modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-13 06:30:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
556 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-13 06:27:56
card
stringlengths
11
1.01M
KoboldAI/GPT-NeoX-20B-Erebus
KoboldAI
2022-09-26T19:05:19Z
3,741
84
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "en", "arxiv:2204.06745", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-09-02T18:07:19Z
--- language: en license: apache-2.0 inference: false --- # GPT-NeoX-20B-Erebus ## Model description This is the second generation of the original Shinen made by Mr. Seeker. The full dataset consists of 6 different sources, all surrounding the "Adult" theme. The name "Erebus" comes from the greek mythology, also named "darkness". This is in line with Shin'en, or "deep abyss". For inquiries, please contact the KoboldAI community. **Warning: THIS model is NOT suitable for use by minors. The model will output X-rated content.** ## Training procedure GPT-NeoX-20B-Erebus was trained on a TPUv3-256 TPU pod using a heavily modified version of Ben Wang's Mesh Transformer JAX library, the original version of which was used by EleutherAI to train their GPT-J-6B model. ## Training data The data can be divided in 6 different datasets: - Literotica (everything with 4.5/5 or higher) - Sexstories (everything with 90 or higher) - Dataset-G (private dataset of X-rated stories) - Doc's Lab (all stories) - Pike Dataset (novels with "adult" rating) - SoFurry (collection of various animals) The dataset uses `[Genre: <comma-separated list of genres>]` for tagging. ## Limitations and biases Based on known problems with NLP technology, potential relevant factors include bias (gender, profession, race and religion). **Warning: This model has a very strong NSFW bias!** ## Citation details The GPT-NeoX-20B model weights: ```bibtex @inproceedings{gpt-neox-20b, title={{GPT-NeoX-20B}: An Open-Source Autoregressive Language Model}, author={Black, Sid and Biderman, Stella and Hallahan, Eric and Anthony, Quentin and Gao, Leo and Golding, Laurence and He, Horace and Leahy, Connor and McDonell, Kyle and Phang, Jason and Pieler, Michael and Prashanth, USVSN Sai and Purohit, Shivanshu and Reynolds, Laria and Tow, Jonathan and Wang, Ben and Weinbach, Samuel}, booktitle={Proceedings of the ACL Workshop on Challenges \& Perspectives in Creating Large Language Models}, url={https://arxiv.org/abs/2204.06745}, year={2022} } ``` The Mesh Transformer JAX library: ```bibtex @misc{mesh-transformer-jax, author = {Wang, Ben}, title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}}, howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}}, year = 2021, month = May } ```
mrm8488/setfit-mpnet-base-v2-finetuned-sentEval-CR
mrm8488
2022-09-26T18:50:11Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-26T18:49:59Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 20, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
LucasBorth/jurisbert-base-classify
LucasBorth
2022-09-26T18:16:34Z
101
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-26T18:12:23Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: jurisbert-base-classify results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # jurisbert-base-classify This model is a fine-tuned version of [juridics/jurisbert-base-portuguese-uncased](https://huggingface.co/juridics/jurisbert-base-portuguese-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4893 - Accuracy: 0.8991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
AbhijeetA/PIE
AbhijeetA
2022-09-26T17:30:37Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
Model details available [here](https://github.com/awasthiabhijeet/PIE)
sd-concepts-library/fairytale
sd-concepts-library
2022-09-26T17:23:45Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-26T17:23:44Z
--- license: mit --- ### fAIrytale on Stable Diffusion This is the `<fAIrytale>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<fAIrytale> 0](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/276.jpeg) ![<fAIrytale> 1](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/643.jpeg) ![<fAIrytale> 2](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/296.jpeg) ![<fAIrytale> 3](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/332.jpeg) ![<fAIrytale> 4](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/267.jpeg) ![<fAIrytale> 5](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/765.jpeg) ![<fAIrytale> 6](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/205.jpeg) ![<fAIrytale> 7](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/429.jpeg) ![<fAIrytale> 8](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/432.jpeg) ![<fAIrytale> 9](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/720.jpeg) ![<fAIrytale> 10](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/305.jpeg) ![<fAIrytale> 11](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/473.jpeg) ![<fAIrytale> 12](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/677.jpeg) ![<fAIrytale> 13](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/761.jpeg) ![<fAIrytale> 14](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/567.jpeg) ![<fAIrytale> 15](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/752.jpeg) ![<fAIrytale> 16](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/115.jpeg) ![<fAIrytale> 17](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/199.jpeg) ![<fAIrytale> 18](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/324.jpeg) ![<fAIrytale> 19](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/244.jpeg) ![<fAIrytale> 20](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/434.jpeg) ![<fAIrytale> 21](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/491.jpeg) ![<fAIrytale> 22](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/316.jpeg) ![<fAIrytale> 23](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/328.jpeg) ![<fAIrytale> 24](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/147.jpeg) ![<fAIrytale> 25](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/263.jpeg) ![<fAIrytale> 26](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/264.jpeg) ![<fAIrytale> 27](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/678.jpeg) ![<fAIrytale> 28](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/482.jpeg) ![<fAIrytale> 29](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/362.jpeg) ![<fAIrytale> 30](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/400.jpeg) ![<fAIrytale> 31](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/675.jpeg) ![<fAIrytale> 32](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/356.jpeg) ![<fAIrytale> 33](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/440.jpeg) ![<fAIrytale> 34](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/99.jpeg) ![<fAIrytale> 35](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/704.jpeg) ![<fAIrytale> 36](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/240.jpeg) ![<fAIrytale> 37](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/287.jpeg) ![<fAIrytale> 38](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/207.jpeg) ![<fAIrytale> 39](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/249.jpeg) ![<fAIrytale> 40](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/321.jpeg) ![<fAIrytale> 41](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/708.jpeg) ![<fAIrytale> 42](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/391.jpeg) ![<fAIrytale> 43](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/602.jpeg) ![<fAIrytale> 44](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/416.jpeg) ![<fAIrytale> 45](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/631.jpeg) ![<fAIrytale> 46](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/73.jpeg) ![<fAIrytale> 47](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/406.jpeg) ![<fAIrytale> 48](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/449.jpeg) ![<fAIrytale> 49](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/596.jpeg) ![<fAIrytale> 50](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/665.jpeg) ![<fAIrytale> 51](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/66.jpeg) ![<fAIrytale> 52](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/74.jpeg) ![<fAIrytale> 53](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/619.jpeg) ![<fAIrytale> 54](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/408.jpeg) ![<fAIrytale> 55](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/201.jpeg) ![<fAIrytale> 56](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/671.jpeg) ![<fAIrytale> 57](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/632.jpeg) ![<fAIrytale> 58](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/232.jpeg) ![<fAIrytale> 59](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/489.jpeg) ![<fAIrytale> 60](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/736.jpeg) ![<fAIrytale> 61](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/92.jpeg) ![<fAIrytale> 62](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/202.jpeg) ![<fAIrytale> 63](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/763.jpeg) ![<fAIrytale> 64](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/241.jpeg) ![<fAIrytale> 65](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/775.jpeg) ![<fAIrytale> 66](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/552.jpeg) ![<fAIrytale> 67](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/40.jpeg) ![<fAIrytale> 68](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/524.jpeg) ![<fAIrytale> 69](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/374.jpeg) ![<fAIrytale> 70](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/639.jpeg) ![<fAIrytale> 71](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/533.jpeg) ![<fAIrytale> 72](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/564.jpeg) ![<fAIrytale> 73](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/770.jpeg) ![<fAIrytale> 74](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/338.jpeg) ![<fAIrytale> 75](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/636.jpeg) ![<fAIrytale> 76](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/578.jpeg) ![<fAIrytale> 77](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/228.jpeg) ![<fAIrytale> 78](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/728.jpeg) ![<fAIrytale> 79](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/492.jpeg) ![<fAIrytale> 80](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/620.jpeg) ![<fAIrytale> 81](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/764.jpeg) ![<fAIrytale> 82](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/725.jpeg) ![<fAIrytale> 83](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/140.jpeg) ![<fAIrytale> 84](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/450.jpeg) ![<fAIrytale> 85](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/591.jpeg) ![<fAIrytale> 86](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/101.jpeg) ![<fAIrytale> 87](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/9.jpeg) ![<fAIrytale> 88](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/695.jpeg) ![<fAIrytale> 89](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/444.jpeg) ![<fAIrytale> 90](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/769.jpeg) ![<fAIrytale> 91](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/18.jpeg) ![<fAIrytale> 92](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/705.jpeg) ![<fAIrytale> 93](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/724.jpeg) ![<fAIrytale> 94](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/22.jpeg) ![<fAIrytale> 95](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/510.jpeg) ![<fAIrytale> 96](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/78.jpeg) ![<fAIrytale> 97](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/283.jpeg) ![<fAIrytale> 98](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/756.jpeg) ![<fAIrytale> 99](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/102.jpeg) ![<fAIrytale> 100](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/719.jpeg) ![<fAIrytale> 101](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/701.jpeg) ![<fAIrytale> 102](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/230.jpeg) ![<fAIrytale> 103](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/351.jpeg) ![<fAIrytale> 104](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/372.jpeg) ![<fAIrytale> 105](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/19.jpeg) ![<fAIrytale> 106](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/714.jpeg) ![<fAIrytale> 107](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/743.jpeg) ![<fAIrytale> 108](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/235.jpeg) ![<fAIrytale> 109](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/47.jpeg) ![<fAIrytale> 110](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/337.jpeg) ![<fAIrytale> 111](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/278.jpeg) ![<fAIrytale> 112](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/90.jpeg) ![<fAIrytale> 113](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/347.jpeg) ![<fAIrytale> 114](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/145.jpeg) ![<fAIrytale> 115](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/715.jpeg) ![<fAIrytale> 116](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/124.jpeg) ![<fAIrytale> 117](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/361.jpeg) ![<fAIrytale> 118](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/534.jpeg) ![<fAIrytale> 119](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/29.jpeg) ![<fAIrytale> 120](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/186.jpeg) ![<fAIrytale> 121](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/727.jpeg) ![<fAIrytale> 122](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/314.jpeg) ![<fAIrytale> 123](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/95.jpeg) ![<fAIrytale> 124](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/274.jpeg) ![<fAIrytale> 125](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/559.jpeg) ![<fAIrytale> 126](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/159.jpeg) ![<fAIrytale> 127](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/693.jpeg) ![<fAIrytale> 128](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/394.jpeg) ![<fAIrytale> 129](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/250.jpeg) ![<fAIrytale> 130](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/180.jpeg) ![<fAIrytale> 131](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/210.jpeg) ![<fAIrytale> 132](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/128.jpeg) ![<fAIrytale> 133](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/117.jpeg) ![<fAIrytale> 134](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/569.jpeg) ![<fAIrytale> 135](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/10.jpeg) ![<fAIrytale> 136](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/152.jpeg) ![<fAIrytale> 137](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/745.jpeg) ![<fAIrytale> 138](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/396.jpeg) ![<fAIrytale> 139](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/357.jpeg) ![<fAIrytale> 140](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/273.jpeg) ![<fAIrytale> 141](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/735.jpeg) ![<fAIrytale> 142](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/684.jpeg) ![<fAIrytale> 143](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/98.jpeg) ![<fAIrytale> 144](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/81.jpeg) ![<fAIrytale> 145](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/142.jpeg) ![<fAIrytale> 146](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/139.jpeg) ![<fAIrytale> 147](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/364.jpeg) ![<fAIrytale> 148](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/3.jpeg) ![<fAIrytale> 149](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/568.jpeg) ![<fAIrytale> 150](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/548.jpeg) ![<fAIrytale> 151](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/285.jpeg) ![<fAIrytale> 152](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/229.jpeg) ![<fAIrytale> 153](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/716.jpeg) ![<fAIrytale> 154](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/407.jpeg) ![<fAIrytale> 155](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/441.jpeg) ![<fAIrytale> 156](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/582.jpeg) ![<fAIrytale> 157](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/721.jpeg) ![<fAIrytale> 158](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/683.jpeg) ![<fAIrytale> 159](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/738.jpeg) ![<fAIrytale> 160](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/734.jpeg) ![<fAIrytale> 161](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/641.jpeg) ![<fAIrytale> 162](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/89.jpeg) ![<fAIrytale> 163](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/239.jpeg) ![<fAIrytale> 164](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/162.jpeg) ![<fAIrytale> 165](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/694.jpeg) ![<fAIrytale> 166](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/1.jpeg) ![<fAIrytale> 167](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/487.jpeg) ![<fAIrytale> 168](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/148.jpeg) ![<fAIrytale> 169](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/133.jpeg) ![<fAIrytale> 170](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/431.jpeg) ![<fAIrytale> 171](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/646.jpeg) ![<fAIrytale> 172](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/317.jpeg) ![<fAIrytale> 173](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/138.jpeg) ![<fAIrytale> 174](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/184.jpeg) ![<fAIrytale> 175](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/648.jpeg) ![<fAIrytale> 176](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/676.jpeg) ![<fAIrytale> 177](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/474.jpeg) ![<fAIrytale> 178](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/114.jpeg) ![<fAIrytale> 179](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/608.jpeg) ![<fAIrytale> 180](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/174.jpeg) ![<fAIrytale> 181](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/542.jpeg) ![<fAIrytale> 182](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/118.jpeg) ![<fAIrytale> 183](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/711.jpeg) ![<fAIrytale> 184](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/308.jpeg) ![<fAIrytale> 185](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/663.jpeg) ![<fAIrytale> 186](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/642.jpeg) ![<fAIrytale> 187](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/306.jpeg) ![<fAIrytale> 188](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/670.jpeg) ![<fAIrytale> 189](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/214.jpeg) ![<fAIrytale> 190](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/302.jpeg) ![<fAIrytale> 191](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/749.jpeg) ![<fAIrytale> 192](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/4.jpeg) ![<fAIrytale> 193](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/373.jpeg) ![<fAIrytale> 194](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/349.jpeg) ![<fAIrytale> 195](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/624.jpeg) ![<fAIrytale> 196](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/600.jpeg) ![<fAIrytale> 197](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/213.jpeg) ![<fAIrytale> 198](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/674.jpeg) ![<fAIrytale> 199](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/358.jpeg) ![<fAIrytale> 200](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/293.jpeg) ![<fAIrytale> 201](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/36.jpeg) ![<fAIrytale> 202](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/141.jpeg) ![<fAIrytale> 203](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/323.jpeg) ![<fAIrytale> 204](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/480.jpeg) ![<fAIrytale> 205](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/746.jpeg) ![<fAIrytale> 206](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/621.jpeg) ![<fAIrytale> 207](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/618.jpeg) ![<fAIrytale> 208](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/383.jpeg) ![<fAIrytale> 209](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/319.jpeg) ![<fAIrytale> 210](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/547.jpeg) ![<fAIrytale> 211](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/523.jpeg) ![<fAIrytale> 212](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/268.jpeg) ![<fAIrytale> 213](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/150.jpeg) ![<fAIrytale> 214](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/203.jpeg) ![<fAIrytale> 215](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/512.jpeg) ![<fAIrytale> 216](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/446.jpeg) ![<fAIrytale> 217](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/667.jpeg) ![<fAIrytale> 218](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/236.jpeg) ![<fAIrytale> 219](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/443.jpeg) ![<fAIrytale> 220](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/597.jpeg) ![<fAIrytale> 221](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/536.jpeg) ![<fAIrytale> 222](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/300.jpeg) ![<fAIrytale> 223](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/730.jpeg) ![<fAIrytale> 224](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/336.jpeg) ![<fAIrytale> 225](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/185.jpeg) ![<fAIrytale> 226](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/113.jpeg) ![<fAIrytale> 227](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/585.jpeg) ![<fAIrytale> 228](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/656.jpeg) ![<fAIrytale> 229](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/732.jpeg) ![<fAIrytale> 230](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/127.jpeg) ![<fAIrytale> 231](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/410.jpeg) ![<fAIrytale> 232](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/481.jpeg) ![<fAIrytale> 233](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/182.jpeg) ![<fAIrytale> 234](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/562.jpeg) ![<fAIrytale> 235](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/438.jpeg) ![<fAIrytale> 236](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/699.jpeg) ![<fAIrytale> 237](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/176.jpeg) ![<fAIrytale> 238](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/615.jpeg) ![<fAIrytale> 239](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/722.jpeg) ![<fAIrytale> 240](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/402.jpeg) ![<fAIrytale> 241](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/380.jpeg) ![<fAIrytale> 242](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/478.jpeg) ![<fAIrytale> 243](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/634.jpeg) ![<fAIrytale> 244](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/67.jpeg) ![<fAIrytale> 245](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/58.jpeg) ![<fAIrytale> 246](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/598.jpeg) ![<fAIrytale> 247](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/575.jpeg) ![<fAIrytale> 248](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/68.jpeg) ![<fAIrytale> 249](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/435.jpeg) ![<fAIrytale> 250](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/689.jpeg) ![<fAIrytale> 251](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/718.jpeg) ![<fAIrytale> 252](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/638.jpeg) ![<fAIrytale> 253](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/475.jpeg) ![<fAIrytale> 254](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/538.jpeg) ![<fAIrytale> 255](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/445.jpeg) ![<fAIrytale> 256](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/744.jpeg) ![<fAIrytale> 257](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/277.jpeg) ![<fAIrytale> 258](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/355.jpeg) ![<fAIrytale> 259](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/284.jpeg) ![<fAIrytale> 260](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/755.jpeg) ![<fAIrytale> 261](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/521.jpeg) ![<fAIrytale> 262](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/61.jpeg) ![<fAIrytale> 263](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/514.jpeg) ![<fAIrytale> 264](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/187.jpeg) ![<fAIrytale> 265](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/405.jpeg) ![<fAIrytale> 266](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/555.jpeg) ![<fAIrytale> 267](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/17.jpeg) ![<fAIrytale> 268](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/516.jpeg) ![<fAIrytale> 269](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/269.jpeg) ![<fAIrytale> 270](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/472.jpeg) ![<fAIrytale> 271](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/93.jpeg) ![<fAIrytale> 272](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/603.jpeg) ![<fAIrytale> 273](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/753.jpeg) ![<fAIrytale> 274](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/696.jpeg) ![<fAIrytale> 275](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/741.jpeg) ![<fAIrytale> 276](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/414.jpeg) ![<fAIrytale> 277](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/386.jpeg) ![<fAIrytale> 278](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/393.jpeg) ![<fAIrytale> 279](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/366.jpeg) ![<fAIrytale> 280](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/397.jpeg) ![<fAIrytale> 281](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/633.jpeg) ![<fAIrytale> 282](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/662.jpeg) ![<fAIrytale> 283](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/469.jpeg) ![<fAIrytale> 284](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/191.jpeg) ![<fAIrytale> 285](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/731.jpeg) ![<fAIrytale> 286](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/490.jpeg) ![<fAIrytale> 287](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/156.jpeg) ![<fAIrytale> 288](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/399.jpeg) ![<fAIrytale> 289](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/717.jpeg) ![<fAIrytale> 290](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/637.jpeg) ![<fAIrytale> 291](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/161.jpeg) ![<fAIrytale> 292](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/168.jpeg) ![<fAIrytale> 293](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/739.jpeg) ![<fAIrytale> 294](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/359.jpeg) ![<fAIrytale> 295](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/486.jpeg) ![<fAIrytale> 296](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/599.jpeg) ![<fAIrytale> 297](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/460.jpeg) ![<fAIrytale> 298](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/223.jpeg) ![<fAIrytale> 299](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/149.jpeg) ![<fAIrytale> 300](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/255.jpeg) ![<fAIrytale> 301](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/198.jpeg) ![<fAIrytale> 302](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/275.jpeg) ![<fAIrytale> 303](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/315.jpeg) ![<fAIrytale> 304](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/56.jpeg) ![<fAIrytale> 305](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/501.jpeg) ![<fAIrytale> 306](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/221.jpeg) ![<fAIrytale> 307](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/448.jpeg) ![<fAIrytale> 308](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/60.jpeg) ![<fAIrytale> 309](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/194.jpeg) ![<fAIrytale> 310](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/48.jpeg) ![<fAIrytale> 311](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/609.jpeg) ![<fAIrytale> 312](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/136.jpeg) ![<fAIrytale> 313](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/682.jpeg) ![<fAIrytale> 314](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/392.jpeg) ![<fAIrytale> 315](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/110.jpeg) ![<fAIrytale> 316](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/346.jpeg) ![<fAIrytale> 317](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/532.jpeg) ![<fAIrytale> 318](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/507.jpeg) ![<fAIrytale> 319](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/291.jpeg) ![<fAIrytale> 320](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/421.jpeg) ![<fAIrytale> 321](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/556.jpeg) ![<fAIrytale> 322](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/419.jpeg) ![<fAIrytale> 323](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/75.jpeg) ![<fAIrytale> 324](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/371.jpeg) ![<fAIrytale> 325](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/747.jpeg) ![<fAIrytale> 326](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/172.jpeg) ![<fAIrytale> 327](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/21.jpeg) ![<fAIrytale> 328](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/363.jpeg) ![<fAIrytale> 329](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/610.jpeg) ![<fAIrytale> 330](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/539.jpeg) ![<fAIrytale> 331](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/365.jpeg) ![<fAIrytale> 332](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/390.jpeg) ![<fAIrytale> 333](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/594.jpeg) ![<fAIrytale> 334](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/537.jpeg) ![<fAIrytale> 335](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/461.jpeg) ![<fAIrytale> 336](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/125.jpeg) ![<fAIrytale> 337](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/144.jpeg) ![<fAIrytale> 338](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/80.jpeg) ![<fAIrytale> 339](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/331.jpeg) ![<fAIrytale> 340](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/729.jpeg) ![<fAIrytale> 341](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/515.jpeg) ![<fAIrytale> 342](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/298.jpeg) ![<fAIrytale> 343](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/692.jpeg) ![<fAIrytale> 344](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/31.jpeg) ![<fAIrytale> 345](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/352.jpeg) ![<fAIrytale> 346](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/329.jpeg) ![<fAIrytale> 347](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/55.jpeg) ![<fAIrytale> 348](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/375.jpeg) ![<fAIrytale> 349](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/706.jpeg) ![<fAIrytale> 350](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/549.jpeg) ![<fAIrytale> 351](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/498.jpeg) ![<fAIrytale> 352](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/651.jpeg) ![<fAIrytale> 353](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/307.jpeg) ![<fAIrytale> 354](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/164.jpeg) ![<fAIrytale> 355](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/527.jpeg) ![<fAIrytale> 356](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/326.jpeg) ![<fAIrytale> 357](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/211.jpeg) ![<fAIrytale> 358](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/27.jpeg) ![<fAIrytale> 359](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/740.jpeg) ![<fAIrytale> 360](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/500.jpeg) ![<fAIrytale> 361](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/157.jpeg) ![<fAIrytale> 362](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/412.jpeg) ![<fAIrytale> 363](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/476.jpeg) ![<fAIrytale> 364](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/279.jpeg) ![<fAIrytale> 365](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/62.jpeg) ![<fAIrytale> 366](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/245.jpeg) ![<fAIrytale> 367](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/658.jpeg) ![<fAIrytale> 368](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/382.jpeg) ![<fAIrytale> 369](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/723.jpeg) ![<fAIrytale> 370](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/173.jpeg) ![<fAIrytale> 371](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/85.jpeg) ![<fAIrytale> 372](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/424.jpeg) ![<fAIrytale> 373](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/218.jpeg) ![<fAIrytale> 374](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/212.jpeg) ![<fAIrytale> 375](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/465.jpeg) ![<fAIrytale> 376](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/25.jpeg) ![<fAIrytale> 377](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/181.jpeg) ![<fAIrytale> 378](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/132.jpeg) ![<fAIrytale> 379](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/669.jpeg) ![<fAIrytale> 380](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/415.jpeg) ![<fAIrytale> 381](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/541.jpeg) ![<fAIrytale> 382](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/242.jpeg) ![<fAIrytale> 383](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/451.jpeg) ![<fAIrytale> 384](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/571.jpeg) ![<fAIrytale> 385](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/86.jpeg) ![<fAIrytale> 386](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/135.jpeg) ![<fAIrytale> 387](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/644.jpeg) ![<fAIrytale> 388](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/91.jpeg) ![<fAIrytale> 389](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/467.jpeg) ![<fAIrytale> 390](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/345.jpeg) ![<fAIrytale> 391](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/573.jpeg) ![<fAIrytale> 392](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/313.jpeg) ![<fAIrytale> 393](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/497.jpeg) ![<fAIrytale> 394](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/348.jpeg) ![<fAIrytale> 395](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/409.jpeg) ![<fAIrytale> 396](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/553.jpeg) ![<fAIrytale> 397](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/654.jpeg) ![<fAIrytale> 398](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/368.jpeg) ![<fAIrytale> 399](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/104.jpeg) ![<fAIrytale> 400](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/8.jpeg) ![<fAIrytale> 401](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/574.jpeg) ![<fAIrytale> 402](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/685.jpeg) ![<fAIrytale> 403](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/604.jpeg) ![<fAIrytale> 404](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/130.jpeg) ![<fAIrytale> 405](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/413.jpeg) ![<fAIrytale> 406](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/748.jpeg) ![<fAIrytale> 407](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/11.jpeg) ![<fAIrytale> 408](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/713.jpeg) ![<fAIrytale> 409](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/668.jpeg) ![<fAIrytale> 410](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/627.jpeg) ![<fAIrytale> 411](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/592.jpeg) ![<fAIrytale> 412](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/261.jpeg) ![<fAIrytale> 413](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/286.jpeg) ![<fAIrytale> 414](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/299.jpeg) ![<fAIrytale> 415](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/613.jpeg) ![<fAIrytale> 416](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/146.jpeg) ![<fAIrytale> 417](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/509.jpeg) ![<fAIrytale> 418](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/192.jpeg) ![<fAIrytale> 419](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/688.jpeg) ![<fAIrytale> 420](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/771.jpeg) ![<fAIrytale> 421](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/215.jpeg) ![<fAIrytale> 422](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/129.jpeg) ![<fAIrytale> 423](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/166.jpeg) ![<fAIrytale> 424](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/219.jpeg) ![<fAIrytale> 425](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/334.jpeg) ![<fAIrytale> 426](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/226.jpeg) ![<fAIrytale> 427](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/439.jpeg) ![<fAIrytale> 428](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/622.jpeg) ![<fAIrytale> 429](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/30.jpeg) ![<fAIrytale> 430](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/64.jpeg) ![<fAIrytale> 431](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/587.jpeg) ![<fAIrytale> 432](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/605.jpeg) ![<fAIrytale> 433](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/673.jpeg) ![<fAIrytale> 434](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/143.jpeg) ![<fAIrytale> 435](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/281.jpeg) ![<fAIrytale> 436](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/471.jpeg) ![<fAIrytale> 437](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/6.jpeg) ![<fAIrytale> 438](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/354.jpeg) ![<fAIrytale> 439](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/246.jpeg) ![<fAIrytale> 440](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/340.jpeg) ![<fAIrytale> 441](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/96.jpeg) ![<fAIrytale> 442](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/262.jpeg) ![<fAIrytale> 443](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/379.jpeg) ![<fAIrytale> 444](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/225.jpeg) ![<fAIrytale> 445](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/519.jpeg) ![<fAIrytale> 446](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/49.jpeg) ![<fAIrytale> 447](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/614.jpeg) ![<fAIrytale> 448](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/320.jpeg) ![<fAIrytale> 449](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/629.jpeg) ![<fAIrytale> 450](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/398.jpeg) ![<fAIrytale> 451](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/488.jpeg) ![<fAIrytale> 452](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/5.jpeg) ![<fAIrytale> 453](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/88.jpeg) ![<fAIrytale> 454](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/505.jpeg) ![<fAIrytale> 455](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/252.jpeg) ![<fAIrytale> 456](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/572.jpeg) ![<fAIrytale> 457](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/767.jpeg) ![<fAIrytale> 458](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/224.jpeg) ![<fAIrytale> 459](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/325.jpeg) ![<fAIrytale> 460](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/333.jpeg) ![<fAIrytale> 461](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/423.jpeg) ![<fAIrytale> 462](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/137.jpeg) ![<fAIrytale> 463](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/456.jpeg) ![<fAIrytale> 464](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/0.jpeg) ![<fAIrytale> 465](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/109.jpeg) ![<fAIrytale> 466](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/389.jpeg) ![<fAIrytale> 467](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/292.jpeg) ![<fAIrytale> 468](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/53.jpeg) ![<fAIrytale> 469](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/83.jpeg) ![<fAIrytale> 470](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/666.jpeg) ![<fAIrytale> 471](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/350.jpeg) ![<fAIrytale> 472](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/335.jpeg) ![<fAIrytale> 473](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/367.jpeg) ![<fAIrytale> 474](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/426.jpeg) ![<fAIrytale> 475](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/32.jpeg) ![<fAIrytale> 476](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/710.jpeg) ![<fAIrytale> 477](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/494.jpeg) ![<fAIrytale> 478](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/583.jpeg) ![<fAIrytale> 479](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/72.jpeg) ![<fAIrytale> 480](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/84.jpeg) ![<fAIrytale> 481](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/543.jpeg) ![<fAIrytale> 482](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/106.jpeg) ![<fAIrytale> 483](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/601.jpeg) ![<fAIrytale> 484](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/535.jpeg) ![<fAIrytale> 485](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/511.jpeg) ![<fAIrytale> 486](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/660.jpeg) ![<fAIrytale> 487](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/79.jpeg) ![<fAIrytale> 488](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/566.jpeg) ![<fAIrytale> 489](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/433.jpeg) ![<fAIrytale> 490](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/341.jpeg) ![<fAIrytale> 491](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/339.jpeg) ![<fAIrytale> 492](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/381.jpeg) ![<fAIrytale> 493](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/111.jpeg) ![<fAIrytale> 494](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/304.jpeg) ![<fAIrytale> 495](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/453.jpeg) ![<fAIrytale> 496](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/540.jpeg) ![<fAIrytale> 497](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/700.jpeg) ![<fAIrytale> 498](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/581.jpeg) ![<fAIrytale> 499](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/395.jpeg) ![<fAIrytale> 500](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/353.jpeg) ![<fAIrytale> 501](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/452.jpeg) ![<fAIrytale> 502](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/369.jpeg) ![<fAIrytale> 503](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/466.jpeg) ![<fAIrytale> 504](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/436.jpeg) ![<fAIrytale> 505](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/170.jpeg) ![<fAIrytale> 506](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/100.jpeg) ![<fAIrytale> 507](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/309.jpeg) ![<fAIrytale> 508](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/420.jpeg) ![<fAIrytale> 509](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/417.jpeg) ![<fAIrytale> 510](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/38.jpeg) ![<fAIrytale> 511](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/121.jpeg) ![<fAIrytale> 512](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/376.jpeg) ![<fAIrytale> 513](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/112.jpeg) ![<fAIrytale> 514](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/310.jpeg) ![<fAIrytale> 515](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/65.jpeg) ![<fAIrytale> 516](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/772.jpeg) ![<fAIrytale> 517](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/2.jpeg) ![<fAIrytale> 518](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/265.jpeg) ![<fAIrytale> 519](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/126.jpeg) ![<fAIrytale> 520](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/635.jpeg) ![<fAIrytale> 521](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/377.jpeg) ![<fAIrytale> 522](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/520.jpeg) ![<fAIrytale> 523](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/707.jpeg) ![<fAIrytale> 524](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/762.jpeg) ![<fAIrytale> 525](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/195.jpeg) ![<fAIrytale> 526](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/295.jpeg) ![<fAIrytale> 527](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/312.jpeg) ![<fAIrytale> 528](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/76.jpeg) ![<fAIrytale> 529](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/606.jpeg) ![<fAIrytale> 530](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/167.jpeg) ![<fAIrytale> 531](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/16.jpeg) ![<fAIrytale> 532](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/457.jpeg) ![<fAIrytale> 533](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/200.jpeg) ![<fAIrytale> 534](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/378.jpeg) ![<fAIrytale> 535](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/679.jpeg) ![<fAIrytale> 536](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/576.jpeg) ![<fAIrytale> 537](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/544.jpeg) ![<fAIrytale> 538](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/545.jpeg) ![<fAIrytale> 539](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/459.jpeg) ![<fAIrytale> 540](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/647.jpeg) ![<fAIrytale> 541](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/404.jpeg) ![<fAIrytale> 542](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/7.jpeg) ![<fAIrytale> 543](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/422.jpeg) ![<fAIrytale> 544](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/649.jpeg) ![<fAIrytale> 545](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/33.jpeg) ![<fAIrytale> 546](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/119.jpeg) ![<fAIrytale> 547](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/485.jpeg) ![<fAIrytale> 548](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/26.jpeg) ![<fAIrytale> 549](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/260.jpeg) ![<fAIrytale> 550](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/483.jpeg) ![<fAIrytale> 551](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/550.jpeg) ![<fAIrytale> 552](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/42.jpeg) ![<fAIrytale> 553](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/71.jpeg) ![<fAIrytale> 554](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/342.jpeg) ![<fAIrytale> 555](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/160.jpeg) ![<fAIrytale> 556](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/496.jpeg) ![<fAIrytale> 557](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/271.jpeg) ![<fAIrytale> 558](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/175.jpeg) ![<fAIrytale> 559](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/94.jpeg) ![<fAIrytale> 560](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/217.jpeg) ![<fAIrytale> 561](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/579.jpeg) ![<fAIrytale> 562](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/209.jpeg) ![<fAIrytale> 563](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/69.jpeg) ![<fAIrytale> 564](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/134.jpeg) ![<fAIrytale> 565](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/560.jpeg) ![<fAIrytale> 566](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/504.jpeg) ![<fAIrytale> 567](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/123.jpeg) ![<fAIrytale> 568](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/196.jpeg) ![<fAIrytale> 569](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/231.jpeg) ![<fAIrytale> 570](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/35.jpeg) ![<fAIrytale> 571](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/70.jpeg) ![<fAIrytale> 572](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/188.jpeg) ![<fAIrytale> 573](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/171.jpeg) ![<fAIrytale> 574](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/46.jpeg) ![<fAIrytale> 575](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/50.jpeg) ![<fAIrytale> 576](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/737.jpeg) ![<fAIrytale> 577](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/411.jpeg) ![<fAIrytale> 578](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/554.jpeg) ![<fAIrytale> 579](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/294.jpeg) ![<fAIrytale> 580](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/726.jpeg) ![<fAIrytale> 581](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/628.jpeg) ![<fAIrytale> 582](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/760.jpeg) ![<fAIrytale> 583](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/529.jpeg) ![<fAIrytale> 584](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/41.jpeg) ![<fAIrytale> 585](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/750.jpeg) ![<fAIrytale> 586](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/645.jpeg) ![<fAIrytale> 587](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/659.jpeg) ![<fAIrytale> 588](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/588.jpeg) ![<fAIrytale> 589](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/151.jpeg) ![<fAIrytale> 590](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/257.jpeg) ![<fAIrytale> 591](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/290.jpeg) ![<fAIrytale> 592](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/256.jpeg) ![<fAIrytale> 593](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/303.jpeg) ![<fAIrytale> 594](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/774.jpeg) ![<fAIrytale> 595](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/551.jpeg) ![<fAIrytale> 596](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/530.jpeg) ![<fAIrytale> 597](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/463.jpeg) ![<fAIrytale> 598](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/612.jpeg) ![<fAIrytale> 599](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/477.jpeg) ![<fAIrytale> 600](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/686.jpeg) ![<fAIrytale> 601](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/297.jpeg) ![<fAIrytale> 602](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/318.jpeg) ![<fAIrytale> 603](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/650.jpeg) ![<fAIrytale> 604](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/227.jpeg) ![<fAIrytale> 605](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/43.jpeg) ![<fAIrytale> 606](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/154.jpeg) ![<fAIrytale> 607](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/120.jpeg) ![<fAIrytale> 608](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/499.jpeg) ![<fAIrytale> 609](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/385.jpeg) ![<fAIrytale> 610](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/163.jpeg) ![<fAIrytale> 611](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/702.jpeg) ![<fAIrytale> 612](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/97.jpeg) ![<fAIrytale> 613](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/23.jpeg) ![<fAIrytale> 614](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/563.jpeg) ![<fAIrytale> 615](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/427.jpeg) ![<fAIrytale> 616](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/697.jpeg) ![<fAIrytale> 617](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/657.jpeg) ![<fAIrytale> 618](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/77.jpeg) ![<fAIrytale> 619](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/526.jpeg) ![<fAIrytale> 620](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/28.jpeg) ![<fAIrytale> 621](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/528.jpeg) ![<fAIrytale> 622](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/190.jpeg) ![<fAIrytale> 623](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/653.jpeg) ![<fAIrytale> 624](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/254.jpeg) ![<fAIrytale> 625](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/330.jpeg) ![<fAIrytale> 626](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/169.jpeg) ![<fAIrytale> 627](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/462.jpeg) ![<fAIrytale> 628](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/577.jpeg) ![<fAIrytale> 629](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/484.jpeg) ![<fAIrytale> 630](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/220.jpeg) ![<fAIrytale> 631](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/757.jpeg) ![<fAIrytale> 632](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/322.jpeg) ![<fAIrytale> 633](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/289.jpeg) ![<fAIrytale> 634](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/87.jpeg) ![<fAIrytale> 635](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/206.jpeg) ![<fAIrytale> 636](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/625.jpeg) ![<fAIrytale> 637](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/105.jpeg) ![<fAIrytale> 638](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/766.jpeg) ![<fAIrytale> 639](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/222.jpeg) ![<fAIrytale> 640](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/82.jpeg) ![<fAIrytale> 641](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/259.jpeg) ![<fAIrytale> 642](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/640.jpeg) ![<fAIrytale> 643](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/418.jpeg) ![<fAIrytale> 644](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/266.jpeg) ![<fAIrytale> 645](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/387.jpeg) ![<fAIrytale> 646](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/703.jpeg) ![<fAIrytale> 647](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/495.jpeg) ![<fAIrytale> 648](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/580.jpeg) ![<fAIrytale> 649](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/344.jpeg) ![<fAIrytale> 650](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/447.jpeg) ![<fAIrytale> 651](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/238.jpeg) ![<fAIrytale> 652](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/468.jpeg) ![<fAIrytale> 653](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/193.jpeg) ![<fAIrytale> 654](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/455.jpeg) ![<fAIrytale> 655](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/248.jpeg) ![<fAIrytale> 656](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/280.jpeg) ![<fAIrytale> 657](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/570.jpeg) ![<fAIrytale> 658](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/531.jpeg) ![<fAIrytale> 659](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/773.jpeg) ![<fAIrytale> 660](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/39.jpeg) ![<fAIrytale> 661](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/384.jpeg) ![<fAIrytale> 662](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/698.jpeg) ![<fAIrytale> 663](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/595.jpeg) ![<fAIrytale> 664](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/464.jpeg) ![<fAIrytale> 665](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/57.jpeg) ![<fAIrytale> 666](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/44.jpeg) ![<fAIrytale> 667](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/107.jpeg) ![<fAIrytale> 668](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/153.jpeg) ![<fAIrytale> 669](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/327.jpeg) ![<fAIrytale> 670](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/565.jpeg) ![<fAIrytale> 671](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/430.jpeg) ![<fAIrytale> 672](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/51.jpeg) ![<fAIrytale> 673](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/458.jpeg) ![<fAIrytale> 674](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/237.jpeg) ![<fAIrytale> 675](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/546.jpeg) ![<fAIrytale> 676](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/776.jpeg) ![<fAIrytale> 677](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/768.jpeg) ![<fAIrytale> 678](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/593.jpeg) ![<fAIrytale> 679](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/758.jpeg) ![<fAIrytale> 680](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/525.jpeg) ![<fAIrytale> 681](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/282.jpeg) ![<fAIrytale> 682](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/272.jpeg) ![<fAIrytale> 683](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/301.jpeg) ![<fAIrytale> 684](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/37.jpeg) ![<fAIrytale> 685](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/425.jpeg) ![<fAIrytale> 686](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/258.jpeg) ![<fAIrytale> 687](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/691.jpeg) ![<fAIrytale> 688](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/672.jpeg) ![<fAIrytale> 689](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/611.jpeg) ![<fAIrytale> 690](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/403.jpeg) ![<fAIrytale> 691](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/253.jpeg) ![<fAIrytale> 692](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/270.jpeg) ![<fAIrytale> 693](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/131.jpeg) ![<fAIrytale> 694](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/288.jpeg) ![<fAIrytale> 695](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/122.jpeg) ![<fAIrytale> 696](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/158.jpeg) ![<fAIrytale> 697](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/518.jpeg) ![<fAIrytale> 698](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/454.jpeg) ![<fAIrytale> 699](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/712.jpeg) ![<fAIrytale> 700](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/360.jpeg) ![<fAIrytale> 701](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/251.jpeg) ![<fAIrytale> 702](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/243.jpeg) ![<fAIrytale> 703](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/208.jpeg) ![<fAIrytale> 704](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/370.jpeg) ![<fAIrytale> 705](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/54.jpeg) ![<fAIrytale> 706](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/626.jpeg) ![<fAIrytale> 707](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/655.jpeg) ![<fAIrytale> 708](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/24.jpeg) ![<fAIrytale> 709](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/428.jpeg) ![<fAIrytale> 710](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/506.jpeg) ![<fAIrytale> 711](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/34.jpeg) ![<fAIrytale> 712](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/522.jpeg) ![<fAIrytale> 713](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/742.jpeg) ![<fAIrytale> 714](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/401.jpeg) ![<fAIrytale> 715](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/557.jpeg) ![<fAIrytale> 716](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/247.jpeg) ![<fAIrytale> 717](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/108.jpeg) ![<fAIrytale> 718](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/513.jpeg) ![<fAIrytale> 719](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/607.jpeg) ![<fAIrytale> 720](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/493.jpeg) ![<fAIrytale> 721](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/558.jpeg) ![<fAIrytale> 722](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/178.jpeg) ![<fAIrytale> 723](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/165.jpeg) ![<fAIrytale> 724](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/179.jpeg) ![<fAIrytale> 725](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/13.jpeg) ![<fAIrytale> 726](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/63.jpeg) ![<fAIrytale> 727](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/59.jpeg) ![<fAIrytale> 728](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/183.jpeg) ![<fAIrytale> 729](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/561.jpeg) ![<fAIrytale> 730](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/388.jpeg) ![<fAIrytale> 731](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/14.jpeg) ![<fAIrytale> 732](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/652.jpeg) ![<fAIrytale> 733](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/311.jpeg) ![<fAIrytale> 734](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/623.jpeg) ![<fAIrytale> 735](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/680.jpeg) ![<fAIrytale> 736](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/754.jpeg) ![<fAIrytale> 737](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/661.jpeg) ![<fAIrytale> 738](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/508.jpeg) ![<fAIrytale> 739](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/12.jpeg) ![<fAIrytale> 740](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/502.jpeg) ![<fAIrytale> 741](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/437.jpeg) ![<fAIrytale> 742](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/479.jpeg) ![<fAIrytale> 743](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/733.jpeg) ![<fAIrytale> 744](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/216.jpeg) ![<fAIrytale> 745](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/681.jpeg) ![<fAIrytale> 746](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/116.jpeg) ![<fAIrytale> 747](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/470.jpeg) ![<fAIrytale> 748](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/664.jpeg) ![<fAIrytale> 749](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/630.jpeg) ![<fAIrytale> 750](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/687.jpeg) ![<fAIrytale> 751](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/690.jpeg) ![<fAIrytale> 752](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/343.jpeg) ![<fAIrytale> 753](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/45.jpeg) ![<fAIrytale> 754](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/103.jpeg) ![<fAIrytale> 755](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/20.jpeg) ![<fAIrytale> 756](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/233.jpeg) ![<fAIrytale> 757](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/617.jpeg) ![<fAIrytale> 758](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/590.jpeg) ![<fAIrytale> 759](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/503.jpeg) ![<fAIrytale> 760](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/155.jpeg) ![<fAIrytale> 761](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/15.jpeg) ![<fAIrytale> 762](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/204.jpeg) ![<fAIrytale> 763](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/517.jpeg) ![<fAIrytale> 764](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/52.jpeg) ![<fAIrytale> 765](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/616.jpeg) ![<fAIrytale> 766](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/442.jpeg) ![<fAIrytale> 767](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/589.jpeg) ![<fAIrytale> 768](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/751.jpeg) ![<fAIrytale> 769](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/197.jpeg) ![<fAIrytale> 770](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/759.jpeg) ![<fAIrytale> 771](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/709.jpeg) ![<fAIrytale> 772](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/189.jpeg) ![<fAIrytale> 773](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/177.jpeg) ![<fAIrytale> 774](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/586.jpeg) ![<fAIrytale> 775](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/234.jpeg) ![<fAIrytale> 776](https://huggingface.co/sd-concepts-library/fairytale/resolve/main/concept_images/584.jpeg)
microsoft/graphcodebert-base
microsoft
2022-09-26T17:06:54Z
104,959
56
transformers
[ "transformers", "pytorch", "tf", "jax", "roberta", "fill-mask", "arxiv:2009.08366", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
## GraphCodeBERT model GraphCodeBERT is a graph-based pre-trained model based on the Transformer architecture for programming language, which also considers data-flow information along with code sequences. GraphCodeBERT consists of 12 layers, 768 dimensional hidden states, and 12 attention heads. The maximum sequence length for the model is 512. The model is trained on the CodeSearchNet dataset, which includes 2.3M functions with document pairs for six programming languages. More details can be found in the [paper](https://arxiv.org/abs/2009.08366) by Guo et. al. **Disclaimer:** The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face community members.
cuongnt/wav2vec2-base-timit-demo-google-colab
cuongnt
2022-09-26T16:39:26Z
105
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-26T16:07:16Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 4 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.0
ammarpl/t5-small-finetuned-xsum
ammarpl
2022-09-26T16:38:17Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-25T16:48:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.01 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | No log | 0.01 | 128 | 3.0141 | 18.0313 | 2.7105 | 14.1325 | 14.3393 | 18.8882 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
pjcordero04/distilbert-base-uncased-finetuned-cola
pjcordero04
2022-09-26T16:32:49Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-26T14:35:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5442538936990396 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8348 - Matthews Correlation: 0.5443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5236 | 1.0 | 535 | 0.5495 | 0.4205 | | 0.3505 | 2.0 | 1070 | 0.5176 | 0.4977 | | 0.2401 | 3.0 | 1605 | 0.5498 | 0.5354 | | 0.1751 | 4.0 | 2140 | 0.7975 | 0.5270 | | 0.1229 | 5.0 | 2675 | 0.8348 | 0.5443 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
shoang/wav2vec2-base-timit-demo-google-colab
shoang
2022-09-26T16:25:55Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-26T14:27:33Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5218 - Wer: 0.3434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5634 | 1.0 | 500 | 2.0727 | 1.0096 | | 0.9357 | 2.01 | 1000 | 0.6623 | 0.5634 | | 0.4536 | 3.01 | 1500 | 1.4421 | 0.4829 | | 0.3044 | 4.02 | 2000 | 0.4361 | 0.4363 | | 0.2369 | 5.02 | 2500 | 0.5098 | 0.4495 | | 0.1994 | 6.02 | 3000 | 0.4741 | 0.3711 | | 0.1699 | 7.03 | 3500 | 0.4652 | 0.3898 | | 0.1499 | 8.03 | 4000 | 0.4151 | 0.3949 | | 0.1308 | 9.04 | 4500 | 0.4685 | 0.3838 | | 0.1234 | 10.04 | 5000 | 0.5076 | 0.3794 | | 0.1055 | 11.04 | 5500 | 0.4492 | 0.3790 | | 0.0953 | 12.05 | 6000 | 0.4726 | 0.3679 | | 0.0863 | 13.05 | 6500 | 0.4797 | 0.3717 | | 0.0816 | 14.06 | 7000 | 0.4725 | 0.3655 | | 0.0842 | 15.06 | 7500 | 0.5181 | 0.3405 | | 0.0661 | 16.06 | 8000 | 0.5315 | 0.3510 | | 0.0593 | 17.07 | 8500 | 0.5024 | 0.3668 | | 0.0624 | 18.07 | 9000 | 0.5374 | 0.3663 | | 0.0535 | 19.08 | 9500 | 0.4861 | 0.3517 | | 0.0524 | 20.08 | 10000 | 0.4812 | 0.3574 | | 0.0461 | 21.08 | 10500 | 0.4976 | 0.3431 | | 0.0363 | 22.09 | 11000 | 0.5062 | 0.3476 | | 0.0351 | 23.09 | 11500 | 0.5094 | 0.3479 | | 0.0327 | 24.1 | 12000 | 0.5291 | 0.3455 | | 0.0319 | 25.1 | 12500 | 0.5209 | 0.3460 | | 0.0268 | 26.1 | 13000 | 0.5173 | 0.3481 | | 0.0263 | 27.11 | 13500 | 0.5362 | 0.3486 | | 0.0234 | 28.11 | 14000 | 0.5333 | 0.3444 | | 0.0237 | 29.12 | 14500 | 0.5218 | 0.3434 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.0
jamieai/t5-small-finetuned-xsum
jamieai
2022-09-26T16:04:00Z
109
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-26T15:56:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
tner/deberta-v3-large-bc5cdr
tner
2022-09-26T15:27:41Z
114
0
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "dataset:tner/bc5cdr", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-09T23:31:56Z
--- datasets: - tner/bc5cdr metrics: - f1 - precision - recall model-index: - name: tner/deberta-v3-large-bc5cdr results: - task: name: Token Classification type: token-classification dataset: name: tner/bc5cdr type: tner/bc5cdr args: tner/bc5cdr metrics: - name: F1 type: f1 value: 0.8902493653874869 - name: Precision type: precision value: 0.8697724178175452 - name: Recall type: recall value: 0.9117137322866755 - name: F1 (macro) type: f1_macro value: 0.8863403908610603 - name: Precision (macro) type: precision_macro value: 0.8657302393432342 - name: Recall (macro) type: recall_macro value: 0.9080747413030301 - name: F1 (entity span) type: f1_entity_span value: 0.8929371360310587 - name: Precision (entity span) type: precision_entity_span value: 0.8723983660766388 - name: Recall (entity span) type: recall_entity_span value: 0.9144663064532572 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/deberta-v3-large-bc5cdr This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the [tner/bc5cdr](https://huggingface.co/datasets/tner/bc5cdr) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.8902493653874869 - Precision (micro): 0.8697724178175452 - Recall (micro): 0.9117137322866755 - F1 (macro): 0.8863403908610603 - Precision (macro): 0.8657302393432342 - Recall (macro): 0.9080747413030301 The per-entity breakdown of the F1 score on the test set are below: - chemical: 0.9298502009499452 - disease: 0.8428305807721753 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.885162383660078, 0.8951239957151518] - 95%: [0.8838793313408008, 0.8959517574197015] - F1 (macro): - 90%: [0.885162383660078, 0.8951239957151518] - 95%: [0.8838793313408008, 0.8959517574197015] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/deberta-v3-large-bc5cdr/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/deberta-v3-large-bc5cdr/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/deberta-v3-large-bc5cdr") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/bc5cdr'] - dataset_split: train - dataset_name: None - local_dataset: None - model: microsoft/deberta-v3-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 16 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 4 - weight_decay: 1e-07 - lr_warmup_step_ratio: 0.1 - max_grad_norm: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/deberta-v3-large-bc5cdr/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/deberta-v3-large-bionlp2004
tner
2022-09-26T15:11:33Z
114
0
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "dataset:tner/bionlp2004", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-12T23:58:35Z
--- datasets: - tner/bionlp2004 metrics: - f1 - precision - recall model-index: - name: tner/deberta-v3-large-bionlp2004 results: - task: name: Token Classification type: token-classification dataset: name: tner/bionlp2004 type: tner/bionlp2004 args: tner/bionlp2004 metrics: - name: F1 type: f1 value: 0.758624442267929 - name: Precision type: precision value: 0.7174763277068753 - name: Recall type: recall value: 0.8047794966520434 - name: F1 (macro) type: f1_macro value: 0.7195387988303987 - name: Precision (macro) type: precision_macro value: 0.681309505763584 - name: Recall (macro) type: recall_macro value: 0.7691804743892025 - name: F1 (entity span) type: f1_entity_span value: 0.796539152201121 - name: Precision (entity span) type: precision_entity_span value: 0.7533710756562018 - name: Recall (entity span) type: recall_entity_span value: 0.8449549757561764 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/deberta-v3-large-bionlp2004 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the [tner/bionlp2004](https://huggingface.co/datasets/tner/bionlp2004) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.758624442267929 - Precision (micro): 0.7174763277068753 - Recall (micro): 0.8047794966520434 - F1 (macro): 0.7195387988303987 - Precision (macro): 0.681309505763584 - Recall (macro): 0.7691804743892025 The per-entity breakdown of the F1 score on the test set are below: - cell_line: 0.6465517241379309 - cell_type: 0.7562483203439935 - dna: 0.7449506810709253 - protein: 0.7757859652283577 - rna: 0.6741573033707865 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.7508836679942893, 0.7667327003308145] - 95%: [0.7498144548458301, 0.7680807868080707] - F1 (macro): - 90%: [0.7508836679942893, 0.7667327003308145] - 95%: [0.7498144548458301, 0.7680807868080707] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/deberta-v3-large-bionlp2004/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/deberta-v3-large-bionlp2004/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/deberta-v3-large-bionlp2004") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/bionlp2004'] - dataset_split: train - dataset_name: None - local_dataset: None - model: microsoft/deberta-v3-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 16 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 8 - weight_decay: 1e-07 - lr_warmup_step_ratio: 0.1 - max_grad_norm: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/deberta-v3-large-bionlp2004/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/deberta-v3-large-wnut2017
tner
2022-09-26T15:10:46Z
30
0
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "dataset:tner/wnut2017", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-09T23:14:32Z
--- datasets: - tner/wnut2017 metrics: - f1 - precision - recall model-index: - name: tner/deberta-v3-large-wnut2017 results: - task: name: Token Classification type: token-classification dataset: name: tner/wnut2017 type: tner/wnut2017 args: tner/wnut2017 metrics: - name: F1 type: f1 value: 0.5047353760445682 - name: Precision type: precision value: 0.63268156424581 - name: Recall type: recall value: 0.4198331788693234 - name: F1 (macro) type: f1_macro value: 0.4165125500830091 - name: Precision (macro) type: precision_macro value: 0.5356144444686111 - name: Recall (macro) type: recall_macro value: 0.3573954549633822 - name: F1 (entity span) type: f1_entity_span value: 0.6249999999999999 - name: Precision (entity span) type: precision_entity_span value: 0.7962697274031564 - name: Recall (entity span) type: recall_entity_span value: 0.5143651529193698 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/deberta-v3-large-wnut2017 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the [tner/wnut2017](https://huggingface.co/datasets/tner/wnut2017) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.5047353760445682 - Precision (micro): 0.63268156424581 - Recall (micro): 0.4198331788693234 - F1 (macro): 0.4165125500830091 - Precision (macro): 0.5356144444686111 - Recall (macro): 0.3573954549633822 The per-entity breakdown of the F1 score on the test set are below: - corporation: 0.25477707006369427 - group: 0.34309623430962344 - location: 0.6187050359712232 - person: 0.6721763085399448 - product: 0.18579234972677597 - work_of_art: 0.42452830188679247 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.4752384997212858, 0.5329114690850492] - 95%: [0.46929053844001617, 0.537282841423422] - F1 (macro): - 90%: [0.4752384997212858, 0.5329114690850492] - 95%: [0.46929053844001617, 0.537282841423422] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/deberta-v3-large-wnut2017/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/deberta-v3-large-wnut2017/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/deberta-v3-large-wnut2017") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/wnut2017'] - dataset_split: train - dataset_name: None - local_dataset: None - model: microsoft/deberta-v3-large - crf: False - max_length: 128 - epoch: 15 - batch_size: 16 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 4 - weight_decay: 1e-07 - lr_warmup_step_ratio: 0.1 - max_grad_norm: 10.0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/deberta-v3-large-wnut2017/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/deberta-v3-large-mit-restaurant
tner
2022-09-26T15:04:38Z
15
2
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "dataset:tner/mit_restaurant", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-12T10:41:07Z
--- datasets: - tner/mit_restaurant metrics: - f1 - precision - recall model-index: - name: tner/deberta-v3-large-mit-restaurant results: - task: name: Token Classification type: token-classification dataset: name: tner/mit_restaurant type: tner/mit_restaurant args: tner/mit_restaurant metrics: - name: F1 type: f1 value: 0.8158890290037831 - name: Precision type: precision value: 0.8105230191042906 - name: Recall type: recall value: 0.8213265629958744 - name: F1 (macro) type: f1_macro value: 0.8072607717138172 - name: Precision (macro) type: precision_macro value: 0.7973293573334044 - name: Recall (macro) type: recall_macro value: 0.8183493118743246 - name: F1 (entity span) type: f1_entity_span value: 0.8515132408575031 - name: Precision (entity span) type: precision_entity_span value: 0.8459129345443157 - name: Recall (entity span) type: recall_entity_span value: 0.8571881942240559 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/deberta-v3-large-mit-restaurant This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the [tner/mit_restaurant](https://huggingface.co/datasets/tner/mit_restaurant) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.8158890290037831 - Precision (micro): 0.8105230191042906 - Recall (micro): 0.8213265629958744 - F1 (macro): 0.8072607717138172 - Precision (macro): 0.7973293573334044 - Recall (macro): 0.8183493118743246 The per-entity breakdown of the F1 score on the test set are below: - amenity: 0.7226415094339623 - cuisine: 0.8288119738072967 - dish: 0.8283828382838284 - location: 0.8662969808995686 - money: 0.84 - rating: 0.7990430622009569 - restaurant: 0.8724489795918368 - time: 0.7004608294930875 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.8036180555961564, 0.8281173227233776] - 95%: [0.8011397826491581, 0.8307029010155984] - F1 (macro): - 90%: [0.8036180555961564, 0.8281173227233776] - 95%: [0.8011397826491581, 0.8307029010155984] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/deberta-v3-large-mit-restaurant/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/deberta-v3-large-mit-restaurant/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/deberta-v3-large-mit-restaurant") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/mit_restaurant'] - dataset_split: train - dataset_name: None - local_dataset: None - model: microsoft/deberta-v3-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 16 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 4 - weight_decay: 1e-07 - lr_warmup_step_ratio: 0.1 - max_grad_norm: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/deberta-v3-large-mit-restaurant/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/deberta-v3-large-tweebank-ner
tner
2022-09-26T14:39:17Z
13
0
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "dataset:tner/tweebank_ner", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-10T10:07:10Z
--- datasets: - tner/tweebank_ner metrics: - f1 - precision - recall model-index: - name: tner/deberta-v3-large-tweebank-ner results: - task: name: Token Classification type: token-classification dataset: name: tner/tweebank_ner type: tner/tweebank_ner args: tner/tweebank_ner metrics: - name: F1 type: f1 value: 0.7253474520185308 - name: Precision type: precision value: 0.7201051248357424 - name: Recall type: recall value: 0.7306666666666667 - name: F1 (macro) type: f1_macro value: 0.701874697798745 - name: Precision (macro) type: precision_macro value: 0.7043005470796733 - name: Recall (macro) type: recall_macro value: 0.706915721861374 - name: F1 (entity span) type: f1_entity_span value: 0.8178343949044585 - name: Precision (entity span) type: precision_entity_span value: 0.7829268292682927 - name: Recall (entity span) type: recall_entity_span value: 0.856 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/deberta-v3-large-tweebank-ner This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the [tner/tweebank_ner](https://huggingface.co/datasets/tner/tweebank_ner) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.7253474520185308 - Precision (micro): 0.7201051248357424 - Recall (micro): 0.7306666666666667 - F1 (macro): 0.701874697798745 - Precision (macro): 0.7043005470796733 - Recall (macro): 0.706915721861374 The per-entity breakdown of the F1 score on the test set are below: - location: 0.7289719626168224 - organization: 0.7040816326530612 - other: 0.5182926829268293 - person: 0.856152512998267 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.6978100031831928, 0.7529703029130037] - 95%: [0.691700704571692, 0.7582901338971108] - F1 (macro): - 90%: [0.6978100031831928, 0.7529703029130037] - 95%: [0.691700704571692, 0.7582901338971108] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/deberta-v3-large-tweebank-ner/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/deberta-v3-large-tweebank-ner/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/deberta-v3-large-tweebank-ner") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/tweebank_ner'] - dataset_split: train - dataset_name: None - local_dataset: None - model: microsoft/deberta-v3-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 16 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 4 - weight_decay: 1e-07 - lr_warmup_step_ratio: 0.1 - max_grad_norm: 10.0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/deberta-v3-large-tweebank-ner/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/deberta-v3-large-fin
tner
2022-09-26T14:28:32Z
8
2
transformers
[ "transformers", "pytorch", "deberta-v2", "token-classification", "dataset:tner/fin", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-12T22:13:20Z
--- datasets: - tner/fin metrics: - f1 - precision - recall model-index: - name: tner/deberta-v3-large-fin results: - task: name: Token Classification type: token-classification dataset: name: tner/fin type: tner/fin args: tner/fin metrics: - name: F1 type: f1 value: 0.7060755336617406 - name: Precision type: precision value: 0.738831615120275 - name: Recall type: recall value: 0.6761006289308176 - name: F1 (macro) type: f1_macro value: 0.45092058848834204 - name: Precision (macro) type: precision_macro value: 0.45426465258085835 - name: Recall (macro) type: recall_macro value: 0.45582773707773705 - name: F1 (entity span) type: f1_entity_span value: 0.7293729372937293 - name: Precision (entity span) type: precision_entity_span value: 0.7594501718213058 - name: Recall (entity span) type: recall_entity_span value: 0.7015873015873015 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/deberta-v3-large-fin This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the [tner/fin](https://huggingface.co/datasets/tner/fin) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.7060755336617406 - Precision (micro): 0.738831615120275 - Recall (micro): 0.6761006289308176 - F1 (macro): 0.45092058848834204 - Precision (macro): 0.45426465258085835 - Recall (macro): 0.45582773707773705 The per-entity breakdown of the F1 score on the test set are below: - location: 0.4000000000000001 - organization: 0.5762711864406779 - other: 0.0 - person: 0.8274111675126904 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.6370316240330781, 0.7718233002182738] - 95%: [0.6236274300363168, 0.7857205513784461] - F1 (macro): - 90%: [0.6370316240330781, 0.7718233002182738] - 95%: [0.6236274300363168, 0.7857205513784461] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/deberta-v3-large-fin/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/deberta-v3-large-fin/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/deberta-v3-large-fin") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/fin'] - dataset_split: train - dataset_name: None - local_dataset: None - model: microsoft/deberta-v3-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 16 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 4 - weight_decay: None - lr_warmup_step_ratio: 0.1 - max_grad_norm: 10.0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/deberta-v3-large-fin/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/roberta-large-ttc
tner
2022-09-26T14:25:57Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:tner/ttc", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-12T10:49:56Z
--- datasets: - tner/ttc metrics: - f1 - precision - recall model-index: - name: tner/roberta-large-ttc results: - task: name: Token Classification type: token-classification dataset: name: tner/ttc type: tner/ttc args: tner/ttc metrics: - name: F1 type: f1 value: 0.8314534321624235 - name: Precision type: precision value: 0.8269230769230769 - name: Recall type: recall value: 0.8360337005832793 - name: F1 (macro) type: f1_macro value: 0.8317396497007042 - name: Precision (macro) type: precision_macro value: 0.8296690551538254 - name: Recall (macro) type: recall_macro value: 0.8340850231639706 - name: F1 (entity span) type: f1_entity_span value: 0.8739929100870126 - name: Precision (entity span) type: precision_entity_span value: 0.8692307692307693 - name: Recall (entity span) type: recall_entity_span value: 0.8788075178224238 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/roberta-large-ttc This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [tner/ttc](https://huggingface.co/datasets/tner/ttc) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.8314534321624235 - Precision (micro): 0.8269230769230769 - Recall (micro): 0.8360337005832793 - F1 (macro): 0.8317396497007042 - Precision (macro): 0.8296690551538254 - Recall (macro): 0.8340850231639706 The per-entity breakdown of the F1 score on the test set are below: - location: 0.7817403708987161 - organization: 0.7737656595431097 - person: 0.939712918660287 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.8153670265512099, 0.8476331336073506] - 95%: [0.8126974643551524, 0.8505459585794019] - F1 (macro): - 90%: [0.8153670265512099, 0.8476331336073506] - 95%: [0.8126974643551524, 0.8505459585794019] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-ttc/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/roberta-large-ttc/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/roberta-large-ttc") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/ttc'] - dataset_split: train - dataset_name: None - local_dataset: None - model: roberta-large - crf: True - max_length: 128 - epoch: 16 - batch_size: 64 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 2 - weight_decay: None - lr_warmup_step_ratio: 0.1 - max_grad_norm: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-ttc/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/roberta-large-mit-restaurant
tner
2022-09-26T14:24:20Z
181
3
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:tner/mit_restaurant", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-12T00:20:40Z
--- datasets: - tner/mit_restaurant metrics: - f1 - precision - recall model-index: - name: tner/roberta-large-mit-restaurant results: - task: name: Token Classification type: token-classification dataset: name: tner/mit_restaurant type: tner/mit_restaurant args: tner/mit_restaurant metrics: - name: F1 type: f1 value: 0.8164676304211189 - name: Precision type: precision value: 0.8085901027077498 - name: Recall type: recall value: 0.8245001586797842 - name: F1 (macro) type: f1_macro value: 0.8081522050756316 - name: Precision (macro) type: precision_macro value: 0.7974927131040113 - name: Recall (macro) type: recall_macro value: 0.8199029986502094 - name: F1 (entity span) type: f1_entity_span value: 0.8557510999371464 - name: Precision (entity span) type: precision_entity_span value: 0.8474945533769063 - name: Recall (entity span) type: recall_entity_span value: 0.8641701047286575 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/roberta-large-mit-restaurant This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [tner/mit_restaurant](https://huggingface.co/datasets/tner/mit_restaurant) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.8164676304211189 - Precision (micro): 0.8085901027077498 - Recall (micro): 0.8245001586797842 - F1 (macro): 0.8081522050756316 - Precision (macro): 0.7974927131040113 - Recall (macro): 0.8199029986502094 The per-entity breakdown of the F1 score on the test set are below: - amenity: 0.7140221402214022 - cuisine: 0.8558052434456929 - dish: 0.829103214890017 - location: 0.8611793611793611 - money: 0.8579710144927537 - rating: 0.8 - restaurant: 0.8713375796178344 - time: 0.6757990867579908 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.8050039870241192, 0.8289531287254172] - 95%: [0.8030897272187587, 0.8312785732455824] - F1 (macro): - 90%: [0.8050039870241192, 0.8289531287254172] - 95%: [0.8030897272187587, 0.8312785732455824] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-mit-restaurant/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/roberta-large-mit-restaurant/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/roberta-large-mit-restaurant") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/mit_restaurant'] - dataset_split: train - dataset_name: None - local_dataset: None - model: roberta-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 64 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 1 - weight_decay: None - lr_warmup_step_ratio: 0.1 - max_grad_norm: 10.0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-mit-restaurant/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/roberta-large-btc
tner
2022-09-26T14:22:51Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:tner/btc", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-10T00:10:29Z
--- datasets: - tner/btc metrics: - f1 - precision - recall model-index: - name: tner/roberta-large-btc results: - task: name: Token Classification type: token-classification dataset: name: tner/btc type: tner/btc args: tner/btc metrics: - name: F1 type: f1 value: 0.8367557645979121 - name: Precision type: precision value: 0.8401290025339784 - name: Recall type: recall value: 0.8334095063985375 - name: F1 (macro) type: f1_macro value: 0.7830389304099722 - name: Precision (macro) type: precision_macro value: 0.7911560677795398 - name: Recall (macro) type: recall_macro value: 0.7756024849498971 - name: F1 (entity span) type: f1_entity_span value: 0.9113227027647126 - name: Precision (entity span) type: precision_entity_span value: 0.9149965445749827 - name: Recall (entity span) type: recall_entity_span value: 0.9076782449725777 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/roberta-large-btc This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [tner/btc](https://huggingface.co/datasets/tner/btc) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.8367557645979121 - Precision (micro): 0.8401290025339784 - Recall (micro): 0.8334095063985375 - F1 (macro): 0.7830389304099722 - Precision (macro): 0.7911560677795398 - Recall (macro): 0.7756024849498971 The per-entity breakdown of the F1 score on the test set are below: - location: 0.736756316218419 - organization: 0.6927985414767548 - person: 0.9195619335347431 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.8263755823738717, 0.8472678708881698] - 95%: [0.8238362631404713, 0.8498613485265176] - F1 (macro): - 90%: [0.8263755823738717, 0.8472678708881698] - 95%: [0.8238362631404713, 0.8498613485265176] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-btc/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/roberta-large-btc/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/roberta-large-btc") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/btc'] - dataset_split: train - dataset_name: None - local_dataset: None - model: roberta-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 64 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 2 - weight_decay: 1e-07 - lr_warmup_step_ratio: 0.1 - max_grad_norm: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-btc/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/roberta-large-tweebank-ner
tner
2022-09-26T14:21:19Z
11
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:tner/tweebank_ner", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-10T10:03:35Z
--- datasets: - tner/tweebank_ner metrics: - f1 - precision - recall model-index: - name: tner/roberta-large-tweebank-ner results: - task: name: Token Classification type: token-classification dataset: name: tner/tweebank_ner type: tner/tweebank_ner args: tner/tweebank_ner metrics: - name: F1 type: f1 value: 0.7439490445859872 - name: Precision type: precision value: 0.7121951219512195 - name: Recall type: recall value: 0.7786666666666666 - name: F1 (macro) type: f1_macro value: 0.7354319457314183 - name: Precision (macro) type: precision_macro value: 0.712928566565599 - name: Recall (macro) type: recall_macro value: 0.7620465365030582 - name: F1 (entity span) type: f1_entity_span value: 0.8178343949044585 - name: Precision (entity span) type: precision_entity_span value: 0.7829268292682927 - name: Recall (entity span) type: recall_entity_span value: 0.856 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/roberta-large-tweebank-ner This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [tner/tweebank_ner](https://huggingface.co/datasets/tner/tweebank_ner) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.7439490445859872 - Precision (micro): 0.7121951219512195 - Recall (micro): 0.7786666666666666 - F1 (macro): 0.7354319457314183 - Precision (macro): 0.712928566565599 - Recall (macro): 0.7620465365030582 The per-entity breakdown of the F1 score on the test set are below: - location: 0.7782805429864253 - organization: 0.7377049180327869 - other: 0.5520581113801453 - person: 0.8736842105263157 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.7156413818791614, 0.771698046498159] - 95%: [0.7063867669973017, 0.7763088810979543] - F1 (macro): - 90%: [0.7156413818791614, 0.771698046498159] - 95%: [0.7063867669973017, 0.7763088810979543] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-tweebank-ner/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/roberta-large-tweebank-ner/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/roberta-large-tweebank-ner") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/tweebank_ner'] - dataset_split: train - dataset_name: None - local_dataset: None - model: roberta-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 64 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 1 - weight_decay: None - lr_warmup_step_ratio: 0.1 - max_grad_norm: 10.0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-tweebank-ner/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/bertweet-large-wnut2017
tner
2022-09-26T14:18:26Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:tner/wnut2017", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-09T23:25:24Z
--- datasets: - tner/wnut2017 metrics: - f1 - precision - recall model-index: - name: tner/bertweet-large-wnut2017 results: - task: name: Token Classification type: token-classification dataset: name: tner/wnut2017 type: tner/wnut2017 args: tner/wnut2017 metrics: - name: F1 type: f1 value: 0.5302273987798114 - name: Precision type: precision value: 0.6602209944751382 - name: Recall type: recall value: 0.44300278035217794 - name: F1 (macro) type: f1_macro value: 0.4643459997680019 - name: Precision (macro) type: precision_macro value: 0.5792841925426832 - name: Recall (macro) type: recall_macro value: 0.3973128655628379 - name: F1 (entity span) type: f1_entity_span value: 0.6142697881828317 - name: Precision (entity span) type: precision_entity_span value: 0.7706293706293706 - name: Recall (entity span) type: recall_entity_span value: 0.5106580166821131 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/bertweet-large-wnut2017 This model is a fine-tuned version of [vinai/bertweet-large](https://huggingface.co/vinai/bertweet-large) on the [tner/wnut2017](https://huggingface.co/datasets/tner/wnut2017) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.5302273987798114 - Precision (micro): 0.6602209944751382 - Recall (micro): 0.44300278035217794 - F1 (macro): 0.4643459997680019 - Precision (macro): 0.5792841925426832 - Recall (macro): 0.3973128655628379 The per-entity breakdown of the F1 score on the test set are below: - corporation: 0.3902439024390244 - group: 0.37130801687763715 - location: 0.6595744680851063 - person: 0.65474552957359 - product: 0.2857142857142857 - work_of_art: 0.4244897959183674 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.5002577319587629, 0.5587481638299118] - 95%: [0.4947163587619384, 0.5629013150503995] - F1 (macro): - 90%: [0.5002577319587629, 0.5587481638299118] - 95%: [0.4947163587619384, 0.5629013150503995] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/bertweet-large-wnut2017/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/bertweet-large-wnut2017/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/bertweet-large-wnut2017") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/wnut2017'] - dataset_split: train - dataset_name: None - local_dataset: None - model: vinai/bertweet-large - crf: False - max_length: 128 - epoch: 15 - batch_size: 16 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 4 - weight_decay: 1e-07 - lr_warmup_step_ratio: 0.1 - max_grad_norm: 10.0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/bertweet-large-wnut2017/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/roberta-large-mit-movie-trivia
tner
2022-09-26T14:15:35Z
17
1
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:tner/mit_movie_trivia", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-12T10:37:29Z
--- datasets: - tner/mit_movie_trivia metrics: - f1 - precision - recall model-index: - name: tner/roberta-large-mit-movie-trivia results: - task: name: Token Classification type: token-classification dataset: name: tner/mit_movie_trivia type: tner/mit_movie_trivia args: tner/mit_movie_trivia metrics: - name: F1 type: f1 value: 0.7284025200655909 - name: Precision type: precision value: 0.7151330283002881 - name: Recall type: recall value: 0.7421737601125572 - name: F1 (macro) type: f1_macro value: 0.6502255723148889 - name: Precision (macro) type: precision_macro value: 0.6457158565124362 - name: Recall (macro) type: recall_macro value: 0.6578012664661943 - name: F1 (entity span) type: f1_entity_span value: 0.749525289142068 - name: Precision (entity span) type: precision_entity_span value: 0.7359322033898306 - name: Recall (entity span) type: recall_entity_span value: 0.7636299683432993 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/roberta-large-mit-movie-trivia This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [tner/mit_movie_trivia](https://huggingface.co/datasets/tner/mit_movie_trivia) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.7284025200655909 - Precision (micro): 0.7151330283002881 - Recall (micro): 0.7421737601125572 - F1 (macro): 0.6502255723148889 - Precision (macro): 0.6457158565124362 - Recall (macro): 0.6578012664661943 The per-entity breakdown of the F1 score on the test set are below: - actor: 0.9557453416149068 - award: 0.41726618705035967 - character_name: 0.7467105263157895 - date: 0.9668674698795181 - director: 0.9148936170212766 - genre: 0.7277079593058049 - opinion: 0.43478260869565216 - origin: 0.28846153846153844 - plot: 0.5132575757575758 - quote: 0.8387096774193549 - relationship: 0.5697329376854599 - soundtrack: 0.42857142857142855 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.718570586211627, 0.7387631655667131] - 95%: [0.7170135350354089, 0.7412372838115527] - F1 (macro): - 90%: [0.718570586211627, 0.7387631655667131] - 95%: [0.7170135350354089, 0.7412372838115527] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-mit-movie-trivia/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/roberta-large-mit-movie-trivia/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/roberta-large-mit-movie-trivia") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/mit_movie_trivia'] - dataset_split: train - dataset_name: None - local_dataset: None - model: roberta-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 64 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 1 - weight_decay: 1e-07 - lr_warmup_step_ratio: 0.1 - max_grad_norm: 10.0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-mit-movie-trivia/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/roberta-large-bc5cdr
tner
2022-09-26T14:13:58Z
12
2
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:tner/bc5cdr", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-09T23:32:35Z
--- datasets: - tner/bc5cdr metrics: - f1 - precision - recall model-index: - name: tner/roberta-large-bc5cdr results: - task: name: Token Classification type: token-classification dataset: name: tner/bc5cdr type: tner/bc5cdr args: tner/bc5cdr metrics: - name: F1 type: f1 value: 0.8840696387239609 - name: Precision type: precision value: 0.8728266269249876 - name: Recall type: recall value: 0.8956060760526048 - name: F1 (macro) type: f1_macro value: 0.8797360472482783 - name: Precision (macro) type: precision_macro value: 0.8684274142690976 - name: Recall (macro) type: recall_macro value: 0.8913672531528037 - name: F1 (entity span) type: f1_entity_span value: 0.886283586595552 - name: Precision (entity span) type: precision_entity_span value: 0.8750124192747144 - name: Recall (entity span) type: recall_entity_span value: 0.8978489142624121 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/roberta-large-bc5cdr This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [tner/bc5cdr](https://huggingface.co/datasets/tner/bc5cdr) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.8840696387239609 - Precision (micro): 0.8728266269249876 - Recall (micro): 0.8956060760526048 - F1 (macro): 0.8797360472482783 - Precision (macro): 0.8684274142690976 - Recall (macro): 0.8913672531528037 The per-entity breakdown of the F1 score on the test set are below: - chemical: 0.9256943167187788 - disease: 0.8337777777777777 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.878869501707946, 0.8890795634554179] - 95%: [0.8776790106527211, 0.8897422640465147] - F1 (macro): - 90%: [0.878869501707946, 0.8890795634554179] - 95%: [0.8776790106527211, 0.8897422640465147] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-bc5cdr/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/roberta-large-bc5cdr/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/roberta-large-bc5cdr") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/bc5cdr'] - dataset_split: train - dataset_name: None - local_dataset: None - model: roberta-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 64 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 1 - weight_decay: None - lr_warmup_step_ratio: 0.1 - max_grad_norm: 10.0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-bc5cdr/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
tner/roberta-large-ontonotes5
tner
2022-09-26T14:12:05Z
30,400
16
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "dataset:tner/ontonotes5", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-12T10:33:41Z
--- datasets: - tner/ontonotes5 metrics: - f1 - precision - recall model-index: - name: tner/roberta-large-ontonotes5 results: - task: name: Token Classification type: token-classification dataset: name: tner/ontonotes5 type: tner/ontonotes5 args: tner/ontonotes5 metrics: - name: F1 type: f1 value: 0.908632361399938 - name: Precision type: precision value: 0.905148095909732 - name: Recall type: recall value: 0.9121435551212579 - name: F1 (macro) type: f1_macro value: 0.8265477704565624 - name: Precision (macro) type: precision_macro value: 0.8170668848546687 - name: Recall (macro) type: recall_macro value: 0.8387672780349001 - name: F1 (entity span) type: f1_entity_span value: 0.9284544931640193 - name: Precision (entity span) type: precision_entity_span value: 0.9248942172073342 - name: Recall (entity span) type: recall_entity_span value: 0.9320422848005685 pipeline_tag: token-classification widget: - text: "Jacob Collier is a Grammy awarded artist from England." example_title: "NER Example 1" --- # tner/roberta-large-ontonotes5 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the [tner/ontonotes5](https://huggingface.co/datasets/tner/ontonotes5) dataset. Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository for more detail). It achieves the following results on the test set: - F1 (micro): 0.908632361399938 - Precision (micro): 0.905148095909732 - Recall (micro): 0.9121435551212579 - F1 (macro): 0.8265477704565624 - Precision (macro): 0.8170668848546687 - Recall (macro): 0.8387672780349001 The per-entity breakdown of the F1 score on the test set are below: - cardinal_number: 0.8605277329025309 - date: 0.872996300863132 - event: 0.7424242424242424 - facility: 0.7732342007434945 - geopolitical_area: 0.9687148323205043 - group: 0.9470588235294117 - language: 0.7499999999999999 - law: 0.6666666666666666 - location: 0.7593582887700535 - money: 0.901098901098901 - ordinal_number: 0.85785536159601 - organization: 0.9227360841872057 - percent: 0.9171428571428571 - person: 0.9556004036326943 - product: 0.7857142857142858 - quantity: 0.7945205479452055 - time: 0.6870588235294116 - work_of_art: 0.7151515151515151 For F1 scores, the confidence interval is obtained by bootstrap as below: - F1 (micro): - 90%: [0.9039454247544766, 0.9128956119702822] - 95%: [0.9030263216115454, 0.9138350859566045] - F1 (macro): - 90%: [0.9039454247544766, 0.9128956119702822] - 95%: [0.9030263216115454, 0.9138350859566045] Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/roberta-large-ontonotes5/raw/main/eval/metric.json) and [metric file of entity span](https://huggingface.co/tner/roberta-large-ontonotes5/raw/main/eval/metric_span.json). ### Usage This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip ```shell pip install tner ``` and activate model as below. ```python from tner import TransformersNER model = TransformersNER("tner/roberta-large-ontonotes5") model.predict(["Jacob Collier is a Grammy awarded English artist from London"]) ``` It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment. ### Training hyperparameters The following hyperparameters were used during training: - dataset: ['tner/ontonotes5'] - dataset_split: train - dataset_name: None - local_dataset: None - model: roberta-large - crf: True - max_length: 128 - epoch: 15 - batch_size: 64 - lr: 1e-05 - random_seed: 42 - gradient_accumulation_steps: 1 - weight_decay: None - lr_warmup_step_ratio: 0.1 - max_grad_norm: 10.0 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/roberta-large-ontonotes5/raw/main/trainer_config.json). ### Reference If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-camacho-collados-2021-ner, title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition", author = "Ushio, Asahi and Camacho-Collados, Jose", booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations", month = apr, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.eacl-demos.7", doi = "10.18653/v1/2021.eacl-demos.7", pages = "53--62", abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.", } ```
nvidia/groupvit-gcc-yfcc
nvidia
2022-09-26T13:54:38Z
2,514
6
transformers
[ "transformers", "pytorch", "tf", "groupvit", "feature-extraction", "vision", "arxiv:2202.11094", "endpoints_compatible", "region:us" ]
feature-extraction
2022-06-21T08:48:32Z
--- tags: - vision --- # Model Card: GroupViT This checkpoint is uploaded by Jiarui Xu. ## Model Details The GroupViT model was proposed in [GroupViT: Semantic Segmentation Emerges from Text Supervision](https://arxiv.org/abs/2202.11094) by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang. Inspired by [CLIP](clip), GroupViT is a vision-language model that can perform zero-shot semantic segmentation on any given vocabulary categories. ### Model Date June 2022 ### Abstract Grouping and recognition are important components of visual scene understanding, e.g., for object detection and semantic segmentation. With end-to-end deep learning systems, grouping of image regions usually happens implicitly via top-down supervision from pixel-level recognition labels. Instead, in this paper, we propose to bring back the grouping mechanism into deep networks, which allows semantic segments to emerge automatically with only text supervision. We propose a hierarchical Grouping Vision Transformer (GroupViT), which goes beyond the regular grid structure representation and learns to group image regions into progressively larger arbitrary-shaped segments. We train GroupViT jointly with a text encoder on a large-scale image-text dataset via contrastive losses. With only text supervision and without any pixel-level annotations, GroupViT learns to group together semantic regions and successfully transfers to the task of semantic segmentation in a zero-shot manner, i.e., without any further fine-tuning. It achieves a zero-shot accuracy of 52.3% mIoU on the PASCAL VOC 2012 and 22.4% mIoU on PASCAL Context datasets, and performs competitively to state-of-the-art transfer-learning methods requiring greater levels of supervision. ### Documents - [GroupViT Paper](https://arxiv.org/abs/2202.11094) ### Use with Transformers ```python from PIL import Image import requests from transformers import AutoProcessor, GroupViTModel model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc") processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ``` ## Data The model was trained on publicly available image-caption data. This was done through a combination of crawling a handful of websites and using commonly-used pre-existing image datasets such as [YFCC100M](http://projects.dfki.uni-kl.de/yfcc100m/). A large portion of the data comes from our crawling of the internet. This means that the data is more representative of people and societies most connected to the internet which tend to skew towards more developed nations, and younger, male users. For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/groupvit.html#). ### BibTeX entry and citation info ```bibtex @article{xu2022groupvit, author = {Xu, Jiarui and De Mello, Shalini and Liu, Sifei and Byeon, Wonmin and Breuel, Thomas and Kautz, Jan and Wang, Xiaolong}, title = {GroupViT: Semantic Segmentation Emerges from Text Supervision}, journal = {arXiv preprint arXiv:2202.11094}, year = {2022}, } ```
DravenTay/finetuning-sentiment-model-3000-samples
DravenTay
2022-09-26T13:14:28Z
4
0
transformers
[ "transformers", "pytorch", "opt", "text-classification", "generated_from_trainer", "dataset:imdb", "license:other", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2022-09-25T15:42:11Z
--- license: other tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.92 - name: F1 type: f1 value: 0.9205298013245033 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [Tianyi98/opt-350m-finetuned-cola](https://huggingface.co/Tianyi98/opt-350m-finetuned-cola) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.4133 - Accuracy: 0.92 - F1: 0.9205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.10.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
wangwangw/123
wangwangw
2022-09-26T12:26:00Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-09-26T12:21:49Z
--- title: Anime Remove Background emoji: 🪄🖼️ colorFrom: indigo colorTo: pink sdk: gradio sdk_version: 3.1.4 app_file: app.py pinned: false license: apache-2.0 --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
rolandwu/ddpm-butterflies-128
rolandwu
2022-09-26T11:48:16Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-26T08:45:10Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/rolandwu/ddpm-butterflies-128/tensorboard?#scalars)
anaasanin/layoutlmv3-finetuned-wildreceipt
anaasanin
2022-09-26T11:06:35Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:wildreceipt", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-26T09:13:35Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - wildreceipt metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-wildreceipt results: - task: name: Token Classification type: token-classification dataset: name: wildreceipt type: wildreceipt config: WildReceipt split: train args: WildReceipt metrics: - name: Precision type: precision value: 0.874880087707277 - name: Recall type: recall value: 0.878491812302188 - name: F1 type: f1 value: 0.8766822301565504 - name: Accuracy type: accuracy value: 0.9253043764396183 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-wildreceipt This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the wildreceipt dataset. It achieves the following results on the evaluation set: - Loss: 0.3111 - Precision: 0.8749 - Recall: 0.8785 - F1: 0.8767 - Accuracy: 0.9253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.32 | 100 | 1.3060 | 0.6792 | 0.3615 | 0.4718 | 0.6966 | | No log | 0.63 | 200 | 0.8842 | 0.6524 | 0.5193 | 0.5783 | 0.7737 | | No log | 0.95 | 300 | 0.6795 | 0.7338 | 0.6772 | 0.7044 | 0.8336 | | No log | 1.26 | 400 | 0.5604 | 0.7719 | 0.7390 | 0.7551 | 0.8629 | | 1.0319 | 1.58 | 500 | 0.4862 | 0.7819 | 0.7618 | 0.7717 | 0.8730 | | 1.0319 | 1.89 | 600 | 0.4365 | 0.7852 | 0.7807 | 0.7829 | 0.8795 | | 1.0319 | 2.21 | 700 | 0.4182 | 0.8162 | 0.8016 | 0.8088 | 0.8897 | | 1.0319 | 2.52 | 800 | 0.3886 | 0.8126 | 0.8196 | 0.8161 | 0.8936 | | 1.0319 | 2.84 | 900 | 0.3637 | 0.8260 | 0.8347 | 0.8303 | 0.9004 | | 0.4162 | 3.15 | 1000 | 0.3482 | 0.8532 | 0.8243 | 0.8385 | 0.9062 | | 0.4162 | 3.47 | 1100 | 0.3474 | 0.8573 | 0.8248 | 0.8407 | 0.9042 | | 0.4162 | 3.79 | 1200 | 0.3325 | 0.8408 | 0.8435 | 0.8421 | 0.9086 | | 0.4162 | 4.1 | 1300 | 0.3262 | 0.8468 | 0.8467 | 0.8468 | 0.9095 | | 0.4162 | 4.42 | 1400 | 0.3237 | 0.8511 | 0.8442 | 0.8477 | 0.9100 | | 0.2764 | 4.73 | 1500 | 0.3156 | 0.8563 | 0.8456 | 0.8509 | 0.9122 | | 0.2764 | 5.05 | 1600 | 0.3032 | 0.8558 | 0.8566 | 0.8562 | 0.9153 | | 0.2764 | 5.36 | 1700 | 0.3120 | 0.8604 | 0.8457 | 0.8530 | 0.9142 | | 0.2764 | 5.68 | 1800 | 0.2976 | 0.8608 | 0.8592 | 0.8600 | 0.9178 | | 0.2764 | 5.99 | 1900 | 0.3056 | 0.8551 | 0.8676 | 0.8613 | 0.9171 | | 0.212 | 6.31 | 2000 | 0.3191 | 0.8528 | 0.8599 | 0.8563 | 0.9147 | | 0.212 | 6.62 | 2100 | 0.3051 | 0.8653 | 0.8635 | 0.8644 | 0.9186 | | 0.212 | 6.94 | 2200 | 0.3022 | 0.8681 | 0.8632 | 0.8657 | 0.9208 | | 0.212 | 7.26 | 2300 | 0.3101 | 0.8605 | 0.8643 | 0.8624 | 0.9178 | | 0.212 | 7.57 | 2400 | 0.3100 | 0.8553 | 0.8693 | 0.8622 | 0.9163 | | 0.1725 | 7.89 | 2500 | 0.3012 | 0.8685 | 0.8723 | 0.8704 | 0.9221 | | 0.1725 | 8.2 | 2600 | 0.3135 | 0.8627 | 0.8756 | 0.8691 | 0.9187 | | 0.1725 | 8.52 | 2700 | 0.3115 | 0.8768 | 0.8671 | 0.8719 | 0.9229 | | 0.1725 | 8.83 | 2800 | 0.3044 | 0.8757 | 0.8708 | 0.8732 | 0.9231 | | 0.1725 | 9.15 | 2900 | 0.3042 | 0.8698 | 0.8658 | 0.8678 | 0.9212 | | 0.142 | 9.46 | 3000 | 0.3095 | 0.8677 | 0.8702 | 0.8690 | 0.9207 | | 0.142 | 9.78 | 3100 | 0.3119 | 0.8686 | 0.8762 | 0.8724 | 0.9229 | | 0.142 | 10.09 | 3200 | 0.3078 | 0.8713 | 0.8774 | 0.8743 | 0.9238 | | 0.142 | 10.41 | 3300 | 0.3123 | 0.8711 | 0.8753 | 0.8732 | 0.9238 | | 0.142 | 10.73 | 3400 | 0.3098 | 0.8688 | 0.8774 | 0.8731 | 0.9232 | | 0.1238 | 11.04 | 3500 | 0.3120 | 0.8737 | 0.8770 | 0.8754 | 0.9247 | | 0.1238 | 11.36 | 3600 | 0.3124 | 0.8760 | 0.8768 | 0.8764 | 0.9251 | | 0.1238 | 11.67 | 3700 | 0.3101 | 0.8770 | 0.8759 | 0.8764 | 0.9254 | | 0.1238 | 11.99 | 3800 | 0.3103 | 0.8767 | 0.8774 | 0.8770 | 0.9255 | | 0.1238 | 12.3 | 3900 | 0.3122 | 0.8740 | 0.8788 | 0.8764 | 0.9251 | | 0.1096 | 12.62 | 4000 | 0.3111 | 0.8749 | 0.8785 | 0.8767 | 0.9253 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.13.0
fxmarty/distilbert-base-uncased-finetuned-sst-2-english-int8-static-dedicated-qdq-everywhere
fxmarty
2022-09-26T10:52:18Z
3
0
transformers
[ "transformers", "onnx", "distilbert", "text-classification", "dataset:sst2", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-26T10:27:48Z
--- license: apache-2.0 datasets: - sst2 - glue --- This model is a fork of https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english , quantized using static Post-Training Quantization (PTQ) with ONNX Runtime and 🤗 Optimum library. It achieves 0.896 accuracy on the validation set. This model uses the ONNX Runtime static quantization configurations `qdq_add_pair_to_weight=True` and `qdq_dedicated_pair=True`, so that **weights are stored in fp32**, and full Quantize + Dequantize nodes are inserted for the weights, compared to the default where weights are stored in int8 and only a Dequantize node is inserted for weights. Moreover, here QDQ pairs have a single output. For more reference, see the documentation: https://github.com/microsoft/onnxruntime/blob/ade0d291749144e1962884a9cfa736d4e1e80ff8/onnxruntime/python/tools/quantization/quantize.py#L432-L441 This is useful to later load a static quantized model in TensorRT. To load this model: ```python from optimum.onnxruntime import ORTModelForSequenceClassification model = ORTModelForSequenceClassification.from_pretrained("fxmarty/distilbert-base-uncased-finetuned-sst-2-english-int8-static-dedicated-qdq-everywhere") ``` ### Weights stored as int8, only DequantizeLinear nodes (model here: https://huggingface.co/fxmarty/distilbert-base-uncased-finetuned-sst-2-english-int8-static) ![DQ only](no_qdq.png) ### Weights stored as fp32, only QuantizeLinear + DequantizeLinear nodes (this model) ![QDQ](qdq.png)
fxmarty/distilbert-base-uncased-finetuned-sst-2-english-int8-static
fxmarty
2022-09-26T09:00:58Z
5
0
transformers
[ "transformers", "onnx", "distilbert", "text-classification", "dataset:sst2", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-26T08:51:58Z
--- license: apache-2.0 datasets: - sst2 - glue --- This model is a fork of https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english , quantized using static Post-Training Quantization (PTQ) with ONNX Runtime and 🤗 Optimum library. It achieves 0.894 accuracy on the validation set. To load this model: ```python from optimum.onnxruntime import ORTModelForSequenceClassification model = ORTModelForSequenceClassification.from_pretrained("fxmarty/distilbert-base-uncased-finetuned-sst-2-english-int8-static") ```
microsoft/deberta-large
microsoft
2022-09-26T08:50:58Z
64,445
14
transformers
[ "transformers", "pytorch", "tf", "deberta", "deberta-v1", "fill-mask", "en", "arxiv:2006.03654", "license:mit", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - deberta-v1 - fill-mask thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. #### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp** ```bash cd transformers/examples/text-classification/ export TASK_NAME=mrpc python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
microsoft/deberta-base
microsoft
2022-09-26T08:50:43Z
6,398,087
76
transformers
[ "transformers", "pytorch", "tf", "rust", "deberta", "deberta-v1", "fill-mask", "en", "arxiv:2006.03654", "license:mit", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - deberta-v1 - fill-mask thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. #### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and MNLI tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m | |-------------------|-----------|-----------|--------| | RoBERTa-base | 91.5/84.6 | 83.7/80.5 | 87.6 | | XLNet-Large | -/- | -/80.2 | 86.8 | | **DeBERTa-base** | 93.1/87.2 | 86.2/83.1 | 88.8 | ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
duchung17/wav2vec2-base-timit-demo-google-colab
duchung17
2022-09-26T08:41:07Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-02T09:42:21Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4049 - Wer: 0.3556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.7319 | 1.0 | 500 | 1.3558 | 0.8890 | | 0.7826 | 2.01 | 1000 | 0.5655 | 0.5398 | | 0.4157 | 3.01 | 1500 | 0.4692 | 0.4682 | | 0.2722 | 4.02 | 2000 | 0.4285 | 0.4193 | | 0.2094 | 5.02 | 2500 | 0.4170 | 0.3949 | | 0.1682 | 6.02 | 3000 | 0.3895 | 0.3751 | | 0.1295 | 7.03 | 3500 | 0.3943 | 0.3628 | | 0.1064 | 8.03 | 4000 | 0.4198 | 0.3648 | | 0.0869 | 9.04 | 4500 | 0.4049 | 0.3556 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
prikarsartam/Olga
prikarsartam
2022-09-26T08:17:24Z
67
0
transformers
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-26T04:59:17Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: prikarsartam/Olga results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # prikarsartam/Olga This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8904 - Validation Loss: 2.6281 - Train Rouge1: 25.0368 - Train Rouge2: 5.6914 - Train Rougel: 19.4806 - Train Rougelsum: 19.4874 - Train Gen Len: 18.7987 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-06, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 3.0715 | 2.6854 | 23.4337 | 4.8994 | 18.1348 | 18.1316 | 18.7024 | 0 | | 2.8904 | 2.6281 | 25.0368 | 5.6914 | 19.4806 | 19.4874 | 18.7987 | 1 | ### Framework versions - Transformers 4.22.1 - TensorFlow 2.8.2 - Datasets 2.5.1 - Tokenizers 0.12.1
sahita/lang-VoxLingua107-ecapa
sahita
2022-09-26T08:13:03Z
16
0
speechbrain
[ "speechbrain", "audio-classification", "embeddings", "Language", "Identification", "pytorch", "ECAPA-TDNN", "TDNN", "VoxLingua107", "multilingual", "en", "mr", "dataset:VoxLingua107", "arxiv:2106.04624", "license:apache-2.0", "region:us" ]
audio-classification
2022-09-23T08:53:34Z
--- language: - multilingual - en - mr thumbnail: tags: - audio-classification - speechbrain - embeddings - Language - Identification - pytorch - ECAPA-TDNN - TDNN - VoxLingua107 license: "apache-2.0" datasets: - VoxLingua107 metrics: - Accuracy widget: - example_title: English Sample src: https://cdn-media.huggingface.co/speech_samples/LibriSpeech_61-70968-0000.flac --- # VoxLingua107 ECAPA-TDNN Spoken Language Identification Model ## Model description This is a spoken language recognition model trained on the VoxLingua107 dataset using SpeechBrain. The model uses the ECAPA-TDNN architecture that has previously been used for speaker recognition. However, it uses more fully connected hidden layers after the embedding layer, and cross-entropy loss was used for training. We observed that this improved the performance of extracted utterance embeddings for downstream tasks. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. The model can classify a speech utterance according to the language spoken. It covers 2 different languages ( English, Hindi). ## Intended uses & limitations The model has two uses: - use 'as is' for spoken language recognition - use as an utterance-level feature (embedding) extractor, for creating a dedicated language ID model on your own data The model is trained on automatically collected YouTube data. For more information about the dataset, see [here](http://bark.phon.ioc.ee/voxlingua107/). #### How to use ```python import torchaudio from speechbrain.pretrained import EncoderClassifier language_id = EncoderClassifier.from_hparams(source="sahita/lang-VoxLingua-ecapa", savedir="tmp") # Download Thai language sample from Omniglot and cvert to suitable form signal = language_id.load_audio("https://omniglot.com/soundfiles/udhr/udhr_th.mp3") prediction = language_id.classify_batch(signal) print(prediction) # (tensor([[-2.8646e+01, -3.0346e+01, -2.0748e+01, -2.9562e+01, -2.2187e+01, # -3.2668e+01, -3.6677e+01, -3.3573e+01, -3.2545e+01, -2.4365e+01, # -2.4688e+01, -3.1171e+01, -2.7743e+01, -2.9918e+01, -2.4770e+01, # -3.2250e+01, -2.4727e+01, -2.6087e+01, -2.1870e+01, -3.2821e+01, # -2.2128e+01, -2.2822e+01, -3.0888e+01, -3.3564e+01, -2.9906e+01, # -2.2392e+01, -2.5573e+01, -2.6443e+01, -3.2429e+01, -3.2652e+01, # -3.0030e+01, -2.4607e+01, -2.2967e+01, -2.4396e+01, -2.8578e+01, # -2.5153e+01, -2.8475e+01, -2.6409e+01, -2.5230e+01, -2.7957e+01, # -2.6298e+01, -2.3609e+01, -2.5863e+01, -2.8225e+01, -2.7225e+01, # -3.0486e+01, -2.1185e+01, -2.7938e+01, -3.3155e+01, -1.9076e+01, # -2.9181e+01, -2.2160e+01, -1.8352e+01, -2.5866e+01, -3.3636e+01, # -4.2016e+00, -3.1581e+01, -3.1894e+01, -2.7834e+01, -2.5429e+01, # -3.2235e+01, -3.2280e+01, -2.8786e+01, -2.3366e+01, -2.6047e+01, # -2.2075e+01, -2.3770e+01, -2.2518e+01, -2.8101e+01, -2.5745e+01, # -2.6441e+01, -2.9822e+01, -2.7109e+01, -3.0225e+01, -2.4566e+01, # -2.9268e+01, -2.7651e+01, -3.4221e+01, -2.9026e+01, -2.6009e+01, # -3.1968e+01, -3.1747e+01, -2.8156e+01, -2.9025e+01, -2.7756e+01, # -2.8052e+01, -2.9341e+01, -2.8806e+01, -2.1636e+01, -2.3992e+01, # -2.3794e+01, -3.3743e+01, -2.8332e+01, -2.7465e+01, -1.5085e-02, # -2.9094e+01, -2.1444e+01, -2.9780e+01, -3.6046e+01, -3.7401e+01, # -3.0888e+01, -3.3172e+01, -1.8931e+01, -2.2679e+01, -3.0225e+01, # -2.4995e+01, -2.1028e+01]]), tensor([-0.0151]), tensor([94]), ['th']) # The scores in the prediction[0] tensor can be interpreted as log-likelihoods that # the given utterance belongs to the given language (i.e., the larger the better) # The linear-scale likelihood can be retrieved using the following: print(prediction[1].exp()) # tensor([0.9850]) # The identified language ISO code is given in prediction[3] print(prediction[3]) # ['th: Thai'] # Alternatively, use the utterance embedding extractor: emb = language_id.encode_batch(signal) print(emb.shape) # torch.Size([1, 1, 256]) ``` To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method. The system is trained with recordings sampled at 16kHz (single channel). The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *classify_file* if needed. Make sure your input tensor is compliant with the expected sampling rate if you use *encode_batch* and *classify_batch*. #### Limitations and bias Since the model is trained on VoxLingua107, it has many limitations and biases, some of which are: - Probably it's accuracy on smaller languages is quite limited - Probably it works worse on female speech than male speech (because YouTube data includes much more male speech) - Based on subjective experiments, it doesn't work well on speech with a foreign accent - Probably it doesn't work well on children's speech and on persons with speech disorders ## Training data The model is trained on [VoxLingua107](http://bark.phon.ioc.ee/voxlingua107/). VoxLingua107 is a speech dataset for training spoken language identification models. The dataset consists of short speech segments automatically extracted from YouTube videos and labeled according the language of the video title and description, with some post-processing steps to filter out false positives. VoxLingua107 contains data for 107 languages. The total amount of speech in the training set is 6628 hours. The average amount of data per language is 62 hours. However, the real amount per language varies a lot. There is also a seperate development set containing 1609 speech segments from 33 languages, validated by at least two volunteers to really contain the given language. ## Training procedure See the [SpeechBrain recipe](https://github.com/speechbrain/speechbrain/tree/voxlingua107/recipes/VoxLingua107/lang_id). ## Evaluation results Error rate: 6.7% on the VoxLingua107 development dataset #### Referencing SpeechBrain ```bibtex @misc{speechbrain, title={{SpeechBrain}: A General-Purpose Speech Toolkit}, author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio}, year={2021}, eprint={2106.04624}, archivePrefix={arXiv}, primaryClass={eess.AS}, note={arXiv:2106.04624} } ``` ### Referencing VoxLingua107 ```bibtex @inproceedings{valk2021slt, title={{VoxLingua107}: a Dataset for Spoken Language Recognition}, author={J{\"o}rgen Valk and Tanel Alum{\"a}e}, booktitle={Proc. IEEE SLT Workshop}, year={2021}, } ``` #### About SpeechBrain SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. Website: https://speechbrain.github.io/ GitHub: https://github.com/speechbrain/speechbrain
sd-concepts-library/eru-chitanda-casual
sd-concepts-library
2022-09-26T07:39:50Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-26T07:39:45Z
--- license: mit --- ### Eru Chitanda Casual on Stable Diffusion This is the `<c-eru-chitanda>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<c-eru-chitanda> 0](https://huggingface.co/sd-concepts-library/eru-chitanda-casual/resolve/main/concept_images/3.jpeg) ![<c-eru-chitanda> 1](https://huggingface.co/sd-concepts-library/eru-chitanda-casual/resolve/main/concept_images/1.jpeg) ![<c-eru-chitanda> 2](https://huggingface.co/sd-concepts-library/eru-chitanda-casual/resolve/main/concept_images/4.jpeg) ![<c-eru-chitanda> 3](https://huggingface.co/sd-concepts-library/eru-chitanda-casual/resolve/main/concept_images/0.jpeg) ![<c-eru-chitanda> 4](https://huggingface.co/sd-concepts-library/eru-chitanda-casual/resolve/main/concept_images/2.jpeg)
neeva/query2query
neeva
2022-09-26T07:11:21Z
32
8
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-22T18:23:35Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity license: cc-by-nc-sa-4.0 --- # query2query This is a [sentence-transformers](https://www.SBERT.net) model: It maps queries to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search over queries. Checkout this announcing blogpost for more information: https://neeva.com/blog/state-of-the-art-query2query-similarity(https://neeva.com/blog/state-of-the-art-query2query-similarity) **Note: we are releasing this under a license which prevents commercial use. If you want to use it for commercial purposes, please reach out to contact@neeva.co or rajhans@neeva.co with a brief description of what you want to use it for and we will try our best to respond very quickly.** <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer queries = ["flight cost from nyc to la", "ticket prices from nyc to la"] model = SentenceTransformer('neeva/query2query') embeddings = model.encode(queries) print(embeddings) ``` ## Training The model was trained for 1M steps with a batch size of 1024 at a learning rate of 2e-5 using a cosine learning rate scheduler with 10000 warmup steps. ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: DataParallel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ```
MGanesh29/parrot_paraphraser_on_T5-finetuned-xsum-v7
MGanesh29
2022-09-26T06:47:57Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-22T09:34:29Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: parrot_paraphraser_on_T5-finetuned-xsum-v7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # parrot_paraphraser_on_T5-finetuned-xsum-v7 This model is a fine-tuned version of [prithivida/parrot_paraphraser_on_T5](https://huggingface.co/prithivida/parrot_paraphraser_on_T5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0316 - Rouge1: 86.4178 - Rouge2: 84.901 - Rougel: 86.458 - Rougelsum: 86.4281 - Gen Len: 17.887 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.0752 | 1.0 | 2000 | 0.0439 | 86.0044 | 84.1284 | 86.0265 | 86.0167 | 17.895 | | 0.0454 | 2.0 | 4000 | 0.0352 | 86.2948 | 84.6092 | 86.3256 | 86.293 | 17.88 | | 0.0308 | 3.0 | 6000 | 0.0324 | 86.3316 | 84.7883 | 86.374 | 86.3355 | 17.887 | | 0.0242 | 4.0 | 8000 | 0.0316 | 86.4178 | 84.901 | 86.458 | 86.4281 | 17.887 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
SmilestheSad/hf_distilbert_uncased_somm
SmilestheSad
2022-09-26T03:13:00Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-26T03:03:13Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 model-index: - name: hf_distilbert_uncased_somm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hf_distilbert_uncased_somm This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0481 - F1: 0.9077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1032 | 1.0 | 565 | 0.0521 | 0.8929 | | 0.0432 | 2.0 | 1130 | 0.0481 | 0.9077 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
ssharm87/t5-small-finetuned-eli5
ssharm87
2022-09-26T02:38:02Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-25T21:12:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-small-finetuned-eli5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 9.5483 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-eli5 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 3.7596 - Rouge1: 9.5483 - Rouge2: 1.8202 - Rougel: 7.7317 - Rougelsum: 8.8491 - Gen Len: 18.9895 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 3.9551 | 1.0 | 68159 | 3.7596 | 9.5483 | 1.8202 | 7.7317 | 8.8491 | 18.9895 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Ahmed007/BERT
Ahmed007
2022-09-26T02:32:44Z
195
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-26T02:25:43Z
--- tags: - generated_from_trainer model-index: - name: BERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sahajrajmalla/patrakar
sahajrajmalla
2022-09-26T02:06:00Z
107
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "nepali-nlp", "nepali-news-classificiation", "nlp", "deep-learning", "transfer-learning", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-15T07:05:22Z
--- license: mit tags: - nepali-nlp - nepali-news-classificiation - nlp - transformers - deep-learning - pytorch - transfer-learning model-index: - name: patrakar results: [] widget: - text: "नेकपा (एमाले)का नेता गोकर्णराज विष्टले सहमति र सहकार्यबाटै संविधान बनाउने तथा जनताको जीवनस्तर उकास्ने काम गर्नु नै अबको मुख्य काम रहेको बताएका छन् ।" example_title: "Example 1" - text: "राजनीतिक स्थिरता नहुँदा विकास निर्माणले गति लिन सकेन ।" example_title: "Example 2" - text: "ठूलो उद्योग खोल्न महिलालाई ऋण दिइन्न" example_title: "Example 3" --- # patrakar/ पत्रकार (Nepali News Classifier) Last updated: September 2022 ## Model Details **patrakar** is a DistilBERT pre-trained sequence classification transformer model which classifies Nepali language news into 9 newsgroup category, such as: - politics - opinion - bank - entertainment - economy - health - literature - sports - tourism It is developed by Sahaj Raj Malla to be generally usefuly for general public and so that others could explore them for commercial and scientific purposes. This model was trained on [Sakonii/distilgpt2-nepali](https://huggingface.co/Sakonii/distilgpt2-nepali) model. It achieves the following results on the test dataset: | Total Number of samples | Accuracy(%) |:-------------:|:---------------: | 5670 | 95.475 ### Model date September 2022 ### Model type Sequence classification model ### Model version 1.0.0 ## Model Usage This model can be used directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python from transformers import pipeline, set_seed set_seed(42) model_name = "sahajrajmalla/patrakar" classifier = pipeline('text-classification', model=model_name) text = "नेकपा (एमाले)का नेता गोकर्णराज विष्टले सहमति र सहकार्यबाटै संविधान बनाउने तथा जनताको जीवनस्तर उकास्ने काम गर्नु नै अबको मुख्य काम रहेको बताएका छन् ।" classifier(text) ``` Here is how we can use the model to get the features of a given text in PyTorch: ```python !pip install transformers torch from transformers import AutoTokenizer from transformers import AutoModelForSequenceClassification import torch import torch.nn.functional as F # initializing model and tokenizer model_name = "sahajrajmalla/patrakar" # downloading tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) # downloading model model = AutoModelForSequenceClassification.from_pretrained(model_name) def tokenize_function(examples): return tokenizer(examples["data"], padding="max_length", truncation=True) # predicting with the model sequence_i_want_to_predict = "राजनीतिक स्थिरता नहुँदा विकास निर्माणले गति लिन सकेन" # initializing our labels label_list = [ "bank", "economy", "entertainment", "health", "literature", "opinion", "politics", "sports", "tourism" ] batch = tokenizer(sequence_i_want_to_predict, padding=True, truncation=True, max_length=512, return_tensors='pt') with torch.no_grad(): outputs = model(**batch) predictions = F.softmax(outputs.logits, dim=1) labels = torch.argmax(predictions, dim=1) print(f"The sequence: \n\n {word_i_want_to_predict} \n\n is predicted to be of newsgroup {label_list[labels.item()]}") ``` ## Training data This model is trained on 50,945 rows of Nepali language news grouped [dataset](https://www.kaggle.com/competitions/text-it-meet-22/data?select=train.csv) found on Kaggle which was also used in IT Meet 2022 Text challenge. ## Framework versions - Transformers 4.20.1 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.11.6
jamiehuang/t5-small-finetuned-xsum
jamiehuang
2022-09-26T01:29:12Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-24T21:08:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 13.2962 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 3.6746 - Rouge1: 13.2962 - Rouge2: 2.0081 - Rougel: 10.6529 - Rougelsum: 12.049 - Gen Len: 18.9985 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.8901 | 1.0 | 17040 | 3.6746 | 13.2962 | 2.0081 | 10.6529 | 12.049 | 18.9985 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
ammarpl/t5-base-finetuned-elif-attempt1
ammarpl
2022-09-26T01:14:32Z
111
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-25T21:01:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-base-finetuned-elif-attempt1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 3.9675 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-elif-attempt1 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 5.3889 - Rouge1: 3.9675 - Rouge2: 0.248 - Rougel: 3.454 - Rougelsum: 3.765 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 5.8271 | 1.0 | 17040 | 5.3889 | 3.9675 | 0.248 | 3.454 | 3.765 | 19.0 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
CoreyMorris/a2c-AntBulletEnv-v0-old
CoreyMorris
2022-09-26T00:52:15Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-26T00:51:18Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 951.33 +/- 234.16 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kkotkar1/t5-small-t5-base
kkotkar1
2022-09-25T22:49:52Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-25T16:33:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 model-index: - name: t5-small-t5-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-t5-base This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
gur509/t5-small-finetuned-eli5
gur509
2022-09-25T22:23:43Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-24T23:38:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-small-finetuned-eli5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 15.1689 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-eli5 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 3.5993 - Rouge1: 15.1689 - Rouge2: 2.1762 - Rougel: 12.7542 - Rougelsum: 14.0214 - Gen Len: 18.9988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.8011 | 1.0 | 17040 | 3.5993 | 15.1689 | 2.1762 | 12.7542 | 14.0214 | 18.9988 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/remert
sd-concepts-library
2022-09-25T20:50:59Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-25T20:50:05Z
--- license: mit --- ### remert on Stable Diffusion This is the `<Remert>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`:
quecopiones/distillbert-base-spanish-uncased-finetuned-full-suicidios
quecopiones
2022-09-25T19:52:22Z
90
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-25T14:14:14Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distillbert-base-spanish-uncased-finetuned-full-suicidios results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distillbert-base-spanish-uncased-finetuned-full-suicidios This model is a fine-tuned version of [CenIA/distillbert-base-spanish-uncased](https://huggingface.co/CenIA/distillbert-base-spanish-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0825 - Accuracy: 0.9814 - F1: 0.9814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.2059 | 1.0 | 32058 | 0.1142 | 0.9694 | 0.9694 | | 0.1229 | 2.0 | 64116 | 0.0825 | 0.9814 | 0.9814 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
monakth/distilbert-base-multilingual-cased-finetuned-squad
monakth
2022-09-25T19:18:13Z
121
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-25T16:02:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-multilingual-cased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-finetuned-squad This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2983 | 1.0 | 5555 | 1.2202 | | 1.0252 | 2.0 | 11110 | 1.1583 | | 0.8078 | 3.0 | 16665 | 1.1954 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
eliwill/stoic-generator-10e
eliwill
2022-09-25T18:37:19Z
59
0
transformers
[ "transformers", "tf", "tensorboard", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-09-25T18:25:15Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: eliwill/stoic-generator-10e results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # eliwill/stoic-generator-10e This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.4753 - Validation Loss: 3.7980 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.0230 | 3.9474 | 0 | | 3.8580 | 3.8982 | 1 | | 3.7757 | 3.8721 | 2 | | 3.7149 | 3.8489 | 3 | | 3.6640 | 3.8343 | 4 | | 3.6210 | 3.8152 | 5 | | 3.5796 | 3.8088 | 6 | | 3.5429 | 3.8038 | 7 | | 3.5061 | 3.7967 | 8 | | 3.4753 | 3.7980 | 9 | ### Framework versions - Transformers 4.22.1 - TensorFlow 2.8.2 - Datasets 2.5.1 - Tokenizers 0.12.1
amirabbas/wav2vec2-large-xls-r-300m-turkish-demo-colab
amirabbas
2022-09-25T18:23:15Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-25T12:17:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
kevinbram/nyfin
kevinbram
2022-09-25T17:13:57Z
112
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-25T15:28:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: nyfin results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nyfin This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.26 | 1.0 | 5533 | 1.2155 | ### Framework versions - Transformers 4.22.0 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.12.1
simecek/DNADebertaK6_Arabidopsis
simecek
2022-09-25T14:27:59Z
178
1
transformers
[ "transformers", "pytorch", "deberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-19T07:42:31Z
--- tags: - generated_from_trainer model-index: - name: DNADebertaK6_Arabidopsis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DNADebertaK6_Arabidopsis This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 600001 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:------:|:---------------:| | 4.6174 | 6.12 | 20000 | 1.9257 | | 1.8873 | 12.24 | 40000 | 1.8098 | | 1.8213 | 18.36 | 60000 | 1.7952 | | 1.8042 | 24.48 | 80000 | 1.7888 | | 1.7945 | 30.6 | 100000 | 1.7861 | | 1.7873 | 36.72 | 120000 | 1.7772 | | 1.782 | 42.84 | 140000 | 1.7757 | | 1.7761 | 48.96 | 160000 | 1.7632 | | 1.7714 | 55.08 | 180000 | 1.7685 | | 1.7677 | 61.2 | 200000 | 1.7568 | | 1.7637 | 67.32 | 220000 | 1.7570 | | 1.7585 | 73.44 | 240000 | 1.7442 | | 1.7554 | 79.56 | 260000 | 1.7556 | | 1.7515 | 85.68 | 280000 | 1.7505 | | 1.7483 | 91.8 | 300000 | 1.7463 | | 1.745 | 97.92 | 320000 | 1.7425 | | 1.7427 | 104.04 | 340000 | 1.7425 | | 1.7398 | 110.16 | 360000 | 1.7359 | | 1.7377 | 116.28 | 380000 | 1.7369 | | 1.7349 | 122.4 | 400000 | 1.7340 | | 1.7325 | 128.52 | 420000 | 1.7313 | | 1.731 | 134.64 | 440000 | 1.7256 | | 1.7286 | 140.76 | 460000 | 1.7238 | | 1.7267 | 146.88 | 480000 | 1.7324 | | 1.7247 | 153.0 | 500000 | 1.7247 | | 1.7228 | 159.12 | 520000 | 1.7185 | | 1.7209 | 165.24 | 540000 | 1.7166 | | 1.7189 | 171.36 | 560000 | 1.7206 | | 1.7181 | 177.48 | 580000 | 1.7190 | | 1.7159 | 183.6 | 600000 | 1.7194 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
kevinbram/testarenz
kevinbram
2022-09-25T14:17:18Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-25T13:44:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: testarenz results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # testarenz This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.2153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2806 | 1.0 | 5533 | 1.2153 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
ganchengguang/RoBERTa-base-janpanese
ganchengguang
2022-09-25T13:47:39Z
106
1
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "arxiv:1907.11692", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-23T13:38:58Z
--- license: apache-2.0 widget: - text: 横浜国立大学は日本の[MASK]県にある。 --- This is RoBERTa model pretrained on texts in the Japanese language. 3.45GB wikipedia text trained 1.65M step use the sentencepiece tokenizer. If you want to fine-tune model. Please use ```python from transformers import BertTokenizer, RobertaModel BertTokenizer.from_pretrained('') RoBERTModel.from_pretrained('') ``` The accuracy in JGLUE-marc_ja-v1.0 binary sentiment classification 95.4% Contribute by Yokohama Nationaly University Mori Lab @article{liu2019roberta, title={Roberta: A robustly optimized bert pretraining approach}, author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin}, journal={arXiv preprint arXiv:1907.11692}, year={2019} }
Okyx/fillmaskmodel
Okyx
2022-09-25T12:36:49Z
59
0
transformers
[ "transformers", "tf", "xlm-roberta", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-25T12:32:35Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: fillmaskmodel results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # fillmaskmodel This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4400, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results ### Framework versions - Transformers 4.22.1 - TensorFlow 2.8.2 - Tokenizers 0.12.1
rram12/Pixelcopter-PLE-v0
rram12
2022-09-25T11:56:34Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-25T11:56:26Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 7.10 +/- 5.39 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
shmuhammad/distilbert-base-uncased-distilled-clinc
shmuhammad
2022-09-25T11:06:16Z
103
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-18T14:37:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9487096774193549 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.3060 - Accuracy: 0.9487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.643 | 1.0 | 318 | 1.9110 | 0.7452 | | 1.4751 | 2.0 | 636 | 0.9678 | 0.8606 | | 0.7736 | 3.0 | 954 | 0.5578 | 0.9168 | | 0.4652 | 4.0 | 1272 | 0.4081 | 0.9352 | | 0.3364 | 5.0 | 1590 | 0.3538 | 0.9442 | | 0.2801 | 6.0 | 1908 | 0.3294 | 0.9465 | | 0.2515 | 7.0 | 2226 | 0.3165 | 0.9471 | | 0.2366 | 8.0 | 2544 | 0.3107 | 0.9487 | | 0.2292 | 9.0 | 2862 | 0.3069 | 0.9490 | | 0.2247 | 10.0 | 3180 | 0.3060 | 0.9487 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1.post200 - Datasets 1.16.1 - Tokenizers 0.10.3
shmuhammad/distilbert-base-uncased-finetuned-clinc
shmuhammad
2022-09-25T10:06:15Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-18T12:12:52Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.92 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7758 - Accuracy: 0.92 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.295 | 1.0 | 318 | 3.2908 | 0.7448 | | 2.6313 | 2.0 | 636 | 1.8779 | 0.8384 | | 1.5519 | 3.0 | 954 | 1.1600 | 0.8981 | | 1.0148 | 4.0 | 1272 | 0.8585 | 0.9123 | | 0.7974 | 5.0 | 1590 | 0.7758 | 0.92 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1.post200 - Datasets 1.16.1 - Tokenizers 0.10.3
shed-e/thucnews
shed-e
2022-09-25T08:29:09Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:load_train", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-25T07:46:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - load_train metrics: - accuracy model-index: - name: thucnews results: - task: name: Text Classification type: text-classification dataset: name: load_train type: load_train config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9433 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # thucnews This model is a fine-tuned version of [hfl/rbt6](https://huggingface.co/hfl/rbt6) on the load_train dataset. It achieves the following results on the evaluation set: - Loss: 0.3191 - Accuracy: 0.9433 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2038 | 1.0 | 704 | 0.2018 | 0.9332 | | 0.1403 | 2.0 | 1408 | 0.1829 | 0.9406 | | 0.0894 | 3.0 | 2112 | 0.2073 | 0.9419 | | 0.056 | 4.0 | 2816 | 0.2228 | 0.9408 | | 0.0321 | 5.0 | 3520 | 0.2689 | 0.9417 | | 0.0209 | 6.0 | 4224 | 0.2819 | 0.9431 | | 0.0099 | 7.0 | 4928 | 0.3131 | 0.9421 | | 0.0057 | 8.0 | 5632 | 0.3191 | 0.9433 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
nikhilsk/t5-base-finetuned-eli5
nikhilsk
2022-09-25T07:53:22Z
111
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-24T23:04:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 model-index: - name: t5-base-finetuned-eli5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-eli5 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the eli5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
jamescalam/mpnet-snli
jamescalam
2022-09-25T07:31:18Z
4
1
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "en", "dataset:snli", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-20T22:25:09Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers language: - en license: mit datasets: - snli --- # MPNet NLI ***Note**: The same model trained with negatives yields better performance. [Find it here](https://huggingface.co/jamescalam/mpnet-snli-negatives).* This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for tasks like clustering or semantic search. It has been fine-tuned using the **S**tanford **N**atural **L**anguage **I**nference (SNLI) dataset and returns MRR@10 and MAP scores of ~0.92 on the SNLI test set. Find more info from [James Briggs on YouTube](https://youtube.com/c/jamesbriggs) or in the [**free** NLP for Semantic Search ebook](https://pinecone.io/learn/nlp). ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('jamescalam/mpnet-snli') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('jamescalam/mpnet-snli') model = AutoModel.from_pretrained('jamescalam/mpnet-snli') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 5731 with parameters: ``` {'batch_size': 32} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 573, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ```
jamescalam/mpnet-nli-sts
jamescalam
2022-09-25T07:28:38Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "en", "dataset:snli", "dataset:stsb", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-25T07:13:18Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers language: - en license: mit datasets: - snli - stsb --- # MPNet NLI and STS This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It uses the [jamescalam/mpnet-snli-negatives](https://huggingface.co/jamescalam/mpnet-snli-negatives) model as a starting point, and is fine-tuned further on the **S**emantic **T**extual **S**imilarity **b**enchmark (STSb) dataset. Returning evaluation scores of ~0.9 cosine Pearson correlation using the STSb test set. Find more info from [James Briggs on YouTube](https://youtube.com/c/jamesbriggs) or in the [**free** NLP for Semantic Search ebook](https://pinecone.io/learn/nlp). <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('jamescalam/mpnet-nli-sts') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('jamescalam/mpnet-nli-sts') model = AutoModel.from_pretrained('jamescalam/mpnet-nli-sts') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 180 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 5, "evaluation_steps": 25, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 90, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ```
ShadowTwin41/bert-finetuned-ner
ShadowTwin41
2022-09-25T07:26:43Z
105
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-25T07:18:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9127878490935816 - name: Recall type: recall value: 0.9405923931336251 - name: F1 type: f1 value: 0.9264815582262743 - name: Accuracy type: accuracy value: 0.9841937952551951 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0586 - Precision: 0.9128 - Recall: 0.9406 - F1: 0.9265 - Accuracy: 0.9842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 293 | 0.0844 | 0.8714 | 0.9123 | 0.8914 | 0.9760 | | 0.1765 | 2.0 | 586 | 0.0601 | 0.9109 | 0.9357 | 0.9231 | 0.9834 | | 0.1765 | 3.0 | 879 | 0.0586 | 0.9128 | 0.9406 | 0.9265 | 0.9842 | ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
Fadil-1/t5-small-finetuned-ELI5
Fadil-1
2022-09-25T04:19:32Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-23T22:50:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 model-index: - name: t5-small-finetuned-ELI5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-ELI5 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu102 - Datasets 2.5.1 - Tokenizers 0.12.1
neelmehta00/t5-small-finetuned-eli5-neel-final-again
neelmehta00
2022-09-25T03:34:10Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-25T02:21:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-small-finetuned-eli5-neel-final-again results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 15.1361 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-eli5-neel-final-again This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 3.5993 - Rouge1: 15.1361 - Rouge2: 2.1584 - Rougel: 12.7499 - Rougelsum: 13.989 - Gen Len: 18.9998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 3.8014 | 1.0 | 17040 | 3.5993 | 15.1361 | 2.1584 | 12.7499 | 13.989 | 18.9998 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
BigSalmon/InformalToFormalLincoln81ParaphraseMedium
BigSalmon
2022-09-25T02:27:53Z
173
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-25T02:14:22Z
data: https://github.com/BigSalmon2/InformalToFormalDataset ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln80Paraphrase") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln80Paraphrase") ``` ``` Demo: https://huggingface.co/spaces/BigSalmon/FormalInformalConciseWordy ``` ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" input_ids = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(input_ids=input_ids, max_length=10 + len(prompt), temperature=1.0, top_k=50, top_p=0.95, do_sample=True, num_return_sequences=5, early_stopping=True) for i in range(5): print(tokenizer.decode(outputs[i])) ``` Most likely outputs (Disclaimer: I highly recommend using this over just generating): ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" text = tokenizer.encode(prompt) myinput, past_key_values = torch.tensor([text]), None myinput = myinput myinput= myinput.to(device) logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False) logits = logits[0,-1] probabilities = torch.nn.functional.softmax(logits) best_logits, best_indices = logits.topk(250) best_words = [tokenizer.decode([idx.item()]) for idx in best_indices] text.append(best_indices[0].item()) best_probabilities = probabilities[best_indices].tolist() words = [] print(best_words) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` original: microsoft word's [MASK] pricing invites competition. Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition. *** original: the library’s quiet atmosphere encourages visitors to [blank] in their work. Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work. ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - nebraska - unicamerical legislature - different from federal house and senate text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate. *** - penny has practically no value - should be taken out of circulation - just as other coins have been in us history - lost use - value not enough - to make environmental consequences worthy text: all but valueless, the penny should be retired. as with other coins in american history, it has become defunct. too minute to warrant the environmental consequences of its production, it has outlived its usefulness. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence. ``` ngos are characterized by: □ voluntary citizens' group that is organized on a local, national or international level □ encourage political participation □ often serve humanitarian functions □ work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? □ noise □ parking □ traffic □ security □ strangers *** ``` ``` original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung. adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung. *** original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark. adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark. *** original: ``` ``` original: had trouble deciding. translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation. *** original: ``` ``` input: not loyal 1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ). *** input: ``` ``` first: ( was complicit in / was involved in ). antonym: ( was blameless / was not an accomplice to / had no hand in / was uninvolved in ). *** first: ( have no qualms about / see no issue with ). antonym: ( are deeply troubled by / harbor grave reservations about / have a visceral aversion to / take ( umbrage at / exception to ) / are wary of ). *** first: ( do not see eye to eye / disagree often ). antonym: ( are in sync / are united / have excellent rapport / are like-minded / are in step / are of one mind / are in lockstep / operate in perfect harmony / march in lockstep ). *** first: ``` ``` stiff with competition, law school {A} is the launching pad for countless careers, {B} is a crowded field, {C} ranks among the most sought-after professional degrees, {D} is a professional proving ground. *** languishing in viewership, saturday night live {A} is due for a creative renaissance, {B} is no longer a ratings juggernaut, {C} has been eclipsed by its imitators, {C} can still find its mojo. *** dubbed the "manhattan of the south," atlanta {A} is a bustling metropolis, {B} is known for its vibrant downtown, {C} is a city of rich history, {D} is the pride of georgia. *** embattled by scandal, harvard {A} is feeling the heat, {B} cannot escape the media glare, {C} is facing its most intense scrutiny yet, {D} is in the spotlight for all the wrong reasons. ``` Infill / Infilling / Masking / Phrase Masking (Works pretty decently actually, especially when you use logprobs code from above): ``` his contention [blank] by the evidence [sep] was refuted [answer] *** few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep] synonymous with [answer] *** when rick won the lottery, all of his distant relatives [blank] his winnings [sep] clamored for [answer] *** the library’s quiet atmosphere encourages visitors to [blank] in their work [sep] immerse themselves [answer] *** the joy of sport is that no two games are alike. for every exhilarating experience, however, there is an interminable one. the national pastime, unfortunately, has a penchant for the latter. what begins as a summer evening at the ballpark can quickly devolve into a game of tedium. the primary culprit is the [blank] of play. from batters readjusting their gloves to fielders spitting on their mitts, the action is [blank] unnecessary interruptions. the sport's future is [blank] if these tendencies are not addressed [sep] plodding pace [answer] riddled with [answer] bleak [answer] *** microsoft word's [blank] pricing [blank] competition [sep] unconscionable [answer] invites [answer] *** ``` ``` original: microsoft word's [MASK] pricing invites competition. Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition. *** original: the library’s quiet atmosphere encourages visitors to [blank] in their work. Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work. ``` Backwards ``` Essay Intro (National Parks): text: tourists are at ease in the national parks, ( swept up in the beauty of their natural splendor ). *** Essay Intro (D.C. Statehood): washington, d.c. is a city of outsize significance, ( ground zero for the nation's political life / center stage for the nation's political machinations ). ``` ``` topic: the Golden State Warriors. characterization 1: the reigning kings of the NBA. characterization 2: possessed of a remarkable cohesion. characterization 3: helmed by superstar Stephen Curry. characterization 4: perched atop the league’s hierarchy. characterization 5: boasting a litany of hall-of-famers. *** topic: emojis. characterization 1: shorthand for a digital generation. characterization 2: more versatile than words. characterization 3: the latest frontier in language. characterization 4: a form of self-expression. characterization 5: quintessentially millennial. characterization 6: reflective of a tech-centric world. *** topic: ``` ``` regular: illinois went against the census' population-loss prediction by getting more residents. VBG: defying the census' prediction of population loss, illinois experienced growth. *** regular: microsoft word’s high pricing increases the likelihood of competition. VBG: extortionately priced, microsoft word is inviting competition. *** regular: ``` ``` source: badminton should be more popular in the US. QUERY: Based on the given topic, can you develop a story outline? target: (1) games played with racquets are popular, (2) just look at tennis and ping pong, (3) but badminton underappreciated, (4) fun, fast-paced, competitive, (5) needs to be marketed more text: the sporting arena is dominated by games that are played with racquets. tennis and ping pong, in particular, are immensely popular. somewhat curiously, however, badminton is absent from this pantheon. exciting, fast-paced, and competitive, it is an underappreciated pastime. all that it lacks is more effective marketing. *** source: movies in theaters should be free. QUERY: Based on the given topic, can you develop a story outline? target: (1) movies provide vital life lessons, (2) many venues charge admission, (3) those without much money text: the lessons that movies impart are far from trivial. the vast catalogue of cinematic classics is replete with inspiring sagas of friendship, bravery, and tenacity. it is regrettable, then, that admission to theaters is not free. in their current form, the doors of this most vital of institutions are closed to those who lack the means to pay. *** source: ``` ``` in the private sector, { transparency } is vital to the business’s credibility. the { disclosure of information } can be the difference between success and failure. *** the labor market is changing, with { remote work } now the norm. this { flexible employment } allows the individual to design their own schedule. *** the { cubicle } is the locus of countless grievances. many complain that the { enclosed workspace } restricts their freedom of movement. *** ``` ``` it would be natural to assume that americans, as a people whose ancestors { immigrated to this country }, would be sympathetic to those seeking to do likewise. question: what does “do likewise” mean in the above context? (a) make the same journey (b) share in the promise of the american dream (c) start anew in the land of opportunity (d) make landfall on the united states *** in the private sector, { transparency } is vital to the business’s credibility. this orientation can be the difference between success and failure. question: what does “this orientation” mean in the above context? (a) visible business practices (b) candor with the public (c) open, honest communication (d) culture of accountability ``` ``` example: suppose you are a teacher. further suppose you want to tell an accurate telling of history. then suppose a parent takes offense. they do so in the name of name of their kid. this happens a lot. text: educators' responsibility to remain true to the historical record often clashes with the parent's desire to shelter their child from uncomfortable realities. *** example: suppose you are a student at college. now suppose you have to buy textbooks. that is going to be worth hundreds of dollars. given how much you already spend on tuition, that is going to hard cost to bear. text: the exorbitant cost of textbooks, which often reaches hundreds of dollars, imposes a sizable financial burden on the already-strapped college student. ``` ``` accustomed to having its name uttered ______, harvard university is weathering a rare spell of reputational tumult (a) in reverential tones (b) with great affection (c) in adulatory fashion (d) in glowing terms ``` ``` informal english: i reached out to accounts who had a lot of followers, helping to make people know about us. resume english: i partnered with prominent influencers to build brand awareness. *** ```
sd-concepts-library/yuji-himukai-style
sd-concepts-library
2022-09-25T02:06:22Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-25T02:06:16Z
--- license: mit --- ### Yuji-Himukai-Style on Stable Diffusion This is the `<Yuji Himukai-Style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<Yuji Himukai-Style> 0](https://huggingface.co/sd-concepts-library/yuji-himukai-style/resolve/main/concept_images/3.jpeg) ![<Yuji Himukai-Style> 1](https://huggingface.co/sd-concepts-library/yuji-himukai-style/resolve/main/concept_images/1.jpeg) ![<Yuji Himukai-Style> 2](https://huggingface.co/sd-concepts-library/yuji-himukai-style/resolve/main/concept_images/4.jpeg) ![<Yuji Himukai-Style> 3](https://huggingface.co/sd-concepts-library/yuji-himukai-style/resolve/main/concept_images/5.jpeg) ![<Yuji Himukai-Style> 4](https://huggingface.co/sd-concepts-library/yuji-himukai-style/resolve/main/concept_images/0.jpeg) ![<Yuji Himukai-Style> 5](https://huggingface.co/sd-concepts-library/yuji-himukai-style/resolve/main/concept_images/2.jpeg)
hujiazhen/t5-small-finetuned-eli5
hujiazhen
2022-09-25T00:54:13Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-24T21:14:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-small-finetuned-eli5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 12.731 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-eli5 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 3.6906 - Rouge1: 12.731 - Rouge2: 1.9944 - Rougel: 10.0818 - Rougelsum: 11.7305 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:-------:|:---------:|:-------:| | 3.8994 | 1.0 | 17040 | 3.6906 | 12.731 | 1.9944 | 10.0818 | 11.7305 | 19.0 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
bguan/lunar_lander_v2_ppo_220924A
bguan
2022-09-24T23:32:24Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-24T22:49:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 283.01 +/- 14.03 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sd-concepts-library/wire-angels
sd-concepts-library
2022-09-24T23:25:57Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-24T23:25:43Z
--- license: mit --- ### wire-angels on Stable Diffusion This is the `<wire-angels>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<wire-angels> 0](https://huggingface.co/sd-concepts-library/wire-angels/resolve/main/concept_images/3.jpeg) ![<wire-angels> 1](https://huggingface.co/sd-concepts-library/wire-angels/resolve/main/concept_images/1.jpeg) ![<wire-angels> 2](https://huggingface.co/sd-concepts-library/wire-angels/resolve/main/concept_images/0.jpeg) ![<wire-angels> 3](https://huggingface.co/sd-concepts-library/wire-angels/resolve/main/concept_images/2.jpeg)
huggingtweets/sadbutchhours
huggingtweets
2022-09-24T22:33:30Z
116
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T22:28:41Z
--- language: en thumbnail: http://www.huggingtweets.com/sadbutchhours/1664058806344/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1333210907959119872/b_LOBjz9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">pangaea | The McRib™ Is Back!</div> <div style="text-align: center; font-size: 14px;">@sadbutchhours</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from pangaea | The McRib™ Is Back!. | Data | pangaea | The McRib™ Is Back! | | --- | --- | | Tweets downloaded | 3228 | | Retweets | 313 | | Short tweets | 440 | | Tweets kept | 2475 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2g58d4t3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sadbutchhours's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1worq93s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1worq93s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sadbutchhours') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sd-concepts-library/kanv1
sd-concepts-library
2022-09-24T22:14:05Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-24T22:14:01Z
--- license: mit --- ### KANv1 on Stable Diffusion This is the `<KAN>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<KAN> 0](https://huggingface.co/sd-concepts-library/kanv1/resolve/main/concept_images/3.jpeg) ![<KAN> 1](https://huggingface.co/sd-concepts-library/kanv1/resolve/main/concept_images/1.jpeg) ![<KAN> 2](https://huggingface.co/sd-concepts-library/kanv1/resolve/main/concept_images/4.jpeg) ![<KAN> 3](https://huggingface.co/sd-concepts-library/kanv1/resolve/main/concept_images/0.jpeg) ![<KAN> 4](https://huggingface.co/sd-concepts-library/kanv1/resolve/main/concept_images/2.jpeg)
gokuls/bert-tiny-sst2-KD-BERT_and_distilBERT
gokuls
2022-09-24T20:16:17Z
112
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T19:59:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-tiny-sst2-KD-BERT_and_distilBERT results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: train args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8325688073394495 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-sst2-KD-BERT_and_distilBERT This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.5530 - Accuracy: 0.8326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.7317 | 1.0 | 4210 | 1.5887 | 0.8222 | | 1.0068 | 2.0 | 8420 | 1.5530 | 0.8326 | | 0.7961 | 3.0 | 12630 | 1.7072 | 0.8245 | | 0.6852 | 4.0 | 16840 | 1.8794 | 0.8177 | | 0.6039 | 5.0 | 21050 | 1.8691 | 0.8142 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
gokuls/bert-tiny-sst2-KD-BERT
gokuls
2022-09-24T19:43:27Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T19:26:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-tiny-sst2-KD-BERT results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: train args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8348623853211009 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-sst2-KD-BERT This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8257 - Accuracy: 0.8349 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7521 | 1.0 | 4210 | 0.7345 | 0.8234 | | 0.4301 | 2.0 | 8420 | 0.7748 | 0.8303 | | 0.3335 | 3.0 | 12630 | 0.8257 | 0.8349 | | 0.2831 | 4.0 | 16840 | 0.9145 | 0.8188 | | 0.2419 | 5.0 | 21050 | 0.9096 | 0.8177 | | 0.2149 | 6.0 | 25260 | 0.8410 | 0.8234 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
gokuls/bert-tiny-emotion-KD-distilBERT
gokuls
2022-09-24T19:33:23Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T19:21:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: bert-tiny-emotion-KD-distilBERT results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.913 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-emotion-KD-distilBERT This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.5444 - Accuracy: 0.913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 4.2533 | 1.0 | 1000 | 2.8358 | 0.7675 | | 2.3274 | 2.0 | 2000 | 1.5893 | 0.8675 | | 1.3974 | 3.0 | 3000 | 1.0286 | 0.891 | | 0.9035 | 4.0 | 4000 | 0.7534 | 0.8955 | | 0.6619 | 5.0 | 5000 | 0.6350 | 0.905 | | 0.5482 | 6.0 | 6000 | 0.6180 | 0.899 | | 0.4937 | 7.0 | 7000 | 0.5448 | 0.91 | | 0.4013 | 8.0 | 8000 | 0.5493 | 0.906 | | 0.3839 | 9.0 | 9000 | 0.5481 | 0.9095 | | 0.3281 | 10.0 | 10000 | 0.5528 | 0.9115 | | 0.3098 | 11.0 | 11000 | 0.5864 | 0.9095 | | 0.2762 | 12.0 | 12000 | 0.5566 | 0.9095 | | 0.2467 | 13.0 | 13000 | 0.5444 | 0.913 | | 0.2286 | 14.0 | 14000 | 0.5306 | 0.912 | | 0.2215 | 15.0 | 15000 | 0.5312 | 0.9115 | | 0.2038 | 16.0 | 16000 | 0.5242 | 0.912 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
kk00165/Jiang
kk00165
2022-09-24T18:48:44Z
0
0
null
[ "region:us" ]
null
2022-09-24T18:39:49Z
Jiangstyle on Stable Diffusion This is the <Jiangstyle> concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the Stable Conceptualizer notebook. You can also train your own concepts and load them into the concept libraries using this notebook. Here is the new concept you will be able to use as a style:
gokuls/bert-tiny-Massive-intent-KD-BERT
gokuls
2022-09-24T18:38:58Z
115
3
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:massive", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-23T19:19:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: bert-tiny-Massive-intent-KD-BERT results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.853418593212002 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-Massive-intent-KD-BERT This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.8380 - Accuracy: 0.8534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 5.83 | 1.0 | 720 | 4.8826 | 0.3050 | | 4.7602 | 2.0 | 1440 | 3.9904 | 0.4191 | | 4.0301 | 3.0 | 2160 | 3.3806 | 0.5032 | | 3.4797 | 4.0 | 2880 | 2.9065 | 0.5967 | | 3.0352 | 5.0 | 3600 | 2.5389 | 0.6596 | | 2.6787 | 6.0 | 4320 | 2.2342 | 0.7044 | | 2.3644 | 7.0 | 5040 | 1.9873 | 0.7354 | | 2.1145 | 8.0 | 5760 | 1.7928 | 0.7462 | | 1.896 | 9.0 | 6480 | 1.6293 | 0.7644 | | 1.7138 | 10.0 | 7200 | 1.5062 | 0.7752 | | 1.5625 | 11.0 | 7920 | 1.3923 | 0.7885 | | 1.4229 | 12.0 | 8640 | 1.3092 | 0.7978 | | 1.308 | 13.0 | 9360 | 1.2364 | 0.8018 | | 1.201 | 14.0 | 10080 | 1.1759 | 0.8155 | | 1.1187 | 15.0 | 10800 | 1.1322 | 0.8214 | | 1.0384 | 16.0 | 11520 | 1.0990 | 0.8234 | | 0.976 | 17.0 | 12240 | 1.0615 | 0.8308 | | 0.9163 | 18.0 | 12960 | 1.0377 | 0.8328 | | 0.8611 | 19.0 | 13680 | 1.0054 | 0.8337 | | 0.812 | 20.0 | 14400 | 0.9926 | 0.8367 | | 0.7721 | 21.0 | 15120 | 0.9712 | 0.8382 | | 0.7393 | 22.0 | 15840 | 0.9586 | 0.8357 | | 0.7059 | 23.0 | 16560 | 0.9428 | 0.8372 | | 0.6741 | 24.0 | 17280 | 0.9377 | 0.8396 | | 0.6552 | 25.0 | 18000 | 0.9229 | 0.8377 | | 0.627 | 26.0 | 18720 | 0.9100 | 0.8416 | | 0.5972 | 27.0 | 19440 | 0.9028 | 0.8416 | | 0.5784 | 28.0 | 20160 | 0.8996 | 0.8406 | | 0.5595 | 29.0 | 20880 | 0.8833 | 0.8451 | | 0.5438 | 30.0 | 21600 | 0.8772 | 0.8475 | | 0.5218 | 31.0 | 22320 | 0.8758 | 0.8451 | | 0.509 | 32.0 | 23040 | 0.8728 | 0.8480 | | 0.4893 | 33.0 | 23760 | 0.8640 | 0.8480 | | 0.4948 | 34.0 | 24480 | 0.8541 | 0.8475 | | 0.4722 | 35.0 | 25200 | 0.8595 | 0.8495 | | 0.468 | 36.0 | 25920 | 0.8488 | 0.8495 | | 0.4517 | 37.0 | 26640 | 0.8460 | 0.8505 | | 0.4462 | 38.0 | 27360 | 0.8450 | 0.8485 | | 0.4396 | 39.0 | 28080 | 0.8422 | 0.8490 | | 0.427 | 40.0 | 28800 | 0.8380 | 0.8534 | | 0.4287 | 41.0 | 29520 | 0.8385 | 0.8480 | | 0.4222 | 42.0 | 30240 | 0.8319 | 0.8510 | | 0.421 | 43.0 | 30960 | 0.8296 | 0.8510 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
gokuls/bert-base-sst2
gokuls
2022-09-24T18:00:08Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T17:29:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-base-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: train args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9036697247706422 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-sst2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3735 - Accuracy: 0.9037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.243 | 1.0 | 4210 | 0.3735 | 0.9037 | | 0.1557 | 2.0 | 8420 | 0.3907 | 0.8922 | | 0.1248 | 3.0 | 12630 | 0.3690 | 0.8945 | | 0.1017 | 4.0 | 16840 | 0.5466 | 0.8830 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Chemsseddine/bert-base-cased-finetuned-DOP
Chemsseddine
2022-09-24T17:47:24Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T17:34:36Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-cased-finetuned-DOP results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-DOP This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1947 - Accuracy: 0.8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8621 | 1.0 | 20 | 1.4032 | 0.675 | | 1.4484 | 2.0 | 40 | 1.1947 | 0.8 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
gokuls/distilroberta-sst2
gokuls
2022-09-24T17:20:50Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T16:56:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilroberta-sst2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: train args: sst2 metrics: - name: Accuracy type: accuracy value: 0.908256880733945 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-sst2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3451 - Accuracy: 0.9083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2928 | 1.0 | 4210 | 0.3499 | 0.8876 | | 0.1908 | 2.0 | 8420 | 0.3451 | 0.9083 | | 0.1489 | 3.0 | 12630 | 0.3440 | 0.9048 | | 0.119 | 4.0 | 16840 | 0.4963 | 0.8911 | | 0.0974 | 5.0 | 21050 | 0.4645 | 0.8888 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
azaidi-face/xlm-roberta-base-finetuned-panx-de
azaidi-face
2022-09-24T17:16:43Z
125
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-24T17:09:45Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8663101604278075 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1339 - F1: 0.8663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2581 | 1.0 | 525 | 0.1690 | 0.8303 | | 0.1305 | 2.0 | 1050 | 0.1352 | 0.8484 | | 0.0839 | 3.0 | 1575 | 0.1339 | 0.8663 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.10.3
robingeibel/led-large-16384-finetuned-big_patent
robingeibel
2022-09-24T16:03:38Z
93
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "led", "feature-extraction", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-06-28T10:32:30Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: led-large-16384-finetuned-big_patent results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # led-large-16384-finetuned-big_patent This model is a fine-tuned version of [robingeibel/led-large-16384-finetuned-big_patent](https://huggingface.co/robingeibel/led-large-16384-finetuned-big_patent) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.22.1 - TensorFlow 2.8.2 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/lex
sd-concepts-library
2022-09-24T15:55:39Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-24T15:55:33Z
--- license: mit --- ### lex on Stable Diffusion This is the `<lex>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<lex> 0](https://huggingface.co/sd-concepts-library/lex/resolve/main/concept_images/3.jpeg) ![<lex> 1](https://huggingface.co/sd-concepts-library/lex/resolve/main/concept_images/1.jpeg) ![<lex> 2](https://huggingface.co/sd-concepts-library/lex/resolve/main/concept_images/4.jpeg) ![<lex> 3](https://huggingface.co/sd-concepts-library/lex/resolve/main/concept_images/6.jpeg) ![<lex> 4](https://huggingface.co/sd-concepts-library/lex/resolve/main/concept_images/5.jpeg) ![<lex> 5](https://huggingface.co/sd-concepts-library/lex/resolve/main/concept_images/0.jpeg) ![<lex> 6](https://huggingface.co/sd-concepts-library/lex/resolve/main/concept_images/2.jpeg) ![<lex> 7](https://huggingface.co/sd-concepts-library/lex/resolve/main/concept_images/7.jpeg)
truongpdd/vi-en-roberta-base
truongpdd
2022-09-24T15:17:38Z
37
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-19T02:44:51Z
``` from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('truongpdd/vi-en-roberta-base') model = AutoModel.from_pretrained('truongpdd/vi-en-roberta-base', from_flax=True) ```
masakhane/afrimbart_bam_fr_news
masakhane
2022-09-24T15:08:14Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "bam", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:31:01Z
--- license: afl-3.0 language: - bam - fr ---
masakhane/afrimbart_fr_bam_news
masakhane
2022-09-24T15:08:14Z
106
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "fr", "bam", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:31:31Z
--- language: - fr - bam license: afl-3.0 ---
masakhane/byt5_bam_fr_news
masakhane
2022-09-24T15:08:09Z
103
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "bam", "fr", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:37:43Z
--- language: - bam - fr license: afl-3.0 ---
masakhane/mt5_bam_fr_news
masakhane
2022-09-24T15:08:08Z
107
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "bam", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:50:43Z
--- language: - bam - fr license: afl-3.0 ---
masakhane/m2m100_418M_fr_bam_rel_news
masakhane
2022-09-24T15:08:04Z
106
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "bam", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:43:23Z
--- language: - fr - bam license: afl-3.0 ---
masakhane/m2m100_418M_bam_fr_rel
masakhane
2022-09-24T15:08:03Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "bam", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:47:50Z
--- language: - bam - fr license: afl-3.0 ---
masakhane/m2m100_418M_fr_bam_rel_news_ft
masakhane
2022-09-24T15:08:03Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "bam", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:44:33Z
--- language: - fr - bam license: afl-3.0 ---
masakhane/m2m100_418M_fr_bam_rel_ft
masakhane
2022-09-24T15:08:02Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "bam", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:48:57Z
--- language: - fr - bam license: afl-3.0 ---
masakhane/m2m100_418M_fr_bam_rel
masakhane
2022-09-24T15:08:02Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "fr", "bam", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-09T17:47:29Z
--- language: - fr - bam license: afl-3.0 ---
masakhane/afrimt5_bbj_fr_news
masakhane
2022-09-24T15:08:00Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "bbj", "fr", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-13T16:51:01Z
--- language: - bbj - fr license: afl-3.0 ---
masakhane/afrimbart_fr_bbj_news
masakhane
2022-09-24T15:07:59Z
115
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "fr", "bbj", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-13T16:51:24Z
--- language: - fr - bbj license: afl-3.0 ---
masakhane/afribyt5_fr_bbj_news
masakhane
2022-09-24T15:07:58Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "fr", "bbj", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-13T16:52:06Z
--- language: - fr - bbj license: afl-3.0 ---