modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-13 18:26:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
558 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-13 18:25:20
card
stringlengths
11
1.01M
chrisjay/afrospeech-wav2vec-kua
chrisjay
2022-10-10T02:16:10Z
163
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "afro-digits-speech", "dataset:crowd-speech-africa", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2022-10-04T22:25:55Z
--- license: apache-2.0 tags: - afro-digits-speech datasets: - crowd-speech-africa metrics: - accuracy model-index: - name: afrospeech-wav2vec-kua results: - task: name: Audio Classification type: audio-classification dataset: name: Afro Speech type: chrisjay/crowd-speech-africa args: no metrics: - name: Validation Accuracy type: accuracy value: 0.9921875 --- # afrospeech-wav2vec-kua This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the [crowd-speech-africa](https://huggingface.co/datasets/chrisjay/crowd-speech-africa), which was a crowd-sourced dataset collected using the [afro-speech Space](https://huggingface.co/spaces/chrisjay/afro-speech). ## Training and evaluation data The model was trained on a mixed audio data from Oshiwambo (`kua`). - Size of training set: 1376 - Size of validation set: 345 Below is a distribution of the dataset (training and valdation) ![digits-bar-plot-for-afrospeech](digits-bar-plot-for-afrospeech-wav2vec-kua.png) ## Evaluation performance It achieves the following results on the [validation set](VALID_oshiwambo_kua_audio_data.csv): - F1: 0.9913480945477086 - Accuracy: 0.9921875 The confusion matrix below helps to give a better look at the model's performance across the digits. Through it, we can see the precision and recall of the model as well as other important insights. ![confusion matrix](afrospeech-wav2vec-kua_confusion_matrix_VALID.png) ## Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - num_epochs: 150 ## Training results | Training Loss | Epoch | Validation Accuracy | |:-------------:|:-----:|:--------:| | 0.0096 | 1 | 0.9843 | | 0.2555 | 50 | 0.9843 | | 0.00145 | 100 | 0.98177 | | 0.00053 | 150 | 0.97770 | ## Framework versions - Transformers 4.21.3 - Pytorch 1.12.0 - Datasets 1.14.0 - Tokenizers 0.12.1
chrisjay/afrospeech-wav2vec-ibo
chrisjay
2022-10-10T02:15:57Z
166
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "afro-digits-speech", "dataset:crowd-speech-africa", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2022-10-04T19:23:32Z
--- license: apache-2.0 tags: - afro-digits-speech datasets: - crowd-speech-africa metrics: - accuracy model-index: - name: afrospeech-wav2vec-ibo results: - task: name: Audio Classification type: audio-classification dataset: name: Afro Speech type: chrisjay/crowd-speech-africa args: no metrics: - name: Validation Accuracy type: accuracy value: 1.0 --- # afrospeech-wav2vec-ibo This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the [crowd-speech-africa](https://huggingface.co/datasets/chrisjay/crowd-speech-africa), which was a crowd-sourced dataset collected using the [afro-speech Space](https://huggingface.co/spaces/chrisjay/afro-speech). ## Training and evaluation data The model was trained on a mixed audio data from Igbo (`ibo`). - Size of training set: 109 - Size of validation set: 28 Below is a distribution of the dataset (training and valdation) ![digits-bar-plot-for-afrospeech](digits-bar-plot-for-afrospeech-wav2vec-ibo.png) ## Evaluation performance It achieves the following results on the [validation set](VALID_igbo_ibo_audio_data.csv): - F1: 1.0 - Accuracy: 1.0 The confusion matrix below helps to give a better look at the model's performance across the digits. Through it, we can see the precision and recall of the model as well as other important insights. ![confusion matrix](afrospeech-wav2vec-ibo_confusion_matrix_VALID.png) ## Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - num_epochs: 150 ## Training results | Training Loss | Epoch | Validation Accuracy | |:-------------:|:-----:|:--------:| | 0.1415 | 1 | 1.0 | | 0.0241 | 50 | 1.0 | | 0.0019 | 100 | 0.929 | | 0.0012 | 150 | 0.892 | ## Framework versions - Transformers 4.21.3 - Pytorch 1.12.0 - Datasets 1.14.0 - Tokenizers 0.12.1
BigSalmon/Infill
BigSalmon
2022-10-10T00:57:07Z
185
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-26T23:06:22Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/Infill") model = AutoModelForCausalLM.from_pretrained("BigSalmon/Infill") ``` ``` Demo: https://huggingface.co/spaces/BigSalmon/FormalInformalConciseWordy ``` ``` prompt = """few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep]""" input_ids = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(input_ids=input_ids, max_length=10 + len(prompt), temperature=1.0, top_k=50, top_p=0.95, do_sample=True, num_return_sequences=5, early_stopping=True) for i in range(5): print(tokenizer.decode(outputs[i])) ``` Most likely outputs (Disclaimer: I highly recommend using this over just generating): ``` prompt = """few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep]""" text = tokenizer.encode(prompt) myinput, past_key_values = torch.tensor([text]), None myinput = myinput myinput= myinput.to(device) logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False) logits = logits[0,-1] probabilities = torch.nn.functional.softmax(logits) best_logits, best_indices = logits.topk(250) best_words = [tokenizer.decode([idx.item()]) for idx in best_indices] text.append(best_indices[0].item()) best_probabilities = probabilities[best_indices].tolist() words = [] print(best_words) ``` Infill / Infilling / Masking / Phrase Masking ``` when rick won the lottery, all of his distant relatives [blank] his winnings [sep] clamored for [answer] *** ```
BigSalmon/InformalToFormalLincoln84Paraphrase
BigSalmon
2022-10-10T00:36:04Z
182
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-08T22:35:14Z
data: https://github.com/BigSalmon2/InformalToFormalDataset Text Generation Informal Formal Phrase Mask Infill Infilling ``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln84Paraphrase") model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln84Paraphrase") ``` ``` Demo: https://huggingface.co/spaces/BigSalmon/FormalInformalConciseWordy ``` ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" input_ids = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(input_ids=input_ids, max_length=10 + len(prompt), temperature=1.0, top_k=50, top_p=0.95, do_sample=True, num_return_sequences=5, early_stopping=True) for i in range(5): print(tokenizer.decode(outputs[i])) ``` Most likely outputs (Disclaimer: I highly recommend using this over just generating): ``` prompt = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln:""" text = tokenizer.encode(prompt) myinput, past_key_values = torch.tensor([text]), None myinput = myinput myinput= myinput.to(device) logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False) logits = logits[0,-1] probabilities = torch.nn.functional.softmax(logits) best_logits, best_indices = logits.topk(250) best_words = [tokenizer.decode([idx.item()]) for idx in best_indices] text.append(best_indices[0].item()) best_probabilities = probabilities[best_indices].tolist() words = [] print(best_words) ``` ``` How To Make Prompt: informal english: i am very ready to do that just that. Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end. Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task. *** informal english: space is huge and needs to be explored. Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless. Translated into the Style of Abraham Lincoln: space is a ( limitless / boundless ) expanse, a vast virgin domain awaiting exploration. *** informal english: corn fields are all across illinois, visible once you leave chicago. Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago. informal english: ``` ``` original: microsoft word's [MASK] pricing invites competition. Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition. *** original: the library’s quiet atmosphere encourages visitors to [blank] in their work. Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work. ``` ``` Essay Intro (Warriors vs. Rockets in Game 7): text: eagerly anticipated by fans, game 7's are the highlight of the post-season. text: ever-building in suspense, game 7's have the crowd captivated. *** Essay Intro (South Korean TV Is Becoming Popular): text: maturing into a bona fide paragon of programming, south korean television ( has much to offer / entertains without fail / never disappoints ). text: increasingly held in critical esteem, south korean television continues to impress. text: at the forefront of quality content, south korea is quickly achieving celebrity status. *** Essay Intro ( ``` ``` Search: What is the definition of Checks and Balances? https://en.wikipedia.org/wiki/Checks_and_balances Checks and Balances is the idea of having a system where each and every action in government should be subject to one or more checks that would not allow one branch or the other to overly dominate. https://www.harvard.edu/glossary/Checks_and_Balances Checks and Balances is a system that allows each branch of government to limit the powers of the other branches in order to prevent abuse of power https://www.law.cornell.edu/library/constitution/Checks_and_Balances Checks and Balances is a system of separation through which branches of government can control the other, thus preventing excess power. *** Search: What is the definition of Separation of Powers? https://en.wikipedia.org/wiki/Separation_of_powers The separation of powers is a principle in government, whereby governmental powers are separated into different branches, each with their own set of powers, that are prevent one branch from aggregating too much power. https://www.yale.edu/tcf/Separation_of_Powers.html Separation of Powers is the division of governmental functions between the executive, legislative and judicial branches, clearly demarcating each branch's authority, in the interest of ensuring that individual liberty or security is not undermined. *** Search: What is the definition of Connection of Powers? https://en.wikipedia.org/wiki/Connection_of_powers Connection of Powers is a feature of some parliamentary forms of government where different branches of government are intermingled, typically the executive and legislative branches. https://simple.wikipedia.org/wiki/Connection_of_powers The term Connection of Powers describes a system of government in which there is overlap between different parts of the government. *** Search: What is the definition of ``` ``` Search: What are phrase synonyms for "second-guess"? https://www.powerthesaurus.org/second-guess/synonyms Shortest to Longest: - feel dubious about - raise an eyebrow at - wrinkle their noses at - cast a jaundiced eye at - teeter on the fence about *** Search: What are phrase synonyms for "mean to newbies"? https://www.powerthesaurus.org/mean_to_newbies/synonyms Shortest to Longest: - readiness to balk at rookies - absence of tolerance for novices - hostile attitude toward newcomers *** Search: What are phrase synonyms for "make use of"? https://www.powerthesaurus.org/make_use_of/synonyms Shortest to Longest: - call upon - glean value from - reap benefits from - derive utility from - seize on the merits of - draw on the strength of - tap into the potential of *** Search: What are phrase synonyms for "hurting itself"? https://www.powerthesaurus.org/hurting_itself/synonyms Shortest to Longest: - erring - slighting itself - forfeiting its integrity - doing itself a disservice - evincing a lack of backbone *** Search: What are phrase synonyms for " ``` ``` - nebraska - unicamerical legislature - different from federal house and senate text: featuring a unicameral legislature, nebraska's political system stands in stark contrast to the federal model, comprised of a house and senate. *** - penny has practically no value - should be taken out of circulation - just as other coins have been in us history - lost use - value not enough - to make environmental consequences worthy text: all but valueless, the penny should be retired. as with other coins in american history, it has become defunct. too minute to warrant the environmental consequences of its production, it has outlived its usefulness. *** - ``` ``` original: sports teams are profitable for owners. [MASK], their valuations experience a dramatic uptick. infill: sports teams are profitable for owners. ( accumulating vast sums / stockpiling treasure / realizing benefits / cashing in / registering robust financials / scoring on balance sheets ), their valuations experience a dramatic uptick. *** original: ``` ``` wordy: classical music is becoming less popular more and more. Translate into Concise Text: interest in classic music is fading. *** wordy: ``` ``` sweet: savvy voters ousted him. longer: voters who were informed delivered his defeat. *** sweet: ``` ``` 1: commercial space company spacex plans to launch a whopping 52 flights in 2022. 2: spacex, a commercial space company, intends to undertake a total of 52 flights in 2022. 3: in 2022, commercial space company spacex has its sights set on undertaking 52 flights. 4: 52 flights are in the pipeline for 2022, according to spacex, a commercial space company. 5: a commercial space company, spacex aims to conduct 52 flights in 2022. *** 1: ``` Keywords to sentences or sentence. ``` ngos are characterized by: □ voluntary citizens' group that is organized on a local, national or international level □ encourage political participation □ often serve humanitarian functions □ work for social, economic, or environmental change *** what are the drawbacks of living near an airbnb? □ noise □ parking □ traffic □ security □ strangers *** ``` ``` original: musicals generally use spoken dialogue as well as songs to convey the story. operas are usually fully sung. adapted: musicals generally use spoken dialogue as well as songs to convey the story. ( in a stark departure / on the other hand / in contrast / by comparison / at odds with this practice / far from being alike / in defiance of this standard / running counter to this convention ), operas are usually fully sung. *** original: akoya and tahitian are types of pearls. akoya pearls are mostly white, and tahitian pearls are naturally dark. adapted: akoya and tahitian are types of pearls. ( a far cry from being indistinguishable / easily distinguished / on closer inspection / setting them apart / not to be mistaken for one another / hardly an instance of mere synonymy / differentiating the two ), akoya pearls are mostly white, and tahitian pearls are naturally dark. *** original: ``` ``` original: had trouble deciding. translated into journalism speak: wrestled with the question, agonized over the matter, furrowed their brows in contemplation. *** original: ``` ``` input: not loyal 1800s english: ( two-faced / inimical / perfidious / duplicitous / mendacious / double-dealing / shifty ). *** input: ``` ``` first: ( was complicit in / was involved in ). antonym: ( was blameless / was not an accomplice to / had no hand in / was uninvolved in ). *** first: ( have no qualms about / see no issue with ). antonym: ( are deeply troubled by / harbor grave reservations about / have a visceral aversion to / take ( umbrage at / exception to ) / are wary of ). *** first: ( do not see eye to eye / disagree often ). antonym: ( are in sync / are united / have excellent rapport / are like-minded / are in step / are of one mind / are in lockstep / operate in perfect harmony / march in lockstep ). *** first: ``` ``` stiff with competition, law school {A} is the launching pad for countless careers, {B} is a crowded field, {C} ranks among the most sought-after professional degrees, {D} is a professional proving ground. *** languishing in viewership, saturday night live {A} is due for a creative renaissance, {B} is no longer a ratings juggernaut, {C} has been eclipsed by its imitators, {C} can still find its mojo. *** dubbed the "manhattan of the south," atlanta {A} is a bustling metropolis, {B} is known for its vibrant downtown, {C} is a city of rich history, {D} is the pride of georgia. *** embattled by scandal, harvard {A} is feeling the heat, {B} cannot escape the media glare, {C} is facing its most intense scrutiny yet, {D} is in the spotlight for all the wrong reasons. ``` Infill / Infilling / Masking / Phrase Masking (Works pretty decently actually, especially when you use logprobs code from above): ``` his contention [blank] by the evidence [sep] was refuted [answer] *** few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep] synonymous with [answer] *** when rick won the lottery, all of his distant relatives [blank] his winnings [sep] clamored for [answer] *** the library’s quiet atmosphere encourages visitors to [blank] in their work [sep] immerse themselves [answer] *** the joy of sport is that no two games are alike. for every exhilarating experience, however, there is an interminable one. the national pastime, unfortunately, has a penchant for the latter. what begins as a summer evening at the ballpark can quickly devolve into a game of tedium. the primary culprit is the [blank] of play. from batters readjusting their gloves to fielders spitting on their mitts, the action is [blank] unnecessary interruptions. the sport's future is [blank] if these tendencies are not addressed [sep] plodding pace [answer] riddled with [answer] bleak [answer] *** microsoft word's [blank] pricing [blank] competition [sep] unconscionable [answer] invites [answer] *** ``` ``` original: microsoft word's [MASK] pricing invites competition. Translated into the Style of Abraham Lincoln: microsoft word's unconscionable pricing invites competition. *** original: the library’s quiet atmosphere encourages visitors to [blank] in their work. Translated into the Style of Abraham Lincoln: the library’s quiet atmosphere encourages visitors to immerse themselves in their work. ``` Backwards ``` Essay Intro (National Parks): text: tourists are at ease in the national parks, ( swept up in the beauty of their natural splendor ). *** Essay Intro (D.C. Statehood): washington, d.c. is a city of outsize significance, ( ground zero for the nation's political life / center stage for the nation's political machinations ). ``` ``` topic: the Golden State Warriors. characterization 1: the reigning kings of the NBA. characterization 2: possessed of a remarkable cohesion. characterization 3: helmed by superstar Stephen Curry. characterization 4: perched atop the league’s hierarchy. characterization 5: boasting a litany of hall-of-famers. *** topic: emojis. characterization 1: shorthand for a digital generation. characterization 2: more versatile than words. characterization 3: the latest frontier in language. characterization 4: a form of self-expression. characterization 5: quintessentially millennial. characterization 6: reflective of a tech-centric world. *** topic: ``` ``` regular: illinois went against the census' population-loss prediction by getting more residents. VBG: defying the census' prediction of population loss, illinois experienced growth. *** regular: microsoft word’s high pricing increases the likelihood of competition. VBG: extortionately priced, microsoft word is inviting competition. *** regular: ``` ``` source: badminton should be more popular in the US. QUERY: Based on the given topic, can you develop a story outline? target: (1) games played with racquets are popular, (2) just look at tennis and ping pong, (3) but badminton underappreciated, (4) fun, fast-paced, competitive, (5) needs to be marketed more text: the sporting arena is dominated by games that are played with racquets. tennis and ping pong, in particular, are immensely popular. somewhat curiously, however, badminton is absent from this pantheon. exciting, fast-paced, and competitive, it is an underappreciated pastime. all that it lacks is more effective marketing. *** source: movies in theaters should be free. QUERY: Based on the given topic, can you develop a story outline? target: (1) movies provide vital life lessons, (2) many venues charge admission, (3) those without much money text: the lessons that movies impart are far from trivial. the vast catalogue of cinematic classics is replete with inspiring sagas of friendship, bravery, and tenacity. it is regrettable, then, that admission to theaters is not free. in their current form, the doors of this most vital of institutions are closed to those who lack the means to pay. *** source: ``` ``` in the private sector, { transparency } is vital to the business’s credibility. the { disclosure of information } can be the difference between success and failure. *** the labor market is changing, with { remote work } now the norm. this { flexible employment } allows the individual to design their own schedule. *** the { cubicle } is the locus of countless grievances. many complain that the { enclosed workspace } restricts their freedom of movement. *** ``` ``` it would be natural to assume that americans, as a people whose ancestors { immigrated to this country }, would be sympathetic to those seeking to do likewise. question: what does “do likewise” mean in the above context? (a) make the same journey (b) share in the promise of the american dream (c) start anew in the land of opportunity (d) make landfall on the united states *** in the private sector, { transparency } is vital to the business’s credibility. this orientation can be the difference between success and failure. question: what does “this orientation” mean in the above context? (a) visible business practices (b) candor with the public (c) open, honest communication (d) culture of accountability ``` ``` example: suppose you are a teacher. further suppose you want to tell an accurate telling of history. then suppose a parent takes offense. they do so in the name of name of their kid. this happens a lot. text: educators' responsibility to remain true to the historical record often clashes with the parent's desire to shelter their child from uncomfortable realities. *** example: suppose you are a student at college. now suppose you have to buy textbooks. that is going to be worth hundreds of dollars. given how much you already spend on tuition, that is going to hard cost to bear. text: the exorbitant cost of textbooks, which often reaches hundreds of dollars, imposes a sizable financial burden on the already-strapped college student. ``` ``` <Prefix> the atlanta hawks may attribute <Prefix> <Suffix> trae young <Suffix> <Middle> their robust season to <Middle> *** <Prefix> the nobel prize in literature <Prefix> <Suffix> honor <Suffix> <Middle> is a singularly prestigious <Middle> ``` ``` accustomed to having its name uttered ______, harvard university is weathering a rare spell of reputational tumult (a) in reverential tones (b) with great affection (c) in adulatory fashion (d) in glowing terms ``` ``` clarify: international ( {working together} / cooperation ) is called for when ( {issue go beyond lots of borders} / an issue transcends borders / a given matter has transnational implications ). ``` ``` description: when someone thinks that their view is the only right one. synonyms: intolerant, opinionated, narrow-minded, insular, self-righteous. *** description: when you put something off. synonyms: shelve, defer, table, postpone. ``` ``` organic sentence: crowdfunding is about winner of best ideas and it can test an entrepreneur’s idea. rewrite phrases: meritocratic, viability, vision rewritten with phrases: the meritocratic nature of crowdfunding empowers entrepreneurs to test their vision's viability. ``` *Note* Of all the masking techniques, this one works the best. ``` <Prefix> the atlanta hawks may attribute <Suffix> trae young <Middle> their robust season to <Middle> *** <Prefix> the nobel prize in literature <Suffix> honor <Middle> is a singularly prestigious <Middle> ``` ``` essence: when someone's views are keeping within reasonable. refine: the senator's voting record is ( moderate / centrist / pragmatic / balanced / fair-minded / even-handed ). *** essence: when things are worked through in a petty way. refine: the propensity of the u.s. congress to settle every dispute by way of ( mudslinging / bickering / demagoguery / name-calling / finger-pointing / vilification ) is appalling. ``` ``` <Suffix> of internationality <Prefix> there are examples of strategies that have <Middle> withstood the test <Middle> ``` ``` test: the movie's success has ..... the producer's earlier failure. (a) overshadowed, (b) obscured, (c) outshone, (d) offset ``` ``` complete: as sales figures soared, so too did [hiring openings] -> employment opportunities. just as noteworthy was [wages increased] -> the effect on wage growth. *** complete: in exchange for a small uptick in the labor bill, they were able to [get holiday season most money possible] -> ( wring the most out of the holiday season / maximize the proceeds of the holiday season / milk the holiday season for all its worth ). ``` ``` h: of all the obligations of adulthood, there is none that elicits more scorn than paying taxes. indeed, any exchange where money is taken and not received in return is bound to be the source of frustration. understandably, the impulse is to want to hold on to every dollar earned. yet, this urge must be tempered by a realization that tax revenue is essential to a functional society. question: what does “this urge” mean in the above context? (a) anti-tax sentiment (b) libertarian disposition (c) yearning to retain every dollar (d) resistance to redistribution (e) misanthropic attitude ```
BigSalmon/Infill05
BigSalmon
2022-10-10T00:35:47Z
198
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-10T00:29:02Z
``` from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("BigSalmon/Infill05") model = AutoModelForCausalLM.from_pretrained("BigSalmon/Infill05") ``` ``` Try it out here: https://huggingface.co/spaces/BigSalmon/TestAnyGPTModel ``` ``` prompt = """few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep]""" input_ids = tokenizer.encode(prompt, return_tensors='pt') outputs = model.generate(input_ids=input_ids, max_length=10 + len(prompt), temperature=1.0, top_k=50, top_p=0.95, do_sample=True, num_return_sequences=5, early_stopping=True) for i in range(5): print(tokenizer.decode(outputs[i])) ``` Most likely outputs (Disclaimer: I highly recommend using this over just generating): ``` prompt = """few sights are as [blank] new york city as the colorful, flashing signage of its bodegas [sep]""" text = tokenizer.encode(prompt) myinput, past_key_values = torch.tensor([text]), None myinput = myinput myinput= myinput.to(device) logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False) logits = logits[0,-1] probabilities = torch.nn.functional.softmax(logits) best_logits, best_indices = logits.topk(250) best_words = [tokenizer.decode([idx.item()]) for idx in best_indices] text.append(best_indices[0].item()) best_probabilities = probabilities[best_indices].tolist() words = [] print(best_words) ``` Phrase Mask Infill / Infilling / Masking / Phrase Masking ``` His contention [blank] by the evidence [sep] was refuted [answer] *** Few sights are as [blank] New York City as the colorful, flashing signage of its bodegas [sep] synonymous with [answer] *** When rick won the lottery, all of his distant relatives [blank] his winnings [sep] clamored for [answer] *** The library’s quiet atmosphere encourages visitors to [blank] in their work [sep] immerse themselves [answer] *** ``` ``` original: Other film stars to have appeared in Scrubs include Heather Graham, while Friends actor Matthew Perry has guest-starred and directed an episode of the [MASK] star, who recently played the title role in historical blockbuster Alexander, will make a cameo appearance as an unruly Irishman. Its leading star, Zach Braff, has recently [MASK] the big screen in Garden State, which he also directed. Farrell is pencilled in to [MASK] of Crockett in a film version of 1980s police [MASK] Farrell's appearance is said to be a result of his friendship with Zach Braff, who stars in the programme. infill: Other film stars to have appeared in Scrubs include Heather Graham, while Friends actor Matthew Perry has guest-starred and directed an episode of the show. The film star, who recently played the title role in historical blockbuster Alexander, will make a cameo appearance as an unruly Irishman. Its leading star, Zach Braff, has recently been seen on the big screen in Garden State, which he also directed. Farrell is pencilled in to play the role of Crockett in a film version of 1980s police drama Miami Vice. Farrell's appearance is said to be a result of his friendship with Zach Braff, who stars in the programme. ``` ``` <Suffix> of internationality <Prefix> there are examples of strategies that have <Middle> withstood the test <Middle> ```
huggingtweets/cl207
huggingtweets
2022-10-10T00:30:08Z
129
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T06:56:24Z
--- language: en thumbnail: http://www.huggingtweets.com/cl207/1665361801897/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1565608502793367552/PgTC0Bk8_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">CL</div> <div style="text-align: center; font-size: 14px;">@cl207</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from CL. | Data | CL | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 165 | | Short tweets | 495 | | Tweets kept | 2580 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1kd7xeiw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cl207's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3bcsycgu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3bcsycgu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cl207') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/thisislux
huggingtweets
2022-10-09T23:38:08Z
128
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-09T23:36:49Z
--- language: en thumbnail: http://www.huggingtweets.com/thisislux/1665358684361/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1358092565862637571/I8IpAB-v_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Lux</div> <div style="text-align: center; font-size: 14px;">@thisislux</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Lux. | Data | Lux | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 662 | | Short tweets | 470 | | Tweets kept | 2118 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1369ctkf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thisislux's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/djry9bsi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/djry9bsi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/thisislux') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/bittynox
huggingtweets
2022-10-09T23:23:59Z
128
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-09T21:58:15Z
--- language: en thumbnail: http://www.huggingtweets.com/bittynox/1665357835052/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1557896466252840961/UJXL2x8V_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">nox</div> <div style="text-align: center; font-size: 14px;">@bittynox</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from nox. | Data | nox | | --- | --- | | Tweets downloaded | 1681 | | Retweets | 190 | | Short tweets | 184 | | Tweets kept | 1307 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/cafbxcq5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bittynox's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ctlbcy2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ctlbcy2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bittynox') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ai-forever/RUDOLPH-350M
ai-forever
2022-10-09T23:22:34Z
0
9
null
[ "pytorch", "RUDOLPH", "text-image", "image-text", "decoder", "dataset:sberquad", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - RUDOLPH - text-image - image-text - decoder datasets: - sberquad --- # RUDOLPH-350M (Small) RUDOLPH: One Hyper-Tasking Transformer Сan be Сreative as DALL-E and GPT-3 and Smart as CLIP <img src="https://raw.githubusercontent.com/sberbank-ai/ru-dolph/master/pics/RUDOLPH.png" width=60% border="2"/> Model was trained by [Sber AI](https://github.com/ai-forever) team. # Model Description **RU**ssian **D**ecoder **O**n **L**anguage **P**icture **H**yper-tasking (**RUDOLPH**) **350M** is a fast and light text-image-text transformer designed for a quick and easy fine-tuning for a range of tasks: from generating images by text description and image classification to visual question answering and more. This model demonstrates the power of Hyper-tasking Transformers. *Hyper-tasking model is a generalized multi-tasking model, i.e., the model that can solve almost all tasks within supported modalities, mandatory including mutual pairwise translations between modalities (two modalities in case of RUDOLPH: images and Russian texts).* * Tasks: ` text2image generation, self reranking, text ranking, image ranking, image2text generation, zero-shot image classification, text2text generation, and so on` * Language: ` Russian` * Type: ` decoder` * Num Parameters: ` 350M` * Training Data Volume: `141 million text-image pairs, 7.6 million text paragraphs` # Details of architecture <img src=https://raw.githubusercontent.com/ai-forever/ru-dolph/master/pics/scheme-rudolph_350m.jpg height="20" border="2"/> The maximum sequence length that this model may be used with depends on the modality and stands for 64 - 256 - 64 for the left text tokens, image tokens, and right text tokens, respectively. RUDOLPH 350M is a Transformer-based decoder model with the following parameters: * num\_layers (24) — Number of hidden layers in the Transformer decoder. * hidden\_size (1024) — Dimensionality of the hidden layers. * num\_attention\_heads (16) — Number of attention heads for each attention layer. # Sparse Attention Masks The primary proposed method is to modify the sparse transformer's attention mask to better control modalities. It allows us to calculate the transitions of modalities in both directions, unlike another similar work DALL-E Transformer, which used only one direction, "text to image". The proposed "image to right text" direction is achieved by extension sparse attention mask to the right for auto-repressively text generation with both image and left text condition. <img src="https://raw.githubusercontent.com/sberbank-ai/ru-dolph/master/pics/attention_masks_350m.png" height="40" border="2"/> # Authors + Alex Shonenkov: [Github](https://github.com/shonenkov), [Kaggle GM](https://www.kaggle.com/shonenkov) + Michael Konstantinov: [Mishin Learning](https://t.me/mishin_learning), [Transformer Community](https://transformer.community/)
huggingtweets/eeriemachine
huggingtweets
2022-10-09T22:04:18Z
129
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-15T21:04:47Z
--- language: en thumbnail: http://www.huggingtweets.com/eeriemachine/1665353005078/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1579097527982460934/-x9lVWzx_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Alea 🃏</div> <div style="text-align: center; font-size: 14px;">@eeriemachine</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Alea 🃏. | Data | Alea 🃏 | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 68 | | Short tweets | 181 | | Tweets kept | 2991 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/15ucae0z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @eeriemachine's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1smqz4yt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1smqz4yt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/eeriemachine') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
halflings/agricultural_yield
halflings
2022-10-09T21:51:23Z
0
0
mlconsole
[ "mlconsole", "en", "license:unknown", "region:us" ]
null
2022-10-09T21:51:20Z
--- license: unknown language: - en tags: - mlconsole library_name: mlconsole metrics: - mae - loss model-index: - name: agricultural_yield results: - task: type: regression name: regression dataset: type: agricultural yield name: Agricultural yield metrics: - type: mae name: Mean absolute error value: 7.280202388763428 - type: loss name: Model loss value: 128.23114013671875 --- # Agricultural yield (#2) Trained on [ML Console](https://mlconsole.com). [Load the model on ML Console](https://mlconsole.com/model/hf/halflings/agricultural_yield).
halflings/diabetes_detection
halflings
2022-10-09T21:50:54Z
0
0
mlconsole
[ "mlconsole", "en", "license:unknown", "region:us" ]
null
2022-10-09T21:50:51Z
--- license: unknown language: - en tags: - mlconsole library_name: mlconsole metrics: - accuracy - loss model-index: - name: diabetes_detection results: - task: type: classification name: classification dataset: type: diabetes detection name: Diabetes detection metrics: - type: accuracy name: Accuracy value: 0.765625 - type: loss name: Model loss value: 0.5329774022102356 --- # Diabetes detection (#1) Trained on [ML Console](https://mlconsole.com). [Load the model on ML Console](https://mlconsole.com/model/hf/halflings/diabetes_detection).
halflings/house_price_prediction
halflings
2022-10-09T21:50:29Z
0
0
mlconsole
[ "mlconsole", "en", "license:unknown", "region:us" ]
null
2022-10-09T21:50:27Z
--- license: unknown language: - en tags: - mlconsole library_name: mlconsole metrics: - mae - loss model-index: - name: house_price_prediction results: - task: type: regression name: regression dataset: type: house price prediction name: House price prediction metrics: - type: mae name: Mean absolute error value: 5.42720365524292 - type: loss name: Model loss value: 50.44972229003906 --- # House price prediction (#0) Trained on [ML Console](https://mlconsole.com). [Load the model on ML Console](https://mlconsole.com/model/hf/halflings/house_price_prediction).
anas-awadalla/t5-base-finetuned-squad-infilling-lr-5e-5
anas-awadalla
2022-10-09T19:46:30Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T20:15:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-finetuned-squad-infilling-lr-5e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-squad-infilling-lr-5e-5 This model is a fine-tuned version of [anas-awadalla/t5-base-finetuned-squad-infilling-lr-5e-5](https://huggingface.co/anas-awadalla/t5-base-finetuned-squad-infilling-lr-5e-5) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
saefro991/m-ailabs_en-us_judy_phn_tacotron2
saefro991
2022-10-09T18:10:01Z
1
0
espnet
[ "espnet", "audio", "text-to-speech", "en", "dataset:m_ailabs", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
text-to-speech
2022-10-09T17:24:47Z
--- tags: - espnet - audio - text-to-speech language: en datasets: - m_ailabs license: cc-by-4.0 --- ## ESPnet2 TTS model ### `saefro991/m-ailabs_en-us_judy_phn_tacotron2` This model was trained by Takaaki-Saeki using m_ailabs recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 32b0f75b4491b71e88deac62bfc431cfcc9d7143 pip install -e . cd egs2/m_ailabs/tts1 ./run.sh --skip_data_prep false --skip_train true --download_model saefro991/m-ailabs_en-us_judy_phn_tacotron2 ``` ## TTS config <details><summary>expand</summary> ``` config: conf/train.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_raw_phn_tacotron_g2p_en ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 200 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min - - train - loss - min keep_nbest_models: 5 nbest_averaging_interval: 0 grad_clip: 1.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: 500 batch_size: 20 valid_batch_size: null batch_bins: 5120000 valid_batch_bins: null train_shape_file: - exp/tts_stats_raw_phn_tacotron_g2p_en/train/text_shape.phn - exp/tts_stats_raw_phn_tacotron_g2p_en/train/speech_shape valid_shape_file: - exp/tts_stats_raw_phn_tacotron_g2p_en/valid/text_shape.phn - exp/tts_stats_raw_phn_tacotron_g2p_en/valid/speech_shape batch_type: numel valid_batch_type: null fold_length: - 150 - 204800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr_no_dev/text - text - text - - dump/raw/tr_no_dev/wav.scp - speech - sound valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text - - dump/raw/dev/wav.scp - speech - sound allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.001 eps: 1.0e-06 weight_decay: 0.0 scheduler: null scheduler_conf: {} token_list: - <blank> - <unk> - '' - AH0 - T - N - D - R - S - L - DH - IH1 - K - EH1 - M - Z - AE1 - W - IH0 - AH1 - ',' - B - IY1 - ER0 - UW1 - P - HH - AY1 - F - V - AA1 - AO1 - . - EY1 - IY0 - OW1 - NG - G - Y - AW1 - SH - CH - ER1 - UH1 - TH - JH - OW0 - OY1 - '?' - '!' - EH0 - EY2 - IH2 - '''' - AY2 - AA0 - EH2 - UW0 - AA2 - AH2 - AE0 - OW2 - AO2 - UW2 - AE2 - ZH - AW2 - AY0 - IY2 - AO0 - UH0 - UH2 - OY2 - AW0 - ER2 - EY0 - OY0 - <sos/eos> odim: null model_conf: {} use_preprocessor: true token_type: phn bpemodel: null non_linguistic_symbols: null cleaner: tacotron g2p: g2p_en feats_extract: fbank feats_extract_conf: n_fft: 1024 hop_length: 256 win_length: null fs: 16000 fmin: 80 fmax: 7600 n_mels: 80 normalize: global_mvn normalize_conf: stats_file: exp/tts_stats_raw_phn_tacotron_g2p_en/train/feats_stats.npz tts: tacotron2 tts_conf: embed_dim: 512 elayers: 1 eunits: 512 econv_layers: 3 econv_chans: 512 econv_filts: 5 atype: location adim: 512 aconv_chans: 32 aconv_filts: 15 cumulate_att_w: true dlayers: 2 dunits: 1024 prenet_layers: 2 prenet_units: 256 postnet_layers: 5 postnet_chans: 512 postnet_filts: 5 output_activation: null use_batch_norm: true use_concate: true use_residual: false dropout_rate: 0.5 zoneout_rate: 0.1 reduction_factor: 1 spk_embed_dim: null use_masking: true bce_pos_weight: 5.0 use_guided_attn_loss: true guided_attn_loss_sigma: 0.4 guided_attn_loss_lambda: 1.0 pitch_extract: null pitch_extract_conf: {} pitch_normalize: null pitch_normalize_conf: {} energy_extract: null energy_extract_conf: {} energy_normalize: null energy_normalize_conf: {} required: - output_dir - token_list version: '202209' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
sd-concepts-library/toy-bonnie-plush
sd-concepts-library
2022-10-09T17:38:28Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-09T17:38:22Z
--- license: mit --- ### Toy Bonnie plush on Stable Diffusion This is the `<toy-bonnie-plush>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<toy-bonnie-plush> 0](https://huggingface.co/sd-concepts-library/toy-bonnie-plush/resolve/main/concept_images/4.jpeg) ![<toy-bonnie-plush> 1](https://huggingface.co/sd-concepts-library/toy-bonnie-plush/resolve/main/concept_images/14.jpeg) ![<toy-bonnie-plush> 2](https://huggingface.co/sd-concepts-library/toy-bonnie-plush/resolve/main/concept_images/8.jpeg) ![<toy-bonnie-plush> 3](https://huggingface.co/sd-concepts-library/toy-bonnie-plush/resolve/main/concept_images/5.jpeg) ![<toy-bonnie-plush> 4](https://huggingface.co/sd-concepts-library/toy-bonnie-plush/resolve/main/concept_images/11.jpeg) ![<toy-bonnie-plush> 5](https://huggingface.co/sd-concepts-library/toy-bonnie-plush/resolve/main/concept_images/9.jpeg) ![<toy-bonnie-plush> 6](https://huggingface.co/sd-concepts-library/toy-bonnie-plush/resolve/main/concept_images/0.jpeg) ![<toy-bonnie-plush> 7](https://huggingface.co/sd-concepts-library/toy-bonnie-plush/resolve/main/concept_images/7.jpeg) ![<toy-bonnie-plush> 8](https://huggingface.co/sd-concepts-library/toy-bonnie-plush/resolve/main/concept_images/3.jpeg) ![<toy-bonnie-plush> 9](https://huggingface.co/sd-concepts-library/toy-bonnie-plush/resolve/main/concept_images/2.jpeg) ![<toy-bonnie-plush> 10](https://huggingface.co/sd-concepts-library/toy-bonnie-plush/resolve/main/concept_images/13.jpeg) ![<toy-bonnie-plush> 11](https://huggingface.co/sd-concepts-library/toy-bonnie-plush/resolve/main/concept_images/6.jpeg) ![<toy-bonnie-plush> 12](https://huggingface.co/sd-concepts-library/toy-bonnie-plush/resolve/main/concept_images/15.jpeg) ![<toy-bonnie-plush> 13](https://huggingface.co/sd-concepts-library/toy-bonnie-plush/resolve/main/concept_images/10.jpeg) ![<toy-bonnie-plush> 14](https://huggingface.co/sd-concepts-library/toy-bonnie-plush/resolve/main/concept_images/12.jpeg) ![<toy-bonnie-plush> 15](https://huggingface.co/sd-concepts-library/toy-bonnie-plush/resolve/main/concept_images/1.jpeg)
osanseviero/us-patents
osanseviero
2022-10-09T16:28:05Z
108
1
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-09T16:05:13Z
--- license: mit tags: - generated_from_trainer model-index: - name: us-patents results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # us-patents This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0229 - Pearson: 0.8317 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 128 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 1.0 | 214 | 0.0289 | 0.7929 | | No log | 2.0 | 428 | 0.0242 | 0.8211 | | 0.0359 | 3.0 | 642 | 0.0232 | 0.8304 | | 0.0359 | 4.0 | 856 | 0.0229 | 0.8317 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
hezzze/ppo-LunarLander-v2
hezzze
2022-10-09T15:52:52Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-10-09T15:36:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 272.33 +/- 17.74 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
din0s/t5-base_ro-finetuned-en-to-it
din0s
2022-10-09T15:40:49Z
7
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:ccmatrix", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-09T13:16:59Z
--- tags: - generated_from_trainer datasets: - ccmatrix metrics: - bleu model-index: - name: t5-base_ro-finetuned-en-to-it results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: ccmatrix type: ccmatrix config: en-it split: train[3000:12000] args: en-it metrics: - name: Bleu type: bleu value: 19.6396 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base_ro-finetuned-en-to-it This model is a fine-tuned version of [j0hngou/t5-base-finetuned-en-to-ro](https://huggingface.co/j0hngou/t5-base-finetuned-en-to-ro) on the ccmatrix dataset. It achieves the following results on the evaluation set: - Loss: 1.4669 - Bleu: 19.6396 - Gen Len: 52.4247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 282 | 2.0942 | 5.6875 | 73.434 | | 2.5108 | 2.0 | 564 | 1.9725 | 6.6631 | 72.6607 | | 2.5108 | 3.0 | 846 | 1.9010 | 7.9227 | 67.01 | | 2.1659 | 4.0 | 1128 | 1.8452 | 8.9935 | 65.1027 | | 2.1659 | 5.0 | 1410 | 1.7979 | 9.4164 | 64.9827 | | 2.0288 | 6.0 | 1692 | 1.7590 | 9.6035 | 66.6933 | | 2.0288 | 7.0 | 1974 | 1.7264 | 10.7658 | 62.068 | | 1.9238 | 8.0 | 2256 | 1.6955 | 11.5779 | 59.472 | | 1.8435 | 9.0 | 2538 | 1.6729 | 12.7588 | 56.584 | | 1.8435 | 10.0 | 2820 | 1.6541 | 13.3086 | 56.1153 | | 1.775 | 11.0 | 3102 | 1.6337 | 13.8543 | 55.3307 | | 1.775 | 12.0 | 3384 | 1.6148 | 14.3566 | 55.2853 | | 1.7204 | 13.0 | 3666 | 1.5994 | 14.693 | 55.6607 | | 1.7204 | 14.0 | 3948 | 1.5838 | 15.1284 | 55.5327 | | 1.6705 | 15.0 | 4230 | 1.5742 | 15.6125 | 55.0087 | | 1.632 | 16.0 | 4512 | 1.5600 | 15.9616 | 54.052 | | 1.632 | 17.0 | 4794 | 1.5526 | 16.495 | 53.562 | | 1.5868 | 18.0 | 5076 | 1.5392 | 16.4252 | 54.4613 | | 1.5868 | 19.0 | 5358 | 1.5311 | 16.753 | 54.1853 | | 1.5656 | 20.0 | 5640 | 1.5262 | 17.0308 | 54.2473 | | 1.5656 | 21.0 | 5922 | 1.5186 | 17.3553 | 53.396 | | 1.529 | 22.0 | 6204 | 1.5121 | 17.6177 | 53.472 | | 1.529 | 23.0 | 6486 | 1.5058 | 17.6409 | 53.6847 | | 1.5071 | 24.0 | 6768 | 1.5038 | 18.2009 | 53.2327 | | 1.4903 | 25.0 | 7050 | 1.4962 | 18.4838 | 52.9587 | | 1.4903 | 26.0 | 7332 | 1.4935 | 18.5545 | 52.688 | | 1.4686 | 27.0 | 7614 | 1.4879 | 18.62 | 53.5 | | 1.4686 | 28.0 | 7896 | 1.4850 | 19.0099 | 52.34 | | 1.4511 | 29.0 | 8178 | 1.4813 | 19.0538 | 52.474 | | 1.4511 | 30.0 | 8460 | 1.4787 | 18.89 | 53.0753 | | 1.4364 | 31.0 | 8742 | 1.4756 | 19.2582 | 52.3587 | | 1.4279 | 32.0 | 9024 | 1.4739 | 19.2973 | 52.69 | | 1.4279 | 33.0 | 9306 | 1.4725 | 19.3624 | 52.694 | | 1.4172 | 34.0 | 9588 | 1.4704 | 19.5421 | 52.1667 | | 1.4172 | 35.0 | 9870 | 1.4689 | 19.4807 | 52.5487 | | 1.4141 | 36.0 | 10152 | 1.4685 | 19.5972 | 52.2733 | | 1.4141 | 37.0 | 10434 | 1.4676 | 19.5835 | 52.374 | | 1.4058 | 38.0 | 10716 | 1.4674 | 19.6374 | 52.3447 | | 1.4058 | 39.0 | 10998 | 1.4671 | 19.6105 | 52.5273 | | 1.4027 | 40.0 | 11280 | 1.4669 | 19.6396 | 52.4247 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.11.0
jamesesguerra/distilbart-cnn-12-6-finetuned-1.2.1
jamesesguerra
2022-10-09T15:28:36Z
126
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-09T14:47:59Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: distilbart-cnn-12-6-finetuned-1.2.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-finetuned-1.2.1 This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9404 - Rouge1: 30.4308 - Rouge2: 13.2594 - Rougel: 25.8203 - Rougelsum: 25.9617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.5124 | 1.0 | 1171 | 2.0753 | 29.493 | 12.3563 | 24.8091 | 24.9317 | | 1.7628 | 2.0 | 2342 | 1.9404 | 30.4308 | 13.2594 | 25.8203 | 25.9617 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
din0s/t5-small-finetuned-en-to-it-b32
din0s
2022-10-09T15:15:47Z
111
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:ccmatrix", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-09T13:59:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - ccmatrix metrics: - bleu model-index: - name: t5-small-finetuned-en-to-it-b32 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: ccmatrix type: ccmatrix config: en-it split: train[3000:12000] args: en-it metrics: - name: Bleu type: bleu value: 9.6816 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-it-b32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the ccmatrix dataset. It achieves the following results on the evaluation set: - Loss: 2.1496 - Bleu: 9.6816 - Gen Len: 56.5347 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | No log | 1.0 | 282 | 2.9409 | 2.6764 | 69.2487 | | 3.3809 | 2.0 | 564 | 2.8277 | 2.4974 | 87.428 | | 3.3809 | 3.0 | 846 | 2.7483 | 2.6851 | 89.7887 | | 3.1255 | 4.0 | 1128 | 2.6831 | 3.1801 | 85.6927 | | 3.1255 | 5.0 | 1410 | 2.6293 | 3.6949 | 79.9467 | | 2.9965 | 6.0 | 1692 | 2.5809 | 4.0149 | 76.852 | | 2.9965 | 7.0 | 1974 | 2.5403 | 4.3463 | 74.6487 | | 2.9002 | 8.0 | 2256 | 2.5033 | 4.838 | 72.6053 | | 2.8229 | 9.0 | 2538 | 2.4694 | 5.2829 | 67.984 | | 2.8229 | 10.0 | 2820 | 2.4421 | 5.4964 | 68.986 | | 2.76 | 11.0 | 3102 | 2.4135 | 5.8118 | 66.528 | | 2.76 | 12.0 | 3384 | 2.3897 | 6.1966 | 65.052 | | 2.7051 | 13.0 | 3666 | 2.3667 | 6.452 | 64.2273 | | 2.7051 | 14.0 | 3948 | 2.3465 | 6.6428 | 63.516 | | 2.6568 | 15.0 | 4230 | 2.3265 | 6.9467 | 61.8673 | | 2.6183 | 16.0 | 4512 | 2.3101 | 7.2029 | 60.7393 | | 2.6183 | 17.0 | 4794 | 2.2954 | 7.4982 | 60.0327 | | 2.5757 | 18.0 | 5076 | 2.2799 | 7.7555 | 59.968 | | 2.5757 | 19.0 | 5358 | 2.2660 | 7.8406 | 60.0307 | | 2.5534 | 20.0 | 5640 | 2.2558 | 8.0679 | 59.0793 | | 2.5534 | 21.0 | 5922 | 2.2426 | 8.3325 | 58.5367 | | 2.5159 | 22.0 | 6204 | 2.2324 | 8.3538 | 58.6893 | | 2.5159 | 23.0 | 6486 | 2.2217 | 8.5867 | 57.7627 | | 2.4983 | 24.0 | 6768 | 2.2135 | 8.8324 | 56.7367 | | 2.4791 | 25.0 | 7050 | 2.2052 | 8.8113 | 57.4373 | | 2.4791 | 26.0 | 7332 | 2.1981 | 9.0909 | 57.0173 | | 2.4529 | 27.0 | 7614 | 2.1908 | 9.0056 | 57.802 | | 2.4529 | 28.0 | 7896 | 2.1856 | 9.2696 | 56.9773 | | 2.4395 | 29.0 | 8178 | 2.1780 | 9.2824 | 57.0007 | | 2.4395 | 30.0 | 8460 | 2.1722 | 9.2106 | 56.9893 | | 2.4277 | 31.0 | 8742 | 2.1685 | 9.4668 | 56.406 | | 2.4181 | 32.0 | 9024 | 2.1646 | 9.4992 | 56.2327 | | 2.4181 | 33.0 | 9306 | 2.1616 | 9.5054 | 56.3033 | | 2.4071 | 34.0 | 9588 | 2.1578 | 9.5093 | 56.548 | | 2.4071 | 35.0 | 9870 | 2.1554 | 9.5227 | 56.7807 | | 2.3991 | 36.0 | 10152 | 2.1532 | 9.5762 | 56.756 | | 2.3991 | 37.0 | 10434 | 2.1518 | 9.6659 | 56.5913 | | 2.3955 | 38.0 | 10716 | 2.1506 | 9.7199 | 56.5753 | | 2.3955 | 39.0 | 10998 | 2.1498 | 9.6715 | 56.558 | | 2.3913 | 40.0 | 11280 | 2.1496 | 9.6816 | 56.5347 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.11.0
jannatul17/squad-bn-qgen-banglat5-v1
jannatul17
2022-10-09T14:43:36Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-09T04:29:56Z
--- tags: - generated_from_trainer model-index: - name: final-squad-bn-qgen-banglat5-all-metric-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # final-squad-bn-qgen-banglat5-all-metric-v3 This model is a fine-tuned version of [csebuetnlp/banglat5](https://huggingface.co/csebuetnlp/banglat5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4231 - Rouge1 Precision: 39.5263 - Rouge1 Recall: 37.168 - Rouge1 Fmeasure: 37.1806 - Rouge2 Precision: 17.7035 - Rouge2 Recall: 16.508 - Rouge2 Fmeasure: 16.5336 - Rougel Precision: 37.135 - Rougel Recall: 34.9177 - Rougel Fmeasure: 34.9266 - Rougelsum Precision: 37.1205 - Rougelsum Recall: 34.8982 - Rougelsum Fmeasure: 34.9129 - Bleu-1: 36.4356 - Bleu-2: 22.3217 - Bleu-3: 14.7682 - Bleu-4: 10.0865 - Meteor: 0.2051 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 Precision | Rouge1 Recall | Rouge1 Fmeasure | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | Rougel Precision | Rougel Recall | Rougel Fmeasure | Rougelsum Precision | Rougelsum Recall | Rougelsum Fmeasure | Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | Meteor | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:-------------------:|:----------------:|:------------------:|:-------:|:-------:|:-------:|:-------:|:------:| | 0.5901 | 1.0 | 6769 | 0.4756 | 32.2563 | 31.3211 | 30.7652 | 12.2914 | 11.9567 | 11.6739 | 29.1321 | 28.3925 | 27.84 | 29.1291 | 28.3832 | 27.8378 | 31.9366 | 17.9528 | 10.9479 | 6.8658 | 0.1715 | | 0.5094 | 2.0 | 13538 | 0.4343 | 37.5727 | 35.6711 | 35.4661 | 16.3104 | 15.4196 | 15.3046 | 35.2059 | 33.4452 | 33.2559 | 35.1882 | 33.4395 | 33.24 | 35.1532 | 21.1183 | 13.7297 | 9.2128 | 0.1955 | | 0.4866 | 3.0 | 20307 | 0.4267 | 38.6402 | 36.2947 | 36.2796 | 16.8569 | 15.7129 | 15.7114 | 36.2902 | 34.0855 | 34.0734 | 36.2733 | 34.0723 | 34.0661 | 35.6286 | 21.554 | 14.098 | 9.5506 | 0.1996 | | 0.4732 | 4.0 | 27076 | 0.4235 | 39.3469 | 36.7357 | 36.8598 | 17.4835 | 16.2062 | 16.2677 | 36.9883 | 34.5422 | 34.6543 | 36.9783 | 34.5352 | 34.6594 | 35.9917 | 21.9745 | 14.4922 | 9.884 | 0.203 | | 0.4646 | 5.0 | 33845 | 0.4224 | 39.4223 | 37.0956 | 37.0893 | 17.6277 | 16.4682 | 16.4692 | 37.0994 | 34.896 | 34.8991 | 37.0885 | 34.8691 | 34.8811 | 36.3637 | 22.2704 | 14.7068 | 10.021 | 0.2049 | | 0.4517 | 6.0 | 40614 | 0.4231 | 39.5263 | 37.168 | 37.1806 | 17.7035 | 16.508 | 16.5336 | 37.135 | 34.9177 | 34.9266 | 37.1205 | 34.8982 | 34.9129 | 36.4356 | 22.3217 | 14.7682 | 10.0865 | 0.2051 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
tomthekkan/dummy-model
tomthekkan
2022-10-09T14:40:40Z
59
0
transformers
[ "transformers", "tf", "camembert", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-09T14:10:20Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: tmphgqi7q16 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tmphgqi7q16 This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.21.2 - TensorFlow 2.9.1 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/roblox-avatar
sd-concepts-library
2022-10-09T13:22:25Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-10-09T13:08:46Z
--- license: mit --- ### Roblox avatar on Stable Diffusion why am i spending time making these?, anyways. This is the `<roblox-avatar>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). photos were taken from pinterest. Here is the new concept you will be able to use as an `object`: ![<roblox-avatar> 0](https://huggingface.co/sd-concepts-library/roblox-avatar/resolve/main/concept_images/4.jpeg) ![<roblox-avatar> 1](https://huggingface.co/sd-concepts-library/roblox-avatar/resolve/main/concept_images/0.jpeg) ![<roblox-avatar> 2](https://huggingface.co/sd-concepts-library/roblox-avatar/resolve/main/concept_images/3.jpeg) ![<roblox-avatar> 3](https://huggingface.co/sd-concepts-library/roblox-avatar/resolve/main/concept_images/2.jpeg) ![<roblox-avatar> 4](https://huggingface.co/sd-concepts-library/roblox-avatar/resolve/main/concept_images/1.jpeg)
tejas23/autotrain-amx2-1702259725
tejas23
2022-10-09T13:10:48Z
4
0
transformers
[ "transformers", "joblib", "autotrain", "tabular", "classification", "tabular-classification", "dataset:tejas23/autotrain-data-amx2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
tabular-classification
2022-10-09T13:03:31Z
--- tags: - autotrain - tabular - classification - tabular-classification datasets: - tejas23/autotrain-data-amx2 co2_eq_emissions: emissions: 7.7048287301375975 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1702259725 - CO2 Emissions (in grams): 7.7048 ## Validation Metrics - Loss: 0.421 - Accuracy: 0.827 - Macro F1: 0.530 - Micro F1: 0.827 - Weighted F1: 0.805 - Macro Precision: 0.579 - Micro Precision: 0.827 - Weighted Precision: 0.795 - Macro Recall: 0.513 - Micro Recall: 0.827 - Weighted Recall: 0.827 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```
tejas23/autotrain-amx2-1702259728
tejas23
2022-10-09T13:08:34Z
5
0
transformers
[ "transformers", "joblib", "autotrain", "tabular", "classification", "tabular-classification", "dataset:tejas23/autotrain-data-amx2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
tabular-classification
2022-10-09T13:03:38Z
--- tags: - autotrain - tabular - classification - tabular-classification datasets: - tejas23/autotrain-data-amx2 co2_eq_emissions: emissions: 0.00824689737605251 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1702259728 - CO2 Emissions (in grams): 0.0082 ## Validation Metrics - Loss: 0.434 - Accuracy: 0.831 - Macro F1: 0.521 - Micro F1: 0.831 - Weighted F1: 0.803 - Macro Precision: 0.590 - Micro Precision: 0.831 - Weighted Precision: 0.794 - Macro Recall: 0.507 - Micro Recall: 0.831 - Weighted Recall: 0.831 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```
tejas23/autotrain-amx2-1702259729
tejas23
2022-10-09T13:05:26Z
2
0
transformers
[ "transformers", "joblib", "autotrain", "tabular", "classification", "tabular-classification", "dataset:tejas23/autotrain-data-amx2", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
tabular-classification
2022-10-09T13:03:45Z
--- tags: - autotrain - tabular - classification - tabular-classification datasets: - tejas23/autotrain-data-amx2 co2_eq_emissions: emissions: 0.002766545033914285 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1702259729 - CO2 Emissions (in grams): 0.0028 ## Validation Metrics - Loss: 6.095 - Accuracy: 0.824 - Macro F1: 0.543 - Micro F1: 0.824 - Weighted F1: 0.808 - Macro Precision: 0.572 - Micro Precision: 0.824 - Weighted Precision: 0.801 - Macro Recall: 0.543 - Micro Recall: 0.824 - Weighted Recall: 0.824 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```
theojolliffe/bart-model2-0910
theojolliffe
2022-10-09T12:52:02Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-09T11:53:33Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-model2-0910 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-model2-0910 This model is a fine-tuned version of [theojolliffe/bart-model2-1409](https://huggingface.co/theojolliffe/bart-model2-1409) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 48 | 0.7670 | 38.9302 | 29.5801 | 37.9912 | 35.6634 | 20.0 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
fathyshalaby/emailclassifier
fathyshalaby
2022-10-09T11:43:30Z
130
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-08T21:21:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: emailclassifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # emailclassifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
theojolliffe/bart-model2-0810
theojolliffe
2022-10-09T10:28:37Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T15:20:00Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-model2-0810 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-model2-0810 This model is a fine-tuned version of [theojolliffe/bart-model2-1409](https://huggingface.co/theojolliffe/bart-model2-1409) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2627 - Rouge1: 58.8322 - Rouge2: 56.2696 - Rougel: 58.8934 - Rougelsum: 58.3106 - Gen Len: 19.2222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 169 | 0.3839 | 53.2948 | 45.0992 | 52.1785 | 53.8143 | 18.0 | | No log | 2.0 | 338 | 0.3099 | 55.227 | 49.17 | 55.1602 | 55.6483 | 17.8889 | | 0.3831 | 3.0 | 507 | 0.2566 | 56.6535 | 52.9359 | 56.1953 | 56.0607 | 18.8889 | | 0.3831 | 4.0 | 676 | 0.2627 | 58.8322 | 56.2696 | 58.8934 | 58.3106 | 19.2222 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
whyperr/stable-dreamfusion
whyperr
2022-10-09T09:02:43Z
0
4
null
[ "region:us" ]
null
2022-10-03T15:09:53Z
You can use Stable Diffusion with Dream's face on it! The object name is: dream-youtuber, and the class name is male. You can use it in the prompts like: photo of dream-youtuber male, digital painting Now to use this model: In AUTOMATIC1111's notebook (https://github.com/AUTOMATIC1111/stable-diffusion-webui) just below the Normal 1.4 Model block. Insert this block: ```` #@title Stable-Dreamfusion Model # get a token from https://huggingface.co/settings/tokens user_token = "" #@param {type:"string"} user_header = f"\"Authorization: Bearer {user_token}\"" !wget --header={user_header} https://huggingface.co/whyperr/stable-dreamfusion/resolve/main/model.ckpt -O models/sd-v1-4.ckpt ```` ![1.png](https://s3.amazonaws.com/moonup/production/uploads/1664870802717-6305531a99870e13d3de6019.png) Run the next steps normally, and you should be able to generate juicy dream faces! ![1.png](https://s3.amazonaws.com/moonup/production/uploads/1664871558024-6305531a99870e13d3de6019.png) ![2.png](https://s3.amazonaws.com/moonup/production/uploads/1664871567648-6305531a99870e13d3de6019.png) ![3.png](https://s3.amazonaws.com/moonup/production/uploads/1664871593792-6305531a99870e13d3de6019.png) ![4.png](https://s3.amazonaws.com/moonup/production/uploads/1664871605434-6305531a99870e13d3de6019.png) ![5.png](https://s3.amazonaws.com/moonup/production/uploads/1664871630536-6305531a99870e13d3de6019.png)
sd-concepts-library/fox-purple
sd-concepts-library
2022-10-09T08:43:23Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-09T08:29:08Z
--- license: mit --- ### fox purple on Stable Diffusion This is the `<foxi-purple>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<foxi-purple> 0](https://huggingface.co/sd-concepts-library/fox-purple/resolve/main/concept_images/0004.png) ![<foxi-purple> 1](https://huggingface.co/sd-concepts-library/fox-purple/resolve/main/concept_images/0008.png) ![<foxi-purple> 2](https://huggingface.co/sd-concepts-library/fox-purple/resolve/main/concept_images/0003.png) ![<foxi-purple> 3](https://huggingface.co/sd-concepts-library/fox-purple/resolve/main/concept_images/0002.png) ![<foxi-purple> 4](https://huggingface.co/sd-concepts-library/fox-purple/resolve/main/concept_images/0001.png) ![<foxi-purple> 5](https://huggingface.co/sd-concepts-library/fox-purple/resolve/main/concept_images/0007.png) ![<foxi-purple> 6](https://huggingface.co/sd-concepts-library/fox-purple/resolve/main/concept_images/0006.png) ![<foxi-purple> 7](https://huggingface.co/sd-concepts-library/fox-purple/resolve/main/concept_images/0005.png)
XerOpred/twitter-climate-sentiment-model
XerOpred
2022-10-09T08:32:29Z
108
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-09T06:24:56Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: twitter-climate-sentiment-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-climate-sentiment-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2779 - eval_accuracy: 0.8941 - eval_f1: 0.9372 - eval_runtime: 135.2041 - eval_samples_per_second: 39.873 - eval_steps_per_second: 2.493 - epoch: 1.0 - step: 1348 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cpu - Datasets 2.5.2 - Tokenizers 0.12.1
ptrsxu/chinese-bert-wwm-ext
ptrsxu
2022-10-09T08:24:21Z
134
0
transformers
[ "transformers", "pytorch", "tf", "jax", "rust", "bert", "fill-mask", "zh", "arxiv:1906.08101", "arxiv:2004.13922", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-09T07:19:12Z
--- language: - zh license: "apache-2.0" --- ## Chinese BERT with Whole Word Masking For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**. **[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)** Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu This repository is developed based on:https://github.com/google-research/bert You may also interested in, - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm - Chinese MacBERT: https://github.com/ymcui/MacBERT - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer More resources by HFL: https://github.com/ymcui/HFL-Anthology ## Citation If you find the technical report or resource is useful, please cite the following technical report in your paper. - Primary: https://arxiv.org/abs/2004.13922 ``` @inproceedings{cui-etal-2020-revisiting, title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing", author = "Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Wang, Shijin and Hu, Guoping", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58", pages = "657--668", } ``` - Secondary: https://arxiv.org/abs/1906.08101 ``` @article{chinese-bert-wwm, title={Pre-Training with Whole Word Masking for Chinese BERT}, author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping}, journal={arXiv preprint arXiv:1906.08101}, year={2019} } ```
ksahi03/afi
ksahi03
2022-10-09T08:01:48Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-10-09T08:01:48Z
--- license: creativeml-openrail-m ---
chucyj/123
chucyj
2022-10-09T07:29:19Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2022-10-09T07:29:19Z
--- license: creativeml-openrail-m ---
fumi13/vit-base-beans
fumi13
2022-10-09T06:46:29Z
220
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "vision", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-09T06:31:17Z
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: vit-base-beans results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9924812030075187 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-beans This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0824 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3039 | 1.0 | 130 | 0.2474 | 0.9624 | | 0.1299 | 2.0 | 260 | 0.1007 | 0.9925 | | 0.0885 | 3.0 | 390 | 0.0824 | 0.9925 | | 0.0976 | 4.0 | 520 | 0.1179 | 0.9699 | | 0.1284 | 5.0 | 650 | 0.0832 | 0.9774 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
XerOpred/sentiment-model
XerOpred
2022-10-09T06:23:13Z
106
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-09T03:37:25Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: sentiment-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4302 - eval_accuracy: 0.8337 - eval_f1: 0.0 - eval_runtime: 25.9665 - eval_samples_per_second: 30.809 - eval_steps_per_second: 1.926 - epoch: 1.0 - step: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cpu - Tokenizers 0.12.1
g30rv17ys/ddpm-geeve-cnv-10k-1000ep
g30rv17ys
2022-10-09T06:14:13Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-10-08T18:04:24Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-cnv-10k-1000ep ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-cnv-10k-1000ep/tensorboard?#scalars)
everyl12/crisis_sentiment_roberta
everyl12
2022-10-09T03:56:23Z
124
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-08T18:52:36Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: crisis_sentiment_roberta results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # crisis_sentiment_roberta This model is a fine-tuned version of [finiteautomata/bertweet-base-sentiment-analysis](https://huggingface.co/finiteautomata/bertweet-base-sentiment-analysis) on an unknown dataset. It achieves the following results on the testing set: - Accuracy: 0.83 - Macro accuracy: 0.76 - Weighted accuracy: 0.83 ## Model description 0. Negative 1. Positive 2. Neutral Sentiment classification using 9,300 tweets of the Flint Water Crisis ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4781 | 1.0 | 349 | 0.4452 | 0.8366 | | 0.2074 | 2.0 | 698 | 0.5010 | 0.8237 | | 0.047 | 3.0 | 1047 | 0.5772 | 0.8199 | | 0.0114 | 4.0 | 1396 | 0.7793 | 0.8226 | | 0.007 | 5.0 | 1745 | 0.8584 | 0.8188 | | 0.0144 | 6.0 | 2094 | 0.9517 | 0.8070 | | 0.0017 | 7.0 | 2443 | 1.0054 | 0.8231 | | 0.0013 | 8.0 | 2792 | 1.1297 | 0.8172 | | 0.0008 | 9.0 | 3141 | 1.1622 | 0.8263 | | 0.001 | 10.0 | 3490 | 1.2313 | 0.8204 | | 0.0006 | 11.0 | 3839 | 1.2360 | 0.8220 | | 0.0007 | 12.0 | 4188 | 1.2687 | 0.8161 | | 0.0004 | 13.0 | 4537 | 1.2940 | 0.8204 | | 0.0451 | 14.0 | 4886 | 1.3163 | 0.8194 | | 0.0004 | 15.0 | 5235 | 1.2991 | 0.8242 | ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.13.0.dev20220917+cu117 - Datasets 2.4.0 - Tokenizers 0.12.1
anas-awadalla/t5-base-finetuned-squad-infilling-lr-3e-5
anas-awadalla
2022-10-09T02:58:00Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T23:06:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-finetuned-squad-infilling-lr-3e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-squad-infilling-lr-3e-5 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 24 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/t5-base-few-shot-k-1024-finetuned-squad-infilling-seed-4
anas-awadalla
2022-10-09T02:19:11Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-09T01:51:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-1024-finetuned-squad-infilling-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-1024-finetuned-squad-infilling-seed-4 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/t5-base-few-shot-k-1024-finetuned-squad-infilling-seed-0
anas-awadalla
2022-10-09T01:18:25Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T22:25:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-1024-finetuned-squad-infilling-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-1024-finetuned-squad-infilling-seed-0 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
nobadreams/onoriegab
nobadreams
2022-10-08T23:35:04Z
0
0
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2022-10-08T23:13:02Z
--- license: cc-by-nc-sa-4.0 ---
din0s/t5-base_fr-finetuned-en-to-it
din0s
2022-10-08T22:58:23Z
6
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:ccmatrix", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T20:29:28Z
--- tags: - generated_from_trainer datasets: - ccmatrix metrics: - bleu model-index: - name: t5-base_fr-finetuned-en-to-it results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: ccmatrix type: ccmatrix config: en-it split: train[3000:12000] args: en-it metrics: - name: Bleu type: bleu value: 20.3152 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base_fr-finetuned-en-to-it This model is a fine-tuned version of [j0hngou/t5-base-finetuned-en-to-fr](https://huggingface.co/j0hngou/t5-base-finetuned-en-to-fr) on the ccmatrix dataset. It achieves the following results on the evaluation set: - Loss: 1.4677 - Bleu: 20.3152 - Gen Len: 51.4433 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 282 | 2.0344 | 6.8826 | 64.574 | | 2.3997 | 2.0 | 564 | 1.9371 | 7.9377 | 64.274 | | 2.3997 | 3.0 | 846 | 1.8740 | 9.2364 | 59.8673 | | 2.145 | 4.0 | 1128 | 1.8240 | 9.8068 | 60.566 | | 2.145 | 5.0 | 1410 | 1.7813 | 10.3961 | 60.106 | | 2.0183 | 6.0 | 1692 | 1.7476 | 11.2005 | 59.032 | | 2.0183 | 7.0 | 1974 | 1.7152 | 11.8127 | 58.1673 | | 1.9185 | 8.0 | 2256 | 1.6872 | 12.4843 | 57.5787 | | 1.8414 | 9.0 | 2538 | 1.6643 | 13.4338 | 55.502 | | 1.8414 | 10.0 | 2820 | 1.6459 | 13.7847 | 55.6753 | | 1.7755 | 11.0 | 3102 | 1.6273 | 14.6959 | 53.838 | | 1.7755 | 12.0 | 3384 | 1.6121 | 15.2948 | 53.4127 | | 1.7224 | 13.0 | 3666 | 1.5967 | 15.878 | 53.0733 | | 1.7224 | 14.0 | 3948 | 1.5809 | 16.3788 | 52.778 | | 1.6751 | 15.0 | 4230 | 1.5689 | 16.7415 | 52.8 | | 1.6358 | 16.0 | 4512 | 1.5580 | 17.0318 | 52.854 | | 1.6358 | 17.0 | 4794 | 1.5509 | 17.6302 | 52.0947 | | 1.5921 | 18.0 | 5076 | 1.5389 | 17.4239 | 52.71 | | 1.5921 | 19.0 | 5358 | 1.5317 | 17.9003 | 52.3427 | | 1.5696 | 20.0 | 5640 | 1.5253 | 17.769 | 52.928 | | 1.5696 | 21.0 | 5922 | 1.5172 | 18.2974 | 51.8173 | | 1.5344 | 22.0 | 6204 | 1.5117 | 18.5755 | 52.012 | | 1.5344 | 23.0 | 6486 | 1.5046 | 18.5362 | 52.1447 | | 1.5136 | 24.0 | 6768 | 1.5034 | 18.7394 | 51.9887 | | 1.4968 | 25.0 | 7050 | 1.4968 | 19.1622 | 51.736 | | 1.4968 | 26.0 | 7332 | 1.4947 | 19.1636 | 51.8467 | | 1.472 | 27.0 | 7614 | 1.4886 | 19.3845 | 51.774 | | 1.472 | 28.0 | 7896 | 1.4844 | 19.5481 | 51.458 | | 1.4575 | 29.0 | 8178 | 1.4827 | 19.739 | 51.4593 | | 1.4575 | 30.0 | 8460 | 1.4791 | 19.818 | 51.62 | | 1.4435 | 31.0 | 8742 | 1.4763 | 19.904 | 51.5167 | | 1.4336 | 32.0 | 9024 | 1.4750 | 19.9507 | 51.3787 | | 1.4336 | 33.0 | 9306 | 1.4742 | 20.0704 | 51.3527 | | 1.4236 | 34.0 | 9588 | 1.4717 | 20.2553 | 51.1967 | | 1.4236 | 35.0 | 9870 | 1.4705 | 20.3014 | 51.156 | | 1.4188 | 36.0 | 10152 | 1.4697 | 20.2263 | 51.4173 | | 1.4188 | 37.0 | 10434 | 1.4687 | 20.244 | 51.394 | | 1.412 | 38.0 | 10716 | 1.4681 | 20.2699 | 51.5993 | | 1.412 | 39.0 | 10998 | 1.4676 | 20.2758 | 51.4473 | | 1.4087 | 40.0 | 11280 | 1.4677 | 20.3152 | 51.4433 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.11.0
din0s/t5-base-finetuned-en-to-it
din0s
2022-10-08T22:57:01Z
14
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:ccmatrix", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T20:28:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - ccmatrix metrics: - bleu model-index: - name: t5-base-finetuned-en-to-it results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: ccmatrix type: ccmatrix config: en-it split: train[3000:12000] args: en-it metrics: - name: Bleu type: bleu value: 20.1194 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-en-to-it This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the ccmatrix dataset. It achieves the following results on the evaluation set: - Loss: 1.4830 - Bleu: 20.1194 - Gen Len: 51.456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 282 | 2.0137 | 6.5621 | 69.0227 | | 2.4006 | 2.0 | 564 | 1.9278 | 7.2684 | 70.0333 | | 2.4006 | 3.0 | 846 | 1.8712 | 8.6643 | 64.654 | | 2.1423 | 4.0 | 1128 | 1.8223 | 9.3778 | 63.4453 | | 2.1423 | 5.0 | 1410 | 1.7836 | 10.0151 | 63.778 | | 2.0248 | 6.0 | 1692 | 1.7515 | 10.9865 | 62.224 | | 2.0248 | 7.0 | 1974 | 1.7208 | 11.5089 | 61.2 | | 1.9316 | 8.0 | 2256 | 1.6936 | 12.3755 | 60.1047 | | 1.8584 | 9.0 | 2538 | 1.6731 | 12.8765 | 59.4427 | | 1.8584 | 10.0 | 2820 | 1.6535 | 13.7278 | 57.6253 | | 1.7949 | 11.0 | 3102 | 1.6360 | 14.2498 | 56.3913 | | 1.7949 | 12.0 | 3384 | 1.6222 | 14.8795 | 55.346 | | 1.7461 | 13.0 | 3666 | 1.6064 | 15.017 | 55.7473 | | 1.7461 | 14.0 | 3948 | 1.5926 | 15.3093 | 56.0067 | | 1.6998 | 15.0 | 4230 | 1.5803 | 15.6934 | 55.366 | | 1.6635 | 16.0 | 4512 | 1.5707 | 16.3604 | 54.5413 | | 1.6635 | 17.0 | 4794 | 1.5633 | 16.8086 | 53.824 | | 1.621 | 18.0 | 5076 | 1.5515 | 17.1319 | 53.5927 | | 1.621 | 19.0 | 5358 | 1.5450 | 17.5039 | 53.5167 | | 1.6008 | 20.0 | 5640 | 1.5389 | 17.8012 | 53.6527 | | 1.6008 | 21.0 | 5922 | 1.5314 | 17.7305 | 53.342 | | 1.5656 | 22.0 | 6204 | 1.5259 | 18.1609 | 53.4033 | | 1.5656 | 23.0 | 6486 | 1.5200 | 18.6506 | 52.226 | | 1.5466 | 24.0 | 6768 | 1.5185 | 18.9433 | 52.2173 | | 1.53 | 25.0 | 7050 | 1.5120 | 19.0978 | 52.022 | | 1.53 | 26.0 | 7332 | 1.5083 | 19.1326 | 52.0527 | | 1.5072 | 27.0 | 7614 | 1.5044 | 19.0854 | 52.2447 | | 1.5072 | 28.0 | 7896 | 1.5002 | 19.372 | 51.7687 | | 1.4926 | 29.0 | 8178 | 1.4977 | 19.5798 | 52.0327 | | 1.4926 | 30.0 | 8460 | 1.4941 | 19.5161 | 51.9893 | | 1.478 | 31.0 | 8742 | 1.4911 | 19.7821 | 51.534 | | 1.47 | 32.0 | 9024 | 1.4897 | 19.7207 | 51.4787 | | 1.47 | 33.0 | 9306 | 1.4888 | 19.8066 | 51.5407 | | 1.4603 | 34.0 | 9588 | 1.4869 | 19.9036 | 51.398 | | 1.4603 | 35.0 | 9870 | 1.4856 | 19.9575 | 51.352 | | 1.4558 | 36.0 | 10152 | 1.4845 | 19.9513 | 51.4833 | | 1.4558 | 37.0 | 10434 | 1.4840 | 20.0177 | 51.3027 | | 1.4486 | 38.0 | 10716 | 1.4833 | 20.0644 | 51.484 | | 1.4486 | 39.0 | 10998 | 1.4830 | 20.1001 | 51.5747 | | 1.4452 | 40.0 | 11280 | 1.4830 | 20.1194 | 51.456 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.11.0
yohila/distilbert-base-uncased-finetuned-emotion
yohila
2022-10-08T22:27:15Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-08T22:14:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.922 - name: F1 type: f1 value: 0.9220501325456948 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2235 - Accuracy: 0.922 - F1: 0.9221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8211 | 1.0 | 250 | 0.3228 | 0.898 | 0.8943 | | 0.2485 | 2.0 | 500 | 0.2235 | 0.922 | 0.9221 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
waifu-research-department/Nishikigi-Chisato
waifu-research-department
2022-10-08T21:39:58Z
0
5
null
[ "license:mit", "region:us" ]
null
2022-09-27T20:33:21Z
--- license: mit --- # Description Trainer: ChrisC Chisato from Lycoris Recoil # Dataset >Training: 22 images >Regularization: 400 images # Info >chisato_3k_WD1-3.ckpt >Model Used: Waifu Diffusion 1.3 >Steps: 3000 >Keyword: chisato nishikigi (Use this in the prompt) >Class Phrase: lycoreco >Chisato_3k.ckpt is based on Waifu Diffusion 1.2 (Keyword: chisato)
anas-awadalla/t5-base-few-shot-k-256-finetuned-squad-infilling-seed-4
anas-awadalla
2022-10-08T21:22:59Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T21:10:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-256-finetuned-squad-infilling-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-256-finetuned-squad-infilling-seed-4 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/t5-base-few-shot-k-256-finetuned-squad-infilling-seed-2
anas-awadalla
2022-10-08T21:08:23Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T20:56:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-256-finetuned-squad-infilling-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-256-finetuned-squad-infilling-seed-2 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
sd-concepts-library/meze-audio-elite-headphones
sd-concepts-library
2022-10-08T21:07:36Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-10-08T21:07:31Z
--- license: mit --- ### Meze Audio Elite headphones on Stable Diffusion This is the `<meze-elite>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<meze-elite> 0](https://huggingface.co/sd-concepts-library/meze-audio-elite-headphones/resolve/main/concept_images/4.jpeg) ![<meze-elite> 1](https://huggingface.co/sd-concepts-library/meze-audio-elite-headphones/resolve/main/concept_images/5.jpeg) ![<meze-elite> 2](https://huggingface.co/sd-concepts-library/meze-audio-elite-headphones/resolve/main/concept_images/0.jpeg) ![<meze-elite> 3](https://huggingface.co/sd-concepts-library/meze-audio-elite-headphones/resolve/main/concept_images/3.jpeg) ![<meze-elite> 4](https://huggingface.co/sd-concepts-library/meze-audio-elite-headphones/resolve/main/concept_images/2.jpeg) ![<meze-elite> 5](https://huggingface.co/sd-concepts-library/meze-audio-elite-headphones/resolve/main/concept_images/6.jpeg) ![<meze-elite> 6](https://huggingface.co/sd-concepts-library/meze-audio-elite-headphones/resolve/main/concept_images/1.jpeg)
anas-awadalla/t5-base-few-shot-k-256-finetuned-squad-infilling-seed-0
anas-awadalla
2022-10-08T20:53:56Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T20:42:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-256-finetuned-squad-infilling-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-256-finetuned-squad-infilling-seed-0 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-large-few-shot-k-512-finetuned-squad-infilling-seed-0
anas-awadalla
2022-10-08T20:44:17Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T20:20:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-large-few-shot-k-512-finetuned-squad-infilling-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-few-shot-k-512-finetuned-squad-infilling-seed-0 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/t5-base-few-shot-k-128-finetuned-squad-infilling-seed-2
anas-awadalla
2022-10-08T20:28:26Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T20:19:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-128-finetuned-squad-infilling-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-128-finetuned-squad-infilling-seed-2 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/t5-base-few-shot-k-128-finetuned-squad-infilling-seed-0
anas-awadalla
2022-10-08T20:16:51Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T20:07:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-128-finetuned-squad-infilling-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-128-finetuned-squad-infilling-seed-0 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-large-few-shot-k-256-finetuned-squad-infilling-seed-2
anas-awadalla
2022-10-08T19:56:11Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T19:48:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-large-few-shot-k-256-finetuned-squad-infilling-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-few-shot-k-256-finetuned-squad-infilling-seed-2 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-large-few-shot-k-256-finetuned-squad-infilling-seed-0
anas-awadalla
2022-10-08T19:46:30Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T19:37:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-large-few-shot-k-256-finetuned-squad-infilling-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-few-shot-k-256-finetuned-squad-infilling-seed-0 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/t5-base-few-shot-k-64-finetuned-squad-infilling-seed-0
anas-awadalla
2022-10-08T19:42:01Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T19:33:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-64-finetuned-squad-infilling-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-64-finetuned-squad-infilling-seed-0 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-large-few-shot-k-128-finetuned-squad-infilling-seed-4
anas-awadalla
2022-10-08T19:35:59Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T19:31:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-large-few-shot-k-128-finetuned-squad-infilling-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-few-shot-k-128-finetuned-squad-infilling-seed-4 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/t5-base-few-shot-k-32-finetuned-squad-infilling-seed-4
anas-awadalla
2022-10-08T19:31:22Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T19:22:27Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-32-finetuned-squad-infilling-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-32-finetuned-squad-infilling-seed-4 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-large-few-shot-k-128-finetuned-squad-infilling-seed-2
anas-awadalla
2022-10-08T19:29:16Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T19:24:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-large-few-shot-k-128-finetuned-squad-infilling-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-few-shot-k-128-finetuned-squad-infilling-seed-2 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/t5-small-finetuned-squad-infilling-lr-5e-5
anas-awadalla
2022-10-08T19:15:51Z
112
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T18:49:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-small-finetuned-squad-infilling-lr-5e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-squad-infilling-lr-5e-5 This model is a fine-tuned version of [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 48 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/t5-base-few-shot-k-32-finetuned-squad-infilling-seed-0
anas-awadalla
2022-10-08T19:09:18Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T19:00:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-32-finetuned-squad-infilling-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-32-finetuned-squad-infilling-seed-0 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-large-few-shot-k-64-finetuned-squad-infilling-seed-0
anas-awadalla
2022-10-08T19:03:17Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T18:58:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-large-few-shot-k-64-finetuned-squad-infilling-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-few-shot-k-64-finetuned-squad-infilling-seed-0 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/t5-base-few-shot-k-16-finetuned-squad-infilling-seed-4
anas-awadalla
2022-10-08T18:57:56Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T18:48:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-base-few-shot-k-16-finetuned-squad-infilling-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-16-finetuned-squad-infilling-seed-4 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-large-few-shot-k-32-finetuned-squad-infilling-seed-4
anas-awadalla
2022-10-08T18:56:55Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T18:45:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-large-few-shot-k-32-finetuned-squad-infilling-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-few-shot-k-32-finetuned-squad-infilling-seed-4 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/t5-small-finetuned-squad-infilling-lr-1e-4
anas-awadalla
2022-10-08T18:31:58Z
112
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T18:06:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-small-finetuned-squad-infilling-lr-1e-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-squad-infilling-lr-1e-4 This model is a fine-tuned version of [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 48 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-large-few-shot-k-32-finetuned-squad-infilling-seed-0
anas-awadalla
2022-10-08T18:25:49Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T18:11:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-large-few-shot-k-32-finetuned-squad-infilling-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-few-shot-k-32-finetuned-squad-infilling-seed-0 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-large-few-shot-k-16-finetuned-squad-infilling-seed-4
anas-awadalla
2022-10-08T18:09:10Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T17:54:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-large-few-shot-k-16-finetuned-squad-infilling-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-few-shot-k-16-finetuned-squad-infilling-seed-4 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
diegofernandezc/intropln-setfit-model
diegofernandezc
2022-10-08T17:56:59Z
14
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-08T15:55:57Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5683 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 5683, "warmup_steps": 569, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
anas-awadalla/t5-small-finetuned-squad-infilling-lr-3e-5
anas-awadalla
2022-10-08T17:55:38Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T17:23:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: t5-small-finetuned-squad-infilling-lr-3e-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-squad-infilling-lr-3e-5 This model is a fine-tuned version of [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 48 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
huggingtweets/uneventual
huggingtweets
2022-10-08T17:41:26Z
128
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-08T17:40:42Z
--- language: en thumbnail: http://www.huggingtweets.com/uneventual/1665250882179/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1558240262190764032/oj46u7bD_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">lucy 🐧</div> <div style="text-align: center; font-size: 14px;">@uneventual</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from lucy 🐧. | Data | lucy 🐧 | | --- | --- | | Tweets downloaded | 2876 | | Retweets | 175 | | Short tweets | 362 | | Tweets kept | 2339 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1oviz9fj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @uneventual's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/37fweuku) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/37fweuku/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/uneventual') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
monakth/bert-base-uncased-finetuned-squad
monakth
2022-10-08T17:18:50Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-10-06T00:16:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.0964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0664 | 1.0 | 5533 | 1.0170 | | 0.7946 | 2.0 | 11066 | 1.0367 | | 0.5758 | 3.0 | 16599 | 1.0964 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
sd-concepts-library/slm
sd-concepts-library
2022-10-08T17:04:50Z
0
5
null
[ "license:mit", "region:us" ]
null
2022-10-08T17:04:46Z
--- license: mit --- ### slm on Stable Diffusion This is the `<c-w388>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<c-w388> 0](https://huggingface.co/sd-concepts-library/slm/resolve/main/concept_images/4.jpeg) ![<c-w388> 1](https://huggingface.co/sd-concepts-library/slm/resolve/main/concept_images/5.jpeg) ![<c-w388> 2](https://huggingface.co/sd-concepts-library/slm/resolve/main/concept_images/0.jpeg) ![<c-w388> 3](https://huggingface.co/sd-concepts-library/slm/resolve/main/concept_images/7.jpeg) ![<c-w388> 4](https://huggingface.co/sd-concepts-library/slm/resolve/main/concept_images/3.jpeg) ![<c-w388> 5](https://huggingface.co/sd-concepts-library/slm/resolve/main/concept_images/2.jpeg) ![<c-w388> 6](https://huggingface.co/sd-concepts-library/slm/resolve/main/concept_images/6.jpeg) ![<c-w388> 7](https://huggingface.co/sd-concepts-library/slm/resolve/main/concept_images/1.jpeg)
tommctdhi/distilbert-base-uncased-finetuned-imdb
tommctdhi
2022-10-08T17:02:14Z
166
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-10-07T21:12:27Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6985 | 1.0 | 157 | 2.5612 | | 2.562 | 2.0 | 314 | 2.4226 | | 2.5316 | 3.0 | 471 | 2.4218 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1 - Datasets 2.5.2 - Tokenizers 0.12.1
anas-awadalla/bart-large-finetuned-squad-infilling-lr-5e-6-decay-01
anas-awadalla
2022-10-08T16:27:25Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T15:05:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-large-finetuned-squad-infilling-lr-5e-6-decay-01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-finetuned-squad-infilling-lr-5e-6-decay-01 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 24 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
Shaier/BERT_MC_OpenBookQA_from_scratch
Shaier
2022-10-08T16:21:42Z
1
0
transformers
[ "transformers", "pytorch", "bert", "multiple-choice", "generated_from_trainer", "endpoints_compatible", "region:us" ]
multiple-choice
2022-10-08T00:57:12Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: BERT_MC_OpenBookQA_from_scratch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT_MC_OpenBookQA_from_scratch This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3863 - Accuracy: 0.268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:------:|:---------------:|:--------:| | No log | 1.0 | 310 | 1.2995 | 0.366 | | 1.206 | 2.0 | 620 | 1.2607 | 0.462 | | 1.206 | 3.0 | 930 | 1.2848 | 0.474 | | 0.9058 | 4.0 | 1240 | 1.6050 | 0.472 | | 0.6435 | 5.0 | 1550 | 1.5843 | 0.47 | | 0.6435 | 6.0 | 1860 | 2.1529 | 0.452 | | 0.444 | 7.0 | 2170 | 2.7774 | 0.444 | | 0.444 | 8.0 | 2480 | 2.0983 | 0.454 | | 0.3005 | 9.0 | 2790 | 2.8257 | 0.46 | | 0.1875 | 10.0 | 3100 | 4.0687 | 0.45 | | 0.1875 | 11.0 | 3410 | 4.8267 | 0.424 | | 0.1508 | 12.0 | 3720 | 4.2751 | 0.426 | | 0.1015 | 13.0 | 4030 | 5.0416 | 0.44 | | 0.1015 | 14.0 | 4340 | 6.0999 | 0.436 | | 0.0758 | 15.0 | 4650 | 5.8698 | 0.44 | | 0.0758 | 16.0 | 4960 | 4.6333 | 0.426 | | 0.0609 | 17.0 | 5270 | 6.0075 | 0.398 | | 0.0415 | 18.0 | 5580 | 6.3479 | 0.392 | | 0.0415 | 19.0 | 5890 | 5.7519 | 0.412 | | 0.0451 | 20.0 | 6200 | 6.7130 | 0.412 | | 0.0273 | 21.0 | 6510 | 5.2695 | 0.414 | | 0.0273 | 22.0 | 6820 | 7.4730 | 0.414 | | 0.0288 | 23.0 | 7130 | 5.4541 | 0.42 | | 0.0288 | 24.0 | 7440 | 6.4990 | 0.418 | | 0.0211 | 25.0 | 7750 | 8.1350 | 0.428 | | 0.0276 | 26.0 | 8060 | 7.2577 | 0.41 | | 0.0276 | 27.0 | 8370 | 4.0796 | 0.232 | | 0.3193 | 28.0 | 8680 | 5.9266 | 0.412 | | 0.3193 | 29.0 | 8990 | 7.7326 | 0.396 | | 0.34 | 30.0 | 9300 | 5.6181 | 0.418 | | 0.0298 | 31.0 | 9610 | 8.2390 | 0.43 | | 0.0298 | 32.0 | 9920 | 7.7127 | 0.408 | | 0.039 | 33.0 | 10230 | 5.9863 | 0.438 | | 0.0262 | 34.0 | 10540 | 7.2023 | 0.44 | | 0.0262 | 35.0 | 10850 | 7.0562 | 0.43 | | 0.0136 | 36.0 | 11160 | 8.2601 | 0.426 | | 0.0136 | 37.0 | 11470 | 7.8976 | 0.428 | | 0.0104 | 38.0 | 11780 | 6.1737 | 0.428 | | 0.0094 | 39.0 | 12090 | 7.8364 | 0.42 | | 0.0094 | 40.0 | 12400 | 6.5378 | 0.43 | | 0.099 | 41.0 | 12710 | 6.8616 | 0.412 | | 0.0195 | 42.0 | 13020 | 7.3664 | 0.418 | | 0.0195 | 43.0 | 13330 | 7.5156 | 0.416 | | 0.0145 | 44.0 | 13640 | 7.0715 | 0.408 | | 0.0145 | 45.0 | 13950 | 8.1128 | 0.41 | | 0.0143 | 46.0 | 14260 | 8.5357 | 0.424 | | 0.0126 | 47.0 | 14570 | 8.8933 | 0.412 | | 0.0126 | 48.0 | 14880 | 6.4196 | 0.42 | | 0.0073 | 49.0 | 15190 | 6.6502 | 0.402 | | 0.0314 | 50.0 | 15500 | 6.1884 | 0.368 | | 0.0314 | 51.0 | 15810 | 8.1288 | 0.392 | | 0.0544 | 52.0 | 16120 | 5.5377 | 0.372 | | 0.0544 | 53.0 | 16430 | 6.7587 | 0.402 | | 0.0366 | 54.0 | 16740 | 6.8984 | 0.396 | | 0.0168 | 55.0 | 17050 | 6.9548 | 0.398 | | 0.0168 | 56.0 | 17360 | 8.0131 | 0.402 | | 0.0117 | 57.0 | 17670 | 8.2451 | 0.412 | | 0.0117 | 58.0 | 17980 | 6.8791 | 0.4 | | 0.0077 | 59.0 | 18290 | 7.4470 | 0.388 | | 0.0194 | 60.0 | 18600 | 6.5445 | 0.402 | | 0.0194 | 61.0 | 18910 | 7.1259 | 0.402 | | 0.013 | 62.0 | 19220 | 6.5935 | 0.414 | | 0.0116 | 63.0 | 19530 | 6.0180 | 0.398 | | 0.0116 | 64.0 | 19840 | 7.2279 | 0.414 | | 0.2207 | 65.0 | 20150 | 1.3863 | 0.33 | | 0.2207 | 66.0 | 20460 | 1.3863 | 0.276 | | 1.4004 | 67.0 | 20770 | 1.3863 | 0.27 | | 1.4211 | 68.0 | 21080 | 1.3863 | 0.312 | | 1.4211 | 69.0 | 21390 | 1.3863 | 0.276 | | 1.4202 | 70.0 | 21700 | 1.3863 | 0.282 | | 1.4147 | 71.0 | 22010 | 1.3863 | 0.288 | | 1.4147 | 72.0 | 22320 | 1.3863 | 0.298 | | 1.4096 | 73.0 | 22630 | 1.3863 | 0.302 | | 1.4096 | 74.0 | 22940 | 1.3863 | 0.262 | | 1.4083 | 75.0 | 23250 | 1.3863 | 0.296 | | 1.4116 | 76.0 | 23560 | 1.3863 | 0.288 | | 1.4116 | 77.0 | 23870 | 1.3863 | 0.294 | | 1.408 | 78.0 | 24180 | 1.3863 | 0.252 | | 1.408 | 79.0 | 24490 | 1.3863 | 0.284 | | 1.4093 | 80.0 | 24800 | 1.3863 | 0.3 | | 1.4103 | 81.0 | 25110 | 1.3863 | 0.274 | | 1.4103 | 82.0 | 25420 | 1.3863 | 0.276 | | 1.4062 | 83.0 | 25730 | 1.3863 | 0.28 | | 1.4111 | 84.0 | 26040 | 1.3863 | 0.304 | | 1.4111 | 85.0 | 26350 | 1.3863 | 0.338 | | 1.4036 | 86.0 | 26660 | 1.3863 | 0.314 | | 1.4036 | 87.0 | 26970 | 1.3863 | 0.278 | | 1.4272 | 88.0 | 27280 | 1.3863 | 0.278 | | 1.404 | 89.0 | 27590 | 1.3863 | 0.276 | | 1.404 | 90.0 | 27900 | 1.3863 | 0.274 | | 1.4004 | 91.0 | 28210 | 1.3863 | 0.276 | | 1.4017 | 92.0 | 28520 | 1.3863 | 0.276 | | 1.4017 | 93.0 | 28830 | 1.3863 | 0.276 | | 1.4009 | 94.0 | 29140 | 1.3863 | 0.284 | | 1.4009 | 95.0 | 29450 | 1.3863 | 0.284 | | 1.3997 | 96.0 | 29760 | 1.3863 | 0.286 | | 1.399 | 97.0 | 30070 | 1.3863 | 0.264 | | 1.399 | 98.0 | 30380 | 1.3863 | 0.278 | | 1.399 | 99.0 | 30690 | 1.3863 | 0.276 | | 1.4002 | 100.0 | 31000 | 1.3863 | 0.276 | | 1.4002 | 101.0 | 31310 | 1.3863 | 0.276 | | 1.4013 | 102.0 | 31620 | 1.3863 | 0.276 | | 1.4013 | 103.0 | 31930 | 1.3863 | 0.276 | | 1.3984 | 104.0 | 32240 | 1.3863 | 0.276 | | 1.3997 | 105.0 | 32550 | 1.3863 | 0.288 | | 1.3997 | 106.0 | 32860 | 1.3863 | 0.276 | | 1.3951 | 107.0 | 33170 | 1.3863 | 0.276 | | 1.3951 | 108.0 | 33480 | 1.3863 | 0.262 | | 1.3953 | 109.0 | 33790 | 1.3863 | 0.27 | | 1.3936 | 110.0 | 34100 | 1.3863 | 0.26 | | 1.3936 | 111.0 | 34410 | 1.3863 | 0.276 | | 1.3937 | 112.0 | 34720 | 1.3863 | 0.278 | | 1.3925 | 113.0 | 35030 | 1.3863 | 0.282 | | 1.3925 | 114.0 | 35340 | 1.3863 | 0.276 | | 1.3959 | 115.0 | 35650 | 1.3863 | 0.28 | | 1.3959 | 116.0 | 35960 | 1.3863 | 0.276 | | 1.393 | 117.0 | 36270 | 1.3863 | 0.282 | | 1.3922 | 118.0 | 36580 | 1.3863 | 0.27 | | 1.3922 | 119.0 | 36890 | 1.3863 | 0.256 | | 1.392 | 120.0 | 37200 | 1.3863 | 0.276 | | 1.3936 | 121.0 | 37510 | 1.3863 | 0.252 | | 1.3936 | 122.0 | 37820 | 1.3863 | 0.276 | | 1.394 | 123.0 | 38130 | 1.3863 | 0.276 | | 1.394 | 124.0 | 38440 | 1.3863 | 0.276 | | 1.3939 | 125.0 | 38750 | 1.3863 | 0.276 | | 1.3922 | 126.0 | 39060 | 1.3863 | 0.276 | | 1.3922 | 127.0 | 39370 | 1.3863 | 0.26 | | 1.3899 | 128.0 | 39680 | 1.3863 | 0.276 | | 1.3899 | 129.0 | 39990 | 1.3863 | 0.272 | | 1.3909 | 130.0 | 40300 | 1.3863 | 0.276 | | 1.3912 | 131.0 | 40610 | 1.3863 | 0.276 | | 1.3912 | 132.0 | 40920 | 1.3863 | 0.276 | | 1.3907 | 133.0 | 41230 | 1.3863 | 0.286 | | 1.39 | 134.0 | 41540 | 1.3863 | 0.276 | | 1.39 | 135.0 | 41850 | 1.3863 | 0.276 | | 1.3919 | 136.0 | 42160 | 1.3863 | 0.294 | | 1.3919 | 137.0 | 42470 | 1.3863 | 0.268 | | 1.3887 | 138.0 | 42780 | 1.3863 | 0.276 | | 1.3897 | 139.0 | 43090 | 1.3863 | 0.276 | | 1.3897 | 140.0 | 43400 | 1.3863 | 0.276 | | 1.3899 | 141.0 | 43710 | 1.3863 | 0.274 | | 1.3911 | 142.0 | 44020 | 1.3863 | 0.276 | | 1.3911 | 143.0 | 44330 | 1.3863 | 0.286 | | 1.3901 | 144.0 | 44640 | 1.3863 | 0.276 | | 1.3901 | 145.0 | 44950 | 1.3863 | 0.264 | | 1.3883 | 146.0 | 45260 | 1.3863 | 0.26 | | 1.3906 | 147.0 | 45570 | 1.3863 | 0.276 | | 1.3906 | 148.0 | 45880 | 1.3863 | 0.276 | | 1.39 | 149.0 | 46190 | 1.3863 | 0.274 | | 1.3889 | 150.0 | 46500 | 1.3863 | 0.276 | | 1.3889 | 151.0 | 46810 | 1.3863 | 0.26 | | 1.39 | 152.0 | 47120 | 1.3863 | 0.266 | | 1.39 | 153.0 | 47430 | 1.3863 | 0.278 | | 1.3889 | 154.0 | 47740 | 1.3863 | 0.284 | | 1.3901 | 155.0 | 48050 | 1.3863 | 0.268 | | 1.3901 | 156.0 | 48360 | 1.3863 | 0.27 | | 1.4048 | 157.0 | 48670 | 1.3863 | 0.284 | | 1.4048 | 158.0 | 48980 | 1.3863 | 0.262 | | 1.3883 | 159.0 | 49290 | 1.3863 | 0.272 | | 1.389 | 160.0 | 49600 | 1.3863 | 0.276 | | 1.389 | 161.0 | 49910 | 1.3863 | 0.276 | | 1.3891 | 162.0 | 50220 | 1.3863 | 0.266 | | 1.3868 | 163.0 | 50530 | 1.3863 | 0.296 | | 1.3868 | 164.0 | 50840 | 1.3863 | 0.276 | | 1.3886 | 165.0 | 51150 | 1.3863 | 0.276 | | 1.3886 | 166.0 | 51460 | 1.3863 | 0.276 | | 1.388 | 167.0 | 51770 | 1.3863 | 0.276 | | 1.3888 | 168.0 | 52080 | 1.3863 | 0.276 | | 1.3888 | 169.0 | 52390 | 1.3863 | 0.276 | | 1.3879 | 170.0 | 52700 | 1.3863 | 0.288 | | 1.3883 | 171.0 | 53010 | 1.3863 | 0.298 | | 1.3883 | 172.0 | 53320 | 1.3863 | 0.276 | | 1.3885 | 173.0 | 53630 | 1.3863 | 0.274 | | 1.3885 | 174.0 | 53940 | 1.3863 | 0.26 | | 1.3874 | 175.0 | 54250 | 1.3863 | 0.276 | | 1.3873 | 176.0 | 54560 | 1.3863 | 0.272 | | 1.3873 | 177.0 | 54870 | 1.3863 | 0.272 | | 1.3886 | 178.0 | 55180 | 1.3863 | 0.276 | | 1.3886 | 179.0 | 55490 | 1.3863 | 0.276 | | 1.3869 | 180.0 | 55800 | 1.3863 | 0.276 | | 1.3872 | 181.0 | 56110 | 1.3863 | 0.276 | | 1.3872 | 182.0 | 56420 | 1.3863 | 0.278 | | 1.3876 | 183.0 | 56730 | 1.3863 | 0.274 | | 1.3877 | 184.0 | 57040 | 1.3863 | 0.276 | | 1.3877 | 185.0 | 57350 | 1.3863 | 0.276 | | 1.3873 | 186.0 | 57660 | 1.3863 | 0.276 | | 1.3873 | 187.0 | 57970 | 1.3863 | 0.276 | | 1.3871 | 188.0 | 58280 | 1.3863 | 0.276 | | 1.3869 | 189.0 | 58590 | 1.3863 | 0.284 | | 1.3869 | 190.0 | 58900 | 1.3863 | 0.272 | | 1.387 | 191.0 | 59210 | 1.3863 | 0.266 | | 1.3875 | 192.0 | 59520 | 1.3863 | 0.276 | | 1.3875 | 193.0 | 59830 | 1.3863 | 0.278 | | 1.3871 | 194.0 | 60140 | 1.3863 | 0.276 | | 1.3871 | 195.0 | 60450 | 1.3863 | 0.276 | | 1.3878 | 196.0 | 60760 | 1.3863 | 0.27 | | 1.3875 | 197.0 | 61070 | 1.3863 | 0.258 | | 1.3875 | 198.0 | 61380 | 1.3863 | 0.272 | | 1.3878 | 199.0 | 61690 | 1.3863 | 0.258 | | 1.3871 | 200.0 | 62000 | 1.3863 | 0.276 | | 1.3871 | 201.0 | 62310 | 1.3863 | 0.278 | | 1.3874 | 202.0 | 62620 | 1.3863 | 0.262 | | 1.3874 | 203.0 | 62930 | 1.3863 | 0.276 | | 1.3871 | 204.0 | 63240 | 1.3863 | 0.278 | | 1.3876 | 205.0 | 63550 | 1.3863 | 0.274 | | 1.3876 | 206.0 | 63860 | 1.3863 | 0.276 | | 1.387 | 207.0 | 64170 | 1.3863 | 0.276 | | 1.387 | 208.0 | 64480 | 1.3863 | 0.258 | | 1.3884 | 209.0 | 64790 | 1.3863 | 0.266 | | 1.3869 | 210.0 | 65100 | 1.3863 | 0.276 | | 1.3869 | 211.0 | 65410 | 1.3863 | 0.276 | | 1.3881 | 212.0 | 65720 | 1.3863 | 0.28 | | 1.3878 | 213.0 | 66030 | 1.3863 | 0.27 | | 1.3878 | 214.0 | 66340 | 1.3863 | 0.276 | | 1.3871 | 215.0 | 66650 | 1.3863 | 0.276 | | 1.3871 | 216.0 | 66960 | 1.3863 | 0.276 | | 1.3869 | 217.0 | 67270 | 1.3863 | 0.276 | | 1.3874 | 218.0 | 67580 | 1.3863 | 0.276 | | 1.3874 | 219.0 | 67890 | 1.3863 | 0.276 | | 1.3876 | 220.0 | 68200 | 1.3863 | 0.276 | | 1.3871 | 221.0 | 68510 | 1.3863 | 0.276 | | 1.3871 | 222.0 | 68820 | 1.3863 | 0.276 | | 1.3869 | 223.0 | 69130 | 1.3863 | 0.276 | | 1.3869 | 224.0 | 69440 | 1.3863 | 0.276 | | 1.3867 | 225.0 | 69750 | 1.3863 | 0.266 | | 1.3874 | 226.0 | 70060 | 1.3863 | 0.262 | | 1.3874 | 227.0 | 70370 | 1.3863 | 0.272 | | 1.3869 | 228.0 | 70680 | 1.3863 | 0.274 | | 1.3869 | 229.0 | 70990 | 1.3863 | 0.276 | | 1.3865 | 230.0 | 71300 | 1.3863 | 0.29 | | 1.3868 | 231.0 | 71610 | 1.3863 | 0.274 | | 1.3868 | 232.0 | 71920 | 1.3863 | 0.264 | | 1.3868 | 233.0 | 72230 | 1.3863 | 0.276 | | 1.3868 | 234.0 | 72540 | 1.3863 | 0.276 | | 1.3868 | 235.0 | 72850 | 1.3863 | 0.276 | | 1.3867 | 236.0 | 73160 | 1.3863 | 0.284 | | 1.3867 | 237.0 | 73470 | 1.3863 | 0.276 | | 1.3878 | 238.0 | 73780 | 1.3863 | 0.276 | | 1.3871 | 239.0 | 74090 | 1.3863 | 0.276 | | 1.3871 | 240.0 | 74400 | 1.3863 | 0.276 | | 1.387 | 241.0 | 74710 | 1.3863 | 0.264 | | 1.3874 | 242.0 | 75020 | 1.3863 | 0.264 | | 1.3874 | 243.0 | 75330 | 1.3863 | 0.276 | | 1.3872 | 244.0 | 75640 | 1.3863 | 0.276 | | 1.3872 | 245.0 | 75950 | 1.3863 | 0.276 | | 1.3875 | 246.0 | 76260 | 1.3863 | 0.276 | | 1.3873 | 247.0 | 76570 | 1.3863 | 0.276 | | 1.3873 | 248.0 | 76880 | 1.3863 | 0.28 | | 1.3867 | 249.0 | 77190 | 1.3863 | 0.266 | | 1.3871 | 250.0 | 77500 | 1.3863 | 0.276 | | 1.3871 | 251.0 | 77810 | 1.3863 | 0.276 | | 1.3876 | 252.0 | 78120 | 1.3863 | 0.276 | | 1.3876 | 253.0 | 78430 | 1.3863 | 0.276 | | 1.3871 | 254.0 | 78740 | 1.3863 | 0.246 | | 1.3867 | 255.0 | 79050 | 1.3863 | 0.274 | | 1.3867 | 256.0 | 79360 | 1.3863 | 0.252 | | 1.3866 | 257.0 | 79670 | 1.3863 | 0.276 | | 1.3866 | 258.0 | 79980 | 1.3863 | 0.276 | | 1.3869 | 259.0 | 80290 | 1.3863 | 0.276 | | 1.3868 | 260.0 | 80600 | 1.3863 | 0.278 | | 1.3868 | 261.0 | 80910 | 1.3863 | 0.28 | | 1.3867 | 262.0 | 81220 | 1.3863 | 0.29 | | 1.3868 | 263.0 | 81530 | 1.3863 | 0.252 | | 1.3868 | 264.0 | 81840 | 1.3863 | 0.258 | | 1.3873 | 265.0 | 82150 | 1.3863 | 0.284 | | 1.3873 | 266.0 | 82460 | 1.3863 | 0.266 | | 1.3864 | 267.0 | 82770 | 1.3863 | 0.26 | | 1.3874 | 268.0 | 83080 | 1.3863 | 0.276 | | 1.3874 | 269.0 | 83390 | 1.3863 | 0.276 | | 1.3875 | 270.0 | 83700 | 1.3863 | 0.276 | | 1.3872 | 271.0 | 84010 | 1.3863 | 0.256 | | 1.3872 | 272.0 | 84320 | 1.3863 | 0.26 | | 1.3864 | 273.0 | 84630 | 1.3863 | 0.272 | | 1.3864 | 274.0 | 84940 | 1.3863 | 0.242 | | 1.3868 | 275.0 | 85250 | 1.3863 | 0.276 | | 1.3871 | 276.0 | 85560 | 1.3863 | 0.276 | | 1.3871 | 277.0 | 85870 | 1.3863 | 0.28 | | 1.3871 | 278.0 | 86180 | 1.3863 | 0.276 | | 1.3871 | 279.0 | 86490 | 1.3863 | 0.27 | | 1.387 | 280.0 | 86800 | 1.3863 | 0.256 | | 1.3864 | 281.0 | 87110 | 1.3863 | 0.276 | | 1.3864 | 282.0 | 87420 | 1.3863 | 0.278 | | 1.3867 | 283.0 | 87730 | 1.3863 | 0.276 | | 1.3871 | 284.0 | 88040 | 1.3863 | 0.254 | | 1.3871 | 285.0 | 88350 | 1.3863 | 0.276 | | 1.3868 | 286.0 | 88660 | 1.3863 | 0.276 | | 1.3868 | 287.0 | 88970 | 1.3863 | 0.268 | | 1.3871 | 288.0 | 89280 | 1.3863 | 0.282 | | 1.3863 | 289.0 | 89590 | 1.3863 | 0.28 | | 1.3863 | 290.0 | 89900 | 1.3863 | 0.276 | | 1.3874 | 291.0 | 90210 | 1.3863 | 0.272 | | 1.3869 | 292.0 | 90520 | 1.3863 | 0.27 | | 1.3869 | 293.0 | 90830 | 1.3863 | 0.27 | | 1.3865 | 294.0 | 91140 | 1.3863 | 0.27 | | 1.3865 | 295.0 | 91450 | 1.3863 | 0.276 | | 1.387 | 296.0 | 91760 | 1.3863 | 0.288 | | 1.3868 | 297.0 | 92070 | 1.3863 | 0.268 | | 1.3868 | 298.0 | 92380 | 1.3863 | 0.268 | | 1.387 | 299.0 | 92690 | 1.3863 | 0.276 | | 1.3869 | 300.0 | 93000 | 1.3863 | 0.258 | | 1.3869 | 301.0 | 93310 | 1.3863 | 0.276 | | 1.387 | 302.0 | 93620 | 1.3863 | 0.276 | | 1.387 | 303.0 | 93930 | 1.3863 | 0.272 | | 1.3869 | 304.0 | 94240 | 1.3863 | 0.276 | | 1.3862 | 305.0 | 94550 | 1.3863 | 0.268 | | 1.3862 | 306.0 | 94860 | 1.3863 | 0.26 | | 1.387 | 307.0 | 95170 | 1.3863 | 0.268 | | 1.387 | 308.0 | 95480 | 1.3863 | 0.262 | | 1.3868 | 309.0 | 95790 | 1.3863 | 0.264 | | 1.3869 | 310.0 | 96100 | 1.3863 | 0.276 | | 1.3869 | 311.0 | 96410 | 1.3863 | 0.264 | | 1.387 | 312.0 | 96720 | 1.3863 | 0.28 | | 1.3869 | 313.0 | 97030 | 1.3863 | 0.266 | | 1.3869 | 314.0 | 97340 | 1.3863 | 0.276 | | 1.3866 | 315.0 | 97650 | 1.3863 | 0.288 | | 1.3866 | 316.0 | 97960 | 1.3863 | 0.272 | | 1.3868 | 317.0 | 98270 | 1.3863 | 0.266 | | 1.3866 | 318.0 | 98580 | 1.3863 | 0.286 | | 1.3866 | 319.0 | 98890 | 1.3863 | 0.272 | | 1.3865 | 320.0 | 99200 | 1.3863 | 0.278 | | 1.3872 | 321.0 | 99510 | 1.3863 | 0.276 | | 1.3872 | 322.0 | 99820 | 1.3863 | 0.272 | | 1.3863 | 323.0 | 100130 | 1.3863 | 0.258 | | 1.3863 | 324.0 | 100440 | 1.3863 | 0.282 | | 1.3867 | 325.0 | 100750 | 1.3863 | 0.254 | | 1.3867 | 326.0 | 101060 | 1.3863 | 0.29 | | 1.3867 | 327.0 | 101370 | 1.3863 | 0.238 | | 1.3874 | 328.0 | 101680 | 1.3863 | 0.276 | | 1.3874 | 329.0 | 101990 | 1.3863 | 0.276 | | 1.3866 | 330.0 | 102300 | 1.3863 | 0.268 | | 1.3869 | 331.0 | 102610 | 1.3863 | 0.266 | | 1.3869 | 332.0 | 102920 | 1.3863 | 0.274 | | 1.387 | 333.0 | 103230 | 1.3863 | 0.282 | | 1.3866 | 334.0 | 103540 | 1.3863 | 0.286 | | 1.3866 | 335.0 | 103850 | 1.3863 | 0.262 | | 1.3874 | 336.0 | 104160 | 1.3863 | 0.274 | | 1.3874 | 337.0 | 104470 | 1.3863 | 0.26 | | 1.3868 | 338.0 | 104780 | 1.3863 | 0.258 | | 1.3871 | 339.0 | 105090 | 1.3863 | 0.272 | | 1.3871 | 340.0 | 105400 | 1.3863 | 0.276 | | 1.3871 | 341.0 | 105710 | 1.3863 | 0.282 | | 1.3868 | 342.0 | 106020 | 1.3863 | 0.288 | | 1.3868 | 343.0 | 106330 | 1.3863 | 0.266 | | 1.3868 | 344.0 | 106640 | 1.3863 | 0.28 | | 1.3868 | 345.0 | 106950 | 1.3863 | 0.292 | | 1.3869 | 346.0 | 107260 | 1.3863 | 0.282 | | 1.3864 | 347.0 | 107570 | 1.3863 | 0.286 | | 1.3864 | 348.0 | 107880 | 1.3863 | 0.254 | | 1.3871 | 349.0 | 108190 | 1.3863 | 0.254 | | 1.3869 | 350.0 | 108500 | 1.3863 | 0.258 | | 1.3869 | 351.0 | 108810 | 1.3863 | 0.286 | | 1.3864 | 352.0 | 109120 | 1.3863 | 0.248 | | 1.3864 | 353.0 | 109430 | 1.3863 | 0.276 | | 1.3863 | 354.0 | 109740 | 1.3863 | 0.294 | | 1.3872 | 355.0 | 110050 | 1.3863 | 0.25 | | 1.3872 | 356.0 | 110360 | 1.3863 | 0.282 | | 1.3865 | 357.0 | 110670 | 1.3863 | 0.25 | | 1.3865 | 358.0 | 110980 | 1.3863 | 0.29 | | 1.3872 | 359.0 | 111290 | 1.3863 | 0.274 | | 1.3871 | 360.0 | 111600 | 1.3863 | 0.272 | | 1.3871 | 361.0 | 111910 | 1.3863 | 0.282 | | 1.3865 | 362.0 | 112220 | 1.3863 | 0.276 | | 1.3865 | 363.0 | 112530 | 1.3863 | 0.276 | | 1.3865 | 364.0 | 112840 | 1.3863 | 0.268 | | 1.3867 | 365.0 | 113150 | 1.3863 | 0.262 | | 1.3867 | 366.0 | 113460 | 1.3863 | 0.28 | | 1.3865 | 367.0 | 113770 | 1.3863 | 0.296 | | 1.387 | 368.0 | 114080 | 1.3863 | 0.286 | | 1.387 | 369.0 | 114390 | 1.3863 | 0.28 | | 1.3865 | 370.0 | 114700 | 1.3863 | 0.276 | | 1.3865 | 371.0 | 115010 | 1.3863 | 0.278 | | 1.3865 | 372.0 | 115320 | 1.3863 | 0.26 | | 1.3867 | 373.0 | 115630 | 1.3863 | 0.294 | | 1.3867 | 374.0 | 115940 | 1.3863 | 0.278 | | 1.3868 | 375.0 | 116250 | 1.3863 | 0.272 | | 1.3871 | 376.0 | 116560 | 1.3863 | 0.268 | | 1.3871 | 377.0 | 116870 | 1.3863 | 0.272 | | 1.3868 | 378.0 | 117180 | 1.3863 | 0.268 | | 1.3868 | 379.0 | 117490 | 1.3863 | 0.276 | | 1.3867 | 380.0 | 117800 | 1.3863 | 0.27 | | 1.3864 | 381.0 | 118110 | 1.3863 | 0.264 | | 1.3864 | 382.0 | 118420 | 1.3863 | 0.276 | | 1.3869 | 383.0 | 118730 | 1.3863 | 0.276 | | 1.3865 | 384.0 | 119040 | 1.3863 | 0.254 | | 1.3865 | 385.0 | 119350 | 1.3863 | 0.276 | | 1.3869 | 386.0 | 119660 | 1.3863 | 0.284 | | 1.3869 | 387.0 | 119970 | 1.3863 | 0.28 | | 1.3872 | 388.0 | 120280 | 1.3863 | 0.278 | | 1.3873 | 389.0 | 120590 | 1.3863 | 0.276 | | 1.3873 | 390.0 | 120900 | 1.3863 | 0.276 | | 1.3868 | 391.0 | 121210 | 1.3863 | 0.276 | | 1.3866 | 392.0 | 121520 | 1.3863 | 0.256 | | 1.3866 | 393.0 | 121830 | 1.3863 | 0.274 | | 1.3873 | 394.0 | 122140 | 1.3863 | 0.286 | | 1.3873 | 395.0 | 122450 | 1.3863 | 0.276 | | 1.387 | 396.0 | 122760 | 1.3863 | 0.234 | | 1.3866 | 397.0 | 123070 | 1.3863 | 0.266 | | 1.3866 | 398.0 | 123380 | 1.3863 | 0.294 | | 1.3868 | 399.0 | 123690 | 1.3863 | 0.254 | | 1.3864 | 400.0 | 124000 | 1.3863 | 0.288 | | 1.3864 | 401.0 | 124310 | 1.3863 | 0.26 | | 1.3864 | 402.0 | 124620 | 1.3863 | 0.256 | | 1.3864 | 403.0 | 124930 | 1.3863 | 0.25 | | 1.3864 | 404.0 | 125240 | 1.3863 | 0.276 | | 1.3867 | 405.0 | 125550 | 1.3863 | 0.258 | | 1.3867 | 406.0 | 125860 | 1.3863 | 0.262 | | 1.3867 | 407.0 | 126170 | 1.3863 | 0.278 | | 1.3867 | 408.0 | 126480 | 1.3863 | 0.278 | | 1.387 | 409.0 | 126790 | 1.3863 | 0.272 | | 1.3865 | 410.0 | 127100 | 1.3863 | 0.28 | | 1.3865 | 411.0 | 127410 | 1.3863 | 0.288 | | 1.386 | 412.0 | 127720 | 1.3863 | 0.266 | | 1.3867 | 413.0 | 128030 | 1.3863 | 0.252 | | 1.3867 | 414.0 | 128340 | 1.3863 | 0.266 | | 1.3865 | 415.0 | 128650 | 1.3863 | 0.264 | | 1.3865 | 416.0 | 128960 | 1.3863 | 0.262 | | 1.3867 | 417.0 | 129270 | 1.3863 | 0.28 | | 1.3869 | 418.0 | 129580 | 1.3863 | 0.284 | | 1.3869 | 419.0 | 129890 | 1.3863 | 0.264 | | 1.3866 | 420.0 | 130200 | 1.3863 | 0.266 | | 1.3869 | 421.0 | 130510 | 1.3863 | 0.274 | | 1.3869 | 422.0 | 130820 | 1.3863 | 0.3 | | 1.3865 | 423.0 | 131130 | 1.3863 | 0.266 | | 1.3865 | 424.0 | 131440 | 1.3863 | 0.286 | | 1.3872 | 425.0 | 131750 | 1.3863 | 0.264 | | 1.3865 | 426.0 | 132060 | 1.3863 | 0.278 | | 1.3865 | 427.0 | 132370 | 1.3863 | 0.27 | | 1.3864 | 428.0 | 132680 | 1.3863 | 0.268 | | 1.3864 | 429.0 | 132990 | 1.3863 | 0.304 | | 1.3865 | 430.0 | 133300 | 1.3863 | 0.278 | | 1.3865 | 431.0 | 133610 | 1.3863 | 0.278 | | 1.3865 | 432.0 | 133920 | 1.3863 | 0.276 | | 1.3867 | 433.0 | 134230 | 1.3863 | 0.286 | | 1.3863 | 434.0 | 134540 | 1.3863 | 0.27 | | 1.3863 | 435.0 | 134850 | 1.3863 | 0.28 | | 1.3865 | 436.0 | 135160 | 1.3863 | 0.258 | | 1.3865 | 437.0 | 135470 | 1.3863 | 0.248 | | 1.3874 | 438.0 | 135780 | 1.3863 | 0.27 | | 1.387 | 439.0 | 136090 | 1.3863 | 0.272 | | 1.387 | 440.0 | 136400 | 1.3863 | 0.28 | | 1.3869 | 441.0 | 136710 | 1.3863 | 0.28 | | 1.3862 | 442.0 | 137020 | 1.3863 | 0.266 | | 1.3862 | 443.0 | 137330 | 1.3863 | 0.282 | | 1.3862 | 444.0 | 137640 | 1.3863 | 0.26 | | 1.3862 | 445.0 | 137950 | 1.3863 | 0.288 | | 1.3862 | 446.0 | 138260 | 1.3863 | 0.232 | | 1.387 | 447.0 | 138570 | 1.3863 | 0.262 | | 1.387 | 448.0 | 138880 | 1.3863 | 0.254 | | 1.3865 | 449.0 | 139190 | 1.3863 | 0.29 | | 1.3871 | 450.0 | 139500 | 1.3863 | 0.276 | | 1.3871 | 451.0 | 139810 | 1.3863 | 0.26 | | 1.3868 | 452.0 | 140120 | 1.3863 | 0.272 | | 1.3868 | 453.0 | 140430 | 1.3863 | 0.268 | | 1.3864 | 454.0 | 140740 | 1.3863 | 0.244 | | 1.387 | 455.0 | 141050 | 1.3863 | 0.252 | | 1.387 | 456.0 | 141360 | 1.3863 | 0.268 | | 1.3871 | 457.0 | 141670 | 1.3863 | 0.278 | | 1.3871 | 458.0 | 141980 | 1.3863 | 0.276 | | 1.3873 | 459.0 | 142290 | 1.3863 | 0.27 | | 1.3866 | 460.0 | 142600 | 1.3863 | 0.252 | | 1.3866 | 461.0 | 142910 | 1.3863 | 0.266 | | 1.3866 | 462.0 | 143220 | 1.3863 | 0.294 | | 1.3862 | 463.0 | 143530 | 1.3863 | 0.254 | | 1.3862 | 464.0 | 143840 | 1.3863 | 0.268 | | 1.387 | 465.0 | 144150 | 1.3863 | 0.266 | | 1.387 | 466.0 | 144460 | 1.3863 | 0.27 | | 1.3869 | 467.0 | 144770 | 1.3863 | 0.254 | | 1.3861 | 468.0 | 145080 | 1.3863 | 0.274 | | 1.3861 | 469.0 | 145390 | 1.3863 | 0.26 | | 1.3861 | 470.0 | 145700 | 1.3863 | 0.274 | | 1.387 | 471.0 | 146010 | 1.3863 | 0.268 | | 1.387 | 472.0 | 146320 | 1.3863 | 0.26 | | 1.3872 | 473.0 | 146630 | 1.3863 | 0.274 | | 1.3872 | 474.0 | 146940 | 1.3863 | 0.282 | | 1.387 | 475.0 | 147250 | 1.3863 | 0.252 | | 1.387 | 476.0 | 147560 | 1.3863 | 0.268 | | 1.387 | 477.0 | 147870 | 1.3863 | 0.266 | | 1.3865 | 478.0 | 148180 | 1.3863 | 0.258 | | 1.3865 | 479.0 | 148490 | 1.3863 | 0.268 | | 1.3865 | 480.0 | 148800 | 1.3863 | 0.268 | | 1.3869 | 481.0 | 149110 | 1.3863 | 0.266 | | 1.3869 | 482.0 | 149420 | 1.3863 | 0.278 | | 1.387 | 483.0 | 149730 | 1.3863 | 0.292 | | 1.3866 | 484.0 | 150040 | 1.3863 | 0.256 | | 1.3866 | 485.0 | 150350 | 1.3863 | 0.278 | | 1.3866 | 486.0 | 150660 | 1.3863 | 0.28 | | 1.3866 | 487.0 | 150970 | 1.3863 | 0.262 | | 1.3871 | 488.0 | 151280 | 1.3863 | 0.28 | | 1.3864 | 489.0 | 151590 | 1.3863 | 0.278 | | 1.3864 | 490.0 | 151900 | 1.3863 | 0.244 | | 1.3867 | 491.0 | 152210 | 1.3863 | 0.29 | | 1.3869 | 492.0 | 152520 | 1.3863 | 0.26 | | 1.3869 | 493.0 | 152830 | 1.3863 | 0.274 | | 1.3863 | 494.0 | 153140 | 1.3863 | 0.274 | | 1.3863 | 495.0 | 153450 | 1.3863 | 0.27 | | 1.3871 | 496.0 | 153760 | 1.3863 | 0.234 | | 1.3868 | 497.0 | 154070 | 1.3863 | 0.246 | | 1.3868 | 498.0 | 154380 | 1.3863 | 0.286 | | 1.3867 | 499.0 | 154690 | 1.3863 | 0.274 | | 1.3865 | 500.0 | 155000 | 1.3863 | 0.274 | | 1.3865 | 501.0 | 155310 | 1.3863 | 0.282 | | 1.3868 | 502.0 | 155620 | 1.3863 | 0.276 | | 1.3868 | 503.0 | 155930 | 1.3863 | 0.266 | | 1.3865 | 504.0 | 156240 | 1.3863 | 0.276 | | 1.3864 | 505.0 | 156550 | 1.3863 | 0.292 | | 1.3864 | 506.0 | 156860 | 1.3863 | 0.276 | | 1.3872 | 507.0 | 157170 | 1.3863 | 0.292 | | 1.3872 | 508.0 | 157480 | 1.3863 | 0.29 | | 1.3861 | 509.0 | 157790 | 1.3863 | 0.274 | | 1.3867 | 510.0 | 158100 | 1.3863 | 0.3 | | 1.3867 | 511.0 | 158410 | 1.3863 | 0.276 | | 1.3865 | 512.0 | 158720 | 1.3863 | 0.28 | | 1.3861 | 513.0 | 159030 | 1.3863 | 0.276 | | 1.3861 | 514.0 | 159340 | 1.3863 | 0.278 | | 1.3869 | 515.0 | 159650 | 1.3863 | 0.274 | | 1.3869 | 516.0 | 159960 | 1.3863 | 0.276 | | 1.3868 | 517.0 | 160270 | 1.3863 | 0.294 | | 1.3863 | 518.0 | 160580 | 1.3863 | 0.266 | | 1.3863 | 519.0 | 160890 | 1.3863 | 0.29 | | 1.3861 | 520.0 | 161200 | 1.3863 | 0.276 | | 1.3869 | 521.0 | 161510 | 1.3863 | 0.27 | | 1.3869 | 522.0 | 161820 | 1.3863 | 0.268 | | 1.3866 | 523.0 | 162130 | 1.3863 | 0.278 | | 1.3866 | 524.0 | 162440 | 1.3863 | 0.28 | | 1.3866 | 525.0 | 162750 | 1.3863 | 0.272 | | 1.3866 | 526.0 | 163060 | 1.3863 | 0.268 | | 1.3866 | 527.0 | 163370 | 1.3863 | 0.278 | | 1.3869 | 528.0 | 163680 | 1.3863 | 0.278 | | 1.3869 | 529.0 | 163990 | 1.3863 | 0.27 | | 1.3869 | 530.0 | 164300 | 1.3863 | 0.256 | | 1.3868 | 531.0 | 164610 | 1.3863 | 0.258 | | 1.3868 | 532.0 | 164920 | 1.3863 | 0.274 | | 1.3865 | 533.0 | 165230 | 1.3863 | 0.276 | | 1.3871 | 534.0 | 165540 | 1.3863 | 0.276 | | 1.3871 | 535.0 | 165850 | 1.3863 | 0.278 | | 1.3859 | 536.0 | 166160 | 1.3863 | 0.238 | | 1.3859 | 537.0 | 166470 | 1.3863 | 0.278 | | 1.3861 | 538.0 | 166780 | 1.3863 | 0.268 | | 1.386 | 539.0 | 167090 | 1.3863 | 0.264 | | 1.386 | 540.0 | 167400 | 1.3863 | 0.234 | | 1.3865 | 541.0 | 167710 | 1.3863 | 0.262 | | 1.3866 | 542.0 | 168020 | 1.3863 | 0.268 | | 1.3866 | 543.0 | 168330 | 1.3863 | 0.276 | | 1.3871 | 544.0 | 168640 | 1.3863 | 0.274 | | 1.3871 | 545.0 | 168950 | 1.3863 | 0.268 | | 1.3867 | 546.0 | 169260 | 1.3863 | 0.27 | | 1.387 | 547.0 | 169570 | 1.3863 | 0.276 | | 1.387 | 548.0 | 169880 | 1.3863 | 0.278 | | 1.3861 | 549.0 | 170190 | 1.3863 | 0.28 | | 1.3865 | 550.0 | 170500 | 1.3863 | 0.278 | | 1.3865 | 551.0 | 170810 | 1.3863 | 0.272 | | 1.387 | 552.0 | 171120 | 1.3863 | 0.278 | | 1.387 | 553.0 | 171430 | 1.3863 | 0.276 | | 1.387 | 554.0 | 171740 | 1.3863 | 0.28 | | 1.3865 | 555.0 | 172050 | 1.3863 | 0.244 | | 1.3865 | 556.0 | 172360 | 1.3863 | 0.276 | | 1.3867 | 557.0 | 172670 | 1.3863 | 0.274 | | 1.3867 | 558.0 | 172980 | 1.3863 | 0.274 | | 1.387 | 559.0 | 173290 | 1.3863 | 0.276 | | 1.3869 | 560.0 | 173600 | 1.3863 | 0.278 | | 1.3869 | 561.0 | 173910 | 1.3863 | 0.272 | | 1.3868 | 562.0 | 174220 | 1.3863 | 0.272 | | 1.3865 | 563.0 | 174530 | 1.3863 | 0.278 | | 1.3865 | 564.0 | 174840 | 1.3863 | 0.286 | | 1.3864 | 565.0 | 175150 | 1.3863 | 0.276 | | 1.3864 | 566.0 | 175460 | 1.3863 | 0.268 | | 1.3862 | 567.0 | 175770 | 1.3863 | 0.276 | | 1.3865 | 568.0 | 176080 | 1.3863 | 0.274 | | 1.3865 | 569.0 | 176390 | 1.3863 | 0.278 | | 1.3866 | 570.0 | 176700 | 1.3863 | 0.276 | | 1.3868 | 571.0 | 177010 | 1.3863 | 0.28 | | 1.3868 | 572.0 | 177320 | 1.3863 | 0.276 | | 1.3866 | 573.0 | 177630 | 1.3863 | 0.276 | | 1.3866 | 574.0 | 177940 | 1.3863 | 0.27 | | 1.3868 | 575.0 | 178250 | 1.3863 | 0.238 | | 1.3869 | 576.0 | 178560 | 1.3863 | 0.272 | | 1.3869 | 577.0 | 178870 | 1.3863 | 0.276 | | 1.3867 | 578.0 | 179180 | 1.3863 | 0.276 | | 1.3867 | 579.0 | 179490 | 1.3863 | 0.28 | | 1.3863 | 580.0 | 179800 | 1.3863 | 0.272 | | 1.3863 | 581.0 | 180110 | 1.3863 | 0.246 | | 1.3863 | 582.0 | 180420 | 1.3863 | 0.276 | | 1.3865 | 583.0 | 180730 | 1.3863 | 0.278 | | 1.3868 | 584.0 | 181040 | 1.3863 | 0.28 | | 1.3868 | 585.0 | 181350 | 1.3863 | 0.276 | | 1.387 | 586.0 | 181660 | 1.3863 | 0.284 | | 1.387 | 587.0 | 181970 | 1.3863 | 0.266 | | 1.387 | 588.0 | 182280 | 1.3863 | 0.276 | | 1.3865 | 589.0 | 182590 | 1.3863 | 0.278 | | 1.3865 | 590.0 | 182900 | 1.3863 | 0.262 | | 1.3867 | 591.0 | 183210 | 1.3863 | 0.278 | | 1.3868 | 592.0 | 183520 | 1.3863 | 0.292 | | 1.3868 | 593.0 | 183830 | 1.3863 | 0.276 | | 1.3866 | 594.0 | 184140 | 1.3863 | 0.282 | | 1.3866 | 595.0 | 184450 | 1.3863 | 0.28 | | 1.3868 | 596.0 | 184760 | 1.3863 | 0.276 | | 1.3869 | 597.0 | 185070 | 1.3863 | 0.278 | | 1.3869 | 598.0 | 185380 | 1.3863 | 0.278 | | 1.3865 | 599.0 | 185690 | 1.3863 | 0.276 | | 1.3869 | 600.0 | 186000 | 1.3863 | 0.264 | | 1.3869 | 601.0 | 186310 | 1.3863 | 0.272 | | 1.3864 | 602.0 | 186620 | 1.3863 | 0.276 | | 1.3864 | 603.0 | 186930 | 1.3863 | 0.282 | | 1.3867 | 604.0 | 187240 | 1.3863 | 0.252 | | 1.3869 | 605.0 | 187550 | 1.3863 | 0.274 | | 1.3869 | 606.0 | 187860 | 1.3863 | 0.286 | | 1.3868 | 607.0 | 188170 | 1.3863 | 0.298 | | 1.3868 | 608.0 | 188480 | 1.3863 | 0.264 | | 1.3859 | 609.0 | 188790 | 1.3863 | 0.274 | | 1.3867 | 610.0 | 189100 | 1.3863 | 0.274 | | 1.3867 | 611.0 | 189410 | 1.3863 | 0.276 | | 1.387 | 612.0 | 189720 | 1.3863 | 0.274 | | 1.387 | 613.0 | 190030 | 1.3863 | 0.276 | | 1.387 | 614.0 | 190340 | 1.3863 | 0.274 | | 1.3867 | 615.0 | 190650 | 1.3863 | 0.29 | | 1.3867 | 616.0 | 190960 | 1.3863 | 0.27 | | 1.3861 | 617.0 | 191270 | 1.3863 | 0.276 | | 1.3868 | 618.0 | 191580 | 1.3863 | 0.296 | | 1.3868 | 619.0 | 191890 | 1.3863 | 0.28 | | 1.3862 | 620.0 | 192200 | 1.3863 | 0.262 | | 1.387 | 621.0 | 192510 | 1.3863 | 0.27 | | 1.387 | 622.0 | 192820 | 1.3863 | 0.276 | | 1.3867 | 623.0 | 193130 | 1.3863 | 0.282 | | 1.3867 | 624.0 | 193440 | 1.3863 | 0.278 | | 1.3867 | 625.0 | 193750 | 1.3863 | 0.274 | | 1.3863 | 626.0 | 194060 | 1.3863 | 0.278 | | 1.3863 | 627.0 | 194370 | 1.3863 | 0.282 | | 1.387 | 628.0 | 194680 | 1.3863 | 0.274 | | 1.387 | 629.0 | 194990 | 1.3863 | 0.276 | | 1.3866 | 630.0 | 195300 | 1.3863 | 0.256 | | 1.3867 | 631.0 | 195610 | 1.3863 | 0.28 | | 1.3867 | 632.0 | 195920 | 1.3863 | 0.284 | | 1.3864 | 633.0 | 196230 | 1.3863 | 0.256 | | 1.3867 | 634.0 | 196540 | 1.3863 | 0.268 | | 1.3867 | 635.0 | 196850 | 1.3863 | 0.282 | | 1.3864 | 636.0 | 197160 | 1.3863 | 0.26 | | 1.3864 | 637.0 | 197470 | 1.3863 | 0.266 | | 1.3864 | 638.0 | 197780 | 1.3863 | 0.262 | | 1.3866 | 639.0 | 198090 | 1.3863 | 0.276 | | 1.3866 | 640.0 | 198400 | 1.3863 | 0.286 | | 1.3864 | 641.0 | 198710 | 1.3863 | 0.264 | | 1.3865 | 642.0 | 199020 | 1.3863 | 0.272 | | 1.3865 | 643.0 | 199330 | 1.3863 | 0.276 | | 1.3868 | 644.0 | 199640 | 1.3863 | 0.276 | | 1.3868 | 645.0 | 199950 | 1.3863 | 0.268 | | 1.3866 | 646.0 | 200260 | 1.3863 | 0.296 | | 1.3868 | 647.0 | 200570 | 1.3863 | 0.264 | | 1.3868 | 648.0 | 200880 | 1.3863 | 0.276 | | 1.3866 | 649.0 | 201190 | 1.3863 | 0.28 | | 1.3863 | 650.0 | 201500 | 1.3863 | 0.276 | | 1.3863 | 651.0 | 201810 | 1.3863 | 0.288 | | 1.3867 | 652.0 | 202120 | 1.3863 | 0.266 | | 1.3867 | 653.0 | 202430 | 1.3863 | 0.27 | | 1.3864 | 654.0 | 202740 | 1.3863 | 0.26 | | 1.3865 | 655.0 | 203050 | 1.3863 | 0.276 | | 1.3865 | 656.0 | 203360 | 1.3863 | 0.276 | | 1.3865 | 657.0 | 203670 | 1.3863 | 0.278 | | 1.3865 | 658.0 | 203980 | 1.3863 | 0.276 | | 1.3866 | 659.0 | 204290 | 1.3863 | 0.276 | | 1.3867 | 660.0 | 204600 | 1.3863 | 0.274 | | 1.3867 | 661.0 | 204910 | 1.3863 | 0.282 | | 1.3867 | 662.0 | 205220 | 1.3863 | 0.272 | | 1.3861 | 663.0 | 205530 | 1.3863 | 0.276 | | 1.3861 | 664.0 | 205840 | 1.3863 | 0.26 | | 1.3863 | 665.0 | 206150 | 1.3863 | 0.276 | | 1.3863 | 666.0 | 206460 | 1.3863 | 0.276 | | 1.3865 | 667.0 | 206770 | 1.3863 | 0.272 | | 1.3866 | 668.0 | 207080 | 1.3863 | 0.262 | | 1.3866 | 669.0 | 207390 | 1.3863 | 0.286 | | 1.3862 | 670.0 | 207700 | 1.3863 | 0.276 | | 1.3866 | 671.0 | 208010 | 1.3863 | 0.272 | | 1.3866 | 672.0 | 208320 | 1.3863 | 0.28 | | 1.3868 | 673.0 | 208630 | 1.3863 | 0.276 | | 1.3868 | 674.0 | 208940 | 1.3863 | 0.268 | | 1.3862 | 675.0 | 209250 | 1.3863 | 0.286 | | 1.386 | 676.0 | 209560 | 1.3863 | 0.284 | | 1.386 | 677.0 | 209870 | 1.3863 | 0.28 | | 1.3868 | 678.0 | 210180 | 1.3863 | 0.276 | | 1.3868 | 679.0 | 210490 | 1.3863 | 0.28 | | 1.3866 | 680.0 | 210800 | 1.3863 | 0.262 | | 1.3867 | 681.0 | 211110 | 1.3863 | 0.262 | | 1.3867 | 682.0 | 211420 | 1.3863 | 0.278 | | 1.3864 | 683.0 | 211730 | 1.3863 | 0.268 | | 1.387 | 684.0 | 212040 | 1.3863 | 0.264 | | 1.387 | 685.0 | 212350 | 1.3863 | 0.264 | | 1.3868 | 686.0 | 212660 | 1.3863 | 0.252 | | 1.3868 | 687.0 | 212970 | 1.3863 | 0.276 | | 1.3867 | 688.0 | 213280 | 1.3863 | 0.27 | | 1.3863 | 689.0 | 213590 | 1.3863 | 0.246 | | 1.3863 | 690.0 | 213900 | 1.3863 | 0.272 | | 1.3866 | 691.0 | 214210 | 1.3863 | 0.276 | | 1.3864 | 692.0 | 214520 | 1.3863 | 0.282 | | 1.3864 | 693.0 | 214830 | 1.3863 | 0.282 | | 1.3865 | 694.0 | 215140 | 1.3863 | 0.294 | | 1.3865 | 695.0 | 215450 | 1.3863 | 0.274 | | 1.3866 | 696.0 | 215760 | 1.3863 | 0.276 | | 1.3868 | 697.0 | 216070 | 1.3863 | 0.272 | | 1.3868 | 698.0 | 216380 | 1.3863 | 0.28 | | 1.3863 | 699.0 | 216690 | 1.3863 | 0.276 | | 1.3865 | 700.0 | 217000 | 1.3863 | 0.278 | | 1.3865 | 701.0 | 217310 | 1.3863 | 0.276 | | 1.3864 | 702.0 | 217620 | 1.3863 | 0.276 | | 1.3864 | 703.0 | 217930 | 1.3863 | 0.278 | | 1.3863 | 704.0 | 218240 | 1.3863 | 0.28 | | 1.3867 | 705.0 | 218550 | 1.3863 | 0.256 | | 1.3867 | 706.0 | 218860 | 1.3863 | 0.276 | | 1.3862 | 707.0 | 219170 | 1.3863 | 0.244 | | 1.3862 | 708.0 | 219480 | 1.3863 | 0.266 | | 1.3861 | 709.0 | 219790 | 1.3863 | 0.272 | | 1.3864 | 710.0 | 220100 | 1.3863 | 0.278 | | 1.3864 | 711.0 | 220410 | 1.3863 | 0.272 | | 1.386 | 712.0 | 220720 | 1.3863 | 0.258 | | 1.3865 | 713.0 | 221030 | 1.3863 | 0.272 | | 1.3865 | 714.0 | 221340 | 1.3863 | 0.272 | | 1.3867 | 715.0 | 221650 | 1.3863 | 0.278 | | 1.3867 | 716.0 | 221960 | 1.3863 | 0.266 | | 1.3865 | 717.0 | 222270 | 1.3863 | 0.276 | | 1.3868 | 718.0 | 222580 | 1.3863 | 0.282 | | 1.3868 | 719.0 | 222890 | 1.3863 | 0.266 | | 1.3864 | 720.0 | 223200 | 1.3863 | 0.274 | | 1.3859 | 721.0 | 223510 | 1.3863 | 0.256 | | 1.3859 | 722.0 | 223820 | 1.3863 | 0.276 | | 1.3866 | 723.0 | 224130 | 1.3863 | 0.26 | | 1.3866 | 724.0 | 224440 | 1.3863 | 0.276 | | 1.3868 | 725.0 | 224750 | 1.3863 | 0.278 | | 1.3864 | 726.0 | 225060 | 1.3863 | 0.268 | | 1.3864 | 727.0 | 225370 | 1.3863 | 0.286 | | 1.3868 | 728.0 | 225680 | 1.3863 | 0.274 | | 1.3868 | 729.0 | 225990 | 1.3863 | 0.26 | | 1.3865 | 730.0 | 226300 | 1.3863 | 0.278 | | 1.3866 | 731.0 | 226610 | 1.3863 | 0.266 | | 1.3866 | 732.0 | 226920 | 1.3863 | 0.276 | | 1.387 | 733.0 | 227230 | 1.3863 | 0.27 | | 1.3868 | 734.0 | 227540 | 1.3863 | 0.266 | | 1.3868 | 735.0 | 227850 | 1.3863 | 0.268 | | 1.387 | 736.0 | 228160 | 1.3863 | 0.268 | | 1.387 | 737.0 | 228470 | 1.3863 | 0.28 | | 1.3869 | 738.0 | 228780 | 1.3863 | 0.284 | | 1.3866 | 739.0 | 229090 | 1.3863 | 0.284 | | 1.3866 | 740.0 | 229400 | 1.3863 | 0.276 | | 1.3865 | 741.0 | 229710 | 1.3863 | 0.276 | | 1.3867 | 742.0 | 230020 | 1.3863 | 0.272 | | 1.3867 | 743.0 | 230330 | 1.3863 | 0.276 | | 1.3863 | 744.0 | 230640 | 1.3863 | 0.272 | | 1.3863 | 745.0 | 230950 | 1.3863 | 0.278 | | 1.3868 | 746.0 | 231260 | 1.3863 | 0.282 | | 1.3867 | 747.0 | 231570 | 1.3863 | 0.276 | | 1.3867 | 748.0 | 231880 | 1.3863 | 0.286 | | 1.3866 | 749.0 | 232190 | 1.3863 | 0.276 | | 1.3864 | 750.0 | 232500 | 1.3863 | 0.264 | | 1.3864 | 751.0 | 232810 | 1.3863 | 0.26 | | 1.3868 | 752.0 | 233120 | 1.3863 | 0.262 | | 1.3868 | 753.0 | 233430 | 1.3863 | 0.276 | | 1.3867 | 754.0 | 233740 | 1.3863 | 0.276 | | 1.3864 | 755.0 | 234050 | 1.3863 | 0.252 | | 1.3864 | 756.0 | 234360 | 1.3863 | 0.276 | | 1.3864 | 757.0 | 234670 | 1.3863 | 0.276 | | 1.3864 | 758.0 | 234980 | 1.3863 | 0.274 | | 1.3866 | 759.0 | 235290 | 1.3863 | 0.27 | | 1.3869 | 760.0 | 235600 | 1.3863 | 0.276 | | 1.3869 | 761.0 | 235910 | 1.3863 | 0.276 | | 1.3863 | 762.0 | 236220 | 1.3863 | 0.268 | | 1.3869 | 763.0 | 236530 | 1.3863 | 0.274 | | 1.3869 | 764.0 | 236840 | 1.3863 | 0.276 | | 1.3867 | 765.0 | 237150 | 1.3863 | 0.274 | | 1.3867 | 766.0 | 237460 | 1.3863 | 0.278 | | 1.3866 | 767.0 | 237770 | 1.3863 | 0.262 | | 1.3864 | 768.0 | 238080 | 1.3863 | 0.274 | | 1.3864 | 769.0 | 238390 | 1.3863 | 0.276 | | 1.3868 | 770.0 | 238700 | 1.3863 | 0.28 | | 1.3867 | 771.0 | 239010 | 1.3863 | 0.276 | | 1.3867 | 772.0 | 239320 | 1.3863 | 0.26 | | 1.3867 | 773.0 | 239630 | 1.3863 | 0.258 | | 1.3867 | 774.0 | 239940 | 1.3863 | 0.28 | | 1.3867 | 775.0 | 240250 | 1.3863 | 0.272 | | 1.3865 | 776.0 | 240560 | 1.3863 | 0.276 | | 1.3865 | 777.0 | 240870 | 1.3863 | 0.276 | | 1.3867 | 778.0 | 241180 | 1.3863 | 0.264 | | 1.3867 | 779.0 | 241490 | 1.3863 | 0.27 | | 1.3867 | 780.0 | 241800 | 1.3863 | 0.276 | | 1.3863 | 781.0 | 242110 | 1.3863 | 0.276 | | 1.3863 | 782.0 | 242420 | 1.3863 | 0.276 | | 1.3861 | 783.0 | 242730 | 1.3863 | 0.276 | | 1.3865 | 784.0 | 243040 | 1.3863 | 0.274 | | 1.3865 | 785.0 | 243350 | 1.3863 | 0.262 | | 1.3866 | 786.0 | 243660 | 1.3863 | 0.26 | | 1.3866 | 787.0 | 243970 | 1.3863 | 0.276 | | 1.3865 | 788.0 | 244280 | 1.3863 | 0.306 | | 1.3866 | 789.0 | 244590 | 1.3863 | 0.276 | | 1.3866 | 790.0 | 244900 | 1.3863 | 0.256 | | 1.3861 | 791.0 | 245210 | 1.3863 | 0.278 | | 1.3869 | 792.0 | 245520 | 1.3863 | 0.25 | | 1.3869 | 793.0 | 245830 | 1.3863 | 0.28 | | 1.3864 | 794.0 | 246140 | 1.3863 | 0.286 | | 1.3864 | 795.0 | 246450 | 1.3863 | 0.276 | | 1.3865 | 796.0 | 246760 | 1.3863 | 0.286 | | 1.3864 | 797.0 | 247070 | 1.3863 | 0.276 | | 1.3864 | 798.0 | 247380 | 1.3863 | 0.276 | | 1.3868 | 799.0 | 247690 | 1.3863 | 0.254 | | 1.3864 | 800.0 | 248000 | 1.3863 | 0.26 | | 1.3864 | 801.0 | 248310 | 1.3863 | 0.276 | | 1.3864 | 802.0 | 248620 | 1.3863 | 0.284 | | 1.3864 | 803.0 | 248930 | 1.3863 | 0.276 | | 1.3863 | 804.0 | 249240 | 1.3863 | 0.272 | | 1.3867 | 805.0 | 249550 | 1.3863 | 0.27 | | 1.3867 | 806.0 | 249860 | 1.3863 | 0.276 | | 1.3866 | 807.0 | 250170 | 1.3863 | 0.254 | | 1.3866 | 808.0 | 250480 | 1.3863 | 0.272 | | 1.3863 | 809.0 | 250790 | 1.3863 | 0.276 | | 1.3864 | 810.0 | 251100 | 1.3863 | 0.276 | | 1.3864 | 811.0 | 251410 | 1.3863 | 0.276 | | 1.3863 | 812.0 | 251720 | 1.3863 | 0.276 | | 1.3866 | 813.0 | 252030 | 1.3863 | 0.272 | | 1.3866 | 814.0 | 252340 | 1.3863 | 0.27 | | 1.3865 | 815.0 | 252650 | 1.3863 | 0.284 | | 1.3865 | 816.0 | 252960 | 1.3863 | 0.276 | | 1.3867 | 817.0 | 253270 | 1.3863 | 0.276 | | 1.3863 | 818.0 | 253580 | 1.3863 | 0.28 | | 1.3863 | 819.0 | 253890 | 1.3863 | 0.29 | | 1.3864 | 820.0 | 254200 | 1.3863 | 0.272 | | 1.386 | 821.0 | 254510 | 1.3863 | 0.276 | | 1.386 | 822.0 | 254820 | 1.3863 | 0.274 | | 1.3859 | 823.0 | 255130 | 1.3863 | 0.26 | | 1.3859 | 824.0 | 255440 | 1.3863 | 0.276 | | 1.3864 | 825.0 | 255750 | 1.3863 | 0.276 | | 1.3862 | 826.0 | 256060 | 1.3863 | 0.278 | | 1.3862 | 827.0 | 256370 | 1.3863 | 0.276 | | 1.3869 | 828.0 | 256680 | 1.3863 | 0.284 | | 1.3869 | 829.0 | 256990 | 1.3863 | 0.258 | | 1.3862 | 830.0 | 257300 | 1.3863 | 0.292 | | 1.3864 | 831.0 | 257610 | 1.3863 | 0.276 | | 1.3864 | 832.0 | 257920 | 1.3863 | 0.264 | | 1.3865 | 833.0 | 258230 | 1.3863 | 0.276 | | 1.3864 | 834.0 | 258540 | 1.3863 | 0.284 | | 1.3864 | 835.0 | 258850 | 1.3863 | 0.268 | | 1.3866 | 836.0 | 259160 | 1.3863 | 0.288 | | 1.3866 | 837.0 | 259470 | 1.3863 | 0.276 | | 1.3859 | 838.0 | 259780 | 1.3863 | 0.274 | | 1.3863 | 839.0 | 260090 | 1.3863 | 0.252 | | 1.3863 | 840.0 | 260400 | 1.3863 | 0.282 | | 1.3863 | 841.0 | 260710 | 1.3863 | 0.276 | | 1.3864 | 842.0 | 261020 | 1.3863 | 0.266 | | 1.3864 | 843.0 | 261330 | 1.3863 | 0.282 | | 1.3862 | 844.0 | 261640 | 1.3863 | 0.276 | | 1.3862 | 845.0 | 261950 | 1.3863 | 0.274 | | 1.3866 | 846.0 | 262260 | 1.3863 | 0.276 | | 1.3863 | 847.0 | 262570 | 1.3863 | 0.242 | | 1.3863 | 848.0 | 262880 | 1.3863 | 0.28 | | 1.3868 | 849.0 | 263190 | 1.3863 | 0.276 | | 1.3866 | 850.0 | 263500 | 1.3863 | 0.278 | | 1.3866 | 851.0 | 263810 | 1.3863 | 0.278 | | 1.3865 | 852.0 | 264120 | 1.3863 | 0.27 | | 1.3865 | 853.0 | 264430 | 1.3863 | 0.276 | | 1.3865 | 854.0 | 264740 | 1.3863 | 0.246 | | 1.3865 | 855.0 | 265050 | 1.3863 | 0.276 | | 1.3865 | 856.0 | 265360 | 1.3863 | 0.276 | | 1.3862 | 857.0 | 265670 | 1.3863 | 0.28 | | 1.3862 | 858.0 | 265980 | 1.3863 | 0.264 | | 1.386 | 859.0 | 266290 | 1.3863 | 0.274 | | 1.3858 | 860.0 | 266600 | 1.3863 | 0.272 | | 1.3858 | 861.0 | 266910 | 1.3863 | 0.272 | | 1.3868 | 862.0 | 267220 | 1.3863 | 0.276 | | 1.3863 | 863.0 | 267530 | 1.3863 | 0.264 | | 1.3863 | 864.0 | 267840 | 1.3863 | 0.272 | | 1.3866 | 865.0 | 268150 | 1.3863 | 0.254 | | 1.3866 | 866.0 | 268460 | 1.3863 | 0.278 | | 1.3861 | 867.0 | 268770 | 1.3863 | 0.276 | | 1.3863 | 868.0 | 269080 | 1.3863 | 0.272 | | 1.3863 | 869.0 | 269390 | 1.3863 | 0.264 | | 1.3866 | 870.0 | 269700 | 1.3863 | 0.276 | | 1.3865 | 871.0 | 270010 | 1.3863 | 0.276 | | 1.3865 | 872.0 | 270320 | 1.3863 | 0.276 | | 1.3864 | 873.0 | 270630 | 1.3863 | 0.266 | | 1.3864 | 874.0 | 270940 | 1.3863 | 0.274 | | 1.3862 | 875.0 | 271250 | 1.3863 | 0.276 | | 1.3865 | 876.0 | 271560 | 1.3863 | 0.266 | | 1.3865 | 877.0 | 271870 | 1.3863 | 0.28 | | 1.3868 | 878.0 | 272180 | 1.3863 | 0.276 | | 1.3868 | 879.0 | 272490 | 1.3863 | 0.276 | | 1.3865 | 880.0 | 272800 | 1.3863 | 0.276 | | 1.3862 | 881.0 | 273110 | 1.3863 | 0.276 | | 1.3862 | 882.0 | 273420 | 1.3863 | 0.276 | | 1.3866 | 883.0 | 273730 | 1.3863 | 0.286 | | 1.3865 | 884.0 | 274040 | 1.3863 | 0.258 | | 1.3865 | 885.0 | 274350 | 1.3863 | 0.272 | | 1.3863 | 886.0 | 274660 | 1.3863 | 0.276 | | 1.3863 | 887.0 | 274970 | 1.3863 | 0.276 | | 1.3866 | 888.0 | 275280 | 1.3863 | 0.276 | | 1.3863 | 889.0 | 275590 | 1.3863 | 0.276 | | 1.3863 | 890.0 | 275900 | 1.3863 | 0.276 | | 1.3864 | 891.0 | 276210 | 1.3863 | 0.27 | | 1.3864 | 892.0 | 276520 | 1.3863 | 0.266 | | 1.3864 | 893.0 | 276830 | 1.3863 | 0.276 | | 1.3864 | 894.0 | 277140 | 1.3863 | 0.276 | | 1.3864 | 895.0 | 277450 | 1.3863 | 0.282 | | 1.3866 | 896.0 | 277760 | 1.3863 | 0.27 | | 1.3868 | 897.0 | 278070 | 1.3863 | 0.28 | | 1.3868 | 898.0 | 278380 | 1.3863 | 0.288 | | 1.3863 | 899.0 | 278690 | 1.3863 | 0.27 | | 1.3865 | 900.0 | 279000 | 1.3863 | 0.284 | | 1.3865 | 901.0 | 279310 | 1.3863 | 0.276 | | 1.3867 | 902.0 | 279620 | 1.3863 | 0.272 | | 1.3867 | 903.0 | 279930 | 1.3863 | 0.276 | | 1.3864 | 904.0 | 280240 | 1.3863 | 0.304 | | 1.3865 | 905.0 | 280550 | 1.3863 | 0.278 | | 1.3865 | 906.0 | 280860 | 1.3863 | 0.276 | | 1.3862 | 907.0 | 281170 | 1.3863 | 0.276 | | 1.3862 | 908.0 | 281480 | 1.3863 | 0.27 | | 1.3865 | 909.0 | 281790 | 1.3863 | 0.266 | | 1.3863 | 910.0 | 282100 | 1.3863 | 0.276 | | 1.3863 | 911.0 | 282410 | 1.3863 | 0.256 | | 1.3865 | 912.0 | 282720 | 1.3863 | 0.262 | | 1.3866 | 913.0 | 283030 | 1.3863 | 0.268 | | 1.3866 | 914.0 | 283340 | 1.3863 | 0.288 | | 1.386 | 915.0 | 283650 | 1.3863 | 0.276 | | 1.386 | 916.0 | 283960 | 1.3863 | 0.272 | | 1.3862 | 917.0 | 284270 | 1.3863 | 0.276 | | 1.3863 | 918.0 | 284580 | 1.3863 | 0.276 | | 1.3863 | 919.0 | 284890 | 1.3863 | 0.266 | | 1.3863 | 920.0 | 285200 | 1.3863 | 0.252 | | 1.3862 | 921.0 | 285510 | 1.3863 | 0.276 | | 1.3862 | 922.0 | 285820 | 1.3863 | 0.252 | | 1.3863 | 923.0 | 286130 | 1.3863 | 0.268 | | 1.3863 | 924.0 | 286440 | 1.3863 | 0.276 | | 1.3866 | 925.0 | 286750 | 1.3863 | 0.272 | | 1.3867 | 926.0 | 287060 | 1.3863 | 0.272 | | 1.3867 | 927.0 | 287370 | 1.3863 | 0.276 | | 1.3869 | 928.0 | 287680 | 1.3863 | 0.276 | | 1.3869 | 929.0 | 287990 | 1.3863 | 0.276 | | 1.3864 | 930.0 | 288300 | 1.3863 | 0.266 | | 1.3862 | 931.0 | 288610 | 1.3863 | 0.258 | | 1.3862 | 932.0 | 288920 | 1.3863 | 0.276 | | 1.3864 | 933.0 | 289230 | 1.3863 | 0.27 | | 1.3861 | 934.0 | 289540 | 1.3863 | 0.276 | | 1.3861 | 935.0 | 289850 | 1.3863 | 0.274 | | 1.3869 | 936.0 | 290160 | 1.3863 | 0.274 | | 1.3869 | 937.0 | 290470 | 1.3863 | 0.276 | | 1.3861 | 938.0 | 290780 | 1.3863 | 0.252 | | 1.386 | 939.0 | 291090 | 1.3863 | 0.276 | | 1.386 | 940.0 | 291400 | 1.3863 | 0.266 | | 1.3865 | 941.0 | 291710 | 1.3863 | 0.274 | | 1.3862 | 942.0 | 292020 | 1.3863 | 0.274 | | 1.3862 | 943.0 | 292330 | 1.3863 | 0.26 | | 1.3863 | 944.0 | 292640 | 1.3863 | 0.268 | | 1.3863 | 945.0 | 292950 | 1.3863 | 0.274 | | 1.3868 | 946.0 | 293260 | 1.3863 | 0.276 | | 1.3865 | 947.0 | 293570 | 1.3863 | 0.256 | | 1.3865 | 948.0 | 293880 | 1.3863 | 0.296 | | 1.3863 | 949.0 | 294190 | 1.3863 | 0.276 | | 1.3865 | 950.0 | 294500 | 1.3863 | 0.272 | | 1.3865 | 951.0 | 294810 | 1.3863 | 0.276 | | 1.3868 | 952.0 | 295120 | 1.3863 | 0.276 | | 1.3868 | 953.0 | 295430 | 1.3863 | 0.282 | | 1.3862 | 954.0 | 295740 | 1.3863 | 0.264 | | 1.3864 | 955.0 | 296050 | 1.3863 | 0.278 | | 1.3864 | 956.0 | 296360 | 1.3863 | 0.276 | | 1.3864 | 957.0 | 296670 | 1.3863 | 0.274 | | 1.3864 | 958.0 | 296980 | 1.3863 | 0.28 | | 1.3855 | 959.0 | 297290 | 1.3863 | 0.25 | | 1.3859 | 960.0 | 297600 | 1.3863 | 0.27 | | 1.3859 | 961.0 | 297910 | 1.3863 | 0.276 | | 1.3863 | 962.0 | 298220 | 1.3863 | 0.278 | | 1.3867 | 963.0 | 298530 | 1.3863 | 0.278 | | 1.3867 | 964.0 | 298840 | 1.3863 | 0.264 | | 1.3863 | 965.0 | 299150 | 1.3863 | 0.278 | | 1.3863 | 966.0 | 299460 | 1.3863 | 0.268 | | 1.3865 | 967.0 | 299770 | 1.3863 | 0.276 | | 1.3866 | 968.0 | 300080 | 1.3863 | 0.272 | | 1.3866 | 969.0 | 300390 | 1.3863 | 0.278 | | 1.3869 | 970.0 | 300700 | 1.3863 | 0.278 | | 1.3868 | 971.0 | 301010 | 1.3863 | 0.276 | | 1.3868 | 972.0 | 301320 | 1.3863 | 0.276 | | 1.3865 | 973.0 | 301630 | 1.3863 | 0.284 | | 1.3865 | 974.0 | 301940 | 1.3863 | 0.266 | | 1.3862 | 975.0 | 302250 | 1.3863 | 0.288 | | 1.3864 | 976.0 | 302560 | 1.3863 | 0.276 | | 1.3864 | 977.0 | 302870 | 1.3863 | 0.266 | | 1.3859 | 978.0 | 303180 | 1.3863 | 0.276 | | 1.3859 | 979.0 | 303490 | 1.3863 | 0.27 | | 1.3861 | 980.0 | 303800 | 1.3863 | 0.272 | | 1.3864 | 981.0 | 304110 | 1.3863 | 0.278 | | 1.3864 | 982.0 | 304420 | 1.3863 | 0.278 | | 1.3866 | 983.0 | 304730 | 1.3863 | 0.262 | | 1.3862 | 984.0 | 305040 | 1.3863 | 0.276 | | 1.3862 | 985.0 | 305350 | 1.3863 | 0.268 | | 1.3862 | 986.0 | 305660 | 1.3863 | 0.278 | | 1.3862 | 987.0 | 305970 | 1.3863 | 0.274 | | 1.3862 | 988.0 | 306280 | 1.3863 | 0.264 | | 1.3867 | 989.0 | 306590 | 1.3863 | 0.276 | | 1.3867 | 990.0 | 306900 | 1.3863 | 0.272 | | 1.3869 | 991.0 | 307210 | 1.3863 | 0.276 | | 1.3863 | 992.0 | 307520 | 1.3863 | 0.276 | | 1.3863 | 993.0 | 307830 | 1.3863 | 0.262 | | 1.3865 | 994.0 | 308140 | 1.3863 | 0.28 | | 1.3865 | 995.0 | 308450 | 1.3863 | 0.286 | | 1.3868 | 996.0 | 308760 | 1.3863 | 0.29 | | 1.3866 | 997.0 | 309070 | 1.3863 | 0.268 | | 1.3866 | 998.0 | 309380 | 1.3863 | 0.276 | | 1.3864 | 999.0 | 309690 | 1.3863 | 0.282 | | 1.3861 | 1000.0 | 310000 | 1.3863 | 0.268 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.11.0
hakurei/waifu-diffusion-v1-3
hakurei
2022-10-08T16:19:55Z
0
606
null
[ "stable-diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2022-09-28T03:04:20Z
--- language: - en tags: - stable-diffusion - text-to-image license: creativeml-openrail-m inference: false --- # Waifu Diffusion v1.3 Waifu Diffusion is a latent text-to-image diffusion model that has been conditioned on high-quality anime images through fine-tuning. - [Float 16 EMA Pruned](https://huggingface.co/hakurei/waifu-diffusion-v1-3/blob/main/wd-v1-3-float16.ckpt) - [Float 32 EMA Pruned](https://huggingface.co/hakurei/waifu-diffusion-v1-3/blob/main/wd-v1-3-float32.ckpt) - [Float 32 Full Weights](https://huggingface.co/hakurei/waifu-diffusion-v1-3/blob/main/wd-v1-3-full.ckpt) - [Float 32 Full Weights + Optimizer Weights (For Training)](https://huggingface.co/hakurei/waifu-diffusion-v1-3/blob/main/wd-v1-3-full-opt.ckpt) ## Model Description The model originally used for fine-tuning is [Stable Diffusion 1.4](https://huggingface.co/CompVis/stable-diffusion-v1-4), which is a latent image diffusion model trained on [LAION2B-en](https://huggingface.co/datasets/laion/laion2B-en). The current model has been fine-tuned with a learning rate of 5.0e-6 for 10 epochs on 680k anime-styled images. [See here for an in-depth overview of Waifu Diffusion 1.3.](https://gist.github.com/harubaru/f727cedacae336d1f7877c4bbe2196e1) ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license) ## Downstream Uses This model can be used for entertainment purposes and as a generative art assistant. ## Team Members and Acknowledgements This project would not have been possible without the incredible work by the [CompVis Researchers](https://ommer-lab.com/). - [Anthony Mercurio](https://github.com/harubaru) - [Salt](https://github.com/sALTaccount/) - [Cafe](https://twitter.com/cafeai_labs) In order to reach us, you can join our [Discord server](https://discord.gg/touhouai). [![Discord Server](https://discordapp.com/api/guilds/930499730843250783/widget.png?style=banner2)](https://discord.gg/touhouai)
joelearn22/q-Taxi-v3
joelearn22
2022-10-08T15:59:02Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-08T15:58:54Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="joelearn22/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
joelearn22/q-FrozenLake-v1-4x4-noSlippery
joelearn22
2022-10-08T15:55:24Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-10-08T15:35:33Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.76 +/- 0.43 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="joelearn22/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
anas-awadalla/bart-base-few-shot-k-128-finetuned-squad-seq2seq-seed-2
anas-awadalla
2022-10-08T15:39:09Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-04T22:53:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-few-shot-k-128-finetuned-squad-seq2seq-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-few-shot-k-128-finetuned-squad-seq2seq-seed-2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-large-finetuned-squad-infilling-lr-5e-6-decay-001
anas-awadalla
2022-10-08T15:00:52Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T12:31:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-large-finetuned-squad-infilling-lr-5e-6-decay-001 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-finetuned-squad-infilling-lr-5e-6-decay-001 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 24 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
lafayetteprocessservers/Process-Server-in-Slidell
lafayetteprocessservers
2022-10-08T14:48:22Z
0
0
null
[ "region:us" ]
null
2022-10-08T14:47:46Z
Are you looking for <a href="https://lafayette-process-servers.com/process-server/">process server in Slidell</a>? You are at the right place. Our service is very user friendly. To begin your order, you can simply click the button labeled “Upload Forms.” This will take you to a screen that will allow you to select the type of service you want, including options for rush service.
anas-awadalla/bart-large-finetuned-squad-infilling-lr-3e-5-decay-001
anas-awadalla
2022-10-08T12:27:21Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T09:58:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-large-finetuned-squad-infilling-lr-3e-5-decay-001 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-finetuned-squad-infilling-lr-3e-5-decay-001 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 24 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
rohit1998/all-MiniLM-L6-v2-quora
rohit1998
2022-10-08T10:00:37Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:quora", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-06T20:16:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - quora metrics: - accuracy - f1 model-index: - name: all-MiniLM-L6-v2-quora results: - task: name: Text Classification type: text-classification dataset: name: quora type: quora config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8150291876916989 - name: F1 type: f1 value: 0.794526570313788 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-MiniLM-L6-v2-quora This model is a fine-tuned version of [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the quora dataset. It achieves the following results on the evaluation set: - Loss: 0.0865 - Accuracy: 0.8150 - F1: 0.7945 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:| | 0.087 | 1.0 | 11371 | 0.0829 | 0.4143 | 0.5535 | | 0.0794 | 2.0 | 22742 | 0.0783 | 0.6017 | 0.6458 | | 0.0606 | 3.0 | 34113 | 0.0756 | 0.3631 | 0.5327 | | 0.05 | 4.0 | 45484 | 0.0781 | 0.4475 | 0.5679 | | 0.0448 | 5.0 | 56855 | 0.0789 | 0.6856 | 0.6975 | | 0.0372 | 6.0 | 68226 | 0.0761 | 0.3922 | 0.5443 | | 0.033 | 7.0 | 79597 | 0.0786 | 0.7586 | 0.7494 | | 0.032 | 8.0 | 90968 | 0.0780 | 0.5011 | 0.5927 | | 0.0229 | 9.0 | 102339 | 0.0819 | 0.7513 | 0.7439 | | 0.0198 | 10.0 | 113710 | 0.0840 | 0.5522 | 0.6185 | | 0.0169 | 11.0 | 125081 | 0.0821 | 0.7959 | 0.7785 | | 0.0199 | 12.0 | 136452 | 0.0807 | 0.8353 | 0.8118 | | 0.0118 | 13.0 | 147823 | 0.0819 | 0.8418 | 0.8176 | | 0.0123 | 14.0 | 159194 | 0.0816 | 0.7577 | 0.7487 | | 0.0093 | 15.0 | 170565 | 0.0856 | 0.7934 | 0.7765 | | 0.0124 | 16.0 | 181936 | 0.0843 | 0.8484 | 0.8241 | | 0.008 | 17.0 | 193307 | 0.0838 | 0.7998 | 0.7818 | | 0.0106 | 18.0 | 204678 | 0.0872 | 0.8245 | 0.8027 | | 0.0066 | 19.0 | 216049 | 0.0857 | 0.8122 | 0.7922 | | 0.0059 | 20.0 | 227420 | 0.0865 | 0.8150 | 0.7945 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu116 - Datasets 2.5.1 - Tokenizers 0.12.1
anas-awadalla/bart-large-finetuned-squad-infilling-lr-3e-5-decay-01
anas-awadalla
2022-10-08T09:54:28Z
118
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T07:27:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-large-finetuned-squad-infilling-lr-3e-5-decay-01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-finetuned-squad-infilling-lr-3e-5-decay-01 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 24 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
nancy-zwx/t5-base-medium-title-generation
nancy-zwx
2022-10-08T09:49:27Z
108
0
transformers
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T09:48:43Z
--- tags: - generated_from_keras_callback model-index: - name: t5-base-medium-title-generation results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-medium-title-generation This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.22.2 - TensorFlow 2.8.2 - Datasets 2.5.2 - Tokenizers 0.12.1
karuniaperjuangan/smsa-distilbert-indo
karuniaperjuangan
2022-10-08T07:39:00Z
105
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "id", "dataset:indonlu", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-08T03:08:03Z
--- license: mit datasets: - indonlu language: id widget: - text: "Produk ini masih harus diperbaiki" ---
richeung1/layoutlm-funsd
richeung1
2022-10-08T07:07:12Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlm", "token-classification", "generated_from_trainer", "dataset:funsd", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-10-07T11:36:55Z
--- tags: - generated_from_trainer datasets: - funsd model-index: - name: layoutlm-funsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlm-funsd This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset. It achieves the following results on the evaluation set: - Loss: 0.6843 - Answer: {'precision': 0.6938997821350763, 'recall': 0.7873918417799752, 'f1': 0.7376954255935148, 'number': 809} - Header: {'precision': 0.27941176470588236, 'recall': 0.31932773109243695, 'f1': 0.2980392156862745, 'number': 119} - Question: {'precision': 0.7749562171628721, 'recall': 0.8309859154929577, 'f1': 0.8019936565473492, 'number': 1065} - Overall Precision: 0.7104 - Overall Recall: 0.7827 - Overall F1: 0.7448 - Overall Accuracy: 0.8076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 1.8035 | 1.0 | 10 | 1.6086 | {'precision': 0.007142857142857143, 'recall': 0.003708281829419036, 'f1': 0.004882017900732303, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.07957559681697612, 'recall': 0.028169014084507043, 'f1': 0.04160887656033287, 'number': 1065} | 0.0414 | 0.0166 | 0.0237 | 0.3175 | | 1.4936 | 2.0 | 20 | 1.2735 | {'precision': 0.279126213592233, 'recall': 0.4264524103831891, 'f1': 0.3374083129584352, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4406651549508692, 'recall': 0.5474178403755868, 'f1': 0.48827470686767166, 'number': 1065} | 0.3626 | 0.4656 | 0.4077 | 0.6074 | | 1.1259 | 3.0 | 30 | 0.9718 | {'precision': 0.47892074198988194, 'recall': 0.7021013597033374, 'f1': 0.569423558897243, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5904121110176619, 'recall': 0.6591549295774648, 'f1': 0.6228926353149955, 'number': 1065} | 0.5336 | 0.6372 | 0.5808 | 0.6760 | | 0.8568 | 4.0 | 40 | 0.8421 | {'precision': 0.5595126522961574, 'recall': 0.7379480840543882, 'f1': 0.6364605543710021, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.6669595782073814, 'recall': 0.7126760563380282, 'f1': 0.6890603722197005, 'number': 1065} | 0.6059 | 0.6804 | 0.6410 | 0.7310 | | 0.7275 | 5.0 | 50 | 0.7430 | {'precision': 0.6401673640167364, 'recall': 0.7564894932014833, 'f1': 0.693484419263456, 'number': 809} | {'precision': 0.12643678160919541, 'recall': 0.09243697478991597, 'f1': 0.10679611650485439, 'number': 119} | {'precision': 0.6825, 'recall': 0.7690140845070422, 'f1': 0.7231788079470199, 'number': 1065} | 0.6429 | 0.7235 | 0.6808 | 0.7727 | | 0.6109 | 6.0 | 60 | 0.6965 | {'precision': 0.6494736842105263, 'recall': 0.7626699629171817, 'f1': 0.7015349630471859, 'number': 809} | {'precision': 0.125, 'recall': 0.09243697478991597, 'f1': 0.10628019323671498, 'number': 119} | {'precision': 0.6780415430267063, 'recall': 0.8582159624413146, 'f1': 0.7575631993369251, 'number': 1065} | 0.6463 | 0.7737 | 0.7043 | 0.7862 | | 0.5341 | 7.0 | 70 | 0.6816 | {'precision': 0.6745945945945946, 'recall': 0.7713226205191595, 'f1': 0.7197231833910035, 'number': 809} | {'precision': 0.22727272727272727, 'recall': 0.21008403361344538, 'f1': 0.21834061135371177, 'number': 119} | {'precision': 0.7435037720033529, 'recall': 0.8328638497652582, 'f1': 0.7856510186005314, 'number': 1065} | 0.6894 | 0.7707 | 0.7278 | 0.7920 | | 0.4811 | 8.0 | 80 | 0.6577 | {'precision': 0.6800870511425462, 'recall': 0.7725587144622992, 'f1': 0.7233796296296297, 'number': 809} | {'precision': 0.2072072072072072, 'recall': 0.19327731092436976, 'f1': 0.2, 'number': 119} | {'precision': 0.7440132122213047, 'recall': 0.8460093896713615, 'f1': 0.7917398945518453, 'number': 1065} | 0.6912 | 0.7772 | 0.7317 | 0.7986 | | 0.4241 | 9.0 | 90 | 0.6586 | {'precision': 0.6898454746136865, 'recall': 0.7725587144622992, 'f1': 0.7288629737609328, 'number': 809} | {'precision': 0.2535211267605634, 'recall': 0.3025210084033613, 'f1': 0.2758620689655173, 'number': 119} | {'precision': 0.751269035532995, 'recall': 0.8338028169014085, 'f1': 0.7903871829105474, 'number': 1065} | 0.6946 | 0.7772 | 0.7336 | 0.7991 | | 0.3784 | 10.0 | 100 | 0.6511 | {'precision': 0.6879739978331527, 'recall': 0.7849196538936959, 'f1': 0.7332563510392609, 'number': 809} | {'precision': 0.2833333333333333, 'recall': 0.2857142857142857, 'f1': 0.2845188284518828, 'number': 119} | {'precision': 0.7590870667793744, 'recall': 0.8431924882629108, 'f1': 0.7989323843416369, 'number': 1065} | 0.7040 | 0.7863 | 0.7428 | 0.8046 | | 0.3425 | 11.0 | 110 | 0.6611 | {'precision': 0.6975982532751092, 'recall': 0.7898640296662547, 'f1': 0.7408695652173912, 'number': 809} | {'precision': 0.26865671641791045, 'recall': 0.3025210084033613, 'f1': 0.2845849802371542, 'number': 119} | {'precision': 0.7737162750217581, 'recall': 0.8347417840375587, 'f1': 0.803071364046974, 'number': 1065} | 0.7112 | 0.7847 | 0.7462 | 0.8116 | | 0.3225 | 12.0 | 120 | 0.6676 | {'precision': 0.6957470010905126, 'recall': 0.788627935723115, 'f1': 0.7392815758980301, 'number': 809} | {'precision': 0.27941176470588236, 'recall': 0.31932773109243695, 'f1': 0.2980392156862745, 'number': 119} | {'precision': 0.7806167400881058, 'recall': 0.831924882629108, 'f1': 0.8054545454545454, 'number': 1065} | 0.7139 | 0.7837 | 0.7472 | 0.8081 | | 0.302 | 13.0 | 130 | 0.6698 | {'precision': 0.6956043956043956, 'recall': 0.7824474660074165, 'f1': 0.7364746945898778, 'number': 809} | {'precision': 0.2878787878787879, 'recall': 0.31932773109243695, 'f1': 0.302788844621514, 'number': 119} | {'precision': 0.7730434782608696, 'recall': 0.8347417840375587, 'f1': 0.8027088036117382, 'number': 1065} | 0.7117 | 0.7827 | 0.7455 | 0.8133 | | 0.2915 | 14.0 | 140 | 0.6845 | {'precision': 0.6978260869565217, 'recall': 0.7935723114956736, 'f1': 0.742625795257374, 'number': 809} | {'precision': 0.2857142857142857, 'recall': 0.31932773109243695, 'f1': 0.30158730158730157, 'number': 119} | {'precision': 0.7771929824561403, 'recall': 0.831924882629108, 'f1': 0.8036281179138323, 'number': 1065} | 0.7141 | 0.7858 | 0.7482 | 0.8052 | | 0.2872 | 15.0 | 150 | 0.6843 | {'precision': 0.6938997821350763, 'recall': 0.7873918417799752, 'f1': 0.7376954255935148, 'number': 809} | {'precision': 0.27941176470588236, 'recall': 0.31932773109243695, 'f1': 0.2980392156862745, 'number': 119} | {'precision': 0.7749562171628721, 'recall': 0.8309859154929577, 'f1': 0.8019936565473492, 'number': 1065} | 0.7104 | 0.7827 | 0.7448 | 0.8076 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
jmcfadden/swin-tiny-patch4-window7-224-finetuned-eurosat
jmcfadden
2022-10-08T05:55:35Z
219
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-10-08T05:32:27Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9807407407407407 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0613 - Accuracy: 0.9807 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2578 | 1.0 | 190 | 0.1447 | 0.9530 | | 0.1733 | 2.0 | 380 | 0.0787 | 0.9733 | | 0.1139 | 3.0 | 570 | 0.0613 | 0.9807 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
yl852/finetuning-sentiment-model
yl852
2022-10-08T05:33:27Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-30T02:17:00Z
--- license: mit tags: - generated_from_trainer model-index: - name: finetuning-sentiment-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
anas-awadalla/bart-base-finetuned-squad-infilling-lr-3e-5-decay-01
anas-awadalla
2022-10-08T04:49:24Z
118
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-08T04:06:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-base-finetuned-squad-infilling-lr-3e-5-decay-01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-squad-infilling-lr-3e-5-decay-01 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 48 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
anas-awadalla/bart-large-finetuned-squad-infilling-lr-1e-5-decay-01
anas-awadalla
2022-10-08T00:15:40Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-07T22:28:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bart-large-finetuned-squad-infilling-lr-1e-5-decay-01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-finetuned-squad-infilling-lr-1e-5-decay-01 This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
debarghabhattofficial/t5-small-squad-finetuned
debarghabhattofficial
2022-10-08T00:05:20Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:qg_squad", "license:cc-by-4.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-07T21:55:40Z
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - qg_squad metrics: - bleu model-index: - name: t5-small-squad-finetuned results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: qg_squad type: qg_squad config: qg_squad split: train args: qg_squad metrics: - name: Bleu type: bleu value: 0.18729932526273085 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-squad-finetuned This model is a fine-tuned version of [lmqg/t5-small-squad](https://huggingface.co/lmqg/t5-small-squad) on the qg_squad dataset. It achieves the following results on the evaluation set: - Loss: 1.8668 - Bleu: 0.1873 - Precisions: [0.5110525491352382, 0.245362761211552, 0.15215077757561193, 0.09884530767928974] - Brevity Penalty: 0.8988 - Length Ratio: 0.9036 - Translation Length: 108527 - Reference Length: 120107 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-----------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:| | 1.9131 | 1.0 | 2367 | 1.8960 | 0.1861 | [0.5106522785325583, 0.24527605096325475, 0.15213089101620028, 0.09826831888082575] | 0.8944 | 0.8996 | 108052 | 120107 | | 1.849 | 2.0 | 4734 | 1.8806 | 0.1849 | [0.5080246970549962, 0.24224047124755838, 0.1501267012945318, 0.09769844997651479] | 0.8972 | 0.9021 | 108353 | 120107 | | 1.8168 | 3.0 | 7101 | 1.8727 | 0.1854 | [0.5098220476080425, 0.24339941601352388, 0.15093927730223472, 0.09804485712417446] | 0.8956 | 0.9007 | 108175 | 120107 | | 1.7923 | 4.0 | 9468 | 1.8700 | 0.1863 | [0.5133830790362698, 0.24615653748790878, 0.15267642711989654, 0.09868749835608512] | 0.8916 | 0.8971 | 107748 | 120107 | | 1.7748 | 5.0 | 11835 | 1.8689 | 0.1869 | [0.5141749342160318, 0.24699161674176884, 0.1534446643289472, 0.0998958319598096] | 0.8898 | 0.8954 | 107549 | 120107 | | 1.7587 | 6.0 | 14202 | 1.8698 | 0.1864 | [0.5146328972484753, 0.24659953524399691, 0.1532201031824242, 0.09970271520116271] | 0.8884 | 0.8942 | 107395 | 120107 | | 1.7468 | 7.0 | 16569 | 1.8680 | 0.1860 | [0.5112671501824734, 0.24460144371064352, 0.15145530742292898, 0.09809866056844169] | 0.8961 | 0.9012 | 108235 | 120107 | | 1.7378 | 8.0 | 18936 | 1.8670 | 0.1876 | [0.5122261914652045, 0.24610537728997678, 0.15275308797724588, 0.09927828458817849] | 0.8970 | 0.9020 | 108333 | 120107 | | 1.7312 | 9.0 | 21303 | 1.8676 | 0.1876 | [0.5117292997446746, 0.24587669400218548, 0.15249172858304044, 0.0989853996535511] | 0.8984 | 0.9033 | 108489 | 120107 | | 1.7271 | 10.0 | 23670 | 1.8668 | 0.1873 | [0.5110525491352382, 0.245362761211552, 0.15215077757561193, 0.09884530767928974] | 0.8988 | 0.9036 | 108527 | 120107 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1
juanarturovargas/mt5-small-finetuned-amazon-en-es
juanarturovargas
2022-10-07T23:26:55Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-05T17:22:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-small-finetuned-amazon-en-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0283 - Rouge1: 17.6736 - Rouge2: 8.5399 - Rougel: 17.4107 - Rougelsum: 17.3637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 3.7032 | 1.0 | 1209 | 3.1958 | 16.1227 | 7.4852 | 15.2662 | 15.3552 | | 3.6502 | 2.0 | 2418 | 3.1103 | 17.2284 | 8.1626 | 16.757 | 16.6583 | | 3.4365 | 3.0 | 3627 | 3.0698 | 17.2326 | 8.7096 | 17.0961 | 16.9705 | | 3.312 | 4.0 | 4836 | 3.0324 | 16.9472 | 8.1386 | 16.6025 | 16.6126 | | 3.2343 | 5.0 | 6045 | 3.0385 | 17.8752 | 8.0578 | 17.4985 | 17.5298 | | 3.1661 | 6.0 | 7254 | 3.0334 | 17.8822 | 8.5243 | 17.5825 | 17.5242 | | 3.1305 | 7.0 | 8463 | 3.0289 | 17.8187 | 8.124 | 17.4815 | 17.4688 | | 3.1039 | 8.0 | 9672 | 3.0283 | 17.6736 | 8.5399 | 17.4107 | 17.3637 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu102 - Datasets 2.5.2 - Tokenizers 0.12.1
phgoddard/distilbert-base-uncased-finetuned-emotion
phgoddard
2022-10-07T22:36:47Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-07T21:27:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.925 - name: F1 type: f1 value: 0.9249876505516254 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2182 - Accuracy: 0.925 - F1: 0.9250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.827 | 1.0 | 250 | 0.3159 | 0.9045 | 0.9007 | | 0.2459 | 2.0 | 500 | 0.2182 | 0.925 | 0.9250 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/imnotpeeing-moss_sounds
huggingtweets
2022-10-07T21:01:30Z
122
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-10-07T13:14:17Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1240964084645969920/AM6v0rHu_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://abs.twimg.com/sticky/default_profile_images/default_profile_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">proverbs for paranoids & Zander</div> <div style="text-align: center; font-size: 14px;">@imnotpeeing-moss_sounds</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from proverbs for paranoids & Zander. | Data | proverbs for paranoids | Zander | | --- | --- | --- | | Tweets downloaded | 3152 | 693 | | Retweets | 613 | 0 | | Short tweets | 403 | 114 | | Tweets kept | 2136 | 579 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1pr31dk4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @imnotpeeing-moss_sounds's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/13cb3qev) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/13cb3qev/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/imnotpeeing-moss_sounds') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
waifu-research-department/Emilico
waifu-research-department
2022-10-07T19:10:27Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-10-07T18:58:13Z
--- license: mit --- # Description Trainer: Trash--Panda Emilico from Shadows House # Dataset >Training: 12 images # Info >Model Used: Waifu Diffusion 1.2 >Steps: 1200 >Keyword: emilico (Use this in the prompt) >Class Phrase: character >Sample Prompt: An anime illustration of (((emilico))) looking at viewer, high quality, blonde hair, blue eyes, in a cafe, full body. >Sample Negative Prompt: bad anatomy, disfigured, deformed, malformed, mutant, gross, disgusting, out of frame, poorly drawn, extra limbs, extra fingers, missing limbs, blurry, out of focus. ![Emilico](https://i.imgur.com/QSbIsL5.png) ![Emilico](https://i.imgur.com/55THtHp.png)
Umar99/ddpm-butterflies-128
Umar99
2022-10-07T17:55:27Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-10-01T08:59:25Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Umar99/ddpm-butterflies-128/tensorboard?#scalars)
glissa/finetuning-sentiment-model-3000-samples
glissa
2022-10-07T16:16:42Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-07T16:00:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.86 - name: F1 type: f1 value: 0.8609271523178809 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3172 - Accuracy: 0.86 - F1: 0.8609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.12.1