modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 06:30:11
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 06:29:58
card
stringlengths
11
1.01M
horychtom/czech_media_bias_classifier
horychtom
2022-04-28T13:51:18Z
4
2
transformers
[ "transformers", "pytorch", "bert", "text-classification", "Czech", "cs", "autotrain_compatible", "region:us" ]
text-classification
2022-04-04T09:04:34Z
--- inference: false language: "cs" tags: - Czech --- ## Czech Media Bias Classifier A FERNET-C5 model fine-tuned to perform binary classification task on czech media bias detection.
espnet/simpleoier_chime4_enh_asr_convtasnet_init_noenhloss_wavlm_transformer_init_raw_en_char
espnet
2022-04-28T12:40:15Z
0
0
espnet
[ "espnet", "audio", "speech-enhancement-recognition", "en", "dataset:chime4", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-04-28T12:38:58Z
--- tags: - espnet - audio - speech-enhancement-recognition language: en datasets: - chime4 license: cc-by-4.0 --- ## ESPnet2 EnhS2T model ### `espnet/simpleoier_chime4_enh_asr_convtasnet_init_noenhloss_wavlm_transformer_init_raw_en_char` This model was trained by simpleoier using chime4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 2b663318cd1773fb8685b1e03295b6bc6889c283 pip install -e . cd egs2/chime4/enh_asr1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/simpleoier_chime4_enh_asr_convtasnet_init_noenhloss_wavlm_transformer_init_raw_en_char ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Thu Apr 28 08:15:30 EDT 2022` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 202204` - pytorch version: `pytorch 1.8.1` - Git hash: `` - Commit date: `` ## enh_asr_train_enh_asr_convtasnet_init_noenhloss_wavlm_transformer_init_lr1e-4_accum1_adam_specaug_bypass0_raw_en_char ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/dt05_real_beamformit_2mics|1640|27119|98.5|1.2|0.3|0.2|1.7|19.6| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/dt05_real_beamformit_5mics|1640|27119|98.6|1.1|0.3|0.2|1.5|18.7| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/dt05_real_isolated_1ch_track|1640|27119|98.3|1.3|0.4|0.2|1.9|21.8| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/dt05_simu_beamformit_2mics|1640|27120|97.9|1.5|0.5|0.2|2.3|25.2| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/dt05_simu_beamformit_5mics|1640|27120|98.4|1.2|0.4|0.1|1.7|19.9| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/dt05_simu_isolated_1ch_track|1640|27120|97.2|2.1|0.7|0.3|3.1|28.9| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/et05_real_beamformit_2mics|1320|21409|97.4|2.0|0.6|0.3|2.9|27.3| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/et05_real_beamformit_5mics|1320|21409|97.8|1.8|0.4|0.2|2.5|24.3| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/et05_real_isolated_1ch_track|1320|21409|96.7|2.6|0.7|0.4|3.7|31.6| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/et05_simu_beamformit_2mics|1320|21416|96.6|2.5|1.0|0.3|3.7|32.5| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/et05_simu_beamformit_5mics|1320|21416|97.5|1.9|0.7|0.3|2.9|28.9| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/et05_simu_isolated_1ch_track|1320|21416|94.6|3.7|1.6|0.5|5.9|37.3| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/dt05_real_beamformit_2mics|1640|160390|99.5|0.2|0.3|0.2|0.7|19.6| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/dt05_real_beamformit_5mics|1640|160390|99.6|0.1|0.3|0.2|0.6|18.7| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/dt05_real_isolated_1ch_track|1640|160390|99.4|0.2|0.4|0.2|0.8|21.8| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/dt05_simu_beamformit_2mics|1640|160400|99.2|0.3|0.5|0.2|1.1|25.2| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/dt05_simu_beamformit_5mics|1640|160400|99.5|0.2|0.3|0.1|0.7|19.9| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/dt05_simu_isolated_1ch_track|1640|160400|98.8|0.5|0.7|0.3|1.5|28.9| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/et05_real_beamformit_2mics|1320|126796|98.9|0.4|0.7|0.3|1.4|27.3| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/et05_real_beamformit_5mics|1320|126796|99.1|0.4|0.5|0.2|1.1|24.3| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/et05_real_isolated_1ch_track|1320|126796|98.6|0.6|0.8|0.4|1.8|31.7| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/et05_simu_beamformit_2mics|1320|126812|98.2|0.6|1.1|0.4|2.1|32.5| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/et05_simu_beamformit_5mics|1320|126812|98.8|0.4|0.8|0.3|1.5|28.9| |decode_asr_transformer_normalize_output_wavtrue_lm_lm_train_lm_transformer_en_char_valid.loss.ave_enh_asr_model_valid.acc.ave/et05_simu_isolated_1ch_track|1320|126812|97.0|1.2|1.9|0.6|3.7|37.3| ## EnhS2T config <details><summary>expand</summary> ``` config: conf/tuning/train_enh_asr_convtasnet_init_noenhloss_wavlm_transformer_init_lr1e-4_accum1_adam_specaug_bypass0.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/enh_asr_train_enh_asr_convtasnet_init_noenhloss_wavlm_transformer_init_lr1e-4_accum1_adam_specaug_bypass0_raw_en_char ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: true sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 12 patience: 10 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max - - train - loss - min keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: - ../enh1/exp/enh_train_enh_convtasnet_small_raw/valid.loss.ave_1best.pth:encoder:enh_model.encoder - ../enh1/exp/enh_train_enh_convtasnet_small_raw/valid.loss.ave_1best.pth:separator:enh_model.separator - ../enh1/exp/enh_train_enh_convtasnet_small_raw/valid.loss.ave_1best.pth:decoder:enh_model.decoder - ../asr1/exp/asr_train_asr_transformer_wavlm_lr1e-3_specaug_accum1_preenc128_warmup20k_raw_en_char/valid.acc.ave.pth:frontend:s2t_model.frontend - ../asr1/exp/asr_train_asr_transformer_wavlm_lr1e-3_specaug_accum1_preenc128_warmup20k_raw_en_char/valid.acc.ave.pth:preencoder:s2t_model.preencoder - ../asr1/exp/asr_train_asr_transformer_wavlm_lr1e-3_specaug_accum1_preenc128_warmup20k_raw_en_char/valid.acc.ave.pth:encoder:s2t_model.encoder - ../asr1/exp/asr_train_asr_transformer_wavlm_lr1e-3_specaug_accum1_preenc128_warmup20k_raw_en_char/valid.acc.ave.pth:ctc:s2t_model.ctc - ../asr1/exp/asr_train_asr_transformer_wavlm_lr1e-3_specaug_accum1_preenc128_warmup20k_raw_en_char/valid.acc.ave.pth:decoder:s2t_model.decoder ignore_init_mismatch: false freeze_param: - s2t_model.frontend.upstream num_iters_per_epoch: null batch_size: 12 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/enh_asr_stats_raw_en_char/train/speech_shape - exp/enh_asr_stats_raw_en_char/train/speech_ref1_shape - exp/enh_asr_stats_raw_en_char/train/text_shape.char valid_shape_file: - exp/enh_asr_stats_raw_en_char/valid/speech_shape - exp/enh_asr_stats_raw_en_char/valid/speech_ref1_shape - exp/enh_asr_stats_raw_en_char/valid/text_shape.char batch_type: folded valid_batch_type: null fold_length: - 80000 - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/tr05_multi_noisy_si284/wav.scp - speech - sound - - dump/raw/tr05_multi_noisy_si284/spk1.scp - speech_ref1 - sound - - dump/raw/tr05_multi_noisy_si284/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dt05_multi_isolated_1ch_track/wav.scp - speech - sound - - dump/raw/dt05_multi_isolated_1ch_track/spk1.scp - speech_ref1 - sound - - dump/raw/dt05_multi_isolated_1ch_track/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0001 scheduler: null scheduler_conf: {} token_list: data/en_token_list/char/tokens.txt src_token_list: null init: xavier_uniform input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true enh_criterions: - name: si_snr conf: {} wrapper: fixed_order wrapper_conf: {} enh_model_conf: stft_consistency: false loss_type: mask_mse mask_type: null asr_model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false st_model_conf: stft_consistency: false loss_type: mask_mse mask_type: null subtask_series: - enh - asr model_conf: calc_enh_loss: false bypass_enh_prob: 0.0 use_preprocessor: true token_type: char bpemodel: null src_token_type: bpe src_bpemodel: null non_linguistic_symbols: data/nlsyms.txt cleaner: null g2p: null enh_encoder: conv enh_encoder_conf: channel: 256 kernel_size: 40 stride: 20 enh_separator: tcn enh_separator_conf: num_spk: 1 layer: 4 stack: 2 bottleneck_dim: 256 hidden_dim: 512 kernel: 3 causal: false norm_type: gLN nonlinear: relu enh_decoder: conv enh_decoder_conf: channel: 256 kernel_size: 40 stride: 20 frontend: s3prl frontend_conf: frontend_conf: upstream: wavlm_large download_dir: ./hub multilayer_feature: true fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 100 num_freq_mask: 4 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} asr_preencoder: linear asr_preencoder_conf: input_size: 1024 output_size: 128 asr_encoder: transformer asr_encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 attention_dropout_rate: 0.0 input_layer: conv2d2 normalize_before: true asr_postencoder: null asr_postencoder_conf: {} asr_decoder: transformer asr_decoder_conf: input_layer: embed attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.0 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 st_preencoder: null st_preencoder_conf: {} st_encoder: rnn st_encoder_conf: {} st_postencoder: null st_postencoder_conf: {} st_decoder: rnn st_decoder_conf: {} st_extra_asr_decoder: rnn st_extra_asr_decoder_conf: {} st_extra_mt_decoder: rnn st_extra_mt_decoder_conf: {} required: - output_dir - token_list version: '202204' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
YASH312312/distilroberta-base-finetuned-wikitext2
YASH312312
2022-04-28T10:03:53Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-27T15:07:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilroberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-wikitext2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7515 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.1203 | 1.0 | 766 | 2.8510 | | 2.9255 | 2.0 | 1532 | 2.8106 | | 2.8669 | 3.0 | 2298 | 2.7515 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
bdickson/distilbert-base-uncased-finetuned-squad
bdickson
2022-04-28T09:59:39Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-04-27T19:56:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2299 | 1.0 | 5533 | 1.1673 | | 0.9564 | 2.0 | 11066 | 1.1223 | | 0.7572 | 3.0 | 16599 | 1.1617 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
bdickson/albert-base-v2-finetuned-squad
bdickson
2022-04-28T07:31:59Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "albert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-04-28T01:10:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: albert-base-v2-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-squad This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the squad dataset. It achieves the following results on the evaluation set: - eval_loss: 1.0191 - eval_runtime: 291.8551 - eval_samples_per_second: 37.032 - eval_steps_per_second: 2.316 - epoch: 3.0 - step: 16620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
bdickson/bert-base-uncased-finetuned-squad
bdickson
2022-04-28T07:30:32Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-04-28T00:58:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - eval_loss: 1.1240 - eval_runtime: 262.7193 - eval_samples_per_second: 41.048 - eval_steps_per_second: 2.565 - epoch: 3.0 - step: 16599 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Lilya/distilbert-base-uncased-finetuned-ner-TRANS
Lilya
2022-04-28T07:00:58Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-27T11:44:59Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner-TRANS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner-TRANS This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1053 - Precision: 0.7911 - Recall: 0.8114 - F1: 0.8011 - Accuracy: 0.9815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.077 | 1.0 | 3762 | 0.0724 | 0.7096 | 0.7472 | 0.7279 | 0.9741 | | 0.0538 | 2.0 | 7524 | 0.0652 | 0.7308 | 0.7687 | 0.7493 | 0.9766 | | 0.0412 | 3.0 | 11286 | 0.0643 | 0.7672 | 0.7875 | 0.7772 | 0.9788 | | 0.0315 | 4.0 | 15048 | 0.0735 | 0.7646 | 0.7966 | 0.7803 | 0.9793 | | 0.0249 | 5.0 | 18810 | 0.0772 | 0.7805 | 0.7981 | 0.7892 | 0.9801 | | 0.0213 | 6.0 | 22572 | 0.0783 | 0.7829 | 0.8063 | 0.7944 | 0.9805 | | 0.0187 | 7.0 | 26334 | 0.0858 | 0.7821 | 0.8010 | 0.7914 | 0.9809 | | 0.0157 | 8.0 | 30096 | 0.0860 | 0.7837 | 0.8120 | 0.7976 | 0.9812 | | 0.0122 | 9.0 | 33858 | 0.0963 | 0.7857 | 0.8129 | 0.7990 | 0.9813 | | 0.0107 | 10.0 | 37620 | 0.0993 | 0.7934 | 0.8089 | 0.8010 | 0.9812 | | 0.0091 | 11.0 | 41382 | 0.1031 | 0.7882 | 0.8123 | 0.8001 | 0.9814 | | 0.0083 | 12.0 | 45144 | 0.1053 | 0.7911 | 0.8114 | 0.8011 | 0.9815 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 2.0.0 - Tokenizers 0.10.3
snunlp/KR-FinBert
snunlp
2022-04-28T05:06:40Z
263
2
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - ko --- # KR-FinBert & KR-FinBert-SC Much progress has been made in the NLP (Natural Language Processing) field, with numerous studies showing that domain adaptation using small-scale corpus and fine-tuning with labeled data is effective for overall performance improvement. we proposed KR-FinBert for the financial domain by further pre-training it on a financial corpus and fine-tuning it for sentiment analysis. As many studies have shown, the performance improvement through adaptation and conducting the downstream task was also clear in this experiment.  ![KR-FinBert](https://huggingface.co/snunlp/KR-FinBert/resolve/main/images/KR-FinBert.png) ## Data The training data for this model is expanded from those of **[KR-BERT-MEDIUM](https://huggingface.co/snunlp/KR-Medium)**, texts from Korean Wikipedia, general news articles, legal texts crawled from the National Law Information Center and [Korean Comments dataset](https://www.kaggle.com/junbumlee/kcbert-pretraining-corpus-korean-news-comments). For the transfer learning, **corporate related economic news articles from 72 media sources** such as the Financial Times, The Korean Economy Daily, etc and **analyst reports from 16 securities companies** such as Kiwoom Securities, Samsung Securities, etc are added. Included in the dataset is 440,067 news titles with their content and 11,237 analyst reports. **The total data size is about 13.22GB.** For mlm training, we split the data line by line and **the total no. of lines is 6,379,315.** KR-FinBert is trained for 5.5M steps with the maxlen of 512, training batch size of 32, and learning rate of 5e-5, taking 67.48 hours to train the model using NVIDIA TITAN XP. ## Citation ``` @misc{kr-FinBert, author = {Kim, Eunhee and Hyopil Shin}, title = {KR-FinBert: KR-BERT-Medium Adapted With Financial Domain Data}, year = {2022}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://huggingface.co/snunlp/KR-FinBert}} } ```
chv5/t5-small-shuffled_take1
chv5
2022-04-28T03:36:55Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-27T20:27:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-shuffled_take1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 11.9641 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-shuffled_take1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 0.1788 - Rouge1: 11.9641 - Rouge2: 10.5245 - Rougel: 11.5825 - Rougelsum: 11.842 - Gen Len: 18.9838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.2238 | 1.0 | 34008 | 0.1788 | 11.9641 | 10.5245 | 11.5825 | 11.842 | 18.9838 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Ahmed9275/ALL-2
Ahmed9275
2022-04-28T02:07:25Z
64
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-04-28T02:07:14Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: ALL-2 results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9855383038520813 --- # ALL-2 Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images
Elie/NLP_Challenge
Elie
2022-04-28T01:50:12Z
0
0
null
[ "region:us" ]
null
2022-04-27T20:36:46Z
This my Fatima Fellowship notebokk
yihsuan/best_model_0426_base
yihsuan
2022-04-28T01:44:27Z
15
1
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "mT5", "zh", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-04-26T09:05:10Z
--- tags: - summarization - mT5 language: - zh widget: - text: "專家稱維康桑格研究所(Wellcome Sanger Institute)的上述研究發現「令人震驚」而且「發人深省」。基因變異指關於我們身體成長和管理的相關指令,也就是DNA當中發生的變化。長期以來,變異一直被當作癌症的根源,但是數十年來關於變異是否對衰老有重要影響一直存在爭論。桑格研究所的研究人員說他們得到了「第一個試驗性證據」,證明了兩者的關係。他們分析了預期壽命各異的物種基因變異的不同速度。研究人員分析了貓、黑白疣猴、狗、雪貂、長頸鹿、馬、人、獅子、裸鼴鼠、兔子、老鼠、環尾狐猴和老虎等十幾種動物的DNA。發表在《自然》雜誌上的研究顯示,老鼠在短暫的生命當中每年經歷了將近800次變異,老鼠的壽命一般不到4年。" inference: parameters: max_length: 50 ---
Ahmed9275/ALL
Ahmed9275
2022-04-28T01:01:23Z
62
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-04-28T01:00:00Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: ALL results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9262039065361023 --- # ALL Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images
davidenam/distilbert-base-uncased-finetuned-emotion
davidenam
2022-04-27T21:59:00Z
13
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-27T18:53:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9205 - name: F1 type: f1 value: 0.9203318889648883 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2230 - Accuracy: 0.9205 - F1: 0.9203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 250 | 0.3224 | 0.9055 | 0.9034 | | No log | 2.0 | 500 | 0.2230 | 0.9205 | 0.9203 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cpu - Datasets 2.1.0 - Tokenizers 0.12.1
SerdarHelli/Brain-MRI-GAN
SerdarHelli
2022-04-27T20:32:07Z
0
0
null
[ "brainMRI", "GAN", "medicalimaging", "pytorch", "region:us" ]
null
2022-04-27T19:07:39Z
--- tags: - brainMRI - GAN - medicalimaging - pytorch metrics: - fid50k --- The model's kernels etc. source code ==> https://github.com/NVlabs/stylegan3
gagan3012/ArOCRv4
gagan3012
2022-04-27T20:23:52Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "doi:10.57967/hf/0018", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-04-27T18:49:46Z
--- tags: - generated_from_trainer model-index: - name: ArOCRv4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArOCRv4 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5811 - Cer: 0.1249 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 3.103 | 1.18 | 1000 | 8.0852 | 11.5974 | | 1.2535 | 2.36 | 2000 | 2.0400 | 0.4904 | | 0.5682 | 3.55 | 3000 | 1.9336 | 0.2145 | | 0.3038 | 4.73 | 4000 | 1.5811 | 0.1249 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.9.1 - Datasets 2.1.0 - Tokenizers 0.11.6
iamholmes/english-phrases-bible
iamholmes
2022-04-27T19:48:58Z
69
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-04-27T19:48:50Z
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # sentence-transformers/msmarco-distilbert-base-tas-b This is a port of the [DistilBert TAS-B Model](https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco) to [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and is optimized for the task of semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer, util query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] #Load the model model = SentenceTransformer('sentence-transformers/msmarco-distilbert-base-tas-b') #Encode query and documents query_emb = model.encode(query) doc_emb = model.encode(docs) #Compute dot score between query and all document embeddings scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist() #Combine docs & scores doc_score_pairs = list(zip(docs, scores)) #Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #CLS Pooling - Take output from first token def cls_pooling(model_output): return model_output.last_hidden_state[:,0] #Encode text def encode(texts): # Tokenize sentences encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input, return_dict=True) # Perform pooling embeddings = cls_pooling(model_output) return embeddings # Sentences we want sentence embeddings for query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/msmarco-distilbert-base-tas-b") model = AutoModel.from_pretrained("sentence-transformers/msmarco-distilbert-base-tas-b") #Encode query and docs query_emb = encode(query) doc_emb = encode(docs) #Compute dot score between query and all document embeddings scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist() #Combine docs & scores doc_score_pairs = list(zip(docs, scores)) #Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/msmarco-distilbert-base-tas-b) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors Have a look at: [DistilBert TAS-B Model](https://huggingface.co/sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco)
princeton-nlp/efficient_mlm_m0.15-801010
princeton-nlp
2022-04-27T18:54:45Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "arxiv:2202.08005", "autotrain_compatible", "region:us" ]
fill-mask
2022-04-22T18:45:04Z
--- inference: false --- This is a model checkpoint for ["Should You Mask 15% in Masked Language Modeling"](https://arxiv.org/abs/2202.08005) [(code)](https://github.com/princeton-nlp/DinkyTrain.git). We use pre layer norm, which is not supported by HuggingFace. To use our model, go to our [github repo](https://github.com/princeton-nlp/DinkyTrain.git), download our code, and import the RoBERTa class from `huggingface/modeling_roberta_prelayernorm.py`. For example, ``` bash from huggingface.modeling_roberta_prelayernorm import RobertaForMaskedLM, RobertaForSequenceClassification ```
princeton-nlp/efficient_mlm_m0.40
princeton-nlp
2022-04-27T18:54:13Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "arxiv:2202.08005", "autotrain_compatible", "region:us" ]
fill-mask
2022-04-22T18:44:55Z
--- inference: false --- This is a model checkpoint for ["Should You Mask 15% in Masked Language Modeling"](https://arxiv.org/abs/2202.08005) [(code)](https://github.com/princeton-nlp/DinkyTrain.git). We use pre layer norm, which is not supported by HuggingFace. To use our model, go to our [github repo](https://github.com/princeton-nlp/DinkyTrain.git), download our code, and import the RoBERTa class from `huggingface/modeling_roberta_prelayernorm.py`. For example, ``` bash from huggingface.modeling_roberta_prelayernorm import RobertaForMaskedLM, RobertaForSequenceClassification ```
obokkkk/wav2vec2-base-960h-finetuned_common_voice2
obokkkk
2022-04-27T18:42:54Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-27T15:50:53Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-960h-finetuned_common_voice2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-960h-finetuned_common_voice2 This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
faisalahmad/autotrain-nsut-nlp-project-textsummarization-791824374
faisalahmad
2022-04-27T17:50:47Z
11
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain", "en", "dataset:faisalahmad/autotrain-data-nsut-nlp-project-textsummarization", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-27T09:08:22Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - faisalahmad/autotrain-data-nsut-nlp-project-textsummarization co2_eq_emissions: 1119.6398037843474 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 791824374 - CO2 Emissions (in grams): 1119.6398037843474 ## Validation Metrics - Loss: 1.6432833671569824 - Rouge1: 38.5315 - Rouge2: 18.0869 - RougeL: 32.3742 - RougeLsum: 32.3801 - Gen Len: 19.846 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/faisalahmad/autotrain-nsut-nlp-project-textsummarization-791824374 ```
obokkkk/mbart-large-cc25-finetuned-en-to-ko2
obokkkk
2022-04-27T17:49:20Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-27T15:00:41Z
--- tags: - generated_from_trainer model-index: - name: mbart-large-cc25-finetuned-en-to-ko2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-cc25-finetuned-en-to-ko2 This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 128 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
wypa93/keras-dummy-sequential-demo
wypa93
2022-04-27T16:46:55Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-04-27T16:46:48Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 0.001, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ## Training Metrics Model history needed ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
joniponi/multilabel_inpatient_comments_16labels
joniponi
2022-04-27T16:20:55Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-25T03:22:59Z
# HCAHPS survey comments multilabel classification This model is a fine-tuned version of [Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on a dataset of HCAHPS survey comments. It achieves the following results on the evaluation set: precision recall f1-score support medical 0.87 0.81 0.84 83 environmental 0.77 0.91 0.84 93 administration 0.58 0.32 0.41 22 communication 0.85 0.82 0.84 50 condition 0.42 0.52 0.46 29 treatment 0.90 0.78 0.83 68 food 0.92 0.94 0.93 36 clean 0.65 0.83 0.73 18 bathroom 0.64 0.64 0.64 14 discharge 0.83 0.83 0.83 24 wait 0.96 1.00 0.98 24 financial 0.44 1.00 0.62 4 extra_nice 0.20 0.13 0.16 23 rude 1.00 0.64 0.78 11 nurse 0.92 0.98 0.95 110 doctor 0.96 0.84 0.90 57 micro avg 0.81 0.81 0.81 666 macro avg 0.75 0.75 0.73 666 weighted avg 0.82 0.81 0.81 666 samples avg 0.64 0.64 0.62 666 ## Model description The model classifies free-text comments into the following labels * Medical * Environmental * Administration * Communication * Condition * Treatment * Food * Clean * Bathroom * Discharge * Wait * Financial * Extra_nice * Rude * Nurse * Doctor ## How to use You can now use the models directly through the transformers library. Check out the [model's page](https://huggingface.co/joniponi/multilabel_inpatient_comments_16labels) for instructions on how to use the models within the Transformers library. Load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("joniponi/multilabel_inpatient_comments_16labels") model = AutoModel.from_pretrained("joniponi/multilabel_inpatient_comments_16labels") ```
eliwill/gpt2-finetuned-krishna
eliwill
2022-04-27T16:14:21Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-04-09T10:04:33Z
--- model-index: - name: eliwill/gpt2-finetuned-krishna results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # eliwill/gpt2-finetuned-krishna This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on a collection of books by Jiddu Krishnamurti. It achieves the following results on the evaluation set: - Train Loss: 3.4997 - Validation Loss: 3.6853 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.4997 | 3.6853 | 0 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.0.0 - Tokenizers 0.11.6
Das282000Prit/bert-base-uncased-finetuned-wikitext2
Das282000Prit
2022-04-27T16:11:28Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-27T15:00:15Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-wikitext2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9288 | 1.0 | 2319 | 1.7729 | | 1.8208 | 2.0 | 4638 | 1.7398 | | 1.7888 | 3.0 | 6957 | 1.7523 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
faisalahmad/summarizer1
faisalahmad
2022-04-27T15:53:08Z
3
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain", "en", "dataset:faisalahmad/autotrain-data-nsut-nlp-project-textsummarization", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-27T09:08:33Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - faisalahmad/autotrain-data-nsut-nlp-project-textsummarization co2_eq_emissions: 736.9366247330848 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 791824379 - CO2 Emissions (in grams): 736.9366247330848 ## Validation Metrics - Loss: 1.7805895805358887 - Rouge1: 37.8222 - Rouge2: 16.7598 - RougeL: 31.2959 - RougeLsum: 31.3048 - Gen Len: 19.7213 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/faisalahmad/autotrain-nsut-nlp-project-textsummarization-791824379 ```
stevems1/bert-base-uncased-French123
stevems1
2022-04-27T14:55:35Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-27T14:40:05Z
--- tags: - generated_from_trainer model-index: - name: bert-base-uncased-French123 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-French123 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
espnet/chai_librispeech_asr_train_rnnt_conformer_raw_en_bpe5000_sp
espnet
2022-04-27T14:51:25Z
4
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-24T21:32:22Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - librispeech_asr - librispeech 960h license: cc-by-4.0 --- ## ESPnet2 model This model was trained by Chaitanya Narisetty using recipe in [espnet](https://github.com/espnet/espnet/). <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Fri Mar 25 04:35:42 EDT 2022` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 0.10.7a1` - pytorch version: `pytorch 1.8.1+cu111` - Git hash: `21d19be00089678ca27f7fce474ef8d787689512` - Commit date: `Wed Mar 16 08:06:52 2022 -0400` ## asr_train_rnnt_conformer_ngpu4_raw_en_bpe5000_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnnt_conformer_asr_model_valid.loss.ave_10best/test_clean|2620|52576|97.2|2.5|0.3|0.3|3.1|35.2| |decode_rnnt_conformer_asr_model_valid.loss.ave_10best/test_other|2939|52343|93.4|6.0|0.6|0.8|7.4|56.3| |decode_rnnt_conformer_asr_model_valid.loss.ave_3best/test_clean|2620|52576|97.1|2.6|0.3|0.3|3.2|35.8| |decode_rnnt_conformer_asr_model_valid.loss.ave_3best/test_other|2939|52343|93.1|6.1|0.7|0.8|7.7|57.0| |decode_rnnt_conformer_asr_model_valid.loss.ave_5best/test_clean|2620|52576|97.2|2.5|0.3|0.3|3.1|35.8| |decode_rnnt_conformer_asr_model_valid.loss.ave_5best/test_other|2939|52343|93.3|6.0|0.7|0.8|7.5|56.5| |decode_rnnt_conformer_asr_model_valid.loss.best/test_clean|2620|52576|96.8|2.8|0.4|0.4|3.6|38.3| |decode_rnnt_conformer_asr_model_valid.loss.best/test_other|2939|52343|92.2|6.9|0.9|0.9|8.7|61.7| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnnt_conformer_asr_model_valid.loss.ave_10best/test_clean|2620|281530|99.3|0.4|0.3|0.3|1.0|35.2| |decode_rnnt_conformer_asr_model_valid.loss.ave_10best/test_other|2939|272758|97.7|1.4|1.0|0.9|3.2|56.3| |decode_rnnt_conformer_asr_model_valid.loss.ave_3best/test_clean|2620|281530|99.2|0.4|0.4|0.3|1.1|35.8| |decode_rnnt_conformer_asr_model_valid.loss.ave_3best/test_other|2939|272758|97.5|1.4|1.1|0.9|3.4|57.0| |decode_rnnt_conformer_asr_model_valid.loss.ave_5best/test_clean|2620|281530|99.2|0.4|0.4|0.3|1.1|35.8| |decode_rnnt_conformer_asr_model_valid.loss.ave_5best/test_other|2939|272758|97.6|1.4|1.0|0.9|3.2|56.5| |decode_rnnt_conformer_asr_model_valid.loss.best/test_clean|2620|281530|99.1|0.5|0.4|0.3|1.2|38.3| |decode_rnnt_conformer_asr_model_valid.loss.best/test_other|2939|272758|97.1|1.6|1.3|1.0|3.9|61.7| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_rnnt_conformer_asr_model_valid.loss.ave_10best/test_clean|2620|65818|96.6|2.4|1.0|0.5|3.9|35.2| |decode_rnnt_conformer_asr_model_valid.loss.ave_10best/test_other|2939|65101|92.1|5.9|2.0|1.3|9.2|56.3| |decode_rnnt_conformer_asr_model_valid.loss.ave_3best/test_clean|2620|65818|96.6|2.5|1.0|0.5|4.0|35.8| |decode_rnnt_conformer_asr_model_valid.loss.ave_3best/test_other|2939|65101|91.8|6.1|2.1|1.3|9.6|57.0| |decode_rnnt_conformer_asr_model_valid.loss.ave_5best/test_clean|2620|65818|96.6|2.5|1.0|0.5|3.9|35.8| |decode_rnnt_conformer_asr_model_valid.loss.ave_5best/test_other|2939|65101|92.0|5.9|2.0|1.3|9.2|56.5| |decode_rnnt_conformer_asr_model_valid.loss.best/test_clean|2620|65818|96.1|2.8|1.1|0.6|4.4|38.3| |decode_rnnt_conformer_asr_model_valid.loss.best/test_other|2939|65101|90.7|6.8|2.5|1.5|10.8|61.7| ## ASR config <details><summary>expand</summary> ``` config: conf/train_rnnt_conformer_ngpu4.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_rnnt_conformer_ngpu4_raw_en_bpe5000_sp ngpu: 2 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 18 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 6 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 6000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_en_bpe5000_sp/train/speech_shape - exp/asr_stats_raw_en_bpe5000_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_raw_en_bpe5000_sp/valid/speech_shape - exp/asr_stats_raw_en_bpe5000_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 80000 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_960_sp/wav.scp - speech - kaldi_ark - - dump/raw/train_960_sp/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - kaldi_ark - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0015 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - ▁THE - S - ▁AND - ▁OF - ▁TO - ▁A - ▁IN - ▁I - ▁HE - ▁THAT - ▁WAS - ED - ▁IT - '''' - ▁HIS - ING - ▁YOU - ▁WITH - ▁FOR - ▁HAD - T - ▁AS - ▁HER - ▁IS - ▁BE - ▁BUT - ▁NOT - ▁SHE - D - ▁AT - ▁ON - LY - ▁HIM - ▁THEY - ▁ALL - ▁HAVE - ▁BY - ▁SO - ▁THIS - ▁MY - ▁WHICH - ▁ME - ▁SAID - ▁FROM - ▁ONE - Y - E - ▁WERE - ▁WE - ▁NO - N - ▁THERE - ▁OR - ER - ▁AN - ▁WHEN - ▁ARE - ▁THEIR - ▁WOULD - ▁IF - ▁WHAT - ▁THEM - ▁WHO - ▁OUT - M - ▁DO - ▁WILL - ▁UP - ▁BEEN - P - R - ▁MAN - ▁THEN - ▁COULD - ▁MORE - C - ▁INTO - ▁NOW - ▁VERY - ▁YOUR - ▁SOME - ▁LITTLE - ES - ▁TIME - RE - ▁CAN - ▁LIKE - LL - ▁ABOUT - ▁HAS - ▁THAN - ▁DID - ▁UPON - ▁OVER - IN - ▁ANY - ▁WELL - ▁ONLY - B - ▁SEE - ▁GOOD - ▁OTHER - ▁TWO - L - ▁KNOW - ▁GO - ▁DOWN - ▁BEFORE - A - AL - ▁OUR - ▁OLD - ▁SHOULD - ▁MADE - ▁AFTER - ▁GREAT - ▁DAY - ▁MUST - ▁COME - ▁HOW - ▁SUCH - ▁CAME - LE - ▁WHERE - ▁US - ▁NEVER - ▁THESE - ▁MUCH - ▁DE - ▁MISTER - ▁WAY - G - ▁S - ▁MAY - ATION - ▁LONG - OR - ▁AM - ▁FIRST - ▁BACK - ▁OWN - ▁RE - ▁AGAIN - ▁SAY - ▁MEN - ▁WENT - ▁HIMSELF - ▁HERE - NESS - ▁THINK - V - IC - ▁EVEN - ▁THOUGHT - ▁HAND - ▁JUST - ▁O - ▁UN - VE - ION - ▁ITS - 'ON' - ▁MAKE - ▁MIGHT - ▁TOO - K - ▁AWAY - ▁LIFE - TH - ▁WITHOUT - ST - ▁THROUGH - ▁MOST - ▁TAKE - ▁DON - ▁EVERY - F - O - ▁SHALL - ▁THOSE - ▁EYES - AR - ▁STILL - ▁LAST - ▁HOUSE - ▁HEAD - ABLE - ▁NOTHING - ▁NIGHT - ITY - ▁LET - ▁MANY - ▁OFF - ▁BEING - ▁FOUND - ▁WHILE - EN - ▁SAW - ▁GET - ▁PEOPLE - ▁FACE - ▁YOUNG - CH - ▁UNDER - ▁ONCE - ▁TELL - AN - ▁THREE - ▁PLACE - ▁ROOM - ▁YET - ▁SAME - IL - US - U - ▁FATHER - ▁RIGHT - EL - ▁THOUGH - ▁ANOTHER - LI - RI - ▁HEART - IT - ▁PUT - ▁TOOK - ▁GIVE - ▁EVER - ▁E - ▁PART - ▁WORK - ERS - ▁LOOK - ▁NEW - ▁KING - ▁MISSUS - ▁SIR - ▁LOVE - ▁MIND - ▁LOOKED - W - RY - ▁ASKED - ▁LEFT - ET - ▁LIGHT - CK - ▁DOOR - ▁MOMENT - RO - ▁WORLD - ▁THINGS - ▁HOME - UL - ▁THING - LA - ▁WHY - ▁MOTHER - ▁ALWAYS - ▁FAR - FUL - ▁WATER - CE - IVE - UR - ▁HEARD - ▁SOMETHING - ▁SEEMED - I - LO - ▁BECAUSE - OL - ▁END - ▁TOLD - ▁CON - ▁YES - ▁GOING - ▁GOT - RA - IR - ▁WOMAN - ▁GOD - EST - TED - ▁FIND - ▁KNEW - ▁SOON - ▁EACH - ▁SIDE - H - TON - MENT - ▁OH - NE - Z - LING - ▁AGAINST - TER - ▁NAME - ▁MISS - ▁QUITE - ▁WANT - ▁YEARS - ▁FEW - ▁BETTER - ENT - ▁HALF - ▁DONE - ▁ALSO - ▁BEGAN - ▁HAVING - ▁ENOUGH - IS - ▁LADY - ▁WHOLE - LESS - ▁BOTH - ▁SEEN - ▁SET - ▁WHITE - ▁COURSE - IES - ▁VOICE - ▁CALLED - ▁D - ▁EX - ATE - ▁TURNED - ▁GAVE - ▁C - ▁POOR - MAN - UT - NA - ▁DEAR - ISH - ▁GIRL - ▁MORNING - ▁BETWEEN - LED - ▁NOR - IA - ▁AMONG - MA - ▁ - ▁SMALL - ▁REST - ▁WHOM - ▁FELT - ▁HANDS - ▁MYSELF - ▁HIGH - ▁M - ▁HOWEVER - ▁HERSELF - ▁P - CO - ▁STOOD - ID - ▁KIND - ▁HUNDRED - AS - ▁ROUND - ▁ALMOST - TY - ▁SINCE - ▁G - AM - ▁LA - SE - ▁BOY - ▁MA - ▁PERHAPS - ▁WORDS - ATED - ▁HO - X - ▁MO - ▁SAT - ▁REPLIED - ▁FOUR - ▁ANYTHING - ▁TILL - ▁UNTIL - ▁BLACK - TION - ▁CRIED - RU - TE - ▁FACT - ▁HELP - ▁NEXT - ▁LOOKING - ▁DOES - ▁FRIEND - ▁LAY - ANCE - ▁POWER - ▁BROUGHT - VER - ▁FIRE - ▁KEEP - PO - FF - ▁COUNTRY - ▁SEA - ▁WORD - ▁CAR - ▁DAYS - ▁TOGETHER - ▁IMP - ▁REASON - KE - ▁INDEED - TING - ▁MATTER - ▁FULL - ▁TEN - TIC - ▁LAND - ▁RATHER - ▁AIR - ▁HOPE - ▁DA - ▁OPEN - ▁FEET - ▁EN - ▁FIVE - ▁POINT - ▁CO - OM - ▁LARGE - ▁B - ▁CL - ME - ▁GONE - ▁CHILD - INE - GG - ▁BEST - ▁DIS - UM - ▁HARD - ▁LORD - OUS - ▁WIFE - ▁SURE - ▁FORM - DE - ▁DEATH - ANT - ▁NATURE - ▁BA - ▁CARE - ▁BELIEVE - PP - ▁NEAR - ▁RO - ▁RED - ▁WAR - IE - ▁SPEAK - ▁FEAR - ▁CASE - ▁TAKEN - ▁ALONG - ▁CANNOT - ▁HEAR - ▁THEMSELVES - CI - ▁PRESENT - AD - ▁MASTER - ▁SON - ▁THUS - ▁LI - ▁LESS - ▁SUN - ▁TRUE - IM - IOUS - ▁THOUSAND - ▁MONEY - ▁W - ▁BEHIND - ▁CHILDREN - ▁DOCTOR - AC - ▁TWENTY - ▁WISH - ▁SOUND - ▁WHOSE - ▁LEAVE - ▁ANSWERED - ▁THOU - ▁DUR - ▁HA - ▁CERTAIN - ▁PO - ▁PASSED - GE - TO - ▁ARM - ▁LO - ▁STATE - ▁ALONE - TA - ▁SHOW - ▁NEED - ▁LIVE - ND - ▁DEAD - ENCE - ▁STRONG - ▁PRE - ▁TI - ▁GROUND - SH - TI - ▁SHORT - IAN - UN - ▁PRO - ▁HORSE - MI - ▁PRINCE - ARD - ▁FELL - ▁ORDER - ▁CALL - AT - ▁GIVEN - ▁DARK - ▁THEREFORE - ▁CLOSE - ▁BODY - ▁OTHERS - ▁SENT - ▁SECOND - ▁OFTEN - ▁CA - ▁MANNER - MO - NI - ▁BRING - ▁QUESTION - ▁HOUR - ▁BO - AGE - ▁ST - ▁TURN - ▁TABLE - ▁GENERAL - ▁EARTH - ▁BED - ▁REALLY - ▁SIX - 'NO' - IST - ▁BECOME - ▁USE - ▁READ - ▁SE - ▁VI - ▁COMING - ▁EVERYTHING - ▁EM - ▁ABOVE - ▁EVENING - ▁BEAUTIFUL - ▁FEEL - ▁RAN - ▁LEAST - ▁LAW - ▁ALREADY - ▁MEAN - ▁ROSE - WARD - ▁ITSELF - ▁SOUL - ▁SUDDENLY - ▁AROUND - RED - ▁ANSWER - ICAL - ▁RA - ▁WIND - ▁FINE - ▁WON - ▁WHETHER - ▁KNOWN - BER - NG - ▁TA - ▁CAPTAIN - ▁EYE - ▁PERSON - ▁WOMEN - ▁SORT - ▁ASK - ▁BROTHER - ▁USED - ▁HELD - ▁BIG - ▁RETURNED - ▁STRANGE - ▁BU - ▁PER - ▁FREE - ▁EITHER - ▁WITHIN - ▁DOUBT - ▁YEAR - ▁CLEAR - ▁SIGHT - ▁GRA - ▁LOST - ▁KEPT - ▁F - PE - ▁BAR - ▁TOWN - ▁SLEEP - ARY - ▁HAIR - ▁FRIENDS - ▁DREAM - ▁FELLOW - PER - ▁DEEP - QUE - ▁BECAME - ▁REAL - ▁PAST - ▁MAKING - RING - ▁COMP - ▁ACT - ▁BAD - HO - STER - ▁YE - ▁MEANS - ▁RUN - MEN - ▁DAUGHTER - ▁SENSE - ▁CITY - ▁SOMETIMES - ▁TOWARDS - ▁ROAD - ▁SP - ▁LU - ▁READY - ▁FOOT - ▁COLD - ▁SA - ▁LETTER - ▁ELSE - ▁MAR - ▁STA - BE - ▁TRUTH - ▁LE - BO - ▁BUSINESS - CHE - ▁JOHN - ▁SUBJECT - ▁COURT - ▁IDEA - ILY - ▁RIVER - ATING - ▁FAMILY - HE - ▁DIDN - ▁GLAD - ▁SEVERAL - IAL - ▁UNDERSTAND - ▁SC - ▁POSSIBLE - ▁DIFFERENT - ▁RETURN - ▁ARMS - ▁LOW - ▁HOLD - ▁TALK - ▁RU - ▁WINDOW - ▁INTEREST - ▁SISTER - SON - ▁SH - ▁BLOOD - ▁SAYS - ▁CAP - ▁DI - ▁HUMAN - ▁CAUSE - NCE - ▁THANK - ▁LATE - GO - ▁CUT - ▁ACROSS - ▁STORY - NT - ▁COUNT - ▁ABLE - DY - LEY - ▁NUMBER - ▁STAND - ▁CHURCH - ▁THY - ▁SUPPOSE - LES - BLE - OP - ▁EFFECT - BY - ▁K - ▁NA - ▁SPOKE - ▁MET - ▁GREEN - ▁HUSBAND - ▁RESPECT - ▁PA - ▁FOLLOWED - ▁REMEMBER - ▁LONGER - ▁AGE - ▁TAKING - ▁LINE - ▁SEEM - ▁HAPPY - LAND - EM - ▁STAY - ▁PLAY - ▁COMMON - ▁GA - ▁BOOK - ▁TIMES - ▁OBJECT - ▁SEVEN - QUI - DO - UND - ▁FL - ▁PRETTY - ▁FAIR - WAY - ▁WOOD - ▁REACHED - ▁APPEARED - ▁SWEET - ▁FALL - BA - ▁PASS - ▁SIGN - ▁TREE - IONS - ▁GARDEN - ▁ILL - ▁ART - ▁REMAIN - ▁OPENED - ▁BRIGHT - ▁STREET - ▁TROUBLE - ▁PAIN - ▁CONTINUED - ▁SCHOOL - OUR - ▁CARRIED - ▁SAYING - HA - ▁CHANGE - ▁FOLLOW - ▁GOLD - ▁SW - ▁FEELING - ▁COMMAND - ▁BEAR - ▁CERTAINLY - ▁BLUE - ▁NE - CA - ▁WILD - ▁ACCOUNT - ▁OUGHT - UD - ▁T - ▁BREATH - ▁WANTED - ▁RI - ▁HEAVEN - ▁PURPOSE - ▁CHARACTER - ▁RICH - ▁PE - ▁DRESS - OS - FA - ▁TH - ▁ENGLISH - ▁CHANCE - ▁SHIP - ▁VIEW - ▁TOWARD - AK - ▁JOY - ▁JA - ▁HAR - ▁NEITHER - ▁FORCE - ▁UNCLE - DER - ▁PLAN - ▁PRINCESS - DI - ▁CHIEF - ▁HAT - ▁LIVED - ▁AB - ▁VISIT - ▁MOR - TEN - ▁WALL - UC - ▁MINE - ▁PLEASURE - ▁SMILE - ▁FRONT - ▁HU - ▁DEAL - OW - ▁FURTHER - GED - ▁TRIED - DA - VA - ▁NONE - ▁ENTERED - ▁QUEEN - ▁PAY - ▁EL - ▁EXCEPT - ▁SHA - ▁FORWARD - ▁EIGHT - ▁ADDED - ▁PUBLIC - ▁EIGHTEEN - ▁STAR - ▁HAPPENED - ▁LED - ▁WALKED - ▁ALTHOUGH - ▁LATER - ▁SPIRIT - ▁WALK - ▁BIT - ▁MEET - LIN - ▁FI - LT - ▁MOUTH - ▁WAIT - ▁HOURS - ▁LIVING - ▁YOURSELF - ▁FAST - ▁CHA - ▁HALL - ▁BEYOND - ▁BOAT - ▁SECRET - ENS - ▁CHAIR - RN - ▁RECEIVED - ▁CAT - RESS - ▁DESIRE - ▁GENTLEMAN - UGH - ▁LAID - EVER - ▁OCCASION - ▁WONDER - ▁GU - ▁PARTY - DEN - ▁FISH - ▁SEND - ▁NEARLY - ▁TRY - CON - ▁SEEMS - RS - ▁BELL - ▁BRA - ▁SILENCE - IG - ▁GUARD - ▁DIE - ▁DOING - ▁TU - ▁COR - ▁EARLY - ▁BANK - ▁FIGURE - IF - ▁ENGLAND - ▁MARY - ▁AFRAID - LER - ▁FO - ▁WATCH - ▁FA - ▁VA - ▁GRE - ▁AUNT - PED - ▁SERVICE - ▁JE - ▁PEN - ▁MINUTES - ▁PAN - ▁TREES - NED - ▁GLASS - ▁TONE - ▁PLEASE - ▁FORTH - ▁CROSS - ▁EXCLAIMED - ▁DREW - ▁EAT - ▁AH - ▁GRAVE - ▁CUR - PA - URE - CENT - ▁MILES - ▁SOFT - ▁AGO - ▁POSITION - ▁WARM - ▁LENGTH - ▁NECESSARY - ▁THINKING - ▁PICTURE - ▁PI - SHIP - IBLE - ▁HEAVY - ▁ATTENTION - ▁DOG - ABLY - ▁STANDING - ▁NATURAL - ▁APPEAR - OV - ▁CAUGHT - VO - ISM - ▁SPRING - ▁EXPERIENCE - ▁PAT - OT - ▁STOPPED - ▁REGARD - ▁HARDLY - ▁SELF - ▁STRENGTH - ▁GREW - ▁KNIGHT - ▁OPINION - ▁WIDE - ▁INSTEAD - ▁SOUTH - ▁TRANS - ▁CORNER - ▁LEARN - ▁ISLAND - ▁MI - ▁THIRD - ▁STE - ▁STRAIGHT - ▁TEA - ▁BOUND - ▁SEEING - ▁JU - ▁DINNER - ▁BEAUTY - ▁PEACE - AH - ▁REP - ▁SILENT - ▁CRE - ALLY - RIC - ▁STEP - ▁VER - ▁JO - GER - ▁SITTING - ▁THIRTY - ▁SAVE - ENED - ▁GLANCE - ▁REACH - ▁ACTION - ▁SAL - ▁SAD - ▁STONE - ITIES - ▁FRENCH - ▁STRUCK - ▁PAPER - ▁WHATEVER - ▁SUB - ▁DISTANCE - ▁WRONG - ▁KNOWLEDGE - ▁SAFE - ▁SNOW - ▁MUSIC - ▁FIFTY - RON - ▁ATTEMPT - ▁GOVERNMENT - TU - ▁CROWD - ▁BESIDES - ▁LOVED - ▁BOX - ▁DIRECTION - ▁TRAIN - ▁NORTH - ▁THICK - ▁GETTING - AV - ▁FLOOR - ▁COMPANY - ▁BLOW - ▁PLAIN - TRO - ▁BESIDE - ▁ROCK - ▁IMMEDIATELY - FI - ▁SHADOW - ▁SIT - ORS - ILE - ▁DRINK - ▁SPOT - ▁DANGER - ▁AL - ▁SAINT - ▁SLOWLY - ▁PALACE - IER - ▁RESULT - ▁PETER - ▁FOREST - ▁BELONG - ▁SU - ▁PAR - RIS - ▁TEARS - ▁APPEARANCE - ▁GATE - BU - ITION - ▁QUICKLY - ▁QUIET - ▁LONDON - ▁START - ▁BROWN - TRA - KIN - ▁CONSIDER - ▁BATTLE - ▁ANNE - ▁PIECE - ▁DIED - ▁SUCCESS - ▁LIPS - ▁FILLED - ▁FORGET - ▁POST - IFIED - ▁MARGARET - ▁FOOD - HAM - ▁PLEASANT - ▁FE - ▁EXPRESSION - ▁POCKET - ▁FRESH - ▁WEAR - TRI - ▁BROKEN - ▁LAUGHED - GING - ▁FOLLOWING - WN - IP - ▁TOUCH - ▁YOUTH - ATIVE - ▁LEG - ▁WEEK - ▁REMAINED - ▁EASY - NER - RK - ▁ENTER - ▁FIGHT - ▁PLACED - ▁TRAVEL - ▁SIMPLE - ▁GIRLS - ▁WAITING - ▁STOP - ▁WAVE - AU - ▁WISE - ▁CAMP - TURE - UB - ▁VE - ▁OFFICE - ▁GRAND - ▁FIT - ▁JUDGE - UP - MENTS - ▁QUICK - HI - ▁FLO - RIES - VAL - ▁COMFORT - ▁PARTICULAR - ▁STARTED - ▁SUIT - ▁NI - ▁PALE - ▁IMPOSSIBLE - ▁HOT - ▁CONVERSATION - ▁SCENE - ▁BOYS - ▁WIN - ▁BRE - ▁SOCIETY - ▁OUTSIDE - ▁WRITE - ▁EFFORT - ▁TALKING - ▁FORTUNE - ▁NINE - ▁WA - ▁SINGLE - ▁RULE - ▁PORT - ▁WINTER - ▁CAST - ▁CRA - ▁HAPPEN - ▁CRO - ▁SHUT - NING - ▁GUN - ▁NOBLE - ▁BEGIN - ▁PATH - ▁SKY - ▁WONDERFUL - ▁SUDDEN - ▁ARMY - ▁CHE - ▁WORTH - ▁MOUNTAIN - ▁MIN - AG - ▁FLU - ▁GRACE - ▁CHAPTER - ▁BELOW - ▁RING - ▁TURNING - ▁IRON - ▁TOP - ▁AFTERNOON - ORY - ▁EVIL - ▁TRUST - ▁BOW - ▁TRI - ▁SAIL - ▁CONTENT - ▁HORSES - ITE - ▁SILVER - AP - ▁LAD - ▁RUNNING - ▁HILL - ▁BEGINNING - ▁MAD - ▁HABIT - GRA - ▁CLOTHES - ▁MORROW - ▁CRY - ▁FASHION - ▁PRESENCE - ▁Z - FE - ▁ARRIVED - ▁QUARTER - ▁PERFECT - ▁WO - ▁TRA - ▁USUAL - ▁NECK - ▁MARRIED - ▁SEAT - ▁WI - ▁GAR - ▁SAND - ▁SHORE - ▁GIVING - NY - ▁PROBABLY - ▁MINUTE - ▁EXPECT - ▁DU - ▁SHOT - ▁INSTANT - ▁DEGREE - ▁COLOR - ▁WEST - RT - ▁MARCH - ▁BIRD - ▁SHOWED - ▁GREATER - ▁SERIOUS - ▁CARRY - ▁COVERED - ▁FORMER - ▁LOUD - ▁MOVED - ▁MASS - ▁SEEK - ▁CHO - GEN - ▁ROMAN - IB - ▁MOON - ▁BOARD - ▁STREAM - ▁EASILY - ▁WISHED - ▁SEARCH - ▁COULDN - ▁MONTHS - ▁SICK - LIE - ▁DUTY - ▁TWELVE - ▁FAINT - ▁STRANGER - ▁SURPRISE - ▁KILL - ▁LEAVING - ▁JOURNEY - ▁SCARCELY - ▁RAISED - ▁SPEAKING - ▁TERRIBLE - ▁TOM - ▁FIELD - ▁GAME - ▁QUA - ▁PROMISE - ▁LIE - ▁CONDITION - ▁TRO - ▁PERSONAL - ▁TALL - ▁STICK - ▁THREW - ▁MARRY - ▁VAN - ▁BURN - ▁ACCORDING - ▁RISE - ▁ATTACK - ▁SWORD - ▁GUESS - ▁THOUGHTS - ▁THIN - ▁THROW - ▁CALM - SIDE - ▁VILLAGE - ▁DEN - ▁ANXIOUS - ▁MER - GI - ▁EXPECTED - ▁BALL - ▁ESPECIALLY - ▁CHARGE - ▁MEASURE - ISE - ▁NICE - ▁TRYING - ▁ALLOW - ▁SHARP - ▁BREAD - ▁HONOUR - ▁HONOR - ▁ENTIRELY - ▁BILL - ▁BRI - ▁WRITTEN - ▁AR - ▁BROKE - ▁KILLED - ▁MARK - ▁VEN - ▁LADIES - ▁LEARNED - ▁FLOWERS - PLE - ▁FORTY - ▁OFFER - ▁HAPPINESS - ▁PRAY - ▁CLASS - ▁FER - ▁PRINCIPLE - GU - ▁BOOKS - ▁SHAPE - ▁SUMMER - ▁JACK - ▁DRAW - ▁GOLDEN - ▁DECIDED - ▁LEAD - ▁UNLESS - ▁HARM - ▁LISTEN - HER - ▁SHOOK - ▁INFLUENCE - ▁PERFECTLY - ▁MARRIAGE - ▁BROAD - ▁ESCAPE - ▁STATES - ▁MIDDLE - ▁PLANT - ▁MIL - ▁MOVEMENT - ▁NOISE - ▁ENEMY - ▁HISTORY - ▁BREAK - ROUS - ▁UNDERSTOOD - ▁LATTER - FER - ▁COMES - ▁MERELY - ▁SIMPLY - WI - ▁IMAGINE - ▁LOWER - ▁CONDUCT - ▁BORN - WA - ▁YARD - ▁KA - ▁CLOSED - ▁NOTE - GA - ▁STRA - RAN - ▁EXIST - EV - ▁SPEECH - ▁BITTER - JO - ▁MAKES - ▁GRASS - ▁REPLY - ▁CHANGED - ▁MON - ▁LYING - ▁DANCE - ▁FINALLY - ▁AMERICAN - ▁ENJOY - ▁CONTAIN - ▁MEANT - USE - ▁OBSERVED - THER - ▁LAUGH - ▁AFTERWARDS - ▁BEAT - ▁RACE - ▁EQUAL - ▁RAIN - PS - ▁STEPS - ▁BENEATH - ▁TAIL - ▁TASTE - IO - EY - ▁CHAR - ▁GE - GN - TIN - ▁GROW - ▁TE - IANS - ▁MOVE - ▁REPEATED - ▁DRIVE - TUR - ▁SI - CLOCK - ▁BRAVE - ▁MADAME - ▁LOT - ▁CASTLE - ▁HI - AND - ▁FUTURE - ▁RELATION - ▁SORRY - ▁HEALTH - ▁DICK - ▁R - ▁BUILDING - ▁EDGE - ▁BLESS - ▁SPITE - WE - ▁MIS - ▁PRISONER - ▁ALLOWED - ▁PH - ▁CATCH - MER - ETH - ▁COAT - ▁COMPLETE - ▁WOULDN - ▁CREATURE - ▁YELLOW - ▁IMPORTANT - ▁ADD - ▁PASSING - ▁DARKNESS - ▁CARRIAGE - ▁MILL - ▁FIFTEEN - NCY - ▁HUNG - ▁OB - ▁PLEASED - ▁SPREAD - ▁CURIOUS - ▁WORSE - ▁CIRCUMSTANCES - ▁GI - LAR - ▁CAL - ▁HY - ▁MERE - ▁JANE - ▁EAST - BI - ▁CUP - ▁BLIND - ▁PASSION - ▁DISCOVERED - ▁NOTICE - ▁REPORT - ▁SPACE - ▁PRESENTLY - ▁SORROW - ▁PACK - ▁DIN - CY - ▁DRY - ▁ANCIENT - ▁DRESSED - ▁COVER - ▁VO - ▁EXISTENCE - ▁EXACTLY - ▁BEAST - ▁PROPER - ▁DROPPED - ▁CLEAN - ▁COLOUR - ▁HOST - ▁CHAMBER - ▁FAITH - LET - ▁DETERMINED - ▁PRIEST - ▁STORM - ▁SKIN - ▁DARE - ▁PERSONS - ▁PICK - ▁NARROW - ▁SUPPORT - ▁PRIVATE - ▁SMILED - ▁COUSIN - ▁DRAWING - ▁ATTEND - ▁COOK - ▁PREVENT - ▁VARIOUS - ▁BLA - ▁FIXED - ▁WEAK - THE - ▁HOLE - ▁BOTTOM - ▁NOBODY - ADE - ▁LEGS - ITCH - ▁INDIVIDUAL - ▁EARS - LIKE - ▁ADVANTAGE - ▁FRANCE - ▁BON - ▁WINE - ▁LIVES - OD - ▁WALLS - ▁TIRED - ▁SHOP - ▁ANIMAL - ▁CRU - ▁WROTE - ▁ROYAL - ▁CONSIDERED - ▁MORAL - ▁COMPANION - ▁LOSE - ▁ISN - ▁BAG - ▁LAKE - ▁INTER - ▁COM - ▁LETTERS - ▁LUCK - ▁EAR - ▁GERMAN - ▁PET - ▁SAKE - ▁DROP - ▁PAID - ▁BREAKFAST - ▁LABOR - ▁DESERT - ▁DECLARED - ▁HUM - ▁STUDY - ▁INSTANCE - ONE - ▁SOMEWHAT - ▁CLOTH - ▁SPECIAL - ▁COLONEL - ▁SONG - ▁MAIN - ▁VALUE - ▁PROUD - ▁EXPRESS - ▁NATION - ▁HANDSOME - ▁CONFESS - ▁PU - ▁PASSAGE - ▁PERIOD - ▁CUSTOM - ▁HURT - ▁SHOULDER - ▁CHRIST - ZA - ▁RECEIVE - ▁DIFFICULT - ▁DEPEND - ▁MEETING - ▁CHI - ▁GEN - LIGHT - ▁BELIEVED - ▁SOCIAL - ▁DIFFICULTY - ▁GREATEST - ▁DRAWN - ▁GRANT - ▁BIRDS - ▁ANGRY - ▁HEAT - UFF - ▁DUE - ▁PLACES - ▁SIN - ▁COURAGE - ▁EVIDENTLY - ▁GENTLE - ▁CRUEL - ▁GEORGE - ▁GRI - ▁SERVANT - ▁U - ▁PURE - OOK - ▁KNOWS - ▁KNOWING - LF - ▁WRITING - ▁REMEMBERED - ▁CU - ▁HOLDING - ▁TENDER - ▁QUI - ▁BURST - ▁SURELY - IGN - ▁VALLEY - ▁FU - ▁BUTTER - ▁SPOKEN - ▁STORE - ▁DISC - ▁CHRISTIAN - ▁PARIS - ▁HENRY - ▁FINISHED - ▁PROVE - ▁FOOL - ▁SOLDIERS - ▁LANGUAGE - ▁INSIDE - ▁BAN - ▁FALLEN - ROW - ▁MAL - ▁BABY - ▁SITUATION - ▁WATCHED - ANS - ▁RUIN - ▁GENTLEMEN - ▁FRO - ▁FANCY - ▁ACCEPT - ▁SEASON - ▁OURSELVES - ▁SAN - ▁SPEED - IZED - ▁COOL - ▁SERVE - ▁VESSEL - ▁WILLIAM - ▁OBLIGED - ▁GROUP - FORM - ▁GOES - UOUS - ▁LEAVES - ▁PECULIAR - ▁NEWS - ▁VAIN - ▁EVERYBODY - ▁PIN - UG - ▁FORGOTTEN - ▁FRA - GAN - ▁CAREFULLY - ▁FLASH - UCH - ▁FUR - ▁MURDER - ▁DELIGHT - ▁WAITED - ▁RENDER - ▁PROPERTY - ▁NOTICED - ▁ROLL - ▁KNOCK - ▁EARNEST - KI - ▁HONEST - ▁PROMISED - ▁BAL - AW - ▁WALKING - ANG - ▁SQUARE - ▁QUIETLY - ▁CLOUD - WOOD - ▁FORMED - ▁HIGHER - ▁BUILT - ▁FATE - ▁TEACH - MY - ▁FALSE - ▁YORK - ▁DUST - ▁CLIMB - ▁FOND - ▁GROWN - ▁DESCEND - ▁RAG - ▁FRUIT - ▁GENERALLY - ▁OFFERED - ▁ER - ▁NURSE - POSE - ▁SPENT - ▁JOIN - ▁STATION - ▁MEANING - ▁SMOKE - HOOD - ▁ROUGH - JU - ▁LIKELY - ▁SURFACE - ▁KE - ▁MONTH - ▁POSSESSION - ▁TONGUE - ▁DUKE - ▁NOSE - ▁LAUGHING - ▁WEATHER - ▁WHISPERED - ▁SYSTEM - ▁LAWS - DDLE - ▁TOUCHED - ▁TRADE - LD - ▁SURPRISED - RIN - ▁ARCH - ▁WEALTH - FOR - ▁TEMPER - ▁FRANK - ▁GAL - ▁BARE - ▁OPPORTUNITY - ▁CLAIM - ▁ANIMALS - ▁REV - ▁COST - ▁WASH - ZE - ▁CORN - ▁OPPOSITE - ▁POLICE - ▁IDEAS - LON - ▁KEY - ▁READING - ▁COLLECT - CHED - ▁H - ▁CROWN - ▁TAR - ▁SWIFT - ▁SHOULDERS - ▁ICE - ▁GRAY - ▁SHARE - ▁PREPARED - ▁GRO - ▁UND - ▁TER - ▁EMPTY - CING - ▁SMILING - ▁AVOID - ▁DIFFERENCE - ▁EXPLAIN - ▁POUR - ▁ATTRACT - ▁OPENING - ▁WHEEL - ▁MATERIAL - ▁BREAST - ▁SUFFERING - ▁DISTINCT - ▁BOOT - ▁ROW - ▁FINGERS - HAN - ▁ALTOGETHER - ▁FAT - ▁PAPA - ▁BRAIN - ▁ASLEEP - ▁GREY - ▁SUM - ▁GAS - ▁WINDOWS - ▁ALIVE - ▁PROCEED - ▁FLOWER - ▁LEAP - ▁PUR - ▁PIECES - ▁ALTER - ▁MEMORY - IENT - ▁FILL - ▁CLO - ▁THROWN - ▁KINGDOM - ▁RODE - IUS - ▁MAID - ▁DIM - ▁BAND - ▁VIRTUE - ▁DISH - ▁GUEST - ▁LOSS - ▁CAUSED - ▁MOTION - ▁POT - ▁MILLION - ▁FAULT - ▁LOVELY - ▁HERO - PPING - ▁UNITED - ▁SPI - SOME - BRA - ▁MOUNTAINS - ▁NU - ▁SATISFIED - ▁DOLLARS - ▁LOVER - ▁CONCEAL - ▁VAST - ▁PULL - ▁HATH - ▁RUSH - ▁J - ▁DESPAIR - EX - ▁HEIGHT - ▁CE - ▁BENT - ▁PITY - ▁RISING - ATH - ▁PRIDE - ▁HURRY - KA - ▁SETTLED - ▁JUSTICE - ▁LIFTED - PEN - ▁SOLDIER - ▁FINDING - ▁REMARK - ▁REGULAR - ▁STRUGGLE - ▁MACHINE - ▁SING - ▁HURRIED - ▁SUFFICIENT - ▁REPRESENT - ▁DOUBLE - ▁ALARM - ▁SUPPER - ▁DREADFUL - ▁FORE - ATOR - ▁STOCK - ▁TIN - ▁EXAMPLE - ▁ROOF - ▁FLOW - ▁SUPPOSED - ▁PRESERV - ▁L - ▁LISTENED - OC - ▁STO - ▁SECURE - ▁FRIGHTENED - ▁DISTURB - ▁EMOTION - ▁SERVANTS - ▁YO - ▁BUY - ▁FORCED - ▁KITCHEN - ▁TERROR - ▁STAIRS - ▁SIXTY - KER - ▁ORDINARY - ▁DIRECTLY - ▁HEADS - ▁METHOD - ▁FORGIVE - ▁AWFUL - ▁REFLECT - ▁GREATLY - ▁TALKED - ▁RIDE - STONE - ▁FAVOUR - ▁WELCOME - ▁SEIZED - OU - ▁CONTROL - ▁ORDERED - ▁ANGEL - ▁USUALLY - ▁POET - ▁BOLD - LINE - ▁ADVENTURE - ▁WATCHING - ▁FOLK - ▁MISTRESS - IZE - ▁GROWING - ▁CAVE - ▁EVIDENCE - ▁FINGER - ▁SEVENTEEN - ▁MOVING - EOUS - ▁DOESN - ▁COW - ▁TYPE - ▁BOIL - ▁TALE - ▁DELIVER - ▁FARM - ▁MONSIEUR - ▁GATHERED - ▁FEELINGS - ▁RATE - ▁REMARKED - ▁PUTTING - ▁MAT - ▁CONTRARY - ▁CRIME - ▁PLA - ▁COL - ▁NEARER - TES - ▁CIVIL - ▁SHAME - ▁LOOSE - ▁DISCOVER - ▁FLAT - ▁TWICE - ▁FAIL - VIS - ▁UNC - EA - ▁EUROPE - ▁PATIENT - ▁UNTO - ▁SUFFER - ▁PAIR - ▁TREASURE - OSE - ▁EAGER - ▁FLY - ▁N - ▁VAL - ▁DAN - ▁SALT - ▁BORE - BBE - ▁ARTHUR - ▁AFFAIRS - ▁SLOW - ▁CONSIST - ▁DEVIL - LAN - ▁AFFECTION - ▁ENGAGED - ▁KISS - ▁YA - ▁OFFICER - IFICATION - ▁LAMP - ▁PARTS - HEN - ▁MILK - ▁PROCESS - ▁GIFT - ▁PULLED - ▁HID - ▁RAY - ▁EXCELLENT - ▁IMPRESSION - ▁AUTHORITY - ▁PROVED - ▁TELLING - TTE - ▁TOWER - ▁CONSEQUENCE - ▁FAVOR - ▁FLEW - ▁CHARLES - ISTS - ▁ADDRESS - ▁FAMILIAR - ▁LIMIT - ▁CONFIDENCE - ▁RARE - ▁WEEKS - ▁WOODS - ▁INTENTION - ▁DIRECT - ▁PERFORM - ▁SOLEMN - ▁DISTANT - ▁IMAGE - ▁PRESIDENT - ▁FIRM - ▁INDIAN - ▁RANK - ▁LIKED - ▁AGREE - ▁HOUSES - ▁WIL - ▁MATTERS - ▁PRISON - ▁MODE - ▁MAJOR - ▁WORKING - ▁SLIP - ▁WEIGHT - ▁AWARE - ▁BUSY - ▁LOOKS - ▁WOUND - ▁THOR - ▁BATH - ▁EXERCISE - ▁SIMILAR - ▁WORE - ▁AMOUNT - ▁QUESTIONS - ▁VIOLENT - ▁EXCUSE - ▁ASIDE - ▁TUR - ▁DULL - OF - ▁EMPEROR - ▁NEVERTHELESS - ▁SHOUT - ▁EXPLAINED - ▁SIZE - ▁ACCOMPLISH - FORD - CAN - ▁MISTAKE - ▁INSTANTLY - ▁SMOOTH - ▁STRIKE - ▁BOB - ISED - ▁HORROR - ▁SCIENCE - ▁PROTEST - ▁MANAGE - ▁OBEY - ▁NECESSITY - ▁SPLENDID - ▁PRESS - ▁INTERESTING - ▁RELIGION - ▁UNKNOWN - ▁FIERCE - ▁DISAPPEARED - ▁HOLY - ▁HATE - ▁PLAYED - ▁LIN - ▁NATURALLY - ▁DROVE - ▁LOUIS - TIES - ▁BRAND - INESS - RIE - ▁SHOOT - ▁CONSENT - ▁SEATED - ▁LINES - GUE - ▁AGREED - ▁CIRCLE - ▁STIR - ▁STREETS - ▁TASK - ▁RID - ▁PRODUCED - ▁ACCIDENT - ▁WITNESS - ▁LIBERTY - ▁DETAIL - ▁MINISTER - ▁POWERFUL - ▁SAVAGE - ▁SIXTEEN - ▁PRETEND - ▁COAST - ▁SQU - ▁UTTER - ▁NAMED - ▁CLEVER - ▁ADMIT - ▁COUPLE - ▁WICKED - ▁MESSAGE - ▁TEMPLE - ▁STONES - ▁YESTERDAY - ▁HILLS - DAY - ▁SLIGHT - ▁DIAMOND - ▁POSSIBLY - ▁AFFAIR - ▁ORIGINAL - ▁HEARING - ▁WORTHY - ▁SELL - NEY - ICK - ▁COTTAGE - ▁SACRIFICE - ▁PROGRESS - ▁SHOCK - ▁DESIGN - ▁SOUGHT - ▁PIT - ▁SUNDAY - ▁OTHERWISE - ▁CABIN - ▁PRAYER - ▁DWELL - ▁GAIN - ▁BRIDGE - ▁PARTICULARLY - ▁YIELD - ▁TREAT - RIGHT - ▁OAK - ▁ROPE - WIN - ▁ORDERS - ▁SUSPECT - ▁EDWARD - AB - ▁ELEVEN - ▁TEETH - ▁OCCURRED - DDING - ▁AMERICA - ▁FALLING - ▁LION - ▁DEPART - ▁KEEPING - ▁DEMAND - ▁PAUSED - ▁CEASED - INA - ▁FUN - ▁CHEER - ▁PARDON - ▁NATIVE - LUS - LOW - ▁DOGS - ▁REQUIRED - ILITY - ▁ELECT - ▁ENTERTAIN - ITUDE - ▁HUGE - ▁CARRYING - ▁BLU - ▁INSIST - ▁SATISFACTION - ▁HUNT - ▁COUNTENANCE - ▁UPPER - ▁MAIDEN - ▁FAILED - ▁JAMES - ▁FOREIGN - ▁GATHER - ▁TEST - BOARD - ▁TERMS - ▁SILK - ▁BEG - ▁BROTHERS - ▁PAGE - ▁KNEES - ▁SHOWN - ▁PROFESSOR - ▁MIGHTY - ▁DEFI - ▁CHARM - ▁REQUIRE - ▁LOG - MORE - ▁PROOF - ▁POSSESSED - ▁SOFTLY - ▁UNFORTUNATE - ▁PRICE - ▁SEVERE - ▁SINGING - ▁STAGE - ▁FREEDOM - ▁SHOUTED - ▁FARTHER - ▁MAJESTY - ▁PREVIOUS - ▁GUIDE - ▁MATCH - ▁CHEST - ▁INTENDED - ▁BI - ▁EXCITEMENT - ▁OFFICERS - ▁SUR - ▁SHAKE - ▁SENTIMENT - ▁GENTLY - ▁SUCCEEDED - ▁MENTION - ▁LOCK - ▁ACQUAINTANCE - ▁IMAGINATION - ▁PHYSICAL - ▁LEADING - ▁SLAVE - ▁CART - ▁POINTED - ▁STEAM - ▁SHADE - ▁PIPE - ▁BASE - ▁INVENT - ▁ALAS - ▁WORKED - ▁REGRET - ▁BUR - ▁FAITHFUL - ▁MENTIONED - ▁RECORD - ▁COMPLAIN - ▁SUPERIOR - ▁BAY - ▁PAL - EMENT - UE - ▁SEVENTY - ▁HOTEL - ▁SHEEP - ▁MEAL - ▁ADVICE - ▁HIDDEN - ▁DEMANDED - ▁CONSCIOUS - ▁BROW - ▁POSSESS - ▁FOURTH - ▁EVENTS - ▁FRI - ▁PRAISE - ▁ADVANCED - ▁RESOLVED - ▁STUFF - ▁CHEERFUL - ▁BIRTH - ▁GRIEF - ▁AFFORD - ▁FAIRY - ▁WAKE - ▁SIDES - ▁SUBSTANCE - ▁ARTICLE - ▁LEVEL - ▁MIST - ▁JOINED - ▁PRACTICAL - ▁CLEARLY - ▁TRACE - ▁AWAKE - ▁OBSERVE - ▁BASKET - ▁LACK - VILLE - ▁SPIRITS - ▁EXCITED - ▁ABANDON - ▁SHINING - ▁FULLY - ▁CALLING - ▁CONSIDERABLE - ▁SPRANG - ▁MILE - ▁DOZEN - ▁PEA - ▁DANGEROUS - ▁WIT - ▁JEW - ▁POUNDS - ▁FOX - ▁INFORMATION - ▁LIES - ▁DECK - NNY - ▁PAUL - ▁STARS - ▁ANGER - ▁SETTLE - ▁WILLING - ▁ADAM - ▁FACES - ▁SMITH - ▁IMPORTANCE - ▁STRAIN - WAR - ▁SAM - ▁FEATHER - ▁SERVED - ▁AUTHOR - ▁PERCEIVED - ▁FLAME - ▁DIVINE - ▁TRAIL - ▁ANYBODY - ▁SIGH - ▁DELICATE - KY - ▁FOLD - ▁HAVEN - ▁DESIRED - ▁CURIOSITY - ▁PRACTICE - ▁CONSIDERATION - ▁ABSOLUTELY - ▁CITIZEN - ▁BOTTLE - ▁INTERESTED - ▁MEAT - ▁OCCUPIED - ▁CHOOSE - ▁THROAT - ETTE - ▁CANDLE - ▁DAWN - ▁PROTECT - ▁SENTENCE - IED - ▁ROCKS - ▁PORTION - ▁APPARENTLY - ▁PRESENTED - ▁TIGHT - ▁ACTUALLY - ▁DYING - ▁HAM - ▁DAILY - ▁SUFFERED - ▁POLITICAL - ▁BODIES - ▁MODERN - ▁COMPLETELY - ▁SOONER - TAN - ▁PROP - ▁ADVANCE - ▁REFUSED - ▁FARMER - ▁POLITE - ▁THUNDER - ▁BRIEF - ▁ELSIE - ▁SAILOR - ▁SUGGESTED - ▁PLATE - ▁AID - ▁FLESH - ▁WEEP - ▁BUCK - ▁ANTI - ▁OCEAN - ▁SPEND - WELL - ▁ODD - ▁GOVERNOR - ▁ENTRANCE - ▁SUSPICION - ▁STEPPED - ▁RAPIDLY - ▁CHECK - ▁HIDE - ▁FLIGHT - ▁CLUB - ▁ENTIRE - ▁INDIANS - ASH - ▁CAPITAL - ▁MAMMA - HAR - ▁CORRECT - ▁CRACK - ▁SENSATION - ▁WORST - ▁PACE - ▁MIDST - ▁AUGUST - ▁PROPORTION - ▁INNOCENT - LINESS - ▁REGARDED - ▁DRIVEN - ORD - ▁HASTE - ▁EDUCATION - ▁EMPLOY - ▁TRULY - ▁INSTRUMENT - ▁MAG - ▁FRAME - ▁FOOLISH - ▁TAUGHT - ▁HANG - ▁ARGUMENT - ▁NINETEEN - ▁ELDER - ▁NAY - ▁NEEDED - ▁NEIGHBOR - ▁INSTRUCT - ▁PAPERS - ▁REWARD - ▁EQUALLY - ▁FIELDS - ▁DIG - HIN - ▁CONDITIONS - JA - ▁SPAR - ▁REQUEST - ▁WORN - ▁REMARKABLE - ▁LOAD - ▁WORSHIP - ▁PARK - ▁KI - ▁INTERRUPTED - ▁SKILL - ▁TERM - LAC - ▁CRITIC - ▁DISTRESS - ▁BELIEF - ▁STERN - IGHT - ▁TRACK - ▁HUNTING - ▁JEWEL - ▁GRADUALLY - ▁GLOW - ▁RUSHED - ▁MENTAL - ▁VISITOR - ▁PICKED - ▁BEHOLD - ▁EXPRESSED - ▁RUB - ▁SKI - ARTAGNAN - ▁MOREOVER - ▁OPERATION - ▁CAREFUL - ▁KEEN - ▁ASSERT - ▁WANDER - ▁ENEMIES - ▁MYSTERIOUS - ▁DEPTH - ▁PREFER - ▁CROSSED - ▁CHARMING - ▁DREAD - ▁FLOUR - ▁ROBIN - ▁TRE - ▁RELIEF - ▁INQUIRED - ▁APPLE - ▁HENCE - ▁WINGS - ▁CHOICE - ▁JUD - OO - ▁SPECIES - ▁DELIGHTED - IUM - ▁RAPID - ▁APPEAL - ▁FAMOUS - ▁USEFUL - ▁HELEN - ▁NEWSPAPER - ▁PLENTY - ▁BEARING - ▁NERVOUS - ▁PARA - ▁URGE - ▁ROAR - ▁WOUNDED - ▁CHAIN - ▁PRODUCE - ▁REFLECTION - ▁MERCHANT - ▁QUARREL - ▁GLORY - ▁BEGUN - ▁BARON - CUS - ▁QUEER - ▁MIX - ▁GAZE - ▁WHISPER - ▁BURIED - ▁DIV - ▁CARD - ▁FREQUENTLY - ▁TIP - ▁KNEE - ▁REGION - ▁ROOT - ▁LEST - ▁JEALOUS - CTOR - ▁SAVED - ▁ASKING - ▁TRIP - QUA - ▁UNION - HY - ▁COMPANIONS - ▁SHIPS - ▁HALE - ▁APPROACHED - ▁HARRY - ▁DRUNK - ▁ARRIVAL - ▁SLEPT - ▁FURNISH - HEAD - ▁PIG - ▁ABSENCE - ▁PHIL - ▁HEAP - ▁SHOES - ▁CONSCIOUSNESS - ▁KINDLY - ▁EVIDENT - ▁SCAR - ▁DETERMIN - ▁GRASP - ▁STEAL - ▁OWE - ▁KNIFE - ▁PRECIOUS - ▁ELEMENT - ▁PROCEEDED - ▁FEVER - ▁LEADER - ▁RISK - ▁EASE - ▁GRIM - ▁MOUNT - ▁MEANWHILE - ▁CENTURY - OON - ▁JUDGMENT - ▁AROSE - ▁VISION - ▁SPARE - ▁EXTREME - ▁CONSTANT - ▁OBSERVATION - ▁THRUST - ▁DELAY - ▁CENT - ▁INCLUD - ▁LIFT - ▁ADMIRE - ▁ISSUE - ▁FRIENDSHIP - ▁LESSON - ▁PRINCIPAL - ▁MOURN - ▁ACCEPTED - ▁BURNING - ▁CAPABLE - ▁EXTRAORDINARY - ▁SANG - ▁REMOVED - ▁HOPED - ▁HORN - ▁ALICE - ▁MUD - ▁APARTMENT - ▁FIGHTING - ▁BLAME - ▁TREMBLING - ▁SOMEBODY - ▁ANYONE - ▁BRIDE - ▁READER - ▁ROB - ▁EVERYWHERE - ▁LABOUR - ▁RECALL - ▁BULL - ▁HIT - ▁COUNCIL - ▁POPULAR - ▁CHAP - ▁TRIAL - ▁DUN - ▁WISHES - ▁BRILLIANT - ▁ASSURED - ▁FORGOT - ▁CONTINUE - ▁ACKNOWLEDG - ▁RETREAT - ▁INCREASED - ▁CONTEMPT - ▁GRANDFATHER - ▁SYMPATHY - ▁GHOST - ▁STRETCHED - ▁CREATURES - ▁CAB - ▁HIND - ▁PLAYING - ▁MISERABLE - ▁MEMBERS - ▁KINDNESS - ▁HIGHEST - ▁PRIM - ▁KISSED - ▁DESERVE - ▁HUT - ▁BEGGED - ▁EIGHTY - ▁CLOSELY - ▁WONDERED - ▁MILITARY - ▁REMIND - ▁ACCORDINGLY - ▁LARGER - ▁MAINTAIN - ▁ENGINE - ▁MOTIVE - ▁DESTROY - ▁STRIP - ▁HANS - ▁AHEAD - ▁INFINITE - ▁PROMPT - ▁INFORMED - TTLE - ▁PEER - ▁PRESSED - ▁TRAP - ▁SOMEWHERE - ▁BOUGHT - ▁VISIBLE - ▁ASHAMED - ▁TEAR - ▁NEIGHBOUR - ▁CONSTITUTION - ▁INTELLIGENCE - ▁PROFESSION - ▁HUNGRY - RIDGE - ▁SMELL - ▁STORIES - ▁LISTENING - ▁APPROACH - ▁STRING - ▁EXPLANATION - ▁IMMENSE - ▁RELIGIOUS - ▁THROUGHOUT - ▁HOLLOW - ▁AWAIT - ▁FLYING - ▁SCREAM - ▁ACTIVE - ▁RUM - ▁PRODUCT - ▁UNHAPPY - ▁VAGUE - ARIES - ▁ELIZABETH - ▁STUPID - ▁DIGNITY - ▁ISABEL - GAR - ▁BRO - ▁PITCH - ▁COMRADE - ▁STIFF - ▁RECKON - ▁SOLD - ▁SPARK - ▁STRO - ▁CRYING - ▁MAGIC - ▁REPEAT - PORT - ▁MARKED - ▁COMFORTABLE - ▁PROJECT - ▁BECOMING - ▁PARENTS - ▁SHELTER - ▁STOLE - ▁HINT - ▁NEST - ▁TRICK - ▁THOROUGHLY - ▁HOSPITAL - ▁WEAPON - ▁ROME - ▁STYLE - ▁ADMITTED - ▁SAFETY - FIELD - ▁UNDERSTANDING - ▁TREMBLE - ▁PRINT - ▁SLAVES - ▁WEARY - ▁ARTIST - ▁CREDIT - BURG - ▁CONCLUSION - ▁SELDOM - ▁UNUSUAL - ▁CLOUDS - ▁UNABLE - ▁GAY - ▁HANGING - ▁SCR - ▁BOWED - ▁DAVID - ▁VOL - ▁PUSHED - ▁ESCAPED - MOND - ▁WARN - ▁BETRAY - ▁EGGS - ▁PLAINLY - ▁EXHIBIT - ▁DISPLAY - ▁MEMBER - ▁GRIN - ▁PROSPECT - ▁BRUSH - ▁BID - ▁SUCCESSFUL - ▁EXTENT - ▁PERSUADE - ▁MID - ▁MOOD - ▁ARRANGED - ▁UNIVERSAL - ▁JIM - ▁SIGNAL - ▁WHILST - ▁PHILIP - ▁WOLF - RATE - ▁EAGERLY - ▁BILLY - ▁RETURNING - ▁CONSCIENCE - ▁FORTUNATE - ▁FEMALE - ▁GLEAM - ▁HASTILY - ▁PROVIDED - ▁OBTAIN - ▁INSTINCT - ▁CONCERNED - ▁CONCERNING - ▁SOMEHOW - ▁PINK - ▁RAGE - ▁ACCUSTOMED - ▁UNCONSCIOUS - ▁ADVISE - ▁BRANCHES - ▁TINY - ▁REFUSE - ▁BISHOP - ▁SUPPLY - ▁PEASANT - ▁LAWYER - ▁WASTE - ▁CONNECTION - ▁DEVELOP - ▁CORRESPOND - ▁PLUM - ▁NODDED - ▁SLIPPED - ▁EU - ▁CONSTANTLY - CUM - MMED - ▁FAIRLY - HOUSE - ▁KIT - ▁RANG - ▁FEATURES - ▁PAUSE - ▁PAINFUL - ▁JOE - ▁WHENCE - ▁LAUGHTER - ▁COACH - ▁CHRISTMAS - ▁EATING - ▁WHOLLY - ▁APART - ▁SUPER - ▁REVOLUTION - ▁LONELY - ▁CHEEKS - ▁THRONE - ▁CREW - ▁ATTAIN - ▁ESTABLISHED - TIME - ▁DASH - ▁FRIENDLY - ▁OPERA - ▁EARL - ▁EXHAUST - ▁CLIFF - ▁REVEAL - ▁ADOPT - ▁CENTRE - ▁MERRY - ▁SYLVIA - ▁IDEAL - ▁MISFORTUNE - ▁FEAST - ▁ARAB - ▁NUT - ▁FETCH - ▁FOUGHT - ▁PILE - ▁SETTING - ▁SOURCE - ▁PERSIST - ▁MERCY - ▁BARK - ▁LUC - ▁DEEPLY - ▁COMPARE - ▁ATTITUDE - ▁ENDURE - ▁DELIGHTFUL - ▁BEARD - ▁PATIENCE - ▁LOCAL - ▁UTTERED - ▁VICTORY - ▁TREATED - ▁SEPARATE - ▁WAG - ▁DRAGG - ▁TITLE - ▁TROOPS - ▁TRIUMPH - ▁REAR - ▁GAINED - ▁SINK - ▁DEFEND - ▁TIED - ▁FLED - ▁DARED - ▁INCREASE - ▁POND - ▁CONQUER - ▁FOREHEAD - ▁FAN - ▁ANXIETY - ▁ENCOUNTER - ▁SEX - ▁HALT - ▁SANK - ▁CHEEK - ▁HUMBLE - ▁WRITER - ▁EMPLOYED - ▁DISTINGUISHED - ▁RAISE - ▁WHIP - ▁GIANT - ▁RANGE - ▁OBTAINED - ▁FLAG - ▁MAC - ▁JUMPED - ▁DISCOVERY - ▁NATIONAL - ▁COMMISSION - ▁POSITIVE - ▁LOVING - ▁EXACT - ▁MURMURED - ▁GAZED - ▁REFER - ▁COLLEGE - ▁ENCOURAGE - ▁NOVEL - ▁CLOCK - ▁MORTAL - ▁ROLLED - ▁RAT - IZING - ▁GUILTY - ▁VICTOR - WORTH - ▁PRA - ▁APPROACHING - ▁RELATIVE - ▁ESTATE - ▁UGLY - ▁METAL - ▁ROBERT - ▁TENT - ▁ADMIRATION - ▁FOURTEEN - ▁BARBAR - ▁WITCH - ELLA - ▁CAKE - ▁SHONE - ▁MANAGED - ▁VOLUME - ▁GREEK - ▁DANCING - ▁WRETCHED - ▁CONDEMN - ▁MAGNIFICENT - ▁CONSULT - J - ▁ORGAN - ▁FLEET - ▁ARRANGEMENT - ▁INCIDENT - ▁MISERY - ▁ARROW - ▁STROKE - ▁ASSIST - ▁BUILD - ▁SUCCEED - ▁DESPERATE - ▁WIDOW - UDE - ▁MARKET - ▁WISDOM - ▁PRECISE - ▁CURRENT - ▁SPOIL - ▁BADE - ▁WOODEN - ▁RESIST - ▁OBVIOUS - ▁SENSIBLE - FALL - ▁ADDRESSED - ▁GIL - ▁COUNSEL - ▁PURCHASE - ▁SELECT - ▁USELESS - ▁STARED - ▁ARREST - ▁POISON - ▁FIN - ▁SWALLOW - ▁BLOCK - ▁SLID - ▁NINETY - ▁SPORT - ▁PROVIDE - ▁ANNA - ▁LAMB - ▁INTERVAL - ▁JUMP - ▁DESCRIBED - ▁STRIKING - ▁PROVISION - ▁PROPOSED - ▁MELANCHOLY - ▁WARRIOR - ▁SUGGEST - ▁DEPARTURE - ▁BURDEN - ▁LIMB - ▁TROUBLED - ▁MEADOW - ▁SACRED - ▁SOLID - ▁TRU - ▁LUCY - ▁RECOVER - ▁ENERGY - ▁POWDER - ▁RESUMED - ▁INTENSE - ▁BRITISH - ▁STRAW - ▁AGREEABLE - ▁EVERYONE - ▁CONCERN - ▁VOYAGE - ▁SOUTHERN - ▁BOSOM - ▁UTTERLY - ▁FEED - ▁ESSENTIAL - ▁CONFINE - ▁HOUSEHOLD - ▁EXTREMELY - ▁WONDERING - ▁LIST - ▁PINE - PHA - ▁EXPERIMENT - ▁JOSEPH - ▁MYSTERY - ▁RESTORE - ▁BLUSH - FOLD - ▁CHOSEN - ▁INTELLECT - ▁CURTAIN - OLOGY - ▁MOUNTED - ▁LAP - ▁EPI - ▁PUNISH - ▁WEDDING - ▁RECOGNIZED - ▁DRIFT - ▁PREPARATION - ▁RESOLUTION - ▁OPPRESS - ▁FIX - ▁VICTIM - OGRAPH - ▁SUMMON - ▁JULIA - ▁FLOOD - ▁WAL - ULATION - ▁SLIGHTLY - ▁LODGE - ▁WIRE - ▁CONFUSION - ▁UNEXPECTED - ▁CONCEIVE - ▁PRIZE - ▁JESUS - ▁ADDITION - ▁RUDE - ▁FATAL - ▁CARELESS - ▁PATCH - ▁KO - ▁CATHERINE - ▁PARLIAMENT - ▁PROFOUND - ▁ALOUD - ▁RELIEVE - ▁PUSH - ABILITY - ▁ACCOMPANIED - ▁SOVEREIGN - ▁SINGULAR - ▁ECHO - ▁COMPOSED - ▁SHAKING - ATORY - ▁ASSISTANCE - ▁TEACHER - ▁HORRIBLE - ▁STRICT - ▁VERSE - ▁PUNISHMENT - ▁GOWN - ▁MISTAKEN - ▁VARI - ▁SWEPT - ▁GESTURE - ▁BUSH - ▁STEEL - ▁AFFECTED - ▁DIRECTED - ▁SURROUNDED - ▁ABSURD - ▁SUGAR - ▁SCRAP - ▁IMMEDIATE - ▁SADDLE - ▁TY - ▁ARISE - ▁SIGHED - ▁EXCHANGE - ▁IMPATIENT - ▁SNAP - ▁EMBRACE - ▁DISEASE - ▁PROFIT - ▁RIDING - ▁RECOVERED - ▁GOVERN - ▁STRETCH - ▁CONVINCED - ▁LEANING - ▁DOMESTIC - ▁COMPLEX - ▁MANIFEST - ▁INDULGE - ▁GENIUS - ▁AGENT - ▁VEIL - ▁DESCRIPTION - ▁INCLINED - ▁DECEIVE - ▁DARLING - ▁REIGN - HU - ▁ENORMOUS - ▁RESTRAIN - ▁DUTIES - BURY - TTERED - ▁POLE - ▁ENABLE - ▁EXCEPTION - ▁INTIMATE - ▁COUNTESS - ▁TRIBE - ▁HANDKERCHIEF - ▁MIDNIGHT - ▁PROBLEM - ▁TRAMP - ▁OIL - CAST - ▁CRUSH - ▁DISCUSS - ▁RAM - ▁TROT - ▁UNRE - ▁WHIRL - ▁LOCKED - ▁HORIZON - ▁OFFICIAL - ▁SCHEME - ▁DROWN - ▁PIERRE - ▁PERMITTED - ▁CONNECTED - ▁ASSURE - ▁COCK - ▁UTMOST - ▁DEVOTED - ▁RELI - ▁SUFFICIENTLY - ▁INTELLECTUAL - ▁CARPET - ▁OBJECTION - ▁AFTERWARD - ▁REALITY - ▁NEGRO - ▁RETAIN - ▁ASCEND - ▁CEASE - ▁KATE - ▁MARVEL - KO - ▁BOND - MOST - ▁COAL - GATE - ▁IGNORANT - ▁BREAKING - ▁TWIN - ▁ASTONISHMENT - ▁COFFEE - ▁JAR - ▁CITIES - ▁ORIGIN - ▁EXECUT - ▁FINAL - ▁INHABITANTS - ▁STABLE - ▁CHIN - ▁PARTIES - ▁PLUNGE - ▁GENEROUS - ▁DESCRIBE - ▁ANNOUNCED - ▁MERIT - ▁REVERE - ▁ERE - ACIOUS - ZI - ▁DISAPPOINT - ▁SUGGESTION - ▁DOUBTLESS - ▁TRUNK - ▁STAMP - ▁JOB - ▁APPOINTED - ▁DIVIDED - ▁ACQUAINTED - CHI - ▁ABSOLUTE - ▁FEARFUL - ▁PRIVILEGE - ▁CRAFT - ▁STEEP - ▁HUNTER - ▁FORBID - ▁MODEST - ▁ENDEAVOUR - ▁SWEEP - ▁BEHELD - ▁ABSORB - ▁CONSTRUCT - ▁EMPIRE - ▁EXPEDITION - ▁ERECT - ▁OFFEND - ▁INTEND - ▁PERMIT - ▁DESTROYED - ▁CONTRACT - ▁THIRST - ▁WAGON - ▁EVA - ▁GLOOM - ▁ATMOSPHERE - ▁RESERVE - ▁VOTE - ▁GER - ▁NONSENSE - ▁PREVAIL - ▁QUALITY - ▁CLASP - ▁CONCLUDED - ▁RAP - ▁KATY - ▁ETERNAL - ▁MUTTERED - ▁NEGLECT - ▁SQUIRE - ▁CREEP - LOCK - ▁ELECTRIC - ▁HAY - ▁EXPENSE - ▁SCORN - ▁RETIRED - ▁STOUT - ▁MURMUR - ▁SHARPLY - ▁DISTRICT - ▁LEAF - ▁FAILURE - WICK - ▁JEAN - ▁NUMEROUS - ▁INFANT - ▁REALIZED - ▁TRAVELLER - ▁HUNGER - ▁JUNE - ▁MUN - ▁RECOMMEND - ▁CREP - ZZLE - ▁RICHARD - WORK - ▁MONTE - ▁PREACH - ▁PALM - AVI - ▁ANYWHERE - ▁DISPOSITION - ▁MIRROR - ▁VENTURE - ▁POUND - ▁CIGAR - ▁INVITED - ▁BENCH - ▁PROTECTION - ▁BENEFIT - ▁THOMAS - ▁CLERK - ▁REPROACH - ▁UNIFORM - ▁GENERATION - ▁SEAL - ▁COMPASS - ▁WARNING - ▁EXTENDED - ▁DIFFICULTIES - ▁MAYBE - ▁GROAN - ▁AFFECT - ▁COMB - ▁EARN - ▁WESTERN - ▁IDLE - ▁SCORE - ▁TAP - ▁ASTONISHED - ▁INTRODUCED - ▁LEISURE - ▁LIEUTENANT - ▁VIOLENCE - ▁FIRMLY - ▁MONSTER - ▁UR - ▁PROPERLY - ▁TWIST - ▁PIRATE - ▁ROBBER - ▁BATTER - ▁WEPT - ▁LEANED - ▁FOG - ▁ORNAMENT - ▁ANDREW - ▁BUSHES - ▁REPUBLIC - ▁CONFIDENT - ▁LEAN - ▁DART - ▁STOOP - ▁CURL - ▁COUNTER - ▁NORTHERN - ▁PEARL - ▁NEAREST - ▁FRANCIS - ▁WANDERING - ▁FREQUENT - ▁STARTLED - ▁STATEMENT - ▁OCCUR - ▁BLOOM - ▁NERVE - ▁INSPECT - ▁INDUCE - ▁FLATTER - ▁DATE - ▁AMBITION - ▁SLOPE - ▁MALE - ▁MADAM - ▁MONK - ▁RENT - ▁CONFIRM - ▁INVESTIGAT - ▁RABBIT - ▁REGIMENT - ▁SUBMIT - ▁SPELL - ▁FURIOUS - ▁RAIL - ▁BESTOW - ▁RALPH - ▁SCATTERED - ▁COMPELLED - ▁THREAD - ▁CHILL - ▁DENY - ▁PRONOUNC - ▁MANKIND - ▁CATTLE - ▁EXECUTION - ▁REBEL - ▁SUPREME - ▁VALUABLE - ▁LIKEWISE - ▁CONVEY - ▁TIDE - ▁GLOOMY - ▁COIN - ▁ACTUAL - ▁TAX - ▁PROVINCE - ▁GRATEFUL - ▁SPIRITUAL - ▁VANISHED - ▁DIANA - ▁HAUNT - ▁DRAGON - ▁CRAWL - ▁CHINA - ▁GRATITUDE - ▁NEAT - ▁FINISH - ▁INTENT - ▁FRIGHT - ▁EMBARRASS - ▁THIRTEEN - ▁RUTH - ▁SLIGHTEST - ▁DEVELOPMENT - ▁INTERVIEW - ▁SPECTACLE - ▁BROOK - VIE - ▁WEAKNESS - ▁AUDIENCE - ▁CONSEQUENTLY - ▁ABROAD - ▁ASPECT - ▁PAINTED - ▁RELEASE - ▁INSULT - ▁SOOTH - ▁DISAPPOINTMENT - ▁EMERG - ▁BRIG - ▁ESTEEM - ▁INVITATION - ▁PASSENGER - ▁PUBLISH - ▁PIANO - ▁IRISH - ▁DESK - ▁BEATEN - ▁FIFTH - ▁IMPULSE - ▁SWEAR - ▁EATEN - ▁PURPLE - ▁COMMITTED - ▁COUNTRIES - ▁PERCEIVE - ISON - ▁CELEBRAT - ▁GRANDMOTHER - ▁SHUDDER - ▁SUNSHINE - ▁SPANISH - ▁HITHERTO - ▁MARILLA - ▁SNAKE - ▁MOCK - ▁INTERFERE - ▁WALTER - ▁AMID - ▁MARBLE - ▁MISSION - TERIOR - ▁DRIVING - ▁FURNITURE - ▁STEADY - ▁CIRCUMSTANCE - ▁INTERPRET - ▁ENCHANT - ▁ERROR - ▁CONVICTION - ▁HELPLESS - ▁MEDICINE - ▁QUALITIES - ▁ITALIAN - ▁HASTENED - ▁OCCASIONALLY - ▁PURSUED - ▁HESITATED - ▁INDEPENDENT - ▁OLIVER - ▁LINGER - UX - ▁EXAMINED - ▁REPENT - ▁PHYSICIAN - ▁CHASE - ▁BELOVED - ▁ATTACHED - ▁FLORENCE - ▁HONEY - ▁MOUSE - ▁CRIES - ▁BAKE - ▁POEM - ▁DESTRUCTION - ▁FULFIL - ▁MESSENGER - ▁TRISTRAM - ▁FANCIED - ▁EXCESS - ▁CURSE - ▁CHU - ▁QUANTITY - ▁THORNTON - ▁CREATED - ▁CONTINUALLY - ▁LIGHTNING - ▁BORNE - ▁TOTAL - ▁DISPOSED - ▁RIFLE - ▁POLLY - ▁GOAT - ▁BACKWARD - ▁VIRGINIA - ▁KICK - ▁PERIL - ▁QUO - ▁GLORIOUS - ▁MULTITUDE - ▁LEATHER - ▁ABSENT - ▁DEMON - ▁DEBT - ▁TORTURE - ▁ACCORD - ▁MATE - ▁CATHOLIC - ▁PILL - ▁LIBRARY - ▁PURSUIT - ▁SHIRT - ▁DEAREST - ▁COLLAR - ▁BEACH - ▁ROBE - ▁DECLARE - ▁BRANCH - ▁TEMPT - ▁STEADILY - ▁DISGUST - ▁SILLY - ▁ARRIVE - ▁DRANK - ▁LEVI - ▁COMMUNICAT - ▁RACHEL - ▁WASHINGTON - ▁RESIGN - ▁MEANTIME - ▁LACE - ▁ENGAGEMENT - ▁QUIVER - ▁SEPARATED - ▁DISCUSSION - ▁VENTURED - ▁SURROUNDING - ▁POLISH - ▁NAIL - ▁SWELL - ▁JOKE - ▁LINCOLN - ▁STUDENT - ▁GLITTER - ▁RUSSIAN - ▁READILY - ▁CHRIS - ▁POVERTY - ▁DISGRACE - ▁CHEESE - ▁HEAVILY - ▁SCALE - ▁STAFF - ▁ENTREAT - ▁FAREWELL - ▁LUNCH - ▁PEEP - ▁MULE - ▁SOMEONE - ▁DISAPPEAR - ▁DECISION - ▁PISTOL - ▁PUN - ▁SPUR - ▁ASSUMED - ▁EXTEND - ▁ENTHUSIASM - ▁DEFINITE - ▁UNDERTAKE - ▁COMMITTEE - ▁SIMON - ▁FENCE - ▁APPLIED - ▁RELATED - ▁VICE - ▁UNPLEASANT - ▁PROBABLE - ▁PROCURE - ▁FROWN - ▁CLOAK - ▁HUMANITY - ▁FAMILIES - ▁PHILOSOPHER - ▁DWARF - ▁OVERCOME - ▁DEFEAT - ▁FASTENED - ▁MARSH - ▁CLASSES - ▁TOMB - ▁GRACIOUS - ▁REMOTE - ▁CELL - ▁SHRIEK - ▁RESCUE - ▁POOL - ▁ORGANIZ - ▁CHOSE - ▁CUTTING - ▁COWARD - ▁BORDER - ▁DIRTY - ▁MONKEY - ▁HOOK - ▁CHUCK - ▁EMILY - ▁JEST - ▁PLAC - ▁WEIGH - ▁ASSOCIATE - ▁GLIMPSE - ▁STUCK - ▁BOLT - ▁MURDERER - ▁PONY - ▁DISTINGUISH - ▁INSTITUTION - ▁CUNNING - ▁COMPLIMENT - ▁APPETITE - ▁REPUTATION - ▁FEEBLE - ▁KIN - ▁SERIES - ▁GRACEFUL - ▁PLATFORM - ▁BREEZE - ▁PHRASE - ▁CLAY - MONT - ▁RATTL - ▁OPPOSITION - ▁LANE - ▁BOAST - ▁GROWTH - ▁INCLINATION - ▁BEHAVE - ▁SUSAN - ▁DISTINCTION - ▁DISLIKE - ▁NICHOLAS - ▁SATISFY - ▁DRAMA - ▁ELBOW - ▁GAZING - ▁CONSUM - ▁SPIN - ▁OATH - ▁CHANNEL - ▁CHARACTERISTIC - ▁SPEAR - ▁SLAIN - ▁SAUCE - ▁FROG - ▁CONCEPTION - ▁TIMID - ▁ZEAL - ▁APPARENT - SHIRE - ▁CENTER - ▁VARIETY - ▁DUSK - ▁APT - ▁COLUMN - ▁REVENGE - ▁RIVAL - ▁IMITAT - ▁PASSIONATE - ▁SELFISH - ▁NORMAN - ▁REPAIR - ▁THRILL - ▁TREATMENT - ▁ROSA - ▁MARTIN - ▁INDIFFERENT - ▁THITHER - ▁GALLANT - ▁PEPPER - ▁RECOLLECT - ▁VINE - ▁SCARCE - ▁SHIELD - ▁MINGLED - CLOSE - ▁HARSH - ▁BRICK - ▁HUMOR - ▁MISCHIEF - ▁TREMENDOUS - ▁FUNCTION - ▁SMART - ▁SULTAN - ▁DISMISS - ▁THREATENED - ▁CHEAP - ▁FLOCK - ▁ENDEAVOR - ▁WHISK - ▁ITALY - ▁WAIST - ▁FLUTTER - ▁SMOKING - ▁MONARCH - ▁AFRICA - ▁ACCUSE - ▁HERBERT - ▁REFRESH - ▁REJOICE - ▁PILLOW - ▁EXPECTATION - ▁POETRY - ▁HOPELESS - ▁PERISH - ▁PHILOSOPHY - ▁WHISTLE - ▁BERNARD - ▁LAMENT - ▁IMPROVE - ▁SUP - ▁PERPLEX - ▁FOUNTAIN - ▁LEAGUE - ▁DESPISE - ▁IGNORANCE - ▁REFERENCE - ▁DUCK - ▁GROVE - ▁PURSE - ▁PARTNER - ▁PROPHET - ▁SHIVER - ▁NEIGHBOURHOOD - ▁REPRESENTATIVE - SAIL - ▁WIP - ▁ACQUIRED - ▁CHIMNEY - ▁DOCTRINE - ▁MAXIM - ▁ANGLE - ▁MAJORITY - ▁AUTUMN - ▁CONFUSED - ▁CRISTO - ▁ACHIEVE - ▁DISGUISE - ▁REDUCED - ▁EARLIER - ▁THEATRE - ▁DECIDE - MINATED - OLOGICAL - ▁OCCUPATION - ▁VIGOROUS - ▁CONTINENT - ▁DECLINE - ▁COMMUNITY - ▁MOTIONLESS - ▁HATRED - ▁COMMUNICATION - ▁BOWL - ▁COMMENT - ▁APPROVE - ▁CEREMONY - ▁CRIMINAL - ▁SCIENTIFIC - ▁DUCHESS - ▁VIVID - ▁SHIFT - ▁AVAIL - ▁DAMP - ▁JOHNSON - ▁SLENDER - ▁CONTRAST - ▁AMUSEMENT - ▁PLOT - ▁LYN - ▁ASSOCIATION - ▁SNATCH - ▁UNCERTAIN - ▁PRESSURE - ▁PERCH - ▁APPLY - ▁PLANET - ▁NOTWITHSTANDING - ▁SWUNG - ▁STIRRED - ▁ATTENDANT - ▁ENJOYMENT - ▁WORRY - ▁ALBERT - ▁NAKED - ▁TALENT - ▁MARIAN - ▁REFORM - ▁DELIBERATE - ▁INTELLIGENT - ▁SENSITIVE - ▁YONDER - ▁PUPIL - ▁FRIGHTFUL - ▁DOUBTFUL - ▁STANDARD - ▁MAGISTRATE - ▁SHEPHERD - ▁STOMACH - ▁DEPOSIT - ▁RENEW - ▁HEDGE - ▁FRANCS - ▁POSSIBILITY - ▁RESEMBLE - ▁FATIGUE - ▁PORTRAIT - ▁FAVORITE - ▁CREAM - ▁BURG - ▁SECRETARY - ▁DIVERS - ▁ACTIVITY - ▁SPECULAT - ▁HUMOUR - ▁FITTED - ▁EXTERNAL - ▁CETERA - ▁WRAPPED - ▁WHIT - ▁FRED - ▁EXAMINATION - ▁LODGING - ▁OWING - ▁JAW - ▁CROW - ▁BALANCE - ▁PUFF - ▁TENDERNESS - ▁PORTHOS - ▁ANCHOR - ▁INTERRUPT - ▁NECESSARILY - ▁PERPETUAL - ▁AGONY - ▁POPE - ▁SCHOLAR - ▁SCOTLAND - ▁SUPPRESS - ▁WRATH - ▁WRECK - ▁EXCEED - ▁PERFECTION - ▁INDIA - ▁TRADITION - ▁SECTION - ▁EASTERN - ▁DOORWAY - ▁WIVES - ▁CONVENTION - ▁ANNOUNC - ▁EGYPT - ▁CONTRADICT - ▁SCRATCH - ▁CENTRAL - ▁GLOVE - ▁WAX - ▁PREPARE - ▁ACCOMPANY - ▁INCREASING - ▁LIBERAL - ▁RAISING - ▁ORANGE - ▁SHOE - ▁ATTRIBUTE - ▁LITERATURE - ▁PUZZLED - ▁WITHDRAW - ▁WHITHER - ▁HAWK - ▁MOONLIGHT - ▁EXAMINE - ▁HAPPILY - ▁PRECEDE - ▁DETECTIVE - ▁INCHES - ▁SOLITARY - ▁DUTCH - ▁NAPOLEON - ▁UNEASY - ▁CARDINAL - ▁BLEW - ▁FOWL - ▁DECORAT - ▁CHILDHOOD - ▁TORMENT - ▁LOSING - ▁PERMISSION - ▁BLANK - ▁UPSTAIRS - ▁CAPACITY - ▁TRIFLE - ▁FOLLY - ▁RECOGNIZE - ▁REMOVE - ▁VENGEANCE - ▁ENTERPRISE - ▁BEDROOM - ▁ANYHOW - ▁INQUIRY - ▁ASHES - ▁DRAG - ▁HUSH - ▁AWKWARD - ▁SATURDAY - ▁GENUINE - ▁SURVIV - ▁SKIRT - ▁AFFECTIONATE - ▁TANG - ▁MUTUAL - ▁DISPUTE - ▁EAGLE - ▁INCOME - ▁BIND - ▁FAME - ▁IMPROVEMENT - ROVING - ▁DIFFER - ▁AWOKE - ▁SLEEVE - ▁SOLITUDE - ▁FAVOURITE - JI - ▁DETECT - ▁COMPREHEND - ▁PREPARING - ▁SERPENT - ▁SUMMIT - ▁KNOT - ▁KNIT - ▁COPY - ▁STOPPING - ▁FADED - ▁HIDEOUS - ▁JULIE - STEAD - ▁SHINE - ▁CONFLICT - ▁PROPOSITION - ▁REFUGE - ▁GALLERY - ▁BUNDLE - ▁AXE - ▁SLAVERY - ▁MASK - ▁ALYOSHA - ▁LADDER - ▁DEPARTMENT - ▁DISCHARGE - ▁DEPRESS - ▁GALLOP - ▁SCARLET - ▁KITTY - ▁RECEIVING - ▁SURRENDER - ▁SUSTAIN - ▁TWILIGHT - ▁CONGRESS - ▁IRELAND - ▁FUNNY - ▁LEND - ▁CONSTITUTE - ▁FUNERAL - ▁CRYSTAL - ▁SPAIN - ▁EXCEEDINGLY - ▁DAMN - ▁COMMUN - ▁CIVILIZATION - ▁PREJUDICE - ▁PORCH - ▁ASSISTANT - ▁INDUSTRY - ▁TUMBLE - ▁DEFENCE - ▁HITHER - ▁SMOT - ▁COLONI - ▁AMAZEMENT - ▁MARGUERITE - ▁MIRACLE - ▁INHERIT - ▁BEGGAR - ▁ENVELOPE - ▁INDIGNATION - ▁NATASHA - ▁PROPOSAL - ▁FRAGMENT - ▁ROUSED - ▁ROAST - ENCIES - ▁COMMENCED - ▁RESOURCE - ▁POPULATION - ▁QUOTH - ▁PURSUE - ▁EDUCAT - ▁AFFLICT - ▁CONTACT - ▁CRIMSON - ▁DIVISION - ▁DISORDER - ▁COPPER - ▁SOLICIT - ▁MODERATE - ▁DRUM - ▁SWIM - ▁SALUTE - ▁ASSUME - ▁MUSCLE - ▁OVERWHELM - ▁SHAKESPEARE - ▁STRUGGLING - ▁TRANQUIL - ▁CHICKEN - ▁TREAD - ▁CLAW - ▁BIBLE - ▁RIDGE - ▁THREAT - ▁VELVET - ▁EXPOSED - ▁IDIOT - ▁BARREL - ▁PENNY - ▁TEMPTATION - ▁DANGLARS - ▁CENTURIES - ▁DISTRIBUT - ▁REJECT - ▁RETORTED - ▁CONCENTRAT - ▁CORDIAL - ▁MOTOR - ▁CANNON - KEEP - ▁WRETCH - ▁ASSURANCE - ▁THIEF - ▁SURVEY - ▁VITAL - ▁RAILWAY - ▁JACKSON - ▁CRASH - ▁GROWL - ▁COMBAT - ▁RECOLLECTION - ▁SECURITY - ▁JACOB - ▁CLUTCH - ▁BLANKET - ▁NANCY - ▁CELLAR - ▁CONVENIENT - ▁INDIGNANT - ▁COARSE - ▁WORM - ▁SCREEN - ▁TRANSPORT - ▁BULLET - ▁APPRECIATE - ▁DEVOTION - ▁INVISIBLE - ▁DRIED - ▁MIXTURE - ▁CANDID - ▁PERFORMANCE - ▁RIPE - ▁EXQUISITE - ▁BARGAIN - ▁TOBACCO - ▁LOYAL - ▁MOULD - ▁ATTENTIVE - ▁DOROTHY - ▁BRUTE - ▁ESTABLISHMENT - ▁ABILITY - ▁INHABIT - ▁OBSCURE - ▁BORROW - ▁ESSENCE - ▁DISMAY - ▁FLEE - ▁BLADE - ▁PLUCK - ▁COFFIN - ▁SUNSET - ▁STEPHEN - ▁ECONOMIC - ▁HOLIDAY - ▁MECHANICAL - ▁COTTON - ▁AWAKENED - ▁SEIZE - ▁RIDICULOUS - ▁SANCHO - ▁HESITATION - ▁CORPSE - ▁SAVING - HOLD - FOOT - ▁ELDEST - ▁DESPITE - ▁EDITH - ▁CHERISH - ▁RESISTANCE - ▁WILSON - ▁ARGUE - ▁INQUIRE - ▁APPREHENSION - ▁AVENUE - ▁DRAKE - ▁PROPOSE - HURST - ▁INFERIOR - ▁STAIRCASE - ▁WHEREFORE - ▁CARLYLE - ▁COUCH - ▁ROUTE - ▁POLITICS - ▁TOMORROW - ▁THRONG - ▁NAUGHT - ▁SUNLIGHT - ▁INDIFFERENCE - ▁OBEDIENCE - ▁RECEPTION - ▁VEGETABLE - ▁IMPERFECT - ▁RESIDENCE - ▁TURKEY - ▁VIOLET - ▁SARAH - ▁ALTAR - ▁GRIEVE - ▁JERK - ▁ENSU - ▁MAGICIAN - ▁BLOSSOM - ▁LANTERN - ▁RESOLUTE - ▁THOUGHTFULLY - ▁FORTNIGHT - ▁TRUMPET - ▁VALJEAN - ▁UNWILLING - ▁LECTURE - ▁WHEREUPON - ▁HOLLAND - ▁CHANGING - ▁CREEK - ▁SLICE - ▁NORMAL - ▁ANNIE - ▁ACCENT - ▁FREDERICK - ▁DISAGREEABLE - ▁RUBBED - ▁DUMB - ▁ESTABLISH - ▁IMPORT - ▁AFFIRM - ▁MATTHEW - ▁BRISK - ▁CONVERT - ▁BENDING - ▁IVAN - ▁MADEMOISELLE - ▁MICHAEL - ▁EASIER - ▁JONES - ▁FACING - ▁EXCELLENCY - ▁LITERARY - ▁GOSSIP - ▁DEVOUR - ▁STAGGER - ▁PENCIL - ▁AVERAGE - ▁HAMMER - ▁TRIUMPHANT - ▁PREFERRED - ▁APPLICATION - ▁OCCUPY - ▁AUTHORITIES - BURN - ▁ASCERTAIN - ▁CORRIDOR - ▁DELICIOUS - ▁PRACTISE - ▁UNIVERSE - ▁SHILLING - ▁CONTEST - ▁ASHORE - ▁COMMIT - ▁ADMINISTRATION - ▁STUDIED - ▁RIGID - ▁ADORN - ▁ELSEWHERE - ▁INNOCENCE - ▁JOURNAL - ▁LANDSCAPE - ▁TELEGRAPH - ▁ANGRILY - ▁CAMPAIGN - ▁UNJUST - ▁CHALLENGE - ▁TORRENT - ▁RELATE - ▁ASSEMBLED - ▁IMPRESSED - ▁CANOE - ▁CONCLUD - ▁QUIXOTE - ▁SATISFACTORY - ▁NIECE - ▁DEAF - ▁RAFT - ▁JIMMY - ▁GLID - ▁REGULAT - ▁CHATTER - ▁GLACIER - ▁ENVY - ▁STATUE - ▁BOSTON - ▁RICHMOND - ▁DENIED - ▁FANNY - ▁SOLOMON - ▁VULGAR - ▁STALK - ▁REPLACE - ▁SPOON - ▁BASIN - ▁FEATURE - ▁CONVICT - ▁ARCHITECT - ▁ADMIRAL - ▁RIBBON - ▁PERMANENT - ▁APRIL - ▁JOLLY - ▁NEIGHBORHOOD - ▁IMPART - BOROUGH - CAMP - ▁HORRID - ▁IMMORTAL - ▁PRUDENCE - ▁SPANIARD - ▁SUPPOSING - ▁TELEPHONE - ▁TEMPERATURE - ▁PENETRATE - ▁OYSTER - ▁APPOINTMENT - ▁EGYPTIAN - ▁DWELT - ▁NEPHEW - ▁RAILROAD - ▁SEPTEMBER - ▁DEVICE - ▁WHEAT - ▁GILBERT - ▁ELEGANT - ▁ADVERTISE - ▁RATIONAL - ▁TURTLE - ▁BROOD - ▁ASSEMBLY - ▁CULTIVATE - ▁EDITOR - ▁SPECIMEN - ▁UNDOUBTEDLY - ▁WHALE - ▁DROPPING - ▁BALLOON - ▁MEDICAL - COMB - ▁COMPOSITION - ▁FOOTSTEPS - ▁LAUNCELOT - ▁DISCOURSE - ▁ERRAND - ▁CONVERSE - ▁ADVANCING - ▁DOWNSTAIRS - ▁TUMULT - ▁CORRUPT - ▁SUFFICE - ▁ANGUISH - ▁SHAGGY - ▁RETIRE - ▁TIMBER - ▁BLAZE - ▁ABSTRACT - ▁EMBROIDER - ▁PHOTOGRAPH - ▁PROSPERITY - ▁TERRIBLY - ▁TERRITORY - ▁THRESHOLD - ▁PAVEMENT - ▁INJURED - ▁LIMP - ▁AGITATION - ▁RASCAL - ▁PRESUME - ▁OBSERVING - ▁OBSTACLE - ▁SIMPLICITY - ▁SLUMBER - ▁SUPPLIED - ▁COMBINATION - ▁DRAIN - ▁WILDERNESS - ▁BELIEVING - ▁VILLAIN - ▁RECKLESS - ▁INJURY - ▁CLAPP - ▁FRIDAY - ▁HERCULES - ▁KENNEDY - ▁SYMPTOM - ▁SLEDGE - ▁CEILING - ▁LEMON - ▁PLAGUE - ▁MONDAY - ▁CANVAS - ▁IMPATIENCE - ▁UNCOMFORTABLE - ▁ACCESS - ▁FROZEN - ▁SENATOR - ▁FRANZ - ▁SWIMMING - ▁BARRIER - ▁ADJUST - ▁COMPARISON - ▁PROCLAIM - ▁WRINKL - ▁OVERLOOK - ▁MITYA - ▁GUILT - ▁PERCEPTION - ▁PRECAUTION - ▁SPECTATOR - ▁SURPRISING - ▁DISTRACT - ▁DISDAIN - ▁BONNET - ▁MAGNET - ▁PROFESS - ▁CONFOUND - ▁NARRATIVE - ▁STRUCTURE - ▁SKETCH - ▁ULTIMATE - ▁GLOBE - ▁INSECT - FICIENCY - ▁ORCHARD - ▁AMIABLE - ▁DESCENT - ▁INDEPENDENCE - ▁MANUFACTURE - ▁SPRINKLE - ▁NIGHTINGALE - ▁CUSHION - ▁EMINENT - ▁SCOTT - ▁ARRAY - ▁COSETTE - ▁WAVING - ▁EXTRACT - ▁IRREGULAR - ▁PERSECUT - ▁DERIVED - ▁WITHDREW - ▁CAUTION - ▁SUSPICIOUS - ▁MEMORIES - ▁NOWHERE - ▁SUBTLE - ▁THOROUGH - Q - ▁APPROPRIATE - ▁SLAUGHTER - ▁YOURSELVES - ▁THUMB - ▁TWAS - ▁ABODE - ▁BIDDING - ▁CONSPICUOUS - ▁REBECCA - ▁SERGEANT - ▁APRON - ▁ANTICIPATE - ▁DISCIPLINE - ▁GLANCING - ▁PILGRIM - ▁SULLEN - ▁CONTRIBUTE - ▁PRAIRIE - ▁CARVED - ▁COMMERCE - ▁EXCLAMATION - ▁MUSCULAR - ▁NOVEMBER - ▁PHENOMENA - ▁SYMBOL - ▁UMBRELLA - ▁DIMINISH - ▁PARLOUR - ▁THREATENING - ▁STUMP - ▁EXTENSIVE - ▁PLEASING - ▁REMEMBRANCE - ▁COMBINED - ▁SHERIFF - ▁SHAFT - ▁LAURA - ▁INTERCOURSE - ▁STRICKEN - ▁SUPPLIES - ▁LANDLORD - ▁SHRINK - ▁PRICK - ▁CAESAR - ▁DRUG - ▁BEWILDERED - ▁NAUTILUS - ▁BRUTAL - ▁COMMERCIAL - ▁MAGGIE - ▁SPHERE - ▁VIRGIN - ▁BRETHREN - ▁DESTINY - ▁POLICY - ▁TERRIFIED - ▁HOUSEKEEPER - ▁CRAZY - ▁ARDENT - ▁DISCERN - ▁WRAP - ▁MARQUIS - ▁RUSSIA - MOUTH - ▁BRITAIN - ▁HARBOUR - ▁CONCERT - ▁DONKEY - ▁DAMAGE - ▁SLIM - ABOUT - ▁LUXURY - ▁MONSTROUS - ▁TENDENCY - ▁PARADISE - ▁CULTURE - ▁JULIUS - ▁RAOUL - ▁REMEDY - ▁DECAY - ▁SCOLD - ▁SPLIT - ▁ASSAULT - ▁DECEMBER - ▁MOSCOW - ▁EXPLORE - ▁TROUSERS - ▁WRIST - PIECE - ▁MUSKET - ▁VALENTINE - ▁TYRANT - ▁ABRAHAM - ▁MEDIUM - ▁ARTIFICIAL - ▁FACULTY - ▁OBLIGATION - ▁RESEMBLANCE - ▁INQUIRIES - ▁DETAIN - ▁SWARM - ▁PLEDGE - ▁ADMIRABLE - ▁DEFECT - ▁SUPERINTEND - ▁PATRIOT - ▁CLUNG - ▁DISMAL - ▁RECIT - ▁IGNOR - ▁AMELIA - ▁JUSTIFY - ▁ELEPHANT - ▁ESTIMATE - ▁KNELT - ▁SERVING - ▁WHIM - ▁SHRILL - ▁STUDIO - ▁TEXT - ▁ALEXANDER - ▁WROUGHT - ▁ABUNDANT - ▁SITUATED - ▁REGAIN - ▁FIERY - ▁SNEER - ▁SWEAT - ▁GLARE - ▁NIGH - ▁ESCORT - ▁INEVITABLE - ▁PSMITH - ▁RELUCTANT - ▁PRECEDING - ▁RESORT - ▁OUTRAGE - ▁AMBASSADOR - ▁CONSOLATION - ▁RECOGNITION - ▁REMORSE - ▁BEHALF - ▁FORMIDABLE - ▁GRAVITY - ▁DIVIDE - ▁CONFRONT - ▁GIGANTIC - ▁OCTOBER - ▁FLANK - ▁SLEW - ▁CLARA - ▁FILM - ▁BULK - ▁POMP - ▁ELEANOR - ▁EMPHASIS - ▁JAPANESE - ▁CAVALRY - ▁EXCLUSIVE - ▁PERFUME - ▁BRONZE - ▁FEDERAL - ▁LIQUID - ▁RUBBING - ▁OVEN - DOLPH - ▁CONVULS - ▁DEPRIVED - ▁RESPONSIBILITY - ▁SIGNIFICANT - ▁WAISTCOAT - ▁CLUSTER - ▁MARTHA - ▁REVERSE - ▁ATTORNEY - ▁DROOP - ▁SKILFUL - ▁HABITUAL - ▁PUMP - ▁INTERVEN - ▁OWL - ▁CONJECTURE - ▁FANTASTIC - ▁RESPONSIBLE - ▁DESTINED - ▁DOCUMENT - ▁THEREUPON - ▁GODDESS - ▁PACIFIC - ▁WARRANT - ▁COSTUME - ▁BRIDLE - ▁CALIFORNIA - ▁DEMOCRATIC - ▁EUSTACE - ▁SQUIRREL - ▁UNCOMMON - ▁MARVELLOUS - ▁PLOUGH - ▁TRAGEDY - ▁VAULT - ▁HESITATE - ▁REFRAIN - ▁ADMIRING - ▁CORPORAL - ▁ENTITLED - ▁SHREWD - ▁SQUEEZ - ▁ACCURATE - ▁TEMPEST - ▁MONUMENT - ▁SIEGE - ▁CHINESE - ▁RAVEN - ▁LOUNG - ▁ASSASSIN - ▁INFLICT - ▁AGITATED - ▁DESIRABLE - ▁EARLIEST - ▁LAUNCH - ▁PILOT - ▁PULSE - ▁MUTE - LEIGH - ▁LIQUOR - ▁SCARECROW - ▁SKULL - ▁DESOLATE - ▁SUBLIME - ▁SERENE - ▁RECESS - ▁WAKING - ▁CHARLOTTE - ▁CIRCULAR - ▁INJUSTICE - ▁PINOCCHIO - ▁PRISCILLA - ▁THYSELF - ▁OCCURRENCE - ▁CASUAL - ▁FRANTIC - ▁LEGEND - ▁FERTIL - ▁BACKGROUND - ▁DELICACY - ▁ESTRALLA - ▁MANUSCRIPT - ▁RESPONSE - ▁UNIVERSITY - ▁WOLVES - ▁SCANDAL - ▁STUMBLE - ▁HOARSE - ▁BODILY - ▁CONVENT - ▁EXAMINING - ▁INCAPABLE - ▁PERCEIVING - ▁PHILADELPHIA - ▁SUBSEQUENT - ▁THIEVES - ▁ACCUMULAT - ▁DAMSEL - ▁SCOTCH - ▁UNDERNEATH - ▁NOBILITY - ▁SMASH - ▁REVOLT - ▁ENGAGE - ▁CATHEDRAL - ▁CHAMPION - ▁DESPATCH - ▁ETERNITY - ▁JANUARY - ▁PLEADED - ▁PROBABILITY - ▁JIMMIE - ▁PARALLEL - ▁FISHERMAN - ▁JERRY - ▁SWORE - ▁DRAUGHT - ▁OPPONENT - ▁PRIMITIVE - ▁SIGNIFICANCE - ▁SUBSTANTIAL - ▁AMAZED - ▁DUNBAR - ▁COMMEND - ▁CONTEMPLATE - ▁TESTIMONY - ▁IMPERIAL - ▁ADAPT - ▁JUICE - ▁CALAMIT - CULAR - ▁CHATEAU - ▁PHOENIX - ▁PRUDENT - ▁SOLUTION - ▁VILLEFORT - ▁REACTION - ▁RELAX - ▁YU - ▁PROHIBIT - ▁DISTRUST - ▁PLUNDER - ▁WELFARE - ▁NAVIGAT - ▁PARLOR - ▁LAZY - ▁DETACH - OMETER - ▁PRIV - ▁DISCOURAGE - ▁OBSTINATE - ▁REJOICING - ▁SERMON - ▁VEHICLE - ▁FANCIES - ▁ENLIGHTEN - ▁ACUTE - ▁ILLUSION - ▁ANTHEA - ▁MARTIAN - ▁EXCITE - ▁GENEROSITY - OLOGIST - ▁AMAZING - ▁UNWORTHY - ▁INTERNAL - ▁INCENSE - ▁VIBRAT - ▁ADHERE - ROACH - ▁FEBRUARY - ▁MEXICAN - ▁POTATOES - ▁INCESSANT - ▁INTERPOSED - ▁PARCEL - ▁VEXED - ▁PROMOTE - MIDST - ▁ARISTOCRAT - ▁CYRIL - ▁EMBARK - ▁ABUNDANCE - ▁LITERALLY - ▁SURGEON - ▁TERRACE - ▁ATLANTIC - ▁MARTYR - ▁SPECK - ▁SENATE - ▁LOAF - ▁ADMINISTER - ▁APPREHEND - ▁SUBDUED - ▁TEMPORARY - ▁DOMINION - ▁ELABORATE - ▁DIGNIFIED - ▁ELIZA - ▁SPLASH - ▁CONSEIL - ▁DEXTER - ▁UNSEEN - ▁TRAGIC - VOCATION - ▁GRATIFY - ▁BACHELOR - ▁DEFENSE - ▁EXCURSION - ▁FACULTIES - ▁PROPRIETOR - ▁SYMPATHETIC - ▁UNNECESSARY - ▁RADIANT - ▁VACANT - ▁OUNCE - ▁SCREW - ▁PHENOMENON - ▁PROMINENT - ▁WORRIED - ▁STUDIES - ▁CLIMATE - ▁KEITH - ▁ARAMIS - ▁BLISS - ▁CONTINUAL - ▁SURPASS - ▁HEBREW - ▁IDENTITY - ▁PROVOKE - ▁TEMPERAMENT - ▁CHARIOT - ▁HARBOR - ▁NINTH - ▁PRIOR - ▁DESIROUS - ▁JERUSALEM - ▁UNDERTAKING - ▁EDISON - ▁MIRTH - ▁SCOUT - ▁APPARATUS - ▁ILLUSTRATION - ▁INTELLIGIBLE - ▁INVARIABLY - ▁PIERCED - ▁REVIEW - ▁FLICKER - ▁HAZARD - ▁REVELATION - ▁DIXON - ▁EXCITING - ▁GOSPEL - ▁CONSTANCE - ▁OVERTAKE - ▁GUINEA - ▁ALADDIN - ▁CHICAGO - ▁TULLIVER - ▁HAMILTON - ▁GARRISON - ▁DISCIPLE - ▁INTENSITY - ▁TRAITOR - ▁CHANCELLOR - ▁PROVERB - ▁DAGGER - ▁FORESEE - ▁CONFIDE - ▁GLIMMER - ▁CHAUVELIN - ▁ILLUSTRATE - ▁VOLUNTEER - ▁JUNGLE - ▁STREAK - ▁SUNRISE - ▁DISSOLV - ▁QUEST - ▁AWHILE - ▁FELICITY - ▁LEGISLATURE - ▁LEONORA - ▁MAGAZINE - ▁PITIFUL - ▁COLONY - ▁SHAWL - ▁ARRIVING - ▁FUNDAMENTAL - ▁CARPENTER - ▁OVERFLOW - ▁EXPAND - ▁HARVEST - ▁FEMININE - ▁INNUMERABLE - ▁SCRAMBLE - ▁TWENTIETH - ▁TRIFLING - ▁GHASTL - ▁CONQUEST - ▁DANIEL - ▁FACILIT - ▁FORSAKE - ▁BEHAVIOUR - ▁GORGEOUS - ▁PRODUCING - ▁HAPPIER - ▁PROMISING - ▁RAINBOW - ▁INSTINCTIVELY - ▁DECREE - ▁EYEBROWS - ▁IRRESISTIBLE - ▁PHARAOH - ▁SCROOGE - ▁UNNATURAL - ▁CRUMBS - ▁REFINED - ▁DREARY - ▁TRENCH - ▁CONVINCE - ▁FRINGE - ▁EXTREMITY - ▁INTIMACY - ▁SCOUNDREL - ▁SUFFRAGE - ▁UNEASINESS - ▁BARRICADE - ▁CIRCULAT - ▁SAMUEL - ▁BRUCE - ▁DARCY - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true joint_net_conf: joint_space_size: 640 model_conf: ctc_weight: 0.0 report_cer: true report_wer: true use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram5000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: n_fft: 512 hop_length: 160 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_en_bpe5000_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} decoder: transducer decoder_conf: rnn_type: lstm num_layers: 1 hidden_size: 512 dropout: 0.1 dropout_embed: 0.1 required: - output_dir - token_list version: 0.10.7a1 distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
jhonparra18/wav2vec2-large-xls-r-300m-guarani-small
jhonparra18
2022-04-27T14:42:06Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "dataset:common_voice", "dataset:gn", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - common_voice - gn model-index: - name: wav2vec2-large-xls-r-300m-guarani-small results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-guarani-small This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4964 - Wer: 0.5957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 6.65 | 100 | 1.1326 | 1.0 | | 1.6569 | 13.32 | 200 | 0.5264 | 0.6478 | | 1.6569 | 19.97 | 300 | 0.5370 | 0.6261 | | 0.2293 | 26.65 | 400 | 0.4964 | 0.5957 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
tartuNLP/mtee-legal
tartuNLP
2022-04-27T14:10:34Z
0
0
fairseq
[ "fairseq", "translation", "modularNMT", "MTee", "legal", "et", "en", "de", "ru", "region:us" ]
translation
2022-03-30T12:28:26Z
--- language: - et - en - de - ru tags: - translation - modularNMT - fairseq - MTee - legal inference: false --- # MTee translation model for legal domain A legal domain translation model for the MTee machine translation platform. The platform was developed in 2021 as a collaboration between the [TartuNLP](https://tartunlp.ai), the NLP research group at the University of Tartu, and [Tilde](https://tilde.com). More information about the project can be found [here](https://github.com/Project-MTee/mtee-platform/wiki). The model uses a modular architecture, where each language has its own encoder and decoder that is used for all translation directions. The model can be used with our custom version of [FairSeq](https://github.com/TartuNLP/fairseq) and it is compatible with the [MTee](https://github.com/Project-MTee) platform and its [NMT workers](https://github.com/Project-MTee/translation-worker). Additionally, it is fully compatible with TartuNLP's translation API components ([API](https://github.com/TartuNLP/translation-api) and [NMT workers](https://github.com/TartuNLP/translation-worker)). Supported translation directions: `et-en`, `en-et`, `et-de`, `de-et`, `et-ru`, `ru-et`. | Included files: | | | ----------- | ----------- | | Fairseq translation model | `modular_model.pt` | | SentecePiece models | `sp-model.{lang}.model` | | translation model vocabularies | `dict.{lang}.txt` |
tartuNLP/mtee-crisis
tartuNLP
2022-04-27T14:10:07Z
0
0
fairseq
[ "fairseq", "translation", "modularNMT", "MTee", "crisis", "et", "en", "de", "ru", "region:us" ]
translation
2022-03-30T12:29:04Z
--- language: - et - en - de - ru tags: - translation - modularNMT - fairseq - MTee - crisis inference: false --- # MTee translation model for crisis domain A crisis (mostly healthcare-related) domain translation model for the MTee machine translation platform. The platform was developed in 2021 as a collaboration between the [TartuNLP](https://tartunlp.ai), the NLP research group at the University of Tartu, and [Tilde](https://tilde.com). More information about the project can be found [here](https://github.com/Project-MTee/mtee-platform/wiki). The model uses a modular architecture, where each language has its own encoder and decoder that is used for all translation directions. The model can be used with our custom version of [FairSeq](https://github.com/TartuNLP/fairseq) and it is compatible with the [MTee](https://github.com/Project-MTee) platform and its [NMT workers](https://github.com/Project-MTee/translation-worker). Additionally, it is fully compatible with TartuNLP's translation API components ([API](https://github.com/TartuNLP/translation-api) and [NMT workers](https://github.com/TartuNLP/translation-worker)). Supported translation directions: `et-en`, `en-et`, `et-de`, `de-et`, `et-ru`, `ru-et`. | Included files: | | | ----------- | ----------- | | Fairseq translation model | `modular_model.pt` | | SentecePiece models | `sp-model.{lang}.model` | | translation model vocabularies | `dict.{lang}.txt` |
fxmarty/resnet-tiny-mnist
fxmarty
2022-04-27T09:27:58Z
1,412
5
transformers
[ "transformers", "pytorch", "resnet", "image-classification", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-04-27T09:15:31Z
--- license: gpl-3.0 --- A small Resnet model for MNIST. Achieves 0.985 accuracy on the validation set.
chainyo/DocuGAN
chainyo
2022-04-27T08:40:51Z
0
2
pytorch
[ "pytorch", "gan", "sngan", "huggan", "unconditional-image-generation", "dataset:ChainYo/rvl-cdip-invoice", "license:mit", "region:us" ]
unconditional-image-generation
2022-04-15T13:33:21Z
--- license: mit library_name: pytorch tags: - gan - sngan - huggan - unconditional-image-generation datasets: - ChainYo/rvl-cdip-invoice --- ## Model description SN-GAN implementation with PyTorch-Lightning to generate Documents. ## Generated samples <img src="https://raw.githubusercontent.com/ChainYo/docugan/master/documents_samples.png" width="400" height="1200"> Project repository: [DocuGAN](https://github.com/ChainYo/docugan). ## Usage You can see the tool to generate document on HuggingFace by trying the [space demo](https://huggingface.co/spaces/ChainYo/DocuGAN). ## Training data For training, I used the invoices subpart of `RVL-CDIP` dataset. Find the full dataset [here](https://huggingface.co/datasets/ChainYo/rvl-cdip)
ToToKr/wav2vec2-base-timit-demo-colab
ToToKr
2022-04-27T07:50:31Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-21T02:09:41Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4520 - Wer: 0.2286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3811 | 4.0 | 500 | 1.1887 | 0.8528 | | 0.5798 | 8.0 | 1000 | 0.4544 | 0.3357 | | 0.2197 | 12.0 | 1500 | 0.4424 | 0.2699 | | 0.1279 | 16.0 | 2000 | 0.4388 | 0.2559 | | 0.0855 | 20.0 | 2500 | 0.4572 | 0.2450 | | 0.062 | 24.0 | 3000 | 0.4385 | 0.2353 | | 0.0469 | 28.0 | 3500 | 0.4520 | 0.2286 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
ml6team/mt5-small-german-query-generation
ml6team
2022-04-27T06:24:37Z
82
2
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "query-generation", "de", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-26T13:51:02Z
--- language: - de tags: - pytorch - query-generation widget: - text: "Das Lama (Lama glama) ist eine Art der Kamele. Es ist in den südamerikanischen Anden verbreitet und eine vom Guanako abstammende Haustierform." example_title: "Article 1" license: apache-2.0 metrics: - Rouge-Score --- # mt5-small-german-query-generation ## Model description: This model was created with the purpose to generate possible queries for a german input article. For this model, we finetuned a multilingual T5 model [mt5-small](https://huggingface.co/google/mt5-small) on the [MMARCO dataset](https://huggingface.co/datasets/unicamp-dl/mmarco) the machine translated version of the MS MARCO dataset. The model was trained for 1 epoch, on 200,000 unique queries of the dataset. We trained the model on one K80 GPU for 25,000 iterations with following parameters: - learning rate: 1e-3 - train batch size: 8 - max input sequence length: 512 - max target sequence length: 64 ## Model Performance: Model evaluation was done on 2000 evaluation paragraphs of the dataset. Mean [f1 ROUGE scores](https://github.com/pltrdy/rouge) were calculated for the model. | Rouge-1 | Rouge-2 | Rouge-L | |---|---|---| |0.162 | 0.052 | 0.161 |
0x12/t5small-opus_infopankki-en-zh
0x12
2022-04-27T06:23:53Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:opus_infopankki", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-27T05:07:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus_infopankki model-index: - name: t5small-opus_infopankki-en-zh results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5small-opus_infopankki-en-zh This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the opus_infopankki dataset. It achieves the following results on the evaluation set: - Loss: 2.0385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.0853 | 1.0 | 1496 | 2.7074 | | 2.8378 | 2.0 | 2992 | 2.5717 | | 2.7637 | 3.0 | 4488 | 2.4829 | | 2.6622 | 4.0 | 5984 | 2.4156 | | 2.5986 | 5.0 | 7480 | 2.3649 | | 2.5488 | 6.0 | 8976 | 2.3184 | | 2.486 | 7.0 | 10472 | 2.2808 | | 2.4566 | 8.0 | 11968 | 2.2485 | | 2.4413 | 9.0 | 13464 | 2.2181 | | 2.3806 | 10.0 | 14960 | 2.1939 | | 2.3741 | 11.0 | 16456 | 2.1711 | | 2.3419 | 12.0 | 17952 | 2.1511 | | 2.3197 | 13.0 | 19448 | 2.1318 | | 2.3229 | 14.0 | 20944 | 2.1170 | | 2.2885 | 15.0 | 22440 | 2.1032 | | 2.2781 | 16.0 | 23936 | 2.0908 | | 2.2447 | 17.0 | 25432 | 2.0792 | | 2.2589 | 18.0 | 26928 | 2.0695 | | 2.2274 | 19.0 | 28424 | 2.0611 | | 2.2311 | 20.0 | 29920 | 2.0538 | | 2.2263 | 21.0 | 31416 | 2.0482 | | 2.2066 | 22.0 | 32912 | 2.0443 | | 2.2042 | 23.0 | 34408 | 2.0413 | | 2.211 | 24.0 | 35904 | 2.0390 | | 2.1952 | 25.0 | 37400 | 2.0385 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
ITESM/fastai_model
ITESM
2022-04-27T03:48:56Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-03-23T00:35:15Z
--- tags: - fastai --- # Amazing! Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (template below and [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using the 🤗Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join our fastai community on the Hugging Face Discord! Greetings fellow fastlearner 🤝! --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
ceciliamacias/prueba
ceciliamacias
2022-04-27T02:20:08Z
0
0
null
[ "region:us" ]
null
2022-04-27T01:32:02Z
## Identificación de retinopatías El Propósito del siguiente trabajo es identificar los pacientes que tienen complicaciones diabéticas, como lo son la neuropatía, nefropatía y retinopatía de notas médicas. Es el trabajo final del curso Clinical Natural Language Processing impartido en Coursera. Las notas medicas se encuentran en el siguiente linklink para su entrenamiento del modelo: https://raw.githubusercontent.com/hhsieh2416/Identify_Diabetic_Complications/main/data/diabetes_notes.csv Y los datos para su validación se encuentran en el siguiente link: https://raw.githubusercontent.com/hhsieh2416/Identify_Diabetic_Complications/main/data/glodstandrad.csv En primera instancia, se crea el siguiente código para ignorar los warnings: ```python import warnings warnings.filterwarnings("ignore", 'This pattern has match groups') datos = "https://raw.githubusercontent.com/hhsieh2416/Identify_Diabetic_Complications/main/data/diabetes_notes.csv" df = pd.read_csv(datos) # Importando las paqueterías necesarias: import pandas as pd import matplotlib.pyplot as plt import re import numpy as np from sklearn.metrics import confusion_matrix, classification_report # Lectura de datos datos = "https://raw.githubusercontent.com/hhsieh2416/Identify_Diabetic_Complications/main/data/diabetes_notes.csv" df = pd.read_csv(datos) # Análisis grafico de los datos fig, ax = plt.subplots() ax.bar(df['NOTE_ID'],df['TEXT'].str.split().apply(len)) # Cantidad de palabras por reporte de cada paciente identificado por un id conteo = df['TEXT'].str.split().apply(len).tolist() print('Media de palabras: ' + str(np.mean(conteo))) print('Mediana de palabras: ' + str(np.median(conteo))) print('Minimo de palabras: ' + str(np.min(conteo))) print('Maximo de palabras: ' + str(np.max(conteo))) def reporte_paciente(id): resumen = re.findall(r"\w+", str(df[df.NOTE_ID == id]['TEXT'].tolist() )) return resumen # print(reporte_paciente(1)) ``` Ahora bien, se genera una función la cual recibe nuestro DataFrame con las notas médicas, la palabra a buscar y el tamaño de la ventana ## Función sin expresiones regulares ```python def extract_text_window(df, word, window_size, column_name = "TEXT"): #Constants user_input = f'({word})' regex = re.compile(user_input) negative = f'(no history of {word}|No history of {word}|any comorbid complications|family history|father also has {word}|denies {word}|Negative for {word})' regex_negative = re.compile(negative) half_window_size = window_size final_df = pd.DataFrame([]) column_position = df.columns.get_loc(column_name) + 1 #We add 1 cause position 0 is the index #Loop for each row of the column for row in df.itertuples(): #Loop for multiple matches in the same row for match in regex.finditer(row[column_position]): window_start = int([match.start()-half_window_size if match.start()>=half_window_size else 0][0]) window_end = int([match.end() + half_window_size if match.end()+half_window_size <= len(row[column_position]) else len(row[column_position])][0]) final_df = final_df.append({ "WORD": match.group(), "START_INDEX": match.start(), "WINDOW_START": window_start, "WINDOW_END": window_end, "CONTEXT": row[column_position][window_start:window_end], "FULL_TEXT": row[column_position], "NOTE_ID": row[1]}, ignore_index=True) #Extracción de negativos for match in regex_negative.finditer(row[column_position]): final_df2 = final_df[final_df["CONTEXT"].str.contains(pat = regex_negative, regex = True)==False] return "No matches for the pattern" if len(final_df) == 0 else final_df2 # Buscando diabet en las notas médicas df = pd.read_csv("https://raw.githubusercontent.com/hhsieh2416/Identify_Diabetic_Complications/main/data/diabetes_notes.csv") word = "diabet" window_size = 50 #tamaño de la ventana diabetes_notes_window = extract_text_window(df,word,window_size) diabetes_notes_window ``` Se crea una segunda función la cual recibe nuestro DataFrame con nuestras notas médicas, nuestra expresión regular para la palabra a buscar, expresión regular para las expresiones como "historial familiar, no tiene historial de diabetes, no se ha identificado diabetes" entre otras y el tamaño de la ventana al rededor de la palabra a buscar. ## Función con expresiones regulares ```python def extract_text_window_pro(df, pattern,negatives, window_size, column_name = "TEXT"): #Constants half_window_size = window_size final_df = pd.DataFrame([]) column_position = df.columns.get_loc(column_name) + 1 #We add 1 cause position 0 is the index #Loop for each row of the column for row in df.itertuples(): #Loop for multiple matches in the same row for match in re.finditer(pattern,row[column_position]): window_start = int([match.start()-half_window_size if match.start()>=half_window_size else 0][0]) window_end = int([match.end() + half_window_size if match.end()+half_window_size <= len(row[column_position]) else len(row[column_position])][0]) final_df = final_df.append({ "WORD": match.group(), "START_INDEX": match.start(), "WINDOW_START": window_start, "WINDOW_END": window_end, "CONTEXT": row[column_position][window_start:window_end], "FULL_TEXT": row[column_position], "NOTE_ID": row[1]}, ignore_index=True) #Extracción de negativos final_df2 = final_df[final_df["CONTEXT"].str.contains(pat = negatives, regex = True)==False] return "No matches for the pattern" if len(final_df) == 0 else final_df2 # Buscando diabet en las notas médicas df = pd.read_csv("https://raw.githubusercontent.com/hhsieh2416/Identify_Diabetic_Complications/main/data/diabetes_notes.csv") pattern = "diabetes|diabetic" #"(?<![a-zA-Z])diabet(es|ic)?(?![a-zA-Z])" window_size = 50 negatives = r"no history of (?<![a-zA-Z])diabet(es|ic)?(?![a-zA-z])|No history of (?<![a-zA-Z])diabet(es|ic)?(?![a-zA-z])|den(ies|y)? any comorbid complications|family history|negative for (?<![a-zA-Z])diabet(es|ic)?(?![a-zA-z])|(father|mother) (also)? (?<![a-zA-Z])diabet(es|ic)?(?![a-zA-z])|Negative for (?<![a-zA-Z])diabet(es|ic)?(?![a-zA-z]) |no weakness, numbness or tingling|patient's mother and father|father also has diabetes" diabetes_notes_window = extract_text_window_pro(df,pattern,negatives,window_size) diabetes_notes_window ``` Ahora bien, es momento de obtiene mediante la función con expresiones regulares los DataFrame para neuropathy, nephropathy y retinopathy. ```python diabetes_notes_window.drop_duplicates(subset=["NOTE_ID"]) neuropathy = diabetes_notes_window[diabetes_notes_window['CONTEXT'].str.contains(pat=r"(?<![a-zA-Z])neuropath(y|ic)?(?![a-zA-z])|diabetic nerve pain|tingling",regex=True)] neuropathy['COMPLICATIONS'] = "neuropathy" diabetes_notes_neuropathy = neuropathy[['NOTE_ID','CONTEXT','COMPLICATIONS']].drop_duplicates(subset=['NOTE_ID']) print(diabetes_notes_neuropathy) print(diabetes_notes_neuropathy.count()) nephropathy = diabetes_notes_window[diabetes_notes_window['CONTEXT'].str.contains(pat=r"(?<![a-zA-Z])nephropathy(?![a-zA-z])|renal (insufficiency|disease)",regex=True)] nephropathy['COMPLICATIONS'] = "nephropathy" diabetes_notes_nephropathy = nephropathy[['NOTE_ID','CONTEXT','COMPLICATIONS']].drop_duplicates(subset=['NOTE_ID']) print(diabetes_notes_nephropathy) print(diabetes_notes_nephropathy.count()) retinopathy = diabetes_notes_window[diabetes_notes_window['CONTEXT'].str.contains(pat=r"(?<![a-zA-Z])retinopath(y|ic)?(?![a-zA-z])",regex=True)] retinopathy['COMPLICATIONS'] = "retinopathy" diabetes_notes_retinopathy = retinopathy[['NOTE_ID','CONTEXT','COMPLICATIONS']].drop_duplicates(subset=['NOTE_ID']) print(diabetes_notes_retinopathy) print(diabetes_notes_retinopathy.count()) ``` Para validar que nuestras funciones estén obteniendo bien la información de hace el uso del segundo link el cual se nos fue proporcionado para la validación de estas notas médicas. ```python # Con el link antes mencionado de validación se crean los DataFrame para cada patología datos_verificacion = pd.read_csv("https://raw.githubusercontent.com/hhsieh2416/Identify_Diabetic_Complications/main/data/glodstandrad.csv") datos_verificacion_neuropathy = datos_verificacion[datos_verificacion['DIABETIC_NEUROPATHY']==1][['NOTE_ID','DIABETIC_NEUROPATHY']] print(datos_verificacion_neuropathy) print(datos_verificacion_neuropathy.count()) datos_verificacion_nephropathy = datos_verificacion[datos_verificacion['DIABETIC_NEPHROPATHY']==1][['NOTE_ID','DIABETIC_NEPHROPATHY']] print(datos_verificacion_nephropathy) print(datos_verificacion_nephropathy.count()) datos_verificacion_retinopathy = datos_verificacion[datos_verificacion['DIABETIC_RETINOPATHY']==1][['NOTE_ID','DIABETIC_RETINOPATHY']] print(datos_verificacion_retinopathy) print(datos_verificacion_retinopathy.count()) # Realizamos joins de nuestros DataFrame con las tablas de validación ver_neuro = pd.merge(datos_verificacion_neuropathy, diabetes_notes_neuropathy, how = 'outer', on = 'NOTE_ID', indicator=True) print(ver_neuro) ver_nephro = pd.merge(datos_verificacion_nephropathy, diabetes_notes_nephropathy, how = 'outer', on = 'NOTE_ID', indicator=True) print(ver_nephro) ver_retino = pd.merge(datos_verificacion_retinopathy, diabetes_notes_retinopathy, how = 'outer', on = 'NOTE_ID', indicator=True) print(ver_retino) # Se realizan los conteos conteo_na_neuro_falso_positivo = ver_neuro['DIABETIC_NEUROPATHY'].isna().sum() conteo_na_nephro_falso_positivo = ver_nephro['DIABETIC_NEPHROPATHY'].isna().sum() conteo_na_retino_falso_positivo = ver_retino['DIABETIC_RETINOPATHY'].isna().sum() print('Pacientes sin complicaciones pero que si se identifican: ', conteo_na_neuro_falso_positivo+conteo_na_nephro_falso_positivo+conteo_na_retino_falso_positivo) conteo_na_neuro_falso_negativo = ver_neuro['COMPLICATIONS'].isna().sum() conteo_na_nephro_falso_negativo = ver_nephro['COMPLICATIONS'].isna().sum() conteo_na_retino_falso_negativo = ver_retino['COMPLICATIONS'].isna().sum() print('Pacientes con complicaciones que no fueron detectados: ', conteo_na_neuro_falso_negativo + conteo_na_nephro_falso_negativo + conteo_na_retino_falso_negativo) conteo_correcto_neuro = len(ver_neuro[ver_neuro['_merge'] == 'both']) conteo_correcto_nephro = len(ver_nephro[ver_nephro['_merge'] == 'both']) conteo_correcto_retino = len(ver_retino[ver_retino['_merge'] == 'both']) print('Pacientes que tienen complicaciones diabetes que si se encontaron: ', conteo_correcto_nephro+conteo_correcto_neuro+conteo_correcto_retino) conteo_complicacion_neuro = len( ver_neuro[ver_neuro['DIABETIC_NEUROPATHY'] == 1] ) conteo_complicacion_nephro = len( ver_nephro[ver_nephro['DIABETIC_NEPHROPATHY'] == 1] ) conteo_complicacion_retino = len( ver_retino[ver_retino['DIABETIC_RETINOPATHY'] == 1] ) print('Pacientes que tienen complicaciones diabeticas: ', conteo_complicacion_neuro +conteo_complicacion_nephro + conteo_complicacion_retino ) cor_neuro = datos_verificacion[['NOTE_ID', 'DIABETIC_NEUROPATHY']].merge(diabetes_notes_neuropathy[['NOTE_ID','COMPLICATIONS']], how='outer', on='NOTE_ID', indicator=True ) cor_neuro['COMPLICATIONS'] = cor_neuro['COMPLICATIONS'].map(d_neuro).fillna(0) print('---NEUROPATHY---') print(cor_neuro) print(classification_report(cor_neuro['DIABETIC_NEUROPATHY'].tolist(), cor_neuro['COMPLICATIONS'].tolist())) cor_nephro = datos_verificacion[['NOTE_ID', 'DIABETIC_NEPHROPATHY']].merge(diabetes_notes_nephropathy[['NOTE_ID','COMPLICATIONS']], how='outer', on='NOTE_ID', indicator=True ) cor_nephro['COMPLICATIONS'] = cor_nephro['COMPLICATIONS'].map(d_nephro).fillna(0) print('---NEPHROPATHY---') print(cor_nephro) print(classification_report(cor_nephro['DIABETIC_NEPHROPATHY'].tolist(), cor_nephro['COMPLICATIONS'].tolist())) cor_retino = datos_verificacion[['NOTE_ID', 'DIABETIC_RETINOPATHY']].merge(diabetes_notes_retinopathy[['NOTE_ID','COMPLICATIONS']], how='outer', on='NOTE_ID', indicator=True ) cor_retino['COMPLICATIONS'] = cor_retino['COMPLICATIONS'].map(d_retino).fillna(0) print('---RETINOPATHY---') print(cor_retino) print(classification_report(cor_retino['DIABETIC_RETINOPATHY'].tolist(), cor_retino['COMPLICATIONS'].tolist())) ```
nizamudma/t5-small-finetuned-cnn-2
nizamudma
2022-04-26T22:05:50Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-25T21:21:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnn-2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.5085 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnn-2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.6620 - Rouge1: 24.5085 - Rouge2: 11.7925 - Rougel: 20.2631 - Rougelsum: 23.1253 - Gen Len: 18.9996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.8435 | 1.0 | 35890 | 1.6753 | 24.5387 | 11.7851 | 20.2792 | 23.1595 | 18.999 | | 1.8143 | 2.0 | 71780 | 1.6660 | 24.5268 | 11.7976 | 20.2699 | 23.1384 | 18.9996 | | 1.816 | 3.0 | 107670 | 1.6620 | 24.5085 | 11.7925 | 20.2631 | 23.1253 | 18.9996 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
caush/Clickbait2
caush
2022-04-26T21:15:28Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-26T19:11:53Z
--- tags: - generated_from_trainer model-index: - name: Clickbait2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Clickbait2 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.05 | 50 | 0.0213 | | No log | 0.09 | 100 | 0.0213 | | No log | 0.14 | 150 | 0.0213 | | No log | 0.18 | 200 | 0.0216 | | No log | 0.23 | 250 | 0.0214 | | No log | 0.27 | 300 | 0.0212 | | No log | 0.32 | 350 | 0.0214 | | No log | 0.36 | 400 | 0.0212 | | No log | 0.41 | 450 | 0.0218 | | 0.0219 | 0.46 | 500 | 0.0219 | | 0.0219 | 0.5 | 550 | 0.0214 | | 0.0219 | 0.55 | 600 | 0.0216 | | 0.0219 | 0.59 | 650 | 0.0217 | | 0.0219 | 0.64 | 700 | 0.0214 | | 0.0219 | 0.68 | 750 | 0.0214 | | 0.0219 | 0.73 | 800 | 0.0214 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0a0+17540c5 - Datasets 2.1.0 - Tokenizers 0.12.1
Amrendra/roberta-tapt-acl-arc
Amrendra
2022-04-26T18:28:54Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-26T18:09:56Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-tapt-acl-arc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-tapt-acl-arc This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 89 | 2.6476 | | No log | 2.0 | 178 | 2.7191 | | No log | 3.0 | 267 | 2.4195 | | No log | 4.0 | 356 | 2.4680 | | No log | 5.0 | 445 | 2.3363 | | 2.5791 | 6.0 | 534 | 2.1846 | | 2.5791 | 7.0 | 623 | 2.0593 | | 2.5791 | 8.0 | 712 | 1.9373 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
BSlinky/finetuning-sentiment-model-3000-samples
BSlinky
2022-04-26T16:01:00Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-25T14:51:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
hbruce11216/distilbert-base-uncased-finetuned-imdb
hbruce11216
2022-04-26T13:56:22Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-26T13:50:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4897 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Nithiwat/fake-news-debunker
Nithiwat
2022-04-26T13:53:36Z
4
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-25T15:55:54Z
--- tags: autotrain language: en widget: - text: "Bill Gates wants to use mass Covid-19 vaccination campaign to implant microchips to track people" datasets: - Fake and real news datasets by CLÉMENT BISAILLON co2_eq_emissions: 4.415122243239347 --- # Model Trained Using AutoTrain - Problem: Fake News Classification - Problem type: Binary Classification - Model ID: 785124234 - CO2 Emissions (in grams): 4.415122243239347 ## Validation Metrics - Loss: 0.00012586714001372457 - Accuracy: 0.9998886538247411 - Precision: 1.0 - Recall: 0.9997665732959851 - AUC: 0.9999999999999999 - F1: 0.999883273024396 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Nithiwat/autotrain-fake-news-classifier-785124234 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Nithiwat/autotrain-fake-news-classifier-785124234", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Nithiwat/autotrain-fake-news-classifier-785124234", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Alassea/reviews-generator
Alassea
2022-04-26T12:59:27Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-26T12:36:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: reviews-generator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reviews-generator This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 3.4989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7955 | 0.08 | 500 | 3.5578 | | 3.7486 | 0.16 | 1000 | 3.4989 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Caroline-Vandyck/reviews-generator
Caroline-Vandyck
2022-04-26T12:58:01Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-26T12:34:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: reviews-generator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reviews-generator This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 3.4990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7955 | 0.08 | 500 | 3.5577 | | 3.7495 | 0.16 | 1000 | 3.4990 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
corvusMidnight/glue_sst_classifier_
corvusMidnight
2022-04-26T12:55:11Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-26T12:31:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - f1 - accuracy model-index: - name: glue_sst_classifier_ results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: F1 type: f1 value: 0.9033707865168539 - name: Accuracy type: accuracy value: 0.9013761467889908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue_sst_classifier_ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2359 - F1: 0.9034 - Accuracy: 0.9014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.3653 | 0.19 | 100 | 0.3213 | 0.8717 | 0.8727 | | 0.291 | 0.38 | 200 | 0.2662 | 0.8936 | 0.8911 | | 0.2239 | 0.57 | 300 | 0.2417 | 0.9081 | 0.9060 | | 0.2306 | 0.76 | 400 | 0.2359 | 0.9105 | 0.9094 | | 0.2185 | 0.95 | 500 | 0.2371 | 0.9011 | 0.8991 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Ghost1/distilbert-base-uncased-finetuned2-imdb
Ghost1
2022-04-26T12:40:59Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-04-25T18:08:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned2-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned2-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.707 | 1.0 | 157 | 2.4883 | | 2.5761 | 2.0 | 314 | 2.4229 | | 2.5255 | 3.0 | 471 | 2.4355 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Alassea/glue_sst_classifier
Alassea
2022-04-26T12:20:06Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-26T11:33:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - f1 - accuracy model-index: - name: glue_sst_classifier results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: F1 type: f1 value: 0.9033707865168539 - name: Accuracy type: accuracy value: 0.9013761467889908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue_sst_classifier This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2359 - F1: 0.9034 - Accuracy: 0.9014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.3653 | 0.19 | 100 | 0.3213 | 0.8717 | 0.8727 | | 0.291 | 0.38 | 200 | 0.2662 | 0.8936 | 0.8911 | | 0.2239 | 0.57 | 300 | 0.2417 | 0.9081 | 0.9060 | | 0.2306 | 0.76 | 400 | 0.2359 | 0.9105 | 0.9094 | | 0.2185 | 0.95 | 500 | 0.2371 | 0.9011 | 0.8991 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Caroline-Vandyck/glue_sst_classifier
Caroline-Vandyck
2022-04-26T12:18:44Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-26T11:44:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - f1 - accuracy model-index: - name: glue_sst_classifier results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: F1 type: f1 value: 0.9033707865168539 - name: Accuracy type: accuracy value: 0.9013761467889908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue_sst_classifier This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2359 - F1: 0.9034 - Accuracy: 0.9014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.3653 | 0.19 | 100 | 0.3213 | 0.8717 | 0.8727 | | 0.291 | 0.38 | 200 | 0.2662 | 0.8936 | 0.8911 | | 0.2239 | 0.57 | 300 | 0.2417 | 0.9081 | 0.9060 | | 0.2306 | 0.76 | 400 | 0.2359 | 0.9105 | 0.9094 | | 0.2185 | 0.95 | 500 | 0.2371 | 0.9011 | 0.8991 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
MonaA/glue_sst_classifier_2
MonaA
2022-04-26T11:48:03Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-26T11:24:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - f1 - accuracy model-index: - name: glue_sst_classifier_2 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: F1 type: f1 value: 0.9033707865168539 - name: Accuracy type: accuracy value: 0.9013761467889908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue_sst_classifier_2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2359 - F1: 0.9034 - Accuracy: 0.9014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.3653 | 0.19 | 100 | 0.3213 | 0.8717 | 0.8727 | | 0.291 | 0.38 | 200 | 0.2662 | 0.8936 | 0.8911 | | 0.2239 | 0.57 | 300 | 0.2417 | 0.9081 | 0.9060 | | 0.2306 | 0.76 | 400 | 0.2359 | 0.9105 | 0.9094 | | 0.2185 | 0.95 | 500 | 0.2371 | 0.9011 | 0.8991 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
maretamasaeva/glue_sst_classifier
maretamasaeva
2022-04-26T11:43:25Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-26T11:17:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - f1 - accuracy model-index: - name: glue_sst_classifier results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: F1 type: f1 value: 0.9033707865168539 - name: Accuracy type: accuracy value: 0.9013761467889908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue_sst_classifier This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2359 - F1: 0.9034 - Accuracy: 0.9014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.3653 | 0.19 | 100 | 0.3213 | 0.8717 | 0.8727 | | 0.291 | 0.38 | 200 | 0.2662 | 0.8936 | 0.8911 | | 0.2239 | 0.57 | 300 | 0.2417 | 0.9081 | 0.9060 | | 0.2306 | 0.76 | 400 | 0.2359 | 0.9105 | 0.9094 | | 0.2185 | 0.95 | 500 | 0.2371 | 0.9011 | 0.8991 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Sie-BERT/glue_sst_classifier
Sie-BERT
2022-04-26T11:38:30Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-26T11:14:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - f1 - accuracy model-index: - name: glue_sst_classifier results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: F1 type: f1 value: 0.9033707865168539 - name: Accuracy type: accuracy value: 0.9013761467889908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue_sst_classifier This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2359 - F1: 0.9034 - Accuracy: 0.9014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.3653 | 0.19 | 100 | 0.3213 | 0.8717 | 0.8727 | | 0.291 | 0.38 | 200 | 0.2662 | 0.8936 | 0.8911 | | 0.2239 | 0.57 | 300 | 0.2417 | 0.9081 | 0.9060 | | 0.2306 | 0.76 | 400 | 0.2359 | 0.9105 | 0.9094 | | 0.2185 | 0.95 | 500 | 0.2371 | 0.9011 | 0.8991 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
M-junaid-A/wav2vec-speech-project
M-junaid-A
2022-04-26T06:53:17Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-24T11:24:36Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec-speech-project results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec-speech-project This model is a fine-tuned version of [kingabzpro/wav2vec2-large-xls-r-300m-Urdu](https://huggingface.co/kingabzpro/wav2vec2-large-xls-r-300m-Urdu) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
yihsuan/mt5_chinese_small
yihsuan
2022-04-26T06:36:56Z
51
7
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "mT5", "zh", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-04-26T02:03:05Z
--- tags: - summarization - mT5 language: - zh widget: - text: "專家稱維康桑格研究所(Wellcome Sanger Institute)的上述研究發現「令人震驚」而且「發人深省」。基因變異指關於我們身體成長和管理的相關指令,也就是DNA當中發生的變化。長期以來,變異一直被當作癌症的根源,但是數十年來關於變異是否對衰老有重要影響一直存在爭論。桑格研究所的研究人員說他們得到了「第一個試驗性證據」,證明了兩者的關係。他們分析了預期壽命各異的物種基因變異的不同速度。研究人員分析了貓、黑白疣猴、狗、雪貂、長頸鹿、馬、人、獅子、裸鼴鼠、兔子、老鼠、環尾狐猴和老虎等十幾種動物的DNA。發表在《自然》雜誌上的研究顯示,老鼠在短暫的生命當中每年經歷了將近800次變異,老鼠的壽命一般不到4年。" --- --- license: apache-2.0 tags: - Summarization metrics: - rouge model-index: - name: best_model_test_0423_small results: [] --- # best_model_test_0423_small This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6341 - Rouge1: 18.7681 - Rouge2: 6.3762 - Rougel: 18.6081 - Rougelsum: 18.6173 - Gen Len: 22.1086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 5.8165 | 0.05 | 1000 | 3.6541 | 11.6734 | 3.9865 | 11.5734 | 11.5375 | 18.0056 | | 4.306 | 0.1 | 2000 | 3.4291 | 12.0417 | 3.8419 | 11.9231 | 11.9223 | 16.8948 | | 4.1091 | 0.16 | 3000 | 3.3643 | 13.661 | 4.5171 | 13.5123 | 13.5076 | 19.4016 | | 3.9637 | 0.21 | 4000 | 3.2574 | 13.8443 | 4.1761 | 13.689 | 13.6927 | 18.4288 | | 3.8205 | 0.26 | 5000 | 3.2434 | 13.5371 | 4.3639 | 13.3551 | 13.3552 | 21.5776 | | 3.7262 | 0.31 | 6000 | 3.1690 | 14.3668 | 4.8048 | 14.2191 | 14.1906 | 21.5548 | | 3.6887 | 0.36 | 7000 | 3.0657 | 14.3265 | 4.436 | 14.212 | 14.205 | 20.89 | | 3.6337 | 0.42 | 8000 | 3.0318 | 14.6809 | 4.8345 | 14.5378 | 14.5331 | 20.3651 | | 3.5443 | 0.47 | 9000 | 3.0554 | 15.3372 | 4.9163 | 15.1794 | 15.1781 | 21.7742 | | 3.5203 | 0.52 | 10000 | 2.9793 | 14.9278 | 4.9656 | 14.7491 | 14.743 | 20.8113 | | 3.4936 | 0.57 | 11000 | 3.0079 | 15.7705 | 5.1453 | 15.5582 | 15.5756 | 23.4274 | | 3.4592 | 0.62 | 12000 | 2.9721 | 15.0201 | 5.1612 | 14.8508 | 14.8198 | 22.7007 | | 3.377 | 0.67 | 13000 | 3.0112 | 15.9595 | 5.1133 | 15.78 | 15.7774 | 23.4427 | | 3.4158 | 0.73 | 14000 | 2.9239 | 14.7984 | 5.051 | 14.6943 | 14.6581 | 21.6009 | | 3.378 | 0.78 | 15000 | 2.8897 | 16.5128 | 5.1923 | 16.3523 | 16.3265 | 22.0828 | | 3.3231 | 0.83 | 16000 | 2.9347 | 16.9997 | 5.5524 | 16.8534 | 16.8737 | 22.5807 | | 3.3268 | 0.88 | 17000 | 2.9116 | 16.0261 | 5.4226 | 15.9234 | 15.914 | 23.6988 | | 3.3127 | 0.93 | 18000 | 2.8610 | 16.6255 | 5.3554 | 16.4729 | 16.4569 | 22.9481 | | 3.2664 | 0.99 | 19000 | 2.8606 | 17.7703 | 5.9475 | 17.6229 | 17.6259 | 23.4423 | | 3.1718 | 1.04 | 20000 | 2.8764 | 17.301 | 5.6262 | 17.122 | 17.1104 | 23.0093 | | 3.0987 | 1.09 | 21000 | 2.8282 | 16.4718 | 5.2077 | 16.3394 | 16.3401 | 20.9697 | | 3.1486 | 1.14 | 22000 | 2.8235 | 18.5594 | 5.9469 | 18.3882 | 18.3799 | 22.7291 | | 3.1435 | 1.19 | 23000 | 2.8261 | 18.111 | 6.0309 | 17.9593 | 17.9613 | 22.9612 | | 3.1049 | 1.25 | 24000 | 2.8068 | 17.124 | 5.5675 | 16.9714 | 16.9876 | 22.5558 | | 3.1357 | 1.3 | 25000 | 2.8014 | 17.3916 | 5.8671 | 17.2148 | 17.2502 | 23.0075 | | 3.0904 | 1.35 | 26000 | 2.7790 | 17.419 | 5.6689 | 17.3125 | 17.3058 | 22.1492 | | 3.0877 | 1.4 | 27000 | 2.7462 | 17.0605 | 5.4735 | 16.9414 | 16.9378 | 21.7522 | | 3.0694 | 1.45 | 28000 | 2.7563 | 17.752 | 5.8889 | 17.5967 | 17.619 | 23.2005 | | 3.0498 | 1.51 | 29000 | 2.7521 | 17.9056 | 5.7754 | 17.7624 | 17.7836 | 21.9369 | | 3.0566 | 1.56 | 30000 | 2.7468 | 18.6531 | 6.0538 | 18.5397 | 18.5038 | 22.2358 | | 3.0489 | 1.61 | 31000 | 2.7450 | 18.4869 | 5.9297 | 18.3139 | 18.3169 | 22.0108 | | 3.0247 | 1.66 | 32000 | 2.7449 | 18.5192 | 5.9966 | 18.3721 | 18.3569 | 22.2071 | | 2.9877 | 1.71 | 33000 | 2.7160 | 18.1655 | 5.9294 | 18.0304 | 18.0836 | 21.4595 | | 3.0383 | 1.76 | 34000 | 2.7202 | 18.4959 | 6.2413 | 18.3363 | 18.3431 | 22.9732 | | 3.041 | 1.82 | 35000 | 2.6948 | 17.5306 | 5.8119 | 17.4011 | 17.4149 | 21.9435 | | 2.9285 | 1.87 | 36000 | 2.6957 | 18.6418 | 6.1394 | 18.514 | 18.4823 | 22.5174 | | 3.0556 | 1.92 | 37000 | 2.7000 | 18.7387 | 6.0585 | 18.5761 | 18.574 | 22.9315 | | 3.0033 | 1.97 | 38000 | 2.6974 | 17.9387 | 6.1387 | 17.8271 | 17.8111 | 22.4726 | | 2.9207 | 2.02 | 39000 | 2.6998 | 18.6073 | 6.1906 | 18.3891 | 18.4103 | 23.0274 | | 2.8922 | 2.08 | 40000 | 2.6798 | 18.4017 | 6.2244 | 18.2321 | 18.2296 | 22.0697 | | 2.8938 | 2.13 | 41000 | 2.6666 | 18.8016 | 6.2066 | 18.6411 | 18.6353 | 21.7017 | | 2.9124 | 2.18 | 42000 | 2.6606 | 18.7544 | 6.3533 | 18.5923 | 18.5739 | 21.4303 | | 2.8597 | 2.23 | 43000 | 2.6947 | 18.8672 | 6.4526 | 18.7416 | 18.7482 | 22.3352 | | 2.8435 | 2.28 | 44000 | 2.6738 | 18.9405 | 6.356 | 18.7791 | 18.7729 | 21.9081 | | 2.8672 | 2.34 | 45000 | 2.6734 | 18.7509 | 6.3991 | 18.6175 | 18.5828 | 21.8869 | | 2.899 | 2.39 | 46000 | 2.6575 | 18.5529 | 6.3489 | 18.4139 | 18.401 | 21.7694 | | 2.8616 | 2.44 | 47000 | 2.6485 | 18.7563 | 6.268 | 18.6368 | 18.6253 | 21.5685 | | 2.8937 | 2.49 | 48000 | 2.6486 | 18.6525 | 6.3426 | 18.5184 | 18.5129 | 22.3337 | | 2.8446 | 2.54 | 49000 | 2.6572 | 18.6529 | 6.2655 | 18.4915 | 18.4764 | 22.3331 | | 2.8676 | 2.59 | 50000 | 2.6608 | 19.0913 | 6.494 | 18.929 | 18.9233 | 22.132 | | 2.8794 | 2.65 | 51000 | 2.6583 | 18.7648 | 6.459 | 18.6276 | 18.6125 | 22.2414 | | 2.8836 | 2.7 | 52000 | 2.6512 | 18.7243 | 6.3865 | 18.5848 | 18.5763 | 22.2551 | | 2.8174 | 2.75 | 53000 | 2.6409 | 18.9393 | 6.3914 | 18.7733 | 18.7715 | 22.1243 | | 2.8494 | 2.8 | 54000 | 2.6396 | 18.6126 | 6.4389 | 18.4673 | 18.4516 | 21.7638 | | 2.9025 | 2.85 | 55000 | 2.6341 | 18.7681 | 6.3762 | 18.6081 | 18.6173 | 22.1086 | | 2.8754 | 2.91 | 56000 | 2.6388 | 19.0828 | 6.5203 | 18.9334 | 18.9285 | 22.3497 | | 2.8489 | 2.96 | 57000 | 2.6375 | 18.9219 | 6.4922 | 18.763 | 18.7437 | 21.9321 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.1+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
xfbai/AMRBART-large
xfbai
2022-04-26T06:14:16Z
10
2
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "AMRBART", "en", "arxiv:2203.07836", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-25T08:05:17Z
--- language: en tags: - AMRBART license: mit --- ## AMRBART (large-sized model) AMRBART model is continually pre-trained on the English text and AMR Graphs based on the BART model. It was introduced in the paper: [Graph Pre-training for AMR Parsing and Generation](https://arxiv.org/pdf/2203.07836.pdf) by bai et al. in ACL 2022 and first released in [this repository](https://github.com/muyeby/AMRBART). ## Model description AMRBART follows the BART model which uses a transformer encoder-encoder architecture. AMRBART is pre-trained with 6 tasks: + learning to reconstruct the text based on the corrupted text. + learning to reconstruct AMR graphs based on the corrupted AMR graph. + learning to reconstruct the text based on the corrupted text and its corresponding AMR graph. + learning to reconstruct an AMR graph based on the corrupted AMR graph and its corresponding text. + learning to reconstruct the text based on the corrupted text and its corresponding corrupted AMR graph. + learning to reconstruct an AMR graph based on the corrupted AMR graph and its corresponding corrupted text. AMRBART is particularly effective when fine-tuned for AMR parsing and AMR-to-text generation tasks. ## Training data The AMRBART model is pre-trained on [AMR3.0](https://catalog.ldc.upenn.edu/LDC2020T02), a dataset consisting of 55,635 training instances and [English Gigaword](https://catalog.ldc.upenn.edu/LDC2003T05) (we randomly sampled 200,000 sentences). ## Intended uses & limitations You can use the raw model for either AMR encoding or AMR parsing, but it's mostly intended to be fine-tuned on a downstream task. ## How to use Here is how to initialize this model in PyTorch: ```python from transformers import BartForConditionalGeneration model = BartForConditionalGeneration.from_pretrained("xfbai/AMRBART-large") ``` Please refer to [this repository](https://github.com/muyeby/AMRBART) for tokenizer initialization and data preprocessing. ## BibTeX entry and citation info Please cite this paper if you find this model helpful ```bibtex @inproceedings{bai-etal-2022-graph, title = "Graph Pre-training for {AMR} Parsing and Generation", author = "Bai, Xuefeng and Chen, Yulong and Zhang, Yue", booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = may, year = "2022", address = "Online", publisher = "Association for Computational Linguistics", url = "todo", doi = "todo", pages = "todo" } ```
xfbai/AMRBART-large-finetuned-AMR2.0-AMRParsing
xfbai
2022-04-26T05:51:03Z
6
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "AMRBART", "en", "arxiv:2203.07836", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-26T05:27:20Z
--- language: en tags: - AMRBART license: mit --- ## AMRBART-large-finetuned-AMR2.0-AMRParsing This model is a fine-tuned version of [AMRBART-large](https://huggingface.co/xfbai/AMRBART-large) on an AMR2.0 dataset. It achieves a Smatch of 85.4 on the evaluation set: More details are introduced in the paper: [Graph Pre-training for AMR Parsing and Generation](https://arxiv.org/pdf/2203.07836.pdf) by bai et al. in ACL 2022. ## Model description Same with AMRBART. ## Training data The model is finetuned on [AMR2.0](https://catalog.ldc.upenn.edu/LDC2020T02), a dataset consisting of 36,521 training instances, 1,368 validation instances, and 1,371 test instances. ## Intended uses & limitations You can use the model for AMR parsing, but it's mostly intended to be used in the domain of News. ## How to use Here is how to initialize this model in PyTorch: ```python from transformers import BartForConditionalGeneration model = BartForConditionalGeneration.from_pretrained("xfbai/AMRBART-large-finetuned-AMR2.0-AMRParsing") ``` Please refer to [this repository](https://github.com/muyeby/AMRBART) for tokenizer initialization and data preprocessing. ## BibTeX entry and citation info Please cite this paper if you find this model helpful ```bibtex @inproceedings{bai-etal-2022-graph, title = "Graph Pre-training for {AMR} Parsing and Generation", author = "Bai, Xuefeng and Chen, Yulong and Zhang, Yue", booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = may, year = "2022", address = "Online", publisher = "Association for Computational Linguistics", url = "todo", doi = "todo", pages = "todo" } ```
crcb/carer_5way
crcb
2022-04-26T05:46:33Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "unk", "dataset:crcb/autotrain-data-carer_5way", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-26T05:43:57Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - crcb/autotrain-data-carer_5way co2_eq_emissions: 4.164757528958762 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 786524275 - CO2 Emissions (in grams): 4.164757528958762 ## Validation Metrics - Loss: 0.16724252700805664 - Accuracy: 0.944234404536862 - Macro F1: 0.9437256923758108 - Micro F1: 0.9442344045368619 - Weighted F1: 0.9442368364749825 - Macro Precision: 0.9431692663638349 - Micro Precision: 0.944234404536862 - Weighted Precision: 0.9446229335037916 - Macro Recall: 0.9446884750469657 - Micro Recall: 0.944234404536862 - Weighted Recall: 0.944234404536862 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crcb/autotrain-carer_5way-786524275 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("crcb/autotrain-carer_5way-786524275", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("crcb/autotrain-carer_5way-786524275", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
ddobokki/unsup-simcse-klue-roberta-base
ddobokki
2022-04-26T05:22:12Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "simcse", "ko", "endpoints_compatible", "region:us" ]
null
2022-04-26T04:40:53Z
--- language: - ko tags: - simcse --- # KorSTS-dev ``` "eval_cosine_pearson": 0.8461074829101562 "eval_cosine_spearman": 0.8447369732456155 "eval_euclidean_pearson": 0.8401166200637817 "eval_euclidean_spearman": 0.8441547920405729 "eval_manhattan_pearson": 0.8404706120491028 "eval_manhattan_spearman": 0.8449217524976507 "eval_dot_pearson": 0.8457739353179932 "eval_dot_spearman": 0.8440466726739222 ``` # KorSTS-test ``` "eval_cosine_pearson": 0.7702209949493408 "eval_cosine_spearman": 0.7671020822573297 "eval_euclidean_pearson": 0.7617944478988647 "eval_euclidean_spearman": 0.7651634975965186 "eval_manhattan_pearson": 0.7639209032058716 "eval_manhattan_spearman": 0.7674607376361398 "eval_dot_pearson": 0.7696021795272827 "eval_dot_spearman": 0.7667385347139427 ```
huggingtweets/gerardoalone
huggingtweets
2022-04-26T03:31:54Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-25T22:45:55Z
--- language: en thumbnail: http://www.huggingtweets.com/gerardoalone/1650943909493/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1513716426795855876/jWAK0lo4_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">gay wedding technology</div> <div style="text-align: center; font-size: 14px;">@gerardoalone</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from gay wedding technology. | Data | gay wedding technology | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 406 | | Short tweets | 737 | | Tweets kept | 2096 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1p260sem/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gerardoalone's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3p1683gy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3p1683gy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gerardoalone') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
crcb/isear_bert
crcb
2022-04-26T03:14:10Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "unk", "dataset:crcb/autotrain-data-isear_bert", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-26T03:11:17Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - crcb/autotrain-data-isear_bert co2_eq_emissions: 0.026027055434994496 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 786224257 - CO2 Emissions (in grams): 0.026027055434994496 ## Validation Metrics - Loss: 0.8348872065544128 - Accuracy: 0.7272727272727273 - Macro F1: 0.7230931630686932 - Micro F1: 0.7272727272727273 - Weighted F1: 0.7236599456423468 - Macro Precision: 0.7328252157220334 - Micro Precision: 0.7272727272727273 - Weighted Precision: 0.7336599708829821 - Macro Recall: 0.7270448163292604 - Micro Recall: 0.7272727272727273 - Weighted Recall: 0.7272727272727273 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/crcb/autotrain-isear_bert-786224257 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("crcb/autotrain-isear_bert-786224257", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("crcb/autotrain-isear_bert-786224257", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Haofeng/CLIP_animal_classification
Haofeng
2022-04-26T03:07:10Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-04-25T20:36:44Z
--- license: mit --- ## Overview This model is based on [CLIP](https://openai.com/blog/clip) model and test on four kinds of animal datasets and ten kinds of animal datasets. CLIP model is a zero-shot pre-trained model so we don't need train model. We just input possible classes and image dataset to use model. Possible classes can be defined by yourself, it can be dataset labels or other description. ## Text-image matching ### Model Input ```python Class = ["dog", "cat", "rabbit","squirrel"] image = preprocess(Image.open("/content/drive/MyDrive/Transformer_CLIP/Golden_Retriever.jpeg")).unsqueeze(0).to(device) text = clip.tokenize(Class).to(device) ``` ### Model Process ```python with torch.no_grad(): image_features = model.encode_image(image) text_features = model.encode_text(text) logits_per_image, logits_per_text = model(image, text) probs = logits_per_image.softmax(dim=-1).cpu().numpy() res = 0 pos = -1 for j in range(len(probs[0])): if probs[0][j] > res: res = probs[0][j] pos = j print("The options available are: " + str(Class)) for i in range(len(probs[0])): print("The probability of " + str(Class[i]) + " is " + str(probs[0][i])) print("Model thinks this photo is most likely a " + Class[pos]) ``` ## Animal Classification ### Demo code (Python Notebook) https://huggingface.co/Haofeng/CLIP_animal_classification/blob/main/CLIP_classfication.ipynb https://huggingface.co/Haofeng/CLIP_animal_classification/blob/main/CLIP_classfication10.ipynb ### Dataset reference https://www.kaggle.com/datasets/alessiocorrado99/animals10 https://www.kaggle.com/datasets/ayushv322/animal-classification
charityking2358/taglish-electra
charityking2358
2022-04-26T02:19:48Z
1
0
transformers
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-04-24T16:51:41Z
## Taglish-Electra Our Taglish-Electra model was pretrained with two Filipino training datasets and one English dataset to increase improvement against Filipino text with English where speakers may code-switch between the two languages. 1) Openwebtext (English) 2) WikiText-TL-39 (Filipino) 3) [TLUnified Large Scale Corpus](https://www.blaisecruz.com/resources/) This is the discriminator model, which is the main Transformer used for finetuning to downstream tasks. For generation, mask-filling, and retraining, refer to the Generator models.
huggingtweets/spideythefifth
huggingtweets
2022-04-26T02:13:34Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-26T02:09:13Z
--- language: en thumbnail: http://www.huggingtweets.com/spideythefifth/1650939169930/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1505089505757384712/M9ehrLtd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🏹🏳️‍⚧️🏳️‍🌈 Gandalf the Gay🏳️‍⚧️🏳️‍🌈♠️</div> <div style="text-align: center; font-size: 14px;">@spideythefifth</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🏹🏳️‍⚧️🏳️‍🌈 Gandalf the Gay🏳️‍⚧️🏳️‍🌈♠️. | Data | 🏹🏳️‍⚧️🏳️‍🌈 Gandalf the Gay🏳️‍⚧️🏳️‍🌈♠️ | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 289 | | Short tweets | 1301 | | Tweets kept | 1654 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/og5nwknk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @spideythefifth's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2trdlzgq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2trdlzgq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/spideythefifth') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Danni/distilbert-base-uncased-finetuned-dbpedia
Danni
2022-04-26T02:04:00Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-25T04:12:01Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-dbpedia results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-dbpedia This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4338 - eval_matthews_correlation: 0.7817 - eval_runtime: 1094.9103 - eval_samples_per_second: 60.777 - eval_steps_per_second: 3.799 - epoch: 1.0 - step: 23568 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.6
huggingtweets/femboi_canis
huggingtweets
2022-04-26T00:26:30Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-26T00:25:56Z
--- language: en thumbnail: http://www.huggingtweets.com/femboi_canis/1650932783971/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1479992104306843648/e2XQNywk_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🌻 Ole Grim | Femboi | Cane | It/Its | Hy/Hym 🔞</div> <div style="text-align: center; font-size: 14px;">@femboi_canis</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🌻 Ole Grim | Femboi | Cane | It/Its | Hy/Hym 🔞. | Data | 🌻 Ole Grim | Femboi | Cane | It/Its | Hy/Hym 🔞 | | --- | --- | | Tweets downloaded | 3207 | | Retweets | 412 | | Short tweets | 206 | | Tweets kept | 2589 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/27g3w5y2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @femboi_canis's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/jv8wsew4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/jv8wsew4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/femboi_canis') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
yangy50/garbage-classification
yangy50
2022-04-25T22:55:50Z
82
1
transformers
[ "transformers", "pytorch", "vit", "image-classification", "arxiv:2010.11929", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-04-23T22:04:50Z
# Garbage Classification ## Overview ### Backgroud Garbage classification refers to the separation of several types of different categories in accordance with the environmental impact of the use of the value of the composition of garbage components and the requirements of existing treatment methods. The significance of garbage classification: 1. Garbage classification reduces the mutual pollution between different garbage, which is beneficial to the recycling of materials. 2. Garbage classification is conducive to reducing the final waste disposal volume. 3. Garbage classification is conducive to enhancing the degree of social civilization. ### Dataset The garbage classification dataset is from Kaggle. There are totally 2467 pictures in this dataset. And this model is an image classification model for this dataset. There are 6 classes for this dataset, which are cardboard (393), glass (491), metal (400), paper(584), plastic (472), and trash(127). ### Model The model is based on the [ViT](https://huggingface.co/google/vit-base-patch16-224-in21k) model, which is short for the Vision Transformer. It was introduced in the paper [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929), which was introduced in June 2021 by a team of researchers at Google Brain. And first released in [this repository](https://github.com/rwightman/pytorch-image-models). I trained this model with PyTorch. I think the most different thing between using the transformer to train on an image and on a text is in the tokenizing step. There are 3 steps to tokenize the image: 1. Split an image into a grid of sub-image patches 2. Embed each patch with a linear projection 3. Each embedded patch becomes a token, and the resulting sequence of embedded patches is the sequence you pass to the model. I trained the model with 10 epochs, and I use Adam as the optimizer. The accuracy on the test set is 95%. ## Huggingface Space Huggingface space is [here](https://huggingface.co/yangy50/garbage-classification). ## Huggingface Model Card Huggingface model card is [here](https://huggingface.co/yangy50/garbage-classification/tree/main). ## Critical Analysis 1. Next step: build a CNN model on this dataset and compare the accuracy and training time for these two models. 2. Didn’t use the Dataset package to store the image data. Want to find out how to use the Dataset package to handle image data. ## Resource Links [vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) [Garbage dataset](https://huggingface.co/cardiffnlp/twitter-roberta-base) [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) ## Code Demo [Code Demo](https://github.com/yuechen-yang/garbage-classification) is inside this repo ## Repo In this repo ## Video Recording
maximedb/glue_sst_classifier
maximedb
2022-04-25T19:42:10Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-25T19:18:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - f1 - accuracy model-index: - name: glue_sst_classifier results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: sst2 metrics: - name: F1 type: f1 value: 0.9033707865168539 - name: Accuracy type: accuracy value: 0.9013761467889908 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glue_sst_classifier This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2359 - F1: 0.9034 - Accuracy: 0.9014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| | 0.3653 | 0.19 | 100 | 0.3213 | 0.8717 | 0.8727 | | 0.291 | 0.38 | 200 | 0.2662 | 0.8936 | 0.8911 | | 0.2239 | 0.57 | 300 | 0.2417 | 0.9081 | 0.9060 | | 0.2306 | 0.76 | 400 | 0.2359 | 0.9105 | 0.9094 | | 0.2185 | 0.95 | 500 | 0.2371 | 0.9011 | 0.8991 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
Lucifermorningstar011/autotrain-final-784824213
Lucifermorningstar011
2022-04-25T19:24:43Z
6
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain", "en", "dataset:Lucifermorningstar011/autotrain-data-final", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-25T15:24:10Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - Lucifermorningstar011/autotrain-data-final co2_eq_emissions: 443.62532415086787 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 784824213 - CO2 Emissions (in grams): 443.62532415086787 ## Validation Metrics - Loss: 0.12777526676654816 - Accuracy: 0.9823625038850627 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Lucifermorningstar011/autotrain-final-784824213 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("Lucifermorningstar011/autotrain-final-784824213", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Lucifermorningstar011/autotrain-final-784824213", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
maximedb/reviews-generator
maximedb
2022-04-25T19:15:12Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-25T17:30:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_reviews_multi model-index: - name: reviews-generator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reviews-generator This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 3.3020 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7284 | 0.16 | 500 | 3.5020 | | 3.6202 | 0.32 | 1000 | 3.4170 | | 3.5477 | 0.48 | 1500 | 3.3667 | | 3.5218 | 0.64 | 2000 | 3.3395 | | 3.5097 | 0.8 | 2500 | 3.3167 | | 3.5009 | 0.96 | 3000 | 3.3020 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.1 - Datasets 1.18.4 - Tokenizers 0.11.0
Lucifermorningstar011/autotrain-final-784824211
Lucifermorningstar011
2022-04-25T18:49:50Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "autotrain", "en", "dataset:Lucifermorningstar011/autotrain-data-final", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-25T15:24:28Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - Lucifermorningstar011/autotrain-data-final co2_eq_emissions: 292.55119229577315 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 784824211 - CO2 Emissions (in grams): 292.55119229577315 ## Validation Metrics - Loss: 0.17682738602161407 - Accuracy: 0.9732196168090091 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Lucifermorningstar011/autotrain-final-784824211 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("Lucifermorningstar011/autotrain-final-784824211", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Lucifermorningstar011/autotrain-final-784824211", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Lucifermorningstar011/autotrain-final-784824206
Lucifermorningstar011
2022-04-25T18:46:51Z
3
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain", "en", "dataset:Lucifermorningstar011/autotrain-data-final", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-25T15:23:57Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - Lucifermorningstar011/autotrain-data-final co2_eq_emissions: 354.21745907505175 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 784824206 - CO2 Emissions (in grams): 354.21745907505175 ## Validation Metrics - Loss: 0.1393078863620758 - Accuracy: 0.9785765909606228 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Lucifermorningstar011/autotrain-final-784824206 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("Lucifermorningstar011/autotrain-final-784824206", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Lucifermorningstar011/autotrain-final-784824206", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
spuun/kekbot-beta-2-medium
spuun
2022-04-25T18:19:29Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "en", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-25T10:51:20Z
--- language: - en tags: - conversational co2_eq_emissions: emissions: "940" source: "mlco2.github.io" training_type: "fine-tuning" geographical_location: "West Java, Indonesia" hardware_used: "1 Tesla P100" license: cc-by-nc-sa-4.0 widget: - text: "Hey kekbot! What's up?" example_title: "Asking what's up" - text: "Hey kekbot! How r u?" example_title: "Asking how he is" --- > THIS MODEL IS IN PUBLIC BETA, PLEASE DO NOT EXPECT ANY FORM OF STABILITY IN ITS CURRENT STATE. # Art Union server chatbot Based on a DialoGPT-medium model, fine-tuned to a small subset (115k<= messages) of Art Union's general-chat channel. ### Current issues (Which hopefully will be fixed in future iterations) Include, but not limited to: - Limited turns, after ~11 turns output may break for no apparent reason. - Inconsistent variance, acts like an overfitted model from time to time for no reason whatsoever.
bookbot/id-g2p-bert
bookbot
2022-04-25T18:16:05Z
5
1
tf-keras
[ "tf-keras", "tensorboard", "g2p", "fill-mask", "id", "ms", "arxiv:1810.04805", "license:apache-2.0", "region:us" ]
fill-mask
2022-04-23T08:27:04Z
--- language: - id - ms license: apache-2.0 tags: - g2p - fill-mask inference: false --- # ID G2P BERT ID G2P BERT is a phoneme de-masking model based on the [BERT](https://arxiv.org/abs/1810.04805) architecture. This model was trained from scratch on a modified [Malay/Indonesian lexicon](https://huggingface.co/datasets/bookbot/id_word2phoneme). This model was trained using the [Keras](https://keras.io/) framework. All training was done on Google Colaboratory. We adapted the [BERT Masked Language Modeling training script](https://keras.io/examples/nlp/masked_language_modeling) provided by the official Keras Code Example. ## Model | Model | #params | Arch. | Training/Validation data | | ------------- | ------- | ----- | ------------------------ | | `id-g2p-bert` | 200K | BERT | Malay/Indonesian Lexicon | ![](./model.png) ## Training Procedure <details> <summary>Model Config</summary> vocab_size: 32 max_len: 32 embed_dim: 128 num_attention_head: 2 feed_forward_dim: 128 num_layers: 2 </details> <details> <summary>Training Setting</summary> batch_size: 32 optimizer: "adam" learning_rate: 0.001 epochs: 100 </details> ## How to Use <details> <summary>Tokenizers</summary> id2token = { 0: '', 1: '[UNK]', 2: 'a', 3: 'n', 4: 'ə', 5: 'i', 6: 'r', 7: 'k', 8: 'm', 9: 't', 10: 'u', 11: 'g', 12: 's', 13: 'b', 14: 'p', 15: 'l', 16: 'd', 17: 'o', 18: 'e', 19: 'h', 20: 'c', 21: 'y', 22: 'j', 23: 'w', 24: 'f', 25: 'v', 26: '-', 27: 'z', 28: "'", 29: 'q', 30: '[mask]' } token2id = { '': 0, "'": 28, '-': 26, '[UNK]': 1, '[mask]': 30, 'a': 2, 'b': 13, 'c': 20, 'd': 16, 'e': 18, 'f': 24, 'g': 11, 'h': 19, 'i': 5, 'j': 22, 'k': 7, 'l': 15, 'm': 8, 'n': 3, 'o': 17, 'p': 14, 'q': 29, 'r': 6, 's': 12, 't': 9, 'u': 10, 'v': 25, 'w': 23, 'y': 21, 'z': 27, 'ə': 4 } </details> ```py import keras import tensorflow as tf import numpy as np from huggingface_hub import from_pretrained_keras model = from_pretrained_keras("bookbot/id-g2p-bert") MAX_LEN = 32 MASK_TOKEN_ID = 30 def inference(sequence): sequence = " ".join([c if c != "e" else "[mask]" for c in sequence]) tokens = [token2id[c] for c in sequence.split()] pad = [token2id[""] for _ in range(MAX_LEN - len(tokens))] tokens = tokens + pad input_ids = tf.convert_to_tensor(np.array([tokens])) prediction = model.predict(input_ids) # find masked idx token masked_index = np.where(input_ids == MASK_TOKEN_ID) masked_index = masked_index[1] # get prediction at those masked index only mask_prediction = prediction[0][masked_index] predicted_ids = np.argmax(mask_prediction, axis=1) # replace mask with predicted token for i, idx in enumerate(masked_index): tokens[idx] = predicted_ids[i] return "".join([id2token[t] for t in tokens if t != 0]) inference("mengembangkannya") ``` ## Authors ID G2P BERT was trained and evaluated by [Ananto Joyoadikusumo](https://anantoj.github.io/), [Steven Limcorn](https://stevenlimcorn.github.io/), [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google Colaboratory. ## Framework versions - Keras 2.8.0 - TensorFlow 2.8.0
Rocketknight1/bert-base-uncased-finetuned-swag
Rocketknight1
2022-04-25T18:00:09Z
7
0
transformers
[ "transformers", "tf", "tensorboard", "bert", "multiple-choice", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Rocketknight1/bert-base-uncased-finetuned-swag results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rocketknight1/bert-base-uncased-finetuned-swag This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.8360 - Train Accuracy: 0.6631 - Validation Loss: 0.5885 - Validation Accuracy: 0.7706 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 9192, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.8360 | 0.6631 | 0.5885 | 0.7706 | 0 | ### Framework versions - Transformers 4.18.0.dev0 - TensorFlow 2.8.0-rc0 - Datasets 2.0.1.dev0 - Tokenizers 0.11.0
robinhad/data2vec-large-uk
robinhad
2022-04-25T17:27:44Z
7
2
transformers
[ "transformers", "pytorch", "tensorboard", "data2vec-audio", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-25T17:22:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: data2vec-large-uk results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # data2vec-large-uk This model is a fine-tuned version of [facebook/data2vec-audio-large-960h](https://huggingface.co/facebook/data2vec-audio-large-960h) on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3472 - eval_wer: 0.3410 - eval_cer: 0.0832 - eval_runtime: 231.0008 - eval_samples_per_second: 25.108 - eval_steps_per_second: 3.139 - epoch: 33.06 - step: 20400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 1.18.3 - Tokenizers 0.12.1
huggingnft/mini-mutants__2__boredapeyachtclub
huggingnft
2022-04-25T16:05:55Z
0
1
null
[ "pytorch", "huggan", "gan", "image-to-image", "huggingnft", "nft", "image", "images", "arxiv:1703.10593", "license:mit", "region:us" ]
image-to-image
2022-04-15T12:34:24Z
--- tags: - huggan - gan - image-to-image - huggingnft - nft - image - images # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # CycleGAN for unpaired image-to-image translation. ## Model description CycleGAN for unpaired image-to-image translation. Given two image domains A and B, the following components are trained end2end to translate between such domains: - A generator A to B, named G_AB conditioned on an image from A - A generator B to A, named G_BA conditioned on an image from B - A domain classifier D_A, associated with G_AB - A domain classifier D_B, associated with G_BA At inference time, G_AB or G_BA are relevant to translate images, respectively A to B or B to A. In the general setting, this technique provides style transfer functionalities between the selected image domains A and B. This allows to obtain a generated translation by G_AB, of an image from domain A that resembles the distribution of the images from domain B, and viceversa for the generator G_BA. Under these framework, these aspects have been used to perform style transfer between NFT collections. A collection is selected as domain A, another one as domain B and the CycleGAN provides forward and backward translation between A and B. This has showed to allows high quality translation even in absence of paired sample-ground-truth data. In particular, the model performs well with stationary backgrounds (no drastic texture changes in the appearance of backgrounds) as it is capable of recognizing the attributes of each of the elements of an NFT collections. An attribute can be a variation in type of dressed fashion items such as sunglasses, earrings, clothes and also face or body attributes with respect to a common template model of the given NFT collection). ## Intended uses & limitations #### How to use ```python import torch from PIL import Image from huggan.pytorch.cyclegan.modeling_cyclegan import GeneratorResNet from torchvision import transforms as T from torchvision.transforms import Compose, Resize, ToTensor, Normalize from torchvision.utils import make_grid from huggingface_hub import hf_hub_download, file_download from accelerate import Accelerator import json def load_lightweight_model(model_name): file_path = file_download.hf_hub_download( repo_id=model_name, filename="config.json" ) config = json.loads(open(file_path).read()) organization_name, name = model_name.split("/") model = Trainer(**config, organization_name=organization_name, name=name) model.load(use_cpu=True) model.accelerator = Accelerator() return model def get_concat_h(im1, im2): dst = Image.new('RGB', (im1.width + im2.width, im1.height)) dst.paste(im1, (0, 0)) dst.paste(im2, (im1.width, 0)) return dst n_channels = 3 image_size = 256 input_shape = (image_size, image_size) transform = Compose([ T.ToPILImage(), T.Resize(input_shape), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) # load the translation model from source to target images: source will be generated by a separate Lightweight GAN, w # while the target images are the result of the translation applied by the GeneratorResnet to the generated source images. # Hence, given the source domain A and target domain B, # B = Translator(GAN(A)) translator = GeneratorResNet.from_pretrained(f'huggingnft/{model_name}', input_shape=(n_channels, image_size, image_size), num_residual_blocks=9) # sample noise that is used to generate source images by the z = torch.randn(nrows, 100, 1, 1) # load the GAN generator of source images that will be translated by the translation model model = load_lightweight_model(f"huggingnft/{model_name.split('__2__')[0]}") collectionA = model.generate_app( num=timestamped_filename(), nrow=nrows, checkpoint=-1, types="default" )[1] # resize to translator model input shape resize = T.Resize((256, 256)) input = resize(collectionA) # translate the resized collectionA to collectionB collectionB = translator(input) out_transform = T.ToPILImage() results = [] for collA_image, collB_image in zip(input, collectionB): results.append( get_concat_h(out_transform(make_grid(collA_image, nrow=1, normalize=True)), out_transform(make_grid(collB_image, nrow=1, normalize=True))) ) ``` #### Limitations and bias Translation between collections provides exceptional output images in the case of NFT collections that portray subjects in the same way. If the backgrounds vary too much within either of the collections, performance degrades or many more training iterations re required to achieve acceptable results. ## Training data The CycleGAN model is trained on an unpaired dataset of samples from two selected NFT collections: colle tionA and collectionB. To this end, two collections are loaded by means of the function load_dataset in the huggingface library, as follows. A list of all available collections is available at [huggingNFT](https://huggingface.co/huggingnft) ```python from datasets import load_dataset collectionA = load_dataset("huggingnft/COLLECTION_A") collectionB = load_dataset("huggingnft/COLLECTION_B") ``` ## Training procedure #### Preprocessing The following transformations are applied to each input sample of collectionA and collectionB. The input size is fixed to RGB images of height, width = 256, 256 ```python n_channels = 3 image_size = 256 input_shape = (image_size, image_size) transform = Compose([ T.ToPILImage(), T.Resize(input_shape), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) ``` #### Hardware The configuration has been tested on single GPU setup on a RTX5000 and A5000, as well as multi-gpu single-rank distributed setups composed of 2 of the mentioned GPUs. #### Hyperparameters The following configuration has been kept fixed for all translation models: - learning rate 0.0002 - number of epochs 200 - learning rate decay activation at epoch 80 - number of residual blocks of the cyclegan 9 - cycle loss weight 10.0 - identity loss weight 5.0 - optimizer ADAM with beta1 0.5 and beta2 0.999 - batch size 8 - NO mixed precision training ## Eval results #### Training reports [Cryptopunks to boreapeyachtclub](https://wandb.ai/chris1nexus/experiments--experiments_cyclegan_punk_to_apes_HQ--0/reports/CycleGAN-training-report--VmlldzoxODUxNzQz?accessToken=vueurpbhd2i8n347j880yakggs0sqdf7u0hpz3bpfsbrxcmk1jk4obg18f6wfk9w) [Boreapeyachtclub to mutant-ape-yacht-club](https://wandb.ai/chris1nexus/experiments--my_paperspace_boredapeyachtclub__2__mutant-ape-yacht-club--11/reports/CycleGAN-training-report--VmlldzoxODUxNzg4?accessToken=jpyviwn7kdf5216ycrthwp6l8t3heb0lt8djt7dz12guu64qnpdh3ekecfcnoahu) #### Generated Images In the provided images, row0 and row2 represent real images from the respective collections. Row1 is the translation of the immediate above images in row0 by means of the G_AB translation model. Row3 is the translation of the immediate above images in row2 by means of the G_BA translation model. Visualization over the training iterations for [boreapeyachtclub to mutant-ape-yacht-club](https://wandb.ai/chris1nexus/experiments--my_paperspace_boredapeyachtclub__2__mutant-ape-yacht-club--11/reports/Shared-panel-22-04-15-08-04-99--VmlldzoxODQ0MDI3?accessToken=45m3kxex5m3rpev3s6vmrv69k3u9p9uxcsp2k90wvbxwxzlqbqjqlnmgpl9265c0) Visualization over the training iterations for [Cryptopunks to boreapeyachtclub](https://wandb.ai/chris1nexus/experiments--experiments_cyclegan_punk_to_apes_HQ--0/reports/Shared-panel-22-04-17-11-04-83--VmlldzoxODUxNjk5?accessToken=o25si6nflp2xst649vt6ayt56bnb95mxmngt1ieso091j2oazmqnwaf4h78vc2tu) ### References ```bibtex @misc{https://doi.org/10.48550/arxiv.1703.10593, doi = {10.48550/ARXIV.1703.10593}, url = {https://arxiv.org/abs/1703.10593}, author = {Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A.}, keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks}, publisher = {arXiv}, year = {2017}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` ### BibTeX entry and citation info ```bibtex @InProceedings{huggingnft, author={Aleksey Korshuk, Christian Cancedda} year=2022 } ```
huggingnft/boredapeyachtclub__2__mutant-ape-yacht-club
huggingnft
2022-04-25T16:05:54Z
0
1
null
[ "pytorch", "huggan", "gan", "image-to-image", "huggingnft", "nft", "image", "images", "arxiv:1703.10593", "license:mit", "region:us" ]
image-to-image
2022-04-15T12:15:49Z
--- tags: - huggan - gan - image-to-image - huggingnft - nft - image - images # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # CycleGAN for unpaired image-to-image translation. ## Model description CycleGAN for unpaired image-to-image translation. Given two image domains A and B, the following components are trained end2end to translate between such domains: - A generator A to B, named G_AB conditioned on an image from A - A generator B to A, named G_BA conditioned on an image from B - A domain classifier D_A, associated with G_AB - A domain classifier D_B, associated with G_BA At inference time, G_AB or G_BA are relevant to translate images, respectively A to B or B to A. In the general setting, this technique provides style transfer functionalities between the selected image domains A and B. This allows to obtain a generated translation by G_AB, of an image from domain A that resembles the distribution of the images from domain B, and viceversa for the generator G_BA. Under these framework, these aspects have been used to perform style transfer between NFT collections. A collection is selected as domain A, another one as domain B and the CycleGAN provides forward and backward translation between A and B. This has showed to allows high quality translation even in absence of paired sample-ground-truth data. In particular, the model performs well with stationary backgrounds (no drastic texture changes in the appearance of backgrounds) as it is capable of recognizing the attributes of each of the elements of an NFT collections. An attribute can be a variation in type of dressed fashion items such as sunglasses, earrings, clothes and also face or body attributes with respect to a common template model of the given NFT collection). ## Intended uses & limitations #### How to use ```python import torch from PIL import Image from huggan.pytorch.cyclegan.modeling_cyclegan import GeneratorResNet from torchvision import transforms as T from torchvision.transforms import Compose, Resize, ToTensor, Normalize from torchvision.utils import make_grid from huggingface_hub import hf_hub_download, file_download from accelerate import Accelerator import json def load_lightweight_model(model_name): file_path = file_download.hf_hub_download( repo_id=model_name, filename="config.json" ) config = json.loads(open(file_path).read()) organization_name, name = model_name.split("/") model = Trainer(**config, organization_name=organization_name, name=name) model.load(use_cpu=True) model.accelerator = Accelerator() return model def get_concat_h(im1, im2): dst = Image.new('RGB', (im1.width + im2.width, im1.height)) dst.paste(im1, (0, 0)) dst.paste(im2, (im1.width, 0)) return dst n_channels = 3 image_size = 256 input_shape = (image_size, image_size) transform = Compose([ T.ToPILImage(), T.Resize(input_shape), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) # load the translation model from source to target images: source will be generated by a separate Lightweight GAN, w # while the target images are the result of the translation applied by the GeneratorResnet to the generated source images. # Hence, given the source domain A and target domain B, # B = Translator(GAN(A)) translator = GeneratorResNet.from_pretrained(f'huggingnft/{model_name}', input_shape=(n_channels, image_size, image_size), num_residual_blocks=9) # sample noise that is used to generate source images by the z = torch.randn(nrows, 100, 1, 1) # load the GAN generator of source images that will be translated by the translation model model = load_lightweight_model(f"huggingnft/{model_name.split('__2__')[0]}") collectionA = model.generate_app( num=timestamped_filename(), nrow=nrows, checkpoint=-1, types="default" )[1] # resize to translator model input shape resize = T.Resize((256, 256)) input = resize(collectionA) # translate the resized collectionA to collectionB collectionB = translator(input) out_transform = T.ToPILImage() results = [] for collA_image, collB_image in zip(input, collectionB): results.append( get_concat_h(out_transform(make_grid(collA_image, nrow=1, normalize=True)), out_transform(make_grid(collB_image, nrow=1, normalize=True))) ) ``` #### Limitations and bias Translation between collections provides exceptional output images in the case of NFT collections that portray subjects in the same way. If the backgrounds vary too much within either of the collections, performance degrades or many more training iterations re required to achieve acceptable results. ## Training data The CycleGAN model is trained on an unpaired dataset of samples from two selected NFT collections: colle tionA and collectionB. To this end, two collections are loaded by means of the function load_dataset in the huggingface library, as follows. A list of all available collections is available at [huggingNFT](https://huggingface.co/huggingnft) ```python from datasets import load_dataset collectionA = load_dataset("huggingnft/COLLECTION_A") collectionB = load_dataset("huggingnft/COLLECTION_B") ``` ## Training procedure #### Preprocessing The following transformations are applied to each input sample of collectionA and collectionB. The input size is fixed to RGB images of height, width = 256, 256 ```python n_channels = 3 image_size = 256 input_shape = (image_size, image_size) transform = Compose([ T.ToPILImage(), T.Resize(input_shape), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) ``` #### Hardware The configuration has been tested on single GPU setup on a RTX5000 and A5000, as well as multi-gpu single-rank distributed setups composed of 2 of the mentioned GPUs. #### Hyperparameters The following configuration has been kept fixed for all translation models: - learning rate 0.0002 - number of epochs 200 - learning rate decay activation at epoch 80 - number of residual blocks of the cyclegan 9 - cycle loss weight 10.0 - identity loss weight 5.0 - optimizer ADAM with beta1 0.5 and beta2 0.999 - batch size 8 - NO mixed precision training ## Eval results #### Training reports [Cryptopunks to boreapeyachtclub](https://wandb.ai/chris1nexus/experiments--experiments_cyclegan_punk_to_apes_HQ--0/reports/CycleGAN-training-report--VmlldzoxODUxNzQz?accessToken=vueurpbhd2i8n347j880yakggs0sqdf7u0hpz3bpfsbrxcmk1jk4obg18f6wfk9w) [Boreapeyachtclub to mutant-ape-yacht-club](https://wandb.ai/chris1nexus/experiments--my_paperspace_boredapeyachtclub__2__mutant-ape-yacht-club--11/reports/CycleGAN-training-report--VmlldzoxODUxNzg4?accessToken=jpyviwn7kdf5216ycrthwp6l8t3heb0lt8djt7dz12guu64qnpdh3ekecfcnoahu) #### Generated Images In the provided images, row0 and row2 represent real images from the respective collections. Row1 is the translation of the immediate above images in row0 by means of the G_AB translation model. Row3 is the translation of the immediate above images in row2 by means of the G_BA translation model. Visualization over the training iterations for [boreapeyachtclub to mutant-ape-yacht-club](https://wandb.ai/chris1nexus/experiments--my_paperspace_boredapeyachtclub__2__mutant-ape-yacht-club--11/reports/Shared-panel-22-04-15-08-04-99--VmlldzoxODQ0MDI3?accessToken=45m3kxex5m3rpev3s6vmrv69k3u9p9uxcsp2k90wvbxwxzlqbqjqlnmgpl9265c0) Visualization over the training iterations for [Cryptopunks to boreapeyachtclub](https://wandb.ai/chris1nexus/experiments--experiments_cyclegan_punk_to_apes_HQ--0/reports/Shared-panel-22-04-17-11-04-83--VmlldzoxODUxNjk5?accessToken=o25si6nflp2xst649vt6ayt56bnb95mxmngt1ieso091j2oazmqnwaf4h78vc2tu) ### References ```bibtex @misc{https://doi.org/10.48550/arxiv.1703.10593, doi = {10.48550/ARXIV.1703.10593}, url = {https://arxiv.org/abs/1703.10593}, author = {Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A.}, keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks}, publisher = {arXiv}, year = {2017}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` ### BibTeX entry and citation info ```bibtex @InProceedings{huggingnft, author={Aleksey Korshuk, Christian Cancedda} year=2022 } ```
huggingnft/cryptopunks__2__bored-apes-yacht-club
huggingnft
2022-04-25T16:05:53Z
0
4
null
[ "pytorch", "huggan", "gan", "image-to-image", "huggingnft", "nft", "image", "images", "arxiv:1703.10593", "license:mit", "region:us" ]
image-to-image
2022-04-12T11:24:26Z
--- tags: - huggan - gan - image-to-image - huggingnft - nft - image - images # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 # task: unconditional-image-generation or conditional-image-generation or image-to-image license: mit --- # CycleGAN for unpaired image-to-image translation. ## Model description CycleGAN for unpaired image-to-image translation. Given two image domains A and B, the following components are trained end2end to translate between such domains: - A generator A to B, named G_AB conditioned on an image from A - A generator B to A, named G_BA conditioned on an image from B - A domain classifier D_A, associated with G_AB - A domain classifier D_B, associated with G_BA At inference time, G_AB or G_BA are relevant to translate images, respectively A to B or B to A. In the general setting, this technique provides style transfer functionalities between the selected image domains A and B. This allows to obtain a generated translation by G_AB, of an image from domain A that resembles the distribution of the images from domain B, and viceversa for the generator G_BA. Under these framework, these aspects have been used to perform style transfer between NFT collections. A collection is selected as domain A, another one as domain B and the CycleGAN provides forward and backward translation between A and B. This has showed to allows high quality translation even in absence of paired sample-ground-truth data. In particular, the model performs well with stationary backgrounds (no drastic texture changes in the appearance of backgrounds) as it is capable of recognizing the attributes of each of the elements of an NFT collections. An attribute can be a variation in type of dressed fashion items such as sunglasses, earrings, clothes and also face or body attributes with respect to a common template model of the given NFT collection). ## Intended uses & limitations #### How to use ```python import torch from PIL import Image from huggan.pytorch.cyclegan.modeling_cyclegan import GeneratorResNet from torchvision import transforms as T from torchvision.transforms import Compose, Resize, ToTensor, Normalize from torchvision.utils import make_grid from huggingface_hub import hf_hub_download, file_download from accelerate import Accelerator import json def load_lightweight_model(model_name): file_path = file_download.hf_hub_download( repo_id=model_name, filename="config.json" ) config = json.loads(open(file_path).read()) organization_name, name = model_name.split("/") model = Trainer(**config, organization_name=organization_name, name=name) model.load(use_cpu=True) model.accelerator = Accelerator() return model def get_concat_h(im1, im2): dst = Image.new('RGB', (im1.width + im2.width, im1.height)) dst.paste(im1, (0, 0)) dst.paste(im2, (im1.width, 0)) return dst n_channels = 3 image_size = 256 input_shape = (image_size, image_size) transform = Compose([ T.ToPILImage(), T.Resize(input_shape), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) # load the translation model from source to target images: source will be generated by a separate Lightweight GAN, w # while the target images are the result of the translation applied by the GeneratorResnet to the generated source images. # Hence, given the source domain A and target domain B, # B = Translator(GAN(A)) translator = GeneratorResNet.from_pretrained(f'huggingnft/{model_name}', input_shape=(n_channels, image_size, image_size), num_residual_blocks=9) # sample noise that is used to generate source images by the z = torch.randn(nrows, 100, 1, 1) # load the GAN generator of source images that will be translated by the translation model model = load_lightweight_model(f"huggingnft/{model_name.split('__2__')[0]}") collectionA = model.generate_app( num=timestamped_filename(), nrow=nrows, checkpoint=-1, types="default" )[1] # resize to translator model input shape resize = T.Resize((256, 256)) input = resize(collectionA) # translate the resized collectionA to collectionB collectionB = translator(input) out_transform = T.ToPILImage() results = [] for collA_image, collB_image in zip(input, collectionB): results.append( get_concat_h(out_transform(make_grid(collA_image, nrow=1, normalize=True)), out_transform(make_grid(collB_image, nrow=1, normalize=True))) ) ``` #### Limitations and bias Translation between collections provides exceptional output images in the case of NFT collections that portray subjects in the same way. If the backgrounds vary too much within either of the collections, performance degrades or many more training iterations re required to achieve acceptable results. ## Training data The CycleGAN model is trained on an unpaired dataset of samples from two selected NFT collections: colle tionA and collectionB. To this end, two collections are loaded by means of the function load_dataset in the huggingface library, as follows. A list of all available collections is available at [huggingNFT](https://huggingface.co/huggingnft) ```python from datasets import load_dataset collectionA = load_dataset("huggingnft/COLLECTION_A") collectionB = load_dataset("huggingnft/COLLECTION_B") ``` ## Training procedure #### Preprocessing The following transformations are applied to each input sample of collectionA and collectionB. The input size is fixed to RGB images of height, width = 256, 256 ```python n_channels = 3 image_size = 256 input_shape = (image_size, image_size) transform = Compose([ T.ToPILImage(), T.Resize(input_shape), ToTensor(), Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) ``` #### Hardware The configuration has been tested on single GPU setup on a RTX5000 and A5000, as well as multi-gpu single-rank distributed setups composed of 2 of the mentioned GPUs. #### Hyperparameters The following configuration has been kept fixed for all translation models: - learning rate 0.0002 - number of epochs 200 - learning rate decay activation at epoch 80 - number of residual blocks of the cyclegan 9 - cycle loss weight 10.0 - identity loss weight 5.0 - optimizer ADAM with beta1 0.5 and beta2 0.999 - batch size 8 - NO mixed precision training ## Eval results #### Training reports [Cryptopunks to boreapeyachtclub](https://wandb.ai/chris1nexus/experiments--experiments_cyclegan_punk_to_apes_HQ--0/reports/CycleGAN-training-report--VmlldzoxODUxNzQz?accessToken=vueurpbhd2i8n347j880yakggs0sqdf7u0hpz3bpfsbrxcmk1jk4obg18f6wfk9w) [Boreapeyachtclub to mutant-ape-yacht-club](https://wandb.ai/chris1nexus/experiments--my_paperspace_boredapeyachtclub__2__mutant-ape-yacht-club--11/reports/CycleGAN-training-report--VmlldzoxODUxNzg4?accessToken=jpyviwn7kdf5216ycrthwp6l8t3heb0lt8djt7dz12guu64qnpdh3ekecfcnoahu) #### Generated Images In the provided images, row0 and row2 represent real images from the respective collections. Row1 is the translation of the immediate above images in row0 by means of the G_AB translation model. Row3 is the translation of the immediate above images in row2 by means of the G_BA translation model. Visualization over the training iterations for [boreapeyachtclub to mutant-ape-yacht-club](https://wandb.ai/chris1nexus/experiments--my_paperspace_boredapeyachtclub__2__mutant-ape-yacht-club--11/reports/Shared-panel-22-04-15-08-04-99--VmlldzoxODQ0MDI3?accessToken=45m3kxex5m3rpev3s6vmrv69k3u9p9uxcsp2k90wvbxwxzlqbqjqlnmgpl9265c0) Visualization over the training iterations for [Cryptopunks to boreapeyachtclub](https://wandb.ai/chris1nexus/experiments--experiments_cyclegan_punk_to_apes_HQ--0/reports/Shared-panel-22-04-17-11-04-83--VmlldzoxODUxNjk5?accessToken=o25si6nflp2xst649vt6ayt56bnb95mxmngt1ieso091j2oazmqnwaf4h78vc2tu) ### References ```bibtex @misc{https://doi.org/10.48550/arxiv.1703.10593, doi = {10.48550/ARXIV.1703.10593}, url = {https://arxiv.org/abs/1703.10593}, author = {Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A.}, keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks}, publisher = {arXiv}, year = {2017}, copyright = {arXiv.org perpetual, non-exclusive license} } ``` ### BibTeX entry and citation info ```bibtex @InProceedings{huggingnft, author={Aleksey Korshuk, Christian Cancedda} year=2022 } ```
huggingnft/hapeprime
huggingnft
2022-04-25T15:59:11Z
5
1
transformers
[ "transformers", "huggingnft", "nft", "huggan", "gan", "image", "images", "unconditional-image-generation", "dataset:huggingnft/hapeprime", "license:mit", "endpoints_compatible", "region:us" ]
unconditional-image-generation
2022-04-14T10:11:16Z
--- tags: - huggingnft - nft - huggan - gan - image - images - unconditional-image-generation datasets: - huggingnft/hapeprime license: mit --- # Hugging NFT: hapeprime ## Disclaimer All rights belong to their owners. Models and datasets can be removed from the site at the request of the copyright holder. ## Model description LightWeight GAN model for unconditional generation. NFT collection available [here](https://opensea.io/collection/hapeprime). Dataset is available [here](https://huggingface.co/datasets/huggingnft/hapeprime). Check Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). Project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ## Intended uses & limitations #### How to use Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). #### Limitations and bias Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). ## Training data Dataset is available [here](https://huggingface.co/datasets/huggingnft/hapeprime). ## Training procedure Training script is available [here](https://github.com/AlekseyKorshuk/huggingnft). ## Generated Images Check results with Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ### BibTeX entry and citation info ```bibtex @InProceedings{huggingnft, author={Aleksey Korshuk} year=2022 } ```
huggingnft/etherbears
huggingnft
2022-04-25T15:59:07Z
10
1
transformers
[ "transformers", "huggingnft", "nft", "huggan", "gan", "image", "images", "unconditional-image-generation", "dataset:huggingnft/etherbears", "license:mit", "endpoints_compatible", "region:us" ]
unconditional-image-generation
2022-04-14T09:23:35Z
--- tags: - huggingnft - nft - huggan - gan - image - images - unconditional-image-generation datasets: - huggingnft/etherbears license: mit --- # Hugging NFT: etherbears ## Disclaimer All rights belong to their owners. Models and datasets can be removed from the site at the request of the copyright holder. ## Model description LightWeight GAN model for unconditional generation. NFT collection available [here](https://opensea.io/collection/etherbears). Dataset is available [here](https://huggingface.co/datasets/huggingnft/etherbears). Check Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). Project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ## Intended uses & limitations #### How to use Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). #### Limitations and bias Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). ## Training data Dataset is available [here](https://huggingface.co/datasets/huggingnft/etherbears). ## Training procedure Training script is available [here](https://github.com/AlekseyKorshuk/huggingnft). ## Generated Images Check results with Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ### BibTeX entry and citation info ```bibtex @InProceedings{huggingnft, author={Aleksey Korshuk} year=2022 } ```
huggingnft/nftrex
huggingnft
2022-04-25T15:59:07Z
14
2
transformers
[ "transformers", "huggingnft", "nft", "huggan", "gan", "image", "images", "unconditional-image-generation", "dataset:huggingnft/nftrex", "license:mit", "endpoints_compatible", "region:us" ]
unconditional-image-generation
2022-04-13T18:41:07Z
--- tags: - huggingnft - nft - huggan - gan - image - images - unconditional-image-generation datasets: - huggingnft/nftrex license: mit --- # Hugging NFT: nftrex ## Disclaimer All rights belong to their owners. Models and datasets can be removed from the site at the request of the copyright holder. ## Model description LightWeight GAN model for unconditional generation. NFT collection available [here](https://opensea.io/collection/nftrex). Dataset is available [here](https://huggingface.co/datasets/huggingnft/nftrex). Check Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). Project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ## Intended uses & limitations #### How to use Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). #### Limitations and bias Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). ## Training data Dataset is available [here](https://huggingface.co/datasets/huggingnft/nftrex). ## Training procedure Training script is available [here](https://github.com/AlekseyKorshuk/huggingnft). ## Generated Images Check results with Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ### BibTeX entry and citation info ```bibtex @InProceedings{huggingnft, author={Aleksey Korshuk} year=2022 } ```
huggingnft/theshiboshis
huggingnft
2022-04-25T15:59:05Z
3
1
transformers
[ "transformers", "huggingnft", "nft", "huggan", "gan", "image", "images", "unconditional-image-generation", "dataset:huggingnft/theshiboshis", "license:mit", "endpoints_compatible", "region:us" ]
unconditional-image-generation
2022-04-15T21:02:19Z
--- tags: - huggingnft - nft - huggan - gan - image - images - unconditional-image-generation datasets: - huggingnft/theshiboshis license: mit --- # Hugging NFT: theshiboshis ## Disclaimer All rights belong to their owners. Models and datasets can be removed from the site at the request of the copyright holder. ## Model description LightWeight GAN model for unconditional generation. NFT collection available [here](https://opensea.io/collection/theshiboshis). Dataset is available [here](https://huggingface.co/datasets/huggingnft/theshiboshis). Check Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). Project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ## Intended uses & limitations #### How to use Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). #### Limitations and bias Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). ## Training data Dataset is available [here](https://huggingface.co/datasets/huggingnft/theshiboshis). ## Training procedure Training script is available [here](https://github.com/AlekseyKorshuk/huggingnft). ## Generated Images Check results with Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ### BibTeX entry and citation info ```bibtex @InProceedings{huggingnft, author={Aleksey Korshuk} year=2022 } ```
huggingnft/cryptoadz-by-gremplin
huggingnft
2022-04-25T15:59:03Z
3
1
transformers
[ "transformers", "huggingnft", "nft", "huggan", "gan", "image", "images", "unconditional-image-generation", "dataset:huggingnft/cryptoadz-by-gremplin", "license:mit", "endpoints_compatible", "region:us" ]
unconditional-image-generation
2022-04-15T13:29:22Z
--- tags: - huggingnft - nft - huggan - gan - image - images - unconditional-image-generation datasets: - huggingnft/cryptoadz-by-gremplin license: mit --- # Hugging NFT: cryptoadz-by-gremplin ## Disclaimer All rights belong to their owners. Models and datasets can be removed from the site at the request of the copyright holder. ## Model description LightWeight GAN model for unconditional generation. NFT collection available [here](https://opensea.io/collection/cryptoadz-by-gremplin). Dataset is available [here](https://huggingface.co/datasets/huggingnft/cryptoadz-by-gremplin). Check Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). Project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ## Intended uses & limitations #### How to use Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). #### Limitations and bias Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). ## Training data Dataset is available [here](https://huggingface.co/datasets/huggingnft/cryptoadz-by-gremplin). ## Training procedure Training script is available [here](https://github.com/AlekseyKorshuk/huggingnft). ## Generated Images Check results with Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ### BibTeX entry and citation info ```bibtex @InProceedings{huggingnft, author={Aleksey Korshuk} year=2022 } ```
jfarray/Model_distiluse-base-multilingual-cased-v1_1_Epochs
jfarray
2022-04-25T15:29:40Z
124
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11 with parameters: ``` {'batch_size': 15, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 1, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
kSaluja/new-test-model
kSaluja
2022-04-25T13:43:56Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-04-25T12:49:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: new-test-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # new-test-model This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0962 - Precision: 0.9704 - Recall: 0.9766 - F1: 0.9735 - Accuracy: 0.9791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 151 | 0.1872 | 0.9295 | 0.9405 | 0.9349 | 0.9535 | | No log | 2.0 | 302 | 0.1417 | 0.9574 | 0.9652 | 0.9613 | 0.9679 | | No log | 3.0 | 453 | 0.1028 | 0.9676 | 0.9693 | 0.9684 | 0.9742 | | 0.3037 | 4.0 | 604 | 0.1063 | 0.9676 | 0.9696 | 0.9686 | 0.9743 | | 0.3037 | 5.0 | 755 | 0.0962 | 0.9704 | 0.9766 | 0.9735 | 0.9791 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
mrm8488/convnext-tiny-finetuned-beans
mrm8488
2022-04-25T13:32:06Z
99
1
transformers
[ "transformers", "pytorch", "tensorboard", "convnext", "image-classification", "generated_from_trainer", "dataset:beans", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-04-25T13:18:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beans metrics: - accuracy model-index: - name: convnext-tiny-finetuned-beans results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans args: default metrics: - name: Accuracy type: accuracy value: 0.9609375 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-finetuned-beans This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.1255 - Accuracy: 0.9609 ![pic](https://huggingface.co/proxy-datasets-preview/assets/beans/--/default/test/96/image/image.jpg) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 7171 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 37 | 0.6175 | 0.8828 | | No log | 2.0 | 74 | 0.2307 | 0.9609 | | 0.5237 | 3.0 | 111 | 0.1406 | 0.9531 | | 0.5237 | 4.0 | 148 | 0.1165 | 0.9688 | | 0.5237 | 5.0 | 185 | 0.1255 | 0.9609 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/jstoone
huggingtweets
2022-04-25T13:31:37Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-25T13:30:50Z
--- language: en thumbnail: http://www.huggingtweets.com/jstoone/1650893492572/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1233003191538790400/3OxNooXT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jakob Steinn</div> <div style="text-align: center; font-size: 14px;">@jstoone</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jakob Steinn. | Data | Jakob Steinn | | --- | --- | | Tweets downloaded | 3204 | | Retweets | 713 | | Short tweets | 177 | | Tweets kept | 2314 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1j98493p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jstoone's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3vtqate8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3vtqate8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jstoone') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
AlexTaylor/distilbert-base-uncased-finetuned-emotion
AlexTaylor
2022-04-25T13:24:10Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-25T12:41:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9263429084864518 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2257 - Accuracy: 0.926 - F1: 0.9263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8433 | 1.0 | 250 | 0.3243 | 0.9035 | 0.8996 | | 0.2583 | 2.0 | 500 | 0.2257 | 0.926 | 0.9263 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
maryam359/wav2vec-speech-project
maryam359
2022-04-25T12:31:54Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-04-25T08:47:35Z
--- tags: - generated_from_trainer model-index: - name: wav2vec-speech-project results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec-speech-project This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 800 - num_epochs: 120 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
huggan/projected_gan_cubism
huggan
2022-04-25T11:17:33Z
0
0
pytorch
[ "pytorch", "gan", "dcgan", "projected-gan", "huggan", "unconditional-image-generation", "region:us" ]
unconditional-image-generation
2022-04-16T02:26:58Z
--- library_name: pytorch tags: - gan - dcgan - projected-gan - huggan - unconditional-image-generation --- dataset: https://github.com/cs-chan/ArtGAN/tree/master/WikiArt%20Dataset trained on the official projected gan github code - you can check out the hfspace to see how to use it to generate images fun stuff check out the space demo: https://huggingface.co/spaces/huggan/projected_gan_art Made by:-<br/> [Jeronim Matijević](https://huggingface.co/Cropinky)<br/> [Massimiliano Pappa](https://huggingface.co/maxpappa)<br/>
huggan/projected_gan_abstract_expressionism_hana
huggan
2022-04-25T11:17:09Z
0
0
pytorch
[ "pytorch", "gan", "dcgan", "projected-gan", "huggan", "unconditional-image-generation", "region:us" ]
unconditional-image-generation
2022-04-15T00:37:59Z
--- library_name: pytorch tags: - gan - dcgan - projected-gan - huggan - unconditional-image-generation --- dataset: https://github.com/cs-chan/ArtGAN/tree/master/WikiArt%20Dataset trained on the official projected gan github code - you can check out the hfspace to see how to use it to generate images fun stuff check out the space demo: https://huggingface.co/spaces/huggan/projected_gan_art Made by:-<br/> [Jeronim Matijević](https://huggingface.co/Cropinky)<br/> [Massimiliano Pappa](https://huggingface.co/maxpappa)<br/>
huggan/projected_gan_color_field_hana
huggan
2022-04-25T11:16:59Z
0
0
pytorch
[ "pytorch", "gan", "dcgan", "projected-gan", "huggan", "unconditional-image-generation", "region:us" ]
unconditional-image-generation
2022-04-15T00:30:26Z
--- library_name: pytorch tags: - gan - dcgan - projected-gan - huggan - unconditional-image-generation --- dataset: https://github.com/cs-chan/ArtGAN/tree/master/WikiArt%20Dataset trained on the official projected gan github code - you can check out the hfspace to see how to use it to generate images fun stuff check out the space demo: https://huggingface.co/spaces/huggan/projected_gan_art Made by:-<br/> [Jeronim Matijević](https://huggingface.co/Cropinky)<br/> [Massimiliano Pappa](https://huggingface.co/maxpappa)<br/>
huggan/projected_gan_popart
huggan
2022-04-25T11:16:48Z
0
1
pytorch
[ "pytorch", "gan", "dcgan", "projected-gan", "huggan", "unconditional-image-generation", "region:us" ]
unconditional-image-generation
2022-04-14T01:05:56Z
--- library_name: pytorch tags: - gan - dcgan - projected-gan - huggan - unconditional-image-generation --- dataset: https://github.com/cs-chan/ArtGAN/tree/master/WikiArt%20Dataset trained on the official projected gan github code - you can check out the hfspace to see how to use it to generate images fun stuff check out the space demo: https://huggingface.co/spaces/huggan/projected_gan_art Made by:-<br/> [Jeronim Matijević](https://huggingface.co/Cropinky)<br/> [Massimiliano Pappa](https://huggingface.co/maxpappa)<br/>
huggan/projected_gan_abstract_expressionism
huggan
2022-04-25T11:16:38Z
0
1
pytorch
[ "pytorch", "gan", "dcgan", "projected-gan", "huggan", "unconditional-image-generation", "region:us" ]
unconditional-image-generation
2022-04-14T01:06:29Z
--- library_name: pytorch tags: - gan - dcgan - projected-gan - huggan - unconditional-image-generation --- dataset: https://github.com/cs-chan/ArtGAN/tree/master/WikiArt%20Dataset trained on the official projected gan github code - you can check out the hfspace to see how to use it to generate images fun stuff check out the space demo: https://huggingface.co/spaces/huggan/projected_gan_art Made by:-<br/> [Jeronim Matijević](https://huggingface.co/Cropinky)<br/> [Massimiliano Pappa](https://huggingface.co/maxpappa)<br/>
accelotron/xlm-roberta-finetune-muserc
accelotron
2022-04-25T10:04:49Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-25T09:46:39Z
xlm-RoBERTa-base fine-tuned for MuSeRC task.
ceyda/butterfly_cropped_uniq1K_512
ceyda
2022-04-25T08:22:46Z
22
3
transformers
[ "transformers", "huggan", "gan", "unconditional-image-generation", "dataset:huggan/smithsonian_butterflies_subset", "license:mit", "endpoints_compatible", "region:us" ]
unconditional-image-generation
2022-04-14T09:48:08Z
--- tags: - huggan - gan - unconditional-image-generation license: mit datasets: - huggan/smithsonian_butterflies_subset # See a list of available tags here: # https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts#L12 --- # Butterfly GAN ## Model description Based on [paper:](https://openreview.net/forum?id=1Fqg133qRaI) *Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis* which states: "Notably, the model converges from scratch with just a **few hours of training** on a single RTX-2080 GPU, and has a consistent performance, even with **less than 100 training samples**" also dubbed the Light-GAN model. This model was trained using the script [here](https://github.com/huggingface/community-events/tree/main/huggan/pytorch/lightweight_gan) which is adapted from the lucidrains [repo](https://github.com/lucidrains/lightweight-gan). Differently from the script above, I used the transforms from the official repo. Because our training images were already cropped and aligned. official paper implementation [repo](https://github.com/odegeasslbc/FastGAN-pytorch) ```py transform_list = [ transforms.Resize((int(im_size),int(im_size))), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ] ``` ## Intended uses & limitations Intended for fun & learning~ #### How to use ```python import torch from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN # install the community-events repo above gan = LightweightGAN.from_pretrained("ceyda/butterfly_cropped_uniq1K_512") gan.eval() batch_size = 1 with torch.no_grad(): ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp_(0., 1.)*255 ims = ims.permute(0,2,3,1).detach().cpu().numpy().astype(np.uint8) # ims is [BxWxHxC] call Image.fromarray(ims[0]) ``` #### Limitations and bias - During training I filtered the dataset to have only 1 butterfly from each species available. Otherwise the model generated less varied butterflies (a few species with more images would dominate). - The dataset was also filtered using CLIP scores for ['pretty butterfly','one butterfly','butterfly with open wings','colorful butterfly']. While this was done to eliminate images that contained no butterflies(just scientific tags, cluttered images) from the [full dataset](https://huggingface.co/datasets/ceyda/smithsonian_butterflies). It is easy to imagine where this type of approach would be problematic in certain scenarios; who is to say which butterfly is "pretty" and should be in the dataset.ie; CLIP failing to identify a butterfly might exclude it from the dataset causing bias. ## Training data 1000 images are used, while it was possible to increase this number, we didn't have time to manually curate the dataset. & also wanted to see if it was possible to do low data training as mention in the paper. More details are on the [data card](https://huggingface.co/datasets/huggan/smithsonian_butterflies_subset) ## Training procedure Trained on 2xA4000s for ~1day. Can see good results within 7-12h. Importans params: "--batch_size 64 --gradient_accumulate_every 4 --image_size 512 --mixed_precision fp16" Training logs can be seen [here](https://wandb.ai/cceyda/butterfly-gan/runs/2e0bm7h8?workspace=user-cceyda) ## Eval results calculated FID score on 100 images. results for different checkpoints are [here](https://wandb.ai/cceyda/butterfly-gan-fid?workspace=user-cceyda) but can't say it is too meaningful (due to the shortcomings of FID score) ## Generated Images Play with the [demo](https://huggingface.co/spaces/huggan/butterfly-gan) ### BibTeX entry and citation info Made during the huggan sprint. Model trained by: Ceyda Cinarel https://twitter.com/ceyda_cinarel Additional contributions by Jonathan Whitaker https://twitter.com/johnowhitaker
canwenxu/laprador
canwenxu
2022-04-25T08:13:10Z
8
4
transformers
[ "transformers", "pytorch", "distilbert", "feature-extraction", "arxiv:2203.06169", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-29T02:33:50Z
--- license: apache-2.0 --- # 🦮 LaPraDoR Pretrained checkpoint for Findings of ACL 2022 paper [LaPraDoR: Unsupervised Pretrained Dense Retriever for Zero-Shot Text Retrieval](https://arxiv.org/abs/2203.06169). To use this model, please refer to our [GitHub repo](https://github.com/JetRunner/LaPraDoR).
tosin/dialogpt_afriwoz_wolof
tosin
2022-04-25T06:45:15Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "en", "arxiv:2204.08083", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-24T15:57:53Z
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png language: - en license: cc-by-4.0 tags: - conversational - transformers datasets: - multi_woz_v22 and AfriWOZ metrics: - perplexity widget: - text: "dedet li rek la soxla. jerejef. ba benen yoon." --- ## DialoGPT_AfriWOZ This is a fine-tuned model of DialoGPT (small) on the AfriWOZ dataset. It is intended to be used as a conversational system in Wolof language. The dataset it's trained on is limited in scope, as it covers only certain domains such as restaurants, hotel, taxi, and booking. The perplexity achieved on the test and validation sets are 20.74 and 11.66, respectively. * Generation example from an interactive environment: |Role | Response | |---------|------------| |User | sowwu bi la bëg | |Bot | waw, ndax mën ngan ma jox ay leeral si bërëb buñu feetee ak lekkukaay bi | |User | soxla na dem gawu. ngir leeral rek bëg na joggee peterborough di dem cambridge | |Bot | soxlu na dem ginaw jurrom ñenti waxtu ak ñaar fukki simili ak jurrom ben. | |User | waw jiss sal ma ben bu seer si njëg si toluway | |Bot | jënd bi baaxna. jerejef. ba benen yoon. | Please find the information about preprocessing, training and full details of the DialoGPT in the [original DialoGPT repository](https://github.com/microsoft/DialoGPT) The paper for this work can be found on arXiv: [https://arxiv.org/pdf/2204.08083.pdf](https://arxiv.org/pdf/2204.08083.pdf) ### How to use Now we are ready to try out how the model works as a chatting partner! ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("tosin/dialogpt_afriwoz_wolof") model = AutoModelForCausalLM.from_pretrained("tosin/dialogpt_afriwoz_wolof") # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # pretty print last ouput tokens from bot print("DialoGPT_wolof_Bot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))