5019 | 123.0814 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Tritkoman/Interlinguetranslator
Tritkoman
2022-09-17T15:45:24Z
94
0
transformers
[ "transformers", "pytorch", "autotrain", "translation", "en", "es", "dataset:Tritkoman/autotrain-data-akakka", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
translation
2022-09-17T15:07:31Z
--- tags: - autotrain - translation language: - en - es datasets: - Tritkoman/autotrain-data-akakka co2_eq_emissions: emissions: 0.26170356193686023 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 1492154444 - CO2 Emissions (in grams): 0.2617 ## Validation Metrics - Loss: 0.770 - SacreBLEU: 62.097 - Gen len: 8.635
matemato/q-Taxi-v3
matemato
2022-09-17T15:11:44Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-17T15:11:35Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.70 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="matemato/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Eksperymenty/Pong-PLE-v0
Eksperymenty
2022-09-17T14:44:18Z
0
0
null
[ "Pong-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-17T14:44:08Z
--- tags: - Pong-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pong-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pong-PLE-v0 type: Pong-PLE-v0 metrics: - type: mean_reward value: -16.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pong-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pong-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
DeividasM/finetuning-sentiment-model-3000-samples
DeividasM
2022-09-17T13:05:46Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-17T12:51:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8766666666666667 - name: F1 type: f1 value: 0.877887788778878 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3275 - Accuracy: 0.8767 - F1: 0.8779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
jayanta/swin-base-patch4-window7-224-20epochs-finetuned-memes
jayanta
2022-09-17T13:02:25Z
216
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-17T12:07:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-base-patch4-window7-224-20epochs-finetuned-memes results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.847758887171561 - task: type: image-classification name: Image Classification dataset: type: custom name: custom split: test metrics: - type: f1 value: 0.8504084378729573 name: F1 - type: precision value: 0.8519647060733512 name: Precision - type: recall value: 0.8523956723338485 name: Recall --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-base-patch4-window7-224-20epochs-finetuned-memes This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7090 - Accuracy: 0.8478 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0238 | 0.99 | 40 | 0.9636 | 0.6445 | | 0.777 | 1.99 | 80 | 0.6591 | 0.7666 | | 0.4763 | 2.99 | 120 | 0.5381 | 0.8130 | | 0.3215 | 3.99 | 160 | 0.5244 | 0.8253 | | 0.2179 | 4.99 | 200 | 0.5123 | 0.8238 | | 0.1868 | 5.99 | 240 | 0.5052 | 0.8308 | | 0.154 | 6.99 | 280 | 0.5444 | 0.8338 | | 0.1166 | 7.99 | 320 | 0.6318 | 0.8238 | | 0.1099 | 8.99 | 360 | 0.5656 | 0.8338 | | 0.0925 | 9.99 | 400 | 0.6057 | 0.8338 | | 0.0779 | 10.99 | 440 | 0.5942 | 0.8393 | | 0.0629 | 11.99 | 480 | 0.6112 | 0.8400 | | 0.0742 | 12.99 | 520 | 0.6588 | 0.8331 | | 0.0752 | 13.99 | 560 | 0.6143 | 0.8408 | | 0.0577 | 14.99 | 600 | 0.6450 | 0.8516 | | 0.0589 | 15.99 | 640 | 0.6787 | 0.8400 | | 0.0555 | 16.99 | 680 | 0.6641 | 0.8454 | | 0.052 | 17.99 | 720 | 0.7213 | 0.8524 | | 0.0589 | 18.99 | 760 | 0.6917 | 0.8470 | | 0.0506 | 19.99 | 800 | 0.7090 | 0.8478 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
test1234678/distilbert-base-uncased-distilled-clinc
test1234678
2022-09-17T12:34:43Z
108
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-17T07:24:42Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: train args: plus metrics: - name: Accuracy type: accuracy value: 0.9461290322580646 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2712 - Accuracy: 0.9461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2629 | 1.0 | 318 | 1.6048 | 0.7368 | | 1.2437 | 2.0 | 636 | 0.8148 | 0.8565 | | 0.6604 | 3.0 | 954 | 0.4768 | 0.9161 | | 0.4054 | 4.0 | 1272 | 0.3548 | 0.9352 | | 0.2987 | 5.0 | 1590 | 0.3084 | 0.9419 | | 0.2549 | 6.0 | 1908 | 0.2909 | 0.9435 | | 0.232 | 7.0 | 2226 | 0.2804 | 0.9458 | | 0.221 | 8.0 | 2544 | 0.2749 | 0.9458 | | 0.2145 | 9.0 | 2862 | 0.2722 | 0.9468 | | 0.2112 | 10.0 | 3180 | 0.2712 | 0.9461 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.10.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Shamus/NLLB-600m-vie_Latn-to-eng_Latn
Shamus
2022-09-17T11:54:50Z
107
1
transformers
[ "transformers", "pytorch", "tensorboard", "m2m_100", "text2text-generation", "generated_from_trainer", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-17T03:28:00Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: NLLB-600m-vie_Latn-to-eng_Latn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NLLB-600m-vie_Latn-to-eng_Latn This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1189 - Bleu: 36.6767 - Gen Len: 47.504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 1.9294 | 2.24 | 1000 | 1.5970 | 23.6201 | 48.1 | | 1.4 | 4.47 | 2000 | 1.3216 | 28.9526 | 45.156 | | 1.2071 | 6.71 | 3000 | 1.2245 | 32.5538 | 46.576 | | 1.0893 | 8.95 | 4000 | 1.1720 | 34.265 | 46.052 | | 1.0064 | 11.19 | 5000 | 1.1497 | 34.9249 | 46.508 | | 0.9562 | 13.42 | 6000 | 1.1331 | 36.4619 | 47.244 | | 0.9183 | 15.66 | 7000 | 1.1247 | 36.4723 | 47.26 | | 0.8858 | 17.9 | 8000 | 1.1198 | 36.7058 | 47.376 | | 0.8651 | 20.13 | 9000 | 1.1201 | 36.7897 | 47.496 | | 0.8546 | 22.37 | 10000 | 1.1189 | 36.6767 | 47.504 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/uzumaki
sd-concepts-library
2022-09-17T11:40:47Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-17T11:40:41Z
--- license: mit --- ### UZUMAKI on Stable Diffusion This is the `<NARUTO>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<NARUTO> 0](https://huggingface.co/sd-concepts-library/uzumaki/resolve/main/concept_images/3.jpeg) ![<NARUTO> 1](https://huggingface.co/sd-concepts-library/uzumaki/resolve/main/concept_images/6.jpeg) ![<NARUTO> 2](https://huggingface.co/sd-concepts-library/uzumaki/resolve/main/concept_images/0.jpeg) ![<NARUTO> 3](https://huggingface.co/sd-concepts-library/uzumaki/resolve/main/concept_images/7.jpeg) ![<NARUTO> 4](https://huggingface.co/sd-concepts-library/uzumaki/resolve/main/concept_images/5.jpeg) ![<NARUTO> 5](https://huggingface.co/sd-concepts-library/uzumaki/resolve/main/concept_images/8.jpeg) ![<NARUTO> 6](https://huggingface.co/sd-concepts-library/uzumaki/resolve/main/concept_images/14.jpeg) ![<NARUTO> 7](https://huggingface.co/sd-concepts-library/uzumaki/resolve/main/concept_images/15.jpeg) ![<NARUTO> 8](https://huggingface.co/sd-concepts-library/uzumaki/resolve/main/concept_images/9.jpeg) ![<NARUTO> 9](https://huggingface.co/sd-concepts-library/uzumaki/resolve/main/concept_images/13.jpeg) ![<NARUTO> 10](https://huggingface.co/sd-concepts-library/uzumaki/resolve/main/concept_images/12.jpeg) ![<NARUTO> 11](https://huggingface.co/sd-concepts-library/uzumaki/resolve/main/concept_images/1.jpeg) ![<NARUTO> 12](https://huggingface.co/sd-concepts-library/uzumaki/resolve/main/concept_images/10.jpeg) ![<NARUTO> 13](https://huggingface.co/sd-concepts-library/uzumaki/resolve/main/concept_images/2.jpeg) ![<NARUTO> 14](https://huggingface.co/sd-concepts-library/uzumaki/resolve/main/concept_images/11.jpeg) ![<NARUTO> 15](https://huggingface.co/sd-concepts-library/uzumaki/resolve/main/concept_images/4.jpeg)
pnr-svc/distilbert-turkish-ner
pnr-svc
2022-09-17T11:09:26Z
104
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:ner-tr", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-17T10:53:29Z
--- license: mit tags: - generated_from_trainer datasets: - ner-tr metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-turkish-ner results: - task: name: Token Classification type: token-classification dataset: name: ner-tr type: ner-tr config: NERTR split: train args: NERTR metrics: - name: Precision type: precision value: 1.0 - name: Recall type: recall value: 1.0 - name: F1 type: f1 value: 1.0 - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-turkish-ner This model is a fine-tuned version of [dbmdz/distilbert-base-turkish-cased](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) on the ner-tr dataset. It achieves the following results on the evaluation set: - Loss: 0.0013 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | 0.5744 | 1.0 | 529 | 0.0058 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0094 | 2.0 | 1058 | 0.0017 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0047 | 3.0 | 1587 | 0.0013 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
LanYiU/distilbert-base-uncased-finetuned-imdb
LanYiU
2022-09-17T11:04:50Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-17T10:55:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4738 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7 | 1.0 | 157 | 2.4988 | | 2.5821 | 2.0 | 314 | 2.4242 | | 2.541 | 3.0 | 471 | 2.4371 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.9.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
Eksperymenty/Reinforce-CartPole-v1
Eksperymenty
2022-09-17T10:09:00Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-17T10:07:54Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 445.10 +/- 56.96 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Gxl/MINI
Gxl
2022-09-17T08:24:39Z
0
0
null
[ "license:afl-3.0", "region:us" ]
null
2022-09-07T11:45:56Z
--- license: afl-3.0 --- 11 # 1 23 3224 342 ## 324 432455 23445 455 #### 32424 34442
sd-concepts-library/ouroboros
sd-concepts-library
2022-09-17T02:34:14Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-17T02:34:09Z
--- license: mit --- ### Ouroboros on Stable Diffusion This is the `<ouroboros>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<ouroboros> 0](https://huggingface.co/sd-concepts-library/ouroboros/resolve/main/concept_images/3.jpeg) ![<ouroboros> 1](https://huggingface.co/sd-concepts-library/ouroboros/resolve/main/concept_images/6.jpeg) ![<ouroboros> 2](https://huggingface.co/sd-concepts-library/ouroboros/resolve/main/concept_images/0.jpeg) ![<ouroboros> 3](https://huggingface.co/sd-concepts-library/ouroboros/resolve/main/concept_images/7.jpeg) ![<ouroboros> 4](https://huggingface.co/sd-concepts-library/ouroboros/resolve/main/concept_images/5.jpeg) ![<ouroboros> 5](https://huggingface.co/sd-concepts-library/ouroboros/resolve/main/concept_images/1.jpeg) ![<ouroboros> 6](https://huggingface.co/sd-concepts-library/ouroboros/resolve/main/concept_images/2.jpeg) ![<ouroboros> 7](https://huggingface.co/sd-concepts-library/ouroboros/resolve/main/concept_images/4.jpeg)
sd-concepts-library/dtv-pkmn
sd-concepts-library
2022-09-17T01:25:50Z
0
5
null
[ "license:mit", "region:us" ]
null
2022-09-13T23:08:57Z
--- license: mit --- ### dtv-pkmn on Stable Diffusion This is the `<dtv-pkm2>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). ![<dtv-pkm2ex> 292](https://i.ibb.co/X8f3Q1h/image-2022-09-16-212332924.png) `"hyperdetailed fantasy (monster) (dragon-like) character on top of a rock in the style of <dtv-pkm2> . extremely detailed, amazing artwork with depth and realistic CINEMATIC lighting, matte painting"` Here is the new concept you will be able to use as a `style`: ![<dtv-pkm2> 0](https://huggingface.co/sd-concepts-library/dtv-pkmn/resolve/main/concept_images/1.jpeg) ![<dtv-pkm2> 1](https://huggingface.co/sd-concepts-library/dtv-pkmn/resolve/main/concept_images/0.jpeg) ![<dtv-pkm2> 2](https://huggingface.co/sd-concepts-library/dtv-pkmn/resolve/main/concept_images/2.jpeg) ![<dtv-pkm2> 3](https://huggingface.co/sd-concepts-library/dtv-pkmn/resolve/main/concept_images/3.jpeg)
g30rv17ys/ddpm-geeve-dme-1000-128
g30rv17ys
2022-09-16T22:45:49Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-16T20:29:37Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-dme-1000-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-dme-1000-128/tensorboard?#scalars)
g30rv17ys/ddpm-geeve-cnv-1000-128
g30rv17ys
2022-09-16T22:44:56Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-16T20:19:10Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-cnv-1000-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-cnv-1000-128/tensorboard?#scalars)
sd-concepts-library/jamie-hewlett-style
sd-concepts-library
2022-09-16T22:32:42Z
0
14
null
[ "license:mit", "region:us" ]
null
2022-09-16T22:32:38Z
--- license: mit --- ### Jamie Hewlett Style on Stable Diffusion This is the `<hewlett>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<hewlett> 0](https://huggingface.co/sd-concepts-library/jamie-hewlett-style/resolve/main/concept_images/3.jpeg) ![<hewlett> 1](https://huggingface.co/sd-concepts-library/jamie-hewlett-style/resolve/main/concept_images/0.jpeg) ![<hewlett> 2](https://huggingface.co/sd-concepts-library/jamie-hewlett-style/resolve/main/concept_images/5.jpeg) ![<hewlett> 3](https://huggingface.co/sd-concepts-library/jamie-hewlett-style/resolve/main/concept_images/1.jpeg) ![<hewlett> 4](https://huggingface.co/sd-concepts-library/jamie-hewlett-style/resolve/main/concept_images/2.jpeg) ![<hewlett> 5](https://huggingface.co/sd-concepts-library/jamie-hewlett-style/resolve/main/concept_images/4.jpeg)
rhiga/a2c-AntBulletEnv-v0
rhiga
2022-09-16T22:26:26Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-16T22:25:06Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1742.04 +/- 217.69 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
matemato/q-FrozenLake-v1-4x4-noSlippery
matemato
2022-09-16T22:04:18Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-16T22:04:10Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="matemato/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
sd-concepts-library/lugal-ki-en
sd-concepts-library
2022-09-16T19:32:47Z
0
14
null
[ "license:mit", "region:us" ]
null
2022-09-16T05:58:43Z
--- title: Lugal Ki EN emoji: 🪐 colorFrom: gray colorTo: red sdk: gradio sdk_version: 3.3 app_file: app.py pinned: false license: mit --- ### Lugal ki en on Stable Diffusion This is the `<lugal-ki-en>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<lugal-ki-en> 0](https://huggingface.co/sd-concepts-library/lugal-ki-en/resolve/main/concept_images/0.jpeg) ![<lugal-ki-en> 1](https://huggingface.co/sd-concepts-library/lugal-ki-en/resolve/main/concept_images/2.jpeg) ![<lugal-ki-en> 2](https://huggingface.co/sd-concepts-library/lugal-ki-en/resolve/main/concept_images/4.jpeg) ![<lugal-ki-en> 3](https://huggingface.co/sd-concepts-library/lugal-ki-en/resolve/main/concept_images/1.jpeg) ![<lugal-ki-en> 4](https://huggingface.co/sd-concepts-library/lugal-ki-en/resolve/main/concept_images/3.jpeg)
sd-concepts-library/harmless-ai-house-style-1
sd-concepts-library
2022-09-16T19:21:04Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-16T19:20:03Z
--- license: mit --- ### Harmless ai house style 1 on Stable Diffusion This is the `<bee-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<bee-style> 0](https://huggingface.co/sd-concepts-library/harmless-ai-house-style-1/resolve/main/concept_images/(swarm+of+bees),+The+computer+is+the+enemy+of+transhumanity,+detailed,+beautiful+masterpiece,+unreal+engine,+4k-0.024599999999999973.png) ![<bee-style> 1](https://huggingface.co/sd-concepts-library/harmless-ai-house-style-1/resolve/main/concept_images/(swarm+of+bees),+The+computer+is+the+enemy+of+transhumanity,+detailed,+beautiful+masterpiece,+unreal+engine,+4k-0.02-3024.png) ![<bee-style> 2](https://huggingface.co/sd-concepts-library/harmless-ai-house-style-1/resolve/main/concept_images/beehiveperson.png) ![<bee-style> 3](https://huggingface.co/sd-concepts-library/harmless-ai-house-style-1/resolve/main/concept_images/download-5.png) ![<bee-style> 4](https://huggingface.co/sd-concepts-library/harmless-ai-house-style-1/resolve/main/concept_images/download-11.png) ![<bee-style> 5](https://huggingface.co/sd-concepts-library/harmless-ai-house-style-1/resolve/main/concept_images/abstractbee.png) ![<bee-style> 6](https://huggingface.co/sd-concepts-library/harmless-ai-house-style-1/resolve/main/concept_images/abstractbee2.png)
sanchit-gandhi/wav2vec2-ctc-earnings22-baseline-5-gram
sanchit-gandhi
2022-09-16T18:50:03Z
70
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-16T18:34:22Z
Unrolled PT and FX weights of https://huggingface.co/sanchit-gandhi/flax-wav2vec2-ctc-earnings22-baseline/tree/main
MayaGalvez/bert-base-multilingual-cased-finetuned-pos
MayaGalvez
2022-09-16T18:35:53Z
104
1
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-16T18:16:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-multilingual-cased-finetuned-pos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-multilingual-cased-finetuned-pos This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1736 - Precision: 0.9499 - Recall: 0.9504 - F1: 0.9501 - Accuracy: 0.9551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7663 | 0.27 | 200 | 0.2047 | 0.9318 | 0.9312 | 0.9315 | 0.9388 | | 0.5539 | 0.53 | 400 | 0.1815 | 0.9381 | 0.9404 | 0.9392 | 0.9460 | | 0.5222 | 0.8 | 600 | 0.1787 | 0.9400 | 0.9424 | 0.9412 | 0.9468 | | 0.5084 | 1.07 | 800 | 0.1591 | 0.9470 | 0.9463 | 0.9467 | 0.9519 | | 0.4703 | 1.33 | 1000 | 0.1622 | 0.9456 | 0.9458 | 0.9457 | 0.9510 | | 0.5005 | 1.6 | 1200 | 0.1666 | 0.9470 | 0.9464 | 0.9467 | 0.9519 | | 0.4677 | 1.87 | 1400 | 0.1583 | 0.9483 | 0.9483 | 0.9483 | 0.9532 | | 0.4704 | 2.13 | 1600 | 0.1635 | 0.9472 | 0.9475 | 0.9473 | 0.9528 | | 0.4639 | 2.4 | 1800 | 0.1569 | 0.9475 | 0.9488 | 0.9482 | 0.9536 | | 0.4627 | 2.67 | 2000 | 0.1605 | 0.9474 | 0.9478 | 0.9476 | 0.9527 | | 0.4608 | 2.93 | 2200 | 0.1535 | 0.9485 | 0.9495 | 0.9490 | 0.9538 | | 0.4306 | 3.2 | 2400 | 0.1646 | 0.9489 | 0.9487 | 0.9488 | 0.9536 | | 0.4583 | 3.47 | 2600 | 0.1642 | 0.9488 | 0.9495 | 0.9491 | 0.9539 | | 0.453 | 3.73 | 2800 | 0.1646 | 0.9498 | 0.9505 | 0.9501 | 0.9554 | | 0.4347 | 4.0 | 3000 | 0.1629 | 0.9494 | 0.9504 | 0.9499 | 0.9552 | | 0.4425 | 4.27 | 3200 | 0.1738 | 0.9495 | 0.9502 | 0.9498 | 0.9550 | | 0.4335 | 4.53 | 3400 | 0.1733 | 0.9499 | 0.9506 | 0.9503 | 0.9550 | | 0.4306 | 4.8 | 3600 | 0.1736 | 0.9499 | 0.9504 | 0.9501 | 0.9551 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
wyu1/FiD-NQ
wyu1
2022-09-16T16:34:33Z
47
1
transformers
[ "transformers", "pytorch", "t5", "license:cc-by-4.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-08-18T22:15:17Z
--- license: cc-by-4.0 --- # FiD model trained on NQ -- This is the model checkpoint of FiD [2], based on the T5 large (with 770M parameters) and trained on the natural question (NQ) dataset [1]. -- Hyperparameters: 8 x 40GB A100 GPUs; batch size 8; AdamW; LR 3e-5; 50000 steps References: [1] Natural Questions: A Benchmark for Question Answering Research. TACL 2019. [2] Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering. EACL 2021. ## Model performance We evaluate it on the NQ dataset, the EM score is 51.3 (0.1 lower than original performance reported in the paper). <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
shamr9/autotrain-firsttransformersproject-1478954182
shamr9
2022-09-16T15:46:18Z
1
0
transformers
[ "transformers", "pytorch", "autotrain", "summarization", "ar", "dataset:shamr9/autotrain-data-firsttransformersproject", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
summarization
2022-09-16T05:53:23Z
--- tags: - autotrain - summarization language: - ar widget: - text: "I love AutoTrain 🤗" datasets: - shamr9/autotrain-data-firsttransformersproject co2_eq_emissions: emissions: 5.113476145275885 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1478954182 - CO2 Emissions (in grams): 5.1135 ## Validation Metrics - Loss: 0.534 - Rouge1: 4.247 - Rouge2: 0.522 - RougeL: 4.260 - RougeLsum: 4.241 - Gen Len: 18.928 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/shamr9/autotrain-firsttransformersproject-1478954182 ```
sd-concepts-library/diaosu-toy
sd-concepts-library
2022-09-16T14:53:35Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-16T14:53:28Z
--- license: mit --- ### diaosu toy on Stable Diffusion This is the `<diaosu-toy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<diaosu-toy> 0](https://huggingface.co/sd-concepts-library/diaosu-toy/resolve/main/concept_images/0.jpeg) ![<diaosu-toy> 1](https://huggingface.co/sd-concepts-library/diaosu-toy/resolve/main/concept_images/2.jpeg) ![<diaosu-toy> 2](https://huggingface.co/sd-concepts-library/diaosu-toy/resolve/main/concept_images/1.jpeg)
bibekitani123/finetuning-sentiment-model-3000-samples
bibekitani123
2022-09-16T14:46:45Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-15T21:05:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8684210526315789 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3132 - Accuracy: 0.8667 - F1: 0.8684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
pyronear/rexnet1_5x
pyronear
2022-09-16T12:47:25Z
64
0
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:pyronear/openfire", "arxiv:2007.00992", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-07-17T20:30:57Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - pyronear/openfire --- # ReXNet-1.5x model Pretrained on a dataset for wildfire binary classification (soon to be shared). The ReXNet architecture was introduced in [this paper](https://arxiv.org/pdf/2007.00992.pdf). ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install PyroVision. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pyrovision/) as follows: ```shell pip install pyrovision ``` or using [conda](https://anaconda.org/pyronear/pyrovision): ```shell conda install -c pyronear pyrovision ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/pyronear/pyro-vision.git pip install -e pyro-vision/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from pyrovision.models import model_from_hf_hub model = model_from_hf_hub("pyronear/rexnet1_5x").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2007-00992, author = {Dongyoon Han and Sangdoo Yun and Byeongho Heo and Young Joon Yoo}, title = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, journal = {CoRR}, volume = {abs/2007.00992}, year = {2020}, url = {https://arxiv.org/abs/2007.00992}, eprinttype = {arXiv}, eprint = {2007.00992}, timestamp = {Mon, 06 Jul 2020 15:26:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2007-00992.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
pyronear/rexnet1_3x
pyronear
2022-09-16T12:46:31Z
65
1
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:pyronear/openfire", "arxiv:2007.00992", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-07-17T20:30:22Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - pyronear/openfire --- # ReXNet-1.3x model Pretrained on a dataset for wildfire binary classification (soon to be shared). The ReXNet architecture was introduced in [this paper](https://arxiv.org/pdf/2007.00992.pdf). ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install PyroVision. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pyrovision/) as follows: ```shell pip install pyrovision ``` or using [conda](https://anaconda.org/pyronear/pyrovision): ```shell conda install -c pyronear pyrovision ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/pyronear/pyro-vision.git pip install -e pyro-vision/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from pyrovision.models import model_from_hf_hub model = model_from_hf_hub("pyronear/rexnet1_3x").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2007-00992, author = {Dongyoon Han and Sangdoo Yun and Byeongho Heo and Young Joon Yoo}, title = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, journal = {CoRR}, volume = {abs/2007.00992}, year = {2020}, url = {https://arxiv.org/abs/2007.00992}, eprinttype = {arXiv}, eprint = {2007.00992}, timestamp = {Mon, 06 Jul 2020 15:26:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2007-00992.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
test1234678/distilbert-base-uncased-finetuned-clinc
test1234678
2022-09-16T12:22:33Z
110
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-16T12:17:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: train args: plus metrics: - name: Accuracy type: accuracy value: 0.9151612903225806 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7773 - Accuracy: 0.9152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.293 | 1.0 | 318 | 3.2831 | 0.7432 | | 2.6252 | 2.0 | 636 | 1.8743 | 0.8310 | | 1.5406 | 3.0 | 954 | 1.1575 | 0.8939 | | 1.0105 | 4.0 | 1272 | 0.8626 | 0.9094 | | 0.7962 | 5.0 | 1590 | 0.7773 | 0.9152 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.10.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
dwisaji/SentimentBert
dwisaji
2022-09-16T12:09:42Z
161
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-16T12:01:39Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: SentimentBert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SentimentBert This model is a fine-tuned version of [cahya/bert-base-indonesian-522M](https://huggingface.co/cahya/bert-base-indonesian-522M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2005 - Accuracy: 0.965 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 275 | 0.7807 | 0.715 | | 0.835 | 2.0 | 550 | 1.0588 | 0.635 | | 0.835 | 3.0 | 825 | 0.2764 | 0.94 | | 0.5263 | 4.0 | 1100 | 0.1913 | 0.97 | | 0.5263 | 5.0 | 1375 | 0.2005 | 0.965 | ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
MGanesh29/parrot_paraphraser_on_T5-finetuned-xsum-v5
MGanesh29
2022-09-16T11:40:33Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-16T09:35:53Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: parrot_paraphraser_on_T5-finetuned-xsum-v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # parrot_paraphraser_on_T5-finetuned-xsum-v5 This model is a fine-tuned version of [prithivida/parrot_paraphraser_on_T5](https://huggingface.co/prithivida/parrot_paraphraser_on_T5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0345 - Rouge1: 86.5078 - Rouge2: 84.8978 - Rougel: 86.4798 - Rougelsum: 86.4726 - Gen Len: 17.8462 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.0663 | 1.0 | 2002 | 0.0539 | 86.0677 | 84.063 | 86.0423 | 86.0313 | 17.8671 | | 0.0449 | 2.0 | 4004 | 0.0388 | 86.4564 | 84.7606 | 86.432 | 86.4212 | 17.8501 | | 0.0269 | 3.0 | 6006 | 0.0347 | 86.4997 | 84.8907 | 86.4814 | 86.4744 | 17.8501 | | 0.023 | 4.0 | 8008 | 0.0345 | 86.5078 | 84.8978 | 86.4798 | 86.4726 | 17.8462 | ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
slplab/wav2vec2-xls-r-300m-japanese-hiragana
slplab
2022-09-16T11:01:54Z
76
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "ja", "dataset:common_voice", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-16T07:34:58Z
--- language: ja datasets: - common_voice metrics: - wer - cer model-index: - name: wav2vec2-xls-r-300m finetuned on Japanese Hiragana with no word boundaries by Hyungshin Ryu of SLPlab results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice Japanese type: common_voice args: ja metrics: - name: Test WER type: wer value: 90.66 - name: Test CER type: cer value: 19.35 --- # Wav2Vec2-XLS-R-300M-Japanese-Hiragana Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on Japanese Hiragana characters using the [Common Voice](https://huggingface.co/datasets/common_voice) and [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut). The sentence outputs do not contain word boundaries. Audio inputs should be sampled at 16kHz. ## Usage The model can be used directly as follows: ```python !pip install mecab-python3 !pip install unidic-lite !pip install pykakasi import torch import torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from datasets import load_dataset, load_metric import pykakasi import MeCab import re # load datasets, processor, and model test_dataset = load_dataset("common_voice", "ja", split="test") wer = load_metric("wer") cer = load_metric("cer") PTM = "slplab/wav2vec2-xls-r-300m-japanese-hiragana" print("PTM:", PTM) processor = Wav2Vec2Processor.from_pretrained(PTM) model = Wav2Vec2ForCTC.from_pretrained(PTM) device = "cuda" model.to(device) # preprocess datasets wakati = MeCab.Tagger("-Owakati") kakasi = pykakasi.kakasi() chars_to_ignore_regex = "[、,。]" def speech_file_to_array_fn_hiragana_nospace(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).strip() batch["sentence"] = ''.join([d['hira'] for d in kakasi.convert(batch["sentence"])]) speech_array, sampling_rate = torchaudio.load(batch["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16000) batch["speech"] = resampler(speech_array).squeeze() return batch test_dataset = test_dataset.map(speech_file_to_array_fn_hiragana_nospace) #evaluate def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(device)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) for i in range(10): print("="*20) print("Prd:", result[i]["pred_strings"]) print("Ref:", result[i]["sentence"]) print("WER: {:2f}%".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}%".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` | Original Text | Prediction | | ------------- | ------------- | | この料理は家庭で作れます。 | このりょうりはかていでつくれます | | 日本人は、決して、ユーモアと無縁な人種ではなかった。 | にっぽんじんはけしてゆうもあどむえんなじんしゅではなかった | | 木村さんに電話を貸してもらいました。 | きむらさんにでんわおかしてもらいました | ## Test Results **WER:** 90.66%, **CER:** 19.35% ## Training Trained on JSUT and train+valid set of Common Voice Japanese. Tested on test set of Common Voice Japanese.
g30rv17ys/ddpm-geeve-128
g30rv17ys
2022-09-16T10:13:42Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-16T07:46:35Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-128/tensorboard?#scalars)
dwisaji/Modelroberta
dwisaji
2022-09-16T09:03:17Z
161
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:indonlu", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-16T08:46:21Z
--- license: mit tags: - generated_from_trainer datasets: - indonlu model-index: - name: Modelroberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Modelroberta This model is a fine-tuned version of [cahya/roberta-base-indonesian-522M](https://huggingface.co/cahya/roberta-base-indonesian-522M) on the indonlu dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/seamless-ground
sd-concepts-library
2022-09-16T07:36:36Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-16T07:20:22Z
--- license: mit --- ### <seamless-ground> on Stable Diffusion This is the `<seamless-ground>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). "a red and black seamless-ground, seamless texture, game art, material, rock and stone" <img src="https://cdn.discordapp.com/attachments/1017208763964465182/1020235891496726569/allthe.png">
Sebabrata/lmv2-g-voterid-117-doc-09-13
Sebabrata
2022-09-16T07:27:09Z
78
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-16T06:55:09Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: lmv2-g-voterid-117-doc-09-13 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmv2-g-voterid-117-doc-09-13 This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1322 - Age Precision: 1.0 - Age Recall: 1.0 - Age F1: 1.0 - Age Number: 3 - Dob Precision: 1.0 - Dob Recall: 1.0 - Dob F1: 1.0 - Dob Number: 5 - F H M Name Precision: 0.7917 - F H M Name Recall: 0.7917 - F H M Name F1: 0.7917 - F H M Name Number: 24 - Name Precision: 0.8462 - Name Recall: 0.9167 - Name F1: 0.8800 - Name Number: 24 - Sex Precision: 1.0 - Sex Recall: 1.0 - Sex F1: 1.0 - Sex Number: 8 - Voter Id Precision: 0.92 - Voter Id Recall: 0.9583 - Voter Id F1: 0.9388 - Voter Id Number: 24 - Overall Precision: 0.8791 - Overall Recall: 0.9091 - Overall F1: 0.8939 - Overall Accuracy: 0.9836 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Age Precision | Age Recall | Age F1 | Age Number | Dob Precision | Dob Recall | Dob F1 | Dob Number | F H M Name Precision | F H M Name Recall | F H M Name F1 | F H M Name Number | Name Precision | Name Recall | Name F1 | Name Number | Sex Precision | Sex Recall | Sex F1 | Sex Number | Voter Id Precision | Voter Id Recall | Voter Id F1 | Voter Id Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------:|:----------:|:------:|:----------:|:-------------:|:----------:|:------:|:----------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:--------------:|:-----------:|:-------:|:-----------:|:-------------:|:----------:|:------:|:----------:|:------------------:|:---------------:|:-----------:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 1.5488 | 1.0 | 93 | 1.2193 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 5 | 0.0 | 0.0 | 0.0 | 24 | 0.0 | 0.0 | 0.0 | 24 | 0.0 | 0.0 | 0.0 | 8 | 1.0 | 0.0833 | 0.1538 | 24 | 1.0 | 0.0227 | 0.0444 | 0.9100 | | 1.0594 | 2.0 | 186 | 0.8695 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 5 | 0.0 | 0.0 | 0.0 | 24 | 0.0 | 0.0 | 0.0 | 24 | 0.0 | 0.0 | 0.0 | 8 | 0.6286 | 0.9167 | 0.7458 | 24 | 0.6286 | 0.25 | 0.3577 | 0.9173 | | 0.763 | 3.0 | 279 | 0.6057 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 5 | 0.0667 | 0.0417 | 0.0513 | 24 | 0.0 | 0.0 | 0.0 | 24 | 0.0 | 0.0 | 0.0 | 8 | 0.6875 | 0.9167 | 0.7857 | 24 | 0.4694 | 0.2614 | 0.3358 | 0.9228 | | 0.5241 | 4.0 | 372 | 0.4257 | 0.0 | 0.0 | 0.0 | 3 | 0.0 | 0.0 | 0.0 | 5 | 0.0 | 0.0 | 0.0 | 24 | 0.2381 | 0.4167 | 0.3030 | 24 | 0.0 | 0.0 | 0.0 | 8 | 0.7097 | 0.9167 | 0.8000 | 24 | 0.4384 | 0.3636 | 0.3975 | 0.9331 | | 0.3847 | 5.0 | 465 | 0.3317 | 0.0 | 0.0 | 0.0 | 3 | 0.3333 | 0.4 | 0.3636 | 5 | 0.3889 | 0.2917 | 0.3333 | 24 | 0.2745 | 0.5833 | 0.3733 | 24 | 1.0 | 0.75 | 0.8571 | 8 | 0.88 | 0.9167 | 0.8980 | 24 | 0.4811 | 0.5795 | 0.5258 | 0.9574 | | 0.3015 | 6.0 | 558 | 0.2654 | 0.0 | 0.0 | 0.0 | 3 | 0.3333 | 0.4 | 0.3636 | 5 | 0.48 | 0.5 | 0.4898 | 24 | 0.4737 | 0.75 | 0.5806 | 24 | 0.8889 | 1.0 | 0.9412 | 8 | 0.8462 | 0.9167 | 0.8800 | 24 | 0.5962 | 0.7045 | 0.6458 | 0.9653 | | 0.2233 | 7.0 | 651 | 0.2370 | 1.0 | 0.6667 | 0.8 | 3 | 0.6667 | 0.8 | 0.7273 | 5 | 0.6957 | 0.6667 | 0.6809 | 24 | 0.625 | 0.8333 | 0.7143 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.8148 | 0.9167 | 0.8627 | 24 | 0.7347 | 0.8182 | 0.7742 | 0.9726 | | 0.1814 | 8.0 | 744 | 0.2190 | 0.5 | 1.0 | 0.6667 | 3 | 0.6667 | 0.8 | 0.7273 | 5 | 0.6818 | 0.625 | 0.6522 | 24 | 0.7 | 0.875 | 0.7778 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.88 | 0.9167 | 0.8980 | 24 | 0.7526 | 0.8295 | 0.7892 | 0.9708 | | 0.1547 | 9.0 | 837 | 0.1815 | 1.0 | 0.6667 | 0.8 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.7391 | 0.7083 | 0.7234 | 24 | 0.8 | 0.8333 | 0.8163 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.9583 | 0.9583 | 0.9583 | 24 | 0.8621 | 0.8523 | 0.8571 | 0.9836 | | 0.1258 | 10.0 | 930 | 0.1799 | 1.0 | 1.0 | 1.0 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.5714 | 0.6667 | 0.6154 | 24 | 0.6897 | 0.8333 | 0.7547 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.92 | 0.9583 | 0.9388 | 24 | 0.7653 | 0.8523 | 0.8065 | 0.9805 | | 0.1088 | 11.0 | 1023 | 0.1498 | 1.0 | 1.0 | 1.0 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.7037 | 0.7917 | 0.7451 | 24 | 0.7586 | 0.9167 | 0.8302 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.9583 | 0.9583 | 0.9583 | 24 | 0.8333 | 0.9091 | 0.8696 | 0.9842 | | 0.0916 | 12.0 | 1116 | 0.1572 | 1.0 | 1.0 | 1.0 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.76 | 0.7917 | 0.7755 | 24 | 0.7241 | 0.875 | 0.7925 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.8519 | 0.9583 | 0.9020 | 24 | 0.8144 | 0.8977 | 0.8541 | 0.9805 | | 0.0821 | 13.0 | 1209 | 0.1763 | 1.0 | 1.0 | 1.0 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.7391 | 0.7083 | 0.7234 | 24 | 0.7692 | 0.8333 | 0.8 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.9545 | 0.875 | 0.9130 | 24 | 0.8506 | 0.8409 | 0.8457 | 0.9812 | | 0.0733 | 14.0 | 1302 | 0.1632 | 1.0 | 1.0 | 1.0 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.6538 | 0.7083 | 0.68 | 24 | 0.6452 | 0.8333 | 0.7273 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.9565 | 0.9167 | 0.9362 | 24 | 0.7812 | 0.8523 | 0.8152 | 0.9757 | | 0.0691 | 15.0 | 1395 | 0.1536 | 1.0 | 1.0 | 1.0 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.75 | 0.75 | 0.75 | 24 | 0.7692 | 0.8333 | 0.8 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.88 | 0.9167 | 0.8980 | 24 | 0.8352 | 0.8636 | 0.8492 | 0.9812 | | 0.063 | 16.0 | 1488 | 0.1420 | 1.0 | 1.0 | 1.0 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.7391 | 0.7083 | 0.7234 | 24 | 0.8519 | 0.9583 | 0.9020 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.9565 | 0.9167 | 0.9362 | 24 | 0.8764 | 0.8864 | 0.8814 | 0.9842 | | 0.0565 | 17.0 | 1581 | 0.2375 | 1.0 | 1.0 | 1.0 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.7647 | 0.5417 | 0.6341 | 24 | 0.7727 | 0.7083 | 0.7391 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.9565 | 0.9167 | 0.9362 | 24 | 0.8718 | 0.7727 | 0.8193 | 0.9775 | | 0.0567 | 18.0 | 1674 | 0.1838 | 0.75 | 1.0 | 0.8571 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.75 | 0.5 | 0.6 | 24 | 0.7407 | 0.8333 | 0.7843 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.9583 | 0.9583 | 0.9583 | 24 | 0.8452 | 0.8068 | 0.8256 | 0.9775 | | 0.0515 | 19.0 | 1767 | 0.1360 | 1.0 | 1.0 | 1.0 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.6538 | 0.7083 | 0.68 | 24 | 0.8077 | 0.875 | 0.8400 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.9583 | 0.9583 | 0.9583 | 24 | 0.8370 | 0.875 | 0.8556 | 0.9830 | | 0.0484 | 20.0 | 1860 | 0.1505 | 1.0 | 1.0 | 1.0 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.7391 | 0.7083 | 0.7234 | 24 | 0.875 | 0.875 | 0.875 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.9545 | 0.875 | 0.9130 | 24 | 0.8824 | 0.8523 | 0.8671 | 0.9842 | | 0.0444 | 21.0 | 1953 | 0.1718 | 0.75 | 1.0 | 0.8571 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.6 | 0.625 | 0.6122 | 24 | 0.7407 | 0.8333 | 0.7843 | 24 | 0.8889 | 1.0 | 0.9412 | 8 | 0.9565 | 0.9167 | 0.9362 | 24 | 0.7849 | 0.8295 | 0.8066 | 0.9787 | | 0.0449 | 22.0 | 2046 | 0.1626 | 1.0 | 1.0 | 1.0 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.7727 | 0.7083 | 0.7391 | 24 | 0.84 | 0.875 | 0.8571 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.9167 | 0.9167 | 0.9167 | 24 | 0.8736 | 0.8636 | 0.8686 | 0.9812 | | 0.0355 | 23.0 | 2139 | 0.1532 | 1.0 | 1.0 | 1.0 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.8095 | 0.7083 | 0.7556 | 24 | 0.8462 | 0.9167 | 0.8800 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.9167 | 0.9167 | 0.9167 | 24 | 0.8851 | 0.875 | 0.8800 | 0.9824 | | 0.0356 | 24.0 | 2232 | 0.1612 | 1.0 | 1.0 | 1.0 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.7391 | 0.7083 | 0.7234 | 24 | 0.84 | 0.875 | 0.8571 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.9545 | 0.875 | 0.9130 | 24 | 0.8721 | 0.8523 | 0.8621 | 0.9830 | | 0.0332 | 25.0 | 2325 | 0.1237 | 1.0 | 1.0 | 1.0 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.7391 | 0.7083 | 0.7234 | 24 | 0.8846 | 0.9583 | 0.9200 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.92 | 0.9583 | 0.9388 | 24 | 0.8778 | 0.8977 | 0.8876 | 0.9848 | | 0.029 | 26.0 | 2418 | 0.1259 | 1.0 | 1.0 | 1.0 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.7083 | 0.7083 | 0.7083 | 24 | 0.88 | 0.9167 | 0.8980 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.9545 | 0.875 | 0.9130 | 24 | 0.8736 | 0.8636 | 0.8686 | 0.9860 | | 0.0272 | 27.0 | 2511 | 0.1316 | 0.75 | 1.0 | 0.8571 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.75 | 0.75 | 0.75 | 24 | 0.8214 | 0.9583 | 0.8846 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.92 | 0.9583 | 0.9388 | 24 | 0.8511 | 0.9091 | 0.8791 | 0.9799 | | 0.0265 | 28.0 | 2604 | 0.1369 | 1.0 | 1.0 | 1.0 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.8095 | 0.7083 | 0.7556 | 24 | 0.7931 | 0.9583 | 0.8679 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.9565 | 0.9167 | 0.9362 | 24 | 0.8764 | 0.8864 | 0.8814 | 0.9830 | | 0.0271 | 29.0 | 2697 | 0.1078 | 1.0 | 1.0 | 1.0 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.7143 | 0.8333 | 0.7692 | 24 | 0.8 | 0.8333 | 0.8163 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.9583 | 0.9583 | 0.9583 | 24 | 0.8495 | 0.8977 | 0.8729 | 0.9848 | | 0.0219 | 30.0 | 2790 | 0.1322 | 1.0 | 1.0 | 1.0 | 3 | 1.0 | 1.0 | 1.0 | 5 | 0.7917 | 0.7917 | 0.7917 | 24 | 0.8462 | 0.9167 | 0.8800 | 24 | 1.0 | 1.0 | 1.0 | 8 | 0.92 | 0.9583 | 0.9388 | 24 | 0.8791 | 0.9091 | 0.8939 | 0.9836 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Tritkoman/autotrain-gahhaha-1478754178
Tritkoman
2022-09-16T06:11:41Z
85
0
transformers
[ "transformers", "pytorch", "autotrain", "translation", "es", "en", "dataset:Tritkoman/autotrain-data-gahhaha", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
translation
2022-09-16T05:42:56Z
--- tags: - autotrain - translation language: - es - en datasets: - Tritkoman/autotrain-data-gahhaha co2_eq_emissions: emissions: 39.86630127427062 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 1478754178 - CO2 Emissions (in grams): 39.8663 ## Validation Metrics - Loss: 1.716 - SacreBLEU: 9.095 - Gen len: 11.146
fatimaseemab/wav2vec2-urdu
fatimaseemab
2022-09-16T05:51:23Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-16T05:09:29Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-urdu results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-urdu This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
SALT-NLP/pfadapter-bert-base-uncased-stsb-combined-value
SALT-NLP
2022-09-16T04:48:01Z
1
0
adapter-transformers
[ "adapter-transformers", "bert", "en", "dataset:glue", "region:us" ]
null
2022-09-16T04:47:54Z
--- tags: - bert - adapter-transformers datasets: - glue language: - en --- # Adapter `SALT-NLP/pfadapter-bert-base-uncased-stsb-combined-value` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [glue](https://huggingface.co/datasets/glue/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("SALT-NLP/pfadapter-bert-base-uncased-stsb-combined-value", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
microsoft/layoutlmv2-base-uncased
microsoft
2022-09-16T03:40:56Z
693,838
62
transformers
[ "transformers", "pytorch", "layoutlmv2", "en", "arxiv:2012.14740", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en license: cc-by-nc-sa-4.0 --- # LayoutLMv2 **Multimodal (text + layout/format + image) pre-training for document AI** The documentation of this model in the Transformers library can be found [here](https://huggingface.co/docs/transformers/model_doc/layoutlmv2). [Microsoft Document AI](https://www.microsoft.com/en-us/research/project/document-ai/) | [GitHub](https://github.com/microsoft/unilm/tree/master/layoutlmv2) ## Introduction LayoutLMv2 is an improved version of LayoutLM with new pre-training tasks to model the interaction among text, layout, and image in a single multi-modal framework. It outperforms strong baselines and achieves new state-of-the-art results on a wide variety of downstream visually-rich document understanding tasks, including , including FUNSD (0.7895 → 0.8420), CORD (0.9493 → 0.9601), SROIE (0.9524 → 0.9781), Kleister-NDA (0.834 → 0.852), RVL-CDIP (0.9443 → 0.9564), and DocVQA (0.7295 → 0.8672). [LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou, ACL 2021
HYPJUDY/layoutlmv3-large-finetuned-funsd
HYPJUDY
2022-09-16T03:18:44Z
170
4
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "arxiv:2204.08387", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-18T18:06:30Z
--- license: cc-by-nc-sa-4.0 --- # layoutlmv3-large-finetuned-funsd The model [layoutlmv3-large-finetuned-funsd](https://huggingface.co/HYPJUDY/layoutlmv3-large-finetuned-funsd) is fine-tuned on the FUNSD dataset initialized from [microsoft/layoutlmv3-large](https://huggingface.co/microsoft/layoutlmv3-large). This finetuned model achieves an F1 score of 92.15 on the test split of the FUNSD dataset. [Paper](https://arxiv.org/pdf/2204.08387.pdf) | [Code](https://aka.ms/layoutlmv3) | [Microsoft Document AI](https://www.microsoft.com/en-us/research/project/document-ai/) If you find LayoutLMv3 helpful, please cite the following paper: ``` @inproceedings{huang2022layoutlmv3, author={Yupan Huang and Tengchao Lv and Lei Cui and Yutong Lu and Furu Wei}, title={LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking}, booktitle={Proceedings of the 30th ACM International Conference on Multimedia}, year={2022} } ``` ## License The content of this project itself is licensed under the [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/). Portions of the source code are based on the [transformers](https://github.com/huggingface/transformers) project. [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct)
sd-concepts-library/wayne-reynolds-character
sd-concepts-library
2022-09-16T03:10:09Z
0
5
null
[ "license:mit", "region:us" ]
null
2022-09-16T03:10:03Z
--- license: mit --- ### Wayne Reynolds Character on Stable Diffusion This is the `<warcharport>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<warcharport> 0](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/12.jpeg) ![<warcharport> 1](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/0.jpeg) ![<warcharport> 2](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/13.jpeg) ![<warcharport> 3](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/15.jpeg) ![<warcharport> 4](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/2.jpeg) ![<warcharport> 5](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/11.jpeg) ![<warcharport> 6](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/23.jpeg) ![<warcharport> 7](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/8.jpeg) ![<warcharport> 8](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/21.jpeg) ![<warcharport> 9](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/6.jpeg) ![<warcharport> 10](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/16.jpeg) ![<warcharport> 11](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/18.jpeg) ![<warcharport> 12](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/22.jpeg) ![<warcharport> 13](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/4.jpeg) ![<warcharport> 14](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/1.jpeg) ![<warcharport> 15](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/3.jpeg) ![<warcharport> 16](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/9.jpeg) ![<warcharport> 17](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/14.jpeg) ![<warcharport> 18](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/10.jpeg) ![<warcharport> 19](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/7.jpeg) ![<warcharport> 20](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/5.jpeg) ![<warcharport> 21](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/17.jpeg) ![<warcharport> 22](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/24.jpeg) ![<warcharport> 23](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/19.jpeg) ![<warcharport> 24](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/25.jpeg) ![<warcharport> 25](https://huggingface.co/sd-concepts-library/wayne-reynolds-character/resolve/main/concept_images/20.jpeg)
sd-concepts-library/ganyu-genshin-impact
sd-concepts-library
2022-09-16T02:54:13Z
0
22
null
[ "license:mit", "region:us" ]
null
2022-09-16T02:54:10Z
--- license: mit --- ### Ganyu (Genshin Impact) on Stable Diffusion This is the `<ganyu>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<ganyu> 0](https://huggingface.co/sd-concepts-library/ganyu-genshin-impact/resolve/main/concept_images/0.jpeg) ![<ganyu> 1](https://huggingface.co/sd-concepts-library/ganyu-genshin-impact/resolve/main/concept_images/2.jpeg) ![<ganyu> 2](https://huggingface.co/sd-concepts-library/ganyu-genshin-impact/resolve/main/concept_images/4.jpeg) ![<ganyu> 3](https://huggingface.co/sd-concepts-library/ganyu-genshin-impact/resolve/main/concept_images/1.jpeg) ![<ganyu> 4](https://huggingface.co/sd-concepts-library/ganyu-genshin-impact/resolve/main/concept_images/3.jpeg)
mikedodge/t5-small-finetuned-xsum
mikedodge
2022-09-16T02:23:09Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-15T20:00:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum config: default split: train args: default metrics: - name: Rouge1 type: rouge value: 28.2804 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4789 - Rouge1: 28.2804 - Rouge2: 7.7039 - Rougel: 22.2002 - Rougelsum: 22.2019 - Gen Len: 18.8238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.711 | 1.0 | 12753 | 2.4789 | 28.2804 | 7.7039 | 22.2002 | 22.2019 | 18.8238 | ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/milady
sd-concepts-library
2022-09-16T01:59:10Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-16T01:58:59Z
--- license: mit --- ### milady on Stable Diffusion This is the `<milady>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<milady> 0](https://huggingface.co/sd-concepts-library/milady/resolve/main/concept_images/0.jpeg) ![<milady> 1](https://huggingface.co/sd-concepts-library/milady/resolve/main/concept_images/2.jpeg) ![<milady> 2](https://huggingface.co/sd-concepts-library/milady/resolve/main/concept_images/1.jpeg) ![<milady> 3](https://huggingface.co/sd-concepts-library/milady/resolve/main/concept_images/3.jpeg)
sd-concepts-library/hydrasuit
sd-concepts-library
2022-09-16T01:50:23Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-16T01:50:17Z
--- license: mit --- ### Hydrasuit on Stable Diffusion This is the `<hydrasuit>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<hydrasuit> 0](https://huggingface.co/sd-concepts-library/hydrasuit/resolve/main/concept_images/0.jpeg) ![<hydrasuit> 1](https://huggingface.co/sd-concepts-library/hydrasuit/resolve/main/concept_images/2.jpeg) ![<hydrasuit> 2](https://huggingface.co/sd-concepts-library/hydrasuit/resolve/main/concept_images/1.jpeg) ![<hydrasuit> 3](https://huggingface.co/sd-concepts-library/hydrasuit/resolve/main/concept_images/3.jpeg)
sd-concepts-library/luinv2
sd-concepts-library
2022-09-16T01:04:43Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-16T01:04:31Z
--- license: mit --- ### luinv2 on Stable Diffusion This is the `<luin-waifu>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<luin-waifu> 0](https://huggingface.co/sd-concepts-library/luinv2/resolve/main/concept_images/0.jpeg) ![<luin-waifu> 1](https://huggingface.co/sd-concepts-library/luinv2/resolve/main/concept_images/2.jpeg) ![<luin-waifu> 2](https://huggingface.co/sd-concepts-library/luinv2/resolve/main/concept_images/4.jpeg) ![<luin-waifu> 3](https://huggingface.co/sd-concepts-library/luinv2/resolve/main/concept_images/1.jpeg) ![<luin-waifu> 4](https://huggingface.co/sd-concepts-library/luinv2/resolve/main/concept_images/3.jpeg)
sd-concepts-library/csgo-awp-texture-map
sd-concepts-library
2022-09-16T00:32:03Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-16T00:31:57Z
--- license: mit --- ### csgo_awp_texture_map on Stable Diffusion This is the `<csgo_awp_texture>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<csgo_awp_texture> 0](https://huggingface.co/sd-concepts-library/csgo-awp-texture-map/resolve/main/concept_images/0.jpeg) ![<csgo_awp_texture> 1](https://huggingface.co/sd-concepts-library/csgo-awp-texture-map/resolve/main/concept_images/2.jpeg) ![<csgo_awp_texture> 2](https://huggingface.co/sd-concepts-library/csgo-awp-texture-map/resolve/main/concept_images/4.jpeg) ![<csgo_awp_texture> 3](https://huggingface.co/sd-concepts-library/csgo-awp-texture-map/resolve/main/concept_images/1.jpeg) ![<csgo_awp_texture> 4](https://huggingface.co/sd-concepts-library/csgo-awp-texture-map/resolve/main/concept_images/3.jpeg)
rajistics/donut-base-sroiev2
rajistics
2022-09-15T23:44:13Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-09-15T23:08:07Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroiev2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroiev2 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Isaacp/xlm-roberta-base-finetuned-panx-en
Isaacp
2022-09-15T23:30:58Z
123
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-15T23:10:20Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.7032474804031354 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3932 - F1: 0.7032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1504 | 1.0 | 50 | 0.5992 | 0.4786 | | 0.5147 | 2.0 | 100 | 0.4307 | 0.6468 | | 0.3717 | 3.0 | 150 | 0.3932 | 0.7032 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Isaacp/xlm-roberta-base-finetuned-panx-fr
Isaacp
2022-09-15T22:48:39Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-15T22:25:15Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8299296953465015 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2848 - F1: 0.8299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5989 | 1.0 | 191 | 0.3383 | 0.7928 | | 0.2617 | 2.0 | 382 | 0.2966 | 0.8318 | | 0.1672 | 3.0 | 573 | 0.2848 | 0.8299 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
sd-concepts-library/a-hat-kid
sd-concepts-library
2022-09-15T22:03:52Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-15T22:03:46Z
--- license: mit --- ### A Hat kid on Stable Diffusion This is the `<hatintime-kid>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<hatintime-kid> 0](https://huggingface.co/sd-concepts-library/a-hat-kid/resolve/main/concept_images/0.jpeg) ![<hatintime-kid> 1](https://huggingface.co/sd-concepts-library/a-hat-kid/resolve/main/concept_images/2.jpeg) ![<hatintime-kid> 2](https://huggingface.co/sd-concepts-library/a-hat-kid/resolve/main/concept_images/1.jpeg) ![<hatintime-kid> 3](https://huggingface.co/sd-concepts-library/a-hat-kid/resolve/main/concept_images/3.jpeg)
sd-concepts-library/backrooms
sd-concepts-library
2022-09-15T21:32:42Z
0
12
null
[ "license:mit", "region:us" ]
null
2022-09-15T21:32:37Z
--- license: mit --- ### Backrooms on Stable Diffusion This is the `<Backrooms>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<Backrooms> 0](https://huggingface.co/sd-concepts-library/backrooms/resolve/main/concept_images/0.jpeg) ![<Backrooms> 1](https://huggingface.co/sd-concepts-library/backrooms/resolve/main/concept_images/2.jpeg) ![<Backrooms> 2](https://huggingface.co/sd-concepts-library/backrooms/resolve/main/concept_images/1.jpeg)
JImenezDaniel88/distResume-Classification-parser
JImenezDaniel88
2022-09-15T19:47:43Z
0
0
null
[ "region:us" ]
null
2022-09-15T18:32:09Z
# YaleParser Resumes Classification **YaleParser** is a python tool for NLP classification Task and generate databases with this classification. This model is a fineting on named-entity-recognition and zero-shot sequence classifiers. The method works by posing the sequence to be classified as the NLI and Bayesian weigths to construct hypothesis from each candidate label, and stepwise with regex, build a Database. ### Design ``` predict_single('''08/1992-05/1996 BA, Biology, West Virginia University, Morgantown, WV''') # 'Education' ``` precision recall f1-score support Administrative Position 0.73 0.73 0.73 49 Appointments 0.73 0.84 0.79 115 Bibliography 0.94 0.83 0.88 87 Board Certification 0.94 0.77 0.85 44 Education 0.86 0.86 0.86 100 Grants/Clinical Trials 0.94 0.85 0.89 40 Other 0.69 0.77 0.73 156 Patents 0.98 0.98 0.98 43 Professional Honors 0.80 0.85 0.82 170 Professional Service 0.85 0.61 0.71 85 accuracy 0.81 889 macro avg 0.85 0.81 0.82 889 weighted avg 0.82 0.81 0.81 889
gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v2
gary109
2022-09-15T18:55:19Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-16T01:44:48Z
--- license: apache-2.0 tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v2 This model is a fine-tuned version of [gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v2](https://huggingface.co/gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v2) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING3 dataset. It achieves the following results on the evaluation set: - Loss: 0.4660 - Wer: 0.2274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 500.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.4528 | 1.0 | 72 | 0.4860 | 0.2236 | | 0.4403 | 2.0 | 144 | 0.4814 | 0.2222 | | 0.4309 | 3.0 | 216 | 0.4952 | 0.2238 | | 0.4193 | 4.0 | 288 | 0.4864 | 0.2190 | | 0.427 | 5.0 | 360 | 0.5071 | 0.2261 | | 0.4342 | 6.0 | 432 | 0.4932 | 0.2218 | | 0.4205 | 7.0 | 504 | 0.4869 | 0.2222 | | 0.437 | 8.0 | 576 | 0.5125 | 0.2224 | | 0.4316 | 9.0 | 648 | 0.5095 | 0.2285 | | 0.4383 | 10.0 | 720 | 0.5398 | 0.2346 | | 0.4431 | 11.0 | 792 | 0.5177 | 0.2259 | | 0.4555 | 12.0 | 864 | 0.5246 | 0.2335 | | 0.4488 | 13.0 | 936 | 0.5248 | 0.2277 | | 0.4449 | 14.0 | 1008 | 0.5196 | 0.2254 | | 0.4629 | 15.0 | 1080 | 0.4933 | 0.2297 | | 0.4565 | 16.0 | 1152 | 0.5469 | 0.2297 | | 0.4396 | 17.0 | 1224 | 0.5356 | 0.2439 | | 0.4452 | 18.0 | 1296 | 0.5298 | 0.2510 | | 0.4449 | 19.0 | 1368 | 0.5024 | 0.2291 | | 0.4437 | 20.0 | 1440 | 0.5288 | 0.2374 | | 0.4572 | 21.0 | 1512 | 0.4954 | 0.2344 | | 0.4633 | 22.0 | 1584 | 0.5043 | 0.2361 | | 0.4486 | 23.0 | 1656 | 0.5076 | 0.2250 | | 0.4386 | 24.0 | 1728 | 0.5564 | 0.2492 | | 0.4478 | 25.0 | 1800 | 0.5299 | 0.2236 | | 0.4654 | 26.0 | 1872 | 0.5076 | 0.2276 | | 0.453 | 27.0 | 1944 | 0.5666 | 0.2395 | | 0.4474 | 28.0 | 2016 | 0.5026 | 0.2254 | | 0.4465 | 29.0 | 2088 | 0.5216 | 0.2352 | | 0.4689 | 30.0 | 2160 | 0.5293 | 0.2370 | | 0.4467 | 31.0 | 2232 | 0.4856 | 0.2303 | | 0.4379 | 32.0 | 2304 | 0.5089 | 0.2240 | | 0.4302 | 33.0 | 2376 | 0.4958 | 0.2173 | | 0.4417 | 34.0 | 2448 | 0.5392 | 0.2337 | | 0.4458 | 35.0 | 2520 | 0.5229 | 0.2416 | | 0.4415 | 36.0 | 2592 | 0.5280 | 0.2344 | | 0.4621 | 37.0 | 2664 | 0.5362 | 0.2459 | | 0.44 | 38.0 | 2736 | 0.5071 | 0.2285 | | 0.4288 | 39.0 | 2808 | 0.5264 | 0.2313 | | 0.4594 | 40.0 | 2880 | 0.5238 | 0.2306 | | 0.4428 | 41.0 | 2952 | 0.5375 | 0.2286 | | 0.4233 | 42.0 | 3024 | 0.5214 | 0.2254 | | 0.4462 | 43.0 | 3096 | 0.5145 | 0.2450 | | 0.4282 | 44.0 | 3168 | 0.5519 | 0.2254 | | 0.454 | 45.0 | 3240 | 0.5401 | 0.2382 | | 0.4494 | 46.0 | 3312 | 0.5117 | 0.2229 | | 0.4292 | 47.0 | 3384 | 0.5295 | 0.2352 | | 0.4321 | 48.0 | 3456 | 0.4953 | 0.2299 | | 0.4145 | 49.0 | 3528 | 0.5233 | 0.2297 | | 0.4278 | 50.0 | 3600 | 0.5151 | 0.2258 | | 0.4395 | 51.0 | 3672 | 0.4660 | 0.2274 | | 0.4298 | 52.0 | 3744 | 0.5083 | 0.2409 | | 0.4279 | 53.0 | 3816 | 0.4855 | 0.2219 | | 0.4164 | 54.0 | 3888 | 0.5074 | 0.2267 | | 0.4386 | 55.0 | 3960 | 0.5016 | 0.2241 | | 0.4497 | 56.0 | 4032 | 0.5378 | 0.2305 | | 0.4267 | 57.0 | 4104 | 0.5199 | 0.2344 | | 0.4083 | 58.0 | 4176 | 0.5134 | 0.2249 | | 0.4163 | 59.0 | 4248 | 0.4975 | 0.2316 | | 0.4271 | 60.0 | 4320 | 0.5298 | 0.2291 | | 0.43 | 61.0 | 4392 | 0.4991 | 0.2289 | | 0.437 | 62.0 | 4464 | 0.5154 | 0.2298 | | 0.415 | 63.0 | 4536 | 0.5167 | 0.2224 | | 0.4308 | 64.0 | 4608 | 0.5324 | 0.2287 | | 0.4247 | 65.0 | 4680 | 0.5396 | 0.2224 | | 0.4076 | 66.0 | 4752 | 0.5354 | 0.2274 | | 0.4196 | 67.0 | 4824 | 0.5523 | 0.2225 | | 0.4216 | 68.0 | 4896 | 0.5180 | 0.2166 | | 0.4132 | 69.0 | 4968 | 0.5111 | 0.2212 | | 0.4306 | 70.0 | 5040 | 0.5534 | 0.2416 | | 0.4327 | 71.0 | 5112 | 0.5628 | 0.2473 | | 0.4301 | 72.0 | 5184 | 0.5216 | 0.2252 | | 0.4328 | 73.0 | 5256 | 0.5154 | 0.2250 | | 0.4021 | 74.0 | 5328 | 0.5686 | 0.2245 | | 0.465 | 75.0 | 5400 | 0.5236 | 0.2419 | | 0.416 | 76.0 | 5472 | 0.5614 | 0.2365 | | 0.4337 | 77.0 | 5544 | 0.5275 | 0.2302 | | 0.4157 | 78.0 | 5616 | 0.5126 | 0.2293 | | 0.4143 | 79.0 | 5688 | 0.5260 | 0.2376 | | 0.4174 | 80.0 | 5760 | 0.5254 | 0.2317 | | 0.4174 | 81.0 | 5832 | 0.4971 | 0.2191 | | 0.4082 | 82.0 | 5904 | 0.5245 | 0.2320 | | 0.4263 | 83.0 | 5976 | 0.5692 | 0.2401 | | 0.4164 | 84.0 | 6048 | 0.5209 | 0.2312 | | 0.4144 | 85.0 | 6120 | 0.5164 | 0.2340 | | 0.4189 | 86.0 | 6192 | 0.5545 | 0.2459 | | 0.4311 | 87.0 | 6264 | 0.5349 | 0.2477 | | 0.4224 | 88.0 | 6336 | 0.5093 | 0.2375 | | 0.4069 | 89.0 | 6408 | 0.5664 | 0.2443 | | 0.4082 | 90.0 | 6480 | 0.5426 | 0.2391 | | 0.411 | 91.0 | 6552 | 0.5219 | 0.2339 | | 0.4085 | 92.0 | 6624 | 0.5468 | 0.2360 | | 0.4012 | 93.0 | 6696 | 0.5514 | 0.2526 | | 0.3863 | 94.0 | 6768 | 0.5440 | 0.2344 | | 0.4098 | 95.0 | 6840 | 0.5355 | 0.2362 | | 0.4136 | 96.0 | 6912 | 0.5400 | 0.2409 | | 0.4066 | 97.0 | 6984 | 0.5117 | 0.2313 | | 0.4131 | 98.0 | 7056 | 0.5365 | 0.2375 | | 0.3852 | 99.0 | 7128 | 0.5172 | 0.2326 | | 0.3935 | 100.0 | 7200 | 0.5085 | 0.2296 | | 0.4093 | 101.0 | 7272 | 0.5650 | 0.2525 | | 0.3938 | 102.0 | 7344 | 0.5246 | 0.2324 | | 0.4016 | 103.0 | 7416 | 0.5084 | 0.2292 | | 0.412 | 104.0 | 7488 | 0.5308 | 0.2211 | | 0.3903 | 105.0 | 7560 | 0.5047 | 0.2201 | | 0.396 | 106.0 | 7632 | 0.5302 | 0.2223 | | 0.3891 | 107.0 | 7704 | 0.5367 | 0.2222 | | 0.3886 | 108.0 | 7776 | 0.5459 | 0.2328 | | 0.379 | 109.0 | 7848 | 0.5486 | 0.2340 | | 0.4009 | 110.0 | 7920 | 0.5080 | 0.2186 | | 0.3967 | 111.0 | 7992 | 0.5389 | 0.2193 | | 0.3988 | 112.0 | 8064 | 0.5488 | 0.2281 | | 0.3952 | 113.0 | 8136 | 0.5409 | 0.2294 | | 0.3884 | 114.0 | 8208 | 0.5304 | 0.2326 | | 0.3939 | 115.0 | 8280 | 0.5542 | 0.2211 | | 0.3927 | 116.0 | 8352 | 0.5676 | 0.2259 | | 0.3944 | 117.0 | 8424 | 0.5221 | 0.2210 | | 0.3941 | 118.0 | 8496 | 0.5474 | 0.2247 | | 0.3912 | 119.0 | 8568 | 0.5451 | 0.2185 | | 0.4209 | 120.0 | 8640 | 0.5282 | 0.2282 | | 0.3882 | 121.0 | 8712 | 0.5263 | 0.2184 | | 0.3891 | 122.0 | 8784 | 0.5301 | 0.2194 | | 0.3964 | 123.0 | 8856 | 0.5608 | 0.2220 | | 0.3918 | 124.0 | 8928 | 0.5233 | 0.2230 | | 0.3834 | 125.0 | 9000 | 0.5286 | 0.2195 | | 0.3952 | 126.0 | 9072 | 0.5410 | 0.2258 | | 0.3812 | 127.0 | 9144 | 0.5183 | 0.2207 | | 0.3904 | 128.0 | 9216 | 0.5393 | 0.2244 | | 0.3797 | 129.0 | 9288 | 0.5213 | 0.2226 | | 0.3802 | 130.0 | 9360 | 0.5470 | 0.2207 | | 0.4097 | 131.0 | 9432 | 0.5206 | 0.2254 | | 0.3771 | 132.0 | 9504 | 0.5075 | 0.2182 | | 0.3732 | 133.0 | 9576 | 0.5153 | 0.2255 | | 0.3727 | 134.0 | 9648 | 0.5107 | 0.2212 | | 0.3751 | 135.0 | 9720 | 0.5147 | 0.2259 | | 0.3858 | 136.0 | 9792 | 0.5519 | 0.2220 | | 0.3889 | 137.0 | 9864 | 0.5606 | 0.2222 | | 0.3916 | 138.0 | 9936 | 0.5401 | 0.2252 | | 0.3775 | 139.0 | 10008 | 0.5393 | 0.2269 | | 0.3963 | 140.0 | 10080 | 0.5504 | 0.2322 | | 0.3941 | 141.0 | 10152 | 0.5338 | 0.2342 | | 0.3801 | 142.0 | 10224 | 0.5115 | 0.2276 | | 0.3809 | 143.0 | 10296 | 0.4966 | 0.2261 | | 0.3751 | 144.0 | 10368 | 0.4910 | 0.2240 | | 0.3827 | 145.0 | 10440 | 0.5291 | 0.2204 | | 0.384 | 146.0 | 10512 | 0.5702 | 0.2278 | | 0.3728 | 147.0 | 10584 | 0.5340 | 0.2283 | | 0.3963 | 148.0 | 10656 | 0.5513 | 0.2286 | | 0.3802 | 149.0 | 10728 | 0.5424 | 0.2264 | | 0.3874 | 150.0 | 10800 | 0.5219 | 0.2200 | | 0.3743 | 151.0 | 10872 | 0.5147 | 0.2161 | | 0.3931 | 152.0 | 10944 | 0.5318 | 0.2324 | | 0.3755 | 153.0 | 11016 | 0.5457 | 0.2252 | | 0.3744 | 154.0 | 11088 | 0.5448 | 0.2260 | | 0.3799 | 155.0 | 11160 | 0.5276 | 0.2171 | | 0.3953 | 156.0 | 11232 | 0.5546 | 0.2263 | | 0.3716 | 157.0 | 11304 | 0.5110 | 0.2246 | | 0.3725 | 158.0 | 11376 | 0.5385 | 0.2193 | | 0.364 | 159.0 | 11448 | 0.5114 | 0.2216 | | 0.3666 | 160.0 | 11520 | 0.5584 | 0.2248 | | 0.3797 | 161.0 | 11592 | 0.5313 | 0.2238 | | 0.3704 | 162.0 | 11664 | 0.5542 | 0.2281 | | 0.362 | 163.0 | 11736 | 0.5674 | 0.2241 | | 0.3551 | 164.0 | 11808 | 0.5484 | 0.2210 | | 0.3765 | 165.0 | 11880 | 0.5380 | 0.2252 | | 0.3821 | 166.0 | 11952 | 0.5441 | 0.2267 | | 0.3608 | 167.0 | 12024 | 0.4983 | 0.2186 | | 0.3595 | 168.0 | 12096 | 0.5065 | 0.2166 | | 0.3652 | 169.0 | 12168 | 0.5211 | 0.2150 | | 0.3635 | 170.0 | 12240 | 0.5341 | 0.2164 | | 0.3614 | 171.0 | 12312 | 0.5059 | 0.2183 | | 0.3522 | 172.0 | 12384 | 0.5530 | 0.2199 | | 0.3522 | 173.0 | 12456 | 0.5581 | 0.2142 | | 0.3503 | 174.0 | 12528 | 0.5394 | 0.2211 | | 0.3583 | 175.0 | 12600 | 0.5460 | 0.2252 | | 0.3562 | 176.0 | 12672 | 0.5199 | 0.2223 | | 0.351 | 177.0 | 12744 | 0.5248 | 0.2146 | | 0.3667 | 178.0 | 12816 | 0.5400 | 0.2169 | | 0.3407 | 179.0 | 12888 | 0.5349 | 0.2095 | | 0.3563 | 180.0 | 12960 | 0.5259 | 0.2116 | | 0.3656 | 181.0 | 13032 | 0.5130 | 0.2115 | | 0.3714 | 182.0 | 13104 | 0.5071 | 0.2151 | | 0.3565 | 183.0 | 13176 | 0.5419 | 0.2205 | | 0.3521 | 184.0 | 13248 | 0.5380 | 0.2250 | | 0.3605 | 185.0 | 13320 | 0.5437 | 0.2230 | | 0.3508 | 186.0 | 13392 | 0.5391 | 0.2225 | | 0.3746 | 187.0 | 13464 | 0.5426 | 0.2274 | | 0.3478 | 188.0 | 13536 | 0.5824 | 0.2247 | | 0.3475 | 189.0 | 13608 | 0.5233 | 0.2103 | | 0.3676 | 190.0 | 13680 | 0.5214 | 0.2122 | | 0.3579 | 191.0 | 13752 | 0.5267 | 0.2124 | | 0.3563 | 192.0 | 13824 | 0.5343 | 0.2132 | | 0.3531 | 193.0 | 13896 | 0.5205 | 0.2205 | | 0.3424 | 194.0 | 13968 | 0.5196 | 0.2196 | | 0.3617 | 195.0 | 14040 | 0.5302 | 0.2222 | | 0.3461 | 196.0 | 14112 | 0.5366 | 0.2204 | | 0.3524 | 197.0 | 14184 | 0.5383 | 0.2212 | | 0.3354 | 198.0 | 14256 | 0.5279 | 0.2166 | | 0.3501 | 199.0 | 14328 | 0.5235 | 0.2165 | | 0.3384 | 200.0 | 14400 | 0.5330 | 0.2152 | | 0.3565 | 201.0 | 14472 | 0.5262 | 0.2211 | | 0.3385 | 202.0 | 14544 | 0.5404 | 0.2173 | | 0.3533 | 203.0 | 14616 | 0.5465 | 0.2209 | | 0.3503 | 204.0 | 14688 | 0.5243 | 0.2223 | | 0.3529 | 205.0 | 14760 | 0.5611 | 0.2276 | | 0.3555 | 206.0 | 14832 | 0.5437 | 0.2209 | | 0.3548 | 207.0 | 14904 | 0.5401 | 0.2249 | | 0.3417 | 208.0 | 14976 | 0.5643 | 0.2304 | | 0.3271 | 209.0 | 15048 | 0.5356 | 0.2183 | | 0.344 | 210.0 | 15120 | 0.5300 | 0.2173 | | 0.3416 | 211.0 | 15192 | 0.5343 | 0.2169 | | 0.3393 | 212.0 | 15264 | 0.5677 | 0.2206 | | 0.3356 | 213.0 | 15336 | 0.5514 | 0.2194 | | 0.3344 | 214.0 | 15408 | 0.5527 | 0.2198 | | 0.3303 | 215.0 | 15480 | 0.5590 | 0.2146 | | 0.3503 | 216.0 | 15552 | 0.5681 | 0.2242 | | 0.339 | 217.0 | 15624 | 0.5318 | 0.2186 | | 0.3361 | 218.0 | 15696 | 0.5369 | 0.2247 | | 0.334 | 219.0 | 15768 | 0.5173 | 0.2152 | | 0.3222 | 220.0 | 15840 | 0.5965 | 0.2236 | | 0.3247 | 221.0 | 15912 | 0.5543 | 0.2165 | | 0.338 | 222.0 | 15984 | 0.5836 | 0.2178 | | 0.3112 | 223.0 | 16056 | 0.5573 | 0.2171 | | 0.3203 | 224.0 | 16128 | 0.5830 | 0.2196 | | 0.3294 | 225.0 | 16200 | 0.5815 | 0.2198 | | 0.3392 | 226.0 | 16272 | 0.5641 | 0.2163 | | 0.3332 | 227.0 | 16344 | 0.5770 | 0.2204 | | 0.3365 | 228.0 | 16416 | 0.5843 | 0.2181 | | 0.3186 | 229.0 | 16488 | 0.5835 | 0.2231 | | 0.3329 | 230.0 | 16560 | 0.5867 | 0.2220 | | 0.3257 | 231.0 | 16632 | 0.6081 | 0.2196 | | 0.3183 | 232.0 | 16704 | 0.5944 | 0.2220 | | 0.3315 | 233.0 | 16776 | 0.6060 | 0.2222 | | 0.3269 | 234.0 | 16848 | 0.6268 | 0.2260 | | 0.3191 | 235.0 | 16920 | 0.5796 | 0.2183 | | 0.3395 | 236.0 | 16992 | 0.6140 | 0.2257 | | 0.3186 | 237.0 | 17064 | 0.6302 | 0.2277 | | 0.3264 | 238.0 | 17136 | 0.5752 | 0.2194 | | 0.3181 | 239.0 | 17208 | 0.6066 | 0.2196 | | 0.3201 | 240.0 | 17280 | 0.6013 | 0.2223 | | 0.3242 | 241.0 | 17352 | 0.5960 | 0.2207 | | 0.3194 | 242.0 | 17424 | 0.6093 | 0.2311 | | 0.3203 | 243.0 | 17496 | 0.6047 | 0.2281 | | 0.3173 | 244.0 | 17568 | 0.6260 | 0.2285 | | 0.3118 | 245.0 | 17640 | 0.5961 | 0.2243 | | 0.3172 | 246.0 | 17712 | 0.6315 | 0.2242 | | 0.332 | 247.0 | 17784 | 0.6413 | 0.2250 | | 0.3315 | 248.0 | 17856 | 0.6260 | 0.2290 | | 0.3222 | 249.0 | 17928 | 0.6175 | 0.2307 | | 0.3291 | 250.0 | 18000 | 0.6005 | 0.2283 | | 0.3321 | 251.0 | 18072 | 0.6299 | 0.2311 | | 0.3338 | 252.0 | 18144 | 0.6011 | 0.2310 | | 0.3274 | 253.0 | 18216 | 0.5662 | 0.2203 | | 0.3148 | 254.0 | 18288 | 0.6139 | 0.2344 | | 0.3295 | 255.0 | 18360 | 0.6183 | 0.2461 | | 0.3169 | 256.0 | 18432 | 0.6136 | 0.2283 | | 0.3431 | 257.0 | 18504 | 0.6445 | 0.2446 | | 0.3209 | 258.0 | 18576 | 0.6124 | 0.2437 | | 0.3405 | 259.0 | 18648 | 0.6210 | 0.2446 | | 0.3317 | 260.0 | 18720 | 0.6088 | 0.2350 | | 0.3265 | 261.0 | 18792 | 0.5792 | 0.2324 | | 0.332 | 262.0 | 18864 | 0.6326 | 0.2427 | | 0.3179 | 263.0 | 18936 | 0.6174 | 0.2256 | | 0.3119 | 264.0 | 19008 | 0.6338 | 0.2277 | | 0.3223 | 265.0 | 19080 | 0.6236 | 0.2213 | | 0.315 | 266.0 | 19152 | 0.6025 | 0.2263 | | 0.3214 | 267.0 | 19224 | 0.5881 | 0.2243 | | 0.3184 | 268.0 | 19296 | 0.5942 | 0.2225 | | 0.3083 | 269.0 | 19368 | 0.5836 | 0.2209 | | 0.3098 | 270.0 | 19440 | 0.5844 | 0.2192 | | 0.2992 | 271.0 | 19512 | 0.5972 | 0.2218 | | 0.3118 | 272.0 | 19584 | 0.5768 | 0.2220 | | 0.3112 | 273.0 | 19656 | 0.5926 | 0.2167 | | 0.2994 | 274.0 | 19728 | 0.6056 | 0.2227 | | 0.3041 | 275.0 | 19800 | 0.5793 | 0.2245 | | 0.3072 | 276.0 | 19872 | 0.6188 | 0.2277 | | 0.3042 | 277.0 | 19944 | 0.5931 | 0.2251 | | 0.3107 | 278.0 | 20016 | 0.6205 | 0.2216 | | 0.3077 | 279.0 | 20088 | 0.6001 | 0.2209 | | 0.2903 | 280.0 | 20160 | 0.6002 | 0.2141 | | 0.3124 | 281.0 | 20232 | 0.5782 | 0.2168 | | 0.3043 | 282.0 | 20304 | 0.6105 | 0.2187 | | 0.3007 | 283.0 | 20376 | 0.6105 | 0.2213 | | 0.3023 | 284.0 | 20448 | 0.6011 | 0.2232 | | 0.3062 | 285.0 | 20520 | 0.5967 | 0.2195 | | 0.3093 | 286.0 | 20592 | 0.6571 | 0.2258 | | 0.3041 | 287.0 | 20664 | 0.5956 | 0.2213 | | 0.3083 | 288.0 | 20736 | 0.5904 | 0.2253 | | 0.3037 | 289.0 | 20808 | 0.6096 | 0.2295 | | 0.3064 | 290.0 | 20880 | 0.5958 | 0.2232 | | 0.3136 | 291.0 | 20952 | 0.6134 | 0.2250 | | 0.3042 | 292.0 | 21024 | 0.6144 | 0.2189 | | 0.2967 | 293.0 | 21096 | 0.6086 | 0.2282 | | 0.2952 | 294.0 | 21168 | 0.6178 | 0.2285 | | 0.301 | 295.0 | 21240 | 0.5924 | 0.2189 | | 0.3058 | 296.0 | 21312 | 0.6032 | 0.2193 | | 0.2983 | 297.0 | 21384 | 0.5823 | 0.2183 | | 0.2793 | 298.0 | 21456 | 0.5930 | 0.2195 | | 0.2936 | 299.0 | 21528 | 0.6166 | 0.2215 | | 0.298 | 300.0 | 21600 | 0.5864 | 0.2159 | | 0.2949 | 301.0 | 21672 | 0.6049 | 0.2160 | | 0.2948 | 302.0 | 21744 | 0.5745 | 0.2173 | | 0.2809 | 303.0 | 21816 | 0.5699 | 0.2173 | | 0.2854 | 304.0 | 21888 | 0.5894 | 0.2243 | | 0.2908 | 305.0 | 21960 | 0.6123 | 0.2229 | | 0.2948 | 306.0 | 22032 | 0.5966 | 0.2162 | | 0.2997 | 307.0 | 22104 | 0.6030 | 0.2180 | | 0.2906 | 308.0 | 22176 | 0.5920 | 0.2185 | | 0.2778 | 309.0 | 22248 | 0.5913 | 0.2121 | | 0.281 | 310.0 | 22320 | 0.6020 | 0.2121 | | 0.2852 | 311.0 | 22392 | 0.5814 | 0.2170 | | 0.278 | 312.0 | 22464 | 0.5931 | 0.2151 | | 0.2743 | 313.0 | 22536 | 0.6073 | 0.2179 | | 0.2757 | 314.0 | 22608 | 0.6174 | 0.2153 | | 0.2907 | 315.0 | 22680 | 0.5729 | 0.2171 | | 0.2801 | 316.0 | 22752 | 0.6014 | 0.2214 | | 0.2908 | 317.0 | 22824 | 0.6098 | 0.2130 | | 0.2824 | 318.0 | 22896 | 0.5942 | 0.2191 | | 0.2799 | 319.0 | 22968 | 0.6374 | 0.2230 | | 0.2725 | 320.0 | 23040 | 0.6424 | 0.2206 | | 0.2821 | 321.0 | 23112 | 0.6465 | 0.2203 | | 0.2795 | 322.0 | 23184 | 0.6163 | 0.2182 | | 0.2764 | 323.0 | 23256 | 0.6257 | 0.2209 | | 0.2739 | 324.0 | 23328 | 0.6374 | 0.2194 | | 0.2712 | 325.0 | 23400 | 0.6228 | 0.2166 | | 0.275 | 326.0 | 23472 | 0.6394 | 0.2214 | | 0.275 | 327.0 | 23544 | 0.6359 | 0.2213 | | 0.2702 | 328.0 | 23616 | 0.6430 | 0.2207 | | 0.2676 | 329.0 | 23688 | 0.6321 | 0.2145 | | 0.2735 | 330.0 | 23760 | 0.6583 | 0.2168 | | 0.2815 | 331.0 | 23832 | 0.6368 | 0.2178 | | 0.2823 | 332.0 | 23904 | 0.6373 | 0.2197 | | 0.2885 | 333.0 | 23976 | 0.6352 | 0.2200 | | 0.2751 | 334.0 | 24048 | 0.6431 | 0.2159 | | 0.2717 | 335.0 | 24120 | 0.6339 | 0.2213 | | 0.286 | 336.0 | 24192 | 0.6566 | 0.2245 | | 0.2678 | 337.0 | 24264 | 0.6443 | 0.2194 | | 0.2692 | 338.0 | 24336 | 0.6352 | 0.2225 | | 0.273 | 339.0 | 24408 | 0.6497 | 0.2187 | | 0.2686 | 340.0 | 24480 | 0.6788 | 0.2214 | | 0.2699 | 341.0 | 24552 | 0.6615 | 0.2198 | | 0.2636 | 342.0 | 24624 | 0.6765 | 0.2196 | | 0.2545 | 343.0 | 24696 | 0.6737 | 0.2202 | | 0.2612 | 344.0 | 24768 | 0.6891 | 0.2240 | | 0.2705 | 345.0 | 24840 | 0.6550 | 0.2204 | | 0.2658 | 346.0 | 24912 | 0.6591 | 0.2200 | | 0.2701 | 347.0 | 24984 | 0.6222 | 0.2216 | | 0.2743 | 348.0 | 25056 | 0.6263 | 0.2186 | | 0.2657 | 349.0 | 25128 | 0.6509 | 0.2186 | | 0.2635 | 350.0 | 25200 | 0.6570 | 0.2207 | | 0.2601 | 351.0 | 25272 | 0.6496 | 0.2155 | | 0.2695 | 352.0 | 25344 | 0.6305 | 0.2169 | | 0.2586 | 353.0 | 25416 | 0.6269 | 0.2223 | | 0.2529 | 354.0 | 25488 | 0.6418 | 0.2204 | | 0.2739 | 355.0 | 25560 | 0.6472 | 0.2175 | | 0.2738 | 356.0 | 25632 | 0.6416 | 0.2187 | | 0.2775 | 357.0 | 25704 | 0.6470 | 0.2208 | | 0.2775 | 358.0 | 25776 | 0.6483 | 0.2201 | | 0.2622 | 359.0 | 25848 | 0.6233 | 0.2164 | | 0.2727 | 360.0 | 25920 | 0.6438 | 0.2178 | | 0.275 | 361.0 | 25992 | 0.6459 | 0.2222 | | 0.2688 | 362.0 | 26064 | 0.6329 | 0.2188 | | 0.2658 | 363.0 | 26136 | 0.6482 | 0.2207 | | 0.2693 | 364.0 | 26208 | 0.6337 | 0.2194 | | 0.2599 | 365.0 | 26280 | 0.6458 | 0.2189 | | 0.2683 | 366.0 | 26352 | 0.6483 | 0.2213 | | 0.2665 | 367.0 | 26424 | 0.6576 | 0.2203 | | 0.2529 | 368.0 | 26496 | 0.6629 | 0.2200 | | 0.2536 | 369.0 | 26568 | 0.6665 | 0.2208 | | 0.2562 | 370.0 | 26640 | 0.6545 | 0.2171 | | 0.2713 | 371.0 | 26712 | 0.6433 | 0.2231 | | 0.2545 | 372.0 | 26784 | 0.6330 | 0.2202 | | 0.2513 | 373.0 | 26856 | 0.6474 | 0.2154 | | 0.2564 | 374.0 | 26928 | 0.6519 | 0.2191 | | 0.266 | 375.0 | 27000 | 0.6577 | 0.2199 | | 0.2623 | 376.0 | 27072 | 0.6508 | 0.2187 | | 0.2666 | 377.0 | 27144 | 0.6358 | 0.2171 | | 0.2503 | 378.0 | 27216 | 0.6515 | 0.2195 | | 0.252 | 379.0 | 27288 | 0.6479 | 0.2221 | | 0.2558 | 380.0 | 27360 | 0.6344 | 0.2203 | | 0.2673 | 381.0 | 27432 | 0.6717 | 0.2196 | | 0.2615 | 382.0 | 27504 | 0.6393 | 0.2178 | | 0.2603 | 383.0 | 27576 | 0.6375 | 0.2167 | | 0.2522 | 384.0 | 27648 | 0.6381 | 0.2195 | | 0.2532 | 385.0 | 27720 | 0.6566 | 0.2209 | | 0.2544 | 386.0 | 27792 | 0.6640 | 0.2231 | | 0.2529 | 387.0 | 27864 | 0.6531 | 0.2207 | | 0.2578 | 388.0 | 27936 | 0.6915 | 0.2202 | | 0.2517 | 389.0 | 28008 | 0.6902 | 0.2238 | | 0.2453 | 390.0 | 28080 | 0.6727 | 0.2249 | | 0.2634 | 391.0 | 28152 | 0.6667 | 0.2235 | | 0.2515 | 392.0 | 28224 | 0.6554 | 0.2212 | | 0.249 | 393.0 | 28296 | 0.6672 | 0.2214 | | 0.2524 | 394.0 | 28368 | 0.6693 | 0.2164 | | 0.2529 | 395.0 | 28440 | 0.6572 | 0.2186 | | 0.256 | 396.0 | 28512 | 0.6420 | 0.2171 | | 0.2498 | 397.0 | 28584 | 0.6712 | 0.2168 | | 0.2565 | 398.0 | 28656 | 0.6890 | 0.2175 | | 0.2477 | 399.0 | 28728 | 0.6905 | 0.2185 | | 0.2486 | 400.0 | 28800 | 0.7010 | 0.2191 | | 0.259 | 401.0 | 28872 | 0.6983 | 0.2169 | | 0.2555 | 402.0 | 28944 | 0.6877 | 0.2189 | | 0.2579 | 403.0 | 29016 | 0.6864 | 0.2188 | | 0.2421 | 404.0 | 29088 | 0.6603 | 0.2175 | | 0.2531 | 405.0 | 29160 | 0.6882 | 0.2223 | | 0.254 | 406.0 | 29232 | 0.6813 | 0.2209 | | 0.2517 | 407.0 | 29304 | 0.6707 | 0.2205 | | 0.2521 | 408.0 | 29376 | 0.6835 | 0.2234 | | 0.2494 | 409.0 | 29448 | 0.6896 | 0.2216 | | 0.2516 | 410.0 | 29520 | 0.6760 | 0.2218 | | 0.2605 | 411.0 | 29592 | 0.7055 | 0.2207 | | 0.2514 | 412.0 | 29664 | 0.6707 | 0.2232 | | 0.242 | 413.0 | 29736 | 0.6853 | 0.2183 | | 0.2505 | 414.0 | 29808 | 0.6869 | 0.2232 | | 0.2398 | 415.0 | 29880 | 0.6732 | 0.2228 | | 0.2549 | 416.0 | 29952 | 0.6559 | 0.2222 | | 0.2496 | 417.0 | 30024 | 0.6675 | 0.2232 | | 0.2538 | 418.0 | 30096 | 0.6695 | 0.2240 | | 0.246 | 419.0 | 30168 | 0.6917 | 0.2268 | | 0.2462 | 420.0 | 30240 | 0.6842 | 0.2288 | | 0.2527 | 421.0 | 30312 | 0.6628 | 0.2207 | | 0.2469 | 422.0 | 30384 | 0.6683 | 0.2225 | | 0.2493 | 423.0 | 30456 | 0.6632 | 0.2189 | | 0.239 | 424.0 | 30528 | 0.6848 | 0.2198 | | 0.2373 | 425.0 | 30600 | 0.6834 | 0.2223 | | 0.245 | 426.0 | 30672 | 0.6902 | 0.2251 | | 0.239 | 427.0 | 30744 | 0.6917 | 0.2223 | | 0.2441 | 428.0 | 30816 | 0.6859 | 0.2232 | | 0.2306 | 429.0 | 30888 | 0.6844 | 0.2208 | | 0.2373 | 430.0 | 30960 | 0.6740 | 0.2185 | | 0.2495 | 431.0 | 31032 | 0.6823 | 0.2214 | | 0.2457 | 432.0 | 31104 | 0.6686 | 0.2219 | | 0.2474 | 433.0 | 31176 | 0.6856 | 0.2215 | | 0.2434 | 434.0 | 31248 | 0.6876 | 0.2199 | | 0.2377 | 435.0 | 31320 | 0.6827 | 0.2234 | | 0.2566 | 436.0 | 31392 | 0.6920 | 0.2213 | | 0.2384 | 437.0 | 31464 | 0.6734 | 0.2234 | | 0.2477 | 438.0 | 31536 | 0.6992 | 0.2242 | | 0.2347 | 439.0 | 31608 | 0.6837 | 0.2217 | | 0.2345 | 440.0 | 31680 | 0.6852 | 0.2222 | | 0.2457 | 441.0 | 31752 | 0.6891 | 0.2230 | | 0.2512 | 442.0 | 31824 | 0.6976 | 0.2263 | | 0.25 | 443.0 | 31896 | 0.6889 | 0.2232 | | 0.2341 | 444.0 | 31968 | 0.6841 | 0.2266 | | 0.252 | 445.0 | 32040 | 0.6981 | 0.2249 | | 0.2486 | 446.0 | 32112 | 0.6958 | 0.2281 | | 0.2402 | 447.0 | 32184 | 0.6826 | 0.2249 | | 0.2477 | 448.0 | 32256 | 0.6867 | 0.2247 | | 0.2304 | 449.0 | 32328 | 0.7022 | 0.2243 | | 0.2376 | 450.0 | 32400 | 0.6948 | 0.2222 | | 0.2388 | 451.0 | 32472 | 0.6771 | 0.2221 | | 0.2544 | 452.0 | 32544 | 0.6841 | 0.2249 | | 0.2428 | 453.0 | 32616 | 0.6886 | 0.2220 | | 0.2438 | 454.0 | 32688 | 0.6903 | 0.2214 | | 0.2463 | 455.0 | 32760 | 0.6781 | 0.2219 | | 0.2355 | 456.0 | 32832 | 0.6784 | 0.2198 | | 0.237 | 457.0 | 32904 | 0.6849 | 0.2231 | | 0.2381 | 458.0 | 32976 | 0.6892 | 0.2220 | | 0.23 | 459.0 | 33048 | 0.6782 | 0.2207 | | 0.2359 | 460.0 | 33120 | 0.6789 | 0.2238 | | 0.2382 | 461.0 | 33192 | 0.6829 | 0.2236 | | 0.2438 | 462.0 | 33264 | 0.6928 | 0.2236 | | 0.233 | 463.0 | 33336 | 0.6860 | 0.2216 | | 0.2358 | 464.0 | 33408 | 0.6857 | 0.2236 | | 0.2226 | 465.0 | 33480 | 0.6818 | 0.2202 | | 0.2478 | 466.0 | 33552 | 0.6801 | 0.2222 | | 0.2274 | 467.0 | 33624 | 0.6797 | 0.2203 | | 0.2339 | 468.0 | 33696 | 0.6915 | 0.2224 | | 0.2259 | 469.0 | 33768 | 0.6919 | 0.2220 | | 0.2327 | 470.0 | 33840 | 0.6877 | 0.2225 | | 0.2341 | 471.0 | 33912 | 0.6892 | 0.2235 | | 0.2502 | 472.0 | 33984 | 0.6900 | 0.2227 | | 0.234 | 473.0 | 34056 | 0.6839 | 0.2242 | | 0.2289 | 474.0 | 34128 | 0.6885 | 0.2243 | | 0.2311 | 475.0 | 34200 | 0.6911 | 0.2231 | | 0.2374 | 476.0 | 34272 | 0.6834 | 0.2234 | | 0.235 | 477.0 | 34344 | 0.6790 | 0.2223 | | 0.2292 | 478.0 | 34416 | 0.6857 | 0.2233 | | 0.2243 | 479.0 | 34488 | 0.6737 | 0.2243 | | 0.235 | 480.0 | 34560 | 0.6831 | 0.2222 | | 0.2337 | 481.0 | 34632 | 0.6769 | 0.2207 | | 0.2258 | 482.0 | 34704 | 0.6784 | 0.2232 | | 0.2276 | 483.0 | 34776 | 0.6917 | 0.2241 | | 0.2379 | 484.0 | 34848 | 0.6806 | 0.2251 | | 0.229 | 485.0 | 34920 | 0.6859 | 0.2232 | | 0.2312 | 486.0 | 34992 | 0.6850 | 0.2236 | | 0.2412 | 487.0 | 35064 | 0.6776 | 0.2221 | | 0.2328 | 488.0 | 35136 | 0.6835 | 0.2230 | | 0.2373 | 489.0 | 35208 | 0.6879 | 0.2222 | | 0.234 | 490.0 | 35280 | 0.6868 | 0.2214 | | 0.2274 | 491.0 | 35352 | 0.6869 | 0.2222 | | 0.2332 | 492.0 | 35424 | 0.6861 | 0.2214 | | 0.2291 | 493.0 | 35496 | 0.6881 | 0.2206 | | 0.2301 | 494.0 | 35568 | 0.6877 | 0.2205 | | 0.2258 | 495.0 | 35640 | 0.6898 | 0.2203 | | 0.2351 | 496.0 | 35712 | 0.6883 | 0.2212 | | 0.2345 | 497.0 | 35784 | 0.6915 | 0.2213 | | 0.23 | 498.0 | 35856 | 0.6922 | 0.2217 | | 0.2257 | 499.0 | 35928 | 0.6925 | 0.2216 | | 0.2273 | 500.0 | 36000 | 0.6914 | 0.2205 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
edub0420/autotrain-graphwerk-1472254090
edub0420
2022-09-15T18:00:54Z
190
0
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "dataset:edub0420/autotrain-data-graphwerk", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-09-15T17:59:55Z
--- tags: - autotrain - vision - image-classification datasets: - edub0420/autotrain-data-graphwerk widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.8959954972786571 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1472254090 - CO2 Emissions (in grams): 0.8960 ## Validation Metrics - Loss: 0.004 - Accuracy: 1.000 - Precision: 1.000 - Recall: 1.000 - AUC: 1.000 - F1: 1.000
edub0420/autotrain-graphwerk-1472254089
edub0420
2022-09-15T18:00:49Z
190
0
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "dataset:edub0420/autotrain-data-graphwerk", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-09-15T17:59:52Z
--- tags: - autotrain - vision - image-classification datasets: - edub0420/autotrain-data-graphwerk widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.0037659513202956607 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1472254089 - CO2 Emissions (in grams): 0.0038 ## Validation Metrics - Loss: 0.005 - Accuracy: 1.000 - Precision: 1.000 - Recall: 1.000 - AUC: 1.000 - F1: 1.000
valadhi/swin-tiny-patch4-window7-224-finetuned-agrivision
valadhi
2022-09-15T17:21:42Z
59
0
transformers
[ "transformers", "pytorch", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-08T14:40:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-agrivision results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9202733485193622 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-agrivision This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3605 - Accuracy: 0.9203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5913 | 1.0 | 31 | 0.7046 | 0.7175 | | 0.1409 | 2.0 | 62 | 0.8423 | 0.6788 | | 0.0825 | 3.0 | 93 | 0.6224 | 0.7654 | | 0.0509 | 4.0 | 124 | 0.4379 | 0.8360 | | 0.0439 | 5.0 | 155 | 0.1706 | 0.9317 | | 0.0107 | 6.0 | 186 | 0.1914 | 0.9362 | | 0.0134 | 7.0 | 217 | 0.2491 | 0.9089 | | 0.0338 | 8.0 | 248 | 0.2119 | 0.9362 | | 0.0306 | 9.0 | 279 | 0.4502 | 0.8610 | | 0.0054 | 10.0 | 310 | 0.4990 | 0.8747 | | 0.0033 | 11.0 | 341 | 0.2746 | 0.9112 | | 0.0021 | 12.0 | 372 | 0.2501 | 0.9317 | | 0.0068 | 13.0 | 403 | 0.1883 | 0.9522 | | 0.0038 | 14.0 | 434 | 0.3672 | 0.9134 | | 0.0006 | 15.0 | 465 | 0.2275 | 0.9408 | | 0.0011 | 16.0 | 496 | 0.3349 | 0.9134 | | 0.0017 | 17.0 | 527 | 0.3329 | 0.9157 | | 0.0007 | 18.0 | 558 | 0.2508 | 0.9317 | | 0.0023 | 19.0 | 589 | 0.2338 | 0.9385 | | 0.0003 | 20.0 | 620 | 0.3193 | 0.9226 | | 0.002 | 21.0 | 651 | 0.4604 | 0.9043 | | 0.0023 | 22.0 | 682 | 0.3338 | 0.9203 | | 0.005 | 23.0 | 713 | 0.2925 | 0.9271 | | 0.0001 | 24.0 | 744 | 0.2022 | 0.9522 | | 0.0002 | 25.0 | 775 | 0.2699 | 0.9339 | | 0.0007 | 26.0 | 806 | 0.2603 | 0.9385 | | 0.0005 | 27.0 | 837 | 0.4120 | 0.9134 | | 0.0003 | 28.0 | 868 | 0.3550 | 0.9203 | | 0.0008 | 29.0 | 899 | 0.3657 | 0.9203 | | 0.0 | 30.0 | 930 | 0.3605 | 0.9203 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/thalasin
sd-concepts-library
2022-09-15T17:17:24Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-15T17:07:08Z
--- license: mit --- ### Thalasin on Stable Diffusion This is the `<thalasin-plus>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). This is based on the work of [Gooseworx](https://twitter.com/GooseworxMusic) Here is the new concept you will be able to use as an `object`: ![<thalasin-plus> 0](https://huggingface.co/sd-concepts-library/thalasin/resolve/main/concept_images/0.jpeg) ![<thalasin-plus> 1](https://huggingface.co/sd-concepts-library/thalasin/resolve/main/concept_images/8.jpeg) ![<thalasin-plus> 2](https://huggingface.co/sd-concepts-library/thalasin/resolve/main/concept_images/3.jpeg) ![<thalasin-plus> 3](https://huggingface.co/sd-concepts-library/thalasin/resolve/main/concept_images/5.jpeg) ![<thalasin-plus> 4](https://huggingface.co/sd-concepts-library/thalasin/resolve/main/concept_images/6.jpeg) ![<thalasin-plus> 5](https://huggingface.co/sd-concepts-library/thalasin/resolve/main/concept_images/11.jpeg) ![<thalasin-plus> 6](https://huggingface.co/sd-concepts-library/thalasin/resolve/main/concept_images/1.jpeg) ![<thalasin-plus> 7](https://huggingface.co/sd-concepts-library/thalasin/resolve/main/concept_images/14.jpeg) ![<thalasin-plus> 8](https://huggingface.co/sd-concepts-library/thalasin/resolve/main/concept_images/15.jpeg) ![<thalasin-plus> 9](https://huggingface.co/sd-concepts-library/thalasin/resolve/main/concept_images/10.jpeg) ![<thalasin-plus> 10](https://huggingface.co/sd-concepts-library/thalasin/resolve/main/concept_images/2.jpeg) ![<thalasin-plus> 11](https://huggingface.co/sd-concepts-library/thalasin/resolve/main/concept_images/12.jpeg) ![<thalasin-plus> 12](https://huggingface.co/sd-concepts-library/thalasin/resolve/main/concept_images/4.jpeg) ![<thalasin-plus> 13](https://huggingface.co/sd-concepts-library/thalasin/resolve/main/concept_images/7.jpeg) ![<thalasin-plus> 14](https://huggingface.co/sd-concepts-library/thalasin/resolve/main/concept_images/9.jpeg) ![<thalasin-plus> 15](https://huggingface.co/sd-concepts-library/thalasin/resolve/main/concept_images/13.jpeg)
reinoudbosch/xlm-roberta-base-finetuned-panx-fr
reinoudbosch
2022-09-15T17:16:21Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-15T17:06:54Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8375924680564896 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2794 - F1: 0.8376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5774 | 1.0 | 191 | 0.3212 | 0.7894 | | 0.2661 | 2.0 | 382 | 0.2737 | 0.8292 | | 0.1756 | 3.0 | 573 | 0.2794 | 0.8376 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.0
sd-concepts-library/ddattender
sd-concepts-library
2022-09-15T16:26:12Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-15T16:26:08Z
--- license: mit --- ### ddattender on Stable Diffusion This is the `<ddattender>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<ddattender> 0](https://huggingface.co/sd-concepts-library/ddattender/resolve/main/concept_images/0.jpeg) ![<ddattender> 1](https://huggingface.co/sd-concepts-library/ddattender/resolve/main/concept_images/3.jpeg) ![<ddattender> 2](https://huggingface.co/sd-concepts-library/ddattender/resolve/main/concept_images/5.jpeg) ![<ddattender> 3](https://huggingface.co/sd-concepts-library/ddattender/resolve/main/concept_images/1.jpeg) ![<ddattender> 4](https://huggingface.co/sd-concepts-library/ddattender/resolve/main/concept_images/2.jpeg) ![<ddattender> 5](https://huggingface.co/sd-concepts-library/ddattender/resolve/main/concept_images/4.jpeg)
reinoudbosch/xlm-roberta-base-finetuned-panx-de
reinoudbosch
2022-09-15T16:12:43Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-15T15:42:01Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8633935674508466 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1344 - F1: 0.8634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2588 | 1.0 | 525 | 0.1676 | 0.8194 | | 0.1318 | 2.0 | 1050 | 0.1326 | 0.8513 | | 0.084 | 3.0 | 1575 | 0.1344 | 0.8634 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.0
VanessaSchenkel/pt-opus-news
VanessaSchenkel
2022-09-15T16:07:59Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:news_commentary", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-09-15T15:30:08Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - news_commentary metrics: - bleu model-index: - name: pt-opus-news results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: news_commentary type: news_commentary config: en-pt split: train args: en-pt metrics: - name: Bleu type: bleu value: 37.5501808262607 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pt-opus-news This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-mul](https://huggingface.co/Helsinki-NLP/opus-mt-en-mul) on the news_commentary dataset. It achieves the following results on the evaluation set: - Loss: 1.0975 - Bleu: 37.5502 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/pranshuj73
huggingtweets
2022-09-15T15:51:01Z
110
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-15T15:48:43Z
--- language: en thumbnail: http://www.huggingtweets.com/pranshuj73/1663257057221/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1523333450291630080/Eh3DlhQT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pranshu Jha ⚡</div> <div style="text-align: center; font-size: 14px;">@pranshuj73</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pranshu Jha ⚡. | Data | Pranshu Jha ⚡ | | --- | --- | | Tweets downloaded | 1828 | | Retweets | 249 | | Short tweets | 136 | | Tweets kept | 1443 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3k1j04sq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pranshuj73's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29xrmfw8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29xrmfw8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pranshuj73') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sd-concepts-library/mtg-card
sd-concepts-library
2022-09-15T15:24:00Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-15T15:23:55Z
--- license: mit --- ### MTG card on Stable Diffusion This is the `<mtg-card>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<mtg-card> 0](https://huggingface.co/sd-concepts-library/mtg-card/resolve/main/concept_images/0.jpeg) ![<mtg-card> 1](https://huggingface.co/sd-concepts-library/mtg-card/resolve/main/concept_images/3.jpeg) ![<mtg-card> 2](https://huggingface.co/sd-concepts-library/mtg-card/resolve/main/concept_images/1.jpeg) ![<mtg-card> 3](https://huggingface.co/sd-concepts-library/mtg-card/resolve/main/concept_images/2.jpeg)
gee3/baba
gee3
2022-09-15T15:23:30Z
0
0
null
[ "region:us" ]
null
2022-09-15T15:21:21Z
the wolf has a brown top hat in china license: unknown the wolf has a brown top hat in china the wolf has a brown top hat in china
davidfisher/distilbert-base-uncased-finetuned-cola
davidfisher
2022-09-15T15:04:57Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-15T13:22:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5474713423103301 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5254 - Matthews Correlation: 0.5475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5221 | 1.0 | 535 | 0.5360 | 0.4307 | | 0.3491 | 2.0 | 1070 | 0.5128 | 0.4972 | | 0.2382 | 3.0 | 1605 | 0.5254 | 0.5475 | | 0.1756 | 4.0 | 2140 | 0.7479 | 0.5330 | | 0.1248 | 5.0 | 2675 | 0.7978 | 0.5414 | ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/accurate-angel
sd-concepts-library
2022-09-15T15:01:10Z
0
17
null
[ "license:mit", "region:us" ]
null
2022-09-15T15:00:59Z
--- license: mit --- ### Accurate Angel on Stable Diffusion This is the `<accurate-angel>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<accurate-angel> 0](https://huggingface.co/sd-concepts-library/accurate-angel/resolve/main/concept_images/0.jpeg) ![<accurate-angel> 1](https://huggingface.co/sd-concepts-library/accurate-angel/resolve/main/concept_images/1.jpeg) ![<accurate-angel> 2](https://huggingface.co/sd-concepts-library/accurate-angel/resolve/main/concept_images/2.jpeg) ![<accurate-angel> 3](https://huggingface.co/sd-concepts-library/accurate-angel/resolve/main/concept_images/3.jpeg) ![<accurate-angel> 4](https://huggingface.co/sd-concepts-library/accurate-angel/resolve/main/concept_images/4.jpeg)
Padomin/t5-base-TEDxJP-0front-1body-10rear-order-RB
Padomin
2022-09-15T14:52:42Z
20
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:te_dx_jp", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-15T02:52:08Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-0front-1body-10rear-order-RB results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-0front-1body-10rear-order-RB This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4749 - Wer: 0.1754 - Mer: 0.1696 - Wil: 0.2575 - Wip: 0.7425 - Hits: 55482 - Substitutions: 6478 - Deletions: 2627 - Insertions: 2225 - Cer: 0.1370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.637 | 1.0 | 1457 | 0.4932 | 0.2359 | 0.2179 | 0.3082 | 0.6918 | 54682 | 6909 | 2996 | 5331 | 0.2100 | | 0.5501 | 2.0 | 2914 | 0.4572 | 0.1831 | 0.1766 | 0.2655 | 0.7345 | 55134 | 6575 | 2878 | 2370 | 0.1461 | | 0.5505 | 3.0 | 4371 | 0.4470 | 0.1787 | 0.1728 | 0.2609 | 0.7391 | 55267 | 6494 | 2826 | 2222 | 0.1400 | | 0.4921 | 4.0 | 5828 | 0.4426 | 0.1794 | 0.1730 | 0.2606 | 0.7394 | 55420 | 6468 | 2699 | 2423 | 0.1407 | | 0.4465 | 5.0 | 7285 | 0.4507 | 0.1783 | 0.1721 | 0.2596 | 0.7404 | 55420 | 6458 | 2709 | 2351 | 0.1390 | | 0.3557 | 6.0 | 8742 | 0.4567 | 0.1768 | 0.1708 | 0.2585 | 0.7415 | 55416 | 6459 | 2712 | 2245 | 0.1401 | | 0.3367 | 7.0 | 10199 | 0.4613 | 0.1772 | 0.1709 | 0.2589 | 0.7411 | 55505 | 6497 | 2585 | 2363 | 0.1387 | | 0.328 | 8.0 | 11656 | 0.4624 | 0.1769 | 0.1708 | 0.2587 | 0.7413 | 55442 | 6478 | 2667 | 2278 | 0.1383 | | 0.2992 | 9.0 | 13113 | 0.4726 | 0.1764 | 0.1704 | 0.2580 | 0.7420 | 55461 | 6463 | 2663 | 2264 | 0.1378 | | 0.2925 | 10.0 | 14570 | 0.4749 | 0.1754 | 0.1696 | 0.2575 | 0.7425 | 55482 | 6478 | 2627 | 2225 | 0.1370 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
dwisaji/bert-base-indonesia-sentiment-analysis
dwisaji
2022-09-15T14:51:25Z
179
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-15T10:15:31Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: ModelCP results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ModelCP This model is a fine-tuned version of [cahya/bert-base-indonesian-522M](https://huggingface.co/cahya/bert-base-indonesian-522M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1414 - Accuracy: 0.955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 288 | 0.7729 | 0.655 | | 0.7913 | 2.0 | 576 | 0.4324 | 0.845 | | 0.7913 | 3.0 | 864 | 0.3035 | 0.91 | | 0.4859 | 4.0 | 1152 | 0.1832 | 0.94 | | 0.4859 | 5.0 | 1440 | 0.1414 | 0.955 | ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/altvent
sd-concepts-library
2022-09-15T14:49:53Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-15T14:49:47Z
--- license: mit --- ### AltVent on Stable Diffusion This is the `<AltVent>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<AltVent> 0](https://huggingface.co/sd-concepts-library/altvent/resolve/main/concept_images/0.jpeg)
EricPeter/en_pipeline
EricPeter
2022-09-15T13:06:49Z
0
0
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2022-09-13T13:02:21Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.934169279 - name: NER Recall type: recall value: 0.9445324881 - name: NER F Score type: f_score value: 0.939322301 --- | Feature | Description | | --- | --- | | **Name** | `en_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.4.1,<3.5.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (20 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `APPLICATIONS`, `COLLEGE`, `COMMENT`, `CURRENCY`, `FIGURE`, `FURNITURE`, `GADGET`, `GPE`, `INSTITUITIONS`, `LOCATION`, `ORG`, `PEOPLE`, `PERIOD`, `PERSON`, `PROGRAM`, `SHELTER`, `SKILL`, `TIME`, `WEATHER CONDITION`, `YEAR` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 93.93 | | `ENTS_P` | 93.42 | | `ENTS_R` | 94.45 | | `TOK2VEC_LOSS` | 25728.50 | | `NER_LOSS` | 421749.70 |
weiyiyi/try-1
weiyiyi
2022-09-15T12:56:40Z
0
0
null
[ "region:us" ]
null
2022-09-15T12:51:45Z
--- license: afl-3.0 男性 银色长发 夜色 月光 清冷
Avigam92/CLT-Place
Avigam92
2022-09-15T12:04:41Z
7
0
keras
[ "keras", "tf-keras", "distilbert", "region:us" ]
null
2022-09-15T12:00:23Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 4.999999873689376e-05 | | decay | 1e-07 | | beta_1 | 0.8999999761581421 | | beta_2 | 0.9990000128746033 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
Padomin/t5-base-TEDxJP-0front-1body-5rear-order-RB
Padomin
2022-09-15T12:04:32Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:te_dx_jp", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-15T02:52:26Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-0front-1body-5rear-order-RB results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-0front-1body-5rear-order-RB This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4744 - Wer: 0.1790 - Mer: 0.1727 - Wil: 0.2610 - Wip: 0.7390 - Hits: 55379 - Substitutions: 6518 - Deletions: 2690 - Insertions: 2353 - Cer: 0.1409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6463 | 1.0 | 1457 | 0.4971 | 0.2539 | 0.2313 | 0.3198 | 0.6802 | 54480 | 6786 | 3321 | 6290 | 0.2360 | | 0.5488 | 2.0 | 2914 | 0.4629 | 0.1840 | 0.1776 | 0.2664 | 0.7336 | 55044 | 6557 | 2986 | 2342 | 0.1488 | | 0.553 | 3.0 | 4371 | 0.4522 | 0.1792 | 0.1734 | 0.2615 | 0.7385 | 55160 | 6487 | 2940 | 2145 | 0.1421 | | 0.4962 | 4.0 | 5828 | 0.4488 | 0.1801 | 0.1737 | 0.2615 | 0.7385 | 55350 | 6484 | 2753 | 2395 | 0.1424 | | 0.4629 | 5.0 | 7285 | 0.4534 | 0.1794 | 0.1732 | 0.2617 | 0.7383 | 55330 | 6540 | 2717 | 2330 | 0.1407 | | 0.3637 | 6.0 | 8742 | 0.4577 | 0.1797 | 0.1732 | 0.2614 | 0.7386 | 55402 | 6516 | 2669 | 2421 | 0.1412 | | 0.3499 | 7.0 | 10199 | 0.4645 | 0.1780 | 0.1719 | 0.2598 | 0.7402 | 55411 | 6486 | 2690 | 2323 | 0.1393 | | 0.3261 | 8.0 | 11656 | 0.4660 | 0.1785 | 0.1722 | 0.2604 | 0.7396 | 55416 | 6512 | 2659 | 2358 | 0.1400 | | 0.3089 | 9.0 | 13113 | 0.4719 | 0.1790 | 0.1727 | 0.2613 | 0.7387 | 55371 | 6549 | 2667 | 2342 | 0.1407 | | 0.3024 | 10.0 | 14570 | 0.4744 | 0.1790 | 0.1727 | 0.2610 | 0.7390 | 55379 | 6518 | 2690 | 2353 | 0.1409 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
Avigam92/CLT-Social
Avigam92
2022-09-15T11:56:13Z
8
0
keras
[ "keras", "tf-keras", "distilbert", "region:us" ]
null
2022-09-15T11:51:57Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 4.999999873689376e-05 | | decay | 1e-07 | | beta_1 | 0.8999999761581421 | | beta_2 | 0.9990000128746033 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
Padomin/t5-base-TEDxJP-6front-1body-6rear
Padomin
2022-09-15T11:44:39Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:te_dx_jp", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-14T06:52:48Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-6front-1body-6rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-6front-1body-6rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4394 - Wer: 0.1704 - Mer: 0.1647 - Wil: 0.2508 - Wip: 0.7492 - Hits: 55836 - Substitutions: 6340 - Deletions: 2411 - Insertions: 2256 - Cer: 0.1351 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6164 | 1.0 | 1457 | 0.4627 | 0.2224 | 0.2073 | 0.2961 | 0.7039 | 54939 | 6736 | 2912 | 4716 | 0.1954 | | 0.5064 | 2.0 | 2914 | 0.4222 | 0.1785 | 0.1722 | 0.2591 | 0.7409 | 55427 | 6402 | 2758 | 2370 | 0.1416 | | 0.4909 | 3.0 | 4371 | 0.4147 | 0.1717 | 0.1664 | 0.2514 | 0.7486 | 55563 | 6218 | 2806 | 2068 | 0.1350 | | 0.4365 | 4.0 | 5828 | 0.4120 | 0.1722 | 0.1661 | 0.2525 | 0.7475 | 55848 | 6373 | 2366 | 2385 | 0.1380 | | 0.3954 | 5.0 | 7285 | 0.4145 | 0.1715 | 0.1655 | 0.2517 | 0.7483 | 55861 | 6355 | 2371 | 2351 | 0.1384 | | 0.3181 | 6.0 | 8742 | 0.4178 | 0.1710 | 0.1650 | 0.2509 | 0.7491 | 55891 | 6326 | 2370 | 2348 | 0.1368 | | 0.2971 | 7.0 | 10199 | 0.4261 | 0.1698 | 0.1640 | 0.2497 | 0.7503 | 55900 | 6304 | 2383 | 2279 | 0.1348 | | 0.2754 | 8.0 | 11656 | 0.4299 | 0.1703 | 0.1645 | 0.2504 | 0.7496 | 55875 | 6320 | 2392 | 2288 | 0.1354 | | 0.2604 | 9.0 | 13113 | 0.4371 | 0.1702 | 0.1644 | 0.2506 | 0.7494 | 55864 | 6343 | 2380 | 2267 | 0.1347 | | 0.2477 | 10.0 | 14570 | 0.4394 | 0.1704 | 0.1647 | 0.2508 | 0.7492 | 55836 | 6340 | 2411 | 2256 | 0.1351 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1