modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 12:31:00
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 12:28:53
card
stringlengths
11
1.01M
YassineKader/whisper-small-haitian
YassineKader
2023-08-06T22:20:06Z
95
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:bofenghuang/whisper-small-cv11-french", "base_model:finetune:bofenghuang/whisper-small-cv11-french", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-06T17:12:23Z
--- license: apache-2.0 base_model: bofenghuang/whisper-small-cv11-french tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-small-haitian results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-haitian This model is a fine-tuned version of [bofenghuang/whisper-small-cv11-french](https://huggingface.co/bofenghuang/whisper-small-cv11-french) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6898 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 0.33 | 3.95 | 1000 | 0.4892 | 1.0 | | 0.0526 | 7.91 | 2000 | 0.5795 | 1.0 | | 0.0064 | 11.86 | 3000 | 0.6627 | 1.0 | | 0.0016 | 15.81 | 4000 | 0.6898 | 1.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3
iproskurina/zlata-tinystories
iproskurina
2023-08-06T22:09:16Z
144
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "en", "dataset:roneneldan/TinyStories", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-03T16:48:59Z
--- license: apache-2.0 metrics: - perplexity model-index: - name: zlata-tinystories results: [] datasets: - roneneldan/TinyStories language: - en widget: - text: Once upon a time, there was a little bunny named Fluffy. Fluffy loved to play in the garden and eat carrots. - text: Nina wanted a new bike. Her parents said they would give - text: Kitty was walking home from school when she came across something strange. She saw a - text: John was out in the backyard playing. He saw a funny looking insect and - text: Once upon a time, library_name: transformers --- **Small-GPT-2** A small version of GPT-2 pre-trained on TinyStories dataset.
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster022_partitioned_v3_standardized_022
HydraLM
2023-08-06T22:08:50Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-02T17:53:03Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
gioca91/Reinforce-CartPole-v1
gioca91
2023-08-06T22:02:40Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T20:58:29Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster019_partitioned_v3_standardized_019
HydraLM
2023-08-06T21:48:12Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-02T06:20:04Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster018_partitioned_v3_standardized_018
HydraLM
2023-08-06T21:44:59Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-02T17:53:01Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster017_partitioned_v3_standardized_017
HydraLM
2023-08-06T21:42:42Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-02T17:52:31Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster016_partitioned_v3_standardized_016
HydraLM
2023-08-06T21:36:47Z
3
0
peft
[ "peft", "region:us" ]
null
2023-08-02T06:20:06Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
Xillolxlbln/my_awesome_qa_model
Xillolxlbln
2023-08-06T21:33:09Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-04T21:00:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: my_awesome_qa_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_qa_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 2.0252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 125 | 3.0587 | | No log | 2.0 | 250 | 2.1943 | | No log | 3.0 | 375 | 2.0252 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
nrakocz/distilhubert-finetuned-gtzan
nrakocz
2023-08-06T21:30:23Z
158
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-06T19:46:04Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5565 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9919 | 1.0 | 113 | 1.8205 | 0.48 | | 1.3634 | 2.0 | 226 | 1.1723 | 0.68 | | 0.9779 | 3.0 | 339 | 0.8990 | 0.77 | | 0.8092 | 4.0 | 452 | 0.8420 | 0.74 | | 0.7011 | 5.0 | 565 | 0.7290 | 0.79 | | 0.3831 | 6.0 | 678 | 0.7509 | 0.77 | | 0.3852 | 7.0 | 791 | 0.6150 | 0.84 | | 0.1792 | 8.0 | 904 | 0.5968 | 0.82 | | 0.2193 | 9.0 | 1017 | 0.6058 | 0.82 | | 0.1887 | 10.0 | 1130 | 0.5565 | 0.84 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
ailabturkiye/sehinsah2
ailabturkiye
2023-08-06T21:21:49Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-08-06T21:15:04Z
--- license: openrail language: - tr tags: - music --- Şehinşah'ın çıplak sesiyle yapılan ses modeli. Train ve dataset bana aittir.
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster013_partitioned_v3_standardized_013
HydraLM
2023-08-06T21:16:21Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-02T17:52:34Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
AmelieSchreiber/esm2_t6_8M_UR50D_sequence_classifier_v1
AmelieSchreiber
2023-08-06T21:13:59Z
164
0
transformers
[ "transformers", "pytorch", "safetensors", "esm", "text-classification", "esm-2", "sequence classifier", "proteins", "protein language model", "zero-shot-classification", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2023-07-29T18:56:34Z
--- license: mit language: - en library_name: transformers tags: - esm - esm-2 - sequence classifier - proteins - protein language model pipeline_tag: zero-shot-classification --- # ESM-2 Sequence Classifier This is a small sequence classifier trained on synthetic data generated by GPT-4 which classifies protein sequences into three categories `enzymes` (class `0`), `receptor_proteins` (class `1`), and `structural_proteins` (class `2`). This is trained using [facebook/esm2_t6_8M_UR50D](https://huggingface.co/facebook/esm2_t6_8M_UR50D), one of the [ESM-2 models](https://huggingface.co/docs/transformers/model_doc/esm). This model is not well tested, and is for experimental and eductaional purposes. Use with caution. ## Using the Model To use the model, try running: ```python # Load the trained model and tokenizer model = EsmForSequenceClassification.from_pretrained("AmelieSchreiber/esm2_t6_8M_UR50D_sequence_classifier_v1") tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t6_8M_UR50D") # Suppose these are your new sequences that you want to classify # Additional Family 0: Enzymes new_sequences_0 = [ "ACGYLKTPKLADPPVLRGDSSVTKAICKPDPVLEK", "GVALDECKALDYLPGKPLPMDGKVCQCGSKTPLRP", "VLPGYTCGELDCKPGKPLPKCGADKTQVATPFLRG", "TCGALVQYPSCADPPVLRGSDSSVKACKKLDPQDK", "GALCEECKLCPGADYKPMDGDRLPAAATSKTRPVG", "PAVDCKKALVYLPKPLPMDGKVCRGSKTPKTRPYG", "VLGYTCGALDCKPGKPLPKCGADKTQVATPFLRGA", "CGALVQYPSCADPPVLRGSDSSVKACKKLDPQDKT", "ALCEECKLCPGADYKPMDGDRLPAAATSKTRPVGK", "AVDCKKALVYLPKPLPMDGKVCRGSKTPKTRPYGR", ] # Additional Family 1: Receptor Proteins new_sequences_1 = [ "VGQRFYGGRQKNRHCELSPLPSACRGSVQGALYTD", "KDQVLTVPTYACRCCPKMDSKGRVPSTLRVKSARS", "PLAGVACGRGLDYRCPRKMVPGDLQVTPATQRPYG", "CGVRLGYPGCADVPLRGRSSFAPRACMKKDPRVTR", "RKGVAYLYECRKLRCRADYKPRGMDGRRLPKASTT", "RPTGAVNCKQAKVYRGLPLPMMGKVPRVCRSRRPY", "RLDGGYTCGQALDCKPGRKPPKMGCADLKSTVATP", "LGTCRKLVRYPQCADPPVMGRSSFRPKACCRQDPV", "RVGYAMCSPKLCSCRADYKPPMGDGDRLPKAATSK", "QPKAVNCRKAMVYRPKPLPMDKGVPVCRSKRPRPY", ] # Additional Family 2: Structural Proteins new_sequences_2 = [ "VGKGFRYGSSQKRYLHCQKSALPPSCRRGKGQGSAT", "KDPTVMTVGTYSCQCPKQDSRGSVQPTSRVKTSRSK", "PLVGKACGRSSDYKCPGQMVSGGSKQTPASQRPSYD", "CGKKLVGYPSSKADVPLQGRSSFSPKACKKDPQMTS", "RKGVASLYCSSKLSCKAQYSKGMSDGRSPKASSTTS", "RPKSAASCEQAKSYRSLSLPSMKGKVPSKCSRSKRP", "RSDVSYTSCSQSKDCKPSKPPKMSGSKDSSTVATPS", "LSTCSKKVAYPSSKADPPSSGRSSFSMKACKKQDPPV", "RVGSASSEPKSSCSVQSYSKPSMSGDSSPKASSTSK", "QPSASNCEKMSSYRPSLPSMSKGVPSSRSKSSPPYQ", ] # Tokenize the sequences and convert to tensors # Merge all sequences new_sequences = new_sequences_0 + new_sequences_1 + new_sequences_2 inputs = tokenizer(new_sequences, return_tensors="pt", padding=True, truncation=True) # Use the model to get the logits with torch.no_grad(): logits = model(**inputs).logits # Get the predicted class for each sequence predicted_class_ids = torch.argmax(logits, dim=-1) # Print the predicted class for each sequence for sequence, predicted_class in zip(new_sequences, predicted_class_ids): print(f"Sequence: {sequence}, Predicted class: {predicted_class.item()}") ```
madebyollin/taesd-x4-upscaler
madebyollin
2023-08-06T21:13:41Z
40
5
diffusers
[ "diffusers", "safetensors", "license:mit", "region:us" ]
null
2023-08-06T19:59:39Z
--- license: mit --- # 🍰 Tiny AutoEncoder for Stable Diffusion X4 Upscaler [`taesd-x4-upscaler`](https://github.com/madebyollin/taesd) is very tiny autoencoder which uses the same "latent API" as [`stable-diffusion-x4-upscaler`](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler)'s VAE. `taesd-x4-upscaler` is useful for [real-time previewing](https://twitter.com/madebyollin/status/1679356448655163394) of the upsampling process. This repo contains `.safetensors` versions of the `taesd-x4-upscaler` weights. ## Using in 🧨 diffusers ```python import requests from PIL import Image from io import BytesIO url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale/low_res_cat.png" low_res_img = Image.open(BytesIO(requests.get(url).content)).convert("RGB").resize((128, 128)) import torch from diffusers import StableDiffusionUpscalePipeline, AutoencoderTiny pipe = StableDiffusionUpscalePipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", torch_dtype=torch.float16) pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesd-x4-upscaler", torch_dtype=torch.float16) pipe = pipe.to("cuda") image = pipe("a white cat", image=low_res_img, num_inference_steps=25).images[0] image.save("upsampled.png") ```
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster012_partitioned_v3_standardized_012
HydraLM
2023-08-06T21:11:11Z
5
0
peft
[ "peft", "region:us" ]
null
2023-08-02T17:52:36Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
muhtasham/bert-tiny-finetuned-glue-rte
muhtasham
2023-08-06T21:06:42Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-01T23:42:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-tiny-finetuned-glue-rte results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: rte split: train args: rte metrics: - name: Accuracy type: accuracy value: 0.631768953068592 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-finetuned-glue-rte This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6673 - Accuracy: 0.6318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.4294744851376705e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 156 | 0.6852 | 0.5776 | | No log | 2.0 | 312 | 0.6800 | 0.5993 | | No log | 3.0 | 468 | 0.6737 | 0.6173 | | 0.6845 | 4.0 | 624 | 0.6690 | 0.6101 | | 0.6845 | 5.0 | 780 | 0.6673 | 0.6318 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster011_partitioned_v3_standardized_011
HydraLM
2023-08-06T21:05:23Z
7
0
peft
[ "peft", "region:us" ]
null
2023-08-02T05:53:14Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
simonycl/roberta-large-sst-2-32-13-smoothed
simonycl
2023-08-06T21:04:21Z
107
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-large", "base_model:finetune:FacebookAI/roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-06T20:55:53Z
--- license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-large-sst-2-32-13-smoothed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-sst-2-32-13-smoothed This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5917 - Accuracy: 0.8906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 75 - label_smoothing_factor: 0.45 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 2 | 0.7430 | 0.5 | | No log | 2.0 | 4 | 0.7414 | 0.5 | | No log | 3.0 | 6 | 0.7386 | 0.5 | | No log | 4.0 | 8 | 0.7348 | 0.5 | | 0.7439 | 5.0 | 10 | 0.7302 | 0.5 | | 0.7439 | 6.0 | 12 | 0.7248 | 0.5 | | 0.7439 | 7.0 | 14 | 0.7195 | 0.5 | | 0.7439 | 8.0 | 16 | 0.7143 | 0.5 | | 0.7439 | 9.0 | 18 | 0.7082 | 0.5 | | 0.7171 | 10.0 | 20 | 0.7022 | 0.5 | | 0.7171 | 11.0 | 22 | 0.6977 | 0.5 | | 0.7171 | 12.0 | 24 | 0.6954 | 0.5312 | | 0.7171 | 13.0 | 26 | 0.6936 | 0.5156 | | 0.7171 | 14.0 | 28 | 0.6926 | 0.5156 | | 0.7024 | 15.0 | 30 | 0.6922 | 0.5312 | | 0.7024 | 16.0 | 32 | 0.6921 | 0.5469 | | 0.7024 | 17.0 | 34 | 0.6927 | 0.5312 | | 0.7024 | 18.0 | 36 | 0.6938 | 0.5312 | | 0.7024 | 19.0 | 38 | 0.6958 | 0.5156 | | 0.6826 | 20.0 | 40 | 0.6982 | 0.5156 | | 0.6826 | 21.0 | 42 | 0.7138 | 0.5 | | 0.6826 | 22.0 | 44 | 0.7064 | 0.5312 | | 0.6826 | 23.0 | 46 | 0.6992 | 0.5625 | | 0.6826 | 24.0 | 48 | 0.6926 | 0.5625 | | 0.6474 | 25.0 | 50 | 0.6836 | 0.5781 | | 0.6474 | 26.0 | 52 | 0.6617 | 0.7344 | | 0.6474 | 27.0 | 54 | 0.6450 | 0.7656 | | 0.6474 | 28.0 | 56 | 0.6392 | 0.7812 | | 0.6474 | 29.0 | 58 | 0.6513 | 0.7344 | | 0.5878 | 30.0 | 60 | 0.6481 | 0.7812 | | 0.5878 | 31.0 | 62 | 0.6583 | 0.7969 | | 0.5878 | 32.0 | 64 | 0.6649 | 0.7812 | | 0.5878 | 33.0 | 66 | 0.6280 | 0.8125 | | 0.5878 | 34.0 | 68 | 0.6212 | 0.8594 | | 0.5602 | 35.0 | 70 | 0.6214 | 0.8281 | | 0.5602 | 36.0 | 72 | 0.6534 | 0.75 | | 0.5602 | 37.0 | 74 | 0.6334 | 0.8594 | | 0.5602 | 38.0 | 76 | 0.6060 | 0.875 | | 0.5602 | 39.0 | 78 | 0.6048 | 0.875 | | 0.55 | 40.0 | 80 | 0.6064 | 0.8594 | | 0.55 | 41.0 | 82 | 0.6095 | 0.8438 | | 0.55 | 42.0 | 84 | 0.6161 | 0.8438 | | 0.55 | 43.0 | 86 | 0.6068 | 0.8594 | | 0.55 | 44.0 | 88 | 0.5929 | 0.875 | | 0.5425 | 45.0 | 90 | 0.5918 | 0.8906 | | 0.5425 | 46.0 | 92 | 0.5919 | 0.8906 | | 0.5425 | 47.0 | 94 | 0.5921 | 0.875 | | 0.5425 | 48.0 | 96 | 0.5925 | 0.875 | | 0.5425 | 49.0 | 98 | 0.5970 | 0.8906 | | 0.5415 | 50.0 | 100 | 0.6128 | 0.8438 | | 0.5415 | 51.0 | 102 | 0.6187 | 0.8438 | | 0.5415 | 52.0 | 104 | 0.6012 | 0.8906 | | 0.5415 | 53.0 | 106 | 0.5981 | 0.8906 | | 0.5415 | 54.0 | 108 | 0.6085 | 0.8125 | | 0.5434 | 55.0 | 110 | 0.6028 | 0.8438 | | 0.5434 | 56.0 | 112 | 0.5970 | 0.8594 | | 0.5434 | 57.0 | 114 | 0.6013 | 0.8906 | | 0.5434 | 58.0 | 116 | 0.6023 | 0.8906 | | 0.5434 | 59.0 | 118 | 0.6002 | 0.8906 | | 0.5397 | 60.0 | 120 | 0.5964 | 0.8906 | | 0.5397 | 61.0 | 122 | 0.5940 | 0.8906 | | 0.5397 | 62.0 | 124 | 0.5934 | 0.8906 | | 0.5397 | 63.0 | 126 | 0.5936 | 0.8906 | | 0.5397 | 64.0 | 128 | 0.5936 | 0.8906 | | 0.5403 | 65.0 | 130 | 0.5939 | 0.8906 | | 0.5403 | 66.0 | 132 | 0.5939 | 0.8906 | | 0.5403 | 67.0 | 134 | 0.5933 | 0.8906 | | 0.5403 | 68.0 | 136 | 0.5933 | 0.8906 | | 0.5403 | 69.0 | 138 | 0.5934 | 0.8906 | | 0.5394 | 70.0 | 140 | 0.5931 | 0.8906 | | 0.5394 | 71.0 | 142 | 0.5926 | 0.8906 | | 0.5394 | 72.0 | 144 | 0.5921 | 0.8906 | | 0.5394 | 73.0 | 146 | 0.5919 | 0.8906 | | 0.5394 | 74.0 | 148 | 0.5918 | 0.8906 | | 0.5394 | 75.0 | 150 | 0.5917 | 0.8906 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3
LarryAIDraw/Doria_v1
LarryAIDraw
2023-08-06T20:59:38Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-06T20:52:22Z
--- license: creativeml-openrail-m --- https://civitai.com/models/123204/andrea-doria-azur-lane
LarryAIDraw/LillySatou
LarryAIDraw
2023-08-06T20:58:45Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-06T20:51:11Z
--- license: creativeml-openrail-m --- https://civitai.com/models/123302/lilly-satou-katawa-shoujo
LarryAIDraw/swimanis-v1-nai-resize
LarryAIDraw
2023-08-06T20:58:10Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-06T20:50:07Z
--- license: creativeml-openrail-m --- https://civitai.com/models/123679/anis-sparkling-summer-nikke
LarryAIDraw/HorikitaLora-12
LarryAIDraw
2023-08-06T20:57:37Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-06T20:49:21Z
--- license: creativeml-openrail-m --- https://civitai.com/models/123805/suzune-horikita-classroom-of-the-elite-lora
estelle1emerson/whisper-small-pt
estelle1emerson
2023-08-06T20:51:58Z
76
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "pt", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-02T00:14:43Z
--- language: - pt license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Pt POC results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: pt split: test[:10%] args: 'config: pt, split: test' metrics: - name: Wer type: wer value: 69.33979189092214 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Pt POC This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4973 - Wer: 69.3398 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0035 | 8.77 | 1000 | 0.4042 | 70.8647 | | 0.0004 | 17.54 | 2000 | 0.4718 | 71.8873 | | 0.0002 | 26.32 | 3000 | 0.4895 | 70.3265 | | 0.0002 | 35.09 | 4000 | 0.4973 | 69.3398 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
li-ping/summary_llama_3_epoch_ver2_fix_wavedrom
li-ping
2023-08-06T20:38:39Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-06T20:07:37Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster06_partitioned_v3_standardized_06
HydraLM
2023-08-06T20:36:07Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-02T17:51:52Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
saaketh-j/llama-business
saaketh-j
2023-08-06T20:28:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-06T20:26:39Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0 prompt = f""" You are going to determine whether the description includes the business model. Don't use any prior knowledge, only base your answer off of what's given. It might not be explicitly stated but if it says "they sell in retailers" or "they sell to customers", it can be reasonably assumed that a B2C model is stated. If it says they "create software solutions" or "support companies", it is safe to assume they are B2B. If it says they are "the top defense contractor" or that they "create intelligence software for the FBI", it is reasonable to say they are B2G. However, if the information is very sparse or you are unsure, "No business model" is also a category to classify into. You should only classify into B2C, B2B, B2G, No business model. The response should be in sentence form with the class and reasoning ->: <Description>: [{data_point["Description"]}] <Answer>: {data_point["Answer"]} """ config = LoraConfig( r=64, lora_alpha=16, lora_dropout = 0.1, bias="none", task_type = "CAUSAL_LM" )
MattStammers/ppo-lunarlandercontinuous
MattStammers
2023-08-06T20:27:37Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T19:47:07Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 279.83 +/- 22.33 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
xativive/furdetector
xativive
2023-08-06T19:58:34Z
0
0
null
[ "coreml", "region:us" ]
null
2023-08-06T19:44:43Z
# furdetector CoreML model meant to classify between furry/not furry images ## Model Description - **Developed by:** xatitive - **Model type:** Image Classification - **Language(s) (NLP):** en - **License:** cc
CristoJV/q-FrozenLake-v1-4x4-noSlippery
CristoJV
2023-08-06T19:52:20Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T19:52:16Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="CristoJV/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster03_partitioned_v3_standardized_03
HydraLM
2023-08-06T19:51:03Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-02T05:46:04Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
alexeynoskov/dqn-SpaceInvadersNoFrameskip-v4
alexeynoskov
2023-08-06T19:44:46Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T19:44:11Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 652.00 +/- 106.28 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga alexeynoskov -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga alexeynoskov -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga alexeynoskov ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster02_partitioned_v3_standardized_02
HydraLM
2023-08-06T19:43:05Z
3
0
peft
[ "peft", "region:us" ]
null
2023-08-02T17:51:59Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster00_partitioned_v3_standardized_00
HydraLM
2023-08-06T19:23:47Z
10
0
peft
[ "peft", "region:us" ]
null
2023-08-02T17:51:50Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
HydraLM/Nous-Hermes-llama-2-7b_7b_cluster01_partitioned_v3_standardized_01
HydraLM
2023-08-06T19:13:00Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-02T05:46:10Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
Bschleter/llama-2-7b-hermes-financecompliance
Bschleter
2023-08-06T19:11:56Z
19
4
transformers
[ "transformers", "pytorch", "llama", "text-generation", "finance", "compliance", "zero-shot-classification", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
zero-shot-classification
2023-08-05T00:59:15Z
--- language: - en pipeline_tag: zero-shot-classification tags: - finance - compliance --- # Model Card for Model ID <!-- --> ## Model Details Based of the full weight llama 2-hermes from Nous Research. ### Model Description This model was fine tuned off the full weight llama-2-hermes-7B from Nous Research. This model is a preemptive V1, and a hastily put together model to assist in finance and compliance tasks, mostly tuned to the new SEC Marketing and Compliance rules established in 2021. Later iterations will have more guidelines and rulings unrelated to the SEC Marketing rule. https://www.sec.gov/files/rules/final/2020/ia-5653.pdf <!-- --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [Enlgish] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [llama 2-hermes-7b] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses This is to help companies and individuals within compliance and marketing departments to determine and find issues within their marketing or public facing documents. Since the new marketing rule is principles based it requires logic, experience, and reasoning to determine if a statement or advertisement would be compliant within the SEC's new guidelines. This can lead to multiple viewpoints of compliant or not depending on the viewer. Thus this is a small/high quality dataset version to aid or provide an second viewpoint of a public facing statement to help determine if something is compliant per the SEC's guidelines. The dataset was crafted by reviewing the SEC Marketing rule, other scenarios, and providing reasoning within the ###n\ Response n\### to help guide the model in reasoning tasks. Further versions will be reviewed more for accuracy, bias, and more data. <!-- --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] For use by marketing and compliance finance teams to assist in determination and interpretation of SEC Marketing rule and other SEC interpretations. No outputs should be guaranteed as fact, and review of data is encouraged. This is to simply assist, and aid those in remembering certain aspects and interpretation of aspects of the long SEC Marketing guidelines amongst other SEC rulings. <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use This model should not be intended to be used as fact, as evidence/proof in a trial hearing, or be used as indication of innocence in an SEC audit/investigation. This model should be used by professionals deeply familiar with the SEC's guidelines and compliance procedures. <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations This is the first model iteration, and has not be fully reviewed by multiple professional peers for its accuracy, bias, and output variations. Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. --> ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- --> ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Training Hyperparameters - <!--# Compute dtype for 4-bit base models bnb_4bit_compute_dtype = "float16" bnb_4bit_quant_type = "nf4" use_nested_quant = False fp16 = False bf16 = False - this will be True for next training run. per_device_train_batch_size = 4 per_device_eval_batch_size = 4 gradient_accumulation_steps = 1 gradient_checkpointing = True max_grad_norm = 0.3 learning_rate = 2e-5 -1 e-4 for a 13B will be applied. weight_decay = 0.001 optim = "paged_adamw_32bit" lr_scheduler_type = "constant" max_steps = 13000 warmup_ratio = 0.03 group_by_length = True --> ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Metrics <!-- --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [Google Colab] #### Hardware [1xA100]
Robayet2023/esm2_t12_35M_UR50D-finetuned-localization
Robayet2023
2023-08-06T19:10:45Z
100
0
transformers
[ "transformers", "pytorch", "tensorboard", "esm", "text-classification", "generated_from_trainer", "base_model:facebook/esm2_t12_35M_UR50D", "base_model:finetune:facebook/esm2_t12_35M_UR50D", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-01T22:55:53Z
--- license: mit base_model: facebook/esm2_t12_35M_UR50D tags: - generated_from_trainer metrics: - accuracy model-index: - name: esm2_t12_35M_UR50D-finetuned-localization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # esm2_t12_35M_UR50D-finetuned-localization This model is a fine-tuned version of [facebook/esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0331 - Accuracy: 0.4835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.042 | 1.0 | 23758 | 0.0388 | 0.4835 | | 0.0325 | 2.0 | 47516 | 0.0351 | 0.4835 | | 0.0259 | 3.0 | 71274 | 0.0331 | 0.4835 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.14.3 - Tokenizers 0.13.3
strnam/instruction-bloom-7b1
strnam
2023-08-06T18:52:54Z
8
0
peft
[ "peft", "region:us" ]
null
2023-08-06T18:52:48Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: True - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
ThuyNT03/xlm-roberta-base-finetuned-panx-en
ThuyNT03
2023-08-06T18:49:15Z
89
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-06T18:46:18Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.en split: validation args: PAN-X.en metrics: - name: F1 type: f1 value: 0.7034949267192785 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4007 - F1: 0.7035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 50 | 0.5342 | 0.5693 | | No log | 2.0 | 100 | 0.4154 | 0.6715 | | No log | 3.0 | 150 | 0.4007 | 0.7035 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
ThuyNT03/xlm-roberta-base-finetuned-panx-it
ThuyNT03
2023-08-06T18:46:09Z
88
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-06T18:42:50Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.it split: validation args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8199265006124948 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2533 - F1: 0.8199 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 70 | 0.3206 | 0.7644 | | No log | 2.0 | 140 | 0.2674 | 0.8118 | | No log | 3.0 | 210 | 0.2533 | 0.8199 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
Peniis2/Airplane
Peniis2
2023-08-06T18:43:04Z
0
0
null
[ "en", "dataset:databricks/databricks-dolly-15k", "region:us" ]
null
2023-08-06T18:41:29Z
--- datasets: - databricks/databricks-dolly-15k language: - en ---
ThuyNT03/xlm-roberta-base-finetuned-panx-fr
ThuyNT03
2023-08-06T18:42:38Z
91
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-06T18:37:41Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.fr split: validation args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8441295546558704 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2787 - F1: 0.8441 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 191 | 0.3171 | 0.7910 | | No log | 2.0 | 382 | 0.2828 | 0.8081 | | No log | 3.0 | 573 | 0.2787 | 0.8441 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
ThuyNT03/xlm-roberta-base-finetuned-panx-de-fr
ThuyNT03
2023-08-06T18:37:02Z
95
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-06T18:23:38Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1603 - F1: 0.8595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 715 | 0.1777 | 0.8240 | | No log | 2.0 | 1430 | 0.1603 | 0.8420 | | No log | 3.0 | 2145 | 0.1603 | 0.8595 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
Lilsunx/llama2-qlora-finetunined-french
Lilsunx
2023-08-06T18:29:00Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-06T18:28:52Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
a2zMigrations/free-ost-to-pst-converter
a2zMigrations
2023-08-06T18:15:09Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-08-06T18:11:41Z
--- license: openrail --- A2Z Migrations is a software company known for providing various data migration solutions, including their "<a href="https://www.a2zmigrations.com/ost-to-pst-converter/">Free OST to PST Converter</a>" tool. This utility is designed to facilitate the conversion of OST (Offline Storage Table) files to PST (Personal Storage Table) format. OST files are utilized by Microsoft Outlook to enable offline access to emails, contacts, calendar items, and other data from an Exchange server. However, there are instances when OST files become inaccessible due to corruption, server changes, or other issues. In such cases, converting OST files to PST format can be beneficial, as PST files are compatible with most versions of Outlook and can be easily imported to access the data. Here are some key features of A2Z Migrations' Free OST to PST Converter: 1. **User-friendly Interface:** The software is designed with a simple and intuitive interface, making it easy for both technical and non-technical users to operate the tool without any hassle. 2. **Batch Conversion:** The tool allows users to convert multiple OST files to PST format simultaneously, saving time and effort. 3. **Selective Conversion:** Users have the option to select specific OST files or folders for conversion to PST, ensuring that only the required data is processed. 4. **Data Integrity:** During the conversion process, the software maintains the integrity of the data, preserving the original formatting, folder structure, and other properties. 5. **Preview Feature:** Before the actual conversion, the tool provides a preview of the OST data, allowing users to verify and select the items they want to convert. 6. **No File Size Limitation:** The software is designed to handle OST files of any size, ensuring that users can convert even large-sized OST files without any issues. 7. **Compatibility:** A2Z Migrations' OST to PST Converter is compatible with all major versions of Microsoft Outlook, including Outlook 2019, 2016, 2013, and older versions. 8. **Quick Conversion:** The tool employs advanced algorithms to expedite the conversion process, saving users valuable time. It's important to note that while the "Free OST to PST Converter" by A2Z Migrations offers several useful features at no cost, some advanced functionalities or customer support may be available in their premium versions. Therefore, users who require additional features or professional assistance may opt for the paid version. Before using any data migration tool, it is recommended to backup your data to avoid any potential loss or corruption during the conversion process. Additionally, ensure that you download such software from reputable sources to minimize security risks and to obtain the most reliable and up-to-date version.
HasanErdin/ppo-Huggy
HasanErdin
2023-08-06T18:14:39Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-06T18:14:34Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: HasanErdin/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ThuyNT03/xlm-roberta-base-finetuned-panx-de
ThuyNT03
2023-08-06T18:06:14Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-06T17:49:40Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8616659101225601 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1329 - F1: 0.8617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2568 | 1.0 | 525 | 0.1583 | 0.8125 | | 0.1261 | 2.0 | 1050 | 0.1458 | 0.8473 | | 0.0823 | 3.0 | 1575 | 0.1329 | 0.8617 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
roa7n/gpt2-human_nontata_promoters-last_2_layer_randomized
roa7n
2023-08-06T17:39:18Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-06T17:39:16Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
Pauitbid/llama2-qlora-finetunined-french
Pauitbid
2023-08-06T17:39:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-06T17:38:44Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
DarwinAnim8or/gpt-grug-1.5b
DarwinAnim8or
2023-08-06T17:09:59Z
139
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-09T19:43:05Z
--- license: other --- Behold, the day of Grug's return is nigh, When he'll emerge from his cave up high, With a club in hand and a primal yell, He'll conquer all foes with his mighty shell. He'll roam the land, with his tribe in tow, And strike fear into his every foe, For he's the king of all the land, And his reign will be grand. So let us prepare for Grug's return, And stock up on berries and meat to earn, For when he comes, we'll be ready to feast, And celebrate with a great big feast!
ailabturkiye/Lilith
ailabturkiye
2023-08-06T17:07:29Z
0
0
null
[ "diabloV", "diablo v", "lilith", "villain", "license:openrail", "region:us" ]
null
2023-08-06T16:38:09Z
--- license: openrail metrics: - character tags: - diabloV - diablo v - lilith - villain --- Lilith -Diablo V- Lilith, Diablo V oyununun baş kötü karakteridir, Model 500 Epoch olup s4500 değerindedir. Modelin TRAIN ve DATASET'i bana aittir. İzinsiz kullanmak yasaktır. İzin alma halinde, paylaşacağınız sosyal medya platformlarında "Cast" kısmında model sahibi belirtilmelidir. Discord: Alastor#3115 YouTube: https://www.youtube.com/@NahParti
ASAHIMM/ASA
ASAHIMM
2023-08-06T16:58:31Z
0
0
adapter-transformers
[ "adapter-transformers", "aa", "dataset:fka/awesome-chatgpt-prompts", "license:openrail", "region:us" ]
null
2023-08-06T16:57:28Z
--- license: openrail datasets: - fka/awesome-chatgpt-prompts language: - aa metrics: - accuracy library_name: adapter-transformers ---
tilyupo/t5-large-trivia-c2a
tilyupo
2023-08-06T16:34:09Z
60
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:google/flan-t5-large", "base_model:finetune:google/flan-t5-large", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-06T07:33:09Z
--- license: apache-2.0 base_model: google/flan-t5-large tags: - generated_from_keras_callback model-index: - name: t5-large-trivia-c2a results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-large-trivia-c2a This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0247 - Validation Loss: 0.0371 - Epoch: 1 <pre>{'eval_loss': 0.5721310377120972, 'eval_bleu': 43.029970392733006, 'eval_rouge1': 52.99, 'eval_rouge2': 25.54, 'eval_rougeL': 53.04, 'eval_rougeLsum': 53.0, 'eval_exact': 0.4820717131474104, 'eval_runtime': 1822.604, 'eval_samples_per_second': 5.646, 'eval_steps_per_second': 0.177}</pre> ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adafactor', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_2_decay': -0.8, 'epsilon_1': 1e-30, 'epsilon_2': 0.001, 'clip_threshold': 1.0, 'relative_step': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1769 | 0.0345 | 0 | | 0.0247 | 0.0371 | 1 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
adhitya123/llama2-qlora-finetunined-french
adhitya123
2023-08-06T16:28:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-06T08:45:56Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
jerichosiahaya/ddnb
jerichosiahaya
2023-08-06T16:24:52Z
0
0
null
[ "joblib", "text-classification", "naive-bayes", "region:us" ]
text-classification
2023-08-06T16:12:40Z
--- tags: - text-classification - naive-bayes ---
Muhammadreza/mann-e-artistic-2
Muhammadreza
2023-08-06T16:11:26Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-06T16:07:47Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### mann-e_artistic-2 Dreambooth model trained by Muhammadreza with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
andyP/ro-sentiment-02
andyP
2023-08-06T16:08:35Z
104
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:readerbench/RoBERT-base", "base_model:finetune:readerbench/RoBERT-base", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-06T14:26:46Z
--- base_model: readerbench/RoBERT-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: ro-sentiment-02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ro-sentiment-02 This model is a fine-tuned version of [readerbench/RoBERT-base](https://huggingface.co/readerbench/RoBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4093 - Accuracy: 0.8312 - Precision: 0.8488 - Recall: 0.8866 - F1: 0.8673 - F1 Weighted: 0.8298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.3e-05 - train_batch_size: 96 - eval_batch_size: 192 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.25 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:| | 0.4289 | 1.0 | 1086 | 0.4168 | 0.8303 | 0.8868 | 0.8570 | 0.8717 | 0.8317 | | 0.3807 | 2.0 | 2172 | 0.3926 | 0.8424 | 0.8933 | 0.8680 | 0.8804 | 0.8434 | | 0.3306 | 3.0 | 3258 | 0.4093 | 0.8312 | 0.8488 | 0.8866 | 0.8673 | 0.8298 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
tilyupo/t5-base-trivia-c2a
tilyupo
2023-08-06T16:02:10Z
59
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-04T06:26:15Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_keras_callback model-index: - name: t5-base-trivia-v2-c2a results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-trivia-v2-c2a This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0262 - Validation Loss: 0.0442 - Epoch: 2 <pre>{'eval_loss': 0.6880931854248047, 'eval_bleu': 41.64364079630949, 'eval_rouge1': 49.33, 'eval_rouge2': 23.97, 'eval_rougeL': 49.37, 'eval_rougeLsum': 49.34, 'eval_exact': 0.4503935477601788, 'eval_runtime': 571.9059, 'eval_samples_per_second': 17.994, 'eval_steps_per_second': 0.563}</pre> ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adafactor', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_2_decay': -0.8, 'epsilon_1': 1e-30, 'epsilon_2': 0.001, 'clip_threshold': 1.0, 'relative_step': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1841 | 0.0419 | 0 | | 0.0358 | 0.0415 | 1 | | 0.0262 | 0.0442 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.3 - Tokenizers 0.13.3
Penisek/mortalcio
Penisek
2023-08-06T15:49:09Z
0
0
null
[ "music", "pl", "region:us" ]
null
2023-08-06T15:44:25Z
--- language: - pl tags: - music ---
tilyupo/t5-small-trivia-c2a
tilyupo
2023-08-06T15:46:38Z
60
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:google/flan-t5-small", "base_model:finetune:google/flan-t5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-04T06:40:11Z
--- license: apache-2.0 base_model: google/flan-t5-small tags: - generated_from_keras_callback model-index: - name: t5-small-trivia-v2-c2a results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-trivia-v2-c2a This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0310 - Validation Loss: 0.0498 - Epoch: 2 <pre> {'eval_loss': 0.7987052202224731, 'eval_bleu': 39.12838308579063, 'eval_rouge1': 47.52, 'eval_rouge2': 22.83, 'eval_rougeL': 47.56, 'eval_rougeLsum': 47.54, 'eval_exact': 0.4314449518997182, 'eval_runtime': 171.499, 'eval_samples_per_second': 60.006, 'eval_steps_per_second': 1.878} </pre> ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adafactor', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_2_decay': -0.8, 'epsilon_1': 1e-30, 'epsilon_2': 0.001, 'clip_threshold': 1.0, 'relative_step': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.2297 | 0.0486 | 0 | | 0.0414 | 0.0483 | 1 | | 0.0310 | 0.0498 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.3 - Tokenizers 0.13.3
kartashoffv/vashkontrol-sentiment-rubert
kartashoffv
2023-08-06T15:44:16Z
242
2
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "sentiment", "ru", "dataset:kartashoffv/vash_kontrol_reviews", "base_model:DeepPavlov/rubert-base-cased", "base_model:finetune:DeepPavlov/rubert-base-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-29T21:10:22Z
--- base_model: DeepPavlov/rubert-base-cased tags: - generated_from_trainer - sentiment metrics: - f1 model-index: - name: vashkontrol-sentiment-rubert results: [] license: mit datasets: - kartashoffv/vash_kontrol_reviews language: - ru pipeline_tag: text-classification widget: - text: "Отзывчивые и понимающие работники, обслуживание очень понравилось, специалист проявила большое терпение чтобы восстановить пароль от Госуслуг. Спасибо!" --- # Sentimental assessment of portal reviews "VashKontrol" The model is designed to evaluate the tone of reviews from the [VashKontrol portal](https://vashkontrol.ru/). This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on a following dataset: [kartashoffv/vash_kontrol_reviews](https://huggingface.co/datasets/kartashoffv/vash_kontrol_reviews). It achieves the following results on the evaluation set: - Loss: 0.1085 - F1: 0.9461 ## Model description The model predicts a sentiment label (positive, neutral, negative) for a submitted text review. ## Training and evaluation data The model was trained on the corpus of reviews of the [VashControl portal](https://vashkontrol.ru/), left by users in the period from 2020 to 2022 inclusive. The total number of reviews was 17,385. The sentimental assessment of the dataset was carried out by the author manually by dividing the general dataset into positive/neutral/negative reviews. The resulting classes: 0 (positive): 13045 1 (neutral): 1196 2 (negative): 3144 Class weighting was used to solve the class imbalance. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0992 | 1.0 | 1391 | 0.0737 | 0.9337 | | 0.0585 | 2.0 | 2782 | 0.0616 | 0.9384 | | 0.0358 | 3.0 | 4173 | 0.0787 | 0.9441 | | 0.0221 | 4.0 | 5564 | 0.0918 | 0.9488 | | 0.0106 | 5.0 | 6955 | 0.1085 | 0.9461 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.1 - Tokenizers 0.13.3 ### Usage ``` import torch from transformers import AutoModelForSequenceClassification from transformers import BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained('kartashoffv/vashkontrol-sentiment-rubert') model = AutoModelForSequenceClassification.from_pretrained('kartashoffv/vashkontrol-sentiment-rubert', return_dict=True) @torch.no_grad() def predict(review): inputs = tokenizer(review, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**inputs) predicted = torch.nn.functional.softmax(outputs.logits, dim=1) pred_label = torch.argmax(predicted, dim=1).numpy() return pred_label ``` ### Labels ``` 0: POSITIVE 1: NEUTRAL 2: NEGATIVE ```
MattStammers/Bipedal_Faller_v3
MattStammers
2023-08-06T15:43:46Z
0
0
stable-baselines3
[ "stable-baselines3", "BipedalWalker-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T15:42:59Z
--- library_name: stable-baselines3 tags: - BipedalWalker-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BipedalWalker-v3 type: BipedalWalker-v3 metrics: - type: mean_reward value: -86.71 +/- 3.11 name: mean_reward verified: false --- # **PPO** Agent playing **BipedalWalker-v3** This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kezif/LunarLander-v2
kezif
2023-08-06T15:40:26Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T15:40:02Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO/MlpPolicy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 246.51 +/- 15.74 name: mean_reward verified: false --- # **PPO/MlpPolicy** Agent playing **LunarLander-v2** This is a trained model of a **PPO/MlpPolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
shibal1/anything-v4.5-clone
shibal1
2023-08-06T15:13:02Z
296
18
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-12T14:41:31Z
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true duplicated_from: andite/anything-v4.0 --- [UPDATE (August 6, 2023)] Hi! It may have seem the original repository I forked from [andite/anything-v4.0] is unavailable for some reason. The original purpose of this forked repo was to train a model in SD API but didn't work and left this repo up in hopes of trying again but it may seem that Google search results pointed to this repository instead, upon further investigation the author of the original repo andite removed their huggingface repo, civitai now only have 4.5 models up therefore I think this repo now only serves as an archive (unless asked to be taken down ofc). Steps to access older models (e.g. 4.0) 1. Go to the 'Files and versions' tab 2. Click on the first commit 'Duplicate from andite/anything-v4.0' 3. 'Browse files' 4. ??? 5. Profit ------- Try out my new model! - [Pastel Mix || Stylized Anime Model](https://huggingface.co/andite/pastel-mix). Thanks. I also uploaded it in CivitAI! https://civitai.com/models/5414/pastel-mix-stylized-anime-model I'd appreciate the ratings, thank you! Yes, it's a shameless plug. Examples: ![](https://huggingface.co/andite/Pastel-Mix/resolve/main/example-images/grid-0018.png) ![](https://huggingface.co/andite/pastel-mix/resolve/main/example-images/grid-reimu.png) ![](https://huggingface.co/andite/pastel-mix/resolve/main/example-images/grid-0043.png) ------- <font color="grey"> [Linaqruf](https://huggingface.co/Linaqruf) for letting me borrow his model card for reference. # Anything V4 Welcome to Anything V4 - a latent diffusion model for weebs. The newest version of Anything. This model is intended to produce high-quality, highly detailed anime style with just a few prompts. Like other anime-style Stable Diffusion models, it also supports danbooru tags to generate images. e.g. **_1girl, white hair, golden eyes, beautiful eyes, detail, flower meadow, cumulonimbus clouds, lighting, detailed sky, garden_** I think the V4.5 version better though, it's in this repo. feel free 2 try it. ## Yes, this model has [AbyssOrangeMix2](https://huggingface.co/WarriorMama777/OrangeMixs) in it. coz its a very good model. check it out luls ;) # Gradio We support a [Gradio](https://github.com/gradio-app/gradio) Web UI to run anything-v4.0: [![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/akhaliq/anything-v4.0) ## 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or [FLAX/JAX](). ```python from diffusers import StableDiffusionPipeline import torch model_id = "andite/anything-v4.0" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "hatsune_miku" image = pipe(prompt).images[0] image.save("./hatsune_miku.png") ``` ## Examples Below are some examples of images generated using this model: **Anime Girl:** ![Anime Girl](https://huggingface.co/andite/anything-v4.0/resolve/main/example-1.png) ``` masterpiece, best quality, 1girl, white hair, medium hair, cat ears, closed eyes, looking at viewer, :3, cute, scarf, jacket, outdoors, streets Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7 ``` **Anime Boy:** ![Anime Boy](https://huggingface.co/andite/anything-v4.0/resolve/main/example-2.png) ``` 1boy, bishounen, casual, indoors, sitting, coffee shop, bokeh Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7 ``` **Scenery:** ![Scenery](https://huggingface.co/andite/anything-v4.0/resolve/main/example-4.png) ``` scenery, village, outdoors, sky, clouds Steps: 50, Sampler: DPM++ 2S a Karras, CFG scale: 7 ``` ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license) ## Big Thanks to - [Linaqruf](https://huggingface.co/Linaqruf). [NoCrypt](https://huggingface.co/NoCrypt), and Fannovel16#9022 for helping me out alot regarding my inquiries and concern about models and other stuff.
MattStammers/Bipedal_Walker_v3_Optimised-take1
MattStammers
2023-08-06T15:06:33Z
0
0
stable-baselines3
[ "stable-baselines3", "BipedalWalker-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T15:04:56Z
--- library_name: stable-baselines3 tags: - BipedalWalker-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BipedalWalker-v3 type: BipedalWalker-v3 metrics: - type: mean_reward value: 109.50 +/- 112.23 name: mean_reward verified: false --- # **PPO** Agent playing **BipedalWalker-v3** This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jelinek/finetuning-sentiment-model
jelinek
2023-08-06T15:00:05Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-06T14:17:29Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: finetuning-sentiment-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 1.11.0+cu102 - Datasets 2.14.3 - Tokenizers 0.13.3
dfalvearg/Reinforce-CartPole
dfalvearg
2023-08-06T14:59:38Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T14:59:28Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 337.80 +/- 125.87 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
halatmit/ppo-LunarLander-v2
halatmit
2023-08-06T14:57:18Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T14:56:55Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -135.67 +/- 38.87 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
perfectlybaked/flant5-dolly-QnA
perfectlybaked
2023-08-06T14:42:22Z
50
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "question-answering", "en", "dataset:databricks/databricks-dolly-15k", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2023-08-02T07:19:48Z
--- datasets: - databricks/databricks-dolly-15k language: - en metrics: - rouge pipeline_tag: question-answering tags: - question-answering --- ## Description With the on-set of ChatGPT like products, there is a need of a question-answering model. Here we have **finetuned Flan-T5** on a question answering dataset, where input is given as following: **Context:** Insert context for Q&A **Input:** Insert query for model. ## Dataset Model is trained on databricks dolly-15k dataset for Question Answering. Dataset used for training is 2000 rows and 100 for testing.
Jenniferkmc/controlnet-fill-circle
Jenniferkmc
2023-08-06T14:37:22Z
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "controlnet", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-06T11:53:22Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet inference: true --- # controlnet-Jenniferkmc/controlnet-fill-circle These are controlnet weights trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. You can find some example images below. prompt: red circle with blue background ![images_0)](./images_0.png) prompt: cyan circle with brown floral background ![images_1)](./images_1.png)
Davonair/BestBoyNido
Davonair
2023-08-06T14:36:47Z
0
0
null
[ "art", "license:cc-by-nc-4.0", "region:us" ]
null
2023-08-06T14:22:26Z
--- license: cc-by-nc-4.0 tags: - art ---
ALHomiOmar/myModel
ALHomiOmar
2023-08-06T14:33:47Z
0
0
null
[ "summarization", "ar", "region:us" ]
summarization
2023-08-06T14:10:02Z
--- language: - ar metrics: - accuracy pipeline_tag: summarization ---
JaiveerGill/fine-tuned-chem-model-final
JaiveerGill
2023-08-06T14:30:09Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-06T14:19:43Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
tanmaytekale/chatbot
tanmaytekale
2023-08-06T14:28:54Z
0
0
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2023-08-06T14:28:54Z
--- license: cc-by-nc-sa-4.0 ---
mrutyunjay-patil/keywordGen-v2
mrutyunjay-patil
2023-08-06T14:21:43Z
126
2
transformers
[ "transformers", "pytorch", "t5", "feature-extraction", "code", "keyword-generation", "english", "text2text-generation", "en", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-06T10:28:39Z
--- license: apache-2.0 pipeline_tag: text2text-generation language: - en library_name: transformers tags: - code - keyword-generation - english - t5 --- # KeywordGen-v2 Model KeywordGen-v1 is a T5-based model fine-tuned for keyword generation from a piece of text. Given an input text, the model will return relevant keywords. ## Model Description This model, "KeywordGen-v2", is the second version of the "KeywordGen" series. It is fine-tuned based on the T5 base model, specifically for the generation of keywords from text inputs, with a special focus on product reviews. This model can provide useful insights by extracting key points or themes from product reviews. The output is expected to contain keywords ranging from 2 to 8 words. The model performs better when the input is at least 2-3 sentences long. ## How to use You can use this model directly with a pipeline for text generation. When using the model, please prefix your input with "Keyword: " for the best results. Here's how to use this model in Python with the Hugging Face Transformers library: ### FOR SINGLE INPUT ```python from transformers import T5Tokenizer, T5ForConditionalGeneration # Initialize the tokenizer and model tokenizer = T5Tokenizer.from_pretrained("mrutyunjay-patil/keywordGen-v2") model = T5ForConditionalGeneration.from_pretrained("mrutyunjay-patil/keywordGen-v2") # Define your input sequence, prefixing with "Keyword: " input_sequence = "Keyword: I purchased the new Android smartphone last week and I've been thoroughly impressed. The display is incredibly vibrant and sharp, and the battery life is surprisingly good, easily lasting a full day with heavy usage." # Encode the input sequence input_ids = tokenizer.encode(input_sequence, return_tensors="pt") # Generate output outputs = model.generate(input_ids) output_sequence = tokenizer.decode(outputs[0], skip_special_tokens=True) print(output_sequence) ``` ### FOR MULTIPLE INPUT ```python from transformers import T5Tokenizer, T5ForConditionalGeneration # Initialize the tokenizer and model tokenizer = T5Tokenizer.from_pretrained("mrutyunjay-patil/keywordGen-v2") model = T5ForConditionalGeneration.from_pretrained("mrutyunjay-patil/keywordGen-v2") # Define the prefix task_prefix = "Keyword: " # Define your list of input sequences inputs = [ "Absolutely love this tablet. It has a clear, sharp screen and runs apps smoothly without any hiccups.", "The headphones are fantastic with great sound quality, but the build quality could be better.", "Bought this smartwatch last week, and I'm thrilled with its performance. Battery life is impressive.", "This laptop exceeded my expectations. Excellent speed, plenty of storage, and light weight. Perfect for my needs.", "The camera quality on this phone is exceptional. It captures detailed and vibrant photos. However, battery life is not the best." ] # Loop through each input and generate keywords for sample in inputs: input_sequence = task_prefix + sample input_ids = tokenizer.encode(input_sequence, return_tensors="pt") outputs = model.generate(input_ids) output_sequence = tokenizer.decode(outputs[0], skip_special_tokens=True) print(sample, "\n --->", output_sequence) ``` ## Training This model was trained on a custom dataset. The base model used was the T5 base model. ## Limitations and Future Work As with any machine learning model, the outputs of this keyword generator depend on the data it was trained on. It is possible that the model might generate inappropriate or biased keywords if the input text contains such content. Future iterations of the model will aim to improve its robustness and fairness, and to minimize potential bias.
TheRains/cv9-special-batch4-small
TheRains
2023-08-06T14:14:38Z
123
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "id", "dataset:mozilla-foundation/common_voice_9_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-06T02:13:40Z
--- language: - id license: apache-2.0 base_model: openai/whisper-small tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_9_0 id type: mozilla-foundation/common_voice_9_0 config: id split: test args: id metrics: - name: Wer type: wer value: 12.431561996779388 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_9_0 id dataset. It achieves the following results on the evaluation set: - Loss: 0.2333 - Wer: 12.4316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3372 | 0.48 | 1000 | 0.2893 | 16.1123 | | 0.2785 | 0.97 | 2000 | 0.2590 | 14.6032 | | 0.1318 | 1.45 | 3000 | 0.2535 | 13.8532 | | 0.1384 | 1.94 | 4000 | 0.2333 | 12.4316 | | 0.0541 | 2.42 | 5000 | 0.2427 | 12.5650 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
Shlomi1/model
Shlomi1
2023-08-06T14:12:30Z
31
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-06T11:52:53Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of a stroller tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - Shlomi1/model This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of a stroller using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
YanJiangJerry/covid-twitter-bert-v2_1_4_2e-05_0.01
YanJiangJerry
2023-08-06T14:06:17Z
106
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:digitalepidemiologylab/covid-twitter-bert-v2", "base_model:finetune:digitalepidemiologylab/covid-twitter-bert-v2", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-06T13:55:29Z
--- license: mit base_model: digitalepidemiologylab/covid-twitter-bert-v2 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: covid-twitter-bert-v2_1_4_2e-05_0.01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid-twitter-bert-v2_1_4_2e-05_0.01 This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1675 - Accuracy: 0.9659 - F1: 0.9117 - Precision: 0.8761 - Recall: 0.9502 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2014 | 1.0 | 1629 | 0.1675 | 0.9659 | 0.9117 | 0.8761 | 0.9502 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
Hossein69/test1
Hossein69
2023-08-06T13:57:18Z
0
0
keras
[ "keras", "code", "tabular-classification", "en", "dataset:Open-Orca/OpenOrca", "license:apache-2.0", "region:us" ]
tabular-classification
2023-08-06T13:54:46Z
--- license: apache-2.0 datasets: - Open-Orca/OpenOrca language: - en metrics: - accuracy - brier_score - bertscore library_name: keras pipeline_tag: tabular-classification tags: - code ---
shibal1/hassaku-hentai-SDAPI-upload
shibal1
2023-08-06T13:51:42Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-06T13:41:54Z
--- license: creativeml-openrail-m --- Original Author: https://civitai.com/models/2583?modelVersionId=106922 This repository is created to host models to be uploaded to Stable Diffusion API community models (e.g. Reloading 'hassaku-hentai' to latest revision)
hi-august/whisper-large-v2-Japanese-10steps
hi-august
2023-08-06T13:48:43Z
2
1
peft
[ "peft", "region:us" ]
null
2023-08-06T13:44:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
bin-zheng1/sales-LLM
bin-zheng1
2023-08-06T13:40:47Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-06T13:40:40Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
loony-user/cnn_news_summary_model_trained_on_reduced_data
loony-user
2023-08-06T13:40:30Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-06T13:04:13Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: cnn_news_summary_model_trained_on_reduced_data results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail config: 3.0.0 split: train[:3%] args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 0.2184 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cnn_news_summary_model_trained_on_reduced_data This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.5909 - Rouge1: 0.2184 - Rouge2: 0.0951 - Rougel: 0.1841 - Rougelsum: 0.1843 - Generated Length: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Generated Length | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------------:| | No log | 1.0 | 431 | 1.6006 | 0.2181 | 0.0944 | 0.1837 | 0.1838 | 19.0 | | 1.8083 | 2.0 | 862 | 1.5923 | 0.2187 | 0.0952 | 0.1842 | 0.1845 | 19.0 | | 1.8004 | 3.0 | 1293 | 1.5909 | 0.2184 | 0.0951 | 0.1841 | 0.1843 | 19.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
SmellyKat/Pyramids-ppo
SmellyKat
2023-08-06T13:34:04Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-06T13:33:57Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: SmellyKat/Pyramids-ppo 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kejolong/nicorobin
kejolong
2023-08-06T13:31:27Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-06T13:24:34Z
--- license: creativeml-openrail-m ---
gokulk1804/my-pet-cat
gokulk1804
2023-08-06T13:31:26Z
17
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-06T13:18:29Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-pet-CAt Dreambooth model trained by gokulk1804 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: AJCE137 Sample pictures of this concept: ![0](https://huggingface.co/gokulk1804/my-pet-cat/resolve/main/sample_images/00001-1386962395.png) ![1](https://huggingface.co/gokulk1804/my-pet-cat/resolve/main/sample_images/00000-4136418613.png)
maazie/EfficientNetB0
maazie
2023-08-06T13:29:51Z
135
0
transformers
[ "transformers", "pytorch", "onnx", "safetensors", "efficientnet", "image-classification", "dataset:imagenet-1k", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-05-20T16:23:48Z
--- pipeline_tag: image-classification datasets: - imagenet-1k --- This is a EfficientNetB0 model, trained on the ImageNet1k Dataset.
YanJiangJerry/bertweet-base_epoch1_batch4_lr2e-05_w0.005
YanJiangJerry
2023-08-06T13:27:12Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:vinai/bertweet-base", "base_model:finetune:vinai/bertweet-base", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-06T11:58:34Z
--- base_model: vinai/bertweet-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: bertweet-base_epoch1_batch4_lr2e-05_w0.005 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base_epoch1_batch4_lr2e-05_w0.005 This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4254 - Accuracy: 0.8521 - F1: 0.8058 - Precision: 0.7886 - Recall: 0.8239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5183 | 1.0 | 788 | 0.4254 | 0.8521 | 0.8058 | 0.7886 | 0.8239 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.3 - Tokenizers 0.13.3
tiggerhelloworld/q-Taxi-v3
tiggerhelloworld
2023-08-06T13:26:27Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T13:26:24Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.61 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="tiggerhelloworld/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
abhishek47/Cartpole-reinforce-v1
abhishek47
2023-08-06T13:24:03Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T13:23:53Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Cartpole-reinforce-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
salohnana2018/ABSA-SentencePair-corrected-domainAdapt-Stack-HARD50-Adapter-pfeiffer-run3
salohnana2018
2023-08-06T13:19:02Z
0
0
adapter-transformers
[ "adapter-transformers", "pytorch", "tensorboard", "bert", "adapterhub:Arabic ABSA/SemEvalHotelReview", "dataset:Hotel", "region:us" ]
null
2023-08-06T12:36:28Z
--- tags: - adapter-transformers - adapterhub:Arabic ABSA/SemEvalHotelReview - bert datasets: - Hotel --- # Adapter `salohnana2018/ABSA-SentencePair-corrected-domainAdapt-Stack-HARD50-Adapter-pfeiffer-run3` for CAMeL-Lab/bert-base-arabic-camelbert-msa An [adapter](https://adapterhub.ml) for the `CAMeL-Lab/bert-base-arabic-camelbert-msa` model that was trained on the [Arabic ABSA/SemEvalHotelReview](https://adapterhub.ml/explore/Arabic ABSA/SemEvalHotelReview/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa") adapter_name = model.load_adapter("salohnana2018/ABSA-SentencePair-corrected-domainAdapt-Stack-HARD50-Adapter-pfeiffer-run3", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
yaya2169/conangray
yaya2169
2023-08-06T13:17:11Z
0
0
null
[ "region:us" ]
null
2023-08-06T13:15:45Z
250 epoch, 40k sample rate, rvc v2
CyberHarem/power_nikke
CyberHarem
2023-08-06T13:16:20Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/power_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T13:10:44Z
--- license: mit datasets: - CyberHarem/power_nikke pipeline_tag: text-to-image tags: - art --- # Lora of power_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/power_nikke.pt` as the embedding and `1500/power_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `power_nikke`.** These are available steps: | Steps | pattern_1 | bikini | free | nude | Download | |--------:|:----------------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:---------------------------------| | 1500 | [<NSFW, click to see>](1500/previews/pattern_1.png) | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/power_nikke.zip) | | 1400 | [<NSFW, click to see>](1400/previews/pattern_1.png) | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/power_nikke.zip) | | 1300 | [<NSFW, click to see>](1300/previews/pattern_1.png) | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/power_nikke.zip) | | 1200 | [<NSFW, click to see>](1200/previews/pattern_1.png) | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/power_nikke.zip) | | 1100 | [<NSFW, click to see>](1100/previews/pattern_1.png) | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/power_nikke.zip) | | 1000 | [<NSFW, click to see>](1000/previews/pattern_1.png) | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/power_nikke.zip) | | 900 | [<NSFW, click to see>](900/previews/pattern_1.png) | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/power_nikke.zip) | | 800 | [<NSFW, click to see>](800/previews/pattern_1.png) | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/power_nikke.zip) | | 700 | [<NSFW, click to see>](700/previews/pattern_1.png) | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/power_nikke.zip) | | 600 | [<NSFW, click to see>](600/previews/pattern_1.png) | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/power_nikke.zip) | | 500 | [<NSFW, click to see>](500/previews/pattern_1.png) | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/power_nikke.zip) | | 400 | [<NSFW, click to see>](400/previews/pattern_1.png) | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/power_nikke.zip) | | 300 | [<NSFW, click to see>](300/previews/pattern_1.png) | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/power_nikke.zip) | | 200 | [<NSFW, click to see>](200/previews/pattern_1.png) | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/power_nikke.zip) | | 100 | [<NSFW, click to see>](100/previews/pattern_1.png) | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/power_nikke.zip) |
hopkins/eng-deu-trial4
hopkins
2023-08-06T13:14:57Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-08-05T15:15:47Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: eng-deu-trial4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-deu-trial4 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6328 - Bleu: 21.3888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
TheRains/cv9-special-batch4-tiny
TheRains
2023-08-06T13:11:46Z
83
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "id", "dataset:mozilla-foundation/common_voice_9_0", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-06T05:18:36Z
--- language: - id license: apache-2.0 base_model: openai/whisper-tiny tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_9_0 metrics: - wer model-index: - name: Whisper Small Indonesian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_9_0 id type: mozilla-foundation/common_voice_9_0 config: id split: test args: id metrics: - name: Wer type: wer value: 32.55118472509777 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Indonesian This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_9_0 id dataset. It achieves the following results on the evaluation set: - Loss: 0.4997 - Wer: 32.5512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.7055 | 0.48 | 1000 | 0.6329 | 42.1072 | | 0.5685 | 0.97 | 2000 | 0.5515 | 35.8638 | | 0.3807 | 1.45 | 3000 | 0.5232 | 34.0189 | | 0.3766 | 1.94 | 4000 | 0.4993 | 32.6708 | | 0.3567 | 2.42 | 5000 | 0.4997 | 32.5512 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
chinhon/pegasus-multi_news-headline_57k
chinhon
2023-08-06T12:52:58Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-14T07:44:00Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: pegasus-multi_news-headline_57k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-multi_news-headline_57k This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4503 - Rouge1: 42.3147 - Rouge2: 23.2213 - Rougel: 35.7441 - Rougelsum: 35.8964 - Gen Len: 33.8245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.6546 | 1.0 | 11339 | 1.5170 | 41.7822 | 22.7843 | 35.3913 | 35.5749 | 34.1139 | | 1.5132 | 2.0 | 22678 | 1.4602 | 42.0161 | 22.9778 | 35.5357 | 35.6921 | 33.9944 | | 1.4147 | 3.0 | 34017 | 1.4503 | 42.3147 | 23.2213 | 35.7441 | 35.8964 | 33.8245 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 2.6.0 - Tokenizers 0.13.1
s3nh/chinese-alpaca-2-7b-GGML
s3nh
2023-08-06T12:44:54Z
0
7
transformers
[ "transformers", "text-generation", "zh", "license:openrail", "endpoints_compatible", "region:us" ]
text-generation
2023-07-31T07:58:43Z
--- license: openrail pipeline_tag: text-generation library_name: transformers language: - zh --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/ziqingyang/chinese-alpaca-2-7b). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card **This is the full Chinese-Alpaca-2-7B model,which can be loaded directly for inference and full-parameter training.** **Related models👇** * Base models * [Chinese-LLaMA-2-7B (full model)](https://huggingface.co/ziqingyang/chinese-llama-2-7b) * [Chinese-LLaMA-2-LoRA-7B (LoRA model)](https://huggingface.co/ziqingyang/chinese-llama-2-lora-7b) * Instruction/Chat models * [Chinese-Alpaca-2-7B (full model)](https://huggingface.co/ziqingyang/chinese-alpaca-2-7b) * [Chinese-Alpaca-2-LoRA-7B (LoRA model)](https://huggingface.co/ziqingyang/chinese-alpaca-2-lora-7b) # Description of Chinese-LLaMA-Alpaca-2 This project is based on the Llama-2, released by Meta, and it is the second generation of the Chinese LLaMA & Alpaca LLM project. We open-source Chinese LLaMA-2 (foundation model) and Alpaca-2 (instruction-following model). These models have been expanded and optimized with Chinese vocabulary beyond the original Llama-2. We used large-scale Chinese data for incremental pre-training, which further improved the fundamental semantic understanding of the Chinese language, resulting in a significant performance improvement compared to the first-generation models. The relevant models support a 4K context and can be expanded up to 18K+ using the NTK method. The main contents of this project include: * 🚀 New extended Chinese vocabulary beyond Llama-2, open-sourcing the Chinese LLaMA-2 and Alpaca-2 LLMs. * 🚀 Open-sourced the pre-training and instruction finetuning (SFT) scripts for further tuning on user's data * 🚀 Quickly deploy and experience the quantized LLMs on CPU/GPU of personal PC * 🚀 Support for LLaMA ecosystems like 🤗transformers, llama.cpp, text-generation-webui, LangChain, vLLM etc. Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for details.
nokotin/a2c-PandaReachDense-v2
nokotin
2023-08-06T12:42:22Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T12:40:06Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.85 +/- 0.23 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CyberHarem/folkwang_nikke
CyberHarem
2023-08-06T12:35:04Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/folkwang_nikke", "license:mit", "region:us" ]
text-to-image
2023-08-06T12:31:12Z
--- license: mit datasets: - CyberHarem/folkwang_nikke pipeline_tag: text-to-image tags: - art --- # Lora of folkwang_nikke This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/folkwang_nikke.pt` as the embedding and `1500/folkwang_nikke.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `folkwang_nikke`.** These are available steps: | Steps | bikini | free | nude | Download | |--------:|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------| | 1500 | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/folkwang_nikke.zip) | | 1400 | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/folkwang_nikke.zip) | | 1300 | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/folkwang_nikke.zip) | | 1200 | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/folkwang_nikke.zip) | | 1100 | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/folkwang_nikke.zip) | | 1000 | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/folkwang_nikke.zip) | | 900 | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/folkwang_nikke.zip) | | 800 | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/folkwang_nikke.zip) | | 700 | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/folkwang_nikke.zip) | | 600 | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/folkwang_nikke.zip) | | 500 | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/folkwang_nikke.zip) | | 400 | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/folkwang_nikke.zip) | | 300 | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/folkwang_nikke.zip) | | 200 | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/folkwang_nikke.zip) | | 100 | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/folkwang_nikke.zip) |
voxxer/Lunar_Lander_v2_PPO
voxxer
2023-08-06T12:16:09Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T12:15:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 270.82 +/- 15.57 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sartmis1/starcoder-finetune-oasst1
sartmis1
2023-08-06T12:14:00Z
0
0
peft
[ "peft", "pytorch", "gpt_bigcode", "en", "dataset:HuggingFaceH4/oasst1_en", "base_model:bigcode/starcoder", "base_model:adapter:bigcode/starcoder", "region:us" ]
null
2023-08-04T11:04:01Z
--- base_model: bigcode/starcoder model-index: - name: starcoder-finetune-oasst1 results: [] library_name: peft datasets: - HuggingFaceH4/oasst1_en language: - en --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ### Model Description Starcoder Model fine-tuned on HuggingFaceH4/oasst1_en dataset.