modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 06:30:11
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 06:29:58
card
stringlengths
11
1.01M
alireza7/ARMAN-SH-persian-base-parsinlu-sentiment-movie
alireza7
2021-09-29T19:18:54Z
5
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SH-persian-base-parsinlu-qqp
alireza7
2021-09-29T19:18:12Z
5
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SH-persian-base-parsinlu-multiple-choice
alireza7
2021-09-29T19:18:05Z
9
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-SH-persian-base-PN-summary
alireza7
2021-09-29T19:17:58Z
4
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-MSR-persian-base
alireza7
2021-09-29T19:17:50Z
5
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-MSR-persian-base-voa-title
alireza7
2021-09-29T19:17:05Z
4
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-MSR-persian-base-tebyan
alireza7
2021-09-29T19:16:58Z
10
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-MSR-persian-base-perkey-summary
alireza7
2021-09-29T19:16:27Z
6
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-MSR-persian-base-parsinlu-textual-entailment
alireza7
2021-09-29T19:16:04Z
5
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-MSR-persian-base-parsinlu-sentiment-movie
alireza7
2021-09-29T19:15:47Z
5
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-MSR-persian-base-parsinlu-qqp
alireza7
2021-09-29T19:15:19Z
5
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-MSR-persian-base-parsinlu-multiple-choice
alireza7
2021-09-29T19:15:05Z
5
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
alireza7/ARMAN-MSR-persian-base-PN-summary
alireza7
2021-09-29T19:14:47Z
61
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
More information about models is available [here](https://github.com/alirezasalemi7/ARMAN).
dweb/deberta-base-CoLA
dweb
2021-09-29T17:37:10Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: deberta-base-CoLA results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-CoLA This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1655 - Accuracy: 0.8482 - F1: 0.8961 - Roc Auc: 0.8987 - Mcc: 0.6288 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Roc Auc | Mcc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:-------:|:------:| | 0.5266 | 1.0 | 535 | 0.4138 | 0.8159 | 0.8698 | 0.8627 | 0.5576 | | 0.3523 | 2.0 | 1070 | 0.3852 | 0.8387 | 0.8880 | 0.9041 | 0.6070 | | 0.2479 | 3.0 | 1605 | 0.3981 | 0.8482 | 0.8901 | 0.9120 | 0.6447 | | 0.1712 | 4.0 | 2140 | 0.4732 | 0.8558 | 0.9008 | 0.9160 | 0.6486 | | 0.1354 | 5.0 | 2675 | 0.7181 | 0.8463 | 0.8938 | 0.9024 | 0.6250 | | 0.0876 | 6.0 | 3210 | 0.8453 | 0.8520 | 0.8992 | 0.9123 | 0.6385 | | 0.0682 | 7.0 | 3745 | 1.0282 | 0.8444 | 0.8938 | 0.9061 | 0.6189 | | 0.0431 | 8.0 | 4280 | 1.1114 | 0.8463 | 0.8960 | 0.9010 | 0.6239 | | 0.0323 | 9.0 | 4815 | 1.1663 | 0.8501 | 0.8970 | 0.8967 | 0.6340 | | 0.0163 | 10.0 | 5350 | 1.1655 | 0.8482 | 0.8961 | 0.8987 | 0.6288 | ### Framework versions - Transformers 4.11.0 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
WurmWillem/DialoGPT-medium-RickandMorty3
WurmWillem
2021-09-29T17:15:34Z
0
0
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - conversational ---
huggingartists/platina
huggingartists
2021-09-29T17:06:31Z
4
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/platina", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/platina tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b12dc90e6f405684ef6b74c9de92fdcd.853x853x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Платина (Platina)</div> <a href="https://genius.com/artists/platina"> <div style="text-align: center; font-size: 14px;">@platina</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Платина (Platina). Dataset is available [here](https://huggingface.co/datasets/huggingartists/platina). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/platina") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2ih365j7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Платина (Platina)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1quasiz0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1quasiz0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/platina') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/platina") model = AutoModelWithLMHead.from_pretrained("huggingartists/platina") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingtweets/cyrusshepard-fastfwdco-lilyraynyc
huggingtweets
2021-09-29T08:19:04Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/cyrusshepard-fastfwdco-lilyraynyc/1632903540115/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/713653445262237696/mdyVSGoj_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241620963768201216/sG68m_iE_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1308419103510626304/gUgr1gMo_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">fastfwd & Cyrus & Lily Ray 😏</div> <div style="text-align: center; font-size: 14px;">@cyrusshepard-fastfwdco-lilyraynyc</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from fastfwd & Cyrus & Lily Ray 😏. | Data | fastfwd | Cyrus | Lily Ray 😏 | | --- | --- | --- | --- | | Tweets downloaded | 945 | 3248 | 3250 | | Retweets | 60 | 343 | 89 | | Short tweets | 5 | 729 | 310 | | Tweets kept | 880 | 2176 | 2851 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3k89f9gx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @cyrusshepard-fastfwdco-lilyraynyc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3eq4v17k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3eq4v17k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/cyrusshepard-fastfwdco-lilyraynyc') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
TalTechNLP/espnet2_estonian
TalTechNLP
2021-09-29T07:36:28Z
7
1
espnet
[ "espnet", "audio", "automatic-speech-recognition", "et", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: et license: cc-by-4.0 --- # Estonian Espnet2 ASR model ## Model description This is a general-purpose Estonian ASR model trained in the Lab of Language Technology at TalTech. ## Intended uses & limitations This model is intended for general-purpose speech recognition, such as broadcast conversations, interviews, talks, etc. ## How to use ```python from espnet2.bin.asr_inference import Speech2Text model = Speech2Text.from_pretrained( "TalTechNLP/espnet2_estonian", lm_weight=0.6, ctc_weight=0.4, beam_size=60 ) # read a sound file with 16k sample rate import soundfile speech, rate = soundfile.read("speech.wav") assert rate == 16000 text, *_ = model(speech) print(text[0]) ``` #### Limitations and bias Since this model was trained on mostly broadcast speech and texts from the web, it might have problems correctly decoding the following: * Speech containing technical and other domain-specific terms * Children's speech * Non-native speech * Speech recorded under very noisy conditions or with a microphone far from the speaker * Very spontaneous and overlapping speech ## Training data Acoustic training data: | Type | Amount (h) | |-----------------------|:------:| | Broadcast speech | 591 | | Spontaneous speech | 53 | | Elderly speech corpus | 53 | | Talks, lectures | 49 | | Parliament speeches | 31 | | *Total* | *761* | Language model training data: * Estonian National Corpus 2019 * OpenSubtitles * Speech transcripts ## Training procedure Standard EspNet2 Conformer recipe. ## Evaluation results ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_lm_lm_large_valid.loss.ave_5best_asr_model_valid.acc.ave/aktuaalne2021.testset|2864|56575|93.1|4.5|2.4|2.0|8.9|63.4| |decode_asr_lm_lm_large_valid.loss.ave_5best_asr_model_valid.acc.ave/jutusaated.devset|273|4677|93.9|3.6|2.4|1.2|7.3|46.5| |decode_asr_lm_lm_large_valid.loss.ave_5best_asr_model_valid.acc.ave/jutusaated.testset|818|11093|94.7|2.7|2.5|0.9|6.2|45.0| |decode_asr_lm_lm_large_valid.loss.ave_5best_asr_model_valid.acc.ave/www-trans.devset|1207|13865|82.3|8.5|9.3|3.4|21.2|74.1| |decode_asr_lm_lm_large_valid.loss.ave_5best_asr_model_valid.acc.ave/www-trans.testset|1648|22707|86.4|7.6|6.0|2.5|16.1|75.7| ### BibTeX entry and citation info #### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ```
huggingtweets/balcobops-liyrex_irl-waitforgot
huggingtweets
2021-09-29T04:04:44Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/balcobops-liyrex_irl-waitforgot/1632888280266/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1379189650556911619/EiZklugS_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1441278016164818955/T-PDXXvg_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1438447321604313089/5_lZmeyb_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Wait Forgot & Balco - Special Boperative & Liyrex</div> <div style="text-align: center; font-size: 14px;">@balcobops-liyrex_irl-waitforgot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Wait Forgot & Balco - Special Boperative & Liyrex. | Data | Wait Forgot | Balco - Special Boperative | Liyrex | | --- | --- | --- | --- | | Tweets downloaded | 3194 | 1171 | 3189 | | Retweets | 1294 | 129 | 1587 | | Short tweets | 285 | 122 | 279 | | Tweets kept | 1615 | 920 | 1323 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/371suxoa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @balcobops-liyrex_irl-waitforgot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/bj54dpp8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/bj54dpp8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/balcobops-liyrex_irl-waitforgot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
lewtun/bert-base-uncased-finetuned-imdb
lewtun
2021-09-28T20:45:38Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: bert-base-uncased-finetuned-imdb results: - task: name: Masked Language Modeling type: fill-mask dataset: name: imdb type: imdb args: plain_text --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-imdb This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.0284 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2244 | 1.0 | 958 | 2.0726 | | 2.1537 | 2.0 | 1916 | 2.0381 | | 2.1183 | 3.0 | 2874 | 2.0284 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.1+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
lewtun/MiniLM-L12-H384-uncased-finetuned-imdb
lewtun
2021-09-28T18:59:38Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - imdb model-index: - name: MiniLM-L12-H384-uncased-finetuned-imdb results: - task: name: Masked Language Modeling type: fill-mask dataset: name: imdb type: imdb args: plain_text --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLM-L12-H384-uncased-finetuned-imdb This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 3.9328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.2464 | 1.0 | 391 | 4.2951 | | 4.2302 | 2.0 | 782 | 4.0023 | | 4.0726 | 3.0 | 1173 | 3.9328 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.1+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
sgugger/marian-finetuned-kde4-en-to-fr
sgugger
2021-09-28T13:47:35Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 53.2503 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8666 - Bleu: 53.2503 - Gen Len: 14.7005 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.8.1+cu111 - Datasets 1.12.2.dev0 - Tokenizers 0.10.3
huggingtweets/plinz
huggingtweets
2021-09-28T12:42:39Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/plinz/1632832956311/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/936396593762357248/f66CtXot_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Joscha Bach</div> <div style="text-align: center; font-size: 14px;">@plinz</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Joscha Bach. | Data | Joscha Bach | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 298 | | Short tweets | 131 | | Tweets kept | 2819 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zr1xovwx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @plinz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2bpt8w0c) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2bpt8w0c/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/plinz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Kceilord/autonlp-tc-13522454
Kceilord
2021-09-28T10:46:23Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autonlp", "en", "dataset:Kceilord/autonlp-data-tc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - Kceilord/autonlp-data-tc --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 13522454 ## Validation Metrics - Loss: 0.31450966000556946 - Accuracy: 0.8461538461538461 - Precision: 0.8181818181818182 - Recall: 0.782608695652174 - AUC: 0.9369259032455604 - F1: 0.8 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Kceilord/autonlp-tc-13522454 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Kceilord/autonlp-tc-13522454", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Kceilord/autonlp-tc-13522454", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
pere/nb-nn-dev
pere
2021-09-28T07:34:18Z
5
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "translation", "no", "dataset:oscar", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: no license: cc-by-4.0 tags: - translation datasets: - oscar widget: - text: Skriv inn en tekst som du ønsker å oversette til en annen målform. --- # Norwegian mT5 - Translation Bokmål Nynorsk - Development ## Description This is the development version of the Bokmål-Nynorsk translator. If you want something that is stable, Please do run [this version](https://huggingface.co/pere/nb-nn-translation/) instead. Here is an example of how to use the model from Python ```python # Import libraries from transformers import T5ForConditionalGeneration, AutoTokenizer model = T5ForConditionalGeneration.from_pretrained('pere/nb-nn-dev',from_flax=True) tokenizer = AutoTokenizer.from_pretrained('pere/nb-nn-dev') #Encode the text text = "Hun vil ikke gi bort sine personlige data." inputs = tokenizer.encode(text, return_tensors="pt") outputs = model.generate(inputs, max_length=255, num_beams=4, early_stopping=True) #Decode and print the result print(tokenizer.decode(outputs[0])) ``` Or if you like to use the pipeline instead ```python # Set up the pipeline from transformers import pipeline translator = pipeline("translation", model='pere/nb-nn-dev') # Do the translation text = "Hun vil ikke gi bort sine personlige data." print(translator(text, max_length=255)) ```
vesteinn/fasttext_is_rmh
vesteinn
2021-09-27T22:09:07Z
0
0
null
[ "is", "license:agpl-3.0", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: agpl-3.0 language: - is --- # FastText model trained on Icelandic This model is trained on the lemmas of the Icelandic Gigaword Corpus version 20.05. It is trained using the gensim package, version 4.1.0. and parameters were set to default (100 dimensions, windows size 5) This model can not be loaded directly since it uses gensim, clone the repository and run the following to use it. ```python import gensim model = gensim.models.FastText.load("./rmh.w2v.model") ``` ## Example output ```bash In [1]: model.wv.most_similar("england") Out[1]: [('englands', 0.8778558969497681), ('southland', 0.8573296070098877), ('skotland', 0.846065878868103), ('englaland', 0.8320872187614441), ('hoogland', 0.8299505114555359), ('hoagland', 0.8277317881584167), ('totland', 0.8265103697776794), ('lackland', 0.8234561681747437), ('skarpengland', 0.8227219581604004), ('langland', 0.8222305774688721)] In [2]: model.wv.most_similar("kanína") Out[2]: [('loðkanína', 0.9271067976951599), ('dvergkanína', 0.9106121063232422), ('angórakanína', 0.895512044429779), ('angórukanína', 0.8741581439971924), ('feldkanína', 0.8696010708808899), ('kanínubangsi', 0.8562541604042053), ('holdakanína', 0.8543838858604431), ('villikanína', 0.8525990843772888), ('silkikanína', 0.8515204191207886), ('kaníni', 0.8445548415184021)] ```
huggingtweets/lemonjellyhats
huggingtweets
2021-09-27T20:44:01Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/lemonjellyhats/1632775437870/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1388380421780611074/njQLSVzW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">tanisha</div> <div style="text-align: center; font-size: 14px;">@lemonjellyhats</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from tanisha. | Data | tanisha | | --- | --- | | Tweets downloaded | 791 | | Retweets | 241 | | Short tweets | 19 | | Tweets kept | 531 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/xyrf4cur/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lemonjellyhats's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1yfq9m4c) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1yfq9m4c/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/lemonjellyhats') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
chrommium/rubert-base-cased-sentence-finetuned-sent_in_news_sents
chrommium
2021-09-27T19:10:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: rubert-base-cased-sentence-finetuned-sent_in_news_sents results: - task: name: Text Classification type: text-classification metrics: - name: Accuracy type: accuracy value: 0.7224199288256228 - name: F1 type: f1 value: 0.5137303178348194 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rubert-base-cased-sentence-finetuned-sent_in_news_sents This model is a fine-tuned version of [DeepPavlov/rubert-base-cased-sentence](https://huggingface.co/DeepPavlov/rubert-base-cased-sentence) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9506 - Accuracy: 0.7224 - F1: 0.5137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 14 - eval_batch_size: 14 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 81 | 1.0045 | 0.6690 | 0.1388 | | No log | 2.0 | 162 | 0.9574 | 0.6228 | 0.2980 | | No log | 3.0 | 243 | 1.0259 | 0.6477 | 0.3208 | | No log | 4.0 | 324 | 1.1262 | 0.6619 | 0.4033 | | No log | 5.0 | 405 | 1.3377 | 0.6299 | 0.3909 | | No log | 6.0 | 486 | 1.5716 | 0.6868 | 0.3624 | | 0.6085 | 7.0 | 567 | 1.6286 | 0.6762 | 0.4130 | | 0.6085 | 8.0 | 648 | 1.6450 | 0.6940 | 0.4775 | | 0.6085 | 9.0 | 729 | 1.7108 | 0.7224 | 0.4920 | | 0.6085 | 10.0 | 810 | 1.8792 | 0.7046 | 0.5028 | | 0.6085 | 11.0 | 891 | 1.8670 | 0.7153 | 0.4992 | | 0.6085 | 12.0 | 972 | 1.8856 | 0.7153 | 0.4934 | | 0.0922 | 13.0 | 1053 | 1.9506 | 0.7224 | 0.5137 | | 0.0922 | 14.0 | 1134 | 2.0363 | 0.7189 | 0.4761 | | 0.0922 | 15.0 | 1215 | 2.0601 | 0.7224 | 0.5053 | | 0.0922 | 16.0 | 1296 | 2.0813 | 0.7153 | 0.5038 | | 0.0922 | 17.0 | 1377 | 2.0960 | 0.7189 | 0.5065 | | 0.0922 | 18.0 | 1458 | 2.1060 | 0.7224 | 0.5098 | | 0.0101 | 19.0 | 1539 | 2.1153 | 0.7260 | 0.5086 | | 0.0101 | 20.0 | 1620 | 2.1187 | 0.7260 | 0.5086 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
Unbabel/gec-t5_small
Unbabel
2021-09-27T11:27:48Z
287
23
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "grammatical error correction", "text2text", "en", "dataset:clang-8", "dataset:conll-14", "dataset:conll-13", "arxiv:2106.03830", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - grammatical error correction - text2text - t5 license: apache-2.0 datasets: - clang-8 - conll-14 - conll-13 metrics: - f0.5 --- This model is an implementation of the paper [A Simple Recipe for Multilingual Grammatical Error Correction](https://arxiv.org/pdf/2106.03830.pdf) from Google where they report the State of the art score in the task of Grammatical Error Correction (GEC). We implement the version with the T5-small with the reported F_0.5 score in the paper (60.70). To effectively use the "Hosted inference API", write "gec: [YOUR SENTENCE HERE]". In order to use the model, look at the following snippet: ```python from transformers import T5ForConditionalGeneration, T5Tokenizer model = T5ForConditionalGeneration.from_pretrained("Unbabel/gec-t5_small") tokenizer = T5Tokenizer.from_pretrained('t5-small') sentence = "I like to swimming" tokenized_sentence = tokenizer('gec: ' + sentence, max_length=128, truncation=True, padding='max_length', return_tensors='pt') corrected_sentence = tokenizer.decode( model.generate( input_ids = tokenized_sentence.input_ids, attention_mask = tokenized_sentence.attention_mask, max_length=128, num_beams=5, early_stopping=True, )[0], skip_special_tokens=True, clean_up_tokenization_spaces=True ) print(corrected_sentence) # -> I like swimming. ```
vppvgit/BiblItBERT-1
vppvgit
2021-09-27T09:40:47Z
3
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - null model-index: - name: BiblItBERT-1 results: - task: name: Masked Language Modeling type: fill-mask --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BiblItBERT-1 This model is a fine-tuned version of [vppvgit/BiblItBERT](https://huggingface.co/vppvgit/BiblItBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 1.5764 | 1.0 | 16528 | 1.5214 | | 1.4572 | 2.0 | 33056 | 1.4201 | | 1.3787 | 3.0 | 49584 | 1.3728 | | 1.3451 | 4.0 | 66112 | 1.3245 | | 1.3066 | 5.0 | 82640 | 1.2614 | | 1.2447 | 6.0 | 99168 | 1.2333 | | 1.2172 | 7.0 | 115696 | 1.2149 | | 1.2079 | 8.0 | 132224 | 1.1853 | | 1.2167 | 9.0 | 148752 | 1.1586 | | 1.2056 | 10.0 | 165280 | 1.1503 | | 1.1307 | 11.0 | 181808 | 1.1224 | | 1.1689 | 12.0 | 198336 | 1.1074 | | 1.1007 | 13.0 | 214864 | 1.0924 | | 1.0901 | 14.0 | 231392 | 1.0659 | | 1.0667 | 15.0 | 247920 | 1.0650 | | 1.0434 | 16.0 | 264448 | 1.0362 | | 1.0333 | 17.0 | 280976 | 1.0250 | | 1.0342 | 18.0 | 297504 | 1.0198 | | 1.0059 | 19.0 | 314032 | 0.9950 | | 0.9719 | 20.0 | 330560 | 0.9836 | | 0.9863 | 21.0 | 347088 | 0.9873 | | 0.9781 | 22.0 | 363616 | 0.9724 | | 0.9369 | 23.0 | 380144 | 0.9599 | | 0.9578 | 24.0 | 396672 | 0.9557 | | 0.9253 | 25.0 | 413200 | 0.9400 | | 0.9441 | 26.0 | 429728 | 0.9222 | | 0.9138 | 27.0 | 446256 | 0.9140 | | 0.882 | 28.0 | 462784 | 0.9045 | | 0.864 | 29.0 | 479312 | 0.8880 | | 0.8632 | 30.0 | 495840 | 0.9023 | | 0.8342 | 32.0 | 528896 | 0.8740 | | 0.8037 | 34.0 | 561952 | 0.8647 | | 0.8119 | 37.0 | 611536 | 0.8358 | | 0.8011 | 38.0 | 628064 | 0.8252 | | 0.786 | 39.0 | 644592 | 0.8228 | | 0.7697 | 41.0 | 677648 | 0.8138 | | 0.7485 | 42.0 | 694176 | 0.8104 | | 0.7689 | 43.0 | 710704 | 0.8018 | | 0.7401 | 45.0 | 743760 | 0.7957 | | 0.7031 | 47.0 | 776816 | 0.7726 | | 0.7578 | 48.0 | 793344 | 0.7864 | | 0.7298 | 49.0 | 809872 | 0.7775 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
microsoft/layoutlm-base-cased
microsoft
2021-09-27T05:55:31Z
53,140
17
transformers
[ "transformers", "pytorch", "layoutlm", "arxiv:1912.13318", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# LayoutLM **Multimodal (text + layout/format + image) pre-training for document AI** [Microsoft Document AI](https://www.microsoft.com/en-us/research/project/document-ai/) | [GitHub](https://aka.ms/layoutlm) ## Model description LayoutLM is a simple but effective pre-training method of text and layout for document image understanding and information extraction tasks, such as form understanding and receipt understanding. LayoutLM archives the SOTA results on multiple datasets. For more details, please refer to our paper: [LayoutLM: Pre-training of Text and Layout for Document Image Understanding](https://arxiv.org/abs/1912.13318) Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou, [KDD 2020](https://www.kdd.org/kdd2020/accepted-papers) ## Different Tokenizer Note that LayoutLM-Cased requires a different tokenizer, based on RobertaTokenizer. You can initialize it as follows: ~~~ from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('microsoft/layoutlm-base-cased') ~~~ ## Citation If you find LayoutLM useful in your research, please cite the following paper: ``` latex @misc{xu2019layoutlm, title={LayoutLM: Pre-training of Text and Layout for Document Image Understanding}, author={Yiheng Xu and Minghao Li and Lei Cui and Shaohan Huang and Furu Wei and Ming Zhou}, year={2019}, eprint={1912.13318}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
huggingtweets/aly__dixon-haleyosomething-svpino
huggingtweets
2021-09-26T12:49:07Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/aly__dixon-haleyosomething-svpino/1632660543535/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1416541994952937474/yi5cJxnq_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1368667185879584770/pKNxJut-_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1393327649318076417/cQWDVv-q_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">haley o'shaughnessy & Santiago & Aly Dixon</div> <div style="text-align: center; font-size: 14px;">@aly__dixon-haleyosomething-svpino</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from haley o'shaughnessy & Santiago & Aly Dixon. | Data | haley o'shaughnessy | Santiago | Aly Dixon | | --- | --- | --- | --- | | Tweets downloaded | 3241 | 3250 | 3003 | | Retweets | 430 | 7 | 426 | | Short tweets | 460 | 316 | 195 | | Tweets kept | 2351 | 2927 | 2382 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1mt8xsda/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aly__dixon-haleyosomething-svpino's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/31g4nsgq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/31g4nsgq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aly__dixon-haleyosomething-svpino') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Davlan/mbart50-large-yor-eng-mt
Davlan
2021-09-26T12:40:29Z
4
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "arxiv:2103.08647", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - yo - en datasets: - JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) --- # mbart50-large-yor-eng-mt ## Model description **mbart50-large-yor-eng-mt** is a **machine translation** model from Yorùbá language to English language based on a fine-tuned facebook/mbart-large-50 model. It establishes a **strong baseline** for automatically translating texts from Yorùbá to English. Specifically, this model is a *mbart-large-50* model that was fine-tuned on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt). The model was trained using Swahili(sw_KE) as the language since the pre-trained model does not initially support Yorùbá. Thus, you need to use the sw_KE for language code when evaluating the model. #### Limitations and bias This model is limited by its training dataset. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on on JW300 corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset ## Training procedure This model was trained on NVIDIA V100 GPU ## Eval results on Test set (BLEU score) Fine-tuning mbart50-large achieves **15.88 BLEU** on [Menyo-20k test set](https://arxiv.org/abs/2103.08647) while mt5-base achieves 15.57 ### BibTeX entry and citation info By David Adelani ``` ```
Davlan/mbart50-large-eng-yor-mt
Davlan
2021-09-26T11:57:50Z
7
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "arxiv:2103.08647", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - yo - en datasets: - JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) --- # mbart50-large-eng-yor-mt ## Model description **mbart50-large-eng-yor-mt** is a **machine translation** model from English language to Yorùbá language based on a fine-tuned facebook/mbart-large-50 model. It establishes a **strong baseline** for automatically translating texts from English to Yorùbá. Specifically, this model is a *mbart-large-50* model that was fine-tuned on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt). The model was trained using Swahili(sw_KE) as the language since the pre-trained model does not initially support Yorùbá. Thus, you need to use the sw_KE for language code when evaluating the model. #### Limitations and bias This model is limited by its training dataset. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on on JW300 corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset ## Training procedure This model was trained on NVIDIA V100 GPU ## Eval results on Test set (BLEU score) Fine-tuning mbarr50-large achieves **13.39 BLEU** on [Menyo-20k test set](https://arxiv.org/abs/2103.08647) while mt5-base achieves 9.82 ### BibTeX entry and citation info By David Adelani ``` ```
KhoiNXM/KhoiNXM_Vietnamese_QA
KhoiNXM
2021-09-26T03:46:26Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:04Z
VietnameseQA model based on custom dataset.
napoler/chinese_roberta_L-2_H-512_relative_key_query_token_type_100
napoler
2021-09-26T03:21:48Z
5
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
-修改为相对位置 -对内容类型进行修改 ```python from transformers import BertTokenizer, BertModel,BertConfig Config = BertConfig.from_pretrained("napoler/chinese_roberta_L-2_H-512_relative_key_query_token_type_100") tokenizer = BertTokenizer.from_pretrained('napoler/chinese_roberta_L-2_H-512_relative_key_query_token_type_100') model = BertModel.from_pretrained("napoler/chinese_roberta_L-2_H-512_relative_key_query_token_type_100",config=Config) ``` 修改方案 https://www.kaggle.com/terrychanorg/bert-notebook9525623d9e
huggingtweets/caucasianjames-haleyosomething-officialkat
huggingtweets
2021-09-26T02:14:24Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/caucasianjames-haleyosomething-officialkat/1632622460306/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1416541994952937474/yi5cJxnq_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/933947605104685056/mumGVsyS_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1420078509230223363/u7XR7esE_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">haley o'shaughnessy & James & Kat Dennings</div> <div style="text-align: center; font-size: 14px;">@caucasianjames-haleyosomething-officialkat</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from haley o'shaughnessy & James & Kat Dennings. | Data | haley o'shaughnessy | James | Kat Dennings | | --- | --- | --- | --- | | Tweets downloaded | 3242 | 3242 | 3228 | | Retweets | 431 | 89 | 689 | | Short tweets | 460 | 602 | 424 | | Tweets kept | 2351 | 2551 | 2115 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ctao3i2l/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @caucasianjames-haleyosomething-officialkat's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/vge9p265) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/vge9p265/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/caucasianjames-haleyosomething-officialkat') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Hate-speech-CNERG/deoffxlmr-mono-kannada
Hate-speech-CNERG
2021-09-25T14:01:14Z
6
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "kn", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: kn license: apache-2.0 --- This model is used to detect **Offensive Content** in **Kannada Code-Mixed language**. The mono in the name refers to the monolingual setting, where the model is trained using only Kannada(pure and code-mixed) data. The weights are initialized from pretrained XLM-Roberta-Base and pretrained using Masked Language Modelling on the target dataset before fine-tuning using Cross-Entropy Loss. This model is the best of multiple trained for **EACL 2021 Shared Task on Offensive Language Identification in Dravidian Languages**. Genetic-Algorithm based ensembled test predictions got the second-highest weighted F1 score at the leaderboard (Weighted F1 score on hold out test set: This model - 0.73, Ensemble - 0.74) ### For more details about our paper Debjoy Saha, Naman Paharia, Debajit Chakraborty, Punyajoy Saha, Animesh Mukherjee. "[Hate-Alert@DravidianLangTech-EACL2021: Ensembling strategies for Transformer-based Offensive language Detection](https://www.aclweb.org/anthology/2021.dravidianlangtech-1.38/)". ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @inproceedings{saha-etal-2021-hate, title = "Hate-Alert@{D}ravidian{L}ang{T}ech-{EACL}2021: Ensembling strategies for Transformer-based Offensive language Detection", author = "Saha, Debjoy and Paharia, Naman and Chakraborty, Debajit and Saha, Punyajoy and Mukherjee, Animesh", booktitle = "Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages", month = apr, year = "2021", address = "Kyiv", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.dravidianlangtech-1.38", pages = "270--276", abstract = "Social media often acts as breeding grounds for different forms of offensive content. For low resource languages like Tamil, the situation is more complex due to the poor performance of multilingual or language-specific models and lack of proper benchmark datasets. Based on this shared task {``}Offensive Language Identification in Dravidian Languages{''} at EACL 2021; we present an exhaustive exploration of different transformer models, We also provide a genetic algorithm technique for ensembling different models. Our ensembled models trained separately for each language secured the first position in Tamil, the second position in Kannada, and the first position in Malayalam sub-tasks. The models and codes are provided.", } ~~~
Hate-speech-CNERG/dehatebert-mono-spanish
Hate-speech-CNERG
2021-09-25T14:00:12Z
136
8
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "es", "arxiv:2004.06465", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: es license: apache-2.0 --- This model is used detecting **hatespeech** in **Spanish language**. The mono in the name refers to the monolingual setting, where the model is trained using only English language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.740287 for a learning rate of 3e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
Hate-speech-CNERG/dehatebert-mono-polish
Hate-speech-CNERG
2021-09-25T13:58:40Z
110
1
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "pl", "arxiv:2004.06465", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: pl license: apache-2.0 --- This model is used detecting **hatespeech** in **Polish language**. The mono in the name refers to the monolingual setting, where the model is trained using only English language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.723254 for a learning rate of 2e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
Hate-speech-CNERG/dehatebert-mono-english
Hate-speech-CNERG
2021-09-25T13:55:16Z
90,803
10
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "en", "arxiv:2004.06465", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: en license: apache-2.0 --- This model is used detecting **hatespeech** in **English language**. The mono in the name refers to the monolingual setting, where the model is trained using only English language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.726030 for a learning rate of 2e-5. Training code can be found here https://github.com/punyajoy/DE-LIMIT ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
Hate-speech-CNERG/dehatebert-mono-french
Hate-speech-CNERG
2021-09-25T13:51:14Z
158
4
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "fr", "arxiv:2004.06465", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: fr license: apache-2.0 --- This model is used detecting **hatespeech** in **French language**. The mono in the name refers to the monolingual setting, where the model is trained using only English language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.692094 for a learning rate of 3e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
huggingtweets/sixjay__
huggingtweets
2021-09-25T11:43:57Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/sixjay__/1632570148333/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1434204311505055754/Ozub-Lmd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">joj</div> <div style="text-align: center; font-size: 14px;">@sixjay__</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from joj. | Data | joj | | --- | --- | | Tweets downloaded | 2494 | | Retweets | 508 | | Short tweets | 429 | | Tweets kept | 1557 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wcyvex9s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sixjay__'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/6yf1o7q5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/6yf1o7q5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sixjay__') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
superb/superb-test-org__test-submission-with-example-expert__d609b3c32044e50e3d5e9067bd97af1b42f04b0e
superb
2021-09-24T19:49:31Z
0
0
null
[ "tensorboard", "library:s3prl", "benchmark:superb", "type:model", "dataset:superb", "region:us" ]
null
2022-03-02T23:29:05Z
--- datasets: - superb tags: - library:s3prl - benchmark:superb - type:model --- # Fine-tuned s3prl model Upstream Model: superb-test-org/test-submission-with-example-expert ## Model description [More information needed] ## Intended uses & limitations [More information needed] ## How to use [More information needed] ## Limitations and bias [More information needed] ## Training data [More information needed] ## Training procedure [More information needed] ## Evaluation results [More information needed]
SaulLu/cotet5_small_fix
SaulLu
2021-09-24T17:56:36Z
4
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "codet5", "dataset:code_search_net", "arxiv:2109.00859", "arxiv:1909.09436", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - codet5 datasets: - code_search_net inference: false --- # CodeT5 (small-sized model) Pre-trained CodeT5 model. It was introduced in the paper [CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation](https://arxiv.org/abs/2109.00859) by Yue Wang, Weishi Wang, Shafiq Joty, Steven C.H. Hoi and first released in [this repository](https://github.com/salesforce/CodeT5). Disclaimer: The team releasing CodeT5 did not write a model card for this model so this model card has been written by the Hugging Face team (more specifically, [nielsr](https://huggingface.co/nielsr)). ## Model description From the abstract: "We present CodeT5, a unified pre-trained encoder-decoder Transformer model that better leverages the code semantics conveyed from the developer-assigned identifiers. Our model employs a unified framework to seamlessly support both code understanding and generation tasks and allows for multi-task learning. Besides, we propose a novel identifier-aware pre-training task that enables the model to distinguish which code tokens are identifiers and to recover them when they are masked. Furthermore, we propose to exploit the user-written code comments with a bimodal dual generation task for better NL-PL alignment. Comprehensive experiments show that CodeT5 significantly outperforms prior methods on understanding tasks such as code defect detection and clone detection, and generation tasks across various directions including PL-NL, NL-PL, and PL-PL. Further analysis reveals that our model can better capture semantic information from code." ## Intended uses & limitations This repository contains the pre-trained model only, so you can use this model for masked span prediction, as shown in the code example below. However, the main use of this model is to fine-tune it for a downstream task of interest, such as: * code summarization * code generation * code translation * code refinement * code defect detection * code clone detection. See the [model hub](https://huggingface.co/models?search=salesforce/codet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python from transformers import RobertaTokenizer, T5ForConditionalGeneration tokenizer = RobertaTokenizer.from_pretrained('Salesforce/codet5-small') model = T5ForConditionalGeneration.from_pretrained('Salesforce/codet5-small') text = "def greet(user): print(f'hello <extra_id_0>!')" input_ids = tokenizer(text, return_tensors="pt").input_ids # simply generate a single sequence generated_ids = model.generate(input_ids, max_length=10) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) # this prints "user: {user.name}" ``` ## Training data The CodeT5 model was pretrained on CodeSearchNet [Husain et al., 2019](https://arxiv.org/abs/1909.09436). Additionally, the authors collected two datasets of C/CSharp from [BigQuery1](https://console.cloud.google.com/marketplace/details/github/github-repos) to ensure that all downstream tasks have overlapped programming languages with the pre-training data. In total, around 8.35 million instances are used for pretraining. ## Training procedure ### Preprocessing This model uses a code-specific BPE (Byte-Pair Encoding) tokenizer. One can prepare text (or code) for the model using RobertaTokenizer, with the files from this repository. ## Evaluation results For evaluation results on several downstream benchmarks, we refer to the paper. ### BibTeX entry and citation info ```bibtex @misc{wang2021codet5, title={CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation}, author={Yue Wang and Weishi Wang and Shafiq Joty and Steven C. H. Hoi}, year={2021}, eprint={2109.00859}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Adi2K/Priv-Consent
Adi2K
2021-09-24T12:53:04Z
16
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "eng", "dataset:Adi2K/autonlp-data-Priv-Consent", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: eng widget: - text: "You can control cookies and tracking tools. To learn how to manage how we - and our vendors - use cookies and other tracking tools, please click here." datasets: - Adi2K/autonlp-data-Priv-Consent --- # Model - Problem type: Binary Classification - Model ID: 12592372 ## Validation Metrics - Loss: 0.23033875226974487 - Accuracy: 0.9138655462184874 - Precision: 0.9087136929460581 - Recall: 0.9201680672268907 - AUC: 0.9690346726926065 - F1: 0.9144050104384133 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Adi2K/autonlp-Priv-Consent-12592372 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Adi2K/autonlp-Priv-Consent-12592372", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Adi2K/autonlp-Priv-Consent-12592372", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
gchhablani/fnet-large-finetuned-rte
gchhablani
2021-09-24T11:27:19Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: fnet-large-finetuned-rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.6425992779783394 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-rte This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.7528 - Accuracy: 0.6426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7105 | 1.0 | 623 | 0.6887 | 0.5740 | | 0.6714 | 2.0 | 1246 | 0.6742 | 0.6209 | | 0.509 | 3.0 | 1869 | 0.7528 | 0.6426 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
bionlp/bluebert_pubmed_uncased_L-24_H-1024_A-16
bionlp
2021-09-24T07:46:55Z
46
5
transformers
[ "transformers", "pytorch", "jax", "bert", "bluebert", "en", "dataset:PubMed", "license:cc0-1.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - en tags: - bert - bluebert license: cc0-1.0 datasets: - PubMed --- # BlueBert-Base, Uncased, PubMed ## Model description A BERT model pre-trained on PubMed abstracts. ## Intended uses & limitations #### How to use Please see https://github.com/ncbi-nlp/bluebert ## Training data We provide [preprocessed PubMed texts](https://ftp.ncbi.nlm.nih.gov/pub/lu/Suppl/NCBI-BERT/pubmed_uncased_sentence_nltk.txt.tar.gz) that were used to pre-train the BlueBERT models. The corpus contains ~4000M words extracted from the [PubMed ASCII code version](https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PubMed/). Pre-trained model: https://huggingface.co/bert-large-uncased ## Training procedure * lowercasing the text * removing speical chars `\x00`-`\x7F` * tokenizing the text using the [NLTK Treebank tokenizer](https://www.nltk.org/_modules/nltk/tokenize/treebank.html) Below is a code snippet for more details. ```python value = value.lower() value = re.sub(r'[\r\n]+', ' ', value) value = re.sub(r'[^\x00-\x7F]+', ' ', value) tokenized = TreebankWordTokenizer().tokenize(value) sentence = ' '.join(tokenized) sentence = re.sub(r"\s's\b", "'s", sentence) ``` ### BibTeX entry and citation info ```bibtex @InProceedings{peng2019transfer, author = {Yifan Peng and Shankai Yan and Zhiyong Lu}, title = {Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets}, booktitle = {Proceedings of the 2019 Workshop on Biomedical Natural Language Processing (BioNLP 2019)}, year = {2019}, pages = {58--65}, } ``` ### Acknowledgments This work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of Medicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01. We are also grateful to the authors of BERT and ELMo to make the data and codes publicly available. We would like to thank Dr Sun Kim for processing the PubMed texts. ### Disclaimer This tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced on this website is not intended for direct diagnostic use or medical decision-making without review and oversight by a clinical professional. Individuals should not change their health behavior solely on the basis of information produced on this website. NIH does not independently verify the validity or utility of the information produced by this tool. If you have questions about the information produced on this website, please see a health care professional. More information about NCBI's disclaimer policy is available.
bionlp/bluebert_pubmed_mimic_uncased_L-24_H-1024_A-16
bionlp
2021-09-24T07:46:34Z
57
4
transformers
[ "transformers", "pytorch", "jax", "bert", "bluebert", "en", "dataset:PubMed", "dataset:MIMIC-III", "license:cc0-1.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - en tags: - bert - bluebert license: cc0-1.0 datasets: - PubMed - MIMIC-III --- # BlueBert-Base, Uncased, PubMed and MIMIC-III ## Model description A BERT model pre-trained on PubMed abstracts and clinical notes ([MIMIC-III](https://mimic.physionet.org/)). ## Intended uses & limitations #### How to use Please see https://github.com/ncbi-nlp/bluebert ## Training data We provide [preprocessed PubMed texts](https://ftp.ncbi.nlm.nih.gov/pub/lu/Suppl/NCBI-BERT/pubmed_uncased_sentence_nltk.txt.tar.gz) that were used to pre-train the BlueBERT models. The corpus contains ~4000M words extracted from the [PubMed ASCII code version](https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PubMed/). Pre-trained model: https://huggingface.co/bert-large-uncased ## Training procedure * lowercasing the text * removing speical chars `\x00`-`\x7F` * tokenizing the text using the [NLTK Treebank tokenizer](https://www.nltk.org/_modules/nltk/tokenize/treebank.html) Below is a code snippet for more details. ```python value = value.lower() value = re.sub(r'[\r\n]+', ' ', value) value = re.sub(r'[^\x00-\x7F]+', ' ', value) tokenized = TreebankWordTokenizer().tokenize(value) sentence = ' '.join(tokenized) sentence = re.sub(r"\s's\b", "'s", sentence) ``` ### BibTeX entry and citation info ```bibtex @InProceedings{peng2019transfer, author = {Yifan Peng and Shankai Yan and Zhiyong Lu}, title = {Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets}, booktitle = {Proceedings of the 2019 Workshop on Biomedical Natural Language Processing (BioNLP 2019)}, year = {2019}, pages = {58--65}, } ``` ### Acknowledgments This work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of Medicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01. We are also grateful to the authors of BERT and ELMo to make the data and codes publicly available. We would like to thank Dr Sun Kim for processing the PubMed texts. ### Disclaimer This tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced on this website is not intended for direct diagnostic use or medical decision-making without review and oversight by a clinical professional. Individuals should not change their health behavior solely on the basis of information produced on this website. NIH does not independently verify the validity or utility of the information produced by this tool. If you have questions about the information produced on this website, please see a health care professional. More information about NCBI's disclaimer policy is available.
bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12
bionlp
2021-09-24T07:46:11Z
11,721
20
transformers
[ "transformers", "pytorch", "jax", "bert", "bluebert", "en", "dataset:PubMed", "dataset:MIMIC-III", "license:cc0-1.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - en tags: - bert - bluebert license: cc0-1.0 datasets: - PubMed - MIMIC-III --- # BlueBert-Base, Uncased, PubMed and MIMIC-III ## Model description A BERT model pre-trained on PubMed abstracts and clinical notes ([MIMIC-III](https://mimic.physionet.org/)). ## Intended uses & limitations #### How to use Please see https://github.com/ncbi-nlp/bluebert ## Training data We provide [preprocessed PubMed texts](https://ftp.ncbi.nlm.nih.gov/pub/lu/Suppl/NCBI-BERT/pubmed_uncased_sentence_nltk.txt.tar.gz) that were used to pre-train the BlueBERT models. The corpus contains ~4000M words extracted from the [PubMed ASCII code version](https://www.ncbi.nlm.nih.gov/research/bionlp/APIs/BioC-PubMed/). Pre-trained model: https://huggingface.co/bert-base-uncased ## Training procedure * lowercasing the text * removing speical chars `\x00`-`\x7F` * tokenizing the text using the [NLTK Treebank tokenizer](https://www.nltk.org/_modules/nltk/tokenize/treebank.html) Below is a code snippet for more details. ```python value = value.lower() value = re.sub(r'[\r\n]+', ' ', value) value = re.sub(r'[^\x00-\x7F]+', ' ', value) tokenized = TreebankWordTokenizer().tokenize(value) sentence = ' '.join(tokenized) sentence = re.sub(r"\s's\b", "'s", sentence) ``` ### BibTeX entry and citation info ```bibtex @InProceedings{peng2019transfer, author = {Yifan Peng and Shankai Yan and Zhiyong Lu}, title = {Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets}, booktitle = {Proceedings of the 2019 Workshop on Biomedical Natural Language Processing (BioNLP 2019)}, year = {2019}, pages = {58--65}, } ``` ### Acknowledgments This work was supported by the Intramural Research Programs of the National Institutes of Health, National Library of Medicine and Clinical Center. This work was supported by the National Library of Medicine of the National Institutes of Health under award number 4R00LM013001-01. We are also grateful to the authors of BERT and ELMo to make the data and codes publicly available. We would like to thank Dr Sun Kim for processing the PubMed texts. ### Disclaimer This tool shows the results of research conducted in the Computational Biology Branch, NCBI. The information produced on this website is not intended for direct diagnostic use or medical decision-making without review and oversight by a clinical professional. Individuals should not change their health behavior solely on the basis of information produced on this website. NIH does not independently verify the validity or utility of the information produced by this tool. If you have questions about the information produced on this website, please see a health care professional. More information about NCBI's disclaimer policy is available.
zgotter/bert-base-finetuned-ynat
zgotter
2021-09-24T02:00:26Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:klue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - klue metrics: - f1 model-index: - name: bert-base-finetuned-ynat results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue args: ynat metrics: - name: F1 type: f1 value: 0.8669116640755216 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-finetuned-ynat This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3710 - F1: 0.8669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 179 | 0.4223 | 0.8549 | | No log | 2.0 | 358 | 0.3710 | 0.8669 | | 0.2576 | 3.0 | 537 | 0.3891 | 0.8631 | | 0.2576 | 4.0 | 716 | 0.3968 | 0.8612 | | 0.2576 | 5.0 | 895 | 0.4044 | 0.8617 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
huggingtweets/jschlatt
huggingtweets
2021-09-23T19:13:50Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/jschlatt/1632424426297/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1104281298967904257/KuDWZQfF_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Schlatt</div> <div style="text-align: center; font-size: 14px;">@jschlatt</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Schlatt. | Data | Schlatt | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 3 | | Short tweets | 1207 | | Tweets kept | 2040 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ad6fl7e4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jschlatt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/24kxtuwd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/24kxtuwd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jschlatt') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
piotr-rybak/poleval2021-task4-herbert-large-encoder
piotr-rybak
2021-09-23T17:34:47Z
103
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6098 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: ``` {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True} ``` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 5, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 1e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3049, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 1024, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
valhalla/distilt5-qg-hl-12-6
valhalla
2021-09-23T16:42:49Z
5
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "question-generation", "distilt5", "distilt5-qg", "dataset:squad", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- datasets: - squad tags: - question-generation - distilt5 - distilt5-qg widget: - text: <hl> 42 <hl> is the answer to life, the universe and everything. </s> - text: Python is a programming language. It is developed by <hl> Guido Van Rossum <hl>. </s> - text: Although <hl> practicality <hl> beats purity </s> license: mit --- ## DistilT5 for question-generation This is distilled version of [t5-base-qg-hl](https://huggingface.co/valhalla/t5-base-qg-hl) model trained for answer aware question generation task. The answer spans are highlighted within the text with special highlight tokens. The model is distilled using the **No Teacher Distillation** method proposed by Huggingface, [here](https://github.com/huggingface/transformers/tree/master/examples/seq2seq#distilbart). We just copy alternating layers from `t5-base-qg-hl` and finetune more on the same data. Following table lists other distilled models and their metrics. | Name | BLEU-4 | METEOR | ROUGE-L | QA-EM | QA-F1 | |---------------------------------------------------------------------------------|---------|---------|---------|--------|--------| | [distilt5-qg-hl-6-4](https://huggingface.co/valhalla/distilt5-qg-hl-6-4) | 18.4141 | 24.8417 | 40.3435 | - | - | | [distilt5-qa-qg-hl-6-4](https://huggingface.co/valhalla/distilt5-qa-qg-hl-6-4) | 18.6493 | 24.9685 | 40.5605 | 76.13 | 84.659 | | [distilt5-qg-hl-12-6](https://huggingface.co/valhalla/distilt5-qg-hl-12-6) | 20.5275 | 26.5010 | 43.2676 | - | - | | [distilt5-qa-qg-hl-12-6](https://huggingface.co/valhalla/distilt5-qa-qg-hl-12-6)| 20.6109 | 26.4533 | 43.0895 | 81.61 | 89.831 | You can play with the model using the inference API, just highlight the answer spans with `<hl>` tokens. For example `<hl> 42 <hl> is the answer to life, the universe and everything.` For more deatils see [this](https://github.com/patil-suraj/question_generation) repo. ### Model in action 🚀 You'll need to clone the [repo](https://github.com/patil-suraj/question_generation). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/patil-suraj/question_generation/blob/master/question_generation.ipynb) ```python3 from pipelines import pipeline nlp = pipeline("question-generation", model="valhalla/distilt5-qg-hl-12-6") nlp("42 is the answer to life, universe and everything.") => [{'answer': '42', 'question': 'What is the answer to life, the universe and everything?'}] ```
toloka/t5-large-for-text-aggregation
toloka
2021-09-23T16:40:58Z
16
7
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "text aggregation", "summarization", "en", "dataset:toloka/CrowdSpeech", "arxiv:1910.10683", "arxiv:2107.01091", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: - en tags: - text aggregation - summarization license: apache-2.0 datasets: - toloka/CrowdSpeech metrics: - wer --- # T5 Large for Text Aggregation ## Model description This is a T5 Large fine-tuned for crowdsourced text aggregation tasks. The model takes multiple performers' responses and yields a single aggregated response. This approach was introduced for the first time during [VLDB 2021 Crowd Science Challenge](https://crowdscience.ai/challenges/vldb21) and originally implemented at the second-place competitor's [GitHub](https://github.com/A1exRey/VLDB2021_workshop_t5). The [paper](http://ceur-ws.org/Vol-2932/short2.pdf) describing this model was presented at the [2nd Crowd Science Workshop](https://crowdscience.ai/conference_events/vldb21). ## How to use ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig mname = "toloka/t5-large-for-text-aggregation" tokenizer = AutoTokenizer.from_pretrained(mname) model = AutoModelForSeq2SeqLM.from_pretrained(mname) input = "samplee text | sampl text | sample textt" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # sample text ``` ## Training data Pretrained weights were taken from the [original](https://huggingface.co/t5-large) T5 Large model by Google. For more details on the T5 architecture and training procedure see https://arxiv.org/abs/1910.10683 Model was fine-tuned on `train-clean`, `dev-clean` and `dev-other` parts of the [CrowdSpeech](https://huggingface.co/datasets/toloka/CrowdSpeech) dataset that was introduced in [our paper](https://openreview.net/forum?id=3_hgF1NAXU7&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DNeurIPS.cc%2F2021%2FTrack%2FDatasets_and_Benchmarks%2FRound1%2FAuthors%23your-submissions). ## Training procedure The model was fine-tuned for eight epochs directly following the HuggingFace summarization training [example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization). ## Eval results Dataset | Split | WER -----------|------------|---------- CrowdSpeech| test-clean | 4.99 CrowdSpeech| test-other | 10.61 ### BibTeX entry and citation info ```bibtex @inproceedings{Pletenev:21, author = {Pletenev, Sergey}, title = {{Noisy Text Sequences Aggregation as a Summarization Subtask}}, year = {2021}, booktitle = {Proceedings of the 2nd Crowd Science Workshop: Trust, Ethics, and Excellence in Crowdsourced Data Management at Scale}, pages = {15--20}, address = {Copenhagen, Denmark}, issn = {1613-0073}, url = {http://ceur-ws.org/Vol-2932/short2.pdf}, language = {english}, } ``` ```bibtex @misc{pavlichenko2021vox, title={Vox Populi, Vox DIY: Benchmark Dataset for Crowdsourced Audio Transcription}, author={Nikita Pavlichenko and Ivan Stelmakh and Dmitry Ustalov}, year={2021}, eprint={2107.01091}, archivePrefix={arXiv}, primaryClass={cs.SD} } ```
tanmoyio/wav2vec2-large-xlsr-bengali
tanmoyio
2021-09-23T16:39:27Z
1,078
3
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dataset:OpenSLR", "license:cc-by-sa-4.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: Bengali datasets: - OpenSLR metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: cc-by-sa-4.0 model-index: - name: XLSR Wav2Vec2 Bengali by Tanmoy Sarkar results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR type: OpenSLR args: ben metrics: - name: Test WER type: wer value: 88.58 --- # Wav2Vec2-Large-XLSR-Bengali Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) Bengali using the [Bengali ASR training data set containing ~196K utterances](https://www.openslr.org/53/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage Dataset must be downloaded from [this website](https://www.openslr.org/53/) and preprocessed accordingly. For example 1250 test samples has been chosen. ```python import pandas as pd test_dataset = pd.read_csv('utt_spk_text.tsv', sep='\\t', header=None)[60000:61250] test_dataset.columns = ["audio_path", "__", "label"] test_dataset = test_data.drop("__", axis=1) def add_file_path(text): path = "data/" + text[:2] + "/" + text + '.flac' return path test_dataset['audio_path'] = test_dataset['audio_path'].map(lambda x: add_file_path(x)) ``` The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor processor = Wav2Vec2Processor.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali") model = Wav2Vec2ForCTC.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["audio_path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["label"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Bengali test data of OpenSLR. ```python import torch import torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali") model = Wav2Vec2ForCTC.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali") model.to("cuda") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["label"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 88.58 % ## Training The script used for training can be found [Bengali ASR Fine Tuning Wav2Vec2](https://colab.research.google.com/drive/1Bkc5C_cJV9BeS0FD0MuHyayl8hqcbdRZ?usp=sharing)
skt/kogpt2-base-v2
skt
2021-09-23T16:29:28Z
23,482
45
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "ko", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: ko tags: - gpt2 license: cc-by-nc-sa-4.0 --- For more details: https://github.com/SKT-AI/KoGPT2
skt/ko-gpt-trinity-1.2B-v0.5
skt
2021-09-23T16:29:25Z
628
43
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "gpt3", "ko", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: ko tags: - gpt3 license: cc-by-nc-sa-4.0 --- # Ko-GPT-Trinity 1.2B (v0.5) ## Model Description Ko-GPT-Trinity 1.2B is a transformer model designed using SK telecom's replication of the GPT-3 architecture. Ko-GPT-Trinity refers to the class of models, while 1.2B represents the number of parameters of this particular pre-trained model. ### Model date May 2021 ### Model type Language model ### Model version 1.2 billion parameter model ## Training data Ko-GPT-Trinity 1.2B was trained on Ko-DAT, a large scale curated dataset created by SK telecom for the purpose of training this model. ## Training procedure This model was trained on ko-DAT for 35 billion tokens over 72,000 steps. It was trained as a masked autoregressive language model, using cross-entropy loss. ## Intended Use and Limitations The model learns an inner representation of the Korean language that can then be used to extract features useful for downstream tasks. The model excels at generating texts from a prompt, which was the pre-training objective. ### Limitations and Biases Ko-GPT-Trinity was trained on Ko-DAT, a dataset known to contain profanity, lewd, politically charged, and otherwise abrasive language. As such, Ko-GPT-Trinity may produce socially unacceptable text. As with all language models, it is hard to predict in advance how Ko-GPT-Trinity will respond to particular prompts and offensive content may occur without warning. Ko-GPT-Trinity was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, this is an active area of ongoing research. Known limitations include the following: Predominantly Korean: Ko-GPT-Trinity was trained largely on text in the Korean language, and is best suited for classifying, searching, summarizing, or generating such text. Ko-GPT-Trinity will by default perform worse on inputs that are different from the data distribution it is trained on, including non-Korean languages as well as specific dialects of Korean that are not as well-represented in training data. Interpretability & predictability: the capacity to interpret or predict how Ko-GPT-Trinity will behave is very limited, a limitation common to most deep learning systems, especially in models of this scale. High variance on novel inputs: Ko-GPT-Trinity is not necessarily well-calibrated in its predictions on novel inputs. This can be observed in the much higher variance in its performance as compared to that of humans on standard benchmarks. ## Eval results ### Reasoning | Model and Size | BoolQ | CoPA | WiC | | ----------------------- | --------- | ---------- | --------- | | **Ko-GPT-Trinity 1.2B** | **71.77** | **68.66** | **78.73** | | KoElectra-base | 65.17 | 67.56 | 77.27 | | KoBERT-base | 55.97 | 62.24 | 77.60 | ## Where to send questions or comments about the model Please contact [Eric] (eric.davis@sktair.com)
persiannlp/wikibert-base-parsinlu-multiple-choice
persiannlp
2021-09-23T16:20:58Z
67
0
transformers
[ "transformers", "pytorch", "jax", "bert", "multiple-choice", "wikibert", "persian", "farsi", "text-classification", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - wikibert - persian - farsi pipeline_tag: text-classification license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a wikibert-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from typing import List import torch from transformers import AutoConfig, AutoModelForMultipleChoice, AutoTokenizer model_name = "persiannlp/wikibert-base-parsinlu-multiple-choice" tokenizer = AutoTokenizer.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name) model = AutoModelForMultipleChoice.from_pretrained(model_name, config=config) def run_model(question: str, candicates: List[str]): assert len(candicates) == 4, "you need four candidates" choices_inputs = [] for c in candicates: text_a = "" # empty context text_b = question + " " + c inputs = tokenizer( text_a, text_b, add_special_tokens=True, max_length=128, padding="max_length", truncation=True, return_overflowing_tokens=True, ) choices_inputs.append(inputs) input_ids = torch.LongTensor([x["input_ids"] for x in choices_inputs]) output = model(input_ids=input_ids) print(output) return output run_model(question="وسیع ترین کشور جهان کدام است؟", candicates=["آمریکا", "کانادا", "روسیه", "چین"]) run_model(question="طامع یعنی ؟", candicates=["آزمند", "خوش شانس", "محتاج", "مطمئن"]) run_model( question="زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده ", candicates=["روز اول", "روز دوم", "روز سوم", "هیچکدام"]) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-small-parsinlu-translation_en_fa
persiannlp
2021-09-23T16:20:48Z
705
3
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "machine-translation", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - machine-translation - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - sacrebleu --- # Machine Translation (ترجمه‌ی ماشینی) This is an mT5-based model for machine translation (English -> Persian). Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "small" model_name = f"persiannlp/mt5-{model_size}-parsinlu-translation_en_fa" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("Praise be to Allah, the Cherisher and Sustainer of the worlds;") run_model("shrouds herself in white and walks penitentially disguised as brotherly love through factories and parliaments; offers help, but desires power;") run_model("He thanked all fellow bloggers and organizations that showed support.") run_model("Races are held between April and December at the Veliefendi Hippodrome near Bakerky, 15 km (9 miles) west of Istanbul.") run_model("I want to pursue PhD in Computer Science about social network,what is the open problem in social networks?") ``` which should output: ``` ['برای الله، یعنی چرنده و سوزان دنیا، تحسین کنید'] ['خودش را در سفید پوسته می کند و به صورت عشق برادرانه'] ['او از تمام بلاگرها و سازمان هایی که حمایتشان را نشان می داد'] ['در طول ماه آوریل و دسامبر در والی فیودورونا نزدیک بیکر'] ['من می خواهم در مورد شبکه اجتماعی تحقیقات علوم کامپیوتری را دن'] ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-small-parsinlu-snli-entailment
persiannlp
2021-09-23T16:20:43Z
52
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "entailment", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "dataset:snli", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - entailment - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - snli metrics: - accuracy --- # Textual Entailment (مدل برای پاسخ به استلزام منطقی) This is a model for textual entailment problems. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size="small" model_name = f"persiannlp/mt5-{model_size}-parsinlu-snli-entailment" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(premise, hypothesis, **generator_args): input_ids = tokenizer.encode(f"{premise}<sep>{hypothesis}", return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model( "این مسابقات بین آوریل و دسامبر در هیپودروم ولیفندی در نزدیکی باکرکی ، ۱۵ کیلومتری (۹ مایل) غرب استانبول برگزار می شود.", "در ولیفندی هیپودروم، مسابقاتی از آوریل تا دسامبر وجود دارد." ) run_model( "آیا کودکانی وجود دارند که نیاز به سرگرمی دارند؟", "هیچ کودکی هرگز نمی خواهد سرگرم شود.", ) run_model( "ما به سفرهایی رفته ایم که در نهرهایی شنا کرده ایم", "علاوه بر استحمام در نهرها ، ما به اسپا ها و سونا ها نیز رفته ایم." ) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-small-parsinlu-qqp-query-paraphrasing
persiannlp
2021-09-23T16:20:38Z
29
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "query-paraphrasing", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "dataset:qqp", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - query-paraphrasing - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - qqp metrics: - accuracy --- # Detection of Paraphrased Queries (تشخصیص سوالات هم‌معنی) This is a model for detection of paraphrased queries. Here is an example of how you can run this model: ```python from transformers import MT5Config, MT5ForConditionalGeneration, MT5Tokenizer model_name = "persiannlp/mt5-small-parsinlu-qqp-query-paraphrasing" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(q1, q2, **generator_args): input_ids = tokenizer.encode(f"{q1}<sep>{q2}", return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("چه چیزی باعث پوکی استخوان می شود؟", "چه چیزی باعث مقاومت استخوان در برابر ضربه می شود؟") run_model("من دارم به این فکر میکنم چرا ساعت هفت نمیشه؟", "چرا من ساده فکر میکردم به عشقت پابندی؟") run_model("دعای کمیل در چه روزهایی خوانده می شود؟", "دعای جوشن کبیر در چه شبی خوانده می شود؟") run_model("دعای کمیل در چه روزهایی خوانده می شود؟", "دعای جوشن کبیر در چه شبی خوانده می شود؟") run_model("شناسنامه در چه سالی وارد ایران شد؟", "سیب زمینی در چه سالی وارد ایران شد؟") run_model("سیب زمینی چه زمانی وارد ایران شد؟", "سیب زمینی در چه سالی وارد ایران شد؟") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-small-parsinlu-opus-translation_fa_en
persiannlp
2021-09-23T16:20:36Z
66,934
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "machine-translation", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - machine-translation - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - sacrebleu --- # Machine Translation (ترجمه‌ی ماشینی) This is an mT5-based model for machine translation (Persian -> English). Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "small" model_name = f"persiannlp/mt5-{model_size}-parsinlu-opus-translation_fa_en" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("ستایش خدای را که پروردگار جهانیان است.") run_model("در هاید پارک کرنر بر گلدانی ایستاده موعظه می‌کند؛") run_model("وی از تمامی بلاگرها، سازمان‌ها و افرادی که از وی پشتیبانی کرده‌اند، تشکر کرد.") run_model("مشابه سال ۲۰۰۱، تولید آمونیاک بی آب در ایالات متحده در سال ۲۰۰۰ تقریباً ۱۷،۴۰۰،۰۰۰ تن (معادل بدون آب) با مصرف ظاهری ۲۲،۰۰۰،۰۰۰ تن و حدود ۴۶۰۰۰۰۰ با واردات خالص مواجه شد. ") run_model("می خواهم دکترای علوم کامپیوتر راجع به شبکه های اجتماعی را دنبال کنم، چالش حل نشده در شبکه های اجتماعی چیست؟") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-small-parsinlu-arc-comqa-obqa-multiple-choice
persiannlp
2021-09-23T16:20:31Z
7
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "multiple-choice", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "dataset:commonsenseqa", "dataset:arc", "dataset:openbookqa", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - commonsenseqa - arc - openbookqa metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a mT5-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "small" model_name = f"persiannlp/mt5-{model_size}-parsinlu-arc-comqa-obqa-multiple-choice" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("وسیع ترین کشور جهان کدام است؟ <sep> آمریکا <sep> کانادا <sep> روسیه <sep> چین") run_model("طامع یعنی ؟ <sep> آزمند <sep> خوش شانس <sep> محتاج <sep> مطمئن") run_model( "زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده <sep> روز اول <sep> روز دوم <sep> روز سوم <sep> هیچکدام") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-large-parsinlu-translation_en_fa
persiannlp
2021-09-23T16:20:29Z
580
2
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "machine-translation", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - machine-translation - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - sacrebleu --- # Machine Translation (ترجمه‌ی ماشینی) This is an mT5-based model for machine translation (English -> Persian). Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "large" model_name = f"persiannlp/mt5-{model_size}-parsinlu-translation_en_fa" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("Praise be to Allah, the Cherisher and Sustainer of the worlds;") run_model("shrouds herself in white and walks penitentially disguised as brotherly love through factories and parliaments; offers help, but desires power;") run_model("He thanked all fellow bloggers and organizations that showed support.") run_model("Races are held between April and December at the Veliefendi Hippodrome near Bakerky, 15 km (9 miles) west of Istanbul.") run_model("I want to pursue PhD in Computer Science about social network,what is the open problem in social networks?") ``` which should output: ``` ['خدا را شکر که آفریننده و نگهدار جهان است.'] ['خود را با کفن سفید می پوشد و به شکل برادرانه ای در'] ['او از همه ی وبلاگ نویسان و سازمان هایی که از او حمایت کردند'] ['مسابقات بین آوریل و دسامبر در فرودگاه والی عبدین نزدیک بی'] ['من می خواهم پایان نامه دکتری را در رشته علوم کامپیوتر در'] ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-large-parsinlu-sentiment-analysis
persiannlp
2021-09-23T16:20:21Z
25
2
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "sentiment", "sentiment-analysis", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - sentiment - sentiment-analysis - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Sentiment Analysis (آنالیز احساسات) This is a mT5 model for sentiment analysis. Here is an example of how you can run this model: ```python import torch from transformers import MT5ForConditionalGeneration, MT5Tokenizer import numpy as np model_name_or_path = "persiannlp/mt5-large-parsinlu-sentiment-analysis" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def model_predict(text_a, text_b): features = tokenizer( [(text_a, text_b)], padding="max_length", truncation=True, return_tensors='pt') output = model(**features) logits = output[0] probs = torch.nn.functional.softmax(logits, dim=1).tolist() idx = np.argmax(np.array(probs)) print(labels[idx], probs) def run_model(context, query, **generator_args): input_ids = tokenizer.encode(context + "<sep>" + query, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model( "یک فیلم ضعیف بی محتوا بدون فیلمنامه . شوخی های سخیف .", "نظر شما در مورد داستان، فیلمنامه، دیالوگ ها و موضوع فیلم لونه زنبور چیست؟" ) run_model( "فیلم تا وسط فیلم یعنی دقیقا تا جایی که معلوم میشه بچه های املشی دنبال رضان خیلی خوب و جذاب پیش میره ولی دقیقا از همونجاش سکته میزنه و خلاص...", "نظر شما به صورت کلی در مورد فیلم ژن خوک چیست؟" ) run_model( "اصلا به هیچ عنوان علاقه نداشتم اجرای می سی سی پی نشسته میمیرد روی پرده سینما ببینم دیالوگ های تکراری هلیکوپتر ماشین آلندلون لئون پاپیون آخه چرااااااااااااااا همون حسی که توی تالار وحدت بعد از نیم ساعت به سرم اومد امشب توی سالن سینما تجربه کردم ،حس گریز از سالن.......⁦ ⁦(ノಠ益ಠ)ノ⁩ ", " نظر شما در مورد صداگذاری و جلوه های صوتی فیلم مسخره‌باز چیست؟" ) run_model( " گول نخورید این رنگارنگ مینو نیست برای شرکت گرجیه و متاسفانه این محصولش اصلا مزه رنگارنگی که انتظار دارید رو نمیده ", " نظر شما در مورد عطر، بو، و طعم این بیسکویت و ویفر چیست؟" ) run_model( "در مقایسه با سایر برندهای موجود در بازار با توجه به حراجی که داشت ارزانتر ب", " شما در مورد قیمت و ارزش خرید این حبوبات و سویا چیست؟" ) run_model( "من پسرم عاشق ایناس ولی دیگه به خاطر حفظ محیط زیست فقط زمانهایی که مجبور باشم شیر دونه ای میخرم و سعی میکنم دیگه کمتر شیر با بسته بندی تتراپک استفاده کنم ", "نظر شما به صورت کلی در مورد این شیر چیست؟" ) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-large-parsinlu-opus-translation_fa_en
persiannlp
2021-09-23T16:20:17Z
184
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "machine-translation", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - machine-translation - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - sacrebleu --- # Machine Translation (ترجمه‌ی ماشینی) This is an mT5-based model for machine translation (Persian -> English). Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "large" model_name = f"persiannlp/mt5-{model_size}-parsinlu-opus-translation_fa_en" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("ستایش خدای را که پروردگار جهانیان است.") run_model("در هاید پارک کرنر بر گلدانی ایستاده موعظه می‌کند؛") run_model("وی از تمامی بلاگرها، سازمان‌ها و افرادی که از وی پشتیبانی کرده‌اند، تشکر کرد.") run_model("مشابه سال ۲۰۰۱، تولید آمونیاک بی آب در ایالات متحده در سال ۲۰۰۰ تقریباً ۱۷،۴۰۰،۰۰۰ تن (معادل بدون آب) با مصرف ظاهری ۲۲،۰۰۰،۰۰۰ تن و حدود ۴۶۰۰۰۰۰ با واردات خالص مواجه شد. ") run_model("می خواهم دکترای علوم کامپیوتر راجع به شبکه های اجتماعی را دنبال کنم، چالش حل نشده در شبکه های اجتماعی چیست؟") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-large-parsinlu-multiple-choice
persiannlp
2021-09-23T16:20:14Z
63
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "multiple-choice", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a mT5-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "large" model_name = f"persiannlp/mt5-{model_size}-parsinlu-multiple-choice" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("وسیع ترین کشور جهان کدام است؟ <sep> آمریکا <sep> کانادا <sep> روسیه <sep> چین") run_model("طامع یعنی ؟ <sep> آزمند <sep> خوش شانس <sep> محتاج <sep> مطمئن") run_model( "زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده <sep> روز اول <sep> روز دوم <sep> روز سوم <sep> هیچکدام") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-base-parsinlu-squad-reading-comprehension
persiannlp
2021-09-23T16:20:07Z
201
4
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "reading-comprehension", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "dataset:squad", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - reading-comprehension - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - squad metrics: - f1 --- # Reading Comprehension (مدل برای پاسخ به درک مطلب) This is a mT5-based model for reading comprehension. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "base" model_name = f"persiannlp/mt5-{model_size}-parsinlu-squad-reading-comprehension" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(paragraph, question, **generator_args): input_ids = tokenizer.encode(question + "\n" + paragraph, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model( "یک شی را دارای تقارن می‌نامیم زمانی که ان شی را بتوان به دو یا چند قسمت تقسیم کرد که آن‌ها قسمتی از یک طرح سازمان یافته باشند یعنی بر روی شکل تنها جابجایی و چرخش و بازتاب و تجانس انجام شود و در اصل شکل تغییری به وجود نیایید آنگاه ان را تقارن می‌نامیم مرکز تقارن:اگر در یک شکل نقطه‌ای مانندA وجود داشته باشد که هر نقطهٔ روی شکل (محیط) نسبت به نقطه یAمتقارن یک نقطهٔ دیگر شکل (محیط) باشد، نقطهٔ Aمرکز تقارن است. یعنی هر نقطه روی شکل باید متقارنی داشته باشد شکل‌های که منتظم هستند و زوج ضلع دارند دارای مرکز تقارند ولی شکل‌های فرد ضلعی منتظم مرکز تقارن ندارند. متوازی‌الأضلاع و دایره یک مرکز تقارن دارند ممکن است یک شکل خط تقارن نداشته باشد ولی مرکز تقارن داشته باشد. (منبع:س. گ)", "اشکالی که یک مرکز تقارن دارند" ) run_model( "شُتُر یا اُشتر را که در زبان پهلوی (ushtar)[نیازمند منبع] می‌گفتند حیوانی است نیرومند و تنومند با توش و توان بالا از خانواده شتران؛ شبه نشخوارکننده و با دست و گردنی دراز. بر پشت خود یک یا دو کوهان دارد که ساختارش از پیه و چربی است. در دین اسلام گوشت او حلال است. اما ذبح آن با دیگر جانوران حلال گوشت متفاوت است و آن را نحر (بریدن گلو) می‌کنند و اگر سر آن را مانند گوسفند پیش از نحر ببرند گوشت آن حلال نیست. شیرش نیز نوشیده می‌شود ولی بیشتر کاربرد بارکشی دارد. پشم و پوستش نیز برای ریسندگی و پارچه‌بافی و کفش‌دوزی کاربرد دارد. گونه‌های دیگری از شتران نیز در آمریکای جنوبی زندگی می‌کنند، به نام‌های لاما، آلپاکا، گواناکو که دارای کوهان نیستند. شتر ویژگی‌های خاصّی دارد که مهم‌ترین آن‌ها تحمّل شرایط سخت صحرا و دماهای گوناگون و به‌ویژه گرمای شدید تابستان و کمبود آب و علوفه است. ترکیب جسمانی شتر با دیگر جانوران اختلاف زیادی دارد، و این اختلاف انگیزه شده که شتر در درازا روزهای سال در بیابان زندگی کند و از بوته‌ها و درختچه‌های گوناگون صحرایی و کویری و حتی از بوته‌های شور و خاردار تغذیه کند. عرب‌ها از زمان‌های بسیار دور از شتر استفاده کرده و می‌کنند. آن‌ها به این حیوان اهلی لقب کشتی صحرا (به عربی: سفینةالصحراء) داده‌اند.", "غذای شترچیست؟" ) run_model( """حسین میرزایی می‌گوید مرحله اول پرداخت وام حمایتی کرونا به همگی خانوارهای یارانه‌بگیر متقاضی تکمیل شده است و حال چهار میلیون خانوار که به عنوان "اقشار خاص" و "آسیب‌پذیر" شناسایی شدند، می‌توانند برای یک میلیون تومان وام دیگر درخواست بدهند. آقای میرزایی گفته خانوارهای "آسیب‌پذیر" که شرایط گرفتن وام یک میلیونی اضافی را دارند با پیامک از این امکان مطلع شده‌اند. بنا به گزارش‌های رسمی با شیوع کرونا در ایران یک میلیون نفر بیکار شده‌اند و درآمد کارکنان مشاغل غیررسمی نیز ضربه قابل توجهی خورده است. ارزش ریال هم در هفته‌های اخیر در برابر ارزهای خارجی سقوط کرده است. اقتصاد ایران پیش از شیوع کرونا نیز با مشکلات مزمن رکود، تورم، تحریم و فساد روبرو بود.""", "وام یارانه به چه کسانی میدهند؟" ) run_model( "در ۲۲ ژوئن ۱۹۴۱ نیروهای محور در عملیات بارباروسا حمله سنگینی به اتحاد شوروی کرده و یکی از بزرگترین نبردهای زمینی تاریخ بشر را رقم زدند. همچنین جبهه شرقی باعث به دام افتادن نیروهای محور شد و بیش از همه ارتش آلمان نازی را درگیر جنگ فرسایشی کرد. در دسامبر ۱۹۴۱ ژاپن یک در عملیاتی ناگهانی با نام نبرد پرل هاربر به پایگاه دریایی ایالات متحده آمریکا حمله کرد. به دنبال این اتفاق آمریکا نیز بلافاصله علیه ژاپن اعلان جنگ کرد که با حمایت بریتانیا همراه شد. پس از آن متحدین (نیروهای محور در اروپا) نیز با اتحاد ژاپن علیه آمریکا اعلام جنگ کردند. دست‌آوردهای ژاپن در یورش به آمریکا باعث ایجاد این احساس در آسیا شد که آسیا از تسلط غرب خارج شده‌است از این رو بسیاری از ارتش‌های شکست خورده با آنها همراهی کردند.", "چرا امریکا وارد جنگ جهانی دوم شد؟" ) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-base-parsinlu-opus-translation_fa_en
persiannlp
2021-09-23T16:19:57Z
6,058
7
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "machine-translation", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - machine-translation - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - sacrebleu --- # Machine Translation (ترجمه‌ی ماشینی) This is an mT5-based model for machine translation (Persian -> English). Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "base" model_name = f"persiannlp/mt5-{model_size}-parsinlu-opus-translation_fa_en" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("ستایش خدای را که پروردگار جهانیان است.") run_model("در هاید پارک کرنر بر گلدانی ایستاده موعظه می‌کند؛") run_model("وی از تمامی بلاگرها، سازمان‌ها و افرادی که از وی پشتیبانی کرده‌اند، تشکر کرد.") run_model("مشابه سال ۲۰۰۱، تولید آمونیاک بی آب در ایالات متحده در سال ۲۰۰۰ تقریباً ۱۷،۴۰۰،۰۰۰ تن (معادل بدون آب) با مصرف ظاهری ۲۲،۰۰۰،۰۰۰ تن و حدود ۴۶۰۰۰۰۰ با واردات خالص مواجه شد. ") run_model("می خواهم دکترای علوم کامپیوتر راجع به شبکه های اجتماعی را دنبال کنم، چالش حل نشده در شبکه های اجتماعی چیست؟") ``` which should give the following: ``` ['the admiration of God, which is the Lord of the world.'] ['At the Ford Park, the Crawford Park stands on a vase;'] ['He thanked all the bloggers, the organizations, and the people who supported him'] ['similar to the year 2001, the economy of ammonia in the United States in the'] ['I want to follow the computer experts on social networks, what is the unsolved problem in'] ``` which should give the following: ``` ['Adoration of God, the Lord of the world.'] ['At the High End of the Park, Conrad stands on a vase preaching;'] ['She thanked all the bloggers, organizations, and men who had supported her.'] ['In 2000, the lack of water ammonia in the United States was almost'] ['I want to follow the computer science doctorate on social networks. What is the unsolved challenge'] ``` Which should produce the following: ``` ['the praise of God, the Lord of the world.'] ['At the Hyde Park Corner, Carpenter is preaching on a vase;'] ['He thanked all the bloggers, organizations, and people who had supported him.'] ['Similarly in 2001, the production of waterless ammonia in the United States was'] ['I want to pursue my degree in Computer Science on social networks, what is the'] ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-base-parsinlu-multiple-choice
persiannlp
2021-09-23T16:19:55Z
12
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "multiple-choice", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a mT5-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "base" model_name = f"persiannlp/mt5-{model_size}-parsinlu-multiple-choice" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("وسیع ترین کشور جهان کدام است؟ <sep> آمریکا <sep> کانادا <sep> روسیه <sep> چین") run_model("طامع یعنی ؟ <sep> آزمند <sep> خوش شانس <sep> محتاج <sep> مطمئن") run_model( "زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده <sep> روز اول <sep> روز دوم <sep> روز سوم <sep> هیچکدام") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mt5-base-parsinlu-arc-comqa-obqa-multiple-choice
persiannlp
2021-09-23T16:19:52Z
11
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "multiple-choice", "mt5", "persian", "farsi", "fa", "multilingual", "dataset:parsinlu", "dataset:commonsenseqa", "dataset:arc", "dataset:openbookqa", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - mt5 - persian - farsi license: cc-by-nc-sa-4.0 datasets: - parsinlu - commonsenseqa - arc - openbookqa metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a mT5-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_size = "base" model_name = f"persiannlp/mt5-{model_size}-parsinlu-arc-comqa-obqa-multiple-choice" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) def run_model(input_string, **generator_args): input_ids = tokenizer.encode(input_string, return_tensors="pt") res = model.generate(input_ids, **generator_args) output = tokenizer.batch_decode(res, skip_special_tokens=True) print(output) return output run_model("وسیع ترین کشور جهان کدام است؟ <sep> آمریکا <sep> کانادا <sep> روسیه <sep> چین") run_model("طامع یعنی ؟ <sep> آزمند <sep> خوش شانس <sep> محتاج <sep> مطمئن") run_model( "زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده <sep> روز اول <sep> روز دوم <sep> روز سوم <sep> هیچکدام") ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
persiannlp/mbert-base-parsinlu-multiple-choice
persiannlp
2021-09-23T16:19:49Z
70
3
transformers
[ "transformers", "pytorch", "jax", "bert", "multiple-choice", "mbert", "persian", "farsi", "text-classification", "fa", "multilingual", "dataset:parsinlu", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - fa - multilingual thumbnail: https://upload.wikimedia.org/wikipedia/commons/a/a2/Farsi.svg tags: - multiple-choice - mbert - persian - farsi pipeline_tag: text-classification license: cc-by-nc-sa-4.0 datasets: - parsinlu metrics: - accuracy --- # Multiple-Choice Question Answering (مدل برای پاسخ به سوالات چهار جوابی) This is a mbert-based model for multiple-choice question answering. Here is an example of how you can run this model: ```python from typing import List import torch from transformers import AutoConfig, AutoModelForMultipleChoice, AutoTokenizer model_name = "persiannlp/mbert-base-parsinlu-multiple-choice" tokenizer = AutoTokenizer.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name) model = AutoModelForMultipleChoice.from_pretrained(model_name, config=config) def run_model(question: str, candicates: List[str]): assert len(candicates) == 4, "you need four candidates" choices_inputs = [] for c in candicates: text_a = "" # empty context text_b = question + " " + c inputs = tokenizer( text_a, text_b, add_special_tokens=True, max_length=128, padding="max_length", truncation=True, return_overflowing_tokens=True, ) choices_inputs.append(inputs) input_ids = torch.LongTensor([x["input_ids"] for x in choices_inputs]) output = model(input_ids=input_ids) print(output) return output run_model(question="وسیع ترین کشور جهان کدام است؟", candicates=["آمریکا", "کانادا", "روسیه", "چین"]) run_model(question="طامع یعنی ؟", candicates=["آزمند", "خوش شانس", "محتاج", "مطمئن"]) run_model( question="زمینی به ۳۱ قطعه متساوی مفروض شده است و هر روز مساحت آماده شده برای احداث، دو برابر مساحت روز قبل است.اگر پس از (۵ روز) تمام زمین آماده شده باشد، در چه روزی یک قطعه زمین آماده شده ", candicates=["روز اول", "روز دوم", "روز سوم", "هیچکدام"]) ``` For more details, visit this page: https://github.com/persiannlp/parsinlu/
pere/norwegian-t5-base-NCC-nb-nn
pere
2021-09-23T16:19:35Z
60
0
transformers
[ "transformers", "jax", "tensorboard", "seq2seq", "no", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: no license: cc-by-4.0 tags: - seq2seq datasets: - Norwegian Nynorsk/Bokmål --- # 🇳🇴 Norwegian T5 Base model Trained on the NCC🇳🇴 This is a Norwegian T5-base model trained on the Norwegian Colossal Corpus (NCC) on a TPU v3-8. It needs to be finetuned on a specific task before being used for anything. The following setting were used in training: ```bash ./run_t5_mlm_flax_streaming.py \ --output_dir="./" \ --model_type="t5" \ --config_name="./" \ --tokenizer_name="./" \ --dataset_name="pere/norwegian_colossal_corpus_v2_short100k" \ --max_seq_length="512" \ --weight_decay="0.01" \ --per_device_train_batch_size="32" \ --per_device_eval_batch_size="32" \ --learning_rate="8e-3" \ --warmup_steps="0" \ --overwrite_output_dir \ --cache_dir /mnt/disks/flaxdisk/cache/ \ --num_train_epochs="5" \ --adam_beta1="0.9" \ --adam_beta2="0.98" \ --logging_steps="500" \ --num_train_steps="1000000" \ --num_eval_samples="5000" \ --save_steps="5000" \ --eval_steps="5000" \ --preprocessing_num_workers 96 \ --adafactor \ --push_to_hub ```
pere/norwegian-gpt2
pere
2021-09-23T16:19:24Z
196
1
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "gpt2", "text-generation", "norwegian", "GPT2", "casual language modeling", "no", "dataset:oscar", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: no license: cc-by-4.0 tags: - norwegian - GPT2 - casual language modeling datasets: - oscar --- # Norwegian GPT-2 - Oscar ## Description This is a sample reference model trained only on the Oscar Corpus for a day on a TPU v3-8. Pretrained model on Norwegian language using a causal language modeling (CLM) objective.
pere/nb-nn-dev2
pere
2021-09-23T16:19:18Z
2
0
transformers
[ "transformers", "pytorch", "jax", "translation", "no", "dataset:oscar", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: no license: cc-by-4.0 tags: - translation datasets: - oscar widget: - text: Skriv inn en tekst som du ønsker å oversette til en annen målform. --- # Norwegian T5 - Translation Bokmål Nynorsk - Development ## Description This is the development version of the Bokmål-Nynorsk translator. If you want something that is stable, Please do run [this version](https://huggingface.co/pere/nb-nn-translation/) instead. Here is an example of how to use the model from Python ```python # Import libraries from transformers import T5ForConditionalGeneration, AutoTokenizer model = T5ForConditionalGeneration.from_pretrained('pere/nb-nn-dev',from_flax=True) tokenizer = AutoTokenizer.from_pretrained('pere/nb-nn-dev') #Encode the text text = "Hun vil ikke gi bort sine personlige data." inputs = tokenizer.encode(text, return_tensors="pt") outputs = model.generate(inputs, max_length=255, num_beams=4, early_stopping=True) #Decode and print the result print(tokenizer.decode(outputs[0])) ``` Or if you like to use the pipeline instead ```python # Set up the pipeline from transformers import pipeline translator = pipeline("translation", model='pere/nb-nn-dev') # Do the translation text = "Hun vil ikke gi bort sine personlige data." print(translator(text, max_length=255)) ```
osanseviero/corenlp_english-extra
osanseviero
2021-09-23T16:16:44Z
0
0
null
[ "corenlp", "en", "license:gpl", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - corenlp library_tag: corenlp language: - en license: gpl --- # Core NLP model for en CoreNLP is your one stop shop for natural language processing in Java! CoreNLP enables users to derive linguistic annotations for text, including token and sentence boundaries, parts of speech, named entities, numeric and time values, dependency and constituency parses, coreference, sentiment, quote attributions, and relations. Find more about it in [our website](https://stanfordnlp.github.io/CoreNLP) and our [GitHub repository](https://github.com/stanfordnlp/CoreNLP).
osanseviero/corenlp_english-default
osanseviero
2021-09-23T16:16:41Z
0
0
null
[ "corenlp", "en", "license:gpl", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - corenlp library_tag: corenlp language: - en license: gpl --- # Core NLP model for en CoreNLP is your one stop shop for natural language processing in Java! CoreNLP enables users to derive linguistic annotations for text, including token and sentence boundaries, parts of speech, named entities, numeric and time values, dependency and constituency parses, coreference, sentiment, quote attributions, and relations. Find more about it in [our website](https://stanfordnlp.github.io/CoreNLP) and our [GitHub repository](https://github.com/stanfordnlp/CoreNLP).
osanseviero/corenlp_chinese
osanseviero
2021-09-23T16:16:39Z
0
1
null
[ "corenlp", "ch", "license:gpl", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - corenlp library_tag: corenlp language: - ch license: gpl --- # Core NLP model for ch CoreNLP is your one stop shop for natural language processing in Java! CoreNLP enables users to derive linguistic annotations for text, including token and sentence boundaries, parts of speech, named entities, numeric and time values, dependency and constituency parses, coreference, sentiment, quote attributions, and relations. Find more about it in [our website](https://stanfordnlp.github.io/CoreNLP) and our [GitHub repository](https://github.com/stanfordnlp/CoreNLP).
mpariente/DPRNNTasNet-ks2_WHAM_sepclean
mpariente
2021-09-23T16:12:22Z
252
9
asteroid
[ "asteroid", "pytorch", "audio", "DPRNNTasNet", "audio-to-audio", "dataset:wham", "dataset:sep_clean", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:05Z
--- tags: - asteroid - audio - DPRNNTasNet - audio-to-audio datasets: - wham - sep_clean license: cc-by-sa-4.0 --- ## Asteroid model `mpariente/DPRNNTasNet-ks2_WHAM_sepclean` Imported from [Zenodo](https://zenodo.org/record/3862942) ### Description: This model was trained by Manuel Pariente using the wham/DPRNN recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the WHAM! dataset. ### Training config: ```yaml data: mode: min nondefault_nsrc: None sample_rate: 8000 segment: 2.0 task: sep_clean train_dir: data/wav8k/min/tr valid_dir: data/wav8k/min/cv filterbank: kernel_size: 2 n_filters: 64 stride: 1 main_args: exp_dir: exp/train_dprnn_new/ gpus: -1 help: None masknet: bidirectional: True bn_chan: 128 chunk_size: 250 dropout: 0 hid_size: 128 hop_size: 125 in_chan: 64 mask_act: sigmoid n_repeats: 6 n_src: 2 out_chan: 64 optim: lr: 0.001 optimizer: adam weight_decay: 1e-05 positional arguments: training: batch_size: 3 early_stop: True epochs: 200 gradient_clipping: 5 half_lr: True num_workers: 8 ``` ### Results: ```yaml si_sdr: 19.316743490695334 si_sdr_imp: 19.317895273889842 sdr: 19.68085347190952 sdr_imp: 19.5298092932871 sir: 30.362213998701232 sir_imp: 30.21116982007881 sar: 20.15553251343315 sar_imp: -129.02091762351188 stoi: 0.97772664309074 stoi_imp: 0.23968091518217424 ``` ### License notice: This work "DPRNNTasNet-ks2_WHAM_sepclean" is a derivative of [CSR-I (WSJ0) Complete](https://catalog.ldc.upenn.edu/LDC93S6A) by [LDC](https://www.ldc.upenn.edu/), used under [LDC User Agreement for Non-Members](https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf) (Research only). "DPRNNTasNet-ks2_WHAM_sepclean" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Manuel Pariente.
mpariente/ConvTasNet_Libri3Mix_sepnoisy
mpariente
2021-09-23T16:12:18Z
17
0
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:LibriMix", "dataset:sep_noisy", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:05Z
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - LibriMix - sep_noisy license: cc-by-sa-4.0 --- ## Asteroid model Imported from this Zenodo [model page](https://zenodo.org/record/4020529). ## Description: This model was trained by Takhir Mirzaev using the Librimix/ConvTasNet recipe in Asteroid. It was trained on the `sep_noisy` task of the Libri3Mix dataset. ## Training config: ```yaml data: n_src: 3 sample_rate: 8000 segment: 3 task: sep_noisy train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 positional arguments: training: batch_size: 4 early_stop: True epochs: 200 half_lr: True num_workers: 4 ``` ## Results: ```yaml si_sdr: 6.824750632456865 si_sdr_imp: 11.234803761803752 sdr: 7.715799858488098 sdr_imp: 11.778681386239114 sir: 16.442141130818637 sir_imp: 19.527535070051055 sar: 8.757864265661263 sar_imp: -0.15657258049670303 stoi: 0.7854554136619554 stoi_imp: 0.22267957718163015 ``` ## License notice: This work "ConvTasNet_Libri3Mix_sepnoisy" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by [Vassil Panayotov](https://github.com/vdp), used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri3Mix_sepnoisy" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Manuel Pariente.
mpariente/ConvTasNet_Libri1Mix_enhsingle_8k
mpariente
2021-09-23T16:12:15Z
19
1
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "dataset:LibriMix", "dataset:enh_single", "license:cc-by-sa-4.0", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - asteroid - audio - ConvTasNet datasets: - LibriMix - enh_single license: cc-by-sa-4.0 --- ## Asteroid model Imported from this Zenodo [model page](https://zenodo.org/record/3970768). ## Description: This model was trained by Brij Mohan using the Librimix/ConvTasNet recipe in Asteroid. It was trained on the `enh_single` task of the Libri3Mix dataset. ## Training config: ```yaml data: n_src: 1 sample_rate: 8000 segment: 3 task: enh_single train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 1 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: True epochs: 200 half_lr: True ``` ## Results: ```yaml si_sdr: 14.783675142685572 si_sdr_imp: 11.464625198953202 sdr: 15.497505907983102 sdr_imp: 12.07230150154914 sar: 15.497505907983102 sar_imp: 12.07230150154914 stoi: 0.9270030254700518 stoi_imp: 0.1320547197597893 ``` ## License notice: This work "ConvTasNet_Libri1Mix_enhsingle_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by [Vassil Panayotov](https://github.com/vdp), used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri1Mix_enhsingle_8k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Manuel Pariente.
JorisCos/DCUNet_Libri1Mix_enhsingle_16k
JorisCos
2021-09-23T15:49:15Z
631
5
asteroid
[ "asteroid", "pytorch", "audio", "DCUNet", "audio-to-audio", "dataset:Libri1Mix", "dataset:enh_single", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - DCUNet - audio-to-audio datasets: - Libri1Mix - enh_single license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/DCUNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: stft_n_filters: 1024 stft_kernel_size: 1024 stft_stride: 256 masknet: architecture: Large-DCUNet-20 fix_length_mode: pad n_src: 1 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 training: batch_size: 2 early_stop: true epochs: 200 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 13.154035391645971 si_sdr_imp: 9.704254085786271 sdr: 13.568058873121435 sdr_imp: 10.065396073908367 sar: 13.568058873121435 sar_imp: 10.065396073908367 stoi: 0.9199373340235417 stoi_imp: 0.12401751048300132 ``` License notice: This work "DCUNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "DCUNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/ConvTasNet_Libri3Mix_sepclean_8k
JorisCos
2021-09-23T15:49:06Z
27
0
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri3Mix", "dataset:sep_clean", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - Libri3Mix - sep_clean license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/ConvTasNet_Libri3Mix_sepclean_8k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri3Mix dataset. Training config: ```yml data: n_src: 3 sample_rate: 8000 segment: 3 task: sep_clean train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results : On Libri3Mix min test set : ```yaml si_sdr: 8.581797049575108 si_sdr_imp: 11.977037288467368 sdr' 9.305885208641385 sdr_imp: 12.3943409734845 sir: 16.42030534048559 sir_imp: 19.508759460400984 sar: 10.641943911079238 sar_imp: -56.4345187842095 stoi: 0.8365148408724333 stoi_imp: 0.24401766199806396 ``` License notice: This work "ConvTasNet_Libri3Mix_sepclean_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri3Mix_sepclean_8k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
JorisCos/ConvTasNet_Libri2Mix_sepnoisy_8k
JorisCos
2021-09-23T15:49:01Z
10
1
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri2Mix", "dataset:sep_noisy", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - Libri2Mix - sep_noisy license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepnoisy_8k` Imported from [Zenodo](https://zenodo.org/record/3874420#.X9I6NcLjJH4) Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri2Mix dataset. Training config: ```yml data: n_src: 2 sample_rate: 8000 segment: 3 task: sep_noisy train_dir: data/wav8k/min/train-360 valid_dir: data/wav8k/min/dev filterbank: kernel_size: 16 n_filters: 512 stride: 8 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 24 early_stop: True epochs: 200 half_lr: True num_workers: 4 ``` Results: On Libri2Mix min test set : ```yml si_sdr: 9.944424856077259 si_sdr_imp: 11.939395359731192 sdr: 10.701526190782072 sdr_imp: 12.481757547845662 sir: 22.633644975545575 sir_imp: 22.45666740833025 sar: 11.131644100944868 sar_imp: 4.248489589311784 stoi: 0.852048619949357 stoi_imp: 0.2071994899565506 ``` License notice: This work "ConvTasNet_Libri2Mix_sepnoisy_8k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "ConvTasNet_Libri2Mix_sepnoisy_8k" is licensed under A[Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
JorisCos/ConvTasNet_Libri2Mix_sepclean_16k
JorisCos
2021-09-23T15:48:54Z
2,594
2
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri2Mix", "dataset:sep_clean", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - Libri2Mix - sep_clean license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/ConvTasNet_Libri2Mix_sepclean_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the Libri2Mix dataset. Training config: ```yaml data: n_src: 2 sample_rate: 16000 segment: 3 task: sep_clean train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 6 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results : On Libri2Mix min test set : ```yaml si_sdr: 15.243671356901526 si_sdr_imp: 15.243034178473609 sdr: 15.668108919568112 sdr_imp: 15.578229918028036 sir: 25.295100756629957 sir_imp: 25.205219921301754 sar: 16.307682590197313 sar_imp: -51.64989963759405 stoi: 0.9394951175291422 stoi_imp: 0.22640192740016568 ``` License notice: This work "ConvTasNet_Libri2Mix_sepclean_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/). "ConvTasNet_Libri2Mix_sepclean_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Cosentino Joris.
JorisCos/ConvTasNet_Libri1Mix_enhsingle_16k
JorisCos
2021-09-23T15:48:51Z
89
3
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri1Mix", "dataset:enh_single", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:04Z
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - Libri1Mix - enh_single license: cc-by-sa-4.0 --- ## Asteroid model `JorisCos/ConvTasNet_Libri1Mix_enhsignle_16k` Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: n_src: 1 sample_rate: 16000 segment: 3 task: enh_single train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 1 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 6 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri1Mix min test set : ```yml si_sdr: 14.743051006476085 si_sdr_imp: 11.293269700616385 sdr: 15.300522933671061 sdr_imp: 11.797860134458015 sir: Infinity sir_imp: NaN sar: 15.300522933671061 sar_imp: 11.797860134458015 stoi: 0.9310514162434267 stoi_imp: 0.13513159270288563 ``` License notice: This work "ConvTasNet_Libri1Mix_enhsignle_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) (Research only). "ConvTasNet_Libri1Mix_enhsignle_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
groadabike/ConvTasNet_DAMP-VSEP_enhboth
groadabike
2021-09-23T13:57:35Z
4
0
asteroid
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:DAMP-VSEP", "license:cc-by-sa-4.0", "region:us" ]
audio-to-audio
2022-03-02T23:29:05Z
--- tags: - asteroid - audio - ConvTasNet - audio-to-audio datasets: - DAMP-VSEP license: cc-by-sa-4.0 --- ## Asteroid model `groadabike/ConvTasNet_DAMP-VSEP_enhboth` Imported from [Zenodo](https://zenodo.org/record/3994193) ### Description: This model was trained by Gerardo Roa Dabike using Asteroid. It was trained on the enh_both task of the DAMP-VSEP dataset. ### Training config: ```yaml data: channels: 1 n_src: 2 root_path: data sample_rate: 16000 samples_per_track: 10 segment: 3.0 task: enh_both filterbank: kernel_size: 20 n_filters: 256 stride: 10 main_args: exp_dir: exp/train_convtasnet help: None masknet: bn_chan: 256 conv_kernel_size: 3 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 4 n_src: 2 norm_type: gLN skip_chan: 256 optim: lr: 0.0003 optimizer: adam weight_decay: 0.0 positional arguments: training: batch_size: 12 early_stop: True epochs: 50 half_lr: True num_workers: 12 ``` ### Results: ```yaml si_sdr: 14.018196157142519 si_sdr_imp: 14.017103133809577 sdr: 14.498517291333885 sdr_imp: 14.463389151567865 sir: 24.149634529133372 sir_imp: 24.11450638936735 sar: 15.338597389045935 sar_imp: -137.30634122401517 stoi: 0.7639416744417206 stoi_imp: 0.1843383526963759 ``` ### License notice: This work "ConvTasNet_DAMP-VSEP_enhboth" is a derivative of DAMP-VSEP: Smule Digital Archive of Mobile Performances - Vocal Separation (Version 1.0.1) by Smule, Inc, used under Smule's Research Data License Agreement (Research only). "ConvTasNet_DAMP-VSEP_enhboth" is licensed under Attribution-ShareAlike 3.0 Unported by Gerardo Roa Dabike.
superb/hubert__508944ac
superb
2021-09-23T13:56:17Z
0
0
null
[ "tensorboard", "library:s3prl", "benchmark:superb", "type:model", "dataset:superb", "region:us" ]
null
2022-03-02T23:29:05Z
--- datasets: - superb tags: - library:s3prl - benchmark:superb - type:model --- # Fine-tuned s3prl model Upstream Model: hubert ## Model description [More information needed] ## Intended uses & limitations [More information needed] ## How to use [More information needed] ## Limitations and bias [More information needed] ## Training data [More information needed] ## Training procedure [More information needed] ## Evaluation results [More information needed]
DDSC/roberta-base-scandinavian
DDSC
2021-09-23T13:54:15Z
71
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "scandinavian", "da", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: da license: cc-by-4.0 tags: - scandinavian - roberta pipeline_tag: fill-mask widget: - text: På biblioteket kan du låne en <mask>. --- # Scandinavian Roberta Base - MC4 ## Description This is a sample reference model for Flax/Jax training using only on the MC4. It is trained for roughly three day on a TPU v3-8. Training procedure... --- ## Description My description
flax-community/nordic-roberta-wiki
flax-community
2021-09-23T13:53:50Z
8
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "feature-extraction", "swedish", "fill-mask", "sv", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: sv license: cc-by-4.0 tags: - swedish - roberta pipeline_tag: fill-mask widget: - text: Meninged med livet är <mask>. --- # Nordic Roberta Wikipedia ## Description Nord roberta model trainined on the swedish danish and norwegian wikipedia. ## Evaluation Evaluation on Named Entity recognition in Danish. I finetuned each model on 3 epochs on DaNE, repeated it 5 times for each model, and calculated 95% confidence intervals for the means. Here are the results: xlm-roberta-base : 88.01 +- 0.43 flax-community/nordic-roberta-wiki: 85.75 +- 0.69 (this model) Maltehb/danish-bert-botxo: 85.38 +- 0.55 flax-community/roberta-base-danish: 80.14 +- 1.47 flax-community/roberta-base-scandinavian : 78.03 +- 3.02 Maltehb/-l-ctra-danish-electra-small-cased: 57.87 +- 3.19 NbAiLab/nb-bert-base : 30.24 +- 1.21 Randomly initialised RoBERTa model: 19.79 +- 2.00 Evaluation on Sentiment analysis in Dansish Here are the results on test set, where each model has been trained 5 times, and the “+-” refers to a 95% confidence interval of the mean score: Maltehb/danish-bert-botxo: 65.19 +- 0.53 NbAiLab/nb-bert-base : 63.80 +- 0.77 xlm-roberta-base : 63.55 +- 1.59 flax-community/nordic-roberta-wiki : 56.46 +- 1.77 flax-community/roberta-base-danish : 54.73 +- 8.96 flax-community/roberta-base-scandinavian : 44.28 +- 9.21 Maltehb/-l-ctra-danish-electra-small-cased : 47.78 +- 12.65 Randomly initialised RoBERTa model: 36.96 +- 1.02 Maltehb/roberta-base-scandinavian : 33.65 +- 8.32 ## Model series This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. ## Gpt models ## Swedish Gpt https://huggingface.co/birgermoell/swedish-gpt/ ## Swedish gpt wiki https://huggingface.co/flax-community/swe-gpt-wiki # Nordic gpt wiki https://huggingface.co/flax-community/nordic-gpt-wiki ## Dansk gpt wiki https://huggingface.co/flax-community/dansk-gpt-wiki ## Norsk gpt wiki https://huggingface.co/flax-community/norsk-gpt-wiki ## Roberta models ## Nordic Roberta Wiki https://huggingface.co/flax-community/nordic-roberta-wiki ## Swe Roberta Wiki Oscar https://huggingface.co/flax-community/swe-roberta-wiki-oscar ## Roberta Swedish Scandi https://huggingface.co/birgermoell/roberta-swedish-scandi ## Roberta Swedish https://huggingface.co/birgermoell/roberta-swedish ## Swedish T5 model https://huggingface.co/birgermoell/t5-base-swedish
csae8092/de_RTA_NER
csae8092
2021-09-23T13:46:37Z
6
0
spacy
[ "spacy", "token-classification", "de", "license:cc-by-nc-4.0", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification language: - de license: cc-by-nc-4.0 model-index: - name: de_RTA_NER results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8630136986 - name: NER Recall type: recall value: 0.8743253662 - name: NER F Score type: f_score value: 0.8686327078 --- Regensburger Reichstag von 1576 | Feature | Description | | --- | --- | | **Name** | `de_RTA_NER` | | **Version** | `0.0.0` | | **spaCy** | `>=3.1.0,<3.2.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | `https://creativecommons.org/licenses/by-nc/4.0/` | | **Author** | [n/a](https://reichstagsakten-1576.uni-graz.at) | ### Label Scheme <details> <summary>View label scheme (4 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `DATE`, `LOC`, `PER`, `TIME` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 86.86 | | `ENTS_P` | 86.30 | | `ENTS_R` | 87.43 | | `TOK2VEC_LOSS` | 43588.74 | | `NER_LOSS` | 95573.96 |
tohoku-nlp/bert-large-japanese
tohoku-nlp
2021-09-23T13:45:41Z
1,246
9
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "ja", "dataset:wikipedia", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ja license: cc-by-sa-4.0 datasets: - wikipedia widget: - text: 東北大学で[MASK]の研究をしています。 --- # BERT large Japanese (unidic-lite with whole word masking, jawiki-20200831) This is a [BERT](https://github.com/google-research/bert) model pretrained on texts in the Japanese language. This version of the model processes input texts with word-level tokenization based on the Unidic 2.1.2 dictionary (available in [unidic-lite](https://pypi.org/project/unidic-lite/) package), followed by the WordPiece subword tokenization. Additionally, the model is trained with the whole word masking enabled for the masked language modeling (MLM) objective. The codes for the pretraining are available at [cl-tohoku/bert-japanese](https://github.com/cl-tohoku/bert-japanese/tree/v2.0). ## Model architecture The model architecture is the same as the original BERT large model; 24 layers, 1024 dimensions of hidden states, and 16 attention heads. ## Training Data The models are trained on the Japanese version of Wikipedia. The training corpus is generated from the Wikipedia Cirrussearch dump file as of August 31, 2020. The generated corpus files are 4.0GB in total, containing approximately 30M sentences. We used the [MeCab](https://taku910.github.io/mecab/) morphological parser with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd) dictionary to split texts into sentences. ## Tokenization The texts are first tokenized by MeCab with the Unidic 2.1.2 dictionary and then split into subwords by the WordPiece algorithm. The vocabulary size is 32768. We used [`fugashi`](https://github.com/polm/fugashi) and [`unidic-lite`](https://github.com/polm/unidic-lite) packages for the tokenization. ## Training The models are trained with the same configuration as the original BERT; 512 tokens per instance, 256 instances per batch, and 1M training steps. For training of the MLM (masked language modeling) objective, we introduced whole word masking in which all of the subword tokens corresponding to a single word (tokenized by MeCab) are masked at once. For training of each model, we used a v3-8 instance of Cloud TPUs provided by [TensorFlow Research Cloud program](https://www.tensorflow.org/tfrc/). The training took about 5 days to finish. ## Licenses The pretrained models are distributed under the terms of the [Creative Commons Attribution-ShareAlike 3.0](https://creativecommons.org/licenses/by-sa/3.0/). ## Acknowledgments This model is trained with Cloud TPUs provided by [TensorFlow Research Cloud](https://www.tensorflow.org/tfrc/) program.
byeongal/Ko-DialoGPT
byeongal
2021-09-23T13:43:34Z
83
8
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "ko", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: ko tags: - gpt2 - conversational license: cc-by-nc-sa-4.0 --- ## Ko-DialoGPT ### How to use ```python from transformers import PreTrainedTokenizerFast, GPT2LMHeadModel import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = PreTrainedTokenizerFast.from_pretrained('byeongal/Ko-DialoGPT') model = GPT2LMHeadModel.from_pretrained('byeongal/Ko-DialoGPT').to(device) past_user_inputs = [] generated_responses = [] while True: user_input = input(">> User:") if user_input == 'bye': break text_idx = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt') for i in range(len(generated_responses)-1, len(generated_responses)-3, -1): if i < 0: break encoded_vector = tokenizer.encode(generated_responses[i] + tokenizer.eos_token, return_tensors='pt') if text_idx.shape[-1] + encoded_vector.shape[-1] < 1000: text_idx = torch.cat([encoded_vector, text_idx], dim=-1) else: break encoded_vector = tokenizer.encode(past_user_inputs[i] + tokenizer.eos_token, return_tensors='pt') if text_idx.shape[-1] + encoded_vector.shape[-1] < 1000: text_idx = torch.cat([encoded_vector, text_idx], dim=-1) else: break text_idx = text_idx.to(device) inference_output = model.generate( text_idx, max_length=1000, num_beams=5, top_k=20, no_repeat_ngram_size=4, length_penalty=0.65, repetition_penalty=2.0, ) inference_output = inference_output.tolist() bot_response = tokenizer.decode(inference_output[0][text_idx.shape[-1]:], skip_special_tokens=True) print(f"Bot: {bot_response}") past_user_inputs.append(user_input) generated_responses.append(bot_response) ``` ### Reference * [SKT-KoGPT2](https://huggingface.co/skt/kogpt2-base-v2) * [KETI R&D 데이터](https://aihub.or.kr/opendata/keti-data/recognition-laguage/KETI-02-008) * [한국어 대화 요약](https://aihub.or.kr/aidata/30714)
andrek/LAT2NOB
andrek
2021-09-23T13:06:22Z
15
0
transformers
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "translation", "no", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- language: no license: cc-by-4.0 tags: - translation widget: - text: Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. ---
vishalz/paraphrase_model
vishalz
2021-09-23T10:00:25Z
3
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
pegasus paraphraser model using <a href="https://huggingface.co/tuner007/pegasus_paraphrase" target="_blank">tuner007/pegasus_paraphrase</a>
gchhablani/fnet-large-finetuned-wnli
gchhablani
2021-09-23T05:39:44Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: fnet-large-finetuned-wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.38028169014084506 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-wnli This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6953 - Accuracy: 0.3803 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7217 | 1.0 | 159 | 0.6864 | 0.5634 | | 0.7056 | 2.0 | 318 | 0.6869 | 0.5634 | | 0.706 | 3.0 | 477 | 0.6875 | 0.5634 | | 0.7032 | 4.0 | 636 | 0.6931 | 0.5634 | | 0.7025 | 5.0 | 795 | 0.6953 | 0.3803 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
gchhablani/bert-large-cased-finetuned-wnli
gchhablani
2021-09-23T05:10:44Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert-large-cased-finetuned-wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.352112676056338 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-finetuned-wnli This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.7087 - Accuracy: 0.3521 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 0.7114 | 1.0 | 159 | 0.5634 | 0.6923 | | 0.7141 | 2.0 | 318 | 0.5634 | 0.6895 | | 0.7063 | 3.0 | 477 | 0.5634 | 0.6930 | | 0.712 | 4.0 | 636 | 0.4507 | 0.7077 | | 0.7037 | 5.0 | 795 | 0.3521 | 0.7087 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
espnet/Dan_Berrebbi_aishell4_asr
espnet
2021-09-22T23:16:35Z
1
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "zh", "dataset:aishell4", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: zh datasets: - aishell4 license: cc-by-4.0 --- ## ESPnet2 ASR model ### `Dan_Berrebbi_aishell4_asr` This model was trained by dan_berrebbi using aishell4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout da1a26652f7d5a019cc24ad1e0e6e844f2b57e1b pip install -e . cd egs2/aishell4/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model Dan_Berrebbi_aishell4_asr ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Tue Sep 21 09:36:01 EDT 2021` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 0.10.3a1` - pytorch version: `pytorch 1.9.0` - Git hash: `7887faeabbc2299922267928e190ed89cb032a36` - Commit date: `Mon Sep 20 16:25:02 2021 -0400` ## asr_fine_tune5_100ep ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_rnn_lm_lm_nuit_valid.loss.ave_asr_model_valid.acc.ave/dev|599|601|6.8|92.7|0.5|0.0|93.2|93.2| |decode_transformer_lm_lm_nuit_valid.loss.ave_asr_model_valid.acc.ave/dev|599|601|6.8|92.8|0.3|0.0|93.2|93.2| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_rnn_lm_lm_nuit_valid.loss.ave_asr_model_valid.acc.ave/dev|599|15936|66.9|25.6|7.5|9.8|42.9|93.2| |decode_transformer_lm_lm_nuit_valid.loss.ave_asr_model_valid.acc.ave/dev|599|15936|64.7|27.6|7.7|11.0|46.3|93.2| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_conformer5.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_fine_tune5_100ep ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 100 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 3 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 10000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_raw_zh_char/train/speech_shape - exp/asr_stats_raw_zh_char/train/text_shape.char valid_shape_file: - exp/asr_stats_raw_zh_char/valid/speech_shape - exp/asr_stats_raw_zh_char/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 51200 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train_nodev/wav.scp - speech - sound - - dump/raw/train_nodev/text - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/wav.scp - speech - sound - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 4.0 scheduler: noamlr scheduler_conf: model_size: 256 warmup_steps: 25000 token_list: - <blank> - <unk> - , - 的 - 是 - 个 - 这 - 一 - 。 - 就 - 儿 - 嗯 - 们 - 呃 - 我 - 有 - <sil> - 那 - 说 - 不 - 些 - 也 - 他 - 你 - 要 - 后 - 以 - 咱 - 在 - 啊 - 了 - 然 - 家 - 都 - 来 - 还 - 可 - 子 - 下 - 上 - 时 - 比 - 话 - 孩 - 呢 - 去 - 人 - 好 - 对 - 能 - 么 - 吧 - 学 - 多 - 到 - 看 - 为 - 进 - 把 - 大 - 做 - 生 - 种 - 品 - 给 - 没 - 行 - 现 - 小 - 会 - 作 - 较 - 方 - 块 - 业 - 让 - 点 - 定 - 因 - 什 - 长 - 面 - 如 - 安 - 客 - 问 - 过 - 车 - 出 - 啦 - 边 - 候 - 主 - 所 - 题 - 买 - 销 - 天 - 意 - 自 - 全 - 动 - 工 - '&' - 老 - 或 - 者 - 年 - 着 - 实 - 活 - 理 - 包 - 样 - 再 - 区 - 用 - 呀 - 零 - 员 - 发 - 先 - 部 - 放 - 门 - 情 - 像 - 分 - 售 - 很 - 开 - 己 - 十 - 括 - 跟 - 事 - 需 - 更 - 其 - 装 - 市 - 成 - 里 - 物 - 别 - 间 - 第 - 次 - 中 - 提 - 超 - 顾 - 保 - 感 - 加 - 量 - 二 - 和 - 各 - 嘛 - 新 - 每 - 完 - 力 - 消 - 得 - 店 - 本 - 通 - 习 - 觉 - 道 - 心 - 校 - 菜 - 交 - 哪 - 产 - 于 - 位 - 电 - 想 - 三 - 况 - 度 - 期 - 应 - 但 - 教 - 体 - 常 - 师 - 它 - 高 - 前 - 之 - 西 - 特 - 商 - 果 - 场 - 重 - 防 - 管 - 起 - 地 - 该 - 东 - 少 - 打 - 费 - 当 - 带 - 服 - 口 - 购 - 知 - 回 - 同 - 钱 - 外 - 户 - 注 - 促 - 价 - 解 - <#> - 水 - 百 - 今 - 太 - 最 - 报 - 怎 - 才 - 等 - 及 - 关 - <-> - 肯 - 火 - 机 - 流 - 制 - 送 - 手 - 确 - 法 - 写 - 玩 - 传 - 路 - 班 - 查 - 招 - 卖 - 几 - 正 - 合 - 够 - 五 - 引 - 容 - 只 - 男 - 日 - 四 - 宣 - 反 - 两 - 清 - 处 - 周 - 单 - 首 - 课 - 衣 - 便 - 身 - 气 - 针 - 奶 - 六 - 经 - 接 - 女 - 育 - 鲜 - 赠 - 试 - 停 - 晚 - 类 - 故 - 入 - 性 - 增 - 食 - 满 - 格 - 基 - 备 - 洗 - 培 - 质 - 美 - 明 - 整 - 化 - 公 - 案 - 哎 - 吸 - 原 - 易 - 幺 - 总 - 尽 - 优 - 而 - 建 - 责 - 啥 - 干 - 月 - 使 - 找 - 季 - 望 - 器 - 目 - 识 - 低 - 听 - 烟 - 相 - 早 - 检 - 护 - 摆 - 住 - 直 - 从 - 务 - 希 - 导 - 内 - 八 - 持 - 近 - 配 - 叫 - 见 - 设 - 吗 - 非 - 调 - 程 - 拿 - 训 - <%> - 结 - 标 - 挺 - 花 - <$> - 受 - 式 - 求 - 平 - 换 - 具 - 愿 - 货 - 牌 - 专 - 轻 - 推 - 妈 - 司 - 辆 - 存 - 名 - 且 - 欢 - 喜 - 吃 - 数 - 段 - 议 - 控 - 往 - 礼 - 决 - 走 - 养 - 免 - 惠 - 园 - 档 - 谁 - 真 - 快 - 置 - 幼 - 乐 - 证 - 向 - 厂 - 简 - 声 - 视 - 划 - 绩 - 适 - 集 - 搞 - 办 - 规 - 灾 - 造 - 准 - 必 - 任 - 险 - 响 - 毕 - 群 - 鞋 - 九 - 嘞 - 信 - 库 - 计 - 认 - 奖 - 表 - 无 - 影 - 头 - 卡 - 告 - 考 - 抽 - 竟 - 选 - 帮 - 何 - 修 - 酒 - 尤 - 线 - 穿 - 讲 - 光 - 留 - 讨 - 随 - 请 - 卫 - 系 - 队 - 失 - 双 - 庭 - 强 - 微 - 折 - 色 - 半 - 否 - 立 - 差 - 沟 - 冬 - 批 - 害 - 已 - 危 - 白 - 爆 - 节 - 参 - 逛 - 搭 - 风 - 朋 - 友 - 环 - 验 - 评 - 严 - 般 - 效 - 舞 - 饭 - 境 - 负 - 又 - 底 - 术 - 刚 - 件 - 罚 - 助 - 态 - 状 - 室 - 房 - 游 - 息 - 领 - 难 - 警 - 按 - 级 - 错 - 利 - 与 - 餐 - 陪 - 蹈 - 论 - 记 - 许 - 马 - 算 - 楼 - 型 - 排 - 广 - 值 - 油 - 糕 - 楚 - 步 - 至 - 拉 - 紧 - 灯 - 升 - 七 - 共 - 努 - 除 - 展 - 形 - 元 - 网 - 宜 - 营 - 兴 - 互 - 蛋 - 燃 - 冷 - 条 - 思 - 巡 - 净 - 须 - 遇 - 落 - 禁 - 科 - 款 - 哦 - 止 - 采 - 材 - 介 - 套 - 围 - 维 - 旦 - 切 - 显 - 汇 - 损 - 速 - 越 - 模 - 假 - 精 - 稍 - 书 - 绍 - 父 - 积 - 策 - 示 - 骑 - 改 - 跑 - 运 - 变 - 洁 - 仓 - 鱼 - <space> - 绝 - 诶 - 伤 - 细 - 职 - 离 - 慢 - 素 - 料 - 睡 - 趣 - 爱 - 母 - 眼 - 味 - 列 - 督 - 张 - 率 - 被 - 域 - 语 - 坏 - 资 - 红 - 减 - 励 - 择 - 预 - 层 - 陈 - 根 - 休 - 毒 - 球 - 爸 - 登 - 足 - 取 - 指 - 柜 - 限 - 降 - 概 - 院 - 供 - 支 - 额 - 源 - 始 - 盘 - 饮 - 项 - 液 - 童 - 爷 - 号 - 抓 - 台 - 转 - 观 - 金 - 照 - 滑 - 岁 - 致 - 文 - 她 - 弄 - 站 - 酸 - 音 - 胎 - 投 - 疏 - 乱 - 临 - 允 - 狗 - 疫 - 询 - 、 - 象 - 占 - 坐 - 倒 - 争 - 午 - 亲 - 读 - 演 - 退 - 惯 - 贵 - 达 - 监 - 志 - 绿 - 醒 - 急 - 驾 - 违 - 诉 - 片 - 空 - 势 - 极 - 豆 - 独 - 钟 - 代 - 瓶 - 纸 - 并 - 企 - 映 - 统 - 属 - 省 - 夜 - 障 - 谈 - 避 - 由 - 终 - 频 - 掉 - 估 - 激 - 仅 - 布 - 谢 - 灭 - 忙 - 码 - 伙 - 缺 - 叶 - 功 - 析 - 赖 - 架 - 范 - 签 - D - 待 - 神 - 龄 - 画 - 券 - 居 - 杜 - 堵 - 您 - 勤 - 扫 - 技 - 财 - 隐 - 患 - 例 - 乘 - 摩 - 戏 - 鼓 - 份 - 杂 - 散 - 热 - 铺 - 据 - 肤 - 怕 - 依 - 拖 - 充 - 智 - 偷 - 远 - 挂 - 盗 - 附 - 梯 - 冰 - 联 - 借 - 蹭 - 异 - 蔬 - 绑 - 堂 - 将 - 厨 - 帽 - 破 - 戴 - 皮 - 粉 - 氛 - 仪 - 国 - 益 - 闯 - 惩 - 逃 - 刻 - 突 - 申 - 略 - 顿 - 毛 - 召 - 海 - 黄 - 青 - 士 - 移 - 喝 - 板 - 练 - 歌 - 千 - 床 - 享 - 磨 - 构 - 收 - 万 - 摸 - 圈 - 亮 - 刹 - 逆 - 驶 - 赶 - 松 - 呐 - 压 - 拥 - 辅 - 协 - 托 - 断 - 轮 - 善 - 哈 - 捆 - 座 - 病 - 健 - 牛 - 草 - 释 - 似 - 土 - 补 - 俩 - 堆 - 即 - 密 - 背 - 言 - 街 - 尚 - 窗 - C - 艺 - 纠 - 纷 - 忽 - 句 - 另 - 施 - 政 - 温 - 某 - 翻 - 章 - 守 - 熟 - 民 - 续 - 良 - 挤 - 础 - 字 - 瓜 - 乎 - 竞 - 距 - 际 - 暖 - 凭 - 董 - 碗 - 短 - 渠 - 康 - 藏 - 香 - 虽 - 露 - 厉 - 忘 - 误 - 冒 - 窃 - 络 - 淡 - 腐 - 颜 - 播 - 默 - 锻 - 炼 - 宝 - 组 - 淘 - 则 - 逻 - 垃 - 圾 - 复 - 贴 - 靠 - 潜 - 察 - 晨 - 碰 - 剩 - 峰 - 深 - 偏 - 虑 - 念 - 初 - 闹 - 幸 - 跳 - 米 - 旧 - 蛤 - 虾 - 汽 - 苦 - 螃 - 蟹 - 冲 - 固 - 隔 - 懂 - 卷 - 镜 - 罩 - 暴 - 闭 - 野 - 玻 - 璃 - 义 - B - 煤 - 富 - 踩 - 途 - 闲 - 紫 - 北 - 欲 - 曲 - 榜 - 垒 - 伴 - 累 - 判 - 搜 - 困 - 租 - 键 - 肥 - 社 - 弯 - 角 - 纪 - 律 - 详 - 右 - 刮 - 继 - 撤 - 输 - 普 - 未 - 稳 - 摔 - 访 - 扩 - 扣 - 末 - 票 - 承 - 担 - 丢 - 涉 - 欠 - 创 - 获 - 摊 - 疑 - 蓝 - 答 - 霜 - 录 - 齐 - 烦 - 治 - 粗 - 叛 - 污 - 址 - 若 - 染 - 含 - 药 - 雨 - 此 - 陌 - 研 - 催 - 拨 - 页 - 磕 - 呆 - 脸 - 墙 - 夫 - A - 棉 - 袜 - 填 - 死 - 懒 - 植 - 扇 - 捡 - 遍 - 操 - 摄 - 箱 - ? - 繁 - 城 - 咯 - 左 - 拐 - 悉 - 犯 - 宽 - 伞 - 余 - 糊 - 巧 - 透 - 贪 - 顺 - 局 - 妇 - 私 - 浪 - 岗 - 棋 - 序 - 辛 - V - 握 - 擦 - 扔 - 斤 - 付 - 剐 - 锁 - 麻 - 敢 - 桶 - 佩 - 坠 - 封 - 替 - 塞 - 斗 - 攀 - 爽 - 沉 - 混 - 滋 - 刺 - 潮 - 皿 - 端 - 刷 - 刀 - 巾 - 烫 - 木 - 漏 - 迅 - 织 - 救 - 吹 - 仔 - 称 - 返 - 景 - 聚 - 阶 - 秀 - 涨 - P - 颈 - 肩 - 泥 - I - 侣 - 尔 - 伍 - 甚 - 皂 - 蒙 - 世 - 界 - 嘻 - 辈 - Q - 审 - 尾 - 浇 - 遛 - 馨 - 措 - 邻 - 撒 - 挥 - 遵 - 予 - 击 - 鉴 - 殊 - 哇 - 载 - 添 - 盈 - 盯 - 惊 - 喷 - 荷 - 怠 - 抢 - 喂 - 饱 - 谅 - 团 - 龙 - 冻 - 图 - 掺 - 扑 - 刊 - 葱 - 薄 - 萝 - 卜 - 麦 - 苹 - 触 - 飞 - 艳 - 畅 - 鸡 - 权 - 趟 - 连 - 哭 - 旁 - 漂 - 焊 - 敞 - 叉 - 钢 - 氧 - 溺 - 聊 - 巢 - 衡 - 淀 - 劣 - 虫 - 符 - 均 - 辨 - 菌 - 彻 - 烂 - 厅 - 皱 - 妥 - 拾 - 插 - 携 - 竹 - 碍 - 湿 - 灵 - 忌 - 旅 - 勿 - 宿 - 迷 - 探 - 春 - 劵 - 星 - 耐 - 裤 - 颖 - 韩 - 艾 - 灸 - 邀 - 婚 - 乳 - 芽 - 挑 - 摘 - 阿 - 姨 - 伊 - 慕 - 纯 - 貌 - 嘴 - 偶 - 睛 - 献 - 坚 - 账 - 典 - 唱 - L - E - 贡 - 寒 - 唧 - Y - 尝 - 抹 - 汰 - 腾 - 哼 - 仿 - 英 - 舒 - 扰 - 拒 - 剪 - 夏 - 宠 - 咬 - 派 - 委 - 婉 - 执 - 呗 - 悄 - 搬 - 雪 - 盐 - 暂 - 奸 - 耍 - 僻 - 却 - 署 - 寻 - 串 - 援 - 亏 - 烈 - 印 - 捎 - 幅 - 绘 - 锈 - 闸 - 罪 - 嫌 - 俗 - 歹 - 劳 - 兜 - 喽 - 谓 - 鹤 - 舍 - 克 - 徇 - 倍 - 敏 - 丝 - 纺 - 拭 - 融 - 蔫 - 掂 - 测 - T - 众 - 卸 - 暗 - 赔 - 偿 - 举 - 劲 - 篮 - 储 - 乙 - 炔 - 软 - 侵 - 诱 - 浊 - 蚀 - 秽 - 炸 - 泽 - 闻 - 鼻 - 甜 - 澈 - 脏 - 官 - 凝 - 芳 - 灰 - 卵 - 农 - 烧 - 肉 - 桌 - 椅 - 垫 - 硬 - 叠 - 瓷 - 碎 - 柄 - 屉 - 拳 - 撞 - 铝 - 歇 - 遗 - 炮 - 掌 - 妨 - 静 - 浸 - 涂 - 凉 - 炫 - 耀 - 姓 - 究 - 奏 - 缆 - 脚 - 酿 - 抄 - 慌 - 戚 - 燥 - 毯 - 挽 - 诺 - 济 - 旺 - 抖 - 郊 - 疗 - 巴 - 痧 - 脊 - 膜 - 晒 - 润 - 掏 - 笔 - 鞭 - 博 - 捧 - 函 - 胡 - 锅 - 雾 - 疯 - 狂 - 趋 - 膏 - 妆 - 尘 - 袋 - 贝 - 俺 - 耽 - 怀 - 恐 - 赋 - 脑 - 焉 - 愣 - 呵 - 噼 - 啪 - 虚 - 河 - 归 - 绊 - 械 - 扬 - 筒 - 靴 - 束 - 彩 - 荐 - 沙 - 迎 - 荡 - 凌 - 昂 - 碑 - 蹦 - 扉 - 泼 - 丰 - 滴 - 沾 - 亭 - 粘 - 奇 - 饼 - 牙 - 娃 - 杯 - 踢 - 嘿 - 抛 - 枯 - 剔 - 苗 - 纹 - 永 - 津 - 唉 - 趁 - 屡 - 逮 - 戒 - 肃 - 仁 - 肇 - 醉 - 糟 - 馈 - 横 - 扭 - 盔 - 侧 - 鲁 - 莽 - 飙 - 稿 - 逐 - 谋 - 京 - 苏 - 宁 - 驻 - 咨 - 旷 - 拓 - 杆 - 秤 - 叮 - 嘱 - 咋 - 炊 - 怪 - 婆 - 阎 - 王 - 饿 - 鬼 - 惨 - 渡 - 坎 - 囤 - 甲 - 蛙 - 鲤 - 桂 - 石 - 玉 - 溪 - 华 - 窝 - 截 - 秩 - 嗨 - 芹 - 梨 - 蕉 - S - 煲 - 汤 - 鲫 - 揽 - 挡 - 柚 - 瑞 - 匹 - '2' - 踹 - 吵 - 凶 - 矩 - 迟 - 脾 - 纳 - 朵 - 墨 - 袖 - 链 - 钩 - 笼 - 熄 - 盆 - 殴 - 欺 - 诈 - 厕 - 娱 - 爬 - 威 - 胁 - 阅 - 赌 - 拢 - 症 - 伪 - 脂 - 堪 - 盛 - 蚊 - 蝇 - 煎 - 晰 - 柔 - 涩 - 汁 - 腹 - 胃 - 痉 - 挛 - 颗 - 粒 - 匀 - 败 - 历 - 佳 - 乏 - 寄 - 残 - 杀 - 剂 - 疾 - 衍 - 溅 - 倘 - 褶 - 席 - 启 - 遮 - 槽 - 递 - 橱 - 迹 - 镁 - 泄 - 阀 - 柴 - 阻 - 恋 - 盲 - 浓 - 捂 - 腰 - 姿 - 缝 - 肿 - 焦 - 骗 - 伺 - 嘘 - 掩 - 褥 - 帘 - 籍 - 锥 - 锋 - 尖 - 锐 - 祸 - 秒 - 李 - 伸 - 浏 - 览 - 航 - 讯 - 谨 - 慎 - 匪 - 劫 - 医 - 族 - 忧 - 孤 - 拜 - 窄 - 唯 - 搁 - 朝 - 尺 - 盟 - 波 - 隆 - 词 - 村 - 娶 - 媳 - 县 - 聘 - 醇 - 泡 - 坨 - 淋 - 延 - 柱 - 肾 - 蒸 - 槛 - 赚 - 凡 - 恩 - 厚 - 赞 - 茎 - 蒜 - 苔 - 甘 - 菠 - 涮 - 霾 - 仍 - 云 - 追 - 丽 - 盖 - 欧 - 莱 - 雅 - 婴 - 孕 - 敲 - 约 - 惰 - 谱 - 射 - 惑 - 睹 - 奉 - 诚 - 惶 - 卓 - 勉 - 聪 - 疼 - 弃 - 奴 - 隶 - 嚷 - 眠 - 躺 - 乒 - 乓 - 琴 - 挖 - 掘 - 阵 - 浆 - 索 - 呼 - 古 - 弥 - 熔 - 抱 - 怨 - 猫 - 笑 - 挣 - 黑 - 猛 - 令 - 核 - 磊 - 橙 - 吨 - 吊 - 蘸 - 氮 - 罐 - 战 - 懈 - 渐 - 胜 - 命 - 抬 - 缘 - 睦 - 扮 - 珠 - 颁 - 蔼 - 凳 - 饰 - 缤 - 晶 - 抵 - 遥 - 腿 - 拍 - 妻 - 羽 - 绒 - 梳 - 袄 - 述 - 跆 - 屈 - 脱 - 朗 - 劝 - 胆 - 腔 - 圆 - 亚 - 宴 - 编 - 肢 - 壶 - 暑 - 怒 - 描 - 绕 - 悦 - 忆 - 嗓 - 胖 - 疙 - 瘩 - 哒 - 碴 - 棱 - 炒 - 井 - 漫 - 烘 - 焙 - 涤 - 船 - 纱 - 君 - 茉 - 莉 - 钙 - 瞩 - <_> - 塌 - 嗷 - 屁 - 股 - 绪 - 勇 - 奋 - 荣 - 诲 - 卑 - 挫 - 昧 - 疲 - 惫 - 册 - 呈 - 僵 - 熬 - 敬 - 呦 - <sos/eos> init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: true model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: /ocean/projects/cis210027p/berrebbi/espnet/egs2/aishell4/asr1/data/nlsyms.txt cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: default frontend_conf: n_fft: 512 win_length: 400 hop_length: 160 fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_raw_zh_char/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: input_layer: conv2d num_blocks: 12 linear_units: 2048 dropout_rate: 0.1 output_size: 256 attention_heads: 4 attention_dropout_rate: 0.0 pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish macaron_style: true use_cnn_module: true cnn_module_kernel: 15 postencoder: null postencoder_conf: {} decoder: transformer decoder_conf: input_layer: embed num_blocks: 6 linear_units: 2048 dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.3a1 distributed: false ``` </details> ## LM config <details><summary>expand</summary> ``` config: conf/train_lm_transformer.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/lm_nuit ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 15 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - loss - min keep_nbest_models: 10 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 2000000 valid_batch_bins: null train_shape_file: - exp/lm_stats_zh_char/train/text_shape.char valid_shape_file: - exp/lm_stats_zh_char/valid/text_shape.char batch_type: numel valid_batch_type: null fold_length: - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/lm_train.txt - text - text valid_data_path_and_name_and_type: - - dump/raw/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.005 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - , - 的 - 是 - 个 - 这 - 一 - 。 - 就 - 儿 - 嗯 - 们 - 呃 - 我 - 有 - <sil> - 那 - 说 - 不 - 些 - 也 - 他 - 你 - 要 - 后 - 以 - 咱 - 在 - 啊 - 了 - 然 - 家 - 都 - 来 - 还 - 可 - 子 - 下 - 上 - 时 - 比 - 话 - 孩 - 呢 - 去 - 人 - 好 - 对 - 能 - 么 - 吧 - 学 - 多 - 到 - 看 - 为 - 进 - 把 - 大 - 做 - 生 - 种 - 品 - 给 - 没 - 行 - 现 - 小 - 会 - 作 - 较 - 方 - 块 - 业 - 让 - 点 - 定 - 因 - 什 - 长 - 面 - 如 - 安 - 客 - 问 - 过 - 车 - 出 - 啦 - 边 - 候 - 主 - 所 - 题 - 买 - 销 - 天 - 意 - 自 - 全 - 动 - 工 - '&' - 老 - 或 - 者 - 年 - 着 - 实 - 活 - 理 - 包 - 样 - 再 - 区 - 用 - 呀 - 零 - 员 - 发 - 先 - 部 - 放 - 门 - 情 - 像 - 分 - 售 - 很 - 开 - 己 - 十 - 括 - 跟 - 事 - 需 - 更 - 其 - 装 - 市 - 成 - 里 - 物 - 别 - 间 - 第 - 次 - 中 - 提 - 超 - 顾 - 保 - 感 - 加 - 量 - 二 - 和 - 各 - 嘛 - 新 - 每 - 完 - 力 - 消 - 得 - 店 - 本 - 通 - 习 - 觉 - 道 - 心 - 校 - 菜 - 交 - 哪 - 产 - 于 - 位 - 电 - 想 - 三 - 况 - 度 - 期 - 应 - 但 - 教 - 体 - 常 - 师 - 它 - 高 - 前 - 之 - 西 - 特 - 商 - 果 - 场 - 重 - 防 - 管 - 起 - 地 - 该 - 东 - 少 - 打 - 费 - 当 - 带 - 服 - 口 - 购 - 知 - 回 - 同 - 钱 - 外 - 户 - 注 - 促 - 价 - 解 - <#> - 水 - 百 - 今 - 太 - 最 - 报 - 怎 - 才 - 等 - 及 - 关 - <-> - 肯 - 火 - 机 - 流 - 制 - 送 - 手 - 确 - 法 - 写 - 玩 - 传 - 路 - 班 - 查 - 招 - 卖 - 几 - 正 - 合 - 够 - 五 - 引 - 容 - 只 - 男 - 日 - 四 - 宣 - 反 - 两 - 清 - 处 - 周 - 单 - 首 - 课 - 衣 - 便 - 身 - 气 - 针 - 奶 - 六 - 经 - 接 - 女 - 育 - 鲜 - 赠 - 试 - 停 - 晚 - 类 - 故 - 入 - 性 - 增 - 食 - 满 - 格 - 基 - 备 - 洗 - 培 - 质 - 美 - 明 - 整 - 化 - 公 - 案 - 哎 - 吸 - 原 - 易 - 幺 - 总 - 尽 - 优 - 而 - 建 - 责 - 啥 - 干 - 月 - 使 - 找 - 季 - 望 - 器 - 目 - 识 - 低 - 听 - 烟 - 相 - 早 - 检 - 护 - 摆 - 住 - 直 - 从 - 务 - 希 - 导 - 内 - 八 - 持 - 近 - 配 - 叫 - 见 - 设 - 吗 - 非 - 调 - 程 - 拿 - 训 - <%> - 结 - 标 - 挺 - 花 - <$> - 受 - 式 - 求 - 平 - 换 - 具 - 愿 - 货 - 牌 - 专 - 轻 - 推 - 妈 - 司 - 辆 - 存 - 名 - 且 - 欢 - 喜 - 吃 - 数 - 段 - 议 - 控 - 往 - 礼 - 决 - 走 - 养 - 免 - 惠 - 园 - 档 - 谁 - 真 - 快 - 置 - 幼 - 乐 - 证 - 向 - 厂 - 简 - 声 - 视 - 划 - 绩 - 适 - 集 - 搞 - 办 - 规 - 灾 - 造 - 准 - 必 - 任 - 险 - 响 - 毕 - 群 - 鞋 - 九 - 嘞 - 信 - 库 - 计 - 认 - 奖 - 表 - 无 - 影 - 头 - 卡 - 告 - 考 - 抽 - 竟 - 选 - 帮 - 何 - 修 - 酒 - 尤 - 线 - 穿 - 讲 - 光 - 留 - 讨 - 随 - 请 - 卫 - 系 - 队 - 失 - 双 - 庭 - 强 - 微 - 折 - 色 - 半 - 否 - 立 - 差 - 沟 - 冬 - 批 - 害 - 已 - 危 - 白 - 爆 - 节 - 参 - 逛 - 搭 - 风 - 朋 - 友 - 环 - 验 - 评 - 严 - 般 - 效 - 舞 - 饭 - 境 - 负 - 又 - 底 - 术 - 刚 - 件 - 罚 - 助 - 态 - 状 - 室 - 房 - 游 - 息 - 领 - 难 - 警 - 按 - 级 - 错 - 利 - 与 - 餐 - 陪 - 蹈 - 论 - 记 - 许 - 马 - 算 - 楼 - 型 - 排 - 广 - 值 - 油 - 糕 - 楚 - 步 - 至 - 拉 - 紧 - 灯 - 升 - 七 - 共 - 努 - 除 - 展 - 形 - 元 - 网 - 宜 - 营 - 兴 - 互 - 蛋 - 燃 - 冷 - 条 - 思 - 巡 - 净 - 须 - 遇 - 落 - 禁 - 科 - 款 - 哦 - 止 - 采 - 材 - 介 - 套 - 围 - 维 - 旦 - 切 - 显 - 汇 - 损 - 速 - 越 - 模 - 假 - 精 - 稍 - 书 - 绍 - 父 - 积 - 策 - 示 - 骑 - 改 - 跑 - 运 - 变 - 洁 - 仓 - 鱼 - <space> - 绝 - 诶 - 伤 - 细 - 职 - 离 - 慢 - 素 - 料 - 睡 - 趣 - 爱 - 母 - 眼 - 味 - 列 - 督 - 张 - 率 - 被 - 域 - 语 - 坏 - 资 - 红 - 减 - 励 - 择 - 预 - 层 - 陈 - 根 - 休 - 毒 - 球 - 爸 - 登 - 足 - 取 - 指 - 柜 - 限 - 降 - 概 - 院 - 供 - 支 - 额 - 源 - 始 - 盘 - 饮 - 项 - 液 - 童 - 爷 - 号 - 抓 - 台 - 转 - 观 - 金 - 照 - 滑 - 岁 - 致 - 文 - 她 - 弄 - 站 - 酸 - 音 - 胎 - 投 - 疏 - 乱 - 临 - 允 - 狗 - 疫 - 询 - 、 - 象 - 占 - 坐 - 倒 - 争 - 午 - 亲 - 读 - 演 - 退 - 惯 - 贵 - 达 - 监 - 志 - 绿 - 醒 - 急 - 驾 - 违 - 诉 - 片 - 空 - 势 - 极 - 豆 - 独 - 钟 - 代 - 瓶 - 纸 - 并 - 企 - 映 - 统 - 属 - 省 - 夜 - 障 - 谈 - 避 - 由 - 终 - 频 - 掉 - 估 - 激 - 仅 - 布 - 谢 - 灭 - 忙 - 码 - 伙 - 缺 - 叶 - 功 - 析 - 赖 - 架 - 范 - 签 - D - 待 - 神 - 龄 - 画 - 券 - 居 - 杜 - 堵 - 您 - 勤 - 扫 - 技 - 财 - 隐 - 患 - 例 - 乘 - 摩 - 戏 - 鼓 - 份 - 杂 - 散 - 热 - 铺 - 据 - 肤 - 怕 - 依 - 拖 - 充 - 智 - 偷 - 远 - 挂 - 盗 - 附 - 梯 - 冰 - 联 - 借 - 蹭 - 异 - 蔬 - 绑 - 堂 - 将 - 厨 - 帽 - 破 - 戴 - 皮 - 粉 - 氛 - 仪 - 国 - 益 - 闯 - 惩 - 逃 - 刻 - 突 - 申 - 略 - 顿 - 毛 - 召 - 海 - 黄 - 青 - 士 - 移 - 喝 - 板 - 练 - 歌 - 千 - 床 - 享 - 磨 - 构 - 收 - 万 - 摸 - 圈 - 亮 - 刹 - 逆 - 驶 - 赶 - 松 - 呐 - 压 - 拥 - 辅 - 协 - 托 - 断 - 轮 - 善 - 哈 - 捆 - 座 - 病 - 健 - 牛 - 草 - 释 - 似 - 土 - 补 - 俩 - 堆 - 即 - 密 - 背 - 言 - 街 - 尚 - 窗 - C - 艺 - 纠 - 纷 - 忽 - 句 - 另 - 施 - 政 - 温 - 某 - 翻 - 章 - 守 - 熟 - 民 - 续 - 良 - 挤 - 础 - 字 - 瓜 - 乎 - 竞 - 距 - 际 - 暖 - 凭 - 董 - 碗 - 短 - 渠 - 康 - 藏 - 香 - 虽 - 露 - 厉 - 忘 - 误 - 冒 - 窃 - 络 - 淡 - 腐 - 颜 - 播 - 默 - 锻 - 炼 - 宝 - 组 - 淘 - 则 - 逻 - 垃 - 圾 - 复 - 贴 - 靠 - 潜 - 察 - 晨 - 碰 - 剩 - 峰 - 深 - 偏 - 虑 - 念 - 初 - 闹 - 幸 - 跳 - 米 - 旧 - 蛤 - 虾 - 汽 - 苦 - 螃 - 蟹 - 冲 - 固 - 隔 - 懂 - 卷 - 镜 - 罩 - 暴 - 闭 - 野 - 玻 - 璃 - 义 - B - 煤 - 富 - 踩 - 途 - 闲 - 紫 - 北 - 欲 - 曲 - 榜 - 垒 - 伴 - 累 - 判 - 搜 - 困 - 租 - 键 - 肥 - 社 - 弯 - 角 - 纪 - 律 - 详 - 右 - 刮 - 继 - 撤 - 输 - 普 - 未 - 稳 - 摔 - 访 - 扩 - 扣 - 末 - 票 - 承 - 担 - 丢 - 涉 - 欠 - 创 - 获 - 摊 - 疑 - 蓝 - 答 - 霜 - 录 - 齐 - 烦 - 治 - 粗 - 叛 - 污 - 址 - 若 - 染 - 含 - 药 - 雨 - 此 - 陌 - 研 - 催 - 拨 - 页 - 磕 - 呆 - 脸 - 墙 - 夫 - A - 棉 - 袜 - 填 - 死 - 懒 - 植 - 扇 - 捡 - 遍 - 操 - 摄 - 箱 - ? - 繁 - 城 - 咯 - 左 - 拐 - 悉 - 犯 - 宽 - 伞 - 余 - 糊 - 巧 - 透 - 贪 - 顺 - 局 - 妇 - 私 - 浪 - 岗 - 棋 - 序 - 辛 - V - 握 - 擦 - 扔 - 斤 - 付 - 剐 - 锁 - 麻 - 敢 - 桶 - 佩 - 坠 - 封 - 替 - 塞 - 斗 - 攀 - 爽 - 沉 - 混 - 滋 - 刺 - 潮 - 皿 - 端 - 刷 - 刀 - 巾 - 烫 - 木 - 漏 - 迅 - 织 - 救 - 吹 - 仔 - 称 - 返 - 景 - 聚 - 阶 - 秀 - 涨 - P - 颈 - 肩 - 泥 - I - 侣 - 尔 - 伍 - 甚 - 皂 - 蒙 - 世 - 界 - 嘻 - 辈 - Q - 审 - 尾 - 浇 - 遛 - 馨 - 措 - 邻 - 撒 - 挥 - 遵 - 予 - 击 - 鉴 - 殊 - 哇 - 载 - 添 - 盈 - 盯 - 惊 - 喷 - 荷 - 怠 - 抢 - 喂 - 饱 - 谅 - 团 - 龙 - 冻 - 图 - 掺 - 扑 - 刊 - 葱 - 薄 - 萝 - 卜 - 麦 - 苹 - 触 - 飞 - 艳 - 畅 - 鸡 - 权 - 趟 - 连 - 哭 - 旁 - 漂 - 焊 - 敞 - 叉 - 钢 - 氧 - 溺 - 聊 - 巢 - 衡 - 淀 - 劣 - 虫 - 符 - 均 - 辨 - 菌 - 彻 - 烂 - 厅 - 皱 - 妥 - 拾 - 插 - 携 - 竹 - 碍 - 湿 - 灵 - 忌 - 旅 - 勿 - 宿 - 迷 - 探 - 春 - 劵 - 星 - 耐 - 裤 - 颖 - 韩 - 艾 - 灸 - 邀 - 婚 - 乳 - 芽 - 挑 - 摘 - 阿 - 姨 - 伊 - 慕 - 纯 - 貌 - 嘴 - 偶 - 睛 - 献 - 坚 - 账 - 典 - 唱 - L - E - 贡 - 寒 - 唧 - Y - 尝 - 抹 - 汰 - 腾 - 哼 - 仿 - 英 - 舒 - 扰 - 拒 - 剪 - 夏 - 宠 - 咬 - 派 - 委 - 婉 - 执 - 呗 - 悄 - 搬 - 雪 - 盐 - 暂 - 奸 - 耍 - 僻 - 却 - 署 - 寻 - 串 - 援 - 亏 - 烈 - 印 - 捎 - 幅 - 绘 - 锈 - 闸 - 罪 - 嫌 - 俗 - 歹 - 劳 - 兜 - 喽 - 谓 - 鹤 - 舍 - 克 - 徇 - 倍 - 敏 - 丝 - 纺 - 拭 - 融 - 蔫 - 掂 - 测 - T - 众 - 卸 - 暗 - 赔 - 偿 - 举 - 劲 - 篮 - 储 - 乙 - 炔 - 软 - 侵 - 诱 - 浊 - 蚀 - 秽 - 炸 - 泽 - 闻 - 鼻 - 甜 - 澈 - 脏 - 官 - 凝 - 芳 - 灰 - 卵 - 农 - 烧 - 肉 - 桌 - 椅 - 垫 - 硬 - 叠 - 瓷 - 碎 - 柄 - 屉 - 拳 - 撞 - 铝 - 歇 - 遗 - 炮 - 掌 - 妨 - 静 - 浸 - 涂 - 凉 - 炫 - 耀 - 姓 - 究 - 奏 - 缆 - 脚 - 酿 - 抄 - 慌 - 戚 - 燥 - 毯 - 挽 - 诺 - 济 - 旺 - 抖 - 郊 - 疗 - 巴 - 痧 - 脊 - 膜 - 晒 - 润 - 掏 - 笔 - 鞭 - 博 - 捧 - 函 - 胡 - 锅 - 雾 - 疯 - 狂 - 趋 - 膏 - 妆 - 尘 - 袋 - 贝 - 俺 - 耽 - 怀 - 恐 - 赋 - 脑 - 焉 - 愣 - 呵 - 噼 - 啪 - 虚 - 河 - 归 - 绊 - 械 - 扬 - 筒 - 靴 - 束 - 彩 - 荐 - 沙 - 迎 - 荡 - 凌 - 昂 - 碑 - 蹦 - 扉 - 泼 - 丰 - 滴 - 沾 - 亭 - 粘 - 奇 - 饼 - 牙 - 娃 - 杯 - 踢 - 嘿 - 抛 - 枯 - 剔 - 苗 - 纹 - 永 - 津 - 唉 - 趁 - 屡 - 逮 - 戒 - 肃 - 仁 - 肇 - 醉 - 糟 - 馈 - 横 - 扭 - 盔 - 侧 - 鲁 - 莽 - 飙 - 稿 - 逐 - 谋 - 京 - 苏 - 宁 - 驻 - 咨 - 旷 - 拓 - 杆 - 秤 - 叮 - 嘱 - 咋 - 炊 - 怪 - 婆 - 阎 - 王 - 饿 - 鬼 - 惨 - 渡 - 坎 - 囤 - 甲 - 蛙 - 鲤 - 桂 - 石 - 玉 - 溪 - 华 - 窝 - 截 - 秩 - 嗨 - 芹 - 梨 - 蕉 - S - 煲 - 汤 - 鲫 - 揽 - 挡 - 柚 - 瑞 - 匹 - '2' - 踹 - 吵 - 凶 - 矩 - 迟 - 脾 - 纳 - 朵 - 墨 - 袖 - 链 - 钩 - 笼 - 熄 - 盆 - 殴 - 欺 - 诈 - 厕 - 娱 - 爬 - 威 - 胁 - 阅 - 赌 - 拢 - 症 - 伪 - 脂 - 堪 - 盛 - 蚊 - 蝇 - 煎 - 晰 - 柔 - 涩 - 汁 - 腹 - 胃 - 痉 - 挛 - 颗 - 粒 - 匀 - 败 - 历 - 佳 - 乏 - 寄 - 残 - 杀 - 剂 - 疾 - 衍 - 溅 - 倘 - 褶 - 席 - 启 - 遮 - 槽 - 递 - 橱 - 迹 - 镁 - 泄 - 阀 - 柴 - 阻 - 恋 - 盲 - 浓 - 捂 - 腰 - 姿 - 缝 - 肿 - 焦 - 骗 - 伺 - 嘘 - 掩 - 褥 - 帘 - 籍 - 锥 - 锋 - 尖 - 锐 - 祸 - 秒 - 李 - 伸 - 浏 - 览 - 航 - 讯 - 谨 - 慎 - 匪 - 劫 - 医 - 族 - 忧 - 孤 - 拜 - 窄 - 唯 - 搁 - 朝 - 尺 - 盟 - 波 - 隆 - 词 - 村 - 娶 - 媳 - 县 - 聘 - 醇 - 泡 - 坨 - 淋 - 延 - 柱 - 肾 - 蒸 - 槛 - 赚 - 凡 - 恩 - 厚 - 赞 - 茎 - 蒜 - 苔 - 甘 - 菠 - 涮 - 霾 - 仍 - 云 - 追 - 丽 - 盖 - 欧 - 莱 - 雅 - 婴 - 孕 - 敲 - 约 - 惰 - 谱 - 射 - 惑 - 睹 - 奉 - 诚 - 惶 - 卓 - 勉 - 聪 - 疼 - 弃 - 奴 - 隶 - 嚷 - 眠 - 躺 - 乒 - 乓 - 琴 - 挖 - 掘 - 阵 - 浆 - 索 - 呼 - 古 - 弥 - 熔 - 抱 - 怨 - 猫 - 笑 - 挣 - 黑 - 猛 - 令 - 核 - 磊 - 橙 - 吨 - 吊 - 蘸 - 氮 - 罐 - 战 - 懈 - 渐 - 胜 - 命 - 抬 - 缘 - 睦 - 扮 - 珠 - 颁 - 蔼 - 凳 - 饰 - 缤 - 晶 - 抵 - 遥 - 腿 - 拍 - 妻 - 羽 - 绒 - 梳 - 袄 - 述 - 跆 - 屈 - 脱 - 朗 - 劝 - 胆 - 腔 - 圆 - 亚 - 宴 - 编 - 肢 - 壶 - 暑 - 怒 - 描 - 绕 - 悦 - 忆 - 嗓 - 胖 - 疙 - 瘩 - 哒 - 碴 - 棱 - 炒 - 井 - 漫 - 烘 - 焙 - 涤 - 船 - 纱 - 君 - 茉 - 莉 - 钙 - 瞩 - <_> - 塌 - 嗷 - 屁 - 股 - 绪 - 勇 - 奋 - 荣 - 诲 - 卑 - 挫 - 昧 - 疲 - 惫 - 册 - 呈 - 僵 - 熬 - 敬 - 呦 - <sos/eos> init: null model_conf: ignore_id: 0 use_preprocessor: true token_type: char bpemodel: null non_linguistic_symbols: /ocean/projects/cis210027p/berrebbi/espnet/egs2/aishell4/asr1/data/nlsyms.txt cleaner: null g2p: null lm: transformer lm_conf: pos_enc: null embed_unit: 128 att_unit: 512 head: 8 unit: 2048 layer: 16 dropout_rate: 0.1 required: - output_dir - token_list version: 0.10.3a1 distributed: false ``` </details>
andi611/bert-large-uncased-whole-word-masking-squad2-with-ner-mit-movie-with-neg-with-repeat
andi611
2021-09-22T20:36:06Z
70
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "en", "dataset:squad_v2", "dataset:mit_movie", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: - en license: cc-by-4.0 tags: - generated_from_trainer datasets: - squad_v2 - mit_movie model_index: - name: bert-large-uncased-whole-word-masking-squad2-with-ner-mit-movie-with-neg-with-repeat results: - task: name: Token Classification type: token-classification dataset: name: squad_v2 type: squad_v2 - task: name: Token Classification type: token-classification dataset: name: mit_movie type: mit_movie --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-squad2-with-ner-mit-movie-with-neg-with-repeat This model is a fine-tuned version of [deepset/bert-large-uncased-whole-word-masking-squad2](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2) on the squad_v2 and the mit_movie datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3