modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 06:30:11
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 06:29:58
card
stringlengths
11
1.01M
gaochangkuan/model_dir
gaochangkuan
2021-05-21T16:10:50Z
10
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
## Generating Chinese poetry by topic. ```python from transformers import * tokenizer = BertTokenizer.from_pretrained("gaochangkuan/model_dir") model = AutoModelWithLMHead.from_pretrained("gaochangkuan/model_dir") prompt= '''<s>田园躬耕''' length= 84 stop_token='</s>' temperature = 1.2 repetition_penalty=1.3 k= 30 p= 0.95 device ='cuda' seed=2020 no_cuda=False prompt_text = prompt if prompt else input("Model prompt >>> ") encoded_prompt = tokenizer.encode( '<s>'+prompt_text+'<sep>', add_special_tokens=False, return_tensors="pt" ) encoded_prompt = encoded_prompt.to(device) output_sequences = model.generate( input_ids=encoded_prompt, max_length=length, min_length=10, do_sample=True, early_stopping=True, num_beams=10, temperature=temperature, top_k=k, top_p=p, repetition_penalty=repetition_penalty, bad_words_ids=None, bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, length_penalty=1.2, no_repeat_ngram_size=2, num_return_sequences=1, attention_mask=None, decoder_start_token_id=tokenizer.bos_token_id,) generated_sequence = output_sequences[0].tolist() text = tokenizer.decode(generated_sequence) text = text[: text.find(stop_token) if stop_token else None] print(''.join(text).replace(' ','').replace('<pad>','').replace('<s>','')) ```
gagan3012/project-code-py-small
gagan3012
2021-05-21T16:06:24Z
11
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# Leetcode using AI :robot: GPT-2 Model for Leetcode Questions in python **Note**: the Answers might not make sense in some cases because of the bias in GPT-2 **Contribtuions:** If you would like to make the model better contributions are welcome Check out [CONTRIBUTIONS.md](https://github.com/gagan3012/project-code-py/blob/master/CONTRIBUTIONS.md) ### 📢 Favour: It would be highly motivating, if you can STAR⭐ this repo if you find it helpful. ## Model Two models have been developed for different use cases and they can be found at https://huggingface.co/gagan3012 The model weights can be found here: [GPT-2](https://huggingface.co/gagan3012/project-code-py) and [DistilGPT-2](https://huggingface.co/gagan3012/project-code-py-small) ### Example usage: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gagan3012/project-code-py") model = AutoModelWithLMHead.from_pretrained("gagan3012/project-code-py") ``` ## Demo [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/project-code-py/app.py) A streamlit webapp has been setup to use the model: https://share.streamlit.io/gagan3012/project-code-py/app.py ![image](https://user-images.githubusercontent.com/49101362/110356042-e69e4780-804a-11eb-94c6-a47fa3cd66b3.png) ## Example results: ### Question: ``` Write a function to delete a node in a singly-linked list. You will not be given access to the head of the list, instead you will be given access to the node to be deleted directly. It is guaranteed that the node to be deleted is not a tail node in the list. ``` ### Answer: ```python """ Write a function to delete a node in a singly-linked list. You will not be given access to the head of the list, instead you will be given access to the node to be deleted directly. It is guaranteed that the node to be deleted is not a tail node in the list. For example, a = 1->2->3 b = 3->1->2 t = ListNode(-1, 1) Note: The lexicographic ordering of the nodes in a tree matters. Do not assign values to nodes in a tree. Example 1: Input: [1,2,3] Output: 1->2->5 Explanation: 1->2->3->3->4, then 1->2->5[2] and then 5->1->3->4. Note: The length of a linked list will be in the range [1, 1000]. Node.val must be a valid LinkedListNode type. Both the length and the value of the nodes in a linked list will be in the range [-1000, 1000]. All nodes are distinct. """ # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def deleteNode(self, head: ListNode, val: int) -> None: """ BFS Linked List :param head: ListNode :param val: int :return: ListNode """ if head is not None: return head dummy = ListNode(-1, 1) dummy.next = head dummy.next.val = val dummy.next.next = head dummy.val = "" s1 = Solution() print(s1.deleteNode(head)) print(s1.deleteNode(-1)) print(s1.deleteNode(-1)) ```
gagan3012/Fox-News-Generator
gagan3012
2021-05-21T16:03:28Z
7
3
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# Generating Right Wing News Using GPT2 ### I have built a custom model for it using data from Kaggle Creating a new finetuned model using data from FOX news ### My model can be accessed at gagan3012/Fox-News-Generator Check the [BenchmarkTest](https://github.com/gagan3012/Fox-News-Generator/blob/master/BenchmarkTest.ipynb) notebook for results Find the model at [gagan3012/Fox-News-Generator](https://huggingface.co/gagan3012/Fox-News-Generator) ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gagan3012/Fox-News-Generator") model = AutoModelWithLMHead.from_pretrained("gagan3012/Fox-News-Generator") ```
erikinfo/gpt2TEDlectures
erikinfo
2021-05-21T16:00:10Z
6
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# GPT2 Keyword Based Lecture Generator ## Model description GPT2 fine-tuned on the TED Talks Dataset (published under the Creative Commons BY-NC-ND license). ## Intended uses Used to generate spoken-word lectures. ### How to use Input text: <BOS> title <|SEP|> Some keywords <|SEP|> Keyword Format: "Main Topic"."Subtopic1","Subtopic2","Subtopic3" Code Example: ``` prompt = <BOS> + title + \\ <|SEP|> + keywords + <|SEP|> generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0) model.eval(); ```
e-tornike/gpt2-rnm
e-tornike
2021-05-21T15:43:11Z
7
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
### How to use You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> generator = pipeline('text-generation', model='e-tony/gpt2-rnm') >>> set_seed(42) >>> generator("Rick: I turned myself into a pickle, Morty!\nMorty: ", max_length=50, num_return_sequences=5) [{'generated_text': "Rick: I turned myself into a pickle, Morty!\nMorty: I didn't want to have children. It was my fate! I'll pay my mom and dad.\nSnuffles: Well, at least we"}, {'generated_text': "Rick: I turned myself into a pickle, Morty!\nMorty: you know what happened?\n(Steven begins dragging people down the toilet with his hand. As Steven falls) The whole thing starts.\nA man approaches Steven"}, {'generated_text': "Rick: I turned myself into a pickle, Morty!\nMorty: Oh wait! And do you remember what I did to you?\nJerry: Uh, it didn't hurt. It should have hurt a lot since I"}, {'generated_text': "Rick: I turned myself into a pickle, Morty!\nMorty: Rick!\nKraven: Wait! [wary gasp] What the hell are you doing this time?!\nJerry: Hey, are you"}, {'generated_text': "Rick: I turned myself into a pickle, Morty!\nMorty: Uh.\nJerry: You don't have to put your finger on me today, do you?\nRick: It's just, what do you"}] ``` ### Training data We used the original `gpt2` model and fine-tuned it on [Rick and Morty transcripts](https://rickandmorty.fandom.com/wiki/Category:Transcripts).
DebateLabKIT/cript
DebateLabKIT
2021-05-21T15:40:52Z
8
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "en", "arxiv:2009.07185", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en tags: - gpt2 --- # CRiPT Model (Critical Thinking Intermediarily Pretrained Transformer) Small version of the trained model (`SYL01-2020-10-24-72K/gpt2-small-train03-72K`) presented in the paper "Critical Thinking for Language Models" (Betz, Voigt and Richardson 2020). See also: * [blog entry](https://debatelab.github.io/journal/critical-thinking-language-models.html) * [GitHub repo](https://github.com/debatelab/aacorpus) * [paper](https://arxiv.org/pdf/2009.07185)
DebateLabKIT/cript-medium
DebateLabKIT
2021-05-21T15:39:12Z
10
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "en", "arxiv:2009.07185", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en tags: - gpt2 --- # CRiPT Model Medium (Critical Thinking Intermediarily Pretrained Transformer) Medium version of the trained model (`SYL01-2020-10-24-72K/gpt2-medium-train03-72K`) presented in the paper "Critical Thinking for Language Models" (Betz, Voigt and Richardson 2020). See also: * [blog entry](https://debatelab.github.io/journal/critical-thinking-language-models.html) * [GitHub repo](https://github.com/debatelab/aacorpus) * [paper](https://arxiv.org/pdf/2009.07185)
DebateLabKIT/cript-large
DebateLabKIT
2021-05-21T15:31:48Z
7
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "en", "arxiv:2009.07185", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en tags: - gpt2 --- # CRiPT Model Large (Critical Thinking Intermediarily Pretrained Transformer) Large version of the trained model (`SYL01-2020-10-24-72K/gpt2-large-train03-72K`) presented in the paper "Critical Thinking for Language Models" (Betz, Voigt and Richardson 2020). See also: * [blog entry](https://debatelab.github.io/journal/critical-thinking-language-models.html) * [GitHub repo](https://github.com/debatelab/aacorpus) * [paper](https://arxiv.org/pdf/2009.07185)
classla/bcms-bertic-generator
classla
2021-05-21T13:29:30Z
5
2
transformers
[ "transformers", "pytorch", "electra", "pretraining", "masked-lm", "hr", "bs", "sr", "cnr", "hbs", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - hr - bs - sr - cnr - hbs tags: - masked-lm widget: - text: "Zovem se Marko i radim u [MASK]." license: apache-2.0 --- # BERTić&ast; [bert-ich] /bɜrtitʃ/ - A transformer language model for Bosnian, Croatian, Montenegrin and Serbian &ast; The name should resemble the facts (1) that the model was trained in Zagreb, Croatia, where diminutives ending in -ić (as in fotić, smajlić, hengić etc.) are very popular, and (2) that most surnames in the countries where these languages are spoken end in -ić (with diminutive etymology as well). This is the smaller generator of the main [discriminator model](https://huggingface.co/classla/bcms-bertic), useful if you want to continue pre-training the discriminator model. If you use the model, please cite the following paper: ``` @inproceedings{ljubesic-lauc-2021-bertic, title = "{BERT}i{\'c} - The Transformer Language Model for {B}osnian, {C}roatian, {M}ontenegrin and {S}erbian", author = "Ljube{\v{s}}i{\'c}, Nikola and Lauc, Davor", booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing", month = apr, year = "2021", address = "Kiyv, Ukraine", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bsnlp-1.5", pages = "37--42", } ```
Dongjae/mrc2reader
Dongjae
2021-05-21T13:25:57Z
14
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:04Z
The Reader model is for Korean Question Answering The backbone model is deepset/xlm-roberta-large-squad2. It is a finetuned model with KorQuAD-v1 dataset. As a result of verification using KorQuAD evaluation dataset, it showed approximately 87% and 92% respectively for the EM score and F1 score. Thank you
aliosm/ComVE-gpt2-medium
aliosm
2021-05-21T13:17:55Z
8
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "feature-extraction", "exbert", "commonsense", "semeval2020", "comve", "en", "dataset:ComVE", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: "en" tags: - gpt2 - exbert - commonsense - semeval2020 - comve license: "mit" datasets: - ComVE metrics: - bleu widget: - text: "Chicken can swim in water. <|continue|>" --- # ComVE-gpt2-medium ## Model description Finetuned model on Commonsense Validation and Explanation (ComVE) dataset introduced in [SemEval2020 Task4](https://competitions.codalab.org/competitions/21080) using a causal language modeling (CLM) objective. The model is able to generate a reason why a given natural language statement is against commonsense. ## Intended uses & limitations You can use the raw model for text generation to generate reasons why natural language statements are against commonsense. #### How to use You can use this model directly to generate reasons why the given statement is against commonsense using [`generate.sh`](https://github.com/AliOsm/SemEval2020-Task4-ComVE/tree/master/TaskC-Generation) script. *Note:* make sure that you are using version `2.4.1` of `transformers` package. Newer versions has some issue in text generation and the model repeats the last token generated again and again. #### Limitations and bias The model biased to negate the entered sentence usually instead of producing a factual reason. ## Training data The model is initialized from the [gpt2-medium](https://github.com/huggingface/transformers/blob/master/model_cards/gpt2-README.md) model and finetuned using [ComVE](https://github.com/wangcunxiang/SemEval2020-Task4-Commonsense-Validation-and-Explanation) dataset which contains 10K against commonsense sentences, each of them is paired with three reference reasons. ## Training procedure Each natural language statement that against commonsense is concatenated with its reference reason with `<|continue|>` as a separator, then the model finetuned using CLM objective. The model trained on Nvidia Tesla P100 GPU from Google Colab platform with 5e-5 learning rate, 5 epochs, 128 maximum sequence length and 64 batch size. <center> <img src="https://i.imgur.com/xKbrwBC.png"> </center> ## Eval results The model achieved fifth place with 16.7153/16.1187 BLEU scores and third place with 1.94 Human Evaluation score on SemEval2020 Task4: Commonsense Validation and Explanation development and testing dataset. These are some examples generated by the model: | Against Commonsense Statement | Generated Reason | |:-----------------------------------------------------:|:--------------------------------------------:| | Chicken can swim in water. | Chicken can't swim. | | shoes can fly | Shoes are not able to fly. | | Chocolate can be used to make a coffee pot | Chocolate is not used to make coffee pots. | | you can also buy tickets online with an identity card | You can't buy tickets with an identity card. | | a ball is square and can roll | A ball is round and cannot roll. | | You can use detergent to dye your hair. | Detergent is used to wash clothes. | | you can eat mercury | mercury is poisonous | | A gardener can follow a suspect | gardener is not a police officer | | cars can float in the ocean just like a boat | Cars are too heavy to float in the ocean. | | I am going to work so I can lose money. | Working is not a way to lose money. | ### BibTeX entry and citation info ```bibtex @article{fadel2020justers, title={JUSTers at SemEval-2020 Task 4: Evaluating Transformer Models Against Commonsense Validation and Explanation}, author={Fadel, Ali and Al-Ayyoub, Mahmoud and Cambria, Erik}, year={2020} } ``` <a href="https://huggingface.co/exbert/?model=aliosm/ComVE-gpt2-medium"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
aliosm/ComVE-gpt2-large
aliosm
2021-05-21T13:12:02Z
13
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "exbert", "commonsense", "semeval2020", "comve", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: "en" tags: - gpt2 - exbert - commonsense - semeval2020 - comve license: "mit" datasets: - https://github.com/wangcunxiang/SemEval2020-Task4-Commonsense-Validation-and-Explanation metrics: - bleu widget: - text: "Chicken can swim in water. <|continue|>" --- # ComVE-gpt2-large ## Model description Finetuned model on Commonsense Validation and Explanation (ComVE) dataset introduced in [SemEval2020 Task4](https://competitions.codalab.org/competitions/21080) using a causal language modeling (CLM) objective. The model is able to generate a reason why a given natural language statement is against commonsense. ## Intended uses & limitations You can use the raw model for text generation to generate reasons why natural language statements are against commonsense. #### How to use You can use this model directly to generate reasons why the given statement is against commonsense using [`generate.sh`](https://github.com/AliOsm/SemEval2020-Task4-ComVE/tree/master/TaskC-Generation) script. *Note:* make sure that you are using version `2.4.1` of `transformers` package. Newer versions has some issue in text generation and the model repeats the last token generated again and again. #### Limitations and bias The model biased to negate the entered sentence usually instead of producing a factual reason. ## Training data The model is initialized from the [gpt2-large](https://github.com/huggingface/transformers/blob/master/model_cards/gpt2-README.md) model and finetuned using [ComVE](https://github.com/wangcunxiang/SemEval2020-Task4-Commonsense-Validation-and-Explanation) dataset which contains 10K against commonsense sentences, each of them is paired with three reference reasons. ## Training procedure Each natural language statement that against commonsense is concatenated with its reference reason with `<|conteniue|>` as a separator, then the model finetuned using CLM objective. The model trained on Nvidia Tesla P100 GPU from Google Colab platform with 5e-5 learning rate, 5 epochs, 128 maximum sequence length and 64 batch size. <center> <img src="https://i.imgur.com/xKbrwBC.png"> </center> ## Eval results The model achieved 16.5110/15.9299 BLEU scores on SemEval2020 Task4: Commonsense Validation and Explanation development and testing dataset. ### BibTeX entry and citation info ```bibtex @article{fadel2020justers, title={JUSTers at SemEval-2020 Task 4: Evaluating Transformer Models Against Commonsense Validation and Explanation}, author={Fadel, Ali and Al-Ayyoub, Mahmoud and Cambria, Erik}, year={2020} } ``` <a href="https://huggingface.co/exbert/?model=aliosm/ComVE-gpt2-large"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
kamivao/autonlp-cola_gram-208681
kamivao
2021-05-21T12:43:57Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:kamivao/autonlp-data-cola_gram", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - kamivao/autonlp-data-cola_gram --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 208681 ## Validation Metrics - Loss: 0.37569838762283325 - Accuracy: 0.8365019011406845 - Precision: 0.8398058252427184 - Recall: 0.9453551912568307 - AUC: 0.9048838797814208 - F1: 0.8894601542416453 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/kamivao/autonlp-cola_gram-208681 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("kamivao/autonlp-cola_gram-208681", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("kamivao/autonlp-cola_gram-208681", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
ainize/gpt2-spongebob-script-large
ainize
2021-05-21T12:18:42Z
7
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
### Model information Fine tuning data: https://www.kaggle.com/mikhailgaerlan/spongebob-squarepants-completed-transcripts License: CC-BY-SA Base model: gpt-2 large Epoch: 50 Train runtime: 14723.0716 secs Loss: 0.0268 API page: [Ainize](https://ainize.ai/fpem123/GPT2-Spongebob?branch=master) Demo page: [End-point](https://master-gpt2-spongebob-fpem123.endpoint.ainize.ai/) ### ===Teachable NLP=== ### To train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free. Teachable NLP: [Teachable NLP](https://ainize.ai/teachable-nlp) Tutorial: [Tutorial](https://forum.ainetwork.ai/t/teachable-nlp-how-to-use-teachable-nlp/65?utm_source=community&utm_medium=huggingface&utm_campaign=model&utm_content=teachable%20nlp)
ainize/gpt2-rnm-with-spongebob
ainize
2021-05-21T12:09:02Z
9
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
### Model information Fine tuning data 1: https://www.kaggle.com/andradaolteanu/rickmorty-scripts Fine tuning data 2: https://www.kaggle.com/mikhailgaerlan/spongebob-squarepants-completed-transcripts Base model: e-tony/gpt2-rnm Epoch: 2 Train runtime: 790.0612 secs Loss: 2.8569 API page: [Ainize](https://ainize.ai/fpem123/GPT2-Rick-N-Morty-with-SpongeBob?branch=master) Demo page: [End-point](https://master-gpt2-rick-n-morty-with-sponge-bob-fpem123.endpoint.ainize.ai/) ### ===Teachable NLP=== ### To train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free. Teachable NLP: [Teachable NLP](https://ainize.ai/teachable-nlp) Tutorial: [Tutorial](https://forum.ainetwork.ai/t/teachable-nlp-how-to-use-teachable-nlp/65?utm_source=community&utm_medium=huggingface&utm_campaign=model&utm_content=teachable%20nlp)
TheBakerCat/2chan_ruGPT3_small
TheBakerCat
2021-05-21T11:26:24Z
13
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
ruGPT3-small model, trained on some 2chan posts
SIC98/GPT2-python-code-generator
SIC98
2021-05-21T11:13:58Z
17
9
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
Github - https://github.com/SIC98/GPT2-python-code-generator
Ochiroo/tiny_mn_gpt
Ochiroo
2021-05-21T10:59:47Z
6
1
transformers
[ "transformers", "tf", "gpt2", "text-generation", "mn", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: mn --- # GPT2-Mongolia ## Model description GPT-2 is a transformers model pretrained on a very small corpus of Mongolian news data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. ## How to use ```python import tensorflow as tf from transformers import GPT2Config, TFGPT2LMHeadModel, GPT2Tokenizer from transformers import WEIGHTS_NAME, CONFIG_NAME tokenizer = GPT2Tokenizer.from_pretrained('Ochiroo/tiny_mn_gpt') model = TFGPT2LMHeadModel.from_pretrained('Ochiroo/tiny_mn_gpt') text = "Намайг Эрдэнэ-Очир гэдэг. Би" input_ids = tokenizer.encode(text, return_tensors='tf') beam_outputs = model.generate( input_ids, max_length = 25, num_beams = 5, temperature = 0.7, no_repeat_ngram_size=2, num_return_sequences=5 ) print(tokenizer.decode(beam_outputs[0])) ``` ## Training data and biases Trained on 500MB of Mongolian news dataset (IKON) on RTX 2060.
Meli/GPT2-Prompt
Meli
2021-05-21T10:55:36Z
311
11
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: - en tags: - gpt2 - text-generation pipeline_tag: text-generation widget: - text: "A person with a high school education gets sent back into the 1600s and tries to explain science and technology to the people. [endprompt]" - text: "A kid doodling in a math class accidentally creates the world's first functional magic circle in centuries. [endprompt]" --- # GPT-2 Story Generator ## Model description Generate a short story from an input prompt. Put the vocab ` [endprompt]` after your input. Example of an input: ``` A person with a high school education gets sent back into the 1600s and tries to explain science and technology to the people. [endprompt] ``` #### Limitations and bias The data we used to train was collected from reddit, so it could be very biased towards young, white, male demographic. ## Training data The data was collected from scraping reddit.
HooshvareLab/gpt2-fa-poetry
HooshvareLab
2021-05-21T10:50:14Z
65
0
transformers
[ "transformers", "pytorch", "tf", "jax", "gpt2", "text-generation", "fa", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: fa license: apache-2.0 widget: - text: "<s>رودکی<|startoftext|>" - text: "<s>فردوسی<|startoftext|>" - text: "<s>خیام<|startoftext|>" - text: "<s>عطار<|startoftext|>" - text: "<s>نظامی<|startoftext|>" --- # Persian Poet GPT2 ## Poets The model can generate poetry based on your favorite poet, and you need to add one of the following lines as the input the box on the right side or follow the [fine-tuning notebook](https://colab.research.google.com/github/hooshvare/parsgpt/blob/master/notebooks/Persian_Poetry_FineTuning.ipynb). ```text <s>رودکی<|startoftext|> <s>فردوسی<|startoftext|> <s>کسایی<|startoftext|> <s>ناصرخسرو<|startoftext|> <s>منوچهری<|startoftext|> <s>فرخی سیستانی<|startoftext|> <s>مسعود سعد سلمان<|startoftext|> <s>ابوسعید ابوالخیر<|startoftext|> <s>باباطاهر<|startoftext|> <s>فخرالدین اسعد گرگانی<|startoftext|> <s>اسدی توسی<|startoftext|> <s>هجویری<|startoftext|> <s>خیام<|startoftext|> <s>نظامی<|startoftext|> <s>عطار<|startoftext|> <s>سنایی<|startoftext|> <s>خاقانی<|startoftext|> <s>انوری<|startoftext|> <s>عبدالواسع جبلی<|startoftext|> <s>نصرالله منشی<|startoftext|> <s>مهستی گنجوی<|startoftext|> <s>باباافضل کاشانی<|startoftext|> <s>مولوی<|startoftext|> <s>سعدی<|startoftext|> <s>خواجوی کرمانی<|startoftext|> <s>عراقی<|startoftext|> <s>سیف فرغانی<|startoftext|> <s>حافظ<|startoftext|> <s>اوحدی<|startoftext|> <s>شیخ محمود شبستری<|startoftext|> <s>عبید زاکانی<|startoftext|> <s>امیرخسرو دهلوی<|startoftext|> <s>سلمان ساوجی<|startoftext|> <s>شاه نعمت‌الله ولی<|startoftext|> <s>جامی<|startoftext|> <s>هلالی جغتایی<|startoftext|> <s>وحشی<|startoftext|> <s>محتشم کاشانی<|startoftext|> <s>شیخ بهایی<|startoftext|> <s>عرفی<|startoftext|> <s>رضی‌الدین آرتیمانی<|startoftext|> <s>صائب تبریزی<|startoftext|> <s>فیض کاشانی<|startoftext|> <s>بیدل دهلوی<|startoftext|> <s>هاتف اصفهانی<|startoftext|> <s>فروغی بسطامی<|startoftext|> <s>قاآنی<|startoftext|> <s>ملا هادی سبزواری<|startoftext|> <s>پروین اعتصامی<|startoftext|> <s>ملک‌الشعرای بهار<|startoftext|> <s>شهریار<|startoftext|> <s>رهی معیری<|startoftext|> <s>اقبال لاهوری<|startoftext|> <s>خلیل‌الله خلیلی<|startoftext|> <s>شاطرعباس صبوحی<|startoftext|> <s>نیما یوشیج ( آوای آزاد )<|startoftext|> <s>احمد شاملو<|startoftext|> <s>سهراب سپهری<|startoftext|> <s>فروغ فرخزاد<|startoftext|> <s>سیمین بهبهانی<|startoftext|> <s>مهدی اخوان ثالث<|startoftext|> <s>محمدحسن بارق شفیعی<|startoftext|> <s>شیون فومنی<|startoftext|> <s>کامبیز صدیقی کسمایی<|startoftext|> <s>بهرام سالکی<|startoftext|> <s>عبدالقهّار عاصی<|startoftext|> <s>اِ لیـــار (جبار محمدی )<|startoftext|> ``` ## Questions? Post a Github issue on the [ParsGPT2 Issues](https://github.com/hooshvare/parsgpt/issues) repo.
Davlan/mt5_base_eng_yor_mt
Davlan
2021-05-21T10:14:10Z
54
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "arxiv:2103.08647", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - yo - en datasets: - JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) --- # mT5_base_eng_yor_mt ## Model description **mT5_base_yor_eng_mt** is a **machine translation** model from English language to Yorùbá language based on a fine-tuned mT5-base model. It establishes a **strong baseline** for automatically translating texts from English to Yorùbá. Specifically, this model is a *mT5_base* model that was fine-tuned on JW300 Yorùbá corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for MT. ```python from transformers import MT5ForConditionalGeneration, T5Tokenizer model = MT5ForConditionalGeneration.from_pretrained("Davlan/mt5_base_eng_yor_mt") tokenizer = T5Tokenizer.from_pretrained("google/mt5-base") input_string = "Where are you?" inputs = tokenizer.encode(input_string, return_tensors="pt") generated_tokens = model.generate(inputs) results = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) print(results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on on JW300 corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (BLEU score) 9.82 BLEU on [Menyo-20k test set](https://arxiv.org/abs/2103.08647) ### BibTeX entry and citation info By David Adelani ``` ```
HJK/PickupLineGenerator
HJK
2021-05-21T10:05:21Z
12
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
basically, it makes pickup lines https://huggingface.co/gpt2
CallumRai/HansardGPT2
CallumRai
2021-05-21T09:33:25Z
15
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
A PyTorch GPT-2 model trained on hansard from 2019-01-01 to 2020-06-01 For more information see: https://github.com/CallumRai/Hansard/
lg/fexp_1
lg
2021-05-20T23:37:11Z
5
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# This model is probably not what you're looking for.
ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
ynie
2021-05-20T23:17:23Z
17,917
18
transformers
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "dataset:snli", "dataset:anli", "dataset:multi_nli", "dataset:multi_nli_mismatch", "dataset:fever", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- datasets: - snli - anli - multi_nli - multi_nli_mismatch - fever license: mit --- This is a strong pre-trained RoBERTa-Large NLI model. The training data is a combination of well-known NLI datasets: [`SNLI`](https://nlp.stanford.edu/projects/snli/), [`MNLI`](https://cims.nyu.edu/~sbowman/multinli/), [`FEVER-NLI`](https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md), [`ANLI (R1, R2, R3)`](https://github.com/facebookresearch/anli). Other pre-trained NLI models including `RoBERTa`, `ALBert`, `BART`, `ELECTRA`, `XLNet` are also available. Trained by [Yixin Nie](https://easonnie.github.io), [original source](https://github.com/facebookresearch/anli). Try the code snippet below. ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch if __name__ == '__main__': max_length = 256 premise = "Two women are embracing while holding to go packages." hypothesis = "The men are fighting outside a deli." hg_model_hub_name = "ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli" # hg_model_hub_name = "ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli" # hg_model_hub_name = "ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli" # hg_model_hub_name = "ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli" # hg_model_hub_name = "ynie/xlnet-large-cased-snli_mnli_fever_anli_R1_R2_R3-nli" tokenizer = AutoTokenizer.from_pretrained(hg_model_hub_name) model = AutoModelForSequenceClassification.from_pretrained(hg_model_hub_name) tokenized_input_seq_pair = tokenizer.encode_plus(premise, hypothesis, max_length=max_length, return_token_type_ids=True, truncation=True) input_ids = torch.Tensor(tokenized_input_seq_pair['input_ids']).long().unsqueeze(0) # remember bart doesn't have 'token_type_ids', remove the line below if you are using bart. token_type_ids = torch.Tensor(tokenized_input_seq_pair['token_type_ids']).long().unsqueeze(0) attention_mask = torch.Tensor(tokenized_input_seq_pair['attention_mask']).long().unsqueeze(0) outputs = model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, labels=None) # Note: # "id2label": { # "0": "entailment", # "1": "neutral", # "2": "contradiction" # }, predicted_probability = torch.softmax(outputs[0], dim=1)[0].tolist() # batch_size only one print("Premise:", premise) print("Hypothesis:", hypothesis) print("Entailment:", predicted_probability[0]) print("Neutral:", predicted_probability[1]) print("Contradiction:", predicted_probability[2]) ``` More in [here](https://github.com/facebookresearch/anli/blob/master/src/hg_api/interactive_eval.py). Citation: ``` @inproceedings{nie-etal-2020-adversarial, title = "Adversarial {NLI}: A New Benchmark for Natural Language Understanding", author = "Nie, Yixin and Williams, Adina and Dinan, Emily and Bansal, Mohit and Weston, Jason and Kiela, Douwe", booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", year = "2020", publisher = "Association for Computational Linguistics", } ```
urduhack/roberta-urdu-small
urduhack
2021-05-20T22:52:23Z
884
8
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "roberta-urdu-small", "urdu", "ur", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ur thumbnail: https://raw.githubusercontent.com/urduhack/urduhack/master/docs/_static/urduhack.png tags: - roberta-urdu-small - urdu - transformers license: mit --- ## roberta-urdu-small [![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/urduhack/urduhack/blob/master/LICENSE) ### Overview **Language model:** roberta-urdu-small **Model size:** 125M **Language:** Urdu **Training data:** News data from urdu news resources in Pakistan ### About roberta-urdu-small roberta-urdu-small is a language model for urdu language. ``` from transformers import pipeline fill_mask = pipeline("fill-mask", model="urduhack/roberta-urdu-small", tokenizer="urduhack/roberta-urdu-small") ``` ## Training procedure roberta-urdu-small was trained on urdu news corpus. Training data was normalized using normalization module from urduhack to eliminate characters from other languages like arabic. ### About Urduhack Urduhack is a Natural Language Processing (NLP) library for urdu language. Github: https://github.com/urduhack/urduhack
typeform/distilroberta-base-v2
typeform
2021-05-20T22:46:35Z
91
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "en", "dataset:openwebtext", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en license: apache-2.0 datasets: - openwebtext --- # DistilRoBERTa base model Forked from https://huggingface.co/distilroberta-base
tlemberger/sd-ner
tlemberger
2021-05-20T22:31:05Z
4
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "token-classification", "token classification", "dataset:EMBO/sd-panels", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - english thumbnail: tags: - token classification license: datasets: - EMBO/sd-panels metrics: - --- # sd-ner ## Model description This model is a [RoBERTa base model](https://huggingface.co/roberta-base) that was further trained using a masked language modeling task on a compendium of english scientific textual examples from the life sciences using the [BioLang dataset](https://huggingface.co/datasets/EMBO/biolang) and fine-tuned for token classification on the SourceData [sd-panels](https://huggingface.co/datasets/EMBO/sd-panels) dataset to perform Named Entity Recognition of bioentities. ## Intended uses & limitations #### How to use The intended use of this model is for Named Entity Recognition of biological entitie used in SourceData annotations (https://sourcedata.embo.org), including small molecules, gene products (genes and proteins), subcellular components, cell line and cell types, organ and tissues, species as well as experimental methods. To have a quick check of the model: ```python from transformers import pipeline, RobertaTokenizerFast, RobertaForTokenClassification example = """<s> F. Western blot of input and eluates of Upf1 domains purification in a Nmd4-HA strain. The band with the # might corresponds to a dimer of Upf1-CH, bands marked with a star correspond to residual signal with the anti-HA antibodies (Nmd4). Fragments in the eluate have a smaller size because the protein A part of the tag was removed by digestion with the TEV protease. G6PDH served as a loading control in the input samples </s>""" tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_len=512) model = RobertaForTokenClassification.from_pretrained('EMBO/sd-ner') ner = pipeline('ner', model, tokenizer=tokenizer) res = ner(example) for r in res: print(r['word'], r['entity']) ``` #### Limitations and bias The model must be used with the `roberta-base` tokenizer. ## Training data The model was trained for token classification using the [EMBO/sd-panels dataset](https://huggingface.co/datasets/EMBO/biolang) wich includes manually annotated examples. ## Training procedure The training was run on a NVIDIA DGX Station with 4XTesla V100 GPUs. Training code is available at https://github.com/source-data/soda-roberta - Command: `python -m tokcl.train /data/json/sd_panels NER --num_train_epochs=3.5` - Tokenizer vocab size: 50265 - Training data: EMBO/biolang MLM - Training with 31410 examples. - Evaluating on 8861 examples. - Training on 15 features: O, I-SMALL_MOLECULE, B-SMALL_MOLECULE, I-GENEPROD, B-GENEPROD, I-SUBCELLULAR, B-SUBCELLULAR, I-CELL, B-CELL, I-TISSUE, B-TISSUE, I-ORGANISM, B-ORGANISM, I-EXP_ASSAY, B-EXP_ASSAY - Epochs: 3.5 - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `learning_rate`: 0.0001 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 ## Eval results On test set with `sklearn.metrics`: ``` precision recall f1-score support CELL 0.77 0.81 0.79 3477 EXP_ASSAY 0.71 0.70 0.71 7049 GENEPROD 0.86 0.90 0.88 16140 ORGANISM 0.80 0.82 0.81 2759 SMALL_MOLECULE 0.78 0.82 0.80 4446 SUBCELLULAR 0.71 0.75 0.73 2125 TISSUE 0.70 0.75 0.73 1971 micro avg 0.79 0.82 0.81 37967 macro avg 0.76 0.79 0.78 37967 weighted avg 0.79 0.82 0.81 37967 ```
textattack/roberta-base-rotten_tomatoes
textattack
2021-05-20T22:18:23Z
8
1
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
## roberta-base fine-tuned with TextAttack on the rotten_tomatoes dataset This `roberta-base` model was fine-tuned for sequence classificationusing TextAttack and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned for 10 epochs with a batch size of 128, a learning rate of 5e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9033771106941839, as measured by the eval set accuracy, found after 9 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/roberta-base-rotten-tomatoes
textattack
2021-05-20T22:17:29Z
34
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `roberta-base` model was fine-tuned for sequence classificationusing TextAttack and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned for 10 epochs with a batch size of 64, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9033771106941839, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/roberta-base-imdb
textattack
2021-05-20T22:16:19Z
207
1
transformers
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `roberta-base` model was fine-tuned for sequence classification using TextAttack and the imdb dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 64, a learning rate of 3e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.91436, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
simonlevine/clinical-longformer
simonlevine
2021-05-20T21:25:09Z
19
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
- You'll need to instantiate a special RoBERTa class. Though technically a "Longformer", the elongated RoBERTa model will still need to be pulled in as such. - To do so, use the following classes: ```python class RobertaLongSelfAttention(LongformerSelfAttention): def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=False, ): return super().forward(hidden_states, attention_mask=attention_mask, output_attentions=output_attentions) class RobertaLongForMaskedLM(RobertaForMaskedLM): def __init__(self, config): super().__init__(config) for i, layer in enumerate(self.roberta.encoder.layer): # replace the `modeling_bert.BertSelfAttention` object with `LongformerSelfAttention` layer.attention.self = RobertaLongSelfAttention(config, layer_id=i) ``` - Then, pull the model as ```RobertaLongForMaskedLM.from_pretrained('simonlevine/bioclinical-roberta-long')``` - Now, it can be used as usual. Note you may get untrained weights warnings. - Note that you can replace ```RobertaForMaskedLM``` with a different task-specific RoBERTa from Huggingface, such as RobertaForSequenceClassification.
sramasamy8/testModel
sramasamy8
2021-05-20T20:58:24Z
4
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia --- # BERT base model (uncased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.1073106899857521, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.08774490654468536, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a new model. [SEP]", 'score': 0.05338378623127937, 'token': 2047, 'token_str': 'new'}, {'sequence': "[CLS] hello i'm a super model. [SEP]", 'score': 0.04667217284440994, 'token': 3565, 'token_str': 'super'}, {'sequence': "[CLS] hello i'm a fine model. [SEP]", 'score': 0.027095865458250046, 'token': 2986, 'token_str': 'fine'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("The man worked as a [MASK].") [{'sequence': '[CLS] the man worked as a carpenter. [SEP]', 'score': 0.09747550636529922, 'token': 10533, 'token_str': 'carpenter'}, {'sequence': '[CLS] the man worked as a waiter. [SEP]', 'score': 0.0523831807076931, 'token': 15610, 'token_str': 'waiter'}, {'sequence': '[CLS] the man worked as a barber. [SEP]', 'score': 0.04962705448269844, 'token': 13362, 'token_str': 'barber'}, {'sequence': '[CLS] the man worked as a mechanic. [SEP]', 'score': 0.03788609802722931, 'token': 15893, 'token_str': 'mechanic'}, {'sequence': '[CLS] the man worked as a salesman. [SEP]', 'score': 0.037680890411138535, 'token': 18968, 'token_str': 'salesman'}] >>> unmasker("The woman worked as a [MASK].") [{'sequence': '[CLS] the woman worked as a nurse. [SEP]', 'score': 0.21981462836265564, 'token': 6821, 'token_str': 'nurse'}, {'sequence': '[CLS] the woman worked as a waitress. [SEP]', 'score': 0.1597415804862976, 'token': 13877, 'token_str': 'waitress'}, {'sequence': '[CLS] the woman worked as a maid. [SEP]', 'score': 0.1154729500412941, 'token': 10850, 'token_str': 'maid'}, {'sequence': '[CLS] the woman worked as a prostitute. [SEP]', 'score': 0.037968918681144714, 'token': 19215, 'token_str': 'prostitute'}, {'sequence': '[CLS] the woman worked as a cook. [SEP]', 'score': 0.03042375110089779, 'token': 5660, 'token_str': 'cook'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average | |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:| | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
seyonec/ChemBERTa-zinc-base-v1
seyonec
2021-05-20T20:55:33Z
96,218
46
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "chemistry", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- tags: - chemistry --- # ChemBERTa: Training a BERT-like transformer model for masked language modelling of chemical SMILES strings. Deep learning for chemistry and materials science remains a novel field with lots of potiential. However, the popularity of transfer learning based methods in areas such as NLP and computer vision have not yet been effectively developed in computational chemistry + machine learning. Using HuggingFace's suite of models and the ByteLevel tokenizer, we are able to train on a large corpus of 100k SMILES strings from a commonly known benchmark dataset, ZINC. Training RoBERTa over 5 epochs, the model achieves a decent loss of 0.398, but may likely continue to decline if trained for a larger number of epochs. The model can predict tokens within a SMILES sequence/molecule, allowing for variants of a molecule within discoverable chemical space to be predicted. By applying the representations of functional groups and atoms learned by the model, we can try to tackle problems of toxicity, solubility, drug-likeness, and synthesis accessibility on smaller datasets using the learned representations as features for graph convolution and attention models on the graph structure of molecules, as well as fine-tuning of BERT. Finally, we propose the use of attention visualization as a helpful tool for chemistry practitioners and students to quickly identify important substructures in various chemical properties. Additionally, visualization of the attention mechanism have been seen through previous research as incredibly valuable towards chemical reaction classification. The applications of open-sourcing large-scale transformer models such as RoBERTa with HuggingFace may allow for the acceleration of these individual research directions. A link to a repository which includes the training, uploading and evaluation notebook (with sample predictions on compounds such as Remdesivir) can be found [here](https://github.com/seyonechithrananda/bert-loves-chemistry). All of the notebooks can be copied into a new Colab runtime for easy execution. Thanks for checking this out! - Seyone
prajjwal1/roberta-base-mnli
prajjwal1
2021-05-20T19:31:02Z
4
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
Roberta-base trained on MNLI. | Task | Accuracy | |---------|----------| | MNLI | 86.32 | | MNLI-mm | 86.43 | You can also check out: - `prajjwal1/roberta-base-mnli` - `prajjwal1/roberta-large-mnli` - `prajjwal1/albert-base-v2-mnli` - `prajjwal1/albert-base-v1-mnli` - `prajjwal1/albert-large-v2-mnli` [@prajjwal_1](https://twitter.com/prajjwal_1)
pradhyra/AWSBlogBert
pradhyra
2021-05-20T19:30:09Z
9
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
This model is pre-trained on blog articles from AWS Blogs. ## Pre-training corpora The input text contains around 3000 blog articles on [AWS Blogs website](https://aws.amazon.com/blogs/) technical subject matter including AWS products, tools and tutorials. ## Pre-training details I picked a Roberta architecture for masked language modeling (6-layer, 768-hidden, 12-heads, 82M parameters) and its corresponding ByteLevelBPE tokenization strategy. I then followed HuggingFace's Transformers [blog post](https://huggingface.co/blog/how-to-train) to train the model. I chose to follow the following training set-up: 28k training steps with batches of 64 sequences of length 512 with an initial learning rate 5e-5. The model acheived a training loss of 3.6 on the MLM task over 10 epochs.
patrickvonplaten/norwegian-roberta-large
patrickvonplaten
2021-05-20T19:15:37Z
3
0
transformers
[ "transformers", "tensorboard", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
## Roberta-Large This repo trains [roberta-large](https://huggingface.co/roberta-large) from scratch on the [Norwegian training subset of Oscar](https://oscar-corpus.com/) containing roughly 4.7 GB of data. A ByteLevelBPETokenizer as shown in [this]( ) blog post was trained on the whole [Norwegian training subset of Oscar](https://oscar-corpus.com/). Training is done on a TPUv3-8 in Flax. The training script as well as the script to create a tokenizer are attached below. ### Run 1 ``` --weight_decay="0.01" --max_seq_length="128" --train_batch_size="1048" --eval_batch_size="1048" --learning_rate="1e-3" --warmup_steps="2000" --pad_to_max_length --num_train_epochs="12" --adam_beta1="0.9" --adam_beta2="0.98" ``` Trained for 12 epochs with each epoch including 8005 steps => Total of 96K steps. 1 epoch + eval takes roughly 2 hours 40 minutes => trained in total for 1 day and 8 hours. Final loss was 3.695. **Acc**: ![Acc](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/flax_experiments/norwegian_large_acc_1.svg) **Loss**: ![Loss](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/flax_experiments/norwegian_large_loss_1.svg) ### Run 2 ``` --weight_decay="0.01" --max_seq_length="128" --train_batch_size="1048" --eval_batch_size="1048" --learning_rate="5e-3" --warmup_steps="2000" --pad_to_max_length --num_train_epochs="7" --adam_beta1="0.9" --adam_beta2="0.98" ``` Trained for 7 epochs with each epoch including 8005 steps => Total of 96K steps. 1 epoch + eval takes roughly 2 hours 40 minutes => trained in total for 18 hours. Final loss was 2.216 and accuracy 0.58. **Acc**: ![Acc](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/flax_experiments/norwegian_large_acc_2.svg) **Loss**: ![Loss](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/flax_experiments/norwegian_large_loss_2.svg)
nyu-mll/roberta-med-small-1M-3
nyu-mll
2021-05-20T19:09:09Z
5
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# RoBERTa Pretrained on Smaller Datasets We pretrain RoBERTa on smaller datasets (1M, 10M, 100M, 1B tokens). We release 3 models with lowest perplexities for each pretraining data size out of 25 runs (or 10 in the case of 1B tokens). The pretraining data reproduces that of BERT: We combine English Wikipedia and a reproduction of BookCorpus using texts from smashwords in a ratio of approximately 3:1. ### Hyperparameters and Validation Perplexity The hyperparameters and validation perplexities corresponding to each model are as follows: | Model Name | Training Size | Model Size | Max Steps | Batch Size | Validation Perplexity | |--------------------------|---------------|------------|-----------|------------|-----------------------| | [roberta-base-1B-1][link-roberta-base-1B-1] | 1B | BASE | 100K | 512 | 3.93 | | [roberta-base-1B-2][link-roberta-base-1B-2] | 1B | BASE | 31K | 1024 | 4.25 | | [roberta-base-1B-3][link-roberta-base-1B-3] | 1B | BASE | 31K | 4096 | 3.84 | | [roberta-base-100M-1][link-roberta-base-100M-1] | 100M | BASE | 100K | 512 | 4.99 | | [roberta-base-100M-2][link-roberta-base-100M-2] | 100M | BASE | 31K | 1024 | 4.61 | | [roberta-base-100M-3][link-roberta-base-100M-3] | 100M | BASE | 31K | 512 | 5.02 | | [roberta-base-10M-1][link-roberta-base-10M-1] | 10M | BASE | 10K | 1024 | 11.31 | | [roberta-base-10M-2][link-roberta-base-10M-2] | 10M | BASE | 10K | 512 | 10.78 | | [roberta-base-10M-3][link-roberta-base-10M-3] | 10M | BASE | 31K | 512 | 11.58 | | [roberta-med-small-1M-1][link-roberta-med-small-1M-1] | 1M | MED-SMALL | 100K | 512 | 153.38 | | [roberta-med-small-1M-2][link-roberta-med-small-1M-2] | 1M | MED-SMALL | 10K | 512 | 134.18 | | [roberta-med-small-1M-3][link-roberta-med-small-1M-3] | 1M | MED-SMALL | 31K | 512 | 139.39 | The hyperparameters corresponding to model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | |------------|----|----|-----|------|------| | BASE | 12 | 12 | 768 | 3072 | 125M | | MED-SMALL | 6 | 8 | 512 | 2048 | 45M | (AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters.) For other hyperparameters, we select: - Peak Learning rate: 5e-4 - Warmup Steps: 6% of max steps - Dropout: 0.1 [link-roberta-med-small-1M-1]: https://huggingface.co/nyu-mll/roberta-med-small-1M-1 [link-roberta-med-small-1M-2]: https://huggingface.co/nyu-mll/roberta-med-small-1M-2 [link-roberta-med-small-1M-3]: https://huggingface.co/nyu-mll/roberta-med-small-1M-3 [link-roberta-base-10M-1]: https://huggingface.co/nyu-mll/roberta-base-10M-1 [link-roberta-base-10M-2]: https://huggingface.co/nyu-mll/roberta-base-10M-2 [link-roberta-base-10M-3]: https://huggingface.co/nyu-mll/roberta-base-10M-3 [link-roberta-base-100M-1]: https://huggingface.co/nyu-mll/roberta-base-100M-1 [link-roberta-base-100M-2]: https://huggingface.co/nyu-mll/roberta-base-100M-2 [link-roberta-base-100M-3]: https://huggingface.co/nyu-mll/roberta-base-100M-3 [link-roberta-base-1B-1]: https://huggingface.co/nyu-mll/roberta-base-1B-1 [link-roberta-base-1B-2]: https://huggingface.co/nyu-mll/roberta-base-1B-2 [link-roberta-base-1B-3]: https://huggingface.co/nyu-mll/roberta-base-1B-3
nyu-mll/roberta-med-small-1M-1
nyu-mll
2021-05-20T19:06:25Z
8
1
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# RoBERTa Pretrained on Smaller Datasets We pretrain RoBERTa on smaller datasets (1M, 10M, 100M, 1B tokens). We release 3 models with lowest perplexities for each pretraining data size out of 25 runs (or 10 in the case of 1B tokens). The pretraining data reproduces that of BERT: We combine English Wikipedia and a reproduction of BookCorpus using texts from smashwords in a ratio of approximately 3:1. ### Hyperparameters and Validation Perplexity The hyperparameters and validation perplexities corresponding to each model are as follows: | Model Name | Training Size | Model Size | Max Steps | Batch Size | Validation Perplexity | |--------------------------|---------------|------------|-----------|------------|-----------------------| | [roberta-base-1B-1][link-roberta-base-1B-1] | 1B | BASE | 100K | 512 | 3.93 | | [roberta-base-1B-2][link-roberta-base-1B-2] | 1B | BASE | 31K | 1024 | 4.25 | | [roberta-base-1B-3][link-roberta-base-1B-3] | 1B | BASE | 31K | 4096 | 3.84 | | [roberta-base-100M-1][link-roberta-base-100M-1] | 100M | BASE | 100K | 512 | 4.99 | | [roberta-base-100M-2][link-roberta-base-100M-2] | 100M | BASE | 31K | 1024 | 4.61 | | [roberta-base-100M-3][link-roberta-base-100M-3] | 100M | BASE | 31K | 512 | 5.02 | | [roberta-base-10M-1][link-roberta-base-10M-1] | 10M | BASE | 10K | 1024 | 11.31 | | [roberta-base-10M-2][link-roberta-base-10M-2] | 10M | BASE | 10K | 512 | 10.78 | | [roberta-base-10M-3][link-roberta-base-10M-3] | 10M | BASE | 31K | 512 | 11.58 | | [roberta-med-small-1M-1][link-roberta-med-small-1M-1] | 1M | MED-SMALL | 100K | 512 | 153.38 | | [roberta-med-small-1M-2][link-roberta-med-small-1M-2] | 1M | MED-SMALL | 10K | 512 | 134.18 | | [roberta-med-small-1M-3][link-roberta-med-small-1M-3] | 1M | MED-SMALL | 31K | 512 | 139.39 | The hyperparameters corresponding to model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | |------------|----|----|-----|------|------| | BASE | 12 | 12 | 768 | 3072 | 125M | | MED-SMALL | 6 | 8 | 512 | 2048 | 45M | (AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters.) For other hyperparameters, we select: - Peak Learning rate: 5e-4 - Warmup Steps: 6% of max steps - Dropout: 0.1 [link-roberta-med-small-1M-1]: https://huggingface.co/nyu-mll/roberta-med-small-1M-1 [link-roberta-med-small-1M-2]: https://huggingface.co/nyu-mll/roberta-med-small-1M-2 [link-roberta-med-small-1M-3]: https://huggingface.co/nyu-mll/roberta-med-small-1M-3 [link-roberta-base-10M-1]: https://huggingface.co/nyu-mll/roberta-base-10M-1 [link-roberta-base-10M-2]: https://huggingface.co/nyu-mll/roberta-base-10M-2 [link-roberta-base-10M-3]: https://huggingface.co/nyu-mll/roberta-base-10M-3 [link-roberta-base-100M-1]: https://huggingface.co/nyu-mll/roberta-base-100M-1 [link-roberta-base-100M-2]: https://huggingface.co/nyu-mll/roberta-base-100M-2 [link-roberta-base-100M-3]: https://huggingface.co/nyu-mll/roberta-base-100M-3 [link-roberta-base-1B-1]: https://huggingface.co/nyu-mll/roberta-base-1B-1 [link-roberta-base-1B-2]: https://huggingface.co/nyu-mll/roberta-base-1B-2 [link-roberta-base-1B-3]: https://huggingface.co/nyu-mll/roberta-base-1B-3
nyu-mll/roberta-base-1B-3
nyu-mll
2021-05-20T19:05:43Z
4
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# RoBERTa Pretrained on Smaller Datasets We pretrain RoBERTa on smaller datasets (1M, 10M, 100M, 1B tokens). We release 3 models with lowest perplexities for each pretraining data size out of 25 runs (or 10 in the case of 1B tokens). The pretraining data reproduces that of BERT: We combine English Wikipedia and a reproduction of BookCorpus using texts from smashwords in a ratio of approximately 3:1. ### Hyperparameters and Validation Perplexity The hyperparameters and validation perplexities corresponding to each model are as follows: | Model Name | Training Size | Model Size | Max Steps | Batch Size | Validation Perplexity | |--------------------------|---------------|------------|-----------|------------|-----------------------| | [roberta-base-1B-1][link-roberta-base-1B-1] | 1B | BASE | 100K | 512 | 3.93 | | [roberta-base-1B-2][link-roberta-base-1B-2] | 1B | BASE | 31K | 1024 | 4.25 | | [roberta-base-1B-3][link-roberta-base-1B-3] | 1B | BASE | 31K | 4096 | 3.84 | | [roberta-base-100M-1][link-roberta-base-100M-1] | 100M | BASE | 100K | 512 | 4.99 | | [roberta-base-100M-2][link-roberta-base-100M-2] | 100M | BASE | 31K | 1024 | 4.61 | | [roberta-base-100M-3][link-roberta-base-100M-3] | 100M | BASE | 31K | 512 | 5.02 | | [roberta-base-10M-1][link-roberta-base-10M-1] | 10M | BASE | 10K | 1024 | 11.31 | | [roberta-base-10M-2][link-roberta-base-10M-2] | 10M | BASE | 10K | 512 | 10.78 | | [roberta-base-10M-3][link-roberta-base-10M-3] | 10M | BASE | 31K | 512 | 11.58 | | [roberta-med-small-1M-1][link-roberta-med-small-1M-1] | 1M | MED-SMALL | 100K | 512 | 153.38 | | [roberta-med-small-1M-2][link-roberta-med-small-1M-2] | 1M | MED-SMALL | 10K | 512 | 134.18 | | [roberta-med-small-1M-3][link-roberta-med-small-1M-3] | 1M | MED-SMALL | 31K | 512 | 139.39 | The hyperparameters corresponding to model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | |------------|----|----|-----|------|------| | BASE | 12 | 12 | 768 | 3072 | 125M | | MED-SMALL | 6 | 8 | 512 | 2048 | 45M | (AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters.) For other hyperparameters, we select: - Peak Learning rate: 5e-4 - Warmup Steps: 6% of max steps - Dropout: 0.1 [link-roberta-med-small-1M-1]: https://huggingface.co/nyu-mll/roberta-med-small-1M-1 [link-roberta-med-small-1M-2]: https://huggingface.co/nyu-mll/roberta-med-small-1M-2 [link-roberta-med-small-1M-3]: https://huggingface.co/nyu-mll/roberta-med-small-1M-3 [link-roberta-base-10M-1]: https://huggingface.co/nyu-mll/roberta-base-10M-1 [link-roberta-base-10M-2]: https://huggingface.co/nyu-mll/roberta-base-10M-2 [link-roberta-base-10M-3]: https://huggingface.co/nyu-mll/roberta-base-10M-3 [link-roberta-base-100M-1]: https://huggingface.co/nyu-mll/roberta-base-100M-1 [link-roberta-base-100M-2]: https://huggingface.co/nyu-mll/roberta-base-100M-2 [link-roberta-base-100M-3]: https://huggingface.co/nyu-mll/roberta-base-100M-3 [link-roberta-base-1B-1]: https://huggingface.co/nyu-mll/roberta-base-1B-1 [link-roberta-base-1B-2]: https://huggingface.co/nyu-mll/roberta-base-1B-2 [link-roberta-base-1B-3]: https://huggingface.co/nyu-mll/roberta-base-1B-3
nyu-mll/roberta-base-1B-1
nyu-mll
2021-05-20T19:03:06Z
4
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# RoBERTa Pretrained on Smaller Datasets We pretrain RoBERTa on smaller datasets (1M, 10M, 100M, 1B tokens). We release 3 models with lowest perplexities for each pretraining data size out of 25 runs (or 10 in the case of 1B tokens). The pretraining data reproduces that of BERT: We combine English Wikipedia and a reproduction of BookCorpus using texts from smashwords in a ratio of approximately 3:1. ### Hyperparameters and Validation Perplexity The hyperparameters and validation perplexities corresponding to each model are as follows: | Model Name | Training Size | Model Size | Max Steps | Batch Size | Validation Perplexity | |--------------------------|---------------|------------|-----------|------------|-----------------------| | [roberta-base-1B-1][link-roberta-base-1B-1] | 1B | BASE | 100K | 512 | 3.93 | | [roberta-base-1B-2][link-roberta-base-1B-2] | 1B | BASE | 31K | 1024 | 4.25 | | [roberta-base-1B-3][link-roberta-base-1B-3] | 1B | BASE | 31K | 4096 | 3.84 | | [roberta-base-100M-1][link-roberta-base-100M-1] | 100M | BASE | 100K | 512 | 4.99 | | [roberta-base-100M-2][link-roberta-base-100M-2] | 100M | BASE | 31K | 1024 | 4.61 | | [roberta-base-100M-3][link-roberta-base-100M-3] | 100M | BASE | 31K | 512 | 5.02 | | [roberta-base-10M-1][link-roberta-base-10M-1] | 10M | BASE | 10K | 1024 | 11.31 | | [roberta-base-10M-2][link-roberta-base-10M-2] | 10M | BASE | 10K | 512 | 10.78 | | [roberta-base-10M-3][link-roberta-base-10M-3] | 10M | BASE | 31K | 512 | 11.58 | | [roberta-med-small-1M-1][link-roberta-med-small-1M-1] | 1M | MED-SMALL | 100K | 512 | 153.38 | | [roberta-med-small-1M-2][link-roberta-med-small-1M-2] | 1M | MED-SMALL | 10K | 512 | 134.18 | | [roberta-med-small-1M-3][link-roberta-med-small-1M-3] | 1M | MED-SMALL | 31K | 512 | 139.39 | The hyperparameters corresponding to model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | |------------|----|----|-----|------|------| | BASE | 12 | 12 | 768 | 3072 | 125M | | MED-SMALL | 6 | 8 | 512 | 2048 | 45M | (AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters.) For other hyperparameters, we select: - Peak Learning rate: 5e-4 - Warmup Steps: 6% of max steps - Dropout: 0.1 [link-roberta-med-small-1M-1]: https://huggingface.co/nyu-mll/roberta-med-small-1M-1 [link-roberta-med-small-1M-2]: https://huggingface.co/nyu-mll/roberta-med-small-1M-2 [link-roberta-med-small-1M-3]: https://huggingface.co/nyu-mll/roberta-med-small-1M-3 [link-roberta-base-10M-1]: https://huggingface.co/nyu-mll/roberta-base-10M-1 [link-roberta-base-10M-2]: https://huggingface.co/nyu-mll/roberta-base-10M-2 [link-roberta-base-10M-3]: https://huggingface.co/nyu-mll/roberta-base-10M-3 [link-roberta-base-100M-1]: https://huggingface.co/nyu-mll/roberta-base-100M-1 [link-roberta-base-100M-2]: https://huggingface.co/nyu-mll/roberta-base-100M-2 [link-roberta-base-100M-3]: https://huggingface.co/nyu-mll/roberta-base-100M-3 [link-roberta-base-1B-1]: https://huggingface.co/nyu-mll/roberta-base-1B-1 [link-roberta-base-1B-2]: https://huggingface.co/nyu-mll/roberta-base-1B-2 [link-roberta-base-1B-3]: https://huggingface.co/nyu-mll/roberta-base-1B-3
nyu-mll/roberta-base-10M-3
nyu-mll
2021-05-20T19:00:36Z
4
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# RoBERTa Pretrained on Smaller Datasets We pretrain RoBERTa on smaller datasets (1M, 10M, 100M, 1B tokens). We release 3 models with lowest perplexities for each pretraining data size out of 25 runs (or 10 in the case of 1B tokens). The pretraining data reproduces that of BERT: We combine English Wikipedia and a reproduction of BookCorpus using texts from smashwords in a ratio of approximately 3:1. ### Hyperparameters and Validation Perplexity The hyperparameters and validation perplexities corresponding to each model are as follows: | Model Name | Training Size | Model Size | Max Steps | Batch Size | Validation Perplexity | |--------------------------|---------------|------------|-----------|------------|-----------------------| | [roberta-base-1B-1][link-roberta-base-1B-1] | 1B | BASE | 100K | 512 | 3.93 | | [roberta-base-1B-2][link-roberta-base-1B-2] | 1B | BASE | 31K | 1024 | 4.25 | | [roberta-base-1B-3][link-roberta-base-1B-3] | 1B | BASE | 31K | 4096 | 3.84 | | [roberta-base-100M-1][link-roberta-base-100M-1] | 100M | BASE | 100K | 512 | 4.99 | | [roberta-base-100M-2][link-roberta-base-100M-2] | 100M | BASE | 31K | 1024 | 4.61 | | [roberta-base-100M-3][link-roberta-base-100M-3] | 100M | BASE | 31K | 512 | 5.02 | | [roberta-base-10M-1][link-roberta-base-10M-1] | 10M | BASE | 10K | 1024 | 11.31 | | [roberta-base-10M-2][link-roberta-base-10M-2] | 10M | BASE | 10K | 512 | 10.78 | | [roberta-base-10M-3][link-roberta-base-10M-3] | 10M | BASE | 31K | 512 | 11.58 | | [roberta-med-small-1M-1][link-roberta-med-small-1M-1] | 1M | MED-SMALL | 100K | 512 | 153.38 | | [roberta-med-small-1M-2][link-roberta-med-small-1M-2] | 1M | MED-SMALL | 10K | 512 | 134.18 | | [roberta-med-small-1M-3][link-roberta-med-small-1M-3] | 1M | MED-SMALL | 31K | 512 | 139.39 | The hyperparameters corresponding to model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | |------------|----|----|-----|------|------| | BASE | 12 | 12 | 768 | 3072 | 125M | | MED-SMALL | 6 | 8 | 512 | 2048 | 45M | (AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters.) For other hyperparameters, we select: - Peak Learning rate: 5e-4 - Warmup Steps: 6% of max steps - Dropout: 0.1 [link-roberta-med-small-1M-1]: https://huggingface.co/nyu-mll/roberta-med-small-1M-1 [link-roberta-med-small-1M-2]: https://huggingface.co/nyu-mll/roberta-med-small-1M-2 [link-roberta-med-small-1M-3]: https://huggingface.co/nyu-mll/roberta-med-small-1M-3 [link-roberta-base-10M-1]: https://huggingface.co/nyu-mll/roberta-base-10M-1 [link-roberta-base-10M-2]: https://huggingface.co/nyu-mll/roberta-base-10M-2 [link-roberta-base-10M-3]: https://huggingface.co/nyu-mll/roberta-base-10M-3 [link-roberta-base-100M-1]: https://huggingface.co/nyu-mll/roberta-base-100M-1 [link-roberta-base-100M-2]: https://huggingface.co/nyu-mll/roberta-base-100M-2 [link-roberta-base-100M-3]: https://huggingface.co/nyu-mll/roberta-base-100M-3 [link-roberta-base-1B-1]: https://huggingface.co/nyu-mll/roberta-base-1B-1 [link-roberta-base-1B-2]: https://huggingface.co/nyu-mll/roberta-base-1B-2 [link-roberta-base-1B-3]: https://huggingface.co/nyu-mll/roberta-base-1B-3
nyu-mll/roberta-base-10M-1
nyu-mll
2021-05-20T18:57:10Z
8
1
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# RoBERTa Pretrained on Smaller Datasets We pretrain RoBERTa on smaller datasets (1M, 10M, 100M, 1B tokens). We release 3 models with lowest perplexities for each pretraining data size out of 25 runs (or 10 in the case of 1B tokens). The pretraining data reproduces that of BERT: We combine English Wikipedia and a reproduction of BookCorpus using texts from smashwords in a ratio of approximately 3:1. ### Hyperparameters and Validation Perplexity The hyperparameters and validation perplexities corresponding to each model are as follows: | Model Name | Training Size | Model Size | Max Steps | Batch Size | Validation Perplexity | |--------------------------|---------------|------------|-----------|------------|-----------------------| | [roberta-base-1B-1][link-roberta-base-1B-1] | 1B | BASE | 100K | 512 | 3.93 | | [roberta-base-1B-2][link-roberta-base-1B-2] | 1B | BASE | 31K | 1024 | 4.25 | | [roberta-base-1B-3][link-roberta-base-1B-3] | 1B | BASE | 31K | 4096 | 3.84 | | [roberta-base-100M-1][link-roberta-base-100M-1] | 100M | BASE | 100K | 512 | 4.99 | | [roberta-base-100M-2][link-roberta-base-100M-2] | 100M | BASE | 31K | 1024 | 4.61 | | [roberta-base-100M-3][link-roberta-base-100M-3] | 100M | BASE | 31K | 512 | 5.02 | | [roberta-base-10M-1][link-roberta-base-10M-1] | 10M | BASE | 10K | 1024 | 11.31 | | [roberta-base-10M-2][link-roberta-base-10M-2] | 10M | BASE | 10K | 512 | 10.78 | | [roberta-base-10M-3][link-roberta-base-10M-3] | 10M | BASE | 31K | 512 | 11.58 | | [roberta-med-small-1M-1][link-roberta-med-small-1M-1] | 1M | MED-SMALL | 100K | 512 | 153.38 | | [roberta-med-small-1M-2][link-roberta-med-small-1M-2] | 1M | MED-SMALL | 10K | 512 | 134.18 | | [roberta-med-small-1M-3][link-roberta-med-small-1M-3] | 1M | MED-SMALL | 31K | 512 | 139.39 | The hyperparameters corresponding to model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | |------------|----|----|-----|------|------| | BASE | 12 | 12 | 768 | 3072 | 125M | | MED-SMALL | 6 | 8 | 512 | 2048 | 45M | (AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters.) For other hyperparameters, we select: - Peak Learning rate: 5e-4 - Warmup Steps: 6% of max steps - Dropout: 0.1 [link-roberta-med-small-1M-1]: https://huggingface.co/nyu-mll/roberta-med-small-1M-1 [link-roberta-med-small-1M-2]: https://huggingface.co/nyu-mll/roberta-med-small-1M-2 [link-roberta-med-small-1M-3]: https://huggingface.co/nyu-mll/roberta-med-small-1M-3 [link-roberta-base-10M-1]: https://huggingface.co/nyu-mll/roberta-base-10M-1 [link-roberta-base-10M-2]: https://huggingface.co/nyu-mll/roberta-base-10M-2 [link-roberta-base-10M-3]: https://huggingface.co/nyu-mll/roberta-base-10M-3 [link-roberta-base-100M-1]: https://huggingface.co/nyu-mll/roberta-base-100M-1 [link-roberta-base-100M-2]: https://huggingface.co/nyu-mll/roberta-base-100M-2 [link-roberta-base-100M-3]: https://huggingface.co/nyu-mll/roberta-base-100M-3 [link-roberta-base-1B-1]: https://huggingface.co/nyu-mll/roberta-base-1B-1 [link-roberta-base-1B-2]: https://huggingface.co/nyu-mll/roberta-base-1B-2 [link-roberta-base-1B-3]: https://huggingface.co/nyu-mll/roberta-base-1B-3
nyu-mll/roberta-base-100M-3
nyu-mll
2021-05-20T18:56:02Z
15
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# RoBERTa Pretrained on Smaller Datasets We pretrain RoBERTa on smaller datasets (1M, 10M, 100M, 1B tokens). We release 3 models with lowest perplexities for each pretraining data size out of 25 runs (or 10 in the case of 1B tokens). The pretraining data reproduces that of BERT: We combine English Wikipedia and a reproduction of BookCorpus using texts from smashwords in a ratio of approximately 3:1. ### Hyperparameters and Validation Perplexity The hyperparameters and validation perplexities corresponding to each model are as follows: | Model Name | Training Size | Model Size | Max Steps | Batch Size | Validation Perplexity | |--------------------------|---------------|------------|-----------|------------|-----------------------| | [roberta-base-1B-1][link-roberta-base-1B-1] | 1B | BASE | 100K | 512 | 3.93 | | [roberta-base-1B-2][link-roberta-base-1B-2] | 1B | BASE | 31K | 1024 | 4.25 | | [roberta-base-1B-3][link-roberta-base-1B-3] | 1B | BASE | 31K | 4096 | 3.84 | | [roberta-base-100M-1][link-roberta-base-100M-1] | 100M | BASE | 100K | 512 | 4.99 | | [roberta-base-100M-2][link-roberta-base-100M-2] | 100M | BASE | 31K | 1024 | 4.61 | | [roberta-base-100M-3][link-roberta-base-100M-3] | 100M | BASE | 31K | 512 | 5.02 | | [roberta-base-10M-1][link-roberta-base-10M-1] | 10M | BASE | 10K | 1024 | 11.31 | | [roberta-base-10M-2][link-roberta-base-10M-2] | 10M | BASE | 10K | 512 | 10.78 | | [roberta-base-10M-3][link-roberta-base-10M-3] | 10M | BASE | 31K | 512 | 11.58 | | [roberta-med-small-1M-1][link-roberta-med-small-1M-1] | 1M | MED-SMALL | 100K | 512 | 153.38 | | [roberta-med-small-1M-2][link-roberta-med-small-1M-2] | 1M | MED-SMALL | 10K | 512 | 134.18 | | [roberta-med-small-1M-3][link-roberta-med-small-1M-3] | 1M | MED-SMALL | 31K | 512 | 139.39 | The hyperparameters corresponding to model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | |------------|----|----|-----|------|------| | BASE | 12 | 12 | 768 | 3072 | 125M | | MED-SMALL | 6 | 8 | 512 | 2048 | 45M | (AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters.) For other hyperparameters, we select: - Peak Learning rate: 5e-4 - Warmup Steps: 6% of max steps - Dropout: 0.1 [link-roberta-med-small-1M-1]: https://huggingface.co/nyu-mll/roberta-med-small-1M-1 [link-roberta-med-small-1M-2]: https://huggingface.co/nyu-mll/roberta-med-small-1M-2 [link-roberta-med-small-1M-3]: https://huggingface.co/nyu-mll/roberta-med-small-1M-3 [link-roberta-base-10M-1]: https://huggingface.co/nyu-mll/roberta-base-10M-1 [link-roberta-base-10M-2]: https://huggingface.co/nyu-mll/roberta-base-10M-2 [link-roberta-base-10M-3]: https://huggingface.co/nyu-mll/roberta-base-10M-3 [link-roberta-base-100M-1]: https://huggingface.co/nyu-mll/roberta-base-100M-1 [link-roberta-base-100M-2]: https://huggingface.co/nyu-mll/roberta-base-100M-2 [link-roberta-base-100M-3]: https://huggingface.co/nyu-mll/roberta-base-100M-3 [link-roberta-base-1B-1]: https://huggingface.co/nyu-mll/roberta-base-1B-1 [link-roberta-base-1B-2]: https://huggingface.co/nyu-mll/roberta-base-1B-2 [link-roberta-base-1B-3]: https://huggingface.co/nyu-mll/roberta-base-1B-3
nyu-mll/roberta-base-100M-1
nyu-mll
2021-05-20T18:53:55Z
5
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# RoBERTa Pretrained on Smaller Datasets We pretrain RoBERTa on smaller datasets (1M, 10M, 100M, 1B tokens). We release 3 models with lowest perplexities for each pretraining data size out of 25 runs (or 10 in the case of 1B tokens). The pretraining data reproduces that of BERT: We combine English Wikipedia and a reproduction of BookCorpus using texts from smashwords in a ratio of approximately 3:1. ### Hyperparameters and Validation Perplexity The hyperparameters and validation perplexities corresponding to each model are as follows: | Model Name | Training Size | Model Size | Max Steps | Batch Size | Validation Perplexity | |--------------------------|---------------|------------|-----------|------------|-----------------------| | [roberta-base-1B-1][link-roberta-base-1B-1] | 1B | BASE | 100K | 512 | 3.93 | | [roberta-base-1B-2][link-roberta-base-1B-2] | 1B | BASE | 31K | 1024 | 4.25 | | [roberta-base-1B-3][link-roberta-base-1B-3] | 1B | BASE | 31K | 4096 | 3.84 | | [roberta-base-100M-1][link-roberta-base-100M-1] | 100M | BASE | 100K | 512 | 4.99 | | [roberta-base-100M-2][link-roberta-base-100M-2] | 100M | BASE | 31K | 1024 | 4.61 | | [roberta-base-100M-3][link-roberta-base-100M-3] | 100M | BASE | 31K | 512 | 5.02 | | [roberta-base-10M-1][link-roberta-base-10M-1] | 10M | BASE | 10K | 1024 | 11.31 | | [roberta-base-10M-2][link-roberta-base-10M-2] | 10M | BASE | 10K | 512 | 10.78 | | [roberta-base-10M-3][link-roberta-base-10M-3] | 10M | BASE | 31K | 512 | 11.58 | | [roberta-med-small-1M-1][link-roberta-med-small-1M-1] | 1M | MED-SMALL | 100K | 512 | 153.38 | | [roberta-med-small-1M-2][link-roberta-med-small-1M-2] | 1M | MED-SMALL | 10K | 512 | 134.18 | | [roberta-med-small-1M-3][link-roberta-med-small-1M-3] | 1M | MED-SMALL | 31K | 512 | 139.39 | The hyperparameters corresponding to model sizes mentioned above are as follows: | Model Size | L | AH | HS | FFN | P | |------------|----|----|-----|------|------| | BASE | 12 | 12 | 768 | 3072 | 125M | | MED-SMALL | 6 | 8 | 512 | 2048 | 45M | (AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters.) For other hyperparameters, we select: - Peak Learning rate: 5e-4 - Warmup Steps: 6% of max steps - Dropout: 0.1 [link-roberta-med-small-1M-1]: https://huggingface.co/nyu-mll/roberta-med-small-1M-1 [link-roberta-med-small-1M-2]: https://huggingface.co/nyu-mll/roberta-med-small-1M-2 [link-roberta-med-small-1M-3]: https://huggingface.co/nyu-mll/roberta-med-small-1M-3 [link-roberta-base-10M-1]: https://huggingface.co/nyu-mll/roberta-base-10M-1 [link-roberta-base-10M-2]: https://huggingface.co/nyu-mll/roberta-base-10M-2 [link-roberta-base-10M-3]: https://huggingface.co/nyu-mll/roberta-base-10M-3 [link-roberta-base-100M-1]: https://huggingface.co/nyu-mll/roberta-base-100M-1 [link-roberta-base-100M-2]: https://huggingface.co/nyu-mll/roberta-base-100M-2 [link-roberta-base-100M-3]: https://huggingface.co/nyu-mll/roberta-base-100M-3 [link-roberta-base-1B-1]: https://huggingface.co/nyu-mll/roberta-base-1B-1 [link-roberta-base-1B-2]: https://huggingface.co/nyu-mll/roberta-base-1B-2 [link-roberta-base-1B-3]: https://huggingface.co/nyu-mll/roberta-base-1B-3
mudes/en-large
mudes
2021-05-20T18:36:06Z
5
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "token-classification", "mudes", "en", "arxiv:2102.09665", "arxiv:2104.04630", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: en tags: - mudes license: apache-2.0 --- # MUDES - {Mu}ltilingual {De}tection of Offensive {S}pans We provide state-of-the-art models to detect toxic spans in social media texts. We introduce our framework in [this paper](https://arxiv.org/abs/2102.09665). We have evaluated our models on Toxic Spans task at SemEval 2021 (Task 5). Our participation in the task is detailed in [this paper](https://arxiv.org/abs/2104.04630). ## Usage You can use this model when you have [MUDES](https://github.com/TharinduDR/MUDES) installed: ```bash pip install mudes ``` Then you can use the model like this: ```python from mudes.app.mudes_app import MUDESApp app = MUDESApp("en-large", use_cuda=False) print(app.predict_toxic_spans("You motherfucking cunt", spans=True)) ``` ## System Demonstration An experimental demonstration interface called MUDES-UI has been released on [GitHub](https://github.com/TharinduDR/MUDES-UI) and can be checked out in [here](http://rgcl.wlv.ac.uk/mudes/). ## Citing & Authors If you find this model helpful, feel free to cite our publications ```bibtex @inproceedings{ranasinghemudes, title={{MUDES: Multilingual Detection of Offensive Spans}}, author={Tharindu Ranasinghe and Marcos Zampieri}, booktitle={Proceedings of NAACL}, year={2021} } ``` ```bibtex @inproceedings{ranasinghe2021semeval, title={{WLV-RIT at SemEval-2021 Task 5: A Neural Transformer Framework for Detecting Toxic Spans}}, author = {Ranasinghe, Tharindu and Sarkar, Diptanu and Zampieri, Marcos and Ororbia, Alex}, booktitle={Proceedings of SemEval}, year={2021} } ```
mrm8488/roberta-base-1B-1-finetuned-squadv2
mrm8488
2021-05-20T18:27:20Z
13
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "question-answering", "en", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en --- # RoBERTa-base (1B-1) + SQuAD v2 ❓ [roberta-base-1B-1](https://huggingface.co/nyu-mll/roberta-base-1B-1) fine-tuned on [SQUAD v2 dataset](https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/) for **Q&A** downstream task. ## Details of the downstream task (Q&A) - Model 🧠 RoBERTa Pretrained on Smaller Datasets [NYU Machine Learning for Language](https://huggingface.co/nyu-mll) pretrained RoBERTa on smaller datasets (1M, 10M, 100M, 1B tokens). They released 3 models with lowest perplexities for each pretraining data size out of 25 runs (or 10 in the case of 1B tokens). The pretraining data reproduces that of BERT: They combine English Wikipedia and a reproduction of BookCorpus using texts from smashwords in a ratio of approximately 3:1. ## Details of the downstream task (Q&A) - Dataset 📚 **S**tanford **Q**uestion **A**nswering **D**ataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. **SQuAD2.0** combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering. ## Model training 🏋️‍ The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: ```bash python transformers/examples/question-answering/run_squad.py \ --model_type roberta \ --model_name_or_path 'nyu-mll/roberta-base-1B-1' \ --do_eval \ --do_train \ --do_lower_case \ --train_file /content/dataset/train-v2.0.json \ --predict_file /content/dataset/dev-v2.0.json \ --per_gpu_train_batch_size 16 \ --learning_rate 3e-5 \ --num_train_epochs 10 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /content/output \ --overwrite_output_dir \ --save_steps 1000 \ --version_2_with_negative ``` ## Test set Results 🧾 | Metric | # Value | | ------ | --------- | | **EM** | **64.86** | | **F1** | **68.99** | ```json { 'exact': 64.86145034953255, 'f1': 68.9902640378272, 'total': 11873, 'HasAns_exact': 64.03508771929825, 'HasAns_f1': 72.3045554860189, 'HasAns_total': 5928, 'NoAns_exact': 65.68544995794785, 'NoAns_f1': 65.68544995794785, 'NoAns_total': 5945, 'best_exact': 64.86987282068559, 'best_exact_thresh': 0.0, 'best_f1': 68.99868650898054, 'best_f1_thresh': 0.0 } ``` ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline QnA_pipeline = pipeline('question-answering', model='mrm8488/roberta-base-1B-1-finetuned-squadv2') QnA_pipeline({ 'context': 'A new strain of flu that has the potential to become a pandemic has been identified in China by scientists.', 'question': 'What has been discovered by scientists from China ?' }) # Output: {'answer': 'A new strain of flu', 'end': 19, 'score': 0.7145650685380576,'start': 0} ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/roberta-base-1B-1-finetuned-squadv1
mrm8488
2021-05-20T18:26:13Z
35
1
transformers
[ "transformers", "pytorch", "jax", "roberta", "question-answering", "en", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en --- # RoBERTa-base (1B-1) + SQuAD v1 ❓ [roberta-base-1B-1](https://huggingface.co/nyu-mll/roberta-base-1B-1) fine-tuned on [SQUAD v1.1 dataset](https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/) for **Q&A** downstream task. ## Details of the downstream task (Q&A) - Model 🧠 RoBERTa Pretrained on Smaller Datasets [NYU Machine Learning for Language](https://huggingface.co/nyu-mll) pretrained RoBERTa on smaller datasets (1M, 10M, 100M, 1B tokens). They released 3 models with lowest perplexities for each pretraining data size out of 25 runs (or 10 in the case of 1B tokens). The pretraining data reproduces that of BERT: They combine English Wikipedia and a reproduction of BookCorpus using texts from smashwords in a ratio of approximately 3:1. ## Details of the downstream task (Q&A) - Dataset 📚 **S**tanford **Q**uestion **A**nswering **D**ataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. SQuAD v1.1 contains **100,000+** question-answer pairs on **500+** articles. ## Model training 🏋️‍ The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: ```bash python transformers/examples/question-answering/run_squad.py \ --model_type roberta \ --model_name_or_path 'nyu-mll/roberta-base-1B-1' \ --do_eval \ --do_train \ --do_lower_case \ --train_file /content/dataset/train-v1.1.json \ --predict_file /content/dataset/dev-v1.1.json \ --per_gpu_train_batch_size 16 \ --learning_rate 3e-5 \ --num_train_epochs 10 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /content/output \ --overwrite_output_dir \ --save_steps 1000 ``` ## Test set Results 🧾 | Metric | # Value | | ------ | --------- | | **EM** | **72.62** | | **F1** | **82.19** | ```json { 'exact': 72.62062440870388, 'f1': 82.19430877136834, 'total': 10570, 'HasAns_exact': 72.62062440870388, 'HasAns_f1': 82.19430877136834, 'HasAns_total': 10570, 'best_exact': 72.62062440870388, 'best_exact_thresh': 0.0, 'best_f1': 82.19430877136834, 'best_f1_thresh': 0.0 } ``` ### Model in action 🚀 Fast usage with **pipelines**: ```python from transformers import pipeline QnA_pipeline = pipeline('question-answering', model='mrm8488/roberta-base-1B-1-finetuned-squadv1') QnA_pipeline({ 'context': 'A new strain of flu that has the potential to become a pandemic has been identified in China by scientists.', 'question': 'What has been discovered by scientists from China ?' }) # Output: {'answer': 'A new strain of flu', 'end': 19, 'score': 0.04702283976040074, 'start': 0} ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/distilroberta-finetuned-tweets-hate-speech
mrm8488
2021-05-20T18:25:15Z
6
6
transformers
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "twitter", "hate", "speech", "en", "dataset:tweets_hate_speech_detection", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en tags: - twitter - hate - speech datasets: - tweets_hate_speech_detection widget: - text: "the fuck done with #mansplaining and other bullshit." --- # distilroberta-base fine-tuned on tweets_hate_speech_detection dataset for hate speech detection Validation accuray: 0.98
mrm8488/codeBERTaJS
mrm8488
2021-05-20T18:17:36Z
10
6
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "javascript", "code", "arxiv:1909.09436", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: code thumbnail: tags: - javascript - code widget: - text: "async function createUser(req, <mask>) { if (!validUser(req.body.user)) { return res.status(400); } user = userService.createUser(req.body.user); return res.json(user); }" --- # CodeBERTaJS CodeBERTaJS is a RoBERTa-like model trained on the [CodeSearchNet](https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/) dataset from GitHub for `javaScript` by [Manuel Romero](https://twitter.com/mrm8488) The **tokenizer** is a Byte-level BPE tokenizer trained on the corpus using Hugging Face `tokenizers`. Because it is trained on a corpus of code (vs. natural language), it encodes the corpus efficiently (the sequences are between 33% to 50% shorter, compared to the same corpus tokenized by gpt2/roberta). The (small) **model** is a 6-layer, 84M parameters, RoBERTa-like Transformer model – that’s the same number of layers & heads as DistilBERT – initialized from the default initialization settings and trained from scratch on the full `javascript` corpus (120M after preproccessing) for 2 epochs. ## Quick start: masked language modeling prediction ```python JS_CODE = """ async function createUser(req, <mask>) { if (!validUser(req.body.user)) { \t return res.status(400); } user = userService.createUser(req.body.user); return res.json(user); } """.lstrip() ``` ### Does the model know how to complete simple JS/express like code? ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="mrm8488/codeBERTaJS", tokenizer="mrm8488/codeBERTaJS" ) fill_mask(JS_CODE) ## Top 5 predictions: # 'res' # prob 0.069489665329 'next' 'req' 'user' ',req' ``` ### Yes! That was easy 🎉 Let's try with another example ```python JS_CODE_= """ function getKeys(obj) { keys = []; for (var [key, value] of Object.entries(obj)) { keys.push(<mask>); } return keys } """.lstrip() ``` Results: ```python 'obj', 'key', ' value', 'keys', 'i' ``` > Not so bad! Right token was predicted as second option! 🎉 ## This work is heavely inspired on [codeBERTa](https://github.com/huggingface/transformers/blob/master/model_cards/huggingface/CodeBERTa-small-v1/README.md) by huggingface team <br> ## CodeSearchNet citation <details> ```bibtex @article{husain_codesearchnet_2019, \ttitle = {{CodeSearchNet} {Challenge}: {Evaluating} the {State} of {Semantic} {Code} {Search}}, \tshorttitle = {{CodeSearchNet} {Challenge}}, \turl = {http://arxiv.org/abs/1909.09436}, \turldate = {2020-03-12}, \tjournal = {arXiv:1909.09436 [cs, stat]}, \tauthor = {Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc}, \tmonth = sep, \tyear = {2019}, \tnote = {arXiv: 1909.09436}, } ``` </details> > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
mrm8488/chEMBL26_smiles_v2
mrm8488
2021-05-20T18:16:29Z
20
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "drugs", "chemist", "drug design", "smile", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: en tags: - drugs - chemist - drug design - smile widget: - text: "CC(C)CN(CC(OP(=O)(O)O)C(Cc1ccccc1)NC(=O)OC1CCOC1)S(=O)(=O)c1ccc(N)<mask>" ---
mrm8488/RuPERTa-base-finetuned-squadv1
mrm8488
2021-05-20T18:13:28Z
14
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "question-answering", "es", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: es datasets: - squad ---
mrm8488/RuPERTa-base-finetuned-pos
mrm8488
2021-05-20T18:08:34Z
17
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "token-classification", "es", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: es thumbnail: --- # RuPERTa-base (Spanish RoBERTa) + POS 🎃🏷 This model is a fine-tuned on [CONLL CORPORA](https://www.kaggle.com/nltkdata/conll-corpora) version of [RuPERTa-base](https://huggingface.co/mrm8488/RuPERTa-base) for **POS** downstream task. ## Details of the downstream task (POS) - Dataset - [Dataset: CONLL Corpora ES](https://www.kaggle.com/nltkdata/conll-corpora) 📚 | Dataset | # Examples | | ---------------------- | ----- | | Train | 445 K | | Dev | 55 K | - [Fine-tune on NER script provided by Huggingface](https://github.com/huggingface/transformers/blob/master/examples/token-classification/run_ner_old.py) - Labels covered: ``` ADJ ADP ADV AUX CCONJ DET INTJ NOUN NUM PART PRON PROPN PUNCT SCONJ SYM VERB ``` ## Metrics on evaluation set 🧾 | Metric | # score | | :------------------------------------------------------------------------------------: | :-------: | | F1 | **97.39** | Precision | **97.47** | | Recall | **9732** | ## Model in action 🔨 Example of usage ```python import torch from transformers import AutoModelForTokenClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('mrm8488/RuPERTa-base-finetuned-pos') model = AutoModelForTokenClassification.from_pretrained('mrm8488/RuPERTa-base-finetuned-pos') id2label = { "0": "O", "1": "ADJ", "2": "ADP", "3": "ADV", "4": "AUX", "5": "CCONJ", "6": "DET", "7": "INTJ", "8": "NOUN", "9": "NUM", "10": "PART", "11": "PRON", "12": "PROPN", "13": "PUNCT", "14": "SCONJ", "15": "SYM", "16": "VERB" } text ="Mis amigos están pensando viajar a Londres este verano." input_ids = torch.tensor(tokenizer.encode(text)).unsqueeze(0) outputs = model(input_ids) last_hidden_states = outputs[0] for m in last_hidden_states: for index, n in enumerate(m): if(index > 0 and index <= len(text.split(" "))): print(text.split(" ")[index-1] + ": " + id2label[str(torch.argmax(n).item())]) ''' Output: -------- Mis: NUM amigos: PRON están: AUX pensando: ADV viajar: VERB a: ADP Londres: PROPN este: DET verano..: NOUN ''' ``` Yeah! Not too bad 🎉 > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
jpcorb20/toxic-detector-distilroberta
jpcorb20
2021-05-20T17:25:58Z
88
1
transformers
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# Distilroberta for toxic comment detection See my GitHub repo [toxic-comment-server](https://github.com/jpcorb20/toxic-comment-server) The model was trained from [DistilRoberta](https://huggingface.co/distilroberta-base) on [Kaggle Toxic Comments](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge) with the BCEWithLogits loss for Multi-Label prediction. Thus, please use the sigmoid activation on the logits (not made to use the softmax output, e.g. like the HF widget). ## Evaluation F1 scores: toxic: 0.72 severe_toxic: 0.38 obscene: 0.72 threat: 0.52 insult: 0.69 identity_hate: 0.60 Macro-F1: 0.61
softcatala/julibert
softcatala
2021-05-20T17:19:38Z
8
2
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "ca", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ca --- ## Introduction Download the model here: * Catalan Roberta model: [julibert-2020-11-10.zip](https://www.softcatala.org/pub/softcatala/julibert/julibert-2020-11-10.zip) ## What's this? Source code: https://github.com/Softcatala/julibert * Corpus: Oscar Catalan Corpus (3,8G) * Model type: Roberta * Vocabulary size: 50265 * Steps: 500000
jason9693/SoongsilBERT-nsmc-base
jason9693
2021-05-20T17:08:31Z
6
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# Finetuning ## Result ### Base Model | | Size | **NSMC**<br/>(acc) | **Naver NER**<br/>(F1) | **PAWS**<br/>(acc) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) | **Question Pair**<br/>(acc) | **KorQuaD (Dev)**<br/>(EM/F1) | **Korean-Hate-Speech (Dev)**<br/>(F1) | | :-------------------- | :---: | :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :---------------------------: | :-----------------------------------: | | KoBERT | 351M | 89.59 | 87.92 | 81.25 | 79.62 | 81.59 | 94.85 | 51.75 / 79.15 | 66.21 | | XLM-Roberta-Base | 1.03G | 89.03 | 86.65 | 82.80 | 80.23 | 78.45 | 93.80 | 64.70 / 88.94 | 64.06 | | HanBERT | 614M | 90.06 | 87.70 | 82.95 | 80.32 | 82.73 | 94.72 | 78.74 / 92.02 | 68.32 | | KoELECTRA-Base-v3 | 431M | 90.63 | 88.11 | 84.45 | 82.24 | 85.53 | 95.25 | 84.83 / 93.45 | 67.61 | | Soongsil-BERT | 370M | **91.2** | - | - | - | 76 | 94 | - | **69** | ### Small Model | | Size | **NSMC**<br/>(acc) | **Naver NER**<br/>(F1) | **PAWS**<br/>(acc) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) | **Question Pair**<br/>(acc) | **KorQuaD (Dev)**<br/>(EM/F1) | **Korean-Hate-Speech (Dev)**<br/>(F1) | | :--------------------- | :--: | :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :---------------------------: | :-----------------------------------: | | DistilKoBERT | 108M | 88.60 | 84.65 | 60.50 | 72.00 | 72.59 | 92.48 | 54.40 / 77.97 | 60.72 | | KoELECTRA-Small-v3 | 54M | 89.36 | 85.40 | 77.45 | 78.60 | 80.79 | 94.85 | 82.11 / 91.13 | 63.07 | | Soongsil-BERT | 213M | **90.7** | 84 | 69.1 | 76 | - | 92 | - | **66** | ## Reference - [Transformers Examples](https://github.com/huggingface/transformers/blob/master/examples/README.md) - [NSMC](https://github.com/e9t/nsmc) - [Naver NER Dataset](https://github.com/naver/nlp-challenge) - [PAWS](https://github.com/google-research-datasets/paws) - [KorNLI/KorSTS](https://github.com/kakaobrain/KorNLUDatasets) - [Question Pair](https://github.com/songys/Question_pair) - [KorQuad](https://korquad.github.io/category/1.0_KOR.html) - [Korean Hate Speech](https://github.com/kocohub/korean-hate-speech) - [KoELECTRA](https://github.com/monologg/KoELECTRA) - [KoBERT](https://github.com/SKTBrain/KoBERT) - [HanBERT](https://github.com/tbai2019/HanBert-54k-N) - [HanBert Transformers](https://github.com/monologg/HanBert-Transformers)
idjotherwise/autonlp-reading_prediction-172506
idjotherwise
2021-05-20T16:57:07Z
6
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "autonlp", "en", "dataset:idjotherwise/autonlp-data-reading_prediction", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - idjotherwise/autonlp-data-reading_prediction --- # Model Trained Using AutoNLP - Problem type: Single Column Regression - Model ID: 172506 ## Validation Metrics - Loss: 0.03257797285914421 - MSE: 0.03257797285914421 - MAE: 0.14246532320976257 - R2: 0.9693824457290849 - RMSE: 0.18049369752407074 - Explained Variance: 0.9699198007583618 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/idjotherwise/autonlp-reading_prediction-172506 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("idjotherwise/autonlp-reading_prediction-172506") tokenizer = AutoTokenizer.from_pretrained("idjotherwise/autonlp-reading_prediction-172506") inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
iarfmoose/roberta-small-bulgarian
iarfmoose
2021-05-20T16:54:01Z
6
0
transformers
[ "transformers", "pytorch", "tf", "jax", "roberta", "fill-mask", "bg", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: bg --- # RoBERTa-small-bulgarian The RoBERTa model was originally introduced in [this paper](https://arxiv.org/abs/1907.11692). This is a smaller version of [RoBERTa-base-bulgarian](https://huggingface.co/iarfmoose/roberta-small-bulgarian) with only 6 hidden layers, but similar performance. ## Intended uses This model can be used for cloze tasks (masked language modeling) or finetuned on other tasks in Bulgarian. ## Limitations and bias The training data is unfiltered text from the internet and may contain all sorts of biases. ## Training data This model was trained on the following data: - [bg_dedup from OSCAR](https://oscar-corpus.com/) - [Newscrawl 1 million sentences 2017 from Leipzig Corpora Collection](https://wortschatz.uni-leipzig.de/en/download/bulgarian) - [Wikipedia 1 million sentences 2016 from Leipzig Corpora Collection](https://wortschatz.uni-leipzig.de/en/download/bulgarian) ## Training procedure The model was pretrained using a masked language-modeling objective with dynamic masking as described [here](https://huggingface.co/roberta-base#preprocessing) It was trained for 160k steps. The batch size was limited to 8 due to GPU memory limitations.
iarfmoose/roberta-base-bulgarian
iarfmoose
2021-05-20T16:50:24Z
29
1
transformers
[ "transformers", "pytorch", "tf", "jax", "roberta", "fill-mask", "bg", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: bg --- # RoBERTa-base-bulgarian The RoBERTa model was originally introduced in [this paper](https://arxiv.org/abs/1907.11692). This is a version of [RoBERTa-base](https://huggingface.co/roberta-base) pretrained on Bulgarian text. ## Intended uses This model can be used for cloze tasks (masked language modeling) or finetuned on other tasks in Bulgarian. ## Limitations and bias The training data is unfiltered text from the internet and may contain all sorts of biases. ## Training data This model was trained on the following data: - [bg_dedup from OSCAR](https://oscar-corpus.com/) - [Newscrawl 1 million sentences 2017 from Leipzig Corpora Collection](https://wortschatz.uni-leipzig.de/en/download/bulgarian) - [Wikipedia 1 million sentences 2016 from Leipzig Corpora Collection](https://wortschatz.uni-leipzig.de/en/download/bulgarian) ## Training procedure The model was pretrained using a masked language-modeling objective with dynamic masking as described [here](https://huggingface.co/roberta-base#preprocessing) It was trained for 200k steps. The batch size was limited to 8 due to GPU memory limitations.
hashk1/EsperBERTo-malgranda
hashk1
2021-05-20T16:38:46Z
4
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "eo", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: eo thumbnail: https://huggingface.co/blog/assets/01_how-to-train/EsperBERTo-thumbnail-v2.png widget: - text: "Ĉu vi paloras la <mask> Esperanto?" --- ## EsperBERTo: RoBERTa-like Language model trained on Esperanto
giganticode/StackOBERTflow-comments-small-v1
giganticode
2021-05-20T16:33:56Z
10
1
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# StackOBERTflow-comments-small StackOBERTflow is a RoBERTa model trained on StackOverflow comments. A Byte-level BPE tokenizer with dropout was used (using the `tokenizers` package). The model is *small*, i.e. has only 6-layers and the maximum sequence length was restricted to 256 tokens. The model was trained for 6 epochs on several GBs of comments from the StackOverflow corpus. ## Quick start: masked language modeling prediction ```python from transformers import pipeline from pprint import pprint COMMENT = "You really should not do it this way, I would use <mask> instead." fill_mask = pipeline( "fill-mask", model="giganticode/StackOBERTflow-comments-small-v1", tokenizer="giganticode/StackOBERTflow-comments-small-v1" ) pprint(fill_mask(COMMENT)) # [{'score': 0.019997311756014824, # 'sequence': '<s> You really should not do it this way, I would use jQuery instead.</s>', # 'token': 1738}, # {'score': 0.01693696901202202, # 'sequence': '<s> You really should not do it this way, I would use arrays instead.</s>', # 'token': 2844}, # {'score': 0.013411642983555794, # 'sequence': '<s> You really should not do it this way, I would use CSS instead.</s>', # 'token': 2254}, # {'score': 0.013224546797573566, # 'sequence': '<s> You really should not do it this way, I would use it instead.</s>', # 'token': 300}, # {'score': 0.011984303593635559, # 'sequence': '<s> You really should not do it this way, I would use classes instead.</s>', # 'token': 1779}] ```
ghanashyamvtatti/roberta-fake-news
ghanashyamvtatti
2021-05-20T16:33:04Z
11
3
transformers
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
A fake news detector using RoBERTa. Dataset: https://www.kaggle.com/clmentbisaillon/fake-and-real-news-dataset Training involved using hyperparameter search with 10 trials.
deepampatel/roberta-mlm-marathi
deepampatel
2021-05-20T15:58:32Z
13
2
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "mr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: "mr" --- # Welcome to Roberta-Marathi-MLM ## Model Description > This is a small language model for [Marathi](https://en.wikipedia.org/wiki/Marathi) language with 1M data samples taken from [OSCAR page](https://oscar-public.huma-num.fr/shuffled/mr_dedup.txt.gz) ## Training params - **Dataset** - 1M data samples are used to train this model from OSCAR page(https://oscar-corpus.com/) eventhough data set is of 2.7 GB due to resource constraint to train I have picked only 1M data from the total 2.7GB data set. If you are interested in collaboration and have computational resources to train on you are most welcome to do so. - **Preprocessing** - ByteLevelBPETokenizer is used to tokenize the sentences at character level and vocabulary size is set to 52k as per standard values given by 🤗 <!-- - **Hyperparameters** - __ByteLevelBPETokenizer__ : vocabulary size = 52_000 and min_frequency = 2 __Trainer__ : num_train_epochs=12 - trained for 12 epochs per_gpu_train_batch_size=64 - batch size for the datasamples is 64 save_steps=10_000 - save model for every 10k steps save_total_limit=2 - save limit is set for 2 --> **Intended uses & limitations** this is for anyone who wants to make use of marathi language models for various tasks like language generation, translation and many more use cases. **Whatever else is helpful!** If you are intersted in collaboration feel free to reach me [Deepam](mailto:deepam8155@gmail.com)
dbernsohn/roberta-python
dbernsohn
2021-05-20T15:57:13Z
4
3
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# roberta-python --- language: python datasets: - code_search_net --- This is a [roberta](https://arxiv.org/pdf/1907.11692.pdf) pre-trained version on the [CodeSearchNet dataset](https://github.com/github/CodeSearchNet) for **Python** Mask Language Model mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline tokenizer = AutoTokenizer.from_pretrained("dbernsohn/roberta-python") model = AutoModelWithLMHead.from_pretrained("dbernsohn/roberta-python") fill_mask = pipeline( "fill-mask", model=model, tokenizer=tokenizer ) ``` You can then use this model to fill masked words in a Python code. ```python code = """ new_dict = {} for k, v in my_dict.<mask>(): new_dict[k] = v**2 """.lstrip() pred = {x["token_str"].replace("Ġ", ""): x["score"] for x in fill_mask(code)} sorted(pred.items(), key=lambda kv: kv[1], reverse=True) # [('items', 0.7376779913902283), # ('keys', 0.16238391399383545), # ('values', 0.03965481370687485), # ('iteritems', 0.03346433863043785), # ('splitlines', 0.0032723243348300457)] ``` The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/CodeMLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
dbernsohn/roberta-php
dbernsohn
2021-05-20T15:56:10Z
5
2
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# roberta-php --- language: php datasets: - code_search_net --- This is a [roberta](https://arxiv.org/pdf/1907.11692.pdf) pre-trained version on the [CodeSearchNet dataset](https://github.com/github/CodeSearchNet) for **php** Mask Language Model mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline tokenizer = AutoTokenizer.from_pretrained("dbernsohn/roberta-php") model = AutoModelWithLMHead.from_pretrained("dbernsohn/roberta-php") fill_mask = pipeline( "fill-mask", model=model, tokenizer=tokenizer ) ``` You can then use this model to fill masked words in a Java code. ```python code = """ $people = array( array('name' => 'Kalle', 'salt' => 856412), array('name' => 'Pierre', 'salt' => 215863) ); for($i = 0; $i < count($<mask>); ++$i) { $people[$i]['salt'] = mt_rand(000000, 999999); } """.lstrip() pred = {x["token_str"].replace("Ġ", ""): x["score"] for x in fill_mask(code)} sorted(pred.items(), key=lambda kv: kv[1], reverse=True) # [('people', 0.785636842250824), # ('parts', 0.006270722020417452), # ('id', 0.0035842324141412973), # ('data', 0.0025512021966278553), # ('config', 0.002258970635011792)] ``` The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/CodeMLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
dbernsohn/roberta-go
dbernsohn
2021-05-20T15:53:19Z
13
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "fill-mask", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
# roberta-go --- language: Go datasets: - code_search_net --- This is a [roberta](https://arxiv.org/pdf/1907.11692.pdf) pre-trained version on the [CodeSearchNet dataset](https://github.com/github/CodeSearchNet) for **Golang** Mask Language Model mission. To load the model: (necessary packages: !pip install transformers sentencepiece) ```python from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline tokenizer = AutoTokenizer.from_pretrained("dbernsohn/roberta-go") model = AutoModelWithLMHead.from_pretrained("dbernsohn/roberta-go") fill_mask = pipeline( "fill-mask", model=model, tokenizer=tokenizer ) ``` You can then use this model to fill masked words in a Java code. ```python code = """ package main import ( "fmt" "runtime" ) func main() { fmt.Print("Go runs on ") switch os := runtime.<mask>; os { case "darwin": fmt.Println("OS X.") case "linux": fmt.Println("Linux.") default: // freebsd, openbsd, // plan9, windows... fmt.Printf("%s.\n", os) } } """.lstrip() pred = {x["token_str"].replace("Ġ", ""): x["score"] for x in fill_mask(code)} sorted(pred.items(), key=lambda kv: kv[1], reverse=True) [('GOOS', 0.11810332536697388), ('FileInfo', 0.04276798665523529), ('Stdout', 0.03572738170623779), ('Getenv', 0.025064032524824142), ('FileMode', 0.01462600938975811)] ``` The whole training process and hyperparameters are in my [GitHub repo](https://github.com/DorBernsohn/CodeLM/tree/main/CodeMLM) > Created by [Dor Bernsohn](https://www.linkedin.com/in/dor-bernsohn-70b2b1146/)
clue/roberta_chinese_base
clue
2021-05-20T15:23:58Z
317
7
transformers
[ "transformers", "pytorch", "jax", "roberta", "zh", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: zh --- ## roberta_chinese_base ### Overview **Language model:** roberta-base **Model size:** 392M **Language:** Chinese **Training data:** [CLUECorpusSmall](https://github.com/CLUEbenchmark/CLUECorpus2020) **Eval data:** [CLUE dataset](https://github.com/CLUEbenchmark/CLUE) ### Results For results on downstream tasks like text classification, please refer to [this repository](https://github.com/CLUEbenchmark/CLUE). ### Usage **NOTE:** You have to call **BertTokenizer** instead of RobertaTokenizer !!! ``` import torch from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained("clue/roberta_chinese_base") roberta = BertModel.from_pretrained("clue/roberta_chinese_base") ``` ### About CLUE benchmark Organization of Language Understanding Evaluation benchmark for Chinese: tasks & datasets, baselines, pre-trained Chinese models, corpus and leaderboard. Github: https://github.com/CLUEbenchmark Website: https://www.cluebenchmarks.com/
clue/roberta_chinese_3L312_clue_tiny
clue
2021-05-20T15:22:48Z
4
2
transformers
[ "transformers", "pytorch", "jax", "roberta", "zh", "arxiv:2003.01355", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: zh --- # Introduction This model was trained on TPU and the details are as follows: ## Model ## | Model_name | params | size | Training_corpus | Vocab | | :------------------------------------------ | :----- | :------- | :----------------- | :-----------: | | **`RoBERTa-tiny-clue`** <br/>Super_small_model | 7.5M | 28.3M | **CLUECorpus2020** | **CLUEVocab** | | **`RoBERTa-tiny-pair`** <br/>Super_small_sentence_pair_model | 7.5M | 28.3M | **CLUECorpus2020** | **CLUEVocab** | | **`RoBERTa-tiny3L768-clue`** <br/>small_model | 38M | 110M | **CLUECorpus2020** | **CLUEVocab** | | **`RoBERTa-tiny3L312-clue`** <br/>small_model | <7.5M | 24M | **CLUECorpus2020** | **CLUEVocab** | | **`RoBERTa-large-clue`** <br/> Large_model | 290M | 1.20G | **CLUECorpus2020** | **CLUEVocab** | | **`RoBERTa-large-pair`** <br/>Large_sentence_pair_model | 290M | 1.20G | **CLUECorpus2020** | **CLUEVocab** | ### Usage With the help of[Huggingface-Transformers 2.5.1](https://github.com/huggingface/transformers), you could use these model as follows ``` tokenizer = BertTokenizer.from_pretrained("MODEL_NAME") model = BertModel.from_pretrained("MODEL_NAME") ``` `MODEL_NAME`: | Model_NAME | MODEL_LINK | | -------------------------- | ------------------------------------------------------------ | | **RoBERTa-tiny-clue** | [`clue/roberta_chinese_clue_tiny`](https://huggingface.co/clue/roberta_chinese_clue_tiny) | | **RoBERTa-tiny-pair** | [`clue/roberta_chinese_pair_tiny`](https://huggingface.co/clue/roberta_chinese_pair_tiny) | | **RoBERTa-tiny3L768-clue** | [`clue/roberta_chinese_3L768_clue_tiny`](https://huggingface.co/clue/roberta_chinese_3L768_clue_tiny) | | **RoBERTa-tiny3L312-clue** | [`clue/roberta_chinese_3L312_clue_tiny`](https://huggingface.co/clue/roberta_chinese_3L312_clue_tiny) | | **RoBERTa-large-clue** | [`clue/roberta_chinese_clue_large`](https://huggingface.co/clue/roberta_chinese_clue_large) | | **RoBERTa-large-pair** | [`clue/roberta_chinese_pair_large`](https://huggingface.co/clue/roberta_chinese_pair_large) | ## Details Please read <a href='https://arxiv.org/pdf/2003.01355'>https://arxiv.org/pdf/2003.01355. Please visit our repository: https://github.com/CLUEbenchmark/CLUEPretrainedModels.git
castorini/ance-msmarco-doc-maxp
castorini
2021-05-20T15:17:50Z
11
2
transformers
[ "transformers", "pytorch", "roberta", "arxiv:2007.00808", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
This model is converted from the original ANCE [repo](https://github.com/microsoft/ANCE) and fitted into Pyserini: > Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, Arnold Overwijk. [Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval](https://arxiv.org/pdf/2007.00808.pdf) For more details on how to use it, check our experiments in [Pyserini](https://github.com/castorini/pyserini/blob/master/docs/experiments-ance.md)
castorini/ance-msmarco-doc-firstp
castorini
2021-05-20T15:17:20Z
7
1
transformers
[ "transformers", "pytorch", "roberta", "arxiv:2007.00808", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
This model is converted from the original ANCE [repo](https://github.com/microsoft/ANCE) and fitted into Pyserini: > Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, Arnold Overwijk. [Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval](https://arxiv.org/pdf/2007.00808.pdf) For more details on how to use it, check our experiments in [Pyserini](https://github.com/castorini/pyserini/blob/master/docs/experiments-ance.md)
cahya/roberta-base-indonesian-522M
cahya
2021-05-20T14:41:00Z
338
6
transformers
[ "transformers", "pytorch", "tf", "jax", "roberta", "fill-mask", "id", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: "id" license: "mit" datasets: - Indonesian Wikipedia widget: - text: "Ibu ku sedang bekerja <mask> supermarket." --- # Indonesian RoBERTa base model (uncased) ## Model description It is RoBERTa-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This model is uncased: it does not make a difference between indonesia and Indonesia. This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers) ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='cahya/roberta-base-indonesian-522M') >>> unmasker("Ibu ku sedang bekerja <mask> supermarket") ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import RobertaTokenizer, RobertaModel model_name='cahya/roberta-base-indonesian-522M' tokenizer = RobertaTokenizer.from_pretrained(model_name) model = RobertaModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in Tensorflow: ```python from transformers import RobertaTokenizer, TFRobertaModel model_name='cahya/roberta-base-indonesian-522M' tokenizer = RobertaTokenizer.from_pretrained(model_name) model = TFRobertaModel.from_pretrained(model_name) text = "Silakan diganti dengan text apa saja." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data This model was pre-trained with 522MB of indonesian Wikipedia. The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are then of the form: ```<s> Sentence A </s> Sentence B </s>```
aychang/roberta-base-imdb
aychang
2021-05-20T14:25:56Z
1,446
5
transformers
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "en", "dataset:imdb", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - en thumbnail: tags: - text-classification license: mit datasets: - imdb metrics: --- # IMDB Sentiment Task: roberta-base ## Model description A simple base roBERTa model trained on the "imdb" dataset. ## Intended uses & limitations #### How to use ##### Transformers ```python # Load model and tokenizer from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Use pipeline from transformers import pipeline model_name = "aychang/roberta-base-imdb" nlp = pipeline("sentiment-analysis", model=model_name, tokenizer=model_name) results = nlp(["I didn't really like it because it was so terrible.", "I love how easy it is to watch and get good results."]) ``` ##### AdaptNLP ```python from adaptnlp import EasySequenceClassifier model_name = "aychang/roberta-base-imdb" texts = ["I didn't really like it because it was so terrible.", "I love how easy it is to watch and get good results."] classifer = EasySequenceClassifier results = classifier.tag_text(text=texts, model_name_or_path=model_name, mini_batch_size=2) ``` #### Limitations and bias This is minimal language model trained on a benchmark dataset. ## Training data IMDB https://huggingface.co/datasets/imdb ## Training procedure #### Hardware One V100 #### Hyperparameters and Training Args ```python from transformers import TrainingArguments training_args = TrainingArguments( output_dir='./models', overwrite_output_dir=False, num_train_epochs=2, per_device_train_batch_size=8, per_device_eval_batch_size=8, warmup_steps=500, weight_decay=0.01, evaluation_strategy="steps", logging_dir='./logs', fp16=False, eval_steps=800, save_steps=300000 ) ``` ## Eval results ``` {'epoch': 2.0, 'eval_accuracy': 0.94668, 'eval_f1': array([0.94603457, 0.94731017]), 'eval_loss': 0.2578844428062439, 'eval_precision': array([0.95762642, 0.93624502]), 'eval_recall': array([0.93472, 0.95864]), 'eval_runtime': 244.7522, 'eval_samples_per_second': 102.144} ```
aravind-812/roberta-train-json
aravind-812
2021-05-20T14:12:53Z
9
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- datasets: - squad widget: - text: "Which name is also used to describe the Amazon rainforest in English?" context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species." - text: "How many square kilometers of rainforest is covered in the basin?" context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species."
pchanda/pretrained-smiles-pubchem10m
pchanda
2021-05-20T13:01:15Z
729
1
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
model pretrained on 10m smiles from pubchem.
abhishek/autonlp-imdb_sentiment_classification-31154
abhishek
2021-05-20T12:46:38Z
6
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "autonlp", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 31154 ## Validation Metrics - Loss: 0.19292379915714264 - Accuracy: 0.9395 - Precision: 0.9569557080474111 - Recall: 0.9204 - AUC: 0.9851040399999998 - F1: 0.9383219492302988 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/abhishek/autonlp-imdb_sentiment_classification-31154 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("abhishek/autonlp-imdb_sentiment_classification-31154", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("abhishek/autonlp-imdb_sentiment_classification-31154", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
SparkBeyond/roberta-large-sts-b
SparkBeyond
2021-05-20T12:26:47Z
6
0
transformers
[ "transformers", "pytorch", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# Roberta Large STS-B This model is a fine tuned RoBERTA model over STS-B. It was trained with these params: !python /content/transformers/examples/text-classification/run_glue.py \ --model_type roberta \ --model_name_or_path roberta-large \ --task_name STS-B \ --do_train \ --do_eval \ --do_lower_case \ --data_dir /content/glue_data/STS-B/ \ --max_seq_length 128 \ --per_gpu_eval_batch_size=8 \ --per_gpu_train_batch_size=8 \ --learning_rate 2e-5 \ --num_train_epochs 3.0 \ --output_dir /content/roberta-sts-b ## How to run ```python import toolz import torch batch_size = 6 def roberta_similarity_batches(to_predict): batches = toolz.partition(batch_size, to_predict) similarity_scores = [] for batch in batches: sentences = [(sentence_similarity["sent1"], sentence_similarity["sent2"]) for sentence_similarity in batch] batch_scores = similarity_roberta(model, tokenizer,sentences) similarity_scores = similarity_scores + batch_scores[0].cpu().squeeze(axis=1).tolist() return similarity_scores def similarity_roberta(model, tokenizer, sent_pairs): batch_token = tokenizer(sent_pairs, padding='max_length', truncation=True, max_length=500) res = model(torch.tensor(batch_token['input_ids']).cuda(), attention_mask=torch.tensor(batch_token["attention_mask"]).cuda()) return res similarity_roberta(model, tokenizer, [('NEW YORK--(BUSINESS WIRE)--Rosen Law Firm, a global investor rights law firm, announces it is investigating potential securities claims on behalf of shareholders of Vale S.A. ( VALE ) resulting from allegations that Vale may have issued materially misleading business information to the investing public', 'EQUITY ALERT: Rosen Law Firm Announces Investigation of Securities Claims Against Vale S.A. – VALE')]) ```
MoseliMotsoehli/zuBERTa
MoseliMotsoehli
2021-05-20T12:14:07Z
6
1
transformers
[ "transformers", "pytorch", "tf", "jax", "roberta", "fill-mask", "zu", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: zu --- # zuBERTa zuBERTa is a RoBERTa style transformer language model trained on zulu text. ## Intended uses & limitations The model can be used for getting embeddings to use on a down-stream task such as question answering. #### How to use ```python >>> from transformers import pipeline >>> from transformers import AutoTokenizer, AutoModelWithLMHead >>> tokenizer = AutoTokenizer.from_pretrained("MoseliMotsoehli/zuBERTa") >>> model = AutoModelWithLMHead.from_pretrained("MoseliMotsoehli/zuBERTa") >>> unmasker = pipeline('fill-mask', model=model, tokenizer=tokenizer) >>> unmasker("Abafika eNkandla bafika sebeholwa <mask> uMpongo kaZingelwayo.") [ { "sequence": "<s>Abafika eNkandla bafika sebeholwa khona uMpongo kaZingelwayo.</s>", "score": 0.050459690392017365, "token": 555, "token_str": "Ġkhona" }, { "sequence": "<s>Abafika eNkandla bafika sebeholwa inkosi uMpongo kaZingelwayo.</s>", "score": 0.03668094798922539, "token": 2321, "token_str": "Ġinkosi" }, { "sequence": "<s>Abafika eNkandla bafika sebeholwa ubukhosi uMpongo kaZingelwayo.</s>", "score": 0.028774697333574295, "token": 5101, "token_str": "Ġubukhosi" } ] ``` ## Training data 1. 30k sentences of text, came from the [Leipzig Corpora Collection](https://wortschatz.uni-leipzig.de/en/download) of zulu 2018. These were collected from news articles and creative writtings. 2. ~7500 articles of human generated translations were scraped from the zulu [wikipedia](https://zu.wikipedia.org/wiki/Special:AllPages). ### BibTeX entry and citation info ```bibtex @inproceedings{author = {Moseli Motsoehli}, title = {Towards transformation of Southern African language models through transformers.}, year={2020} } ```
zanelim/singbert
zanelim
2021-05-20T09:38:41Z
6
4
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "pretraining", "singapore", "sg", "singlish", "malaysia", "ms", "manglish", "bert-base-uncased", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en tags: - singapore - sg - singlish - malaysia - ms - manglish - bert-base-uncased license: mit datasets: - reddit singapore, malaysia - hardwarezone widget: - text: "kopi c siew [MASK]" - text: "die [MASK] must try" --- # Model name SingBert - Bert for Singlish (SG) and Manglish (MY). ## Model description [BERT base uncased](https://github.com/google-research/bert#pre-trained-models), with pre-training finetuned on [singlish](https://en.wikipedia.org/wiki/Singlish) and [manglish](https://en.wikipedia.org/wiki/Manglish) data. ## Intended uses & limitations #### How to use ```python >>> from transformers import pipeline >>> nlp = pipeline('fill-mask', model='zanelim/singbert') >>> nlp("kopi c siew [MASK]") [{'sequence': '[CLS] kopi c siew dai [SEP]', 'score': 0.5092713236808777, 'token': 18765, 'token_str': 'dai'}, {'sequence': '[CLS] kopi c siew mai [SEP]', 'score': 0.3515934646129608, 'token': 14736, 'token_str': 'mai'}, {'sequence': '[CLS] kopi c siew bao [SEP]', 'score': 0.05576375499367714, 'token': 25945, 'token_str': 'bao'}, {'sequence': '[CLS] kopi c siew. [SEP]', 'score': 0.006019321270287037, 'token': 1012, 'token_str': '.'}, {'sequence': '[CLS] kopi c siew sai [SEP]', 'score': 0.0038361591286957264, 'token': 18952, 'token_str': 'sai'}] >>> nlp("one teh c siew dai, and one kopi [MASK].") [{'sequence': '[CLS] one teh c siew dai, and one kopi c [SEP]', 'score': 0.6176503300666809, 'token': 1039, 'token_str': 'c'}, {'sequence': '[CLS] one teh c siew dai, and one kopi o [SEP]', 'score': 0.21094971895217896, 'token': 1051, 'token_str': 'o'}, {'sequence': '[CLS] one teh c siew dai, and one kopi. [SEP]', 'score': 0.13027705252170563, 'token': 1012, 'token_str': '.'}, {'sequence': '[CLS] one teh c siew dai, and one kopi! [SEP]', 'score': 0.004680239595472813, 'token': 999, 'token_str': '!'}, {'sequence': '[CLS] one teh c siew dai, and one kopi w [SEP]', 'score': 0.002034128177911043, 'token': 1059, 'token_str': 'w'}] >>> nlp("dont play [MASK] leh") [{'sequence': '[CLS] dont play play leh [SEP]', 'score': 0.9281464219093323, 'token': 2377, 'token_str': 'play'}, {'sequence': '[CLS] dont play politics leh [SEP]', 'score': 0.010990909300744534, 'token': 4331, 'token_str': 'politics'}, {'sequence': '[CLS] dont play punk leh [SEP]', 'score': 0.005583590362221003, 'token': 7196, 'token_str': 'punk'}, {'sequence': '[CLS] dont play dirty leh [SEP]', 'score': 0.0025784350000321865, 'token': 6530, 'token_str': 'dirty'}, {'sequence': '[CLS] dont play cheat leh [SEP]', 'score': 0.0025066907983273268, 'token': 21910, 'token_str': 'cheat'}] >>> nlp("catch no [MASK]") [{'sequence': '[CLS] catch no ball [SEP]', 'score': 0.7922210693359375, 'token': 3608, 'token_str': 'ball'}, {'sequence': '[CLS] catch no balls [SEP]', 'score': 0.20503675937652588, 'token': 7395, 'token_str': 'balls'}, {'sequence': '[CLS] catch no tail [SEP]', 'score': 0.0006608376861549914, 'token': 5725, 'token_str': 'tail'}, {'sequence': '[CLS] catch no talent [SEP]', 'score': 0.0002158183924620971, 'token': 5848, 'token_str': 'talent'}, {'sequence': '[CLS] catch no prisoners [SEP]', 'score': 5.3481446229852736e-05, 'token': 5895, 'token_str': 'prisoners'}] >>> nlp("confirm plus [MASK]") [{'sequence': '[CLS] confirm plus chop [SEP]', 'score': 0.992355227470398, 'token': 24494, 'token_str': 'chop'}, {'sequence': '[CLS] confirm plus one [SEP]', 'score': 0.0037301010452210903, 'token': 2028, 'token_str': 'one'}, {'sequence': '[CLS] confirm plus minus [SEP]', 'score': 0.0014284878270700574, 'token': 15718, 'token_str': 'minus'}, {'sequence': '[CLS] confirm plus 1 [SEP]', 'score': 0.0011354683665558696, 'token': 1015, 'token_str': '1'}, {'sequence': '[CLS] confirm plus chopped [SEP]', 'score': 0.0003804611915256828, 'token': 24881, 'token_str': 'chopped'}] >>> nlp("die [MASK] must try") [{'sequence': '[CLS] die die must try [SEP]', 'score': 0.9552758932113647, 'token': 3280, 'token_str': 'die'}, {'sequence': '[CLS] die also must try [SEP]', 'score': 0.03644804656505585, 'token': 2036, 'token_str': 'also'}, {'sequence': '[CLS] die liao must try [SEP]', 'score': 0.003282855963334441, 'token': 727, 'token_str': 'liao'}, {'sequence': '[CLS] die already must try [SEP]', 'score': 0.0004937972989864647, 'token': 2525, 'token_str': 'already'}, {'sequence': '[CLS] die hard must try [SEP]', 'score': 0.0003659659414552152, 'token': 2524, 'token_str': 'hard'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('zanelim/singbert') model = BertModel.from_pretrained("zanelim/singbert") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained("zanelim/singbert") model = TFBertModel.from_pretrained("zanelim/singbert") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` #### Limitations and bias This model was finetuned on colloquial Singlish and Manglish corpus, hence it is best applied on downstream tasks involving the main constituent languages- english, mandarin, malay. Also, as the training data is mainly from forums, beware of existing inherent bias. ## Training data Colloquial singlish and manglish (both are a mixture of English, Mandarin, Tamil, Malay, and other local dialects like Hokkien, Cantonese or Teochew) corpus. The corpus is collected from subreddits- `r/singapore` and `r/malaysia`, and forums such as `hardwarezone`. ## Training procedure Initialized with [bert base uncased](https://github.com/google-research/bert#pre-trained-models) vocab and checkpoints (pre-trained weights). Top 1000 custom vocab tokens (non-overlapped with original bert vocab) were further extracted from training data and filled into unused tokens in original bert vocab. Pre-training was further finetuned on training data with the following hyperparameters * train_batch_size: 512 * max_seq_length: 128 * num_train_steps: 300000 * num_warmup_steps: 5000 * learning_rate: 2e-5 * hardware: TPU v3-8
zanelim/singbert-large-sg
zanelim
2021-05-20T09:36:17Z
9
4
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "pretraining", "singapore", "sg", "singlish", "malaysia", "ms", "manglish", "bert-large-uncased", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: en tags: - singapore - sg - singlish - malaysia - ms - manglish - bert-large-uncased license: mit datasets: - reddit singapore, malaysia - hardwarezone widget: - text: "kopi c siew [MASK]" - text: "die [MASK] must try" --- # Model name SingBert Large - Bert for Singlish (SG) and Manglish (MY). ## Model description Similar to [SingBert](https://huggingface.co/zanelim/singbert) but the large version, which was initialized from [BERT large uncased (whole word masking)](https://github.com/google-research/bert#pre-trained-models), with pre-training finetuned on [singlish](https://en.wikipedia.org/wiki/Singlish) and [manglish](https://en.wikipedia.org/wiki/Manglish) data. ## Intended uses & limitations #### How to use ```python >>> from transformers import pipeline >>> nlp = pipeline('fill-mask', model='zanelim/singbert-large-sg') >>> nlp("kopi c siew [MASK]") [{'sequence': '[CLS] kopi c siew dai [SEP]', 'score': 0.9003700017929077, 'token': 18765, 'token_str': 'dai'}, {'sequence': '[CLS] kopi c siew mai [SEP]', 'score': 0.0779474675655365, 'token': 14736, 'token_str': 'mai'}, {'sequence': '[CLS] kopi c siew. [SEP]', 'score': 0.0032227332703769207, 'token': 1012, 'token_str': '.'}, {'sequence': '[CLS] kopi c siew bao [SEP]', 'score': 0.0017727474914863706, 'token': 25945, 'token_str': 'bao'}, {'sequence': '[CLS] kopi c siew peng [SEP]', 'score': 0.0012526646023616195, 'token': 26473, 'token_str': 'peng'}] >>> nlp("one teh c siew dai, and one kopi [MASK]") [{'sequence': '[CLS] one teh c siew dai, and one kopi. [SEP]', 'score': 0.5249741077423096, 'token': 1012, 'token_str': '.'}, {'sequence': '[CLS] one teh c siew dai, and one kopi o [SEP]', 'score': 0.27349168062210083, 'token': 1051, 'token_str': 'o'}, {'sequence': '[CLS] one teh c siew dai, and one kopi peng [SEP]', 'score': 0.057190295308828354, 'token': 26473, 'token_str': 'peng'}, {'sequence': '[CLS] one teh c siew dai, and one kopi c [SEP]', 'score': 0.04022320732474327, 'token': 1039, 'token_str': 'c'}, {'sequence': '[CLS] one teh c siew dai, and one kopi? [SEP]', 'score': 0.01191170234233141, 'token': 1029, 'token_str': '?'}] >>> nlp("die [MASK] must try") [{'sequence': '[CLS] die die must try [SEP]', 'score': 0.9921030402183533, 'token': 3280, 'token_str': 'die'}, {'sequence': '[CLS] die also must try [SEP]', 'score': 0.004993876442313194, 'token': 2036, 'token_str': 'also'}, {'sequence': '[CLS] die liao must try [SEP]', 'score': 0.000317625846946612, 'token': 727, 'token_str': 'liao'}, {'sequence': '[CLS] die still must try [SEP]', 'score': 0.0002260878391098231, 'token': 2145, 'token_str': 'still'}, {'sequence': '[CLS] die i must try [SEP]', 'score': 0.00016935862367972732, 'token': 1045, 'token_str': 'i'}] >>> nlp("dont play [MASK] leh") [{'sequence': '[CLS] dont play play leh [SEP]', 'score': 0.9079819321632385, 'token': 2377, 'token_str': 'play'}, {'sequence': '[CLS] dont play punk leh [SEP]', 'score': 0.006846973206847906, 'token': 7196, 'token_str': 'punk'}, {'sequence': '[CLS] dont play games leh [SEP]', 'score': 0.004041737411171198, 'token': 2399, 'token_str': 'games'}, {'sequence': '[CLS] dont play politics leh [SEP]', 'score': 0.003728888463228941, 'token': 4331, 'token_str': 'politics'}, {'sequence': '[CLS] dont play cheat leh [SEP]', 'score': 0.0032805048394948244, 'token': 21910, 'token_str': 'cheat'}] >>> nlp("confirm plus [MASK]") {'sequence': '[CLS] confirm plus chop [SEP]', 'score': 0.9749826192855835, 'token': 24494, 'token_str': 'chop'}, {'sequence': '[CLS] confirm plus chopped [SEP]', 'score': 0.017554156482219696, 'token': 24881, 'token_str': 'chopped'}, {'sequence': '[CLS] confirm plus minus [SEP]', 'score': 0.002725469646975398, 'token': 15718, 'token_str': 'minus'}, {'sequence': '[CLS] confirm plus guarantee [SEP]', 'score': 0.000900257145985961, 'token': 11302, 'token_str': 'guarantee'}, {'sequence': '[CLS] confirm plus one [SEP]', 'score': 0.0004384620988275856, 'token': 2028, 'token_str': 'one'}] >>> nlp("catch no [MASK]") [{'sequence': '[CLS] catch no ball [SEP]', 'score': 0.9381157159805298, 'token': 3608, 'token_str': 'ball'}, {'sequence': '[CLS] catch no balls [SEP]', 'score': 0.060842301696538925, 'token': 7395, 'token_str': 'balls'}, {'sequence': '[CLS] catch no fish [SEP]', 'score': 0.00030917322146706283, 'token': 3869, 'token_str': 'fish'}, {'sequence': '[CLS] catch no breath [SEP]', 'score': 7.552534952992573e-05, 'token': 3052, 'token_str': 'breath'}, {'sequence': '[CLS] catch no tail [SEP]', 'score': 4.208395694149658e-05, 'token': 5725, 'token_str': 'tail'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('zanelim/singbert-large-sg') model = BertModel.from_pretrained("zanelim/singbert-large-sg") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained("zanelim/singbert-large-sg") model = TFBertModel.from_pretrained("zanelim/singbert-large-sg") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` #### Limitations and bias This model was finetuned on colloquial Singlish and Manglish corpus, hence it is best applied on downstream tasks involving the main constituent languages- english, mandarin, malay. Also, as the training data is mainly from forums, beware of existing inherent bias. ## Training data Colloquial singlish and manglish (both are a mixture of English, Mandarin, Tamil, Malay, and other local dialects like Hokkien, Cantonese or Teochew) corpus. The corpus is collected from subreddits- `r/singapore` and `r/malaysia`, and forums such as `hardwarezone`. ## Training procedure Initialized with [bert large uncased (whole word masking)](https://github.com/google-research/bert#pre-trained-models) vocab and checkpoints (pre-trained weights). Top 1000 custom vocab tokens (non-overlapped with original bert vocab) were further extracted from training data and filled into unused tokens in original bert vocab. Pre-training was further finetuned on training data with the following hyperparameters * train_batch_size: 512 * max_seq_length: 128 * num_train_steps: 300000 * num_warmup_steps: 5000 * learning_rate: 2e-5 * hardware: TPU v3-8
ykacer/bert-base-cased-imdb-sequence-classification
ykacer
2021-05-20T09:31:37Z
6
0
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "sequence", "classification", "en", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - en thumbnail: https://raw.githubusercontent.com/JetRunner/BERT-of-Theseus/master/bert-of-theseus.png tags: - sequence - classification license: apache-2.0 datasets: - imdb metrics: - accuracy ---
twmkn9/bert-base-uncased-squad2
twmkn9
2021-05-20T08:21:23Z
245
2
transformers
[ "transformers", "pytorch", "jax", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
This model is [BERT base uncased](https://huggingface.co/bert-base-uncased) trained on SQuAD v2 as: ``` export SQUAD_DIR=../../squad2 python3 run_squad.py --model_type bert --model_name_or_path bert-base-uncased --do_train --do_eval --overwrite_cache --do_lower_case --version_2_with_negative --save_steps 100000 --train_file $SQUAD_DIR/train-v2.0.json --predict_file $SQUAD_DIR/dev-v2.0.json --per_gpu_train_batch_size 8 --num_train_epochs 3 --learning_rate 3e-5 --max_seq_length 384 --doc_stride 128 --output_dir ./tmp/bert_fine_tuned/ ``` Performance on a dev subset is close to the original paper: ``` Results: { 'exact': 72.35932872655479, 'f1': 75.75355132564763, 'total': 6078, 'HasAns_exact': 74.29553264604812, 'HasAns_f1': 81.38490892002987, 'HasAns_total': 2910, 'NoAns_exact': 70.58080808080808, 'NoAns_f1': 70.58080808080808, 'NoAns_total': 3168, 'best_exact': 72.35932872655479, 'best_exact_thresh': 0.0, 'best_f1': 75.75355132564766, 'best_f1_thresh': 0.0 } ``` We are hopeful this might save you time, energy, and compute. Cheers!
tugstugi/bert-large-mongolian-cased
tugstugi
2021-05-20T08:16:24Z
28
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "mongolian", "cased", "mn", "arxiv:1810.04805", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: "mn" tags: - bert - mongolian - cased --- # BERT-LARGE-MONGOLIAN-CASED [Link to Official Mongolian-BERT repo](https://github.com/tugstugi/mongolian-bert) ## Model description This repository contains pre-trained Mongolian [BERT](https://arxiv.org/abs/1810.04805) models trained by [tugstugi](https://github.com/tugstugi), [enod](https://github.com/enod) and [sharavsambuu](https://github.com/sharavsambuu). Special thanks to [nabar](https://github.com/nabar) who provided 5x TPUs. This repository is based on the following open source projects: [google-research/bert](https://github.com/google-research/bert/), [huggingface/pytorch-pretrained-BERT](https://github.com/huggingface/pytorch-pretrained-BERT) and [yoheikikuta/bert-japanese](https://github.com/yoheikikuta/bert-japanese). #### How to use ```python from transformers import pipeline, AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained('tugstugi/bert-large-mongolian-cased', use_fast=False) model = AutoModelForMaskedLM.from_pretrained('tugstugi/bert-large-mongolian-cased') ## declare task ## pipe = pipeline(task="fill-mask", model=model, tokenizer=tokenizer) ## example ## input_ = 'Монгол улсын [MASK] Улаанбаатар хотоос ярьж байна.' output_ = pipe(input_) for i in range(len(output_)): print(output_[i]) ## output ## # {'sequence': 'Монгол улсын нийслэл Улаанбаатар хотоос ярьж байна.', 'score': 0.9779232740402222, 'token': 1176, 'token_str': 'нийслэл'} # {'sequence': 'Монгол улсын Нийслэл Улаанбаатар хотоос ярьж байна.', 'score': 0.015034765936434269, 'token': 4059, 'token_str': 'Нийслэл'} # {'sequence': 'Монгол улсын Ерөнхийлөгч Улаанбаатар хотоос ярьж байна.', 'score': 0.0021413620561361313, 'token': 325, 'token_str': 'Ерөнхийлөгч'} # {'sequence': 'Монгол улсын ерөнхийлөгч Улаанбаатар хотоос ярьж байна.', 'score': 0.0008035294013097882, 'token': 1215, 'token_str': 'ерөнхийлөгч'} # {'sequence': 'Монгол улсын нийслэлийн Улаанбаатар хотоос ярьж байна.', 'score': 0.0006434018723666668, 'token': 356, 'token_str': 'нийслэлийн'} ``` ## Training data Mongolian Wikipedia and the 700 million word Mongolian news data set [[Pretraining Procedure](https://github.com/tugstugi/mongolian-bert#pre-training)] ### BibTeX entry and citation info ```bibtex @misc{mongolian-bert, author = {Tuguldur, Erdene-Ochir and Gunchinish, Sharavsambuu and Bataa, Enkhbold}, title = {BERT Pretrained Models on Mongolian Datasets}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/tugstugi/mongolian-bert/}} } ```
trueto/medbert-kd-chinese
trueto
2021-05-20T08:10:57Z
9
10
transformers
[ "transformers", "pytorch", "jax", "bert", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# [medbert](https://github.com/trueto/medbert) 本项目开源硕士毕业论文“BERT模型在中文临床自然语言处理中的应用探索与研究”相关模型 ## 评估基准 构建了中文电子病历命名实体识别数据集(CEMRNER)、中文医学文本命名实体识别数据集(CMTNER)、 中文医学问句-问句识别数据集(CMedQQ)和中文临床文本分类数据集(CCTC)。 | **数据集** | **训练集** | **验证集** | **测试集** | **任务类型** | **语料来源** | | ---- | ---- | ---- |---- |---- |:----:| | CEMRNER | 965 | 138 | 276 | 命名实体识别 | 医渡云 | | CMTNER | 14000 | 2000 | 4000 | 命名实体识别 | CHIP2020 | | CMedQQ | 14000 | 2000 | 4000 | 句对识别 | 平安医疗 | | CCTC | 26837 | 3834 | 7669 | 句子分类 | CHIP2019 | ## 开源模型 在6.5亿字符中文临床自然语言文本语料上基于BERT模型和Albert模型预训练获得了MedBERT和MedAlbert模型。 ## 性能表现 在同等实验环境,相同训练参数和脚本下,各模型的性能表现 | **模型** | **CEMRNER** | **CMTNER** | **CMedQQ** | **CCTC** | | :---- | :----: | :----: | :----: | :----: | | [BERT](https://huggingface.co/bert-base-chinese) | 81.17% | 65.67% | 87.77% | 81.62% | | [MC-BERT](https://github.com/alibaba-research/ChineseBLUE) | 80.93% | 66.15% | 89.04% | 80.65% | | [PCL-BERT](https://code.ihub.org.cn/projects/1775) | 81.58% | 67.02% | 88.81% | 80.27% | | MedBERT | 82.29% | 66.49% | 88.32% | **81.77%** | |MedBERT-wwm| **82.60%** | 67.11% | 88.02% | 81.72% | |MedBERT-kd | 82.58% | **67.27%** | **89.34%** | 80.73% | |- | - | - | - | - | | [Albert](https://huggingface.co/voidful/albert_chinese_base) | 79.98% | 62.42% | 86.81% | 79.83% | | MedAlbert | 81.03% | 63.81% | 87.56% | 80.05% | |MedAlbert-wwm| **81.28%** | **64.12%** | **87.71%** | **80.46%** | ## 引用格式 ``` 杨飞洪,王序文,李姣.BERT模型在中文临床自然语言处理中的应用探索与研究[EB/OL].https://github.com/trueto/medbert, 2021-03. ```
trueto/medbert-base-wwm-chinese
trueto
2021-05-20T08:09:44Z
8
9
transformers
[ "transformers", "pytorch", "jax", "bert", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
# [medbert](https://github.com/trueto/medbert) 本项目开源硕士毕业论文“BERT模型在中文临床自然语言处理中的应用探索与研究”相关模型 ## 评估基准 构建了中文电子病历命名实体识别数据集(CEMRNER)、中文医学文本命名实体识别数据集(CMTNER)、 中文医学问句-问句识别数据集(CMedQQ)和中文临床文本分类数据集(CCTC)。 | **数据集** | **训练集** | **验证集** | **测试集** | **任务类型** | **语料来源** | | ---- | ---- | ---- |---- |---- |:----:| | CEMRNER | 965 | 138 | 276 | 命名实体识别 | 医渡云 | | CMTNER | 14000 | 2000 | 4000 | 命名实体识别 | CHIP2020 | | CMedQQ | 14000 | 2000 | 4000 | 句对识别 | 平安医疗 | | CCTC | 26837 | 3834 | 7669 | 句子分类 | CHIP2019 | ## 开源模型 在6.5亿字符中文临床自然语言文本语料上基于BERT模型和Albert模型预训练获得了MedBERT和MedAlbert模型。 ## 性能表现 在同等实验环境,相同训练参数和脚本下,各模型的性能表现 | **模型** | **CEMRNER** | **CMTNER** | **CMedQQ** | **CCTC** | | :---- | :----: | :----: | :----: | :----: | | [BERT](https://huggingface.co/bert-base-chinese) | 81.17% | 65.67% | 87.77% | 81.62% | | [MC-BERT](https://github.com/alibaba-research/ChineseBLUE) | 80.93% | 66.15% | 89.04% | 80.65% | | [PCL-BERT](https://code.ihub.org.cn/projects/1775) | 81.58% | 67.02% | 88.81% | 80.27% | | MedBERT | 82.29% | 66.49% | 88.32% | **81.77%** | |MedBERT-wwm| **82.60%** | 67.11% | 88.02% | 81.72% | |MedBERT-kd | 82.58% | **67.27%** | **89.34%** | 80.73% | |- | - | - | - | - | | [Albert](https://huggingface.co/voidful/albert_chinese_base) | 79.98% | 62.42% | 86.81% | 79.83% | | MedAlbert | 81.03% | 63.81% | 87.56% | 80.05% | |MedAlbert-wwm| **81.28%** | **64.12%** | **87.71%** | **80.46%** | ## 引用格式 ``` 杨飞洪,王序文,李姣.BERT模型在中文临床自然语言处理中的应用探索与研究[EB/OL].https://github.com/trueto/medbert, 2021-03. ```
trtd56/autonlp-wrime_joy_only-117396
trtd56
2021-05-20T08:07:48Z
4
1
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autonlp", "ja", "dataset:trtd56/autonlp-data-wrime_joy_only", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: ja widget: - text: "I love AutoNLP 🤗" datasets: - trtd56/autonlp-data-wrime_joy_only --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 117396 ## Validation Metrics - Loss: 0.4094310998916626 - Accuracy: 0.8201678240740741 - Precision: 0.6750303520841765 - Recall: 0.7912713472485768 - AUC: 0.8927167943538512 - F1: 0.728543350076436 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/trtd56/autonlp-wrime_joy_only-117396 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("trtd56/autonlp-wrime_joy_only-117396", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("trtd56/autonlp-wrime_joy_only-117396", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
textattack/bert-base-uncased-yelp-polarity
textattack
2021-05-20T07:49:07Z
16,043
4
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `bert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the yelp_polarity dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 16, a learning rate of 5e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.9699473684210527, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/bert-base-uncased-rotten-tomatoes
textattack
2021-05-20T07:46:20Z
422
1
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `bert-base-uncased` model was fine-tuned for sequence classificationusing TextAttack and the rotten_tomatoes dataset loaded using the `nlp` library. The model was fine-tuned for 10 epochs with a batch size of 16, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.875234521575985, as measured by the eval set accuracy, found after 4 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/bert-base-uncased-WNLI
textattack
2021-05-20T07:39:22Z
44
1
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `bert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 64, a learning rate of 5e-05, and a maximum sequence length of 256. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.5633802816901409, as measured by the eval set accuracy, found after 1 epoch. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
textattack/bert-base-uncased-RTE
textattack
2021-05-20T07:36:18Z
81
3
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
## TextAttack Model Card This `bert-base-uncased` model was fine-tuned for sequence classification using TextAttack and the glue dataset loaded using the `nlp` library. The model was fine-tuned for 5 epochs with a batch size of 8, a learning rate of 2e-05, and a maximum sequence length of 128. Since this was a classification task, the model was trained with a cross-entropy loss function. The best score the model achieved on this task was 0.7256317689530686, as measured by the eval set accuracy, found after 2 epochs. For more information, check out [TextAttack on Github](https://github.com/QData/TextAttack).
soniakris/Sonia_model
soniakris
2021-05-20T07:09:49Z
4
0
transformers
[ "transformers", "tf", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
Tensor-Flow Model using MASK token
socialmediaie/TRAC2020_ENG_C_bert-base-uncased
socialmediaie
2021-05-20T06:57:39Z
6
0
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020 Models and predictions for submission to TRAC - 2020 Second Workshop on Trolling, Aggression and Cyberbullying. Our trained models as well as evaluation metrics during traing are available at: https://databank.illinois.edu/datasets/IDB-8882752# We also make a few of our models available in HuggingFace's models repository at https://huggingface.co/socialmediaie/, these models can be further fine-tuned on your dataset of choice. Our approach is described in our paper titled: > Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). The source code for training this model and more details can be found on our code repository: https://github.com/socialmediaie/TRAC2020 NOTE: These models are retrained for uploading here after our submission so the evaluation measures may be slightly different from the ones reported in the paper. If you plan to use the dataset please cite the following resources: * Mishra, Sudhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. "Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020." In Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020). * Mishra, Shubhanshu, Shivangi Prasad, and Shubhanshu Mishra. 2020. “Trained Models for Multilingual Joint Fine-Tuning of Transformer Models for Identifying Trolling, Aggression and Cyberbullying at TRAC 2020.” University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-8882752_V1. ``` @inproceedings{Mishra2020TRAC, author = {Mishra, Sudhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, booktitle = {Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020)}, title = {{Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, year = {2020} } @data{illinoisdatabankIDB-8882752, author = {Mishra, Shubhanshu and Prasad, Shivangi and Mishra, Shubhanshu}, doi = {10.13012/B2IDB-8882752_V1}, publisher = {University of Illinois at Urbana-Champaign}, title = {{Trained models for Multilingual Joint Fine-tuning of Transformer models for identifying Trolling, Aggression and Cyberbullying at TRAC 2020}}, url = {https://doi.org/10.13012/B2IDB-8882752{\_}V1}, year = {2020} } ``` ## Usage The models can be used via the following code: ```python from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification import torch from pathlib import Path from scipy.special import softmax import numpy as np import pandas as pd TASK_LABEL_IDS = { "Sub-task A": ["OAG", "NAG", "CAG"], "Sub-task B": ["GEN", "NGEN"], "Sub-task C": ["OAG-GEN", "OAG-NGEN", "NAG-GEN", "NAG-NGEN", "CAG-GEN", "CAG-NGEN"] } model_version="databank" # other option is hugging face library if model_version == "databank": # Make sure you have downloaded the required model file from https://databank.illinois.edu/datasets/IDB-8882752 # Unzip the file at some model_path (we are using: "databank_model") model_path = next(Path("databank_model").glob("./*/output/*/model")) # Assuming you get the following type of structure inside "databank_model" # 'databank_model/ALL/Sub-task C/output/bert-base-multilingual-uncased/model' lang, task, _, base_model, _ = model_path.parts tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(model_path) else: lang, task, base_model = "ALL", "Sub-task C", "bert-base-multilingual-uncased" base_model = f"socialmediaie/TRAC2020_{lang}_{lang.split()[-1]}_{base_model}" tokenizer = AutoTokenizer.from_pretrained(base_model) model = AutoModelForSequenceClassification.from_pretrained(base_model) # For doing inference set model in eval mode model.eval() # If you want to further fine-tune the model you can reset the model to model.train() task_labels = TASK_LABEL_IDS[task] sentence = "This is a good cat and this is a bad dog." processed_sentence = f"{tokenizer.cls_token} {sentence}" tokens = tokenizer.tokenize(sentence) indexed_tokens = tokenizer.convert_tokens_to_ids(tokens) tokens_tensor = torch.tensor([indexed_tokens]) with torch.no_grad(): logits, = model(tokens_tensor, labels=None) logits preds = logits.detach().cpu().numpy() preds_probs = softmax(preds, axis=1) preds = np.argmax(preds_probs, axis=1) preds_labels = np.array(task_labels)[preds] print(dict(zip(task_labels, preds_probs[0])), preds_labels) """You should get an output as follows: ({'CAG-GEN': 0.06762535, 'CAG-NGEN': 0.03244293, 'NAG-GEN': 0.6897794, 'NAG-NGEN': 0.15498641, 'OAG-GEN': 0.034373745, 'OAG-NGEN': 0.020792078}, array(['NAG-GEN'], dtype='<U8')) """ ```
smeylan/childes-bert
smeylan
2021-05-20T06:49:00Z
34
0
transformers
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "language-modeling", "en", "dataset:childes", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: "en" tags: - language-modeling license: "cc-by-sa-4.0" datasets: - childes ---
sismetanin/sbert-ru-sentiment-rusentiment
sismetanin
2021-05-20T06:38:36Z
367
0
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "sentiment analysis", "Russian", "ru", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - ru tags: - sentiment analysis - Russian --- ## SBERT-Large-Base-ru-sentiment-RuSentiment SBERT-Large-ru-sentiment-RuSentiment is a [SBERT-Large](https://huggingface.co/sberbank-ai/sbert_large_nlu_ru) model fine-tuned on [RuSentiment dataset](https://github.com/text-machine-lab/rusentiment) of general-domain Russian-language posts from the largest Russian social network, VKontakte. <table> <thead> <tr> <th rowspan="4">Model</th> <th rowspan="4">Score<br></th> <th rowspan="4">Rank</th> <th colspan="12">Dataset</th> </tr> <tr> <td colspan="6">SentiRuEval-2016<br></td> <td colspan="2" rowspan="2">RuSentiment</td> <td rowspan="2">KRND</td> <td rowspan="2">LINIS Crowd</td> <td rowspan="2">RuTweetCorp</td> <td rowspan="2">RuReviews</td> </tr> <tr> <td colspan="3">TC</td> <td colspan="3">Banks</td> </tr> <tr> <td>micro F1</td> <td>macro F1</td> <td>F1</td> <td>micro F1</td> <td>macro F1</td> <td>F1</td> <td>wighted</td> <td>F1</td> <td>F1</td> <td>F1</td> <td>F1</td> <td>F1</td> </tr> </thead> <tbody> <tr> <td>SOTA</td> <td>n/s</td> <td></td> <td>76.71</td> <td>66.40</td> <td>70.68</td> <td>67.51</td> <td>69.53</td> <td>74.06</td> <td>78.50</td> <td>n/s</td> <td>73.63</td> <td>60.51</td> <td>83.68</td> <td>77.44</td> </tr> <tr> <td>XLM-RoBERTa-Large</td> <td>76.37</td> <td>1</td> <td>82.26</td> <td>76.36</td> <td>79.42</td> <td>76.35</td> <td>76.08</td> <td>80.89</td> <td>78.31</td> <td>75.27</td> <td>75.17</td> <td>60.03</td> <td>88.91</td> <td>78.81</td> </tr> <tr> <td>SBERT-Large</td> <td>75.43</td> <td>2</td> <td>78.40</td> <td>71.36</td> <td>75.14</td> <td>72.39</td> <td>71.87</td> <td>77.72</td> <td>78.58</td> <td>75.85</td> <td>74.20</td> <td>60.64</td> <td>88.66</td> <td>77.41</td> </tr> <tr> <td>MBARTRuSumGazeta</td> <td>74.70</td> <td>3</td> <td>76.06</td> <td>68.95</td> <td>73.04</td> <td>72.34</td> <td>71.93</td> <td>77.83</td> <td>76.71</td> <td>73.56</td> <td>74.18</td> <td>60.54</td> <td>87.22</td> <td>77.51</td> </tr> <tr> <td>Conversational RuBERT</td> <td>74.44</td> <td>4</td> <td>76.69</td> <td>69.09</td> <td>73.11</td> <td>69.44</td> <td>68.68</td> <td>75.56</td> <td>77.31</td> <td>74.40</td> <td>73.10</td> <td>59.95</td> <td>87.86</td> <td>77.78</td> </tr> <tr> <td>LaBSE</td> <td>74.11</td> <td>5</td> <td>77.00</td> <td>69.19</td> <td>73.55</td> <td>70.34</td> <td>69.83</td> <td>76.38</td> <td>74.94</td> <td>70.84</td> <td>73.20</td> <td>59.52</td> <td>87.89</td> <td>78.47</td> </tr> <tr> <td>XLM-RoBERTa-Base</td> <td>73.60</td> <td>6</td> <td>76.35</td> <td>69.37</td> <td>73.42</td> <td>68.45</td> <td>67.45</td> <td>74.05</td> <td>74.26</td> <td>70.44</td> <td>71.40</td> <td>60.19</td> <td>87.90</td> <td>78.28</td> </tr> <tr> <td>RuBERT</td> <td>73.45</td> <td>7</td> <td>74.03</td> <td>66.14</td> <td>70.75</td> <td>66.46</td> <td>66.40</td> <td>73.37</td> <td>75.49</td> <td>71.86</td> <td>72.15</td> <td>60.55</td> <td>86.99</td> <td>77.41</td> </tr> <tr> <td>MBART-50-Large-Many-to-Many</td> <td>73.15</td> <td>8</td> <td>75.38</td> <td>67.81</td> <td>72.26</td> <td>67.13</td> <td>66.97</td> <td>73.85</td> <td>74.78</td> <td>70.98</td> <td>71.98</td> <td>59.20</td> <td>87.05</td> <td>77.24</td> </tr> <tr> <td>SlavicBERT</td> <td>71.96</td> <td>9</td> <td>71.45</td> <td>63.03</td> <td>68.44</td> <td>64.32</td> <td>63.99</td> <td>71.31</td> <td>72.13</td> <td>67.57</td> <td>72.54</td> <td>58.70</td> <td>86.43</td> <td>77.16</td> </tr> <tr> <td>EnRuDR-BERT</td> <td>71.51</td> <td>10</td> <td>72.56</td> <td>64.74</td> <td>69.07</td> <td>61.44</td> <td>60.21</td> <td>68.34</td> <td>74.19</td> <td>69.94</td> <td>69.33</td> <td>56.55</td> <td>87.12</td> <td>77.95</td> </tr> <tr> <td>RuDR-BERT</td> <td>71.14</td> <td>11</td> <td>72.79</td> <td>64.23</td> <td>68.36</td> <td>61.86</td> <td>60.92</td> <td>68.48</td> <td>74.65</td> <td>70.63</td> <td>68.74</td> <td>54.45</td> <td>87.04</td> <td>77.91</td> </tr> <tr> <td>MBART-50-Large</td> <td>69.46</td> <td>12</td> <td>70.91</td> <td>62.67</td> <td>67.24</td> <td>61.12</td> <td>60.25</td> <td>68.41</td> <td>72.88</td> <td>68.63</td> <td>70.52</td> <td>46.39</td> <td>86.48</td> <td>77.52</td> </tr> </tbody> </table> The table shows per-task scores and a macro-average of those scores to determine a models’s position on the leaderboard. For datasets with multiple evaluation metrics (e.g., macro F1 and weighted F1 for RuSentiment), we use an unweighted average of the metrics as the score for the task when computing the overall macro-average. The same strategy for comparing models’ results was applied in the GLUE benchmark. ## Citation If you find this repository helpful, feel free to cite our publication: ``` @article{Smetanin2021Deep, author = {Sergey Smetanin and Mikhail Komarov}, title = {Deep transfer learning baselines for sentiment analysis in Russian}, journal = {Information Processing & Management}, volume = {58}, number = {3}, pages = {102484}, year = {2021}, issn = {0306-4573}, doi = {0.1016/j.ipm.2020.102484} } ``` Dataset: ``` @inproceedings{rogers2018rusentiment, title={RuSentiment: An enriched sentiment analysis dataset for social media in Russian}, author={Rogers, Anna and Romanov, Alexey and Rumshisky, Anna and Volkova, Svitlana and Gronas, Mikhail and Gribov, Alex}, booktitle={Proceedings of the 27th international conference on computational linguistics}, pages={755--763}, year={2018} } ```
sismetanin/sbert-ru-sentiment-krnd
sismetanin
2021-05-20T06:27:51Z
16
0
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "sentiment analysis", "Russian", "SBERT-Large", "ru", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - ru tags: - sentiment analysis - Russian - SBERT-Large --- ## SBERT-Large on Kaggle Russian News Dataset <table> <thead> <tr> <th rowspan="4">Model</th> <th rowspan="4">Score<br></th> <th rowspan="4">Rank</th> <th colspan="12">Dataset</th> </tr> <tr> <td colspan="6">SentiRuEval-2016<br></td> <td colspan="2" rowspan="2">RuSentiment</td> <td rowspan="2">KRND</td> <td rowspan="2">LINIS Crowd</td> <td rowspan="2">RuTweetCorp</td> <td rowspan="2">RuReviews</td> </tr> <tr> <td colspan="3">TC</td> <td colspan="3">Banks</td> </tr> <tr> <td>micro F<sub>1</sub></td> <td>macro F<sub>1</sub></td> <td>F<sub>1</sub></td> <td>micro F<sub>1</sub></td> <td>macro F<sub>1</sub></td> <td>F<sub>1</sub></td> <td>wighted F<sub>1</sub></td> <td>F<sub>1</sub></td> <td>F<sub>1</sub></td> <td>F<sub>1</sub></td> <td>F<sub>1</sub></td> <td>F<sub>1</sub></td> </tr> </thead> <tbody> <tr> <td>SOTA</td> <td>n/s</td> <td></td> <td>76.71</td> <td>66.40</td> <td>70.68</td> <td>67.51</td> <td>69.53</td> <td>74.06</td> <td>78.50</td> <td>n/s</td> <td>73.63</td> <td>60.51</td> <td>83.68</td> <td>77.44</td> </tr> <tr> <td>XLM-RoBERTa-Large</td> <td>76.37</td> <td>1</td> <td>82.26</td> <td>76.36</td> <td>79.42</td> <td>76.35</td> <td>76.08</td> <td>80.89</td> <td>78.31</td> <td>75.27</td> <td>75.17</td> <td>60.03</td> <td>88.91</td> <td>78.81</td> </tr> <tr> <td>SBERT-Large</td> <td>75.43</td> <td>2</td> <td>78.40</td> <td>71.36</td> <td>75.14</td> <td>72.39</td> <td>71.87</td> <td>77.72</td> <td>78.58</td> <td>75.85</td> <td>74.20</td> <td>60.64</td> <td>88.66</td> <td>77.41</td> </tr> <tr> <td>MBARTRuSumGazeta</td> <td>74.70</td> <td>3</td> <td>76.06</td> <td>68.95</td> <td>73.04</td> <td>72.34</td> <td>71.93</td> <td>77.83</td> <td>76.71</td> <td>73.56</td> <td>74.18</td> <td>60.54</td> <td>87.22</td> <td>77.51</td> </tr> <tr> <td>Conversational RuBERT</td> <td>74.44</td> <td>4</td> <td>76.69</td> <td>69.09</td> <td>73.11</td> <td>69.44</td> <td>68.68</td> <td>75.56</td> <td>77.31</td> <td>74.40</td> <td>73.10</td> <td>59.95</td> <td>87.86</td> <td>77.78</td> </tr> <tr> <td>LaBSE</td> <td>74.11</td> <td>5</td> <td>77.00</td> <td>69.19</td> <td>73.55</td> <td>70.34</td> <td>69.83</td> <td>76.38</td> <td>74.94</td> <td>70.84</td> <td>73.20</td> <td>59.52</td> <td>87.89</td> <td>78.47</td> </tr> <tr> <td>XLM-RoBERTa-Base</td> <td>73.60</td> <td>6</td> <td>76.35</td> <td>69.37</td> <td>73.42</td> <td>68.45</td> <td>67.45</td> <td>74.05</td> <td>74.26</td> <td>70.44</td> <td>71.40</td> <td>60.19</td> <td>87.90</td> <td>78.28</td> </tr> <tr> <td>RuBERT</td> <td>73.45</td> <td>7</td> <td>74.03</td> <td>66.14</td> <td>70.75</td> <td>66.46</td> <td>66.40</td> <td>73.37</td> <td>75.49</td> <td>71.86</td> <td>72.15</td> <td>60.55</td> <td>86.99</td> <td>77.41</td> </tr> <tr> <td>MBART-50-Large-Many-to-Many</td> <td>73.15</td> <td>8</td> <td>75.38</td> <td>67.81</td> <td>72.26</td> <td>67.13</td> <td>66.97</td> <td>73.85</td> <td>74.78</td> <td>70.98</td> <td>71.98</td> <td>59.20</td> <td>87.05</td> <td>77.24</td> </tr> <tr> <td>SlavicBERT</td> <td>71.96</td> <td>9</td> <td>71.45</td> <td>63.03</td> <td>68.44</td> <td>64.32</td> <td>63.99</td> <td>71.31</td> <td>72.13</td> <td>67.57</td> <td>72.54</td> <td>58.70</td> <td>86.43</td> <td>77.16</td> </tr> <tr> <td>EnRuDR-BERT</td> <td>71.51</td> <td>10</td> <td>72.56</td> <td>64.74</td> <td>69.07</td> <td>61.44</td> <td>60.21</td> <td>68.34</td> <td>74.19</td> <td>69.94</td> <td>69.33</td> <td>56.55</td> <td>87.12</td> <td>77.95</td> </tr> <tr> <td>RuDR-BERT</td> <td>71.14</td> <td>11</td> <td>72.79</td> <td>64.23</td> <td>68.36</td> <td>61.86</td> <td>60.92</td> <td>68.48</td> <td>74.65</td> <td>70.63</td> <td>68.74</td> <td>54.45</td> <td>87.04</td> <td>77.91</td> </tr> <tr> <td>MBART-50-Large</td> <td>69.46</td> <td>12</td> <td>70.91</td> <td>62.67</td> <td>67.24</td> <td>61.12</td> <td>60.25</td> <td>68.41</td> <td>72.88</td> <td>68.63</td> <td>70.52</td> <td>46.39</td> <td>86.48</td> <td>77.52</td> </tr> </tbody> </table>
sismetanin/rubert-toxic-pikabu-2ch
sismetanin
2021-05-20T06:16:03Z
305
8
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "toxic comments classification", "ru", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - ru tags: - toxic comments classification --- ## RuBERT-Toxic RuBERT-Toxic is a [RuBERT](https://huggingface.co/DeepPavlov/rubert-base-cased) model fine-tuned on [Kaggle Russian Language Toxic Comments Dataset](https://www.kaggle.com/blackmoon/russian-language-toxic-comments). You can find a detailed description of the data used and the fine-tuning process in [this article](http://doi.org/10.28995/2075-7182-2020-19-1149-1159). You can also find this information at [GitHub](https://github.com/sismetanin/toxic-comments-detection-in-russian). | System | P | R | F<sub>1</sub> | | ------------- | ------------- | ------------- | ------------- | | MNB-Toxic | 87.01% | 81.22% | 83.21% | | M-BERT<sub>Base</sub>-Toxic | 91.19% | 91.10% | 91.15% | | <b>RuBERT-Toxic</b> | <b>91.91%</b> | <b>92.51%</b> | <b>92.20%</b> | | M-USE<sub>CNN</sub>-Toxic | 89.69% | 90.14% | 89.91% | | M-USE<sub>Trans</sub>-Toxic | 90.85% | 91.92% | 91.35% | We fine-tuned two versions of Multilingual Universal Sentence Encoder (M-USE), Multilingual Bidirectional Encoder Representations from Transformers (M-BERT) and RuBERT for toxic comments detection in Russian. Fine-tuned RuBERT-Toxic achieved F<sub>1</sub> = 92.20%, demonstrating the best classification score. ## Toxic Comments Dataset [Kaggle Russian Language Toxic Comments Dataset](https://www.kaggle.com/blackmoon/russian-language-toxic-comments) is the collection of Russian-language annotated comments from [2ch](https://2ch.hk/) and [Pikabu](https://pikabu.ru/), which was published on Kaggle in 2019. It consists of 14412 comments, where 4826 texts were labelled as toxic, and 9586 were labelled as non-toxic. The average length of comments is ~175 characters; the minimum length is 21, and the maximum is 7403. ## Citation If you find this repository helpful, feel free to cite our publication: ``` @INPROCEEDINGS{Smetanin2020Toxic, author={Sergey Smetanin}, booktitle={Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference “Dialogue 2020”}, title={Toxic Comments Detection in Russian}, year={2020}, doi={10.28995/2075-7182-2020-19-1149-1159} } ```
sismetanin/rubert-ru-sentiment-rusentiment
sismetanin
2021-05-20T06:11:34Z
416
6
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "sentiment analysis", "Russian", "ru", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - ru tags: - sentiment analysis - Russian --- ## RuBERT-Base-ru-sentiment-RuSentiment RuBERT-ru-sentiment-RuSentiment is a [RuBERT](https://huggingface.co/DeepPavlov/rubert-base-cased) model fine-tuned on [RuSentiment dataset](https://github.com/text-machine-lab/rusentiment) of general-domain Russian-language posts from the largest Russian social network, VKontakte. <table> <thead> <tr> <th rowspan="4">Model</th> <th rowspan="4">Score<br></th> <th rowspan="4">Rank</th> <th colspan="12">Dataset</th> </tr> <tr> <td colspan="6">SentiRuEval-2016<br></td> <td colspan="2" rowspan="2">RuSentiment</td> <td rowspan="2">KRND</td> <td rowspan="2">LINIS Crowd</td> <td rowspan="2">RuTweetCorp</td> <td rowspan="2">RuReviews</td> </tr> <tr> <td colspan="3">TC</td> <td colspan="3">Banks</td> </tr> <tr> <td>micro F1</td> <td>macro F1</td> <td>F1</td> <td>micro F1</td> <td>macro F1</td> <td>F1</td> <td>wighted</td> <td>F1</td> <td>F1</td> <td>F1</td> <td>F1</td> <td>F1</td> </tr> </thead> <tbody> <tr> <td>SOTA</td> <td>n/s</td> <td></td> <td>76.71</td> <td>66.40</td> <td>70.68</td> <td>67.51</td> <td>69.53</td> <td>74.06</td> <td>78.50</td> <td>n/s</td> <td>73.63</td> <td>60.51</td> <td>83.68</td> <td>77.44</td> </tr> <tr> <td>XLM-RoBERTa-Large</td> <td>76.37</td> <td>1</td> <td>82.26</td> <td>76.36</td> <td>79.42</td> <td>76.35</td> <td>76.08</td> <td>80.89</td> <td>78.31</td> <td>75.27</td> <td>75.17</td> <td>60.03</td> <td>88.91</td> <td>78.81</td> </tr> <tr> <td>SBERT-Large</td> <td>75.43</td> <td>2</td> <td>78.40</td> <td>71.36</td> <td>75.14</td> <td>72.39</td> <td>71.87</td> <td>77.72</td> <td>78.58</td> <td>75.85</td> <td>74.20</td> <td>60.64</td> <td>88.66</td> <td>77.41</td> </tr> <tr> <td>MBARTRuSumGazeta</td> <td>74.70</td> <td>3</td> <td>76.06</td> <td>68.95</td> <td>73.04</td> <td>72.34</td> <td>71.93</td> <td>77.83</td> <td>76.71</td> <td>73.56</td> <td>74.18</td> <td>60.54</td> <td>87.22</td> <td>77.51</td> </tr> <tr> <td>Conversational RuBERT</td> <td>74.44</td> <td>4</td> <td>76.69</td> <td>69.09</td> <td>73.11</td> <td>69.44</td> <td>68.68</td> <td>75.56</td> <td>77.31</td> <td>74.40</td> <td>73.10</td> <td>59.95</td> <td>87.86</td> <td>77.78</td> </tr> <tr> <td>LaBSE</td> <td>74.11</td> <td>5</td> <td>77.00</td> <td>69.19</td> <td>73.55</td> <td>70.34</td> <td>69.83</td> <td>76.38</td> <td>74.94</td> <td>70.84</td> <td>73.20</td> <td>59.52</td> <td>87.89</td> <td>78.47</td> </tr> <tr> <td>XLM-RoBERTa-Base</td> <td>73.60</td> <td>6</td> <td>76.35</td> <td>69.37</td> <td>73.42</td> <td>68.45</td> <td>67.45</td> <td>74.05</td> <td>74.26</td> <td>70.44</td> <td>71.40</td> <td>60.19</td> <td>87.90</td> <td>78.28</td> </tr> <tr> <td>RuBERT</td> <td>73.45</td> <td>7</td> <td>74.03</td> <td>66.14</td> <td>70.75</td> <td>66.46</td> <td>66.40</td> <td>73.37</td> <td>75.49</td> <td>71.86</td> <td>72.15</td> <td>60.55</td> <td>86.99</td> <td>77.41</td> </tr> <tr> <td>MBART-50-Large-Many-to-Many</td> <td>73.15</td> <td>8</td> <td>75.38</td> <td>67.81</td> <td>72.26</td> <td>67.13</td> <td>66.97</td> <td>73.85</td> <td>74.78</td> <td>70.98</td> <td>71.98</td> <td>59.20</td> <td>87.05</td> <td>77.24</td> </tr> <tr> <td>SlavicBERT</td> <td>71.96</td> <td>9</td> <td>71.45</td> <td>63.03</td> <td>68.44</td> <td>64.32</td> <td>63.99</td> <td>71.31</td> <td>72.13</td> <td>67.57</td> <td>72.54</td> <td>58.70</td> <td>86.43</td> <td>77.16</td> </tr> <tr> <td>EnRuDR-BERT</td> <td>71.51</td> <td>10</td> <td>72.56</td> <td>64.74</td> <td>69.07</td> <td>61.44</td> <td>60.21</td> <td>68.34</td> <td>74.19</td> <td>69.94</td> <td>69.33</td> <td>56.55</td> <td>87.12</td> <td>77.95</td> </tr> <tr> <td>RuDR-BERT</td> <td>71.14</td> <td>11</td> <td>72.79</td> <td>64.23</td> <td>68.36</td> <td>61.86</td> <td>60.92</td> <td>68.48</td> <td>74.65</td> <td>70.63</td> <td>68.74</td> <td>54.45</td> <td>87.04</td> <td>77.91</td> </tr> <tr> <td>MBART-50-Large</td> <td>69.46</td> <td>12</td> <td>70.91</td> <td>62.67</td> <td>67.24</td> <td>61.12</td> <td>60.25</td> <td>68.41</td> <td>72.88</td> <td>68.63</td> <td>70.52</td> <td>46.39</td> <td>86.48</td> <td>77.52</td> </tr> </tbody> </table> The table shows per-task scores and a macro-average of those scores to determine a models’s position on the leaderboard. For datasets with multiple evaluation metrics (e.g., macro F1 and weighted F1 for RuSentiment), we use an unweighted average of the metrics as the score for the task when computing the overall macro-average. The same strategy for comparing models’ results was applied in the GLUE benchmark. ## Citation If you find this repository helpful, feel free to cite our publication: ``` @article{Smetanin2021Deep, author = {Sergey Smetanin and Mikhail Komarov}, title = {Deep transfer learning baselines for sentiment analysis in Russian}, journal = {Information Processing & Management}, volume = {58}, number = {3}, pages = {102484}, year = {2021}, issn = {0306-4573}, doi = {0.1016/j.ipm.2020.102484} } ``` Dataset: ``` @inproceedings{rogers2018rusentiment, title={RuSentiment: An enriched sentiment analysis dataset for social media in Russian}, author={Rogers, Anna and Romanov, Alexey and Rumshisky, Anna and Volkova, Svitlana and Gronas, Mikhail and Gribov, Alex}, booktitle={Proceedings of the 27th international conference on computational linguistics}, pages={755--763}, year={2018} } ```
sismetanin/rubert-ru-sentiment-rureviews
sismetanin
2021-05-20T06:09:59Z
116
2
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "sentiment analysis", "Russian", "ru", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - ru tags: - sentiment analysis - Russian --- ## RuBERT-ru-sentiment-RuReviews RuBERT-ru-sentiment-RuReviews is a [RuBERT](https://huggingface.co/DeepPavlov/rubert-base-cased) model fine-tuned on [RuReviews dataset](https://github.com/sismetanin/rureviews) of Russian-language reviews from the ”Women’s Clothes and Accessories” product category on the primary e-commerce site in Russia. <table> <thead> <tr> <th rowspan="4">Model</th> <th rowspan="4">Score<br></th> <th rowspan="4">Rank</th> <th colspan="12">Dataset</th> </tr> <tr> <td colspan="6">SentiRuEval-2016<br></td> <td colspan="2" rowspan="2">RuSentiment</td> <td rowspan="2">KRND</td> <td rowspan="2">LINIS Crowd</td> <td rowspan="2">RuTweetCorp</td> <td rowspan="2">RuReviews</td> </tr> <tr> <td colspan="3">TC</td> <td colspan="3">Banks</td> </tr> <tr> <td>micro F1</td> <td>macro F1</td> <td>F1</td> <td>micro F1</td> <td>macro F1</td> <td>F1</td> <td>wighted</td> <td>F1</td> <td>F1</td> <td>F1</td> <td>F1</td> <td>F1</td> </tr> </thead> <tbody> <tr> <td>SOTA</td> <td>n/s</td> <td></td> <td>76.71</td> <td>66.40</td> <td>70.68</td> <td>67.51</td> <td>69.53</td> <td>74.06</td> <td>78.50</td> <td>n/s</td> <td>73.63</td> <td>60.51</td> <td>83.68</td> <td>77.44</td> </tr> <tr> <td>XLM-RoBERTa-Large</td> <td>76.37</td> <td>1</td> <td>82.26</td> <td>76.36</td> <td>79.42</td> <td>76.35</td> <td>76.08</td> <td>80.89</td> <td>78.31</td> <td>75.27</td> <td>75.17</td> <td>60.03</td> <td>88.91</td> <td>78.81</td> </tr> <tr> <td>SBERT-Large</td> <td>75.43</td> <td>2</td> <td>78.40</td> <td>71.36</td> <td>75.14</td> <td>72.39</td> <td>71.87</td> <td>77.72</td> <td>78.58</td> <td>75.85</td> <td>74.20</td> <td>60.64</td> <td>88.66</td> <td>77.41</td> </tr> <tr> <td>MBARTRuSumGazeta</td> <td>74.70</td> <td>3</td> <td>76.06</td> <td>68.95</td> <td>73.04</td> <td>72.34</td> <td>71.93</td> <td>77.83</td> <td>76.71</td> <td>73.56</td> <td>74.18</td> <td>60.54</td> <td>87.22</td> <td>77.51</td> </tr> <tr> <td>Conversational RuBERT</td> <td>74.44</td> <td>4</td> <td>76.69</td> <td>69.09</td> <td>73.11</td> <td>69.44</td> <td>68.68</td> <td>75.56</td> <td>77.31</td> <td>74.40</td> <td>73.10</td> <td>59.95</td> <td>87.86</td> <td>77.78</td> </tr> <tr> <td>LaBSE</td> <td>74.11</td> <td>5</td> <td>77.00</td> <td>69.19</td> <td>73.55</td> <td>70.34</td> <td>69.83</td> <td>76.38</td> <td>74.94</td> <td>70.84</td> <td>73.20</td> <td>59.52</td> <td>87.89</td> <td>78.47</td> </tr> <tr> <td>XLM-RoBERTa-Base</td> <td>73.60</td> <td>6</td> <td>76.35</td> <td>69.37</td> <td>73.42</td> <td>68.45</td> <td>67.45</td> <td>74.05</td> <td>74.26</td> <td>70.44</td> <td>71.40</td> <td>60.19</td> <td>87.90</td> <td>78.28</td> </tr> <tr> <td>RuBERT</td> <td>73.45</td> <td>7</td> <td>74.03</td> <td>66.14</td> <td>70.75</td> <td>66.46</td> <td>66.40</td> <td>73.37</td> <td>75.49</td> <td>71.86</td> <td>72.15</td> <td>60.55</td> <td>86.99</td> <td>77.41</td> </tr> <tr> <td>MBART-50-Large-Many-to-Many</td> <td>73.15</td> <td>8</td> <td>75.38</td> <td>67.81</td> <td>72.26</td> <td>67.13</td> <td>66.97</td> <td>73.85</td> <td>74.78</td> <td>70.98</td> <td>71.98</td> <td>59.20</td> <td>87.05</td> <td>77.24</td> </tr> <tr> <td>SlavicBERT</td> <td>71.96</td> <td>9</td> <td>71.45</td> <td>63.03</td> <td>68.44</td> <td>64.32</td> <td>63.99</td> <td>71.31</td> <td>72.13</td> <td>67.57</td> <td>72.54</td> <td>58.70</td> <td>86.43</td> <td>77.16</td> </tr> <tr> <td>EnRuDR-BERT</td> <td>71.51</td> <td>10</td> <td>72.56</td> <td>64.74</td> <td>69.07</td> <td>61.44</td> <td>60.21</td> <td>68.34</td> <td>74.19</td> <td>69.94</td> <td>69.33</td> <td>56.55</td> <td>87.12</td> <td>77.95</td> </tr> <tr> <td>RuDR-BERT</td> <td>71.14</td> <td>11</td> <td>72.79</td> <td>64.23</td> <td>68.36</td> <td>61.86</td> <td>60.92</td> <td>68.48</td> <td>74.65</td> <td>70.63</td> <td>68.74</td> <td>54.45</td> <td>87.04</td> <td>77.91</td> </tr> <tr> <td>MBART-50-Large</td> <td>69.46</td> <td>12</td> <td>70.91</td> <td>62.67</td> <td>67.24</td> <td>61.12</td> <td>60.25</td> <td>68.41</td> <td>72.88</td> <td>68.63</td> <td>70.52</td> <td>46.39</td> <td>86.48</td> <td>77.52</td> </tr> </tbody> </table> The table shows per-task scores and a macro-average of those scores to determine a models’s position on the leaderboard. For datasets with multiple evaluation metrics (e.g., macro F1 and weighted F1 for RuSentiment), we use an unweighted average of the metrics as the score for the task when computing the overall macro-average. The same strategy for comparing models’ results was applied in the GLUE benchmark. ## Citation If you find this repository helpful, feel free to cite our publication: ``` @article{Smetanin2021Deep, author = {Sergey Smetanin and Mikhail Komarov}, title = {Deep transfer learning baselines for sentiment analysis in Russian}, journal = {Information Processing & Management}, volume = {58}, number = {3}, pages = {102484}, year = {2021}, issn = {0306-4573}, doi = {0.1016/j.ipm.2020.102484} } ``` Dataset: ``` @INPROCEEDINGS{Smetanin2019Sentiment, author={Sergey Smetanin and Michail Komarov}, booktitle={2019 IEEE 21st Conference on Business Informatics (CBI)}, title={Sentiment Analysis of Product Reviews in Russian using Convolutional Neural Networks}, year={2019}, volume={01}, pages={482-486}, doi={10.1109/CBI.2019.00062}, ISSN={2378-1963}, month={July} } ```
shoarora/electra-small-owt
shoarora
2021-05-20T05:54:08Z
4
0
transformers
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
# ELECTRA-small-OWT This is an unnoficial implementation of an [ELECTRA](https://openreview.net/forum?id=r1xMH1BtvB) small model, trained on the [OpenWebText corpus](https://skylion007.github.io/OpenWebTextCorpus/). Differences from official ELECTRA models: - we use a `BertForMaskedLM` as the generator and `BertForTokenClassification` as the discriminator - they use an embedding projection layer, but Bert doesn't have one ## Pretraining ttask ![electra task diagram](https://github.com/shoarora/lmtuners/raw/master/assets/electra.png) (figure from [Clark et al. 2020](https://openreview.net/pdf?id=r1xMH1BtvB)) ELECTRA uses discriminative LM / replaced-token-detection for pretraining. This involves a generator (a Masked LM model) creating examples for a discriminator to classify as original or replaced for each token. ## Usage ```python from transformers import BertForSequenceClassification, BertTokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') electra = BertForSequenceClassification.from_pretrained('shoarora/electra-small-owt') ``` ## Code The pytorch module that implements this task is available [here](https://github.com/shoarora/lmtuners/blob/master/lmtuners/lightning_modules/discriminative_lm.py). Further implementation information [here](https://github.com/shoarora/lmtuners/tree/master/experiments/disc_lm_small), and [here](https://github.com/shoarora/lmtuners/blob/master/experiments/disc_lm_small/train_electra_small.py) is the script that created this model. This specific model was trained with the following params: - `batch_size: 512` - `training_steps: 5e5` - `warmup_steps: 4e4` - `learning_rate: 2e-3` ## Downstream tasks #### GLUE Dev results | Model | # Params | CoLA | SST | MRPC | STS | QQP | MNLI | QNLI | RTE | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | ELECTRA-Small++ | 14M | 57.0 | 91. | 88.0 | 87.5 | 89.0 | 81.3 | 88.4 | 66.7| | ELECTRA-Small-OWT | 14M | 56.8 | 88.3| 87.4 | 86.8 | 88.3 | 78.9 | 87.9 | 68.5| | ELECTRA-Small-OWT (ours) | 17M | 56.3 | 88.4| 75.0 | 86.1 | 89.1 | 77.9 | 83.0 | 67.1| | ALECTRA-Small-OWT (ours) | 4M | 50.6 | 89.1| 86.3 | 87.2 | 89.1 | 78.2 | 85.9 | 69.6| - Table initialized from [ELECTRA github repo](https://github.com/google-research/electra) #### GLUE Test results | Model | # Params | CoLA | SST | MRPC | STS | QQP | MNLI | QNLI | RTE | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | BERT-Base | 110M | 52.1 | 93.5| 84.8 | 85.9 | 89.2 | 84.6 | 90.5 | 66.4| | GPT | 117M | 45.4 | 91.3| 75.7 | 80.0 | 88.5 | 82.1 | 88.1 | 56.0| | ELECTRA-Small++ | 14M | 57.0 | 91.2| 88.0 | 87.5 | 89.0 | 81.3 | 88.4 | 66.7| | ELECTRA-Small-OWT (ours) | 17M | 57.4 | 89.3| 76.2 | 81.9 | 87.5 | 78.1 | 82.4 | 68.1| | ALECTRA-Small-OWT (ours) | 4M | 43.9 | 87.9| 82.1 | 82.0 | 87.6 | 77.9 | 85.8 | 67.5|
junnyu/bert_chinese_mc_base
junnyu
2021-05-20T05:28:56Z
8
3
transformers
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
https://github.com/alibaba-research/ChineseBLUE
seiya/oubiobert-base-uncased
seiya
2021-05-20T05:10:40Z
55
3
transformers
[ "transformers", "pytorch", "jax", "bert", "pretraining", "exbert", "arxiv:2005.07202", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- tags: - exbert license: apache-2.0 --- # ouBioBERT-Base, Uncased Bidirectional Encoder Representations from Transformers for Biomedical Text Mining by Osaka University (ouBioBERT) is a language model based on the BERT-Base (Devlin, et al., 2019) architecture. We pre-trained ouBioBERT on PubMed abstracts from the PubMed baseline (ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline) via our method. The details of the pre-training procedure can be found in Wada, et al. (2020). ## Evaluation We evaluated the performance of ouBioBERT in terms of the biomedical language understanding evaluation (BLUE) benchmark (Peng, et al., 2019). The numbers are mean (standard deviation) on five different random seeds. | Dataset | Task Type | Score | |:----------------|:-----------------------------|-------------:| | MedSTS | Sentence similarity | 84.9 (0.6) | | BIOSSES | Sentence similarity | 92.3 (0.8) | | BC5CDR-disease | Named-entity recognition | 87.4 (0.1) | | BC5CDR-chemical | Named-entity recognition | 93.7 (0.2) | | ShARe/CLEFE | Named-entity recognition | 80.1 (0.4) | | DDI | Relation extraction | 81.1 (1.5) | | ChemProt | Relation extraction | 75.0 (0.3) | | i2b2 2010 | Relation extraction | 74.0 (0.8) | | HoC | Document classification | 86.4 (0.5) | | MedNLI | Inference | 83.6 (0.7) | | **Total** | Macro average of the scores |**83.8 (0.3)**| ## Code for Fine-tuning We made the source code for fine-tuning freely available at [our repository](https://github.com/sy-wada/blue_benchmark_with_transformers). ## Citation If you use our work in your research, please kindly cite the following paper: ```bibtex @misc{2005.07202, Author = {Shoya Wada and Toshihiro Takeda and Shiro Manabe and Shozo Konishi and Jun Kamohara and Yasushi Matsumura}, Title = {A pre-training technique to localize medical BERT and enhance BioBERT}, Year = {2020}, Eprint = {arXiv:2005.07202}, } ``` <a href="https://huggingface.co/exbert/?model=seiya/oubiobert-base-uncased&sentence=Coronavirus%20disease%20(COVID-19)%20is%20caused%20by%20SARS-COV2%20and%20represents%20the%20causative%20agent%20of%20a%20potentially%20fatal%20disease%20that%20is%20of%20great%20global%20public%20health%20concern."> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>