modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-14 00:42:58
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
558 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-14 00:36:41
card
stringlengths
11
1.01M
shre-db/bert-finetuned-ner
shre-db
2023-07-31T10:52:33Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-31T10:26:52Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9313871020946726 - name: Recall type: recall value: 0.9503534163581285 - name: F1 type: f1 value: 0.9407746772178258 - name: Accuracy type: accuracy value: 0.9866515570730559 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0577 - Precision: 0.9314 - Recall: 0.9504 - F1: 0.9408 - Accuracy: 0.9867 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0781 | 1.0 | 1756 | 0.0729 | 0.9083 | 0.9349 | 0.9214 | 0.9807 | | 0.0413 | 2.0 | 3512 | 0.0581 | 0.9196 | 0.9465 | 0.9328 | 0.9854 | | 0.0268 | 3.0 | 5268 | 0.0577 | 0.9314 | 0.9504 | 0.9408 | 0.9867 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
TencentARC/t2iadapter_zoedepth_sd15v1
TencentARC
2023-07-31T10:48:46Z
1,831
1
diffusers
[ "diffusers", "art", "t2i-adapter", "controlnet", "stable-diffusion", "image-to-image", "arxiv:2302.08453", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:apache-2.0", "region:us" ]
image-to-image
2023-07-14T19:02:00Z
--- license: apache-2.0 base_model: runwayml/stable-diffusion-v1-5 tags: - art - t2i-adapter - controlnet - stable-diffusion - image-to-image --- # T2I Adapter - Zoedepth T2I Adapter is a network providing additional conditioning to stable diffusion. Each t2i checkpoint takes a different type of conditioning as input and is used with a specific base stable diffusion checkpoint. This checkpoint provides conditioning on zoedepth depth estimation for the stable diffusion 1.5 checkpoint. ## Model Details - **Developed by:** T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** Apache 2.0 - **Resources for more information:** [GitHub Repository](https://github.com/TencentARC/T2I-Adapter), [Paper](https://arxiv.org/abs/2302.08453). - **Cite as:** @misc{ title={T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-Image Diffusion Models}, author={Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, Xiaohu Qie}, year={2023}, eprint={2302.08453}, archivePrefix={arXiv}, primaryClass={cs.CV} } ### Checkpoints | Model Name | Control Image Overview| Control Image Example | Generated Image Example | |---|---|---|---| |[TencentARC/t2iadapter_color_sd14v1](https://huggingface.co/TencentARC/t2iadapter_color_sd14v1)<br/> *Trained with spatial color palette* | A image with 8x8 color palette.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/color_sample_output.png"/></a>| |[TencentARC/t2iadapter_canny_sd14v1](https://huggingface.co/TencentARC/t2iadapter_canny_sd14v1)<br/> *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/canny_sample_output.png"/></a>| |[TencentARC/t2iadapter_sketch_sd14v1](https://huggingface.co/TencentARC/t2iadapter_sketch_sd14v1)<br/> *Trained with [PidiNet](https://github.com/zhuoinoulu/pidinet) edge detection* | A hand-drawn monochrome image with white outlines on a black background.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_input.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/sketch_sample_output.png"/></a>| |[TencentARC/t2iadapter_depth_sd14v1](https://huggingface.co/TencentARC/t2iadapter_depth_sd14v1)<br/> *Trained with Midas depth estimation* | A grayscale image with black representing deep areas and white representing shallow areas.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/depth_sample_output.png"/></a>| |[TencentARC/t2iadapter_openpose_sd14v1](https://huggingface.co/TencentARC/t2iadapter_openpose_sd14v1)<br/> *Trained with OpenPose bone image* | A [OpenPose bone](https://github.com/CMU-Perceptual-Computing-Lab/openpose) image.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/openpose_sample_output.png"/></a>| |[TencentARC/t2iadapter_keypose_sd14v1](https://huggingface.co/TencentARC/t2iadapter_keypose_sd14v1)<br/> *Trained with mmpose skeleton image* | A [mmpose skeleton](https://github.com/open-mmlab/mmpose) image.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/keypose_sample_output.png"/></a>| |[TencentARC/t2iadapter_seg_sd14v1](https://huggingface.co/TencentARC/t2iadapter_seg_sd14v1)<br/>*Trained with semantic segmentation* | An [custom](https://github.com/TencentARC/T2I-Adapter/discussions/25) segmentation protocol image.|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_input.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_input.png"/></a>|<a href="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_output.png"><img width="64" src="https://huggingface.co/datasets/diffusers/docs-images/resolve/main/t2i-adapter/seg_sample_output.png"/></a> | |[TencentARC/t2iadapter_canny_sd15v2](https://huggingface.co/TencentARC/t2iadapter_canny_sd15v2)|| |[TencentARC/t2iadapter_depth_sd15v2](https://huggingface.co/TencentARC/t2iadapter_depth_sd15v2)|| |[TencentARC/t2iadapter_sketch_sd15v2](https://huggingface.co/TencentARC/t2iadapter_sketch_sd15v2)|| |[TencentARC/t2iadapter_zoedepth_sd15v1](https://huggingface.co/TencentARC/t2iadapter_zoedepth_sd15v1)|| ## Example 1. Dependencies ```sh pip install diffusers transformers matplotlib ``` 2. Run code: ```python from PIL import Image import torch import numpy as np import matplotlib from diffusers import T2IAdapter, StableDiffusionAdapterPipeline def colorize(value, vmin=None, vmax=None, cmap='gray_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None): """Converts a depth map to a color image. Args: value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None. vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None. cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'. invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99. invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None. background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255). gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False. value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None. Returns: numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4) """ if isinstance(value, torch.Tensor): value = value.detach().cpu().numpy() value = value.squeeze() if invalid_mask is None: invalid_mask = value == invalid_val mask = np.logical_not(invalid_mask) # normalize vmin = np.percentile(value[mask],2) if vmin is None else vmin vmax = np.percentile(value[mask],85) if vmax is None else vmax if vmin != vmax: value = (value - vmin) / (vmax - vmin) # vmin..vmax else: # Avoid 0-division value = value * 0. # squeeze last dim if it exists # grey out the invalid values value[invalid_mask] = np.nan cmapper = matplotlib.cm.get_cmap(cmap) if value_transform: value = value_transform(value) # value = value / value.max() value = cmapper(value, bytes=True) # (nxmx4) img = value[...] img[invalid_mask] = background_color if gamma_corrected: img = img / 255 img = np.power(img, 2.2) img = img * 255 img = img.astype(np.uint8) return img model = torch.hub.load("isl-org/ZoeDepth", "ZoeD_N", pretrained=True) img = Image.open('./images/zoedepth_in.png') out = model.infer_pil(img) zoedepth_image = Image.fromarray(colorize(out)).convert('RGB') zoedepth_image.save('images/zoedepth.png') adapter = T2IAdapter.from_pretrained("TencentARC/t2iadapter_zoedepth_sd15v1", torch_dtype=torch.float16) pipe = StableDiffusionAdapterPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", adapter=adapter, safety_checker=None, torch_dtype=torch.float16, variant="fp16" ) pipe.to('cuda') zoedepth_image_out = pipe(prompt="motorcycle", image=zoedepth_image).images[0] zoedepth_image_out.save('images/zoedepth_out.png') ``` ![zoedepth_in](./images/zoedepth_in.png) ![zoedepth](./images/zoedepth.png) ![zoedepth_out](./images/zoedepth_out.png)
c4big/xlm-roberta-base-finetuned-panx-de-fr
c4big
2023-07-31T10:33:43Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-31T10:22:01Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1658 - F1: 0.8588 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2908 | 1.0 | 715 | 0.1909 | 0.8125 | | 0.1466 | 2.0 | 1430 | 0.1613 | 0.8492 | | 0.0945 | 3.0 | 2145 | 0.1658 | 0.8588 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
namec/llama2-qlora-finetunined-flc
namec
2023-07-31T10:29:35Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-31T10:29:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e1_s6789_v3_l6_r4
KingKazma
2023-07-31T10:29:13Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-31T10:29:12Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
cpierse/wav2vec2-large-xlsr-53-esperanto
cpierse
2023-07-31T10:27:11Z
5,661
6
transformers
[ "transformers", "pytorch", "jax", "safetensors", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "eo", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: eo datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Esperanto by Charles Pierse results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice eo type: common_voice args: eo metrics: - name: Test WER type: wer value: 12.31 --- # Wav2Vec2-Large-XLSR-53-eo Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on esperanto using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "eo", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("cpierse/wav2vec2-large-xlsr-53-esperanto") model = Wav2Vec2ForCTC.from_pretrained("cpierse/wav2vec2-large-xlsr-53-esperanto") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Esperanto test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re import jiwer def chunked_wer(targets, predictions, chunk_size=None): if chunk_size is None: return jiwer.wer(targets, predictions) start = 0 end = chunk_size H, S, D, I = 0, 0, 0, 0 while start < len(targets): chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end]) H = H + chunk_metrics["hits"] S = S + chunk_metrics["substitutions"] D = D + chunk_metrics["deletions"] I = I + chunk_metrics["insertions"] start += chunk_size end += chunk_size return float(S + D + I) / float(H + S + D) test_dataset = load_dataset("common_voice", "eo", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cpierse/wav2vec2-large-xlsr-53-esperanto") model = Wav2Vec2ForCTC.from_pretrained("cpierse/wav2vec2-large-xlsr-53-esperanto") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\„\«\(\»\)\’\']' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * chunked_wer(predictions=result["pred_strings"], targets=result["sentence"],chunk_size=2000))) ``` **Test Result**: 12.31 % ## Training The Common Voice `train`, `validation` datasets were used for training.
runningsnake/distilbert-base-uncased-finetuned-imdb
runningsnake
2023-07-31T10:20:00Z
70
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-31T08:39:27Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: runningsnake/distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # runningsnake/distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8559 - Validation Loss: 2.5783 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.8559 | 2.5783 | 0 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.2 - Tokenizers 0.13.3
digiplay/OrangeChillMix_v7fix
digiplay
2023-07-31T10:08:18Z
397
3
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-31T09:52:26Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info : https://civitai.com/models/9486?modelVersionId=129974 Original Author's DEMO images : ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/6af60647-732f-4d14-8a4e-512acc1440f0/width=1024/20247604-1034985627-(masterpiece,%20best%20quality_1),%20(photorealistic_1.2),%20light,%20depth%20of%20field,%20(detailed%20face,%20face%20focus_1),%20game%20cg,%20ultra%20detail.jpeg) ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/0946c9b3-e4fd-4a38-aa37-1c44e392b5cc/width=1024/20247628-300149503-best%20quality,%20masterpiece,%20(close-up,face%20focus_0.8),__sunglasses,%20necktie,%20animal%20ears,%20gloves,%201girl,%20black%20hair,%20shirt,%20suit,.jpeg) ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/7e31b37b-ab22-4334-9992-3765655a2e45/width=1024/20247621-1274325725-masterpiece,%20best%20quality,%20lens%20flare,%20depth%20of%20field,(backlighting,%20Backlight_1.1),%20grating,raster,(Light%20through%20hair_1.2),_1g.jpeg)
sattebaaz/ppo-LunarLander-v2
sattebaaz
2023-07-31T10:07:40Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-31T10:07:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.03 +/- 14.93 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
himanimaheshwari3/distilbert-base-uncased-finetuned-hina
himanimaheshwari3
2023-07-31T10:01:14Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-31T09:54:29Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-hina results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-hina This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.1322 | 1.0 | 25 | 5.8440 | | 4.6013 | 2.0 | 50 | 4.9180 | | 4.5674 | 3.0 | 75 | 5.5854 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
Marco-Cheung/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
Marco-Cheung
2023-07-31T09:58:56Z
164
0
transformers
[ "transformers", "pytorch", "tensorboard", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:MIT/ast-finetuned-audioset-10-10-0.4593", "base_model:finetune:MIT/ast-finetuned-audioset-10-10-0.4593", "license:bsd-3-clause", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-31T09:38:22Z
--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned2-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.93 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast-finetuned-audioset-10-10-0.4593-finetuned2-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3235 - Accuracy: 0.93 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6202 | 0.99 | 28 | 0.6153 | 0.83 | | 0.3175 | 1.98 | 56 | 0.4811 | 0.84 | | 0.123 | 2.97 | 84 | 0.4716 | 0.85 | | 0.0279 | 4.0 | 113 | 0.4575 | 0.88 | | 0.0348 | 4.99 | 141 | 0.4270 | 0.88 | | 0.0331 | 5.98 | 169 | 0.3423 | 0.89 | | 0.0022 | 6.97 | 197 | 0.3178 | 0.94 | | 0.0009 | 8.0 | 226 | 0.4422 | 0.9 | | 0.0006 | 8.99 | 254 | 0.3187 | 0.92 | | 0.0005 | 9.91 | 280 | 0.3235 | 0.93 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.14.2 - Tokenizers 0.13.3
christianiscoding/LunarLander
christianiscoding
2023-07-31T09:58:51Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-31T09:56:14Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 280.58 +/- 19.11 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
aroot/eng-fra-sent_delfy
aroot
2023-07-31T09:58:02Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-31T09:21:08Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: eng-fra-sent_delfy results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-fra-sent_delfy This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1613 - Bleu: 31.3966 - Chrf: 53.4743 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.11.0
dfalvearg/ppo-LunarLander-v2
dfalvearg
2023-07-31T09:52:25Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-31T09:52:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 244.02 +/- 16.97 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
JinsooKim/Taxi
JinsooKim
2023-07-31T09:50:48Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-31T09:50:46Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.46 +/- 2.78 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage model = load_from_hub(repo_id="JinsooKim/Taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
JinsooKim/q-FrozenLake-v1-4x4-noSlippery
JinsooKim
2023-07-31T09:39:12Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-31T09:39:11Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage model = load_from_hub(repo_id="JinsooKim/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
MKT678/slotpg
MKT678
2023-07-31T09:38:44Z
0
0
null
[ "region:us" ]
null
2023-07-31T09:13:16Z
สล็อต สำหรับนักพนันทางไหนที่พอใจรวมทั้งต้องการจะเข้ามาเป็นส่วนหนึ่งส่วนใดในทางเว็บไซต์ สล็อตpgเว็บตรง สล็อตของทางพวกเรา แน่ๆว่าท่านจำต้องทางปากทางเข้าที่ใช้งานได้จริง ถ้าเกิดคุณนั้นอยากได้หาทางเข้าเว็บไซต์สล็อตของพวกเรา สามารถที่จะเข้าปากทางเข้านี้ได้เลยถึงแม้ท่านนั้นมีเงินทุนน้อย เพียงแค่หลัก10 ก็สามารถร่วมสนุกสนานเสี่ยงดวง ไปกับเกม golden678 กับพวกเราได้แน่ๆเนื่องจากเว็บไซต์ของพวกเรานั้นมีเงินเพียงแค่ 1 บาทคุณก็สามารถเสี่ยงดวงได้แล้วรวมทั้งที่สำคัญเว็บไซต์ของพวกเรานั้นให้อัตราการจ่ายที่สูงและก็ดียิ่งกว่าคนไหนกันโน่นก็เลยไม่ใช่เรื่องยากเลยที่คุณจะสามารถทำเงินรวมทั้งร่ำรวยได้จากการเล่นเกมสล็อตออนไลน์กับพวกเรา หรือเรียกกล้วยๆว่าลงทุนน้อยแม้กระนั้นเห็นผลทดแทนสูงนั่นเอง ถ้าท่านคิดต้องการจะหาเงินเสริมที่จากการเล่นเกมพนันออนไลน์จำเป็นต้องเลือกเล่นเกมสล็อตออนไลน์ตรงนี้แค่นั้น พวกเราเป็นเว็บไซต์ สล็อตออนไลน์ อันดับต้นๆที่ยืนยันเลยว่าคุณจะสามารถทำเงินได้กำไรได้จากการเล่นเกมสล็อตออนไลน์กับเว็บไซต์ของพวกเราแน่ๆ และก็ที่สำคัญคุณจะสามารถทำเงินได้มากกว่าที่คิดอีกด้วยเพราะว่าเว็บไซต์ของพวกรานั้นกล้าให้ เว็บสล็อต pg เว็บตรง กล้าแจกในส่วนของอัตราการจ่ายที่สูงและก็คุ้มกว่าโดยเหตุนี้ถ้าหากยิ่งตกลงใจช้า มัวสองจิตสองใจ คุณก็บางทีอาจจะร่ำรวยไม่ทันเพื่อนพ้องก็เป็นได้ โดยเหตุนี้แล้วมาร่วมสมัครเป็นสมาชิกแล้วก็เล่นเกมสล็อตออนไลน์กับพวกเราแล้วมาลุ้นเงินรางวัลโบนัส เครดิตฟรี ไปร่วมกันนะคะสำหรับมือใหม่ที่พึงพอใจต้องการจะเล่นสล็อต แม้กระนั้นยังไม่กล้าพนันสามารถที่จะเข้ามาทดสอบเล่นกับทางเว็บไซต์พวกเราได้ ทดสอบเล่นฟรี ไม่ต้องจ่ายเงินอะไรก็ตามทั้งหมด คลิก สมัครสล็อต <p>► <a href="https://golden678.com/" rel="noopener nofollow">ทางเข้า PG SlotPG ล่าสุด</a></p> <p>► <a href="https://golden678.com/" rel="noopener nofollow">ทางเข้า PG SlotPG ล่าสุด</a></p> ในส่วนของขั้นตอนการสมัครเล่นเกมสล็อตแน่นอนว่าไม่มช่เรื่องยาก เพราะอย่างไร Golden678 ก็ต้องการให้ผู้ที่สนใจได้เข้ามาสมัครเป็นสมาชิกได้อย่างง่ายที่สุด สะดวกที่สุด เพียงผู้ที่สนใจเข้ามาที่สมัครเว็ล คาสิโนออนไลน์ของเรา และทำตามขั้นตอนการ สมัครสล็อตต่อไปนี้ เข้ามาที่หน้าเว็บหลัก Golden678 จากนั้นกดปุ่ม สมัครสมาชิก กรอกรายละเอียดข้อมูลการสมัครเล่นเกมสล็อตต่างๆให้ครบถ้วน ยืนยันตัวตนผ่านเบอร์โทรศัพท์ ด้วยระบบ OTP เมื่อยืนยันตัวต้นเสร็จแล้ว ผู้เล่นก็จะได้รับยูสเซอร์ประจำตัว เพื่อเข้าไปสนุกกับเกมสล็อตที่ต้องการ เพราะเหตุว่าเว็บไซต์ของพวกเราจ่ายจริงไม่มีทุจริตมีค่ายสล็อตให้เลือกเล่นมาก ประกันได้เลยว่าถ้าหากเลือกเล่นสล็อตออนไลน์กับพวกเราคุณจะไม่ผิดหวังเพราะว่าเว็บไซต์ของพวกเรานั้นมากมายไปด้วยโปรโมชั่นรวมทั้งคำแนะนำต่างๆที่เรียกว่าดีมากยิ่งกว่าเว็บไซต์สล็อตออนไลน์เว็บไซต์ไหน ๆ แน่ ๆ ขั้นตอนการสมัครสมาชิก กดเข้าสู่ระบบ และเลือกค่ายเกมที่ต้องการเล่น <p>► <a href="https://golden678.com/" rel="noopener nofollow">ทางเข้า PG SlotPG ล่าสุด</a></p> <p>► <a href="https://golden678.com/" rel="noopener nofollow">ทางเข้า PG SlotPG ล่าสุด</a></p>
jkhan447/HateXplain-weighted-agreement-labeled
jkhan447
2023-07-31T09:38:17Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-31T08:42:29Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: HateXplain-weighted-agreement-labeled results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # HateXplain-weighted-agreement-labeled This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0701 - Accuracy: 0.6760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
golaxy/gogpt2-7b-pretrain
golaxy
2023-07-31T09:36:59Z
13
1
transformers
[ "transformers", "pytorch", "tensorboard", "llama", "text-generation", "llama2", "chinese-llama2", "gogpt2-7b", "zh", "dataset:BelleGroup/train_0.5M_CN", "dataset:BelleGroup/train_1M_CN", "dataset:c-s-ale/alpaca-gpt4-data-zh", "dataset:BAAI/COIG", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-29T11:39:04Z
--- license: apache-2.0 datasets: - BelleGroup/train_0.5M_CN - BelleGroup/train_1M_CN - c-s-ale/alpaca-gpt4-data-zh - BAAI/COIG language: - zh tags: - llama2 - chinese-llama2 - gogpt2-7b --- # GoGPT2-7B: 基于Llama2-7b训练的中英文增强大模型 ![Chinese LLaMA2 7B](./assets/gogpt-banner-tou.png) <p align="center"> <img alt="GitHub" src="https://img.shields.io/github/license/ymcui/Chinese-LLaMA-Alpaca.svg?color=blue&style=flat-square"> <img alt="GitHub top language" src="https://img.shields.io/github/languages/top/ymcui/Chinese-LLaMA-Alpaca"> </p> > ICT中英文底座增强大模型:70亿参数、130亿参数 🤗Huggingface上提供了GoGPT权重,目前开放了gogpt-7b和gogpt2-7b权重 | 模型名称 | 基座模型 | 模型大小 | 下载地址 | |-------------------------------------------------------------|-----------|------|-------------------------------------------------| | [golaxy/gogpt-7b](https://huggingface.co/golaxy/gogpt-7b) | Llama-7b | 7B | [模型下载](https://huggingface.co/golaxy/gogpt-7b) | | [golaxy/gogpt2-7b](https://huggingface.co/golaxy/gogpt2-7b) | Llama2-7b | 7B | [模型下载](https://huggingface.co/golaxy/gogpt2-7b) | | [golaxy/gogpt2-7b-pretrain](https://huggingface.co/golaxy/gogpt2-7b-pretrain) | Llama2-7b | 7B | [模型下载](https://huggingface.co/golaxy/gogpt2-7b-pretrain) | | [golaxy/gogpt2-13b-pretrain](https://huggingface.co/golaxy/gogpt2-13b-pretrain) | Llama2-7b | 7B | [模型下载](https://huggingface.co/golaxy/gogpt2-13b-pretrain) | [GoGPT-Github](https://github.com/yanqiangmiffy/GoGPT) ## 🚀step1:训练分词器 [🐱怎么从零到一训练一个LLM分词器](https://github.com/yanqiangmiffy/how-to-train-tokenizer) ```text ├── data │ └── corpus.txt 训练语料 ├── llama │ ├── tokenizer_checklist.chk │ └── tokenizer.model ├── merged_tokenizer_hf 合并结果 hf格式 │ ├── special_tokens_map.json │ ├── tokenizer_config.json │ └── tokenizer.model ├── merged_tokenizer_sp │ └── open_llama.model # ├── merge_tokenizer │ └── tokenizer.model ├── open_llama.model 训练的sp模型 ├── open_llama.vocab 训练的sp词汇表 ├── README.md ├── step0_step0_process_text.py 基于多分数据集准备训练语料 ├── step1_make_corpus.py 基于中文Wikipedia数据准备训练语料 ├── step2_train_tokenzier.py 训练分词器 ├── step3_tokenzier_segment.py 测试训练后的模型,包括编码和解码测试样例 └── step4_merge_tokenizers.py 与原版llama的分词器进行合并,得到hf格式的tokenizer ``` 原始llama2词表大小**32000**,与40k训练的中文分词模型合并之后词表大小为**68419**,sft添加pad字符之后大小为**68420** ## 🚀step2:二次预训练 > 在中文预训练语料上对LLaMA进行增量预训练、继续预训练,目前训练语料20GB,后续继续迭代更新 ## 🚀step3: 有监督微调 基于多样性的指令数据进行微调,包括belle,alpaca的中英文指令数据以及moss多轮对话数据,完成在120万+条数据的指令微调 - belle数据:120k数据 v1 - stanford_alapca:52k数据 v2 - stanford_alapca_gpt4_zh:52k数据 v2 - [sharegpt](data%2Ffinetune%2Fsharegpt):90k数据 - [fnlp/moss-003-sft-data](https://huggingface.co/datasets/fnlp/moss-003-sft-data):moss多轮对话数据 根据长度(输出长度大约500)采样之后,筛选出11万指令数据进行sft训练 ## 测试效果 - 西瓜和南瓜有什么区别 ``` 1. 外观:西瓜通常是圆形或椭圆形的,有浅黄色或棕色的外皮,内部有红色或黄色的果肉。而南瓜则是一个圆形或椭圆形的,通常有浅黄色或棕色的外皮,内部有橙黄色的果肉。 2. 品种:西瓜主要分为三种品种:小型、中等和巨型。小型西瓜通常只有一个或两个果核,中等西瓜通常有两个或三个果核,巨型西瓜则有四个或更多果核。南瓜主要分为两种品种:南 瓜和萝卜南瓜。南瓜通常有两个或三个果核,萝卜南瓜则有四个或更多果核。 3. 生长环境:西瓜需要温暖的气候,并且需要充足的阳光。它们通常生长在热带或亚热带地区。南瓜则在温带和寒带地区生长。南瓜需要更长的冬季来生长,而西瓜通常在春季和夏季生 长。 4. 营养价值:西瓜和南瓜都是富含维生素C和纤维素的水果。西瓜还富含抗氧化剂和钾,而南瓜富含叶酸和维生素E。 总的来说,西瓜和南瓜是两种完全不同的果类,它们在外观、品种、生长环境和营养价值上有很多区别。 ``` - 如何提高我的时间管理技能? ``` Response: 1. 制定计划和目标:制定每周或每日的计划和目标,以帮助您更好地分配时间。 2. 优先考虑最重要的任务:优先完成最重要的任务,这有助于避免分心和浪费时间。 3. 避免拖延:尝试避免拖延,尽早开始任务,这样您可以更容易地完成它们。 4. 集中注意力:集中注意力,避免同时处理多个任务,这有助于减少分心和提高效率。5. 利用工具和技术:利用时间管理工具和技术,如日历、提醒和待办事项列表,以帮助您更好地管理时间。 6. 学会说“不”:学会拒绝不必要的事情,这有助于您更好地利用时间,并专注于最重要的任务。 7. 保持积极心态:保持积极心态,相信自己能够管理时间,并尝试不断学习和发展自己的时间管理技能。 8. 休息和放松:尝试保持工作和生活的平衡,并定期休息和放松,这有助于提高时间管理技能和提高工作效率。 ``` - Python和JavaScript编程语言的主要区别是什么? ``` 1. 语法不同:Python是一种面向对象的编程语言,它的语法比较严格,需要使用花括号来标识代码块。JavaScript是一种脚本语言,它的语法相对比较松散,需要使用花括号或缩进来标 识代码块。 2. 应用领域不同:Python广泛应用于数据分析、机器学习、人工智能等领域,由于其可读性好、语法清晰、功能强大等特点。JavaScript则主要应用于前端开发、后端开发、移动端开发 等领域。 3. 运行环境不同:Python的运行环境较为独立,可以在不同的操作系统上运行。JavaScript的运行环境相对较复杂,需要考虑浏览器和Web服务器的兼容性问题。 4. 应用场景不同:Python更适合进行科学计算、数据分析、机器学习等方面的应用,如Pandas、Numpy等库;而JavaScript则更适合进行前端开发、后端开发、移动端开发等领域的脚本编程,如React、Angular等框架。 5. 库和框架不同:Python拥有丰富的标准库和第三方库,如Django、Flask等;而JavaScript则拥有流行的Web开发框架,如React、Angular等。 ``` - AI会如何影响农业生产? ``` AI将有助于提高农业生产效率,优化作物种植和收成过程,以及提高农产品的质量和品质。 AI技术可以应用于植物监测、灌溉管理、病虫害防治、土壤分析等方面,减少人力 成本,提高生产效率,同时也可以降低农业生产中的资源浪费和环境污染。例如,AI可以监测土壤湿度、气象状况等环境因素,帮助农民决定何时种植、灌溉和施肥,从而提高农作物的产量和质量。 另外,AI还可以通过监测植物健康状况,及时发现和预防病虫害的发生,提高农作物的产量和质量。此外,AI还可以帮助农民预测未来天气、干旱和洪涝灾害,制定更有效的灾害应对计划。 总之,AI有望成为农业生产中不可或缺的技术,在未来为农业生产带来更大的改进和效益。 ``` - 翻译成英文:过去都是假的,回忆是一条没有归途的路,以往的一切春天都无法复原,即使最狂热最坚贞的爱情,归根结底也不过是一种瞬息即逝的现实,唯有孤独永恒。 ``` Response: Translation into English: The past is false, memories are a dead-end road, all previous springs are hopelessly incapable of being restored, even the most passionate and steadfast love is ultimately a fleeting reality, and only solitude is eternal ``` - 请用python编程语言实现快速排序算法的代码 ``` 快速排序(Quick Sort)是一种常用的排序算法,基本思想是通过一次排序将数组分为两个部分,其中一个部分的所有元素都比另一个小,然后再分别对这两个部分进行排序 ,直到整个数组有序。 以下是使用Python语言实现快速排序的代码: ```python def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[len(arr)//2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right) ``` 在这个实现中,首先判断数组的长度是否小于等于1,如果是,则直接返回该数组。否则,选择一个枢轴(pivot)元素,将数组分为三个部分:小于枢轴的左部分、等于枢轴的中间部分、大于枢轴的右部分。接着递归地对左部分和右部分进行排序,并将它们与中间部分连接起来。最后返回排好序的数组。 以下是使用上述代码对数组进行排序的示例: ```python arr = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5] sorted_arr = quick_sort(arr) print(sorted_arr) ``` ``` 输出结果为:[1, 1, 2, 3, 3, 4, 5, 5, 5, 6, 9] ``` ## 免责声明 本项目相关资源仅供学术研究之用,严禁用于商业用途。 使用涉及第三方代码的部分时,请严格遵循相应的开源协议。 模型生成的内容受模型计算、随机性和量化精度损失等因素影响,本项目不对其准确性作出保证。 对于模型输出的任何内容,本项目不承担任何法律责任,亦不对因使用相关资源和输出结果而可能产生的任何损失承担责任。
golaxy/gogpt2-13b-pretrain
golaxy
2023-07-31T09:36:19Z
10
3
transformers
[ "transformers", "pytorch", "tensorboard", "llama", "text-generation", "llama2", "chinese-llama2", "gogpt2-7b", "zh", "dataset:BelleGroup/train_0.5M_CN", "dataset:BelleGroup/train_1M_CN", "dataset:c-s-ale/alpaca-gpt4-data-zh", "dataset:BAAI/COIG", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-31T08:24:40Z
--- license: apache-2.0 datasets: - BelleGroup/train_0.5M_CN - BelleGroup/train_1M_CN - c-s-ale/alpaca-gpt4-data-zh - BAAI/COIG language: - zh tags: - llama2 - chinese-llama2 - gogpt2-7b --- # GoGPT2-13B: 基于Llama2-13b训练的中英文增强大模型 ![Chinese LLaMA2 7B](./assets/gogpt-banner-tou.png) <p align="center"> <img alt="GitHub" src="https://img.shields.io/github/license/ymcui/Chinese-LLaMA-Alpaca.svg?color=blue&style=flat-square"> <img alt="GitHub top language" src="https://img.shields.io/github/languages/top/ymcui/Chinese-LLaMA-Alpaca"> </p> > ICT中英文底座增强大模型:70亿参数、130亿参数 🤗Huggingface上提供了GoGPT权重,目前开放了gogpt-7b和gogpt2-7b权重 | 模型名称 | 基座模型 | 模型大小 | 下载地址 | |-------------------------------------------------------------|-----------|------|-------------------------------------------------| | [golaxy/gogpt-7b](https://huggingface.co/golaxy/gogpt-7b) | Llama-7b | 7B | [模型下载](https://huggingface.co/golaxy/gogpt-7b) | | [golaxy/gogpt2-7b](https://huggingface.co/golaxy/gogpt2-7b) | Llama2-7b | 7B | [模型下载](https://huggingface.co/golaxy/gogpt2-7b) | | [golaxy/gogpt2-7b-pretrain](https://huggingface.co/golaxy/gogpt2-7b-pretrain) | Llama2-7b | 7B | [模型下载](https://huggingface.co/golaxy/gogpt2-7b-pretrain) | | [golaxy/gogpt2-13b-pretrain](https://huggingface.co/golaxy/gogpt2-13b-pretrain) | Llama2-7b | 7B | [模型下载](https://huggingface.co/golaxy/gogpt2-13b-pretrain) | [GoGPT-Github](https://github.com/yanqiangmiffy/GoGPT) ## 🚀step1:训练分词器 [🐱怎么从零到一训练一个LLM分词器](https://github.com/yanqiangmiffy/how-to-train-tokenizer) ```text ├── data │ └── corpus.txt 训练语料 ├── llama │ ├── tokenizer_checklist.chk │ └── tokenizer.model ├── merged_tokenizer_hf 合并结果 hf格式 │ ├── special_tokens_map.json │ ├── tokenizer_config.json │ └── tokenizer.model ├── merged_tokenizer_sp │ └── open_llama.model # ├── merge_tokenizer │ └── tokenizer.model ├── open_llama.model 训练的sp模型 ├── open_llama.vocab 训练的sp词汇表 ├── README.md ├── step0_step0_process_text.py 基于多分数据集准备训练语料 ├── step1_make_corpus.py 基于中文Wikipedia数据准备训练语料 ├── step2_train_tokenzier.py 训练分词器 ├── step3_tokenzier_segment.py 测试训练后的模型,包括编码和解码测试样例 └── step4_merge_tokenizers.py 与原版llama的分词器进行合并,得到hf格式的tokenizer ``` 原始llama2词表大小**32000**,与40k训练的中文分词模型合并之后词表大小为**68419**,sft添加pad字符之后大小为**68420** ## 🚀step2:二次预训练 > 在中文预训练语料上对LLaMA进行增量预训练、继续预训练,目前训练语料20GB,后续继续迭代更新 ## 🚀step3: 有监督微调 基于多样性的指令数据进行微调,包括belle,alpaca的中英文指令数据以及moss多轮对话数据,完成在120万+条数据的指令微调 - belle数据:120k数据 v1 - stanford_alapca:52k数据 v2 - stanford_alapca_gpt4_zh:52k数据 v2 - [sharegpt](data%2Ffinetune%2Fsharegpt):90k数据 - [fnlp/moss-003-sft-data](https://huggingface.co/datasets/fnlp/moss-003-sft-data):moss多轮对话数据 根据长度(输出长度大约500)采样之后,筛选出11万指令数据进行sft训练 ## 测试效果 - 西瓜和南瓜有什么区别 ``` 1. 外观:西瓜通常是圆形或椭圆形的,有浅黄色或棕色的外皮,内部有红色或黄色的果肉。而南瓜则是一个圆形或椭圆形的,通常有浅黄色或棕色的外皮,内部有橙黄色的果肉。 2. 品种:西瓜主要分为三种品种:小型、中等和巨型。小型西瓜通常只有一个或两个果核,中等西瓜通常有两个或三个果核,巨型西瓜则有四个或更多果核。南瓜主要分为两种品种:南 瓜和萝卜南瓜。南瓜通常有两个或三个果核,萝卜南瓜则有四个或更多果核。 3. 生长环境:西瓜需要温暖的气候,并且需要充足的阳光。它们通常生长在热带或亚热带地区。南瓜则在温带和寒带地区生长。南瓜需要更长的冬季来生长,而西瓜通常在春季和夏季生 长。 4. 营养价值:西瓜和南瓜都是富含维生素C和纤维素的水果。西瓜还富含抗氧化剂和钾,而南瓜富含叶酸和维生素E。 总的来说,西瓜和南瓜是两种完全不同的果类,它们在外观、品种、生长环境和营养价值上有很多区别。 ``` - 如何提高我的时间管理技能? ``` Response: 1. 制定计划和目标:制定每周或每日的计划和目标,以帮助您更好地分配时间。 2. 优先考虑最重要的任务:优先完成最重要的任务,这有助于避免分心和浪费时间。 3. 避免拖延:尝试避免拖延,尽早开始任务,这样您可以更容易地完成它们。 4. 集中注意力:集中注意力,避免同时处理多个任务,这有助于减少分心和提高效率。5. 利用工具和技术:利用时间管理工具和技术,如日历、提醒和待办事项列表,以帮助您更好地管理时间。 6. 学会说“不”:学会拒绝不必要的事情,这有助于您更好地利用时间,并专注于最重要的任务。 7. 保持积极心态:保持积极心态,相信自己能够管理时间,并尝试不断学习和发展自己的时间管理技能。 8. 休息和放松:尝试保持工作和生活的平衡,并定期休息和放松,这有助于提高时间管理技能和提高工作效率。 ``` - Python和JavaScript编程语言的主要区别是什么? ``` 1. 语法不同:Python是一种面向对象的编程语言,它的语法比较严格,需要使用花括号来标识代码块。JavaScript是一种脚本语言,它的语法相对比较松散,需要使用花括号或缩进来标 识代码块。 2. 应用领域不同:Python广泛应用于数据分析、机器学习、人工智能等领域,由于其可读性好、语法清晰、功能强大等特点。JavaScript则主要应用于前端开发、后端开发、移动端开发 等领域。 3. 运行环境不同:Python的运行环境较为独立,可以在不同的操作系统上运行。JavaScript的运行环境相对较复杂,需要考虑浏览器和Web服务器的兼容性问题。 4. 应用场景不同:Python更适合进行科学计算、数据分析、机器学习等方面的应用,如Pandas、Numpy等库;而JavaScript则更适合进行前端开发、后端开发、移动端开发等领域的脚本编程,如React、Angular等框架。 5. 库和框架不同:Python拥有丰富的标准库和第三方库,如Django、Flask等;而JavaScript则拥有流行的Web开发框架,如React、Angular等。 ``` - AI会如何影响农业生产? ``` AI将有助于提高农业生产效率,优化作物种植和收成过程,以及提高农产品的质量和品质。 AI技术可以应用于植物监测、灌溉管理、病虫害防治、土壤分析等方面,减少人力 成本,提高生产效率,同时也可以降低农业生产中的资源浪费和环境污染。例如,AI可以监测土壤湿度、气象状况等环境因素,帮助农民决定何时种植、灌溉和施肥,从而提高农作物的产量和质量。 另外,AI还可以通过监测植物健康状况,及时发现和预防病虫害的发生,提高农作物的产量和质量。此外,AI还可以帮助农民预测未来天气、干旱和洪涝灾害,制定更有效的灾害应对计划。 总之,AI有望成为农业生产中不可或缺的技术,在未来为农业生产带来更大的改进和效益。 ``` - 翻译成英文:过去都是假的,回忆是一条没有归途的路,以往的一切春天都无法复原,即使最狂热最坚贞的爱情,归根结底也不过是一种瞬息即逝的现实,唯有孤独永恒。 ``` Response: Translation into English: The past is false, memories are a dead-end road, all previous springs are hopelessly incapable of being restored, even the most passionate and steadfast love is ultimately a fleeting reality, and only solitude is eternal ``` - 请用python编程语言实现快速排序算法的代码 ``` 快速排序(Quick Sort)是一种常用的排序算法,基本思想是通过一次排序将数组分为两个部分,其中一个部分的所有元素都比另一个小,然后再分别对这两个部分进行排序 ,直到整个数组有序。 以下是使用Python语言实现快速排序的代码: ```python def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[len(arr)//2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right) ``` 在这个实现中,首先判断数组的长度是否小于等于1,如果是,则直接返回该数组。否则,选择一个枢轴(pivot)元素,将数组分为三个部分:小于枢轴的左部分、等于枢轴的中间部分、大于枢轴的右部分。接着递归地对左部分和右部分进行排序,并将它们与中间部分连接起来。最后返回排好序的数组。 以下是使用上述代码对数组进行排序的示例: ```python arr = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5] sorted_arr = quick_sort(arr) print(sorted_arr) ``` ``` 输出结果为:[1, 1, 2, 3, 3, 4, 5, 5, 5, 6, 9] ``` ## 免责声明 本项目相关资源仅供学术研究之用,严禁用于商业用途。 使用涉及第三方代码的部分时,请严格遵循相应的开源协议。 模型生成的内容受模型计算、随机性和量化精度损失等因素影响,本项目不对其准确性作出保证。 对于模型输出的任何内容,本项目不承担任何法律责任,亦不对因使用相关资源和输出结果而可能产生的任何损失承担责任。
undrwolf/SoccerTwos-RL
undrwolf
2023-07-31T09:19:36Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-07-31T09:09:57Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Agog/Soccer 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Josrf/ppo-LunarLander-v2
Josrf
2023-07-31T09:16:02Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-31T09:15:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 243.48 +/- 35.92 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Srivasanth23/Srivasanth_Portfolio
Srivasanth23
2023-07-31T09:04:39Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-07-30T08:18:37Z
--- license: mit --- # Sv_Portfolio <br>Created my own portfolio website using <b>JavaScript</b> and <b> CSS Flexbox </b> properties. <br> <b> Webiste Link ➡️ [here](https://jsrivportfolio.ccbp.tech/)</b> ## 🛠 Tools used | Tools |Applied | | ----------------- | ------------------------------------------------------------------ | | IDE | VSCode | | Frontend | JS, CSS, HTML, Bootstrap| ## ✍ Author [Jammula Srivasanth](https://github.com/srivasanth23) <br> ## 🛡 License You may use this project freely at your own risk. See [LICENSE](https://choosealicense.com/licenses/mit/). Copyright (c) 2023 Jammula Srivasanth <div align="center"> <h3 align="left">Connect with me </h3> <a href="https://www.github.com/srivasanth23" target="_blank"><img alt="Github" width="40px" src="https://cdn-icons-png.flaticon.com/512/733/733553.png"></a> &nbsp&nbsp&nbsp <a href="[https://www.linkedin.com/in/mahimachuri/](https://linkedin.com/in/https://www.linkedin.com/in/srivasanth-jammula)" target="_blank"><img alt="LinkedIn" width="40px" src="https://cdn-icons-png.flaticon.com/512/3536/3536505.png"></a> &nbsp&nbsp&nbsp <a href="mailto:techisrivasanth23@gmail.com" target="_blank"><img alt="Gmail" width="40px" src="https://cdn-icons-png.flaticon.com/512/5968/5968534.png"></a>&nbsp&nbsp&nbsp </div>
MichelNivard/Rchat_3b_v2
MichelNivard
2023-07-31T08:47:09Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-30T13:19:34Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
NasimB/all-base-miss-switchboard-seed
NasimB
2023-07-31T08:30:01Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-31T05:10:45Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: all-base-miss-switchboard-seed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-base-miss-switchboard-seed This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.1071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.3572 | 0.29 | 500 | 5.3445 | | 5.0473 | 0.59 | 1000 | 4.9275 | | 4.702 | 0.88 | 1500 | 4.6874 | | 4.4496 | 1.18 | 2000 | 4.5481 | | 4.291 | 1.47 | 2500 | 4.4269 | | 4.2007 | 1.77 | 3000 | 4.3256 | | 4.0643 | 2.06 | 3500 | 4.2553 | | 3.8944 | 2.36 | 4000 | 4.2086 | | 3.867 | 2.65 | 4500 | 4.1498 | | 3.8222 | 2.95 | 5000 | 4.1040 | | 3.6099 | 3.24 | 5500 | 4.0985 | | 3.5862 | 3.54 | 6000 | 4.0672 | | 3.5652 | 3.83 | 6500 | 4.0345 | | 3.4416 | 4.12 | 7000 | 4.0403 | | 3.3122 | 4.42 | 7500 | 4.0320 | | 3.2986 | 4.71 | 8000 | 4.0164 | | 3.2906 | 5.01 | 8500 | 4.0097 | | 3.1267 | 5.3 | 9000 | 4.0182 | | 3.1245 | 5.6 | 9500 | 4.0176 | | 3.1197 | 5.89 | 10000 | 4.0167 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
undrwolf/rl_course_vizdoom_health_gathering_supreme
undrwolf
2023-07-31T08:11:34Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-31T08:11:25Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.96 +/- 4.63 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r undrwolf/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
badokorach/bert-base-cased-finetuned
badokorach
2023-07-31T08:06:22Z
111
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-31T07:55:02Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3217 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 66 | 2.6893 | | No log | 2.0 | 132 | 2.4447 | | No log | 3.0 | 198 | 2.3882 | | No log | 4.0 | 264 | 2.3255 | | No log | 5.0 | 330 | 2.3217 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
legendarymoney/inarowboatapcoolmuchhappydays
legendarymoney
2023-07-31T07:41:53Z
0
2
null
[ "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
null
2023-07-31T07:16:16Z
--- license: creativeml-openrail-m tags: - stable-diffusion --- This model is based on https://huggingface.co/runwayml/stable-diffusion-v1-5 with additional finetuning based on dreambooth training on a local machine to fine tune the model. Each version update will feature additional dreambooth training cycles This model uses CreativeML-OpenRAIL-M license - https://huggingface.co/spaces/CompVis/stable-diffusion-license You are free to redistribute or distribute modifications (e.g., merged) in accordance with creativeml-openrail-m Chapter III. This is a SD 1.5 fine-tune model https://huggingface.co/stabilityai are the creators of the stable diffusion model used as a base. Euler A or DPM++ 2M Karras with 25 - 35 steps CFG Scale 6 - 8 Hires. fix with Latent upscaler 0 Hires steps and Denoising strength 0.25-0.45 Upscale by 1.1-2.0 Free Model Share to Others, Free to use commercially, free to modify. Please tell me if i missing anything that should be here
tds/ppo-lunarlander-v2
tds
2023-07-31T07:37:02Z
5
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-31T05:49:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 245.94 +/- 24.70 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Pashtu/llama2-d
Pashtu
2023-07-31T07:22:04Z
4
0
peft
[ "peft", "region:us" ]
null
2023-07-31T07:22:02Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
saurabh2086/ppo-LunarLander-v2
saurabh2086
2023-07-31T07:14:52Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-31T07:14:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 242.65 +/- 16.98 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
schakal/OUTPUT_DIR
schakal
2023-07-31T07:12:32Z
28
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-31T06:54:44Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - schakal/output_dir This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
xiao12346/t5-large_PREFIX_TUNING_SEQ2SEQ_c2
xiao12346
2023-07-31T07:12:25Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-31T07:11:47Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
JosefJilek/AAT-JPEG-Artefact-Detection
JosefJilek
2023-07-31T07:11:56Z
0
2
tf-keras
[ "tf-keras", "image-classification", "license:creativeml-openrail-m", "region:us" ]
image-classification
2023-07-29T12:36:59Z
--- license: creativeml-openrail-m tags: - image-classification --- # AAT JPEG Artefact Datection Autodetects JPEG artefacts in categories of C100 (no artefacts), C95, C90, C85, C80, C70, C60, C40 and C20 (really terrible artefacts). The input is 1024x1024 large image. Image is converted to gray scale to omit redundant informations and reduce overall training and inference time. Model is self designed and doesn't use any other model as base. # Training stats Around 60k of images was used during training. <img src="https://huggingface.co/JosefJilek/AAT-JPEG-Artefact-Detection/resolve/main/v1.0-stats.png"></img>
AdiOO7/Azure-tickets-Classifier-llama-1
AdiOO7
2023-07-31T07:10:42Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-31T07:10:40Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
pradeepiisc/xlm-roberta-base-finetuned-panx-fr
pradeepiisc
2023-07-31T06:54:31Z
104
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-30T05:56:36Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.fr split: validation args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8492640839113517 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2606 - F1: 0.8493 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5508 | 1.0 | 191 | 0.3140 | 0.7874 | | 0.2698 | 2.0 | 382 | 0.2807 | 0.8322 | | 0.1837 | 3.0 | 573 | 0.2606 | 0.8493 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.1+cu118 - Datasets 2.10.1 - Tokenizers 0.13.3
c4big/xlm-roberta-base-finetuned-panx-de
c4big
2023-07-31T06:54:00Z
135
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-13T09:03:10Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8616659101225601 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1329 - F1: 0.8617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2568 | 1.0 | 525 | 0.1583 | 0.8125 | | 0.1261 | 2.0 | 1050 | 0.1458 | 0.8473 | | 0.0823 | 3.0 | 1575 | 0.1329 | 0.8617 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3
Tahsin-Mayeesha/squad-bn-mt5-base2
Tahsin-Mayeesha
2023-07-31T06:53:25Z
105
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "doi:10.57967/hf/0940", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-11-11T17:49:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: squad-bn-mt5-base2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-bn-mt5-base2 This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5309 - Rouge1 Precision: 37.5039 - Rouge1 Recall: 30.4476 - Rouge1 Fmeasure: 32.6695 - Rouge2 Precision: 16.2843 - Rouge2 Recall: 12.9093 - Rouge2 Fmeasure: 13.9246 - Rougel Precision: 35.2648 - Rougel Recall: 28.6919 - Rougel Fmeasure: 30.7578 - Rougelsum Precision: 35.2646 - Rougelsum Recall: 28.6829 - Rougelsum Fmeasure: 30.7527 - Bleu-1: 23.9098 - Bleu-2: 14.7458 - Bleu-3: 9.684 - Bleu-4: 6.6217 - Meteor: 0.142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 Precision | Rouge1 Recall | Rouge1 Fmeasure | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | Rougel Precision | Rougel Recall | Rougel Fmeasure | Rougelsum Precision | Rougelsum Recall | Rougelsum Fmeasure | Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | Meteor | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:-------------------:|:----------------:|:------------------:|:-------:|:-------:|:------:|:------:|:------:| | 0.698 | 1.0 | 6769 | 0.5654 | 35.1173 | 28.5689 | 30.6164 | 14.7565 | 11.6885 | 12.6012 | 33.0241 | 26.9309 | 28.8245 | 33.0061 | 26.9075 | 28.807 | 22.6163 | 13.6841 | 8.8346 | 5.926 | 0.1314 | | 0.6202 | 2.0 | 13538 | 0.5437 | 36.3795 | 29.5116 | 31.6675 | 15.5398 | 12.3022 | 13.2805 | 34.3036 | 27.8749 | 29.8881 | 34.2498 | 27.8384 | 29.8439 | 23.2744 | 14.1999 | 9.2715 | 6.2908 | 0.1364 | | 0.5878 | 3.0 | 20307 | 0.5322 | 37.2522 | 30.1185 | 32.3701 | 16.0437 | 12.6396 | 13.6664 | 35.0062 | 28.3657 | 30.4487 | 34.9742 | 28.3319 | 30.4195 | 23.7569 | 14.5781 | 9.5429 | 6.52 | 0.1407 | | 0.5761 | 4.0 | 27076 | 0.5309 | 37.5 | 30.4513 | 32.6723 | 16.2813 | 12.9079 | 13.9284 | 35.2662 | 28.6924 | 30.755 | 35.2509 | 28.6759 | 30.7444 | 23.9098 | 14.7458 | 9.684 | 6.6217 | 0.142 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2 ## Citation @misc {tahsin_mayeesha_2023, author = { {Tahsin Mayeesha} }, title = { squad-bn-mt5-base2 (Revision 4ab9b63) }, year = 2023, url = { https://huggingface.co/Tahsin-Mayeesha/squad-bn-mt5-base2 }, doi = { 10.57967/hf/0940 }, publisher = { Hugging Face } }
runningsnake/bert-finetuned-ner
runningsnake
2023-07-31T06:45:05Z
61
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-31T04:32:34Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: runningsnake/bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # runningsnake/bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0279 - Validation Loss: 0.0536 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1745 | 0.0692 | 0 | | 0.0472 | 0.0569 | 1 | | 0.0279 | 0.0536 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.2 - Tokenizers 0.13.3
teftef/teftef_mix
teftef
2023-07-31T06:40:57Z
0
1
null
[ "stable-diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-16T03:55:02Z
--- language: - en tags: - stable-diffusion - text-to-image license: creativeml-openrail-m --- # teftef_mix ### Fixed Prompts <img src="https://cdn-uploads.huggingface.co/production/uploads/63056e2d99870e13d3df4e73/aTF8xXk3yvjGaz0sYYabu.jpeg" width="900" > ・Prompt: one girl , long hair , yellow eyes, black hair,summer ,sunflower , blue sky , ・Negative prompt: bad-hands-5, EasyNegativeV2,(missing finger, extra finger fusion finger, ::1.4),simple background ・Steps: 19 ・Sampler: Euler a ・CFG scale: 7 ・Seed: 882503908 ・Size: 512x768 ・Denoising strength: 0.5 ・Clip skip: 2 ・Hires upscale: 2 ・Hires upscaler: R-ESRGAN 4x+ Anime6B <img src="https://cdn-uploads.huggingface.co/production/uploads/63056e2d99870e13d3df4e73/ihb6wje8llMGQtY5J28QQ.jpeg" width="900" > ・Prompt: one girl , long hair , yellow eyes, black hair,fireworks, night sky,pink yukata , furisode ,lanthanum,many many fireworks ・Negative prompt: bad-hands-5, EasyNegativeV2,(missing finger, extra finger fusion finger, ::1.4),simple background ・Steps: 19 ・Sampler: Euler a ・CFG scale: 7 ・Seed: 882503908 ・Size: 512x768 ・Denoising strength: 0.5 ・Clip skip: 2 ・Hires upscale: 2 ・Hires upscaler: R-ESRGAN 4x+ Anime6B ### LoRA <img src="https://cdn-uploads.huggingface.co/production/uploads/63056e2d99870e13d3df4e73/_-XwiFtg89-KcPEt4wwfu.jpeg" width="900" > ・Prompt: <lora:mafuyu:0.67>,one girl , long hair , yellow eyes, black hair,fireworks, night sky,light blue yukata , furisode ,lanthanum,many many fireworks, ・Negative prompt: bad-hands-5, EasyNegativeV2,(missing finger, extra finger fusion finger, ::1.4),simple background ・Steps: 19 ・Sampler: Euler a ・CFG scale: 7 ・Seed: 882503908 ・Size: 512x768 ・Denoising strength: 0.5 ・Clip skip: 2 ・Hires upscale: 2 ・Hires upscaler: R-ESRGAN 4x+ Anime6B ### license ・Please do not distribute without permission. ・Feel free to use it for merging. ・Images output using these models can be used for commercial purposes. ・Do not use this model for commercial purposes. ・Do not use for crimes. Public : 2023/01/15 teftef
narvind2003/llama-2-7b-miniguanaco
narvind2003
2023-07-31T06:06:46Z
8
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:mlabonne/guanaco-llama2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-31T05:36:47Z
--- license: mit datasets: - mlabonne/guanaco-llama2 --- # Finetuning Llama2 7b on 1000 samples from the Guanaco dataset, using QLoRA - quantization + low rank adaptation. The Llama2 model from Meta has several variants. The smallest one containing 7 billion parameters has been finetuned here.
RohanMusk/Llama-2-7b-hf-abl
RohanMusk
2023-07-31T05:44:26Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-31T05:14:36Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
kcsteam1/0731_switch_ver1.1
kcsteam1
2023-07-31T05:39:09Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-31T05:39:03Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
pratsy/rl_course_vizdoom_health_gathering_supreme
pratsy
2023-07-31T05:25:17Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-31T04:45:37Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.85 +/- 5.17 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r pratsy/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
himanimaheshwari3/distilbert-base-uncased-finetuned-himani5
himanimaheshwari3
2023-07-31T05:22:56Z
66
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-31T05:16:19Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: himanimaheshwari3/distilbert-base-uncased-finetuned-himani5 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # himanimaheshwari3/distilbert-base-uncased-finetuned-himani5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.5780 - Validation Loss: 5.5369 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -993, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.5780 | 5.5369 | 0 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.1 - Tokenizers 0.13.3
keelezibel/id-hatespeech
keelezibel
2023-07-31T05:10:15Z
32
0
transformers
[ "transformers", "pytorch", "bert", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-07-19T09:04:45Z
--- license: apache-2.0 language: - en --- This model will detect hate speech in native language Indo. Finetuned upon the `indobert-base-p2` model from Gojek. ## Usage ``` HS_DOMAIN = ['hs', 'abusive', 'hs_individual', 'hs_group', 'hs_religion', 'hs_race', 'hs_physical', 'hs_gender', 'hs_other', 'hs_weak', 'hs_moderate', 'hs_strong'] LABEL2INDEX = {'false': 0, 'true': 1} INDEX2LABEL = {0: 'false', 1: 'true'} # Load Tokenizer tokenizer_model_id = "indobenchmark/indobert-base-p2" tokenizer = BertTokenizer.from_pretrained(tokenizer_model_id) config = AutoConfig.from_pretrained(tokenizer_model_id) config.num_labels_list = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] # Load this model model_id = "keelezibel/id-hatespeech" model = BertForMultiLabelClassification.from_pretrained(model_id, config=config) # Encode Text subwords = tokenizer.encode(text.text) subwords = torch.LongTensor(subwords).view(1, -1).to(model.device) logits = model(subwords)[0] labels = [torch.topk(logit, k=1, dim=-1)[-1].squeeze().item() for logit in logits] res = dict() for idx, label in enumerate(labels): pred = INDEX2LABEL[label] proba = float(F.softmax(logits[idx], dim=-1).squeeze()[label]*100) res[HS_DOMAIN[idx]] = (pred, round(proba,2)) ``` ## Output ``` { "hs": [ "true", 99.94 ], "abusive": [ "true", 86.8 ], "hs_individual": [ "false", 99.97 ], "hs_group": [ "true", 99.96 ], "hs_religion": [ "false", 99.86 ], "hs_race": [ "false", 99.98 ], "hs_physical": [ "false", 99.99 ], "hs_gender": [ "false", 99.95 ], "hs_other": [ "true", 99.7 ], "hs_weak": [ "false", 99.98 ], "hs_moderate": [ "true", 99.8 ], "hs_strong": [ "false", 99.94 ] } ```
reichenbach/whisper-small-dv
reichenbach
2023-07-31T05:02:46Z
88
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dv", "dataset:mozilla-foundation/common_voice_13_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-30T11:12:46Z
--- language: - dv license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 model-index: - name: Whisper Small Dv - RCV results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Dv - RCV This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 4000 ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.0 - Datasets 2.13.1 - Tokenizers 0.13.3
himanimaheshwari3/distilbert-base-uncased-finetuned-himani3
himanimaheshwari3
2023-07-31T04:57:32Z
70
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-31T04:56:53Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: himanimaheshwari3/distilbert-base-uncased-finetuned-himani3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # himanimaheshwari3/distilbert-base-uncased-finetuned-himani3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: nan - Validation Loss: nan - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -973, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | nan | nan | 0 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.1 - Tokenizers 0.13.3
hoang14/chatbot_qlora_20230731_0433
hoang14
2023-07-31T04:38:24Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-31T04:38:23Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
w11wo/lao-roberta-base
w11wo
2023-07-31T04:36:43Z
144
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "roberta", "fill-mask", "lao-roberta-base", "lo", "dataset:oscar-corpus/OSCAR-2109", "arxiv:1907.11692", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: lo tags: - lao-roberta-base license: mit datasets: - oscar-corpus/OSCAR-2109 --- ## Lao RoBERTa Base Lao RoBERTa Base is a masked language model based on the [RoBERTa](https://arxiv.org/abs/1907.11692) model. It was trained on the [OSCAR-2109](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109) dataset, specifically the `deduplicated_lo` subset. The model was trained from scratch and achieved an evaluation loss of 1.4556 and an evaluation perplexity of 4.287. This model was trained using HuggingFace's PyTorch framework and the training script found [here](https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py). All training was done on a TPUv3-8, provided by the [TPU Research Cloud](https://sites.research.google/trc/about/) program. You can view the detailed training results in the [Training metrics](https://huggingface.co/w11wo/lao-roberta-base/tensorboard) tab, logged via Tensorboard. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ------------------ | ------- | ------- | ------------------------------------ | | `lao-roberta-base` | 124M | RoBERTa | OSCAR-2109 `deduplicated_lo` Dataset | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - distributed_type: tpu - num_devices: 8 - total_train_batch_size: 1024 - total_eval_batch_size: 1024 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | | :-----------: | :---: | :--: | :-------------: | | No log | 1.0 | 216 | 5.8586 | | No log | 2.0 | 432 | 5.5095 | | 6.688 | 3.0 | 648 | 5.3976 | | 6.688 | 4.0 | 864 | 5.3562 | | 5.3629 | 5.0 | 1080 | 5.2912 | | 5.3629 | 6.0 | 1296 | 5.2385 | | 5.22 | 7.0 | 1512 | 5.1955 | | 5.22 | 8.0 | 1728 | 5.1785 | | 5.22 | 9.0 | 1944 | 5.1327 | | 5.1248 | 10.0 | 2160 | 5.1243 | | 5.1248 | 11.0 | 2376 | 5.0889 | | 5.0591 | 12.0 | 2592 | 5.0732 | | 5.0591 | 13.0 | 2808 | 5.0417 | | 5.0094 | 14.0 | 3024 | 5.0388 | | 5.0094 | 15.0 | 3240 | 4.9299 | | 5.0094 | 16.0 | 3456 | 4.2991 | | 4.7527 | 17.0 | 3672 | 3.6541 | | 4.7527 | 18.0 | 3888 | 2.7826 | | 3.4431 | 19.0 | 4104 | 2.2796 | | 3.4431 | 20.0 | 4320 | 2.0213 | | 2.2803 | 21.0 | 4536 | 1.8809 | | 2.2803 | 22.0 | 4752 | 1.7615 | | 2.2803 | 23.0 | 4968 | 1.6925 | | 1.8601 | 24.0 | 5184 | 1.6205 | | 1.8601 | 25.0 | 5400 | 1.5751 | | 1.6697 | 26.0 | 5616 | 1.5391 | | 1.6697 | 27.0 | 5832 | 1.5200 | | 1.5655 | 28.0 | 6048 | 1.4866 | | 1.5655 | 29.0 | 6264 | 1.4656 | | 1.5655 | 30.0 | 6480 | 1.4627 | ## How to Use ### As Masked Language Model ```python from transformers import pipeline pretrained_name = "w11wo/lao-roberta-base" prompt = "REPLACE WITH MASKED PROMPT" fill_mask = pipeline( "fill-mask", model=pretrained_name, tokenizer=pretrained_name ) fill_mask(prompt) ``` ### Feature Extraction in PyTorch ```python from transformers import RobertaModel, RobertaTokenizerFast pretrained_name = "w11wo/lao-roberta-base" model = RobertaModel.from_pretrained(pretrained_name) tokenizer = RobertaTokenizerFast.from_pretrained(pretrained_name) prompt = "ສະ​ບາຍ​ດີ​ຊາວ​ໂລກ." encoded_input = tokenizer(prompt, return_tensors='pt') output = model(**encoded_input) ``` ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Author Lao RoBERTa Base was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on Google's TPU-RC. ## Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.9.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
liuhaotian/llava-llama-2-13b-chat-lightning-gptq
liuhaotian
2023-07-31T04:35:28Z
14
8
transformers
[ "transformers", "llama", "text-generation", "autotrain_compatible", "region:us" ]
text-generation
2023-07-31T03:46:31Z
--- inference: false --- <br> <br> # LLaVA GPTQ Model Card **NOTE: To use the GPTQ quantized LLaVA checkpoints, you need to use `text-generation-webui`, and the support for LLaMA-2 is WIP. We are working on the PR.** You can try it out [here](https://github.com/haotian-liu/text-generation-webui). Instructions and detailed stories here: https://github.com/haotian-liu/LLaVA/issues/310#issuecomment-1657552223 PR: https://github.com/oobabooga/text-generation-webui/pull/3377 These files are GPTQ model files for [LLaVA-LLaMA-2-13B-Chat-Preview](https://huggingface.co/liuhaotian/llava-llama-2-13b-chat-lightning-preview). ## Model details **Model type:** LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture. **Model date:** LLaVA-LLaMA-2-13B-Chat-Preview was trained in July 2023. **Paper or resources for more information:** https://llava-vl.github.io/ ## License Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved. **Where to send questions or comments about the model:** https://github.com/haotian-liu/LLaVA/issues ## Intended use **Primary intended uses:** The primary use of LLaVA is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. ## Training dataset - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP. - 80K GPT-generated multimodal instruction-following data. ## Evaluation dataset A preliminary evaluation of the model quality is conducted by creating a set of 90 visual reasoning questions from 30 unique images randomly sampled from COCO val 2014 and each is associated with three types of questions: conversational, detailed description, and complex reasoning. We utilize GPT-4 to judge the model outputs. We also evaluate our model on the ScienceQA dataset. Our synergy with GPT-4 sets a new state-of-the-art on the dataset. See https://llava-vl.github.io/ for more details.
liuhaotian/llava-llama-2-13b-chat-lightning-preview
liuhaotian
2023-07-31T04:11:25Z
2,069
44
transformers
[ "transformers", "pytorch", "llava", "text-generation", "autotrain_compatible", "region:us" ]
text-generation
2023-07-19T07:38:47Z
--- inference: false --- <br> <br> # LLaVA Model Card ## Model details **Model type:** LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture. **Model date:** LLaVA-LLaMA-2-13B-Chat-Preview was trained in July 2023. **Paper or resources for more information:** https://llava-vl.github.io/ ## License Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved. **Where to send questions or comments about the model:** https://github.com/haotian-liu/LLaVA/issues ## Intended use **Primary intended uses:** The primary use of LLaVA is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. ## Training dataset - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP. - 80K GPT-generated multimodal instruction-following data. ## Evaluation dataset A preliminary evaluation of the model quality is conducted by creating a set of 90 visual reasoning questions from 30 unique images randomly sampled from COCO val 2014 and each is associated with three types of questions: conversational, detailed description, and complex reasoning. We utilize GPT-4 to judge the model outputs. We also evaluate our model on the ScienceQA dataset. Our synergy with GPT-4 sets a new state-of-the-art on the dataset. See https://llava-vl.github.io/ for more details.
hoang14/chatbot_qlora_20230731_0348
hoang14
2023-07-31T03:52:20Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-31T03:52:18Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
Tornado24/dreambooth_sd15_jay_lora
Tornado24
2023-07-31T03:40:58Z
28
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-31T03:23:56Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a DSLR photo of a sks jay standing on a large basket of rainbow macarons tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - Tornado24/dreambooth_sd15_jay_lora This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a DSLR photo of a sks jay standing on a large basket of rainbow macarons using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
GraydientPlatformAPI/occdent
GraydientPlatformAPI
2023-07-31T03:40:04Z
43
0
diffusers
[ "diffusers", "safetensors", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-27T03:58:55Z
--- library_name: diffusers pipeline_tag: image-to-text --- 
Ningxin/optb1_lambda_centralized_4
Ningxin
2023-07-31T03:30:15Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-31T03:29:11Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
Ningxin/opt1b_wikitext_collaboration_4
Ningxin
2023-07-31T03:26:14Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-31T02:21:14Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
Ravi07bec/llama-7b-finetuned-wikitext2
Ravi07bec
2023-07-31T03:25:15Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "llama", "text-generation", "generated_from_trainer", "base_model:huggyllama/llama-7b", "base_model:finetune:huggyllama/llama-7b", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-31T03:06:13Z
--- license: other base_model: huggyllama/llama-7b tags: - generated_from_trainer model-index: - name: llama-7b-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama-7b-finetuned-wikitext2 This model is a fine-tuned version of [huggyllama/llama-7b](https://huggingface.co/huggyllama/llama-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 125 | nan | | No log | 2.0 | 250 | nan | | No log | 3.0 | 375 | nan | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.1 - Tokenizers 0.13.3
azhang1212/angela_shuffle_diacritics_entities_test
azhang1212
2023-07-31T03:19:57Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:Davlan/afro-xlmr-base", "base_model:finetune:Davlan/afro-xlmr-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-31T01:58:21Z
--- license: mit base_model: Davlan/afro-xlmr-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: angela_shuffle_diacritics_entities_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # angela_shuffle_diacritics_entities_test This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1642 - Precision: 0.4241 - Recall: 0.3051 - F1: 0.3549 - Accuracy: 0.9552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1481 | 1.0 | 1283 | 0.1381 | 0.4423 | 0.2037 | 0.2789 | 0.9570 | | 0.1258 | 2.0 | 2566 | 0.1329 | 0.4983 | 0.2396 | 0.3236 | 0.9592 | | 0.1074 | 3.0 | 3849 | 0.1416 | 0.4748 | 0.2590 | 0.3352 | 0.9584 | | 0.0853 | 4.0 | 5132 | 0.1523 | 0.4258 | 0.3156 | 0.3625 | 0.9552 | | 0.0692 | 5.0 | 6415 | 0.1642 | 0.4241 | 0.3051 | 0.3549 | 0.9552 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.1 - Tokenizers 0.13.3
wolfrage89/annual_report_translation_id_en
wolfrage89
2023-07-31T03:04:25Z
108
5
transformers
[ "transformers", "pytorch", "safetensors", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
### Finetuned on annual report sentence pair This marianMT has been further finetuned on annual report sentence pairs ## Test out at huggingface spaces! https://huggingface.co/spaces/wolfrage89/finance_domain_translation_marianMT ## Sample colab notebook https://colab.research.google.com/drive/1H57vwiah7n1JXvXYMqJ8dklrIuU6Cljb?usp=sharing ## How to use ```python !pip install transformers !pip install sentencepiece from transformers import MarianMTModel, MarianTokenizer tokenizer = MarianTokenizer.from_pretrained("wolfrage89/annual_report_translation_id_en") model = MarianMTModel.from_pretrained("wolfrage89/annual_report_translation_id_en") #tokenizing bahasa sentence bahasa_sentence = "Interpretasi ini merupakan interpretasi atas PSAK 46: Pajak Penghasilan yang bertujuan untuk mengklarifikasi dan memberikan panduan dalam merefleksikan ketidakpastian perlakuan pajak penghasilan dalam laporan keuangan." tokenized_bahasa_sentence = tokenizer([bahasa_sentence], return_tensors='pt', max_length=104, truncation=True) #feeding tokenized sentence into model, the max_legnth have been set to 104 as the model was trained mostly on sentences with this length translated_tokens = model.generate(**tokenized_bahasa_sentence, max_length=104)[0] ## decoding the tokens to get english sentence english_sentence = tokenizer.decode(translated_tokens, skip_special_tokens=True) print(english_sentence) # This interpretation is an interpretation of PSAK 46: Income Tax that aims to clarify and provide guidance in reflecting the uncertainty of income tax treatments in the financial statements. ``` ### opus-mt-id-en (original model) * source languages: id * target languages: en * OPUS readme: [id-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/id-en/README.md)
qiyuw/pcl-roberta-base
qiyuw
2023-07-31T03:02:42Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "sentence-similarity", "en", "license:mit", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-12T11:07:28Z
--- license: mit language: - en pipeline_tag: sentence-similarity --- # Model Description Refer to [https://github.com/qiyuw/PeerCL](https://github.com/qiyuw/PeerCL) # Citation Cite our paper if PCL helps your work: ```bibtex @inproceedings{wu-etal-2022-pcl, title = "{PCL}: Peer-Contrastive Learning with Diverse Augmentations for Unsupervised Sentence Embeddings", author = "Wu, Qiyu and Tao, Chongyang and Shen, Tao and Xu, Can and Geng, Xiubo and Jiang, Daxin", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.emnlp-main.826", pages = "12052--12066", } ```
qiyuw/pcl-roberta-large
qiyuw
2023-07-31T03:02:34Z
104
0
transformers
[ "transformers", "pytorch", "roberta", "sentence-similarity", "en", "license:mit", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-12T11:09:08Z
--- license: mit language: - en pipeline_tag: sentence-similarity --- # Model Description Refer to [https://github.com/qiyuw/PeerCL](https://github.com/qiyuw/PeerCL) # Citation Cite our paper if PCL helps your work: ```bibtex @inproceedings{wu-etal-2022-pcl, title = "{PCL}: Peer-Contrastive Learning with Diverse Augmentations for Unsupervised Sentence Embeddings", author = "Wu, Qiyu and Tao, Chongyang and Shen, Tao and Xu, Can and Geng, Xiubo and Jiang, Daxin", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.emnlp-main.826", pages = "12052--12066", } ```
qiyuw/pcl-bert-base-uncased
qiyuw
2023-07-31T03:02:27Z
106
0
transformers
[ "transformers", "pytorch", "bert", "sentence-similarity", "en", "license:mit", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-10-12T08:38:12Z
--- license: mit language: - en pipeline_tag: sentence-similarity --- # Model Description Refer to [https://github.com/qiyuw/PeerCL](https://github.com/qiyuw/PeerCL) # Citation Cite our paper if PCL helps your work: ```bibtex @inproceedings{wu-etal-2022-pcl, title = "{PCL}: Peer-Contrastive Learning with Diverse Augmentations for Unsupervised Sentence Embeddings", author = "Wu, Qiyu and Tao, Chongyang and Shen, Tao and Xu, Can and Geng, Xiubo and Jiang, Daxin", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.emnlp-main.826", pages = "12052--12066", } ```
rzambrano/ppo-ClearRL-LunarLander-v2
rzambrano
2023-07-31T02:31:25Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-07-31T02:26:34Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -91.78 +/- 30.20 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
edures/a2c-AntBulletEnv-v0
edures
2023-07-31T02:25:11Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-31T02:24:14Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 966.18 +/- 100.33 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
onahte/ppo-LunarLander-v2
onahte
2023-07-31T02:16:22Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-31T02:16:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 255.53 +/- 17.43 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
frncscp/focalnet-small-patacon
frncscp
2023-07-31T02:14:19Z
141
0
transformers
[ "transformers", "pytorch", "tensorboard", "focalnet", "image-classification", "generated_from_trainer", "base_model:microsoft/focalnet-small", "base_model:finetune:microsoft/focalnet-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-31T01:57:04Z
--- license: apache-2.0 base_model: microsoft/focalnet-small tags: - generated_from_trainer metrics: - accuracy model-index: - name: focal-patacotron results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # focal-patacotron This model is a fine-tuned version of [microsoft/focalnet-small](https://huggingface.co/microsoft/focalnet-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0897 - Accuracy: 0.9659 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0575 | 0.97 | 24 | 0.1208 | 0.9545 | | 0.0275 | 1.94 | 48 | 0.0897 | 0.9659 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.1 - Tokenizers 0.13.3
rzambrano/ppo-ClearRL-CartPole-v1
rzambrano
2023-07-31T02:10:55Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-07-31T02:05:28Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -154.30 +/- 105.48 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
seongj/gpt2lm
seongj
2023-07-31T01:54:47Z
133
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-25T04:20:02Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2lm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2lm This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.5666 | 0.16 | 5000 | 1.8018 | | 1.6685 | 0.31 | 10000 | 1.5932 | | 1.4956 | 0.47 | 15000 | 1.4797 | | 1.3802 | 0.62 | 20000 | 1.3924 | | 1.2885 | 0.78 | 25000 | 1.3243 | | 1.2355 | 0.93 | 30000 | 1.2929 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2
kelvinlimwan/t5_recommendation_sports_equipment_english
kelvinlimwan
2023-07-31T01:27:42Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-31T01:13:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5_recommendation_sports_equipment_english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_recommendation_sports_equipment_english This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4554 - Rouge1: 55.5556 - Rouge2: 47.6190 - Rougel: 55.5556 - Rougelsum: 54.7619 - Gen Len: 3.9048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 0.96 | 6 | 6.7375 | 8.7066 | 0.9524 | 8.6656 | 8.6168 | 19.0 | | No log | 1.96 | 12 | 2.8089 | 23.3333 | 9.5238 | 23.3333 | 23.3333 | 3.1429 | | No log | 2.96 | 18 | 0.9394 | 9.5238 | 4.7619 | 9.5238 | 9.5238 | 3.1905 | | No log | 3.96 | 24 | 0.6679 | 32.8571 | 14.2857 | 32.5397 | 32.5397 | 3.5714 | | No log | 4.96 | 30 | 0.6736 | 25.8730 | 9.5238 | 25.0794 | 25.2381 | 4.2381 | | No log | 5.96 | 36 | 0.6658 | 37.9365 | 23.8095 | 37.5397 | 37.6190 | 4.0476 | | No log | 6.96 | 42 | 0.6460 | 45.2381 | 33.3333 | 45.5556 | 45.2381 | 3.8571 | | No log | 7.96 | 48 | 0.5596 | 50.7937 | 42.8571 | 50.7937 | 50.7937 | 4.0 | | No log | 8.96 | 54 | 0.5082 | 55.5556 | 47.6190 | 55.5556 | 54.7619 | 3.9524 | | No log | 9.96 | 60 | 0.4554 | 55.5556 | 47.6190 | 55.5556 | 54.7619 | 3.9048 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.0+cu117 - Datasets 2.8.0 - Tokenizers 0.13.3
frncscp/patacoswin
frncscp
2023-07-31T01:15:58Z
230
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-31T00:08:31Z
--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: patacoswin results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # patacoswin This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0203 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.96 | 6 | 0.4003 | 0.875 | | 0.5091 | 1.92 | 12 | 0.1308 | 0.9886 | | 0.5091 | 2.88 | 18 | 0.0522 | 0.9886 | | 0.1585 | 4.0 | 25 | 0.0203 | 1.0 | | 0.0925 | 4.96 | 31 | 0.0156 | 1.0 | | 0.0925 | 5.92 | 37 | 0.0196 | 1.0 | | 0.0539 | 6.88 | 43 | 0.0095 | 1.0 | | 0.0397 | 8.0 | 50 | 0.0089 | 1.0 | | 0.0397 | 8.96 | 56 | 0.0089 | 1.0 | | 0.0378 | 9.6 | 60 | 0.0090 | 1.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.1 - Tokenizers 0.13.3
neverloses87/fine-tune-1e-4
neverloses87
2023-07-31T01:04:03Z
60
0
transformers
[ "transformers", "pytorch", "videomae", "video-classification", "generated_from_trainer", "base_model:sayakpaul/videomae-base-finetuned-kinetics-finetuned-ucf101-subset", "base_model:finetune:sayakpaul/videomae-base-finetuned-kinetics-finetuned-ucf101-subset", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-07-30T21:28:56Z
--- license: cc-by-nc-4.0 base_model: sayakpaul/videomae-base-finetuned-kinetics-finetuned-ucf101-subset tags: - generated_from_trainer model-index: - name: fine-tune-1e-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tune-1e-4 This model is a fine-tuned version of [sayakpaul/videomae-base-finetuned-kinetics-finetuned-ucf101-subset](https://huggingface.co/sayakpaul/videomae-base-finetuned-kinetics-finetuned-ucf101-subset) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3060 ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.1 - Tokenizers 0.13.3
Liea/ppo-LunarLander-v2
Liea
2023-07-31T00:46:23Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-30T07:04:18Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 263.88 +/- 19.85 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
tianpf/llama2-qlora-finetunined-french
tianpf
2023-07-31T00:30:11Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-31T00:30:08Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
yukangcao/dog_dreambooth_lora_21_new
yukangcao
2023-07-31T00:18:21Z
2
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-1", "base_model:adapter:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-31T00:01:23Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - RaikkonenCao/dog_dreambooth_lora_21_new These are LoRA adaption weights for stabilityai/stable-diffusion-2-1. The weights were trained on a photo of dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
yukangcao/cartoon_dreambooth_lora_21_new
yukangcao
2023-07-31T00:14:13Z
2
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-1", "base_model:adapter:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-30T23:57:37Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a model of a red cartoon tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - RaikkonenCao/cartoon_dreambooth_lora_21_new These are LoRA adaption weights for stabilityai/stable-diffusion-2-1. The weights were trained on a model of a red cartoon using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
ZachBeesley/bert-fine-tuned-cola
ZachBeesley
2023-07-31T00:12:37Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-22T15:13:53Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: bert-fine-tuned-cola results: [] language: - en --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-cola This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2620 - Validation Loss: 0.4343 - Epoch: 1 ## Model description Text-classification model that identifies whether or not text is grammatically correct. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.4621 | 0.3909 | 0 | | 0.2620 | 0.4343 | 1 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.0 - Tokenizers 0.13.3
nealchandra/llama-2-7b-hf-lora-alpaca-json
nealchandra
2023-07-31T00:09:07Z
2
2
peft
[ "peft", "dataset:tatsu-lab/alpaca", "region:us" ]
null
2023-07-30T22:29:10Z
--- library_name: peft datasets: - tatsu-lab/alpaca --- ## Overview This model is simple POC for JSON based text completion for instructions following tasks. It was trained on the 20,000 records from the Alpaca dataset with a simple prompt template to expect and return JSON inputs. The prompt template used is roughly like this: ```` ### INPUT: ```json {"instructions": "<INSTRUCTIONS>", "input": "<INPUT>"} ``` ### OUTPUT: ```json {"response": "<OUTPUT">} ``` ```` New-lines are escaped, which means you would want to prompt the model like this: ```` ### INPUT:\n```json\n{"instructions": "Explain what an alpaca is"}\n```\n### OUTPUT:\n ```` As you can see from this example, the `input` arg in the input JSON can be omitted if they are not needed. The training dataset include examples with and without additional inputs and the model was trained to handle both cases. Ultimately, you can expect the model to behave like an Alpaca finetune on top of llama-2-7b, the only difference is that it should reliably expect and respond in json format. ### Training procedure The adapter was trained for 5 epochs using QLoRA with an average training loss of 0.7535. The following hyperparameters were used: - Learning Rate: 2e-4 - Lora R: 16 - Lora Alpha: 16 - Lora Dropout: 0.05 - Target Modules: "q_proj", "k_proj", "v_proj", "o_proj" The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
Za88yes/Dean
Za88yes
2023-07-31T00:07:34Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-30T23:24:22Z
--- license: creativeml-openrail-m ---
ailabturkiye/emircan
ailabturkiye
2023-07-31T00:04:04Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-07-31T00:00:31Z
--- license: openrail --- ses sanatçısı emircan iğrek ses modelidir Rvc V2 550 Epoch olarak eğitilmiştir dataset ve train benim tarafımdan yapılmıştır Modelin izinsiz bir şekilde Ai Lab Discord Sunucusu dışında paylaşılması tamamen yasaktır model openrail lisansına sahiptir Credits herhangi bir platformda model ile yapılan bir cover paylaşımında credits vermeniz rica olunur
ZachBeesley/distilbert-base-uncased-finetuned-imdb
ZachBeesley
2023-07-31T00:03:18Z
71
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "en", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-10T16:55:13Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ZachBeesley/distilbert-base-uncased-finetuned-imdb results: [] datasets: - imdb language: - en --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ZachBeesley/distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8559 - Validation Loss: 2.5946 - Epoch: 0 ## Model description Fined tuned version of distillbert-base-uncased trained on the imdb dataset for masked language predictions. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.8559 | 2.5946 | 0 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
ZachBeesley/Spam-Detector
ZachBeesley
2023-07-31T00:02:14Z
128
11
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "spam", "en", "dataset:sms_spam", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-29T20:21:24Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback - spam model-index: - name: ZachBeesley/Spam-Detector results: [] datasets: - sms_spam widget: - text: >- WINNER!! As a valued network customer you have been selected to receivea £900 prize reward! To claim call 09061701461. Claim code KL341. Valid 12 hours only. example_title: Example 1 language: - en metrics: - accuracy --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ZachBeesley/Spam-Detector This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0093 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1740, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 0.0644 | 0 | | 0.0209 | 1 | | 0.0093 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.1 - Tokenizers 0.13.3
impro/redpj3B-lora-int8-alpaca
impro
2023-07-30T23:20:30Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-18T08:32:55Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0
yukangcao/dogs1_dreambooth_lora_21
yukangcao
2023-07-30T23:19:14Z
1
1
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-1", "base_model:adapter:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-30T22:51:39Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1 instance_prompt: a photo of dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - RaikkonenCao/dogs1_dreambooth_lora_21 These are LoRA adaption weights for stabilityai/stable-diffusion-2-1. The weights were trained on a photo of dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
Inzamam567/Useless_Breakdomain
Inzamam567
2023-07-30T22:56:48Z
0
1
null
[ "license:openrail", "region:us" ]
null
2023-07-30T22:56:48Z
--- license: openrail duplicated_from: KSD2023/breakdomain ---
pedroroblesduten/Taxi-v3
pedroroblesduten
2023-07-30T22:37:45Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-30T22:37:44Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.67 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="pedroroblesduten/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
gnsepili/code-alpaca-llama2-7b
gnsepili
2023-07-30T22:31:19Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-30T22:31:15Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
hruslen/rl_course_vizdoom_health_gathering_supreme
hruslen
2023-07-30T22:26:16Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-30T21:41:49Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.43 +/- 4.75 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r hruslen/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
yukangcao/dog_dreambooth_15
yukangcao
2023-07-30T22:17:42Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-30T22:12:43Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - RaikkonenCao/dog_dreambooth_15 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
PowerSage/AnnaBaby
PowerSage
2023-07-30T22:03:00Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-30T21:59:32Z
--- license: creativeml-openrail-m ---
lsoni/bert-finetuned-semantic-augmentation-ner
lsoni
2023-07-30T21:55:09Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:tweetner7", "base_model:tner/roberta-base-tweetner7-2021", "base_model:finetune:tner/roberta-base-tweetner7-2021", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-30T13:37:29Z
--- base_model: tner/roberta-base-tweetner7-2021 tags: - generated_from_trainer datasets: - tweetner7 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-semantic-augmentation-ner results: - task: name: Token Classification type: token-classification dataset: name: tweetner7 type: tweetner7 config: tweetner7 split: validation_2021 args: tweetner7 metrics: - name: Precision type: precision value: 0.7156323644933229 - name: Recall type: recall value: 0.7214889123548046 - name: F1 type: f1 value: 0.7185487051400026 - name: Accuracy type: accuracy value: 0.8840362386754139 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-semantic-augmentation-ner This model is a fine-tuned version of [tner/roberta-base-tweetner7-2021](https://huggingface.co/tner/roberta-base-tweetner7-2021) on the tweetner7 dataset. It achieves the following results on the evaluation set: - Loss: 0.7890 - Precision: 0.7156 - Recall: 0.7215 - F1: 0.7185 - Accuracy: 0.8840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 312 | 0.7153 | 0.7074 | 0.7072 | 0.7073 | 0.8823 | | 0.0508 | 2.0 | 624 | 0.7532 | 0.7196 | 0.7215 | 0.7205 | 0.8861 | | 0.0508 | 3.0 | 936 | 0.7890 | 0.7156 | 0.7215 | 0.7185 | 0.8840 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.1 - Tokenizers 0.13.3
alexeynoskov/ppo-Huggy
alexeynoskov
2023-07-30T21:31:52Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-30T21:31:48Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: alexeynoskov/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Rubb/segformer-b0-scene-parse-150
Rubb
2023-07-30T21:29:00Z
32
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "generated_from_trainer", "dataset:scene_parse_150", "base_model:nvidia/mit-b0", "base_model:finetune:nvidia/mit-b0", "license:other", "endpoints_compatible", "region:us" ]
null
2023-07-30T20:34:13Z
--- license: other base_model: nvidia/mit-b0 tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 2.6066 - Mean Iou: 0.0688 - Mean Accuracy: 0.1262 - Overall Accuracy: 0.5008 - Per Category Iou: [0.43853467784626365, 0.24573297715749878, 0.6380510638879026, 0.4055319712687706, 0.39704872582170575, 0.3731125869306434, 0.2434579810174668, 0.0, 0.0, 0.6120472479537323, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.41646126174138964, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.01480455169405637, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] - Per Category Accuracy: [0.8826735992812765, 0.3043340877296272, 0.9976989832282037, 0.6216524065587666, 0.9707018877486381, 0.4822455259535185, 0.9546882874336703, nan, 0.0, 0.8994367536265288, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5587433525494928, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.01480455169405637, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 4.9836 | 1.0 | 20 | 4.8270 | 0.0124 | 0.0559 | 0.2326 | [0.12345389372087832, 0.11147143096565497, 0.4150538794240512, 0.0, 0.293640108509997, 0.0004316952407802231, 0.1743424495064011, 0.0, 0.1276976560079854, 0.0007056565428474653, 0.0, 0.061583158696894645, 4.939552229590388e-05, 0.0, 0.0, 0.0, 0.0, 0.000493114015004755, 0.0, 0.0, 0.0, 0.0, 0.045756685731952386, 0.0, 0.0, 0.0, 0.0505284969399829, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.04502755997205186, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.012764610732118997, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0005076142131979696, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0] | [0.18841535794035377, 0.14909229381485062, 0.9449891489174277, 0.0, 0.4628468263017864, 0.0004959915782654466, 0.59263925532861, nan, 0.18719882937659257, 0.0007202639046946801, 0.0, 0.11125770830345619, 0.006802721088435374, nan, 0.0, 0.0, 0.0, 0.0006256424006792689, nan, 0.0, 0.0, nan, 0.09346974864216244, 0.0, 0.0, 0.0, 0.11449794096139784, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.09154040404040405, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.018720990201134605, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0006021678040947411, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 4.688 | 2.0 | 40 | 4.3114 | 0.0170 | 0.0751 | 0.3110 | [0.1784793666623604, 0.29020648660310755, 0.3967341143059993, 3.0891847641407435e-05, 0.2034361629960977, 0.008162343072599663, 0.2815558456255147, 0.0, 0.155603858659529, 0.05218973982730402, 0.0, 0.005494705432844511, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0069754894404193005, 0.0, 0.0, 0.0, 0.0, 0.052440097468525786, 0.0, 0.0, 0.0, 0.037968658793947285, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.00025331419403867264, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0] | [0.320788946588342, 0.42139874795421767, 0.9844934960239391, 3.090425860683602e-05, 0.9593627264664893, 0.011701352336221556, 0.7449381910888447, nan, 0.2185331886873376, 0.053285123669312436, 0.0, 0.008661981930302596, 0.0, nan, 0.0, 0.0, 0.0, 0.008088662465924833, nan, 0.0, 0.0, nan, 0.19571807502841987, 0.0, 0.0, 0.0, 0.05424059320837984, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0002704530087897228, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 4.2628 | 3.0 | 60 | 3.8641 | 0.0296 | 0.0768 | 0.3737 | [0.2672464483195483, 0.30063989353452375, 0.46343013043315767, 0.0006310846712622577, 0.2152098765432099, 0.017871182607620207, 0.3743446908107241, 0.0, 0.0, 0.11977134437501705, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.015490085477502495, nan, 0.0, 0.0, nan, 0.05556126644736842, 0.0, 0.0, 0.0, 0.006406069436768327, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0] | [0.6253046220083026, 0.48686378195606494, 0.9930141985014027, 0.000631329854396793, 0.9662359052324845, 0.020477366588387724, 0.7609907212521863, nan, 0.0, 0.12646393638629194, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.01595388121732136, nan, 0.0, 0.0, nan, 0.06827080965012, 0.0, 0.0, 0.0, 0.006542739483508448, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 3.9402 | 4.0 | 80 | 3.8193 | 0.0295 | 0.0767 | 0.3659 | [0.2834437731005024, 0.2261241333235565, 0.4999395656786774, 0.03137167210354625, 0.15235063300510845, 0.034387711222180706, 0.32747194719471945, 0.0, 0.0, 0.05056918263795778, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.023358697575650327, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.02178028516261313, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.694789905754345, 0.2998239141824703, 0.9937082406831511, 0.03158856719027311, 0.9776700874192322, 0.04937646773018058, 0.9192037470725996, nan, 0.0, 0.05541710482720869, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.02359565625418957, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.022213241991558583, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 3.5912 | 5.0 | 100 | 3.6448 | 0.0364 | 0.0844 | 0.3882 | [0.3058604423164221, 0.21762328839300885, 0.5110845587230063, 0.06504290063659009, 0.17468867816748543, 0.056915544675642596, 0.3486286890567001, 0.0, 0.0, 0.29609841403847315, 0.0004989190088142358, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.02452937820878494, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.002005190651750417, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.7690818698094906, 0.2732895099304839, 0.9979312204197888, 0.0674375071742029, 0.9686114278474598, 0.08566483116041784, 0.931328372810008, nan, 0.0, 0.3536639824831818, 0.0005012810515762504, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.024981007284265094, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.002026966349792813, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 3.7503 | 6.0 | 120 | 3.5438 | 0.0379 | 0.0878 | 0.3915 | [0.3003434283183761, 0.24077015199577623, 0.4792921923103039, 0.09790288306795357, 0.2083111892400147, 0.03344137652223869, 0.30019005561921797, 0.0, 0.0, 0.4232145412909689, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.002411898700254589, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.7211691408954096, 0.3029729335573116, 0.9986519565316043, 0.10393985148296292, 0.9683580387685291, 0.04772653656166491, 0.955192244982658, nan, 0.0, 0.5537532952073639, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0024131921169057513, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 4.0005 | 7.0 | 140 | 3.2844 | 0.0457 | 0.0939 | 0.4316 | [0.340086962197138, 0.2329738372267101, 0.6071201608407407, 0.09058077433820517, 0.23975259295537668, 0.21063787549869042, 0.3683457750454802, 0.0, 0.0, 0.4163949307820021, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.007040070843480186, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8932938671967398, 0.31521251829726094, 0.9971277331247648, 0.09666852092218307, 0.9613264918282022, 0.3329520608956191, 0.8703346871016512, nan, 0.0, 0.5021823996312249, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.007105510122000268, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.8459 | 8.0 | 160 | 3.3441 | 0.0378 | 0.0873 | 0.3928 | [0.3181429690424099, 0.24517417128180433, 0.4681665209078311, 0.09063296542722396, 0.19925386668048395, 0.04982817869415808, 0.259815432537341, 0.0, 0.0, 0.41043604151841584, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.7156875722900848, 0.32998536219124214, 0.9974293745345246, 0.09748527632822089, 0.9744077030279995, 0.06957041055955948, 0.9593869504639374, nan, 0.0, 0.48189976807502266, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 3.542 | 9.0 | 180 | 3.2691 | 0.0476 | 0.0996 | 0.4401 | [0.3851627875624717, 0.22081091187972593, 0.5790867180693906, 0.18838475774976532, 0.21901223496252642, 0.2521684440420488, 0.23761887209730925, 0.0, 0.0, 0.4907447961088956, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8679801309413498, 0.2822612443757866, 0.9972051455219597, 0.21885071477135262, 0.9746294184720639, 0.369321402542716, 0.9555331574422672, nan, 0.0, 0.6133479306818018, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 3.3346 | 10.0 | 200 | 3.1146 | 0.0470 | 0.0974 | 0.4389 | [0.36951993744582906, 0.158561580851804, 0.620955974717199, 0.20030040971721333, 0.18516240010512106, 0.24869762512501306, 0.3345117330250833, 0.0, 0.0, 0.41860492462547916, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0019024865056189717, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.9455271832419377, 0.19325958614431474, 0.9962708579696062, 0.2378480040263834, 0.9819143544913215, 0.3372945177747186, 0.9565262502593899, nan, 0.0, 0.5128134948645183, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0019216159449434687, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.5007 | 11.0 | 220 | 3.0861 | 0.0496 | 0.1047 | 0.4407 | [0.39932979468827307, 0.15410283566943336, 0.6026386202450033, 0.2857631376927908, 0.22131758002588595, 0.2552826502464619, 0.19573801450706038, nan, 0.0, 0.5656075363244452, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0011145290000445813, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8298413469989171, 0.18783387437411214, 0.9980246491750241, 0.36155333633546133, 0.9694666159888509, 0.48805571301319944, 0.9463581655945217, nan, 0.0, 0.7654388567971304, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0011172185726415517, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.5514 | 12.0 | 240 | 3.0739 | 0.0510 | 0.1048 | 0.4512 | [0.39812504466456033, 0.17963027942241153, 0.6074822228973307, 0.30676413423459875, 0.2307548747349876, 0.2599304422396646, 0.2363971516035945, 0.0, 0.0, 0.5307679456479367, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.004081455429638314, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8583537499701617, 0.21844633973759972, 0.9981634576113737, 0.4083335540780377, 0.9790637273533511, 0.4418070289092234, 0.9580381229063528, nan, 0.0, 0.6864835275644996, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.004200741833132234, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.5364 | 13.0 | 260 | 3.0196 | 0.0534 | 0.1066 | 0.4613 | [0.39037707296318724, 0.19401447027302607, 0.6003591627460209, 0.30691481323753655, 0.24809209157960418, 0.29044208446530007, 0.2855536390313837, 0.0, 0.0, 0.5646911067322059, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0010191873089023795, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8939991363165856, 0.24152384450434003, 0.9977096608002306, 0.3945370100571287, 0.9822944381097175, 0.4404405214997166, 0.9447277147007381, nan, 0.0, 0.7513216842651147, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0010278410868302275, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.9923 | 14.0 | 280 | 2.9121 | 0.0587 | 0.1111 | 0.4770 | [0.4003601087057121, 0.2165569312557928, 0.617564295746405, 0.28882350745804464, 0.36863047724696746, 0.30499745028046915, 0.31694786154160176, nan, 0.0, 0.6173305367154115, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03859508547008547, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.9293407144267681, 0.26755051664443086, 0.998857499793122, 0.4099935542546334, 0.9683263651336628, 0.423789375657948, 0.9436605104793525, nan, 0.0, 0.9073164407438885, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.038745140099209006, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.4601 | 15.0 | 300 | 3.0272 | 0.0545 | 0.1099 | 0.4712 | [0.42763557560401255, 0.1884258427114067, 0.6216074714162483, 0.38372865417786295, 0.22663831404185666, 0.31046379191608836, 0.21840208338284875, nan, 0.0, 0.5612259779889384, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.005261749754748952, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8401708270311208, 0.23215510675877862, 0.9983316293707973, 0.6197451723133162, 0.9823577853794502, 0.47458296218317275, 0.9534283935612012, nan, 0.0, 0.7206384419251214, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.005273271662868124, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.4757 | 16.0 | 320 | 2.9359 | 0.0605 | 0.1130 | 0.4783 | [0.40838892654733505, 0.20456332189822757, 0.597947342081406, 0.3248657869500402, 0.38020923717678556, 0.31806270757792743, 0.2883925187810696, nan, 0.0, 0.5836412209401467, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.1007275246838732, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.916491796092592, 0.24736276379113845, 0.9982889190826898, 0.4800844127749375, 0.9715254022551628, 0.42264555834480527, 0.9587792369489817, nan, 0.0, 0.887480372808597, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.10394601599856997, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.5002 | 17.0 | 340 | 2.9437 | 0.0587 | 0.1132 | 0.4730 | [0.4334935006918794, 0.19620878748899873, 0.6054893446985568, 0.35955102619210694, 0.31993476692766865, 0.3114472841176052, 0.19905019975467098, nan, 0.0, 0.5939577211650928, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.09271008675385213, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8633709259858035, 0.2348152989407844, 0.9990977451637272, 0.5376899508180799, 0.9693399214493855, 0.44283950117418414, 0.9548809770847538, nan, 0.0, 0.8997536697445944, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0959914197613621, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.8686 | 18.0 | 360 | 2.9289 | 0.0625 | 0.1178 | 0.4917 | [0.4296237400024062, 0.2062017989213499, 0.6197935922410578, 0.41335799155510455, 0.307953867568105, 0.31741824122306816, 0.25779427359490986, 0.0, 0.0, 0.616197289994839, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.20619775394747952, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8911520191312386, 0.2535986863781956, 0.9979365592058022, 0.6690418796853064, 0.9810591663499303, 0.41695683861041377, 0.9368570835680194, nan, 0.0, 0.8771661936933692, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.21825982035125352, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 3.0618 | 19.0 | 380 | 2.9298 | 0.0624 | 0.1176 | 0.4809 | [0.38836646526789886, 0.23491913687009022, 0.6185607302669277, 0.4036649097730927, 0.378118011353862, 0.2611442407632143, 0.26658279522959805, 0.0, 0.0, 0.6273165461647137, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.2519770248897028, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8027503325615157, 0.301166163435726, 0.9970396431555428, 0.6383760253591516, 0.9746610921069302, 0.4552392906308203, 0.923398452553879, nan, 0.0, 0.8699059335340469, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.2705456495508781, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.8544 | 20.0 | 400 | 2.9010 | 0.0713 | 0.1241 | 0.5012 | [0.425754285291852, 0.2493873567480257, 0.6212088999913631, 0.4144953043935115, 0.4112527283015817, 0.2941432644479072, 0.3247339357429719, nan, 0.0, 0.6878630140162537, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4236939211497378, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8623488282767345, 0.31606864106040394, 0.9983796784449184, 0.6966173081507775, 0.9668060306600785, 0.437555672524091, 0.9588088815106869, nan, 0.0, 0.8547083651449892, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.4874648076149618, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.3835 | 21.0 | 420 | 2.8881 | 0.0643 | 0.1227 | 0.4837 | [0.4010587192313724, 0.2036044791336755, 0.610993951056319, 0.4149278288834044, 0.2957705955691954, 0.26976131842038753, 0.321550977841004, 0.0, 0.0, 0.6767961360434696, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.40500882612533096, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0011930877881691875, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8158032364257395, 0.25348255616111315, 0.9984437438770798, 0.685827307002905, 0.9768148992778412, 0.4645922746781116, 0.941437168351466, nan, 0.0, 0.8720091041357554, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.4921571256200563, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0011930877881691875, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.6614 | 22.0 | 440 | 2.8529 | 0.0705 | 0.1250 | 0.5104 | [0.4275250128683567, 0.22069077840150272, 0.6474809300488378, 0.4096026912128202, 0.41153851325006385, 0.362831926918015, 0.3804799302433823, 0.0, 0.0, 0.6463536255973406, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.37283839581374434, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.9228261978182228, 0.274464315614923, 0.9976509341540827, 0.7235525769736784, 0.9694982896237172, 0.4744007611952385, 0.9572228974594611, nan, 0.0, 0.8962675924458722, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.407561335299638, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.0297 | 23.0 | 460 | 2.7994 | 0.0703 | 0.1240 | 0.4994 | [0.4165913235440176, 0.21871795421878018, 0.6109694252896113, 0.4113335606037128, 0.35222971206420295, 0.3193788432403529, 0.40558772310342445, 0.0, 0.0, 0.713528618230873, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.4160953686776356, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0002565780189611156, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8829123057526089, 0.2753393432971259, 0.9976028850799616, 0.7031601811872533, 0.9814392499683263, 0.43530852700623535, 0.9562446269231909, nan, 0.0, 0.853368674282257, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.48822451624435803, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0002565780189611156, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.1478 | 24.0 | 480 | 2.9134 | 0.0637 | 0.1230 | 0.4970 | [0.4469981477390521, 0.2035232512200525, 0.6304917584596665, 0.40325375059240326, 0.38913054538054537, 0.3211502549737844, 0.24884024577572963, 0.0, 0.0, 0.5372866127583109, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.38531776346902397, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.9133170000238706, 0.24068932736297985, 0.9972745497401346, 0.6874519880268072, 0.9690548587355885, 0.36208397441088347, 0.960454154685323, nan, 0.0, 0.9131217678157277, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.4733431648567726, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.2557 | 25.0 | 500 | 2.8144 | 0.0614 | 0.1197 | 0.4797 | [0.4221356220844282, 0.18421616601778762, 0.623690862524923, 0.392985064346149, 0.2858839450934902, 0.31056780691092206, 0.24850758866227768, 0.0, 0.0, 0.5798371530628093, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.39296364669128087, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8768014200864985, 0.222861988689457, 0.9978351222715467, 0.6045182026083195, 0.983561383504371, 0.4526074985828812, 0.9600984199448611, nan, 0.0, 0.7529638859678186, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.49465969522277337, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.3409 | 26.0 | 520 | 2.8329 | 0.0642 | 0.1225 | 0.4813 | [0.42149870924148447, 0.16065456282847587, 0.6203691411047018, 0.3889120346399578, 0.36916196819061586, 0.32594182164997615, 0.2553157965225749, 0.0, 0.0, 0.553429127188304, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.43538298123450964, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.00012187455900652991, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8446932296334554, 0.18888714843602306, 0.9978911795246879, 0.7129744907419671, 0.9726339794754846, 0.42895173698275163, 0.9607209557406694, nan, 0.0, 0.889381869516991, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.4945703177369621, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.00012187455900652991, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.3109 | 27.0 | 540 | 2.8133 | 0.0650 | 0.1226 | 0.4814 | [0.4092627638427401, 0.18495216925336402, 0.6305232327762818, 0.3937206341594305, 0.35816105853080016, 0.3273878103577395, 0.25208843284312765, 0.0, 0.0, 0.617103114486395, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4012490789796849, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.856928021318658, 0.2265106380680253, 0.9981928209344477, 0.6089419264831837, 0.975674648422653, 0.46020932869058223, 0.954065751637862, nan, 0.0, 0.9036575001080396, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5110604638691514, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.0517 | 28.0 | 560 | 2.7287 | 0.0687 | 0.1240 | 0.4971 | [0.41872312853941007, 0.243188145951677, 0.6154017129478707, 0.410863670998888, 0.3791664615233125, 0.33392716672065154, 0.2615378358042015, 0.0, 0.0, 0.6999535153980244, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.41312089283747566, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8582626074992893, 0.30477430227345154, 0.9977630486603651, 0.6736951780526785, 0.9757063220575193, 0.438284476475828, 0.9531171256632971, nan, 0.0, 0.8676443048733056, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5028824239174152, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.9763 | 29.0 | 580 | 2.7479 | 0.0666 | 0.1215 | 0.4964 | [0.41805875576036866, 0.21560327494271442, 0.6183435184756053, 0.40744417974524166, 0.353610518266586, 0.3463267413231673, 0.32909110299681577, 0.0, 0.0, 0.6258885562577768, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.41151154522660083, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0031751529846438054, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.9134537137301793, 0.26961385352468714, 0.9972078149149665, 0.6486141647461877, 0.9813442290637273, 0.44139201554781765, 0.9604986215278807, nan, 0.0, 0.7318457482821706, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.49139741699066003, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0031751529846438054, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.687 | 30.0 | 600 | 2.7641 | 0.0645 | 0.1215 | 0.4785 | [0.40539745577335573, 0.1923509931594783, 0.6339750538159723, 0.3849997862151531, 0.3802708982154333, 0.30438908351152677, 0.24414113284620922, 0.0, 0.0, 0.6321250014235767, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4263946468834097, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.008172009903911532, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8284828901711525, 0.23671119225222403, 0.9976429259750625, 0.6360537910695523, 0.9745977448371975, 0.4740566037735849, 0.9602911095959447, nan, 0.0, 0.7995649606015645, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5239755105688877, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.008172009903911532, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.741 | 31.0 | 620 | 2.6534 | 0.0678 | 0.1247 | 0.4920 | [0.3994730961862104, 0.24263777664888295, 0.6453627358417291, 0.39236818054311334, 0.3991649485872849, 0.32099363714747847, 0.25790756214664273, 0.0, 0.0, 0.6424219818475693, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4204489479980297, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.008409236690186016, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8581541045577745, 0.30055580462036224, 0.9980807064281653, 0.5743026674790072, 0.9750411757253262, 0.5162664993116851, 0.9506714493226218, nan, 0.0, 0.893184862933779, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5340304777226617, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.008409344571450563, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.4749 | 32.0 | 640 | 2.7574 | 0.0632 | 0.1218 | 0.4894 | [0.43470742617779384, 0.2281054835565503, 0.6100867510845925, 0.40377349797272394, 0.3626811935240964, 0.33848015026583045, 0.22885345803489246, 0.0, 0.0, 0.552662321988897, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.381770280904643, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 7.69418191610777e-05, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8755861871415334, 0.27304104527998185, 0.9981501106463402, 0.6190387892594457, 0.9763397947548461, 0.4304802008259778, 0.9618622713663179, nan, 0.0, 0.8245869286506576, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.4986369933413773, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 7.697340568833467e-05, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.9114 | 33.0 | 660 | 2.6547 | 0.0691 | 0.1253 | 0.5081 | [0.4338933598179044, 0.26752190237797246, 0.6312128042825134, 0.427079109150189, 0.35218494374096954, 0.34551851442815895, 0.29373937196628364, 0.0, 0.0, 0.6384169015938483, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3991776840463616, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.013707680662997601, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8835806838723398, 0.3325105192371055, 0.9971597658408454, 0.697438478450902, 0.9804890409223362, 0.4433557373066645, 0.9499006907182878, nan, 0.0, 0.8383871850646076, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5032846226035662, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.013707680662997601, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.6192 | 34.0 | 680 | 2.7609 | 0.0633 | 0.1220 | 0.4815 | [0.42937108345558256, 0.18527541332094785, 0.616699748053478, 0.3883906891527968, 0.3251654933277293, 0.33849542399270877, 0.2239150010256339, 0.0, 0.0, 0.6374389785955689, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.39881145326850354, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0034124876521828373, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8580890027928657, 0.22408540702290736, 0.9977390241233046, 0.6214360767485188, 0.9801723045736729, 0.4511296461251923, 0.9546141760294075, nan, 0.0, 0.8803065443178381, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.49483845019439604, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0034124876521828373, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.393 | 35.0 | 700 | 2.6922 | 0.0680 | 0.1236 | 0.4957 | [0.421972673874879, 0.22492129318018977, 0.6293340384110154, 0.4010899511331872, 0.39305555555555555, 0.3491350346142426, 0.24377055998790034, 0.0, 0.0, 0.6695312929281829, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.405382643720249, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.004514527930435229, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8929813787251772, 0.2797711964653203, 0.9975281420757733, 0.6163854379133444, 0.9770366147219055, 0.45229370799255003, 0.9555924465656775, nan, 0.0, 0.8776271625923738, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.4947490727085847, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.004515773133715635, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 0.8548 | 36.0 | 720 | 2.8306 | 0.0605 | 0.1190 | 0.4712 | [0.4283980381297898, 0.18132266375240189, 0.5995935969874214, 0.38920288892866006, 0.26227912802112247, 0.3218979320872324, 0.21322861676329996, 0.0, 0.0, 0.5681595556677607, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.36106462409886714, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0016485137718251677, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.841004129621954, 0.21687723145562476, 0.9979739307078963, 0.5952601697085287, 0.9816609654123907, 0.4098307555267633, 0.9501230249310764, nan, 0.0, 0.8104697561186419, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5013630066586227, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0016485137718251677, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.0338 | 37.0 | 740 | 2.6875 | 0.0665 | 0.1202 | 0.4951 | [0.43124776575596574, 0.24373739415389775, 0.6091774781733035, 0.38990956687291767, 0.36250778834510894, 0.3537801271818491, 0.27804252278313724, 0.0, 0.0, 0.5913839226271894, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.39816965857092573, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.001167429986273076, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.913635998671924, 0.3061327557430443, 0.9979552449568493, 0.5967524039098302, 0.9766882047383758, 0.4105291926471779, 0.9573562979871343, nan, 0.0, 0.7037842665552658, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5055190597488493, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.001167429986273076, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.8221 | 38.0 | 760 | 2.7024 | 0.0648 | 0.1217 | 0.4847 | [0.42947861925851916, 0.2022166251366904, 0.6122340042310438, 0.39238065575627157, 0.3746899172705388, 0.33450465640314525, 0.23480576326828378, 0.0, 0.0, 0.5911730545876888, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3895871969228656, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0017639738803576699, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8730927895455246, 0.243716815115293, 0.9981020615722191, 0.6118204374277061, 0.9711769922716331, 0.42975139687424085, 0.954139863042125, nan, 0.0, 0.8578775263256457, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5069490995218304, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0017639738803576699, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 0.9134 | 39.0 | 780 | 2.7209 | 0.0658 | 0.1228 | 0.4930 | [0.43697104186512636, 0.24683751863819814, 0.6139479804483221, 0.3962824506181786, 0.38747105607570725, 0.3443358588053122, 0.22562202039182935, 0.0, 0.0, 0.6154462190940263, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4184565043339019, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0016225853620994845, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8610467929785577, 0.30491473881503967, 0.9978217753065131, 0.6397578872082859, 0.9752312175345242, 0.441179447728561, 0.9610322236385735, nan, 0.0, 0.7859951886371166, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5372033784689637, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.0016228559699290562, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.4629 | 40.0 | 800 | 2.7029 | 0.0675 | 0.1240 | 0.4922 | [0.43950151410791677, 0.22220900991363554, 0.6312859065025483, 0.3997307004308233, 0.40703417773481465, 0.3539492822361348, 0.22753915532227234, 0.0, 0.0, 0.5887955649111106, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.43656320466905424, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.006855728284849418, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8765128022620693, 0.27252791176264063, 0.9981768045764073, 0.630415971320848, 0.9735841885214748, 0.4532350797635436, 0.9580381229063528, nan, 0.0, 0.8139270228611764, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.588327300353041, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.006857047556735814, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.4657 | 41.0 | 820 | 2.6219 | 0.0721 | 0.1267 | 0.5059 | [0.42797824686882074, 0.2482129112642935, 0.6526077944845963, 0.40345143790868343, 0.4352150994728788, 0.41790140193623504, 0.2663257990886393, 0.0, 0.0, 0.6519937148452623, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4549110108745061, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.007158526729015125, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.9027314530496922, 0.3152773351626093, 0.9976589423331029, 0.6235199067574368, 0.9728240212846826, 0.530447809539234, 0.9581270565914682, nan, 0.0, 0.8248750342125355, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5814005452026635, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.007158526729015125, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.5582 | 42.0 | 840 | 2.6751 | 0.0685 | 0.1250 | 0.4976 | [0.4343875200078906, 0.22662708331059472, 0.6271548976318774, 0.4157405544824013, 0.39279180153785137, 0.3529379244984994, 0.26381029261716366, 0.0, 0.0, 0.6254327280450249, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.42345740281224153, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.004483700881345495, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8792600967412226, 0.2803842559834069, 0.9979178734547551, 0.6660794857531368, 0.9724122640314202, 0.45235444165519473, 0.9542584412889455, nan, 0.0, 0.8484276638960515, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5719712204495687, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.004483700881345495, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.429 | 43.0 | 860 | 2.5953 | 0.0703 | 0.1259 | 0.5094 | [0.4446826467888162, 0.26470199750987927, 0.6395916768314067, 0.41168766601798323, 0.39235322634143854, 0.3862909898532422, 0.2582474888482398, 0.0, 0.0, 0.647119308157721, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4015934395626375, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.01790914572348587, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.9124034052563165, 0.33015010505733594, 0.9979926164589434, 0.6397711318905459, 0.9741226403142025, 0.4489432342699814, 0.9542287967272404, nan, 0.0, 0.8612627666777107, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5383652857845109, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.01790914572348587, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.584 | 44.0 | 880 | 2.5978 | 0.0709 | 0.1266 | 0.5091 | [0.44308074922669594, 0.2609984765787449, 0.6463303275881749, 0.41199320223355185, 0.383229366006412, 0.4133584288863023, 0.2601257363896617, 0.0, 0.0, 0.6541824104956397, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.39943504724753676, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.02496504124491655, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8977207872105413, 0.32712531800774564, 0.997618901438002, 0.6443184727998376, 0.9768148992778412, 0.5068527816017492, 0.9548957993656064, nan, 0.0, 0.8504588081072905, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.530812888233454, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.02496504124491655, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 2.1475 | 45.0 | 900 | 2.5513 | 0.0712 | 0.1267 | 0.5107 | [0.4460489773705448, 0.26110799405825236, 0.6476142770728291, 0.41342919238558584, 0.4012683996241779, 0.4068029834263828, 0.2613738601823708, 0.0, 0.0, 0.6417619652689538, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4173316963372212, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.017319016279875303, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.9142088942031218, 0.3280354548253456, 0.9974000112114506, 0.6407909724245715, 0.9739642721398708, 0.46982549194266743, 0.9559481813061393, nan, 0.0, 0.8730750947147035, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5468561469365867, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.017319016279875303, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.1308 | 46.0 | 920 | 2.5953 | 0.0702 | 0.1255 | 0.5053 | [0.4408555494449196, 0.2450651027864728, 0.6420333998168697, 0.40837601270437823, 0.4194139194139194, 0.3933323534751822, 0.26032639597388507, 0.0, 0.0, 0.6190101307257246, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.41738981306808437, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.014618532630309562, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.9150074758526704, 0.3059518086606135, 0.9976242402240154, 0.625559587825488, 0.9719371595084252, 0.46050287472669854, 0.9568671627189992, nan, 0.0, 0.8608306083348939, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5438173124190017, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.014618532630309562, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.8663 | 47.0 | 940 | 2.6424 | 0.0672 | 0.1242 | 0.4940 | [0.43704087833557725, 0.22529774235339764, 0.6321397223345009, 0.40153092894146036, 0.36451685473080975, 0.3641938785300796, 0.23377773280376432, 0.0, 0.0, 0.6218380062305296, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.40584502338009354, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.011699957664626871, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8833419774010074, 0.27757012374619877, 0.997755040481345, 0.6111582033147025, 0.9751045229950589, 0.4610595999676087, 0.9588088815106869, nan, 0.0, 0.8626312680966306, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5430129150466997, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.011699957664626871, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.591 | 48.0 | 960 | 2.6426 | 0.0685 | 0.1259 | 0.4979 | [0.44151907962878684, 0.23794545582343432, 0.6315182267956954, 0.40611183502995885, 0.41001206272617613, 0.3608927959994585, 0.23455964892523312, 0.0, 0.0, 0.5947358216190014, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.43547749291504645, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.013459010612035523, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8778690890310036, 0.2925617245607307, 0.9979979552449568, 0.6301863968283401, 0.9689281641961232, 0.45876184306421575, 0.9570302078083776, nan, 0.0, 0.8837205952260908, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5905617374983242, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.013463931544984542, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.518 | 49.0 | 980 | 2.6536 | 0.0681 | 0.1246 | 0.4959 | [0.43788100249764617, 0.2327002408765022, 0.6344844675799025, 0.39711397990519065, 0.399981744924437, 0.3702829804891543, 0.2332744666789456, 0.0, 0.0, 0.6118559477947978, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.41649069552593376, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.012463197326474192, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8951970087909084, 0.2877760793358432, 0.997899187703708, 0.5880462327708759, 0.9715887495248955, 0.46066483116041784, 0.9574155871105445, nan, 0.0, 0.8671257148619254, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5641060016981723, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.01246327727103619, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | | 1.3176 | 50.0 | 1000 | 2.6066 | 0.0688 | 0.1262 | 0.5008 | [0.43853467784626365, 0.24573297715749878, 0.6380510638879026, 0.4055319712687706, 0.39704872582170575, 0.3731125869306434, 0.2434579810174668, 0.0, 0.0, 0.6120472479537323, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.41646126174138964, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.01480455169405637, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | [0.8826735992812765, 0.3043340877296272, 0.9976989832282037, 0.6216524065587666, 0.9707018877486381, 0.4822455259535185, 0.9546882874336703, nan, 0.0, 0.8994367536265288, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.5587433525494928, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, 0.01480455169405637, 0.0, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan] | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.1 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e9_s6789_v3_l54_r4
KingKazma
2023-07-30T21:25:49Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-30T21:25:48Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
MindNetML/a2c-PandaReachDense-v2
MindNetML
2023-07-30T21:24:02Z
3
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-30T21:21:39Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -3.96 +/- 1.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
NasimB/all-base-miss-cbt-seed
NasimB
2023-07-30T21:21:48Z
7
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-30T17:22:00Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: all-base-miss-cbt-seed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-base-miss-cbt-seed This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.1336 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.3272 | 0.31 | 500 | 5.3559 | | 5.0184 | 0.61 | 1000 | 4.9377 | | 4.6905 | 0.92 | 1500 | 4.7047 | | 4.4183 | 1.22 | 2000 | 4.5602 | | 4.2842 | 1.53 | 2500 | 4.4477 | | 4.1746 | 1.83 | 3000 | 4.3341 | | 4.0002 | 2.14 | 3500 | 4.2774 | | 3.8776 | 2.44 | 4000 | 4.2189 | | 3.8524 | 2.75 | 4500 | 4.1618 | | 3.7691 | 3.05 | 5000 | 4.1277 | | 3.575 | 3.36 | 5500 | 4.1122 | | 3.5747 | 3.66 | 6000 | 4.0774 | | 3.548 | 3.97 | 6500 | 4.0453 | | 3.3299 | 4.27 | 7000 | 4.0648 | | 3.2994 | 4.58 | 7500 | 4.0483 | | 3.2955 | 4.88 | 8000 | 4.0332 | | 3.1853 | 5.19 | 8500 | 4.0422 | | 3.1201 | 5.49 | 9000 | 4.0422 | | 3.1215 | 5.8 | 9500 | 4.0409 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e9_s6789_v3_l4_r4
KingKazma
2023-07-30T21:20:13Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-30T21:20:09Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
BlunderPanini/Reinforce-1
BlunderPanini
2023-07-30T21:18:44Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-30T20:56:51Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
KingKazma/cnn_dailymail_gpt2_lora_500_10_3000_8_e8_s6789_v3_l54_r4
KingKazma
2023-07-30T21:18:41Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-30T21:18:39Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0.dev0
brunoboat/ppo-SnowballTarget
brunoboat
2023-07-30T21:15:02Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-07-30T21:14:58Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: brunoboat/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀