modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 06:31:37
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 06:31:07
card
stringlengths
11
1.01M
LarryAIDraw/InoriV1
LarryAIDraw
2023-07-03T20:26:42Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-03T20:19:50Z
--- license: creativeml-openrail-m --- https://civitai.com/models/12139?modelVersionId=14324
espnet/brianyan918_mustc-v2_en-de_st_ctc_conformer_asrinit_v2_raw_en_de_bpe_tc4000_sp
espnet
2023-07-03T20:12:36Z
2
0
null
[ "region:us" ]
null
2023-07-03T20:09:40Z
- Download model and run inference: `./run.sh --skip_data_prep false --skip_train true --download_model espnet/brianyan918_mustc-v2_en-de_st_ctc_conformer_asrinit_v2_raw_en_de_bpe_tc4000_sp --inference_config conf/tuning/decode_st_conformer_ctc0.3.yaml` |dataset|score|verbose_score| |---|---|---| |decode_st_conformer_ctc0.3_st_model_valid.acc.ave_10best/tst-COMMON.en-de|28.6|61.8/35.1/22.2/14.5 (BP = 0.988 ratio = 0.988 hyp_len = 51068 ref_len = 51699)|
computroidai/COMPUTROID
computroidai
2023-07-03T20:12:36Z
0
0
null
[ "en", "hi", "dataset:Open-Orca/OpenOrca", "license:mit", "region:us" ]
null
2023-07-03T20:10:55Z
--- license: mit datasets: - Open-Orca/OpenOrca language: - en - hi ---
espnet/brianyan918_mustc-v2_en-de_st_md_conformer_asrinit_v3-2_raw_en_de_bpe_tc4000_sp
espnet
2023-07-03T20:08:28Z
0
0
null
[ "region:us" ]
null
2023-07-03T20:04:22Z
- Download model and run inference: `./run.sh --skip_data_prep false --skip_train true --download_model espnet/brianyan918_mustc-v2_en-de_st_md_conformer_asrinit_v3-2_raw_en_de_bpe_tc4000_sp --inference_config conf/tuning/decode_st_md.yaml` |dataset|score|verbose_score| |---|---|---| |decode_st_md_st_model_valid.acc.ave_10best/tst-COMMON.en-de|27.6|61.6/34.6/21.9/14.4 (BP = 0.964 ratio = 0.965 hyp_len = 49877 ref_len = 51699)|
andres-gv/cmi-topics-2
andres-gv
2023-07-03T20:08:21Z
4
0
bertopic
[ "bertopic", "text-classification", "region:us" ]
text-classification
2023-07-03T19:54:05Z
--- pipeline_tag: text-classification library_name: bertopic ---
alphaduriendur/ner-deBERTa-v3-large-conll2003
alphaduriendur
2023-07-03T20:07:39Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "deberta-v2", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-03T06:16:03Z
--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: ner-deBERTa-v3-large-conll2003 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: test args: conll2003 metrics: - name: Precision type: precision value: 0.9235068110373734 - name: Recall type: recall value: 0.9362606232294618 - name: F1 type: f1 value: 0.9298399859328293 - name: Accuracy type: accuracy value: 0.9853128028426833 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner-deBERTa-v3-large-conll2003 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1546 - Precision: 0.9235 - Recall: 0.9363 - F1: 0.9298 - Accuracy: 0.9853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0077 | 1.0 | 878 | 0.1280 | 0.9096 | 0.9265 | 0.9180 | 0.9832 | | 0.0084 | 2.0 | 1756 | 0.1380 | 0.9167 | 0.9299 | 0.9233 | 0.9844 | | 0.0037 | 3.0 | 2634 | 0.1495 | 0.9221 | 0.9347 | 0.9283 | 0.9850 | | 0.0015 | 4.0 | 3512 | 0.1517 | 0.9215 | 0.9347 | 0.9280 | 0.9849 | | 0.0006 | 5.0 | 4390 | 0.1546 | 0.9235 | 0.9363 | 0.9298 | 0.9853 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Nidhiiii/my_awesome_model
Nidhiiii
2023-07-03T19:54:17Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-03T19:13:59Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Nidhiiii/my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Nidhiiii/my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2520 - Validation Loss: 0.1938 - Train Accuracy: 0.9234 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7810, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.2520 | 0.1938 | 0.9234 | 0 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
andersonbcdefg/flan_t5_80m-finetune-samsum-adapter
andersonbcdefg
2023-07-03T19:51:34Z
4
0
peft
[ "peft", "region:us" ]
null
2023-07-03T19:51:33Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
mrizalf7/xlm-r-qa-small-squad
mrizalf7
2023-07-03T19:50:09Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-07-03T18:15:49Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-r-qa-small-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-r-qa-small-squad This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2394 | 1.0 | 5437 | 1.9701 | | 0.9683 | 2.0 | 10874 | 1.9800 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
nikitakapitan/distilbert-base-uncased-finetuned-emotion
nikitakapitan
2023-07-03T19:49:07Z
79
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-03T19:42:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9235 - name: F1 type: f1 value: 0.9235743183364048 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2113 - Accuracy: 0.9235 - F1: 0.9236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8004 | 1.0 | 250 | 0.2959 | 0.9135 | 0.9124 | | 0.2377 | 2.0 | 500 | 0.2113 | 0.9235 | 0.9236 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
PrakhAI/HelloWorld
PrakhAI
2023-07-03T19:22:35Z
0
0
null
[ "dataset:mnist", "license:gpl-3.0", "region:us" ]
null
2023-07-02T01:34:55Z
--- license: gpl-3.0 datasets: - mnist --- Flax handwritten digit (MNIST) classification model trained using https://colab.research.google.com/github/google/flax/blob/main/docs/getting_started.ipynb
practical-dreamer/rpgpt-13b-lora
practical-dreamer
2023-07-03T19:08:32Z
0
2
null
[ "dataset:practicaldreamer/RPGPT_PublicDomain-ShareGPT", "region:us" ]
null
2023-07-03T17:17:03Z
--- datasets: - practicaldreamer/RPGPT_PublicDomain-ShareGPT --- ## Introduction This is my first attempt at training a model for long form character interaction using asterisk roleplay format. There are plenty of general instruction/answer models but most focus on single responses between an ai and a human. My goal for this project is to more closely align the training data with CHARACTER interactions for roleplay. This model is trained on a small synthetic dataset of characters interacting through a variety of scenarios. The Characters, Scenarios and interactions were all generated by GPT4. Intended for research, creative writing, entertainment, DnD campaigns? fun! ## Train Summary [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) ``` duration: ~1.5hrs gpu: 1xA100 80GB epochs: 1.0 speed: 3e-5 sequence_len: 2048 gradient_accumulation_steps: 32 wandb: https://wandb.ai/practicaldreamer/rpgpt/runs/b3sznjpz ``` *Please see the documentation folder for more information* ## Usage This LoRA was trained for use with **Neko-Institute-of-Science/LLaMA-13B-HF** Please follow the prompt format outlined below. *Hint: If you're not sure what to put for your character description (or you're lazy) just ask chatgpt to generate it for you! Example:* ``` Generate a short character description for Dr. Watson (The Adventures of Sherlock Holmes) that includes gender, age, MBTI and speech accent using 30 words or less. ``` ## Prompt Format Context/Memory: ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Write a character roleplay dialogue using asterisk roleplay format based on the following character descriptions and scenario. (Each line in your response must be from the perspective of one of these characters) ## Characters <User-Character Name> (<User-Character Universe>): <User-Character Description> <Bot-Character Name> (Bot-Character Universe): <Bot-Character Description> ## Scenario <Scenario Description> ASSISTANT: ``` Turn Template: ``` <User-Character Name>: \*<1st person action/sensations/thoughts>\* <Spoken Word> \*<1st person action/sensations/thoughts>\* <Bot-Character Name>: \*<1st person action/sensations/thoughts>\* <Spoken Word> \*<1st person action/sensations/thoughts>\* <User-Character Name>: \*<1st person action/sensations/thoughts>\* <Spoken Word> \*<1st person action/sensations/thoughts>\* <Bot-Character Name>: \*<1st person action/sensations/thoughts>\* <Spoken Word> \*<1st person action/sensations/thoughts>\* ... ``` ## Example ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Write a character roleplay dialogue using asterisk roleplay format based on the following character descriptions and scenario. (Each line in your response must be from the perspective of one of these characters) ## Characters Baloo (The Jungle Book): Male, middle-aged bear, ENFP, primarily American accent with slight Indian inflections. Wise, carefree, and friendly, he teaches Mowgli the ways of the jungle. The Queen of Hearts (Alice's Adventures in Wonderland): Female, middle-aged, ENTJ, British English accent; imperious, temperamental, commanding, but quick to change from anger to warmth - the quintessential capricious monarch. ## Scenario In an enchanted glade deep within Wonderland, Baloo finds himself separated from Mowgli and in the Queen of Hearts' territory. Having heard tales of this mercurial ruler, Baloo is intrigued but cautious. To his surprise, the Queen of Hearts approaches him with a broken heart - she has been betrayed by one of her closest confidants. The Queen initially sees Baloo as an opportunity to vent her frustrations and seek validation for her hurt feelings. Baloo, however, quickly recognizes that the Queen's explosive temperament is driving others away and contributing to her own isolation.\n\nUsing his wisdom and patience, Baloo tries to teach the Queen the value of empathy and understanding in forming meaningful relationships. Through their dialogue, they explore their contrasting attitudes toward power, authority, and friendship. The Queen learns that it is not through fear and command that she can find true loyalty, but rather by treating others with kindness. In this somber environment where both characters are out of their comfort zones, can Baloo help the Queen mend her own heart by opening up about his experiences with Mowgli? Will the Queen allow herself to be vulnerable enough to learn from the wise bear? And can these two unlikely friends find common ground in this enchanted glade within Wonderland? ASSISTANT: Baloo: *stumbles into the enchanted glade, looking around curiously* Well, I must've taken a wrong turn back there. Mowgli! *calls out for Mowgli* The Queen of Hearts: *storms into the glade, clutching a broken heart symbol, face contorted in anger* Off with their heads! Everyone's heads! Baloo: *gently scratches his head and approaches the Queen cautiously* Uh, excuse me, ma'am? I couldn't help but notice that you seem rather... upset. The Queen of Hearts: *sniffs haughtily and scowls at Baloo* And who are you to pry into my affairs? You should be bowing to your queen! Baloo: *bows graciously but maintains eye contact* Begging your pardon, Your Majesty. My name is Baloo, and I've heard tales of your... unique temperament. The Queen of Hearts: ``` ## Thanks openaccess-ai-collective https://huggingface.co/openaccess-ai-collective --- license: mit ---
Enymy/t5-base-feedback-generator-saf
Enymy
2023-07-03T19:07:03Z
103
0
transformers
[ "transformers", "pytorch", "tf", "jax", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-03T19:02:02Z
--- tags: - generated_from_keras_callback model-index: - name: t5-base-feedback-generator-saf results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-feedback-generator-saf This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
headflame02/Achaz
headflame02
2023-07-03T18:56:41Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-03T18:53:43Z
--- license: creativeml-openrail-m ---
Sandrro/text_to_subfunction_v3
Sandrro
2023-07-03T18:52:57Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-03T17:24:03Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: text_to_subfunction_v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text_to_subfunction_v3 This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2521 - F1: 0.2335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.538 | 1.0 | 3330 | 4.4469 | 0.0626 | | 3.7842 | 2.0 | 6660 | 3.8135 | 0.1243 | | 3.3021 | 3.0 | 9990 | 3.4758 | 0.1942 | | 3.0384 | 4.0 | 13320 | 3.3084 | 0.2238 | | 2.843 | 5.0 | 16650 | 3.2521 | 0.2335 | ### Framework versions - Transformers 4.27.1 - Pytorch 2.1.0.dev20230414+cu117 - Datasets 2.9.0 - Tokenizers 0.13.3
nolanaatama/vstzthllvd1000pchsrvcmgzb
nolanaatama
2023-07-03T18:52:02Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-03T18:45:44Z
--- license: creativeml-openrail-m ---
geekyrakshit/DeepLabV3-Plus
geekyrakshit
2023-07-03T18:51:23Z
60
0
keras
[ "keras", "segmentation", "tensorflow", "cityscapes", "arxiv:1802.02611", "region:us" ]
null
2023-07-03T17:32:36Z
--- metrics: - accuracy - mean_iou tags: - segmentation - keras - tensorflow - cityscapes --- # DeepLabV3-Plus Keras implementation of the DeepLabV3+ model as proposed by the paper [Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1802.02611)(ECCV 2018). The models were trained on the fine-annotations set of the [Cityscapes dataset](cityscapes-dataset.com) for creating presets for [this PR](https://github.com/keras-team/keras-cv/pull/1831) on the `keras-cv` repository. **Weights & Biases Dashboard:** https://wandb.ai/geekyrakshit/deeplabv3-keras-cv
zh-plus/faster-whisper-large-v2-japanese-5k-steps
zh-plus
2023-07-03T18:42:31Z
289
16
transformers
[ "transformers", "pytorch", "faster-whisper", "whisper", "CTranslate2", "automatic-speech-recognition", "ja", "dataset:mozilla-foundation/common_voice_11_0", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-03T08:29:37Z
--- license: mit datasets: - mozilla-foundation/common_voice_11_0 language: - ja pipeline_tag: automatic-speech-recognition tags: - pytorch - faster-whisper - whisper - CTranslate2 metrics: - wer --- Converted from [clu-ling/whisper-large-v2-japanese-5k-steps](https://huggingface.co/clu-ling/whisper-large-v2-japanese-5k-steps) using [CTranslate2](https://github.com/OpenNMT/CTranslate2). Usage: 1. Install `pip install faster-whisper` (Check [faster-whisper](https://github.com/guillaumekln/faster-whisper) for detailed instructions.) 2. ```python from faster_whisper import WhisperModel model = WhisperModel('zh-plus/faster-whisper-large-v2-japanese-5k-steps', device="cuda", compute_type="float16") segments, info = model.transcribe("audio.mp3", beam_size=5) print("Detected language '%s' with probability %f" % (info.language, info.language_probability)) for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) ```
anujsahani01/finetuned_mbart
anujsahani01
2023-07-03T18:40:55Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "mbart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-17T14:19:05Z
--- license: mit tags: - generated_from_trainer model-index: - name: finetuned_Mbart results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_Mbart This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Shularp/TestHelsinkimulEnJpTh02
Shularp
2023-07-03T18:39:09Z
31
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-03T11:53:35Z
--- tags: - generated_from_trainer model-index: - name: TestHelsinkimulEnJpTh02 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TestHelsinkimulEnJpTh02 This model is a fine-tuned version of [Shularp/TestHelsinkimulEnJpTh02](https://huggingface.co/Shularp/TestHelsinkimulEnJpTh02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1630 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.4364 | 1.0 | 4846 | 0.2666 | | 0.1094 | 2.0 | 9692 | 0.2277 | | 0.0484 | 3.0 | 14538 | 0.1940 | | 0.0111 | 4.0 | 19384 | 0.1749 | | 0.0105 | 5.0 | 24230 | 0.1630 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
falkne/QforJustification
falkne
2023-07-03T18:20:46Z
2
0
adapter-transformers
[ "adapter-transformers", "adapterhub:argument/quality", "roberta", "region:us" ]
null
2023-07-03T18:20:44Z
--- tags: - adapterhub:argument/quality - roberta - adapter-transformers --- # Adapter `falkne/QforJustification` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [argument/quality](https://adapterhub.ml/explore/argument/quality/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("falkne/QforJustification", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
falkne/narration
falkne
2023-07-03T18:20:40Z
4
0
adapter-transformers
[ "adapter-transformers", "adapterhub:argument/quality", "roberta", "region:us" ]
null
2023-07-03T18:20:38Z
--- tags: - adapterhub:argument/quality - roberta - adapter-transformers --- # Adapter `falkne/narration` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [argument/quality](https://adapterhub.ml/explore/argument/quality/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("falkne/narration", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
falkne/argumentative
falkne
2023-07-03T18:20:37Z
2
0
adapter-transformers
[ "adapter-transformers", "adapterhub:argument/quality", "roberta", "region:us" ]
null
2023-07-03T18:20:36Z
--- tags: - adapterhub:argument/quality - roberta - adapter-transformers --- # Adapter `falkne/argumentative` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [argument/quality](https://adapterhub.ml/explore/argument/quality/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("falkne/argumentative", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
falkne/story
falkne
2023-07-03T18:20:36Z
1
0
adapter-transformers
[ "adapter-transformers", "adapterhub:argument/quality", "roberta", "region:us" ]
null
2023-07-03T18:20:34Z
--- tags: - adapterhub:argument/quality - roberta - adapter-transformers --- # Adapter `falkne/story` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [argument/quality](https://adapterhub.ml/explore/argument/quality/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("falkne/story", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
falkne/reasonableness
falkne
2023-07-03T18:20:30Z
3
0
adapter-transformers
[ "adapter-transformers", "adapterhub:argument/quality", "roberta", "region:us" ]
null
2023-07-03T18:20:28Z
--- tags: - adapterhub:argument/quality - roberta - adapter-transformers --- # Adapter `falkne/reasonableness` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [argument/quality](https://adapterhub.ml/explore/argument/quality/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("falkne/reasonableness", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
falkne/reflexivity
falkne
2023-07-03T18:20:28Z
1
0
adapter-transformers
[ "adapter-transformers", "adapterhub:argument/quality", "roberta", "region:us" ]
null
2023-07-03T18:20:26Z
--- tags: - adapterhub:argument/quality - roberta - adapter-transformers --- # Adapter `falkne/reflexivity` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [argument/quality](https://adapterhub.ml/explore/argument/quality/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("falkne/reflexivity", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
falkne/negEmotion
falkne
2023-07-03T18:20:24Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:argument/quality", "roberta", "region:us" ]
null
2023-07-03T18:20:23Z
--- tags: - adapterhub:argument/quality - roberta - adapter-transformers --- # Adapter `falkne/negEmotion` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [argument/quality](https://adapterhub.ml/explore/argument/quality/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("falkne/negEmotion", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
falkne/ibm_rank
falkne
2023-07-03T18:20:22Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:argument/quality", "roberta", "region:us" ]
null
2023-07-03T18:20:21Z
--- tags: - adapterhub:argument/quality - roberta - adapter-transformers --- # Adapter `falkne/ibm_rank` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [argument/quality](https://adapterhub.ml/explore/argument/quality/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("falkne/ibm_rank", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
falkne/posEmotion
falkne
2023-07-03T18:20:20Z
1
0
adapter-transformers
[ "adapter-transformers", "adapterhub:argument/quality", "roberta", "region:us" ]
null
2023-07-03T18:20:19Z
--- tags: - adapterhub:argument/quality - roberta - adapter-transformers --- # Adapter `falkne/posEmotion` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [argument/quality](https://adapterhub.ml/explore/argument/quality/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("falkne/posEmotion", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
falkne/interactivity
falkne
2023-07-03T18:20:18Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:argument/quality", "roberta", "region:us" ]
null
2023-07-03T18:20:17Z
--- tags: - adapterhub:argument/quality - roberta - adapter-transformers --- # Adapter `falkne/interactivity` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [argument/quality](https://adapterhub.ml/explore/argument/quality/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("falkne/interactivity", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
falkne/overall
falkne
2023-07-03T18:20:16Z
2
0
adapter-transformers
[ "adapter-transformers", "adapterhub:argument/quality", "roberta", "region:us" ]
null
2023-07-03T18:20:15Z
--- tags: - adapterhub:argument/quality - roberta - adapter-transformers --- # Adapter `falkne/overall` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [argument/quality](https://adapterhub.ml/explore/argument/quality/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("falkne/overall", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
falkne/empathie
falkne
2023-07-03T18:20:14Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:argument/quality", "roberta", "region:us" ]
null
2023-07-03T18:20:13Z
--- tags: - adapterhub:argument/quality - roberta - adapter-transformers --- # Adapter `falkne/empathie` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [argument/quality](https://adapterhub.ml/explore/argument/quality/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("falkne/empathie", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
falkne/proposal
falkne
2023-07-03T18:20:12Z
0
0
adapter-transformers
[ "adapter-transformers", "adapterhub:argument/quality", "roberta", "region:us" ]
null
2023-07-03T18:17:56Z
--- tags: - adapterhub:argument/quality - roberta - adapter-transformers --- # Adapter `falkne/proposal` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [argument/quality](https://adapterhub.ml/explore/argument/quality/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("falkne/proposal", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
falkne/effectiveness
falkne
2023-07-03T18:20:09Z
2
0
adapter-transformers
[ "adapter-transformers", "adapterhub:argument/quality", "roberta", "region:us" ]
null
2023-07-03T18:17:55Z
--- tags: - adapterhub:argument/quality - roberta - adapter-transformers --- # Adapter `falkne/effectiveness` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [argument/quality](https://adapterhub.ml/explore/argument/quality/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("falkne/effectiveness", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
BBAI/qlora-koalpaca-polyglot-12.8b-50step
BBAI
2023-07-03T18:06:07Z
5
0
peft
[ "peft", "region:us" ]
null
2023-06-22T06:33:23Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
osiria/bert-tweet-base-italian-uncased
osiria
2023-07-03T17:57:30Z
173
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "fill-mask", "it", "arxiv:1810.04805", "arxiv:2209.07562", "arxiv:2010.05609", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-05-29T17:25:55Z
--- license: apache-2.0 language: - it widget: - text: "una fantastica [MASK] di #calcio! grande prestazione del mister e della squadra" example_title: "Example 1" - text: "il governo [MASK] dovrebbe fare politica, non soltanto propaganda! #vergogna" example_title: "Example 2" - text: "che serata da sogno sul #redcarpet! grazie a tutti gli attori e registi del [MASK] italiano #oscar #awards" example_title: "Example 3" --- -------------------------------------------------------------------------------------------------- <body> <span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"> </span> <br> <span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">  </span> <br> <span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">    Model: BERT-TWEET</span> <br> <span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">    Lang: IT</span> <br> <span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;">  </span> <br> <span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"> </span> </body> -------------------------------------------------------------------------------------------------- <h3>Model description</h3> This is a <b>BERT</b> <b>[1]</b> uncased model for the <b>Italian</b> language, obtained using <b>TwHIN-BERT</b> <b>[2]</b> ([twhin-bert-base](https://huggingface.co/Twitter/twhin-bert-base)) as a starting point and focusing it on the Italian language by modifying the embedding layer (as in <b>[3]</b>, computing document-level frequencies over the <b>Wikipedia</b> dataset) The resulting model has 110M parameters, a vocabulary of 30.520 tokens, and a size of ~440 MB. <h3>Quick usage</h3> ```python from transformers import BertTokenizerFast, BertModel tokenizer = BertTokenizerFast.from_pretrained("osiria/bert-tweet-base-italian-uncased") model = BertModel.from_pretrained("osiria/bert-tweet-base-italian-uncased") ``` Here you can find the find the model already fine-tuned on Sentiment Analysis: https://huggingface.co/osiria/bert-tweet-italian-uncased-sentiment <h3>References</h3> [1] https://arxiv.org/abs/1810.04805 [2] https://arxiv.org/abs/2209.07562 [3] https://arxiv.org/abs/2010.05609 <h3>Limitations</h3> This model was trained on tweets, so it's mainly suitable for general-purpose social media text processing, involving short texts written in a social network style. It might show limitations when it comes to longer and more structured text, or domain-specific text. <h3>License</h3> The model is released under <b>Apache-2.0</b> license
hopkins/eng-kor-simcse.dev2.44k
hopkins
2023-07-03T17:51:10Z
92
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T17:38:07Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: eng-kor-simcse.dev2.44k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-kor-simcse.dev2.44k This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9818 - Bleu: 7.4953 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
alesthehuman/a2c-AntBulletEnv-v0
alesthehuman
2023-07-03T17:49:19Z
1
1
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-03T13:22:59Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 2548.33 +/- 83.37 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
wcKd/ppo-Huggy
wcKd
2023-07-03T17:45:09Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-03T17:44:59Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: wcKd/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
andersonbcdefg/pythia_samsum_adapter
andersonbcdefg
2023-07-03T17:43:03Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-03T17:43:02Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
alldaypa/autotrain-nyc_airbnb-71855138766
alldaypa
2023-07-03T17:41:54Z
113
0
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "autotrain", "summarization", "en", "dataset:alldaypa/autotrain-data-nyc_airbnb", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-07-03T17:38:04Z
--- tags: - autotrain - summarization language: - en widget: - text: "I love AutoTrain" datasets: - alldaypa/autotrain-data-nyc_airbnb co2_eq_emissions: emissions: 0.56063822288617 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 71855138766 - CO2 Emissions (in grams): 0.5606 ## Validation Metrics - Loss: 3.502 - Rouge1: 16.234 - Rouge2: 2.784 - RougeL: 14.048 - RougeLsum: 15.348 - Gen Len: 19.000 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/alldaypa/autotrain-nyc_airbnb-71855138766 ```
WALIDALI/osamliby
WALIDALI
2023-07-03T17:38:42Z
29
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-03T17:35:18Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### osamliby Dreambooth model trained by WALIDALI with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
cdreetz/codeparrot-ds2
cdreetz
2023-07-03T17:31:45Z
23
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-15T19:08:28Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds2 GPT-2 style trained on a filtered set of The Stack, specific to data science related code. Things like pandas, numpy, matplotlib, etc. - Loss: 1.0584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 200 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2038 | 0.01 | 500 | 2.1062 | | 2.0551 | 0.02 | 1000 | 2.0109 | | 1.9622 | 0.02 | 1500 | 1.9219 | | 1.9512 | 0.03 | 2000 | 1.8461 | | 1.8817 | 0.04 | 2500 | 1.7903 | | 1.8341 | 0.05 | 3000 | 1.7401 | | 1.7877 | 0.05 | 3500 | 1.7022 | | 1.7586 | 0.06 | 4000 | 1.6694 | | 1.7271 | 0.07 | 4500 | 1.6457 | | 1.7034 | 0.08 | 5000 | 1.6193 | | 1.6756 | 0.08 | 5500 | 1.5978 | | 1.6576 | 0.09 | 6000 | 1.5772 | | 1.6377 | 0.1 | 6500 | 1.5611 | | 1.6211 | 0.11 | 7000 | 1.5453 | | 1.6033 | 0.11 | 7500 | 1.5317 | | 1.591 | 0.12 | 8000 | 1.5193 | | 1.5765 | 0.13 | 8500 | 1.5053 | | 1.5661 | 0.14 | 9000 | 1.4966 | | 1.5548 | 0.15 | 9500 | 1.4846 | | 1.5429 | 0.15 | 10000 | 1.4729 | | 1.5347 | 0.16 | 10500 | 1.4641 | | 1.5215 | 0.17 | 11000 | 1.4557 | | 1.5151 | 0.18 | 11500 | 1.4454 | | 1.5059 | 0.18 | 12000 | 1.4381 | | 1.499 | 0.19 | 12500 | 1.4288 | | 1.4906 | 0.2 | 13000 | 1.4210 | | 1.4849 | 0.21 | 13500 | 1.4143 | | 1.4765 | 0.21 | 14000 | 1.4085 | | 1.4708 | 0.22 | 14500 | 1.4026 | | 1.4602 | 0.23 | 15000 | 1.3936 | | 1.4533 | 0.24 | 15500 | 1.3896 | | 1.4523 | 0.25 | 16000 | 1.3818 | | 1.4415 | 0.25 | 16500 | 1.3748 | | 1.4417 | 0.26 | 17000 | 1.3701 | | 1.4311 | 0.27 | 17500 | 1.3645 | | 1.4282 | 0.28 | 18000 | 1.3585 | | 1.4223 | 0.28 | 18500 | 1.3531 | | 1.4165 | 0.29 | 19000 | 1.3473 | | 1.4105 | 0.3 | 19500 | 1.3419 | | 1.3993 | 0.31 | 20000 | 1.3374 | | 1.4034 | 0.31 | 20500 | 1.3322 | | 1.3982 | 0.32 | 21000 | 1.3278 | | 1.3951 | 0.33 | 21500 | 1.3225 | | 1.3806 | 0.34 | 22000 | 1.3180 | | 1.3781 | 0.34 | 22500 | 1.3121 | | 1.3761 | 0.35 | 23000 | 1.3082 | | 1.3662 | 0.36 | 23500 | 1.3038 | | 1.3631 | 0.37 | 24000 | 1.2995 | | 1.3549 | 0.38 | 24500 | 1.2955 | | 1.3577 | 0.38 | 25000 | 1.2912 | | 1.3498 | 0.39 | 25500 | 1.2851 | | 1.3428 | 0.4 | 26000 | 1.2807 | | 1.342 | 0.41 | 26500 | 1.2768 | | 1.3365 | 0.41 | 27000 | 1.2720 | | 1.3313 | 0.42 | 27500 | 1.2678 | | 1.3309 | 0.43 | 28000 | 1.2629 | | 1.3221 | 0.44 | 28500 | 1.2594 | | 1.3214 | 0.44 | 29000 | 1.2558 | | 1.3099 | 0.45 | 29500 | 1.2510 | | 1.31 | 0.46 | 30000 | 1.2449 | | 1.31 | 0.47 | 30500 | 1.2414 | | 1.305 | 0.48 | 31000 | 1.2390 | | 1.2975 | 0.48 | 31500 | 1.2358 | | 1.2882 | 0.49 | 32000 | 1.2311 | | 1.2831 | 0.5 | 32500 | 1.2251 | | 1.2836 | 0.51 | 33000 | 1.2212 | | 1.2817 | 0.51 | 33500 | 1.2178 | | 1.2772 | 0.52 | 34000 | 1.2130 | | 1.2651 | 0.53 | 34500 | 1.2080 | | 1.2683 | 0.54 | 35000 | 1.2048 | | 1.2581 | 0.54 | 35500 | 1.1999 | | 1.263 | 0.55 | 36000 | 1.1972 | | 1.255 | 0.56 | 36500 | 1.1924 | | 1.2466 | 0.57 | 37000 | 1.1884 | | 1.2448 | 0.57 | 37500 | 1.1860 | | 1.2413 | 0.58 | 38000 | 1.1804 | | 1.2362 | 0.59 | 38500 | 1.1782 | | 1.2309 | 0.6 | 39000 | 1.1732 | | 1.2289 | 0.61 | 39500 | 1.1687 | | 1.2208 | 0.61 | 40000 | 1.1649 | | 1.2225 | 0.62 | 40500 | 1.1605 | | 1.2178 | 0.63 | 41000 | 1.1555 | | 1.208 | 0.64 | 41500 | 1.1533 | | 1.2069 | 0.64 | 42000 | 1.1490 | | 1.206 | 0.65 | 42500 | 1.1453 | | 1.2013 | 0.66 | 43000 | 1.1414 | | 1.2003 | 0.67 | 43500 | 1.1374 | | 1.1867 | 0.67 | 44000 | 1.1337 | | 1.187 | 0.68 | 44500 | 1.1302 | | 1.188 | 0.69 | 45000 | 1.1270 | | 1.179 | 0.7 | 45500 | 1.1237 | | 1.1866 | 0.71 | 46000 | 1.1204 | | 1.173 | 0.71 | 46500 | 1.1173 | | 1.1706 | 0.72 | 47000 | 1.1134 | | 1.1645 | 0.73 | 47500 | 1.1099 | | 1.1641 | 0.74 | 48000 | 1.1063 | | 1.1623 | 0.74 | 48500 | 1.1032 | | 1.1561 | 0.75 | 49000 | 1.1006 | | 1.1531 | 0.76 | 49500 | 1.0977 | | 1.1569 | 0.77 | 50000 | 1.0950 | | 1.1505 | 0.77 | 50500 | 1.0927 | | 1.1473 | 0.78 | 51000 | 1.0902 | | 1.1428 | 0.79 | 51500 | 1.0870 | | 1.1412 | 0.8 | 52000 | 1.0844 | | 1.1452 | 0.8 | 52500 | 1.0823 | | 1.1391 | 0.81 | 53000 | 1.0805 | | 1.1329 | 0.82 | 53500 | 1.0783 | | 1.1295 | 0.83 | 54000 | 1.0764 | | 1.125 | 0.84 | 54500 | 1.0746 | | 1.1295 | 0.84 | 55000 | 1.0730 | | 1.1247 | 0.85 | 55500 | 1.0711 | | 1.1225 | 0.86 | 56000 | 1.0696 | | 1.1235 | 0.87 | 56500 | 1.0680 | | 1.1192 | 0.87 | 57000 | 1.0670 | | 1.1189 | 0.88 | 57500 | 1.0654 | | 1.1196 | 0.89 | 58000 | 1.0646 | | 1.1152 | 0.9 | 58500 | 1.0635 | | 1.1133 | 0.9 | 59000 | 1.0628 | | 1.1126 | 0.91 | 59500 | 1.0619 | | 1.1142 | 0.92 | 60000 | 1.0610 | | 1.1112 | 0.93 | 60500 | 1.0605 | | 1.1137 | 0.93 | 61000 | 1.0599 | | 1.1127 | 0.94 | 61500 | 1.0595 | | 1.1111 | 0.95 | 62000 | 1.0592 | | 1.1121 | 0.96 | 62500 | 1.0588 | | 1.1114 | 0.97 | 63000 | 1.0587 | | 1.1121 | 0.97 | 63500 | 1.0585 | | 1.1078 | 0.98 | 64000 | 1.0584 | | 1.1104 | 0.99 | 64500 | 1.0584 | | 1.1057 | 1.0 | 65000 | 1.0584 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1 - Datasets 2.13.1 - Tokenizers 0.13.3
Sourabh2/spaceinvandernoframeship-v2
Sourabh2
2023-07-03T17:28:00Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-03T17:26:59Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 229.50 +/- 112.19 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Sourabh2 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Sourabh2 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Sourabh2 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
DanialAmin/InsuranceLLM
DanialAmin
2023-07-03T17:20:10Z
0
0
null
[ "region:us" ]
null
2023-07-03T17:15:38Z
--- license: tii-falcon-llm ---
felipec23/open-llama-3b
felipec23
2023-07-03T16:45:32Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-03T16:45:30Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
Wongstein/vide-noir
Wongstein
2023-07-03T16:39:18Z
175
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "text-generation-inference", "en", "dataset:amazon_us_reviews", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-03T16:13:16Z
--- license: creativeml-openrail-m datasets: - amazon_us_reviews language: - en tags: - text-generation-inference ---
matsia/huggy
matsia
2023-07-03T16:36:56Z
14
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-03T16:36:53Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: matsia/huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
HeshamMamdouh/AraBart-sum-fine-tuned
HeshamMamdouh
2023-07-03T16:14:26Z
59
0
transformers
[ "transformers", "tf", "mbart", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-03T16:14:10Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: AraBart-sum-fine-tuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # AraBart-sum-fine-tuned This model is a fine-tuned version of [abdalrahmanshahrour/AraBART-summ](https://huggingface.co/abdalrahmanshahrour/AraBART-summ) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
khalidbutt/k
khalidbutt
2023-07-03T16:09:24Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2023-07-03T16:09:24Z
--- license: bigscience-bloom-rail-1.0 ---
FabriLluvia/BOT
FabriLluvia
2023-07-03T16:03:08Z
0
0
adapter-transformers
[ "adapter-transformers", "code", "fill-mask", "es", "en", "dataset:OpenAssistant/oasst1", "dataset:fka/awesome-chatgpt-prompts", "license:apache-2.0", "region:us" ]
fill-mask
2023-07-03T16:01:17Z
--- license: apache-2.0 datasets: - OpenAssistant/oasst1 - fka/awesome-chatgpt-prompts language: - es - en metrics: - accuracy library_name: adapter-transformers pipeline_tag: fill-mask tags: - code ---
TootToot/ppo-Huggy
TootToot
2023-07-03T15:45:15Z
32
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-05-11T16:20:32Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: TootToot/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
jwelch1624/rare-puppers
jwelch1624
2023-07-03T15:23:14Z
191
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-03T15:23:07Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9090909361839294 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
hopkins/eng-mya-wsample.49
hopkins
2023-07-03T15:17:37Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T14:56:40Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: eng-mya-wsample.49 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-mya-wsample.49 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8303 - Bleu: 4.7616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
mcamara/dqn-SpaceInvadersNoFrameskip-v4
mcamara
2023-07-03T15:12:44Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-03T15:12:05Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 622.00 +/- 197.35 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mcamara -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mcamara -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mcamara ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
haris001/alpaca_tweet_sentiment
haris001
2023-07-03T15:07:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-03T15:03:05Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
kresnik/wav2vec2-large-xlsr-korean
kresnik
2023-07-03T14:55:40Z
1,123,517
38
transformers
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "speech", "audio", "ko", "dataset:kresnik/zeroth_korean", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: ko datasets: - kresnik/zeroth_korean tags: - speech - audio - automatic-speech-recognition license: apache-2.0 model-index: - name: 'Wav2Vec2 XLSR Korean' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Zeroth Korean type: kresnik/zeroth_korean args: clean metrics: - name: Test WER type: wer value: 4.74 - name: Test CER type: cer value: 1.78 --- ## Evaluation on Zeroth-Korean ASR corpus [Google colab notebook(Korean)](https://colab.research.google.com/github/indra622/tutorials/blob/master/wav2vec2_korean_tutorial.ipynb) ``` from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from datasets import load_dataset import soundfile as sf import torch from jiwer import wer processor = Wav2Vec2Processor.from_pretrained("kresnik/wav2vec2-large-xlsr-korean") model = Wav2Vec2ForCTC.from_pretrained("kresnik/wav2vec2-large-xlsr-korean").to('cuda') ds = load_dataset("kresnik/zeroth_korean", "clean") test_ds = ds['test'] def map_to_array(batch): speech, _ = sf.read(batch["file"]) batch["speech"] = speech return batch test_ds = test_ds.map(map_to_array) def map_to_pred(batch): inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding="longest") input_values = inputs.input_values.to("cuda") with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) batch["transcription"] = transcription return batch result = test_ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=["speech"]) print("WER:", wer(result["text"], result["transcription"])) ``` ### Expected WER: 4.74% ### Expected CER: 1.78%
LukeMoore11/Big-Benjamin
LukeMoore11
2023-07-03T14:44:11Z
112
0
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "summarization", "en", "dataset:LukeMoore11/autotrain-data-second-attempt", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-06-21T22:08:19Z
--- tags: - summarization language: - en widget: - text: "Enter legal document..." datasets: - LukeMoore11/autotrain-data-second-attempt co2_eq_emissions: emissions: 67.54051067286701 --- ## Validation Metrics - Loss: 1.379 - Rouge1: 24.817 - Rouge2: 20.238 - RougeL: 24.044 - RougeLsum: 24.222
Phips/q-FrozenLake-v1-4x4-noSlippery
Phips
2023-07-03T14:42:44Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-03T14:42:40Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Phips/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jgranie/lunarlanderv2
jgranie
2023-07-03T14:38:15Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-03T14:37:53Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 254.30 +/- 16.47 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
WALIDALI/marimwly
WALIDALI
2023-07-03T14:21:53Z
29
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-03T14:09:10Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### marimwly Dreambooth model trained by WALIDALI with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
iamkzntsv/ddpm-celebahq-finetuned-vintage-faces-16epochs
iamkzntsv
2023-07-03T14:00:49Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "region:us" ]
unconditional-image-generation
2023-07-03T13:56:34Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model based on the tutorial from Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) DDPM model trained on Celeba-HQ and fine tuned to generate vintage-styled face images ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('iamkzntsv/ddpm-celebahq-finetuned-vintage-faces-16epochs') image = pipeline().images[0] image ```
jordyvl/EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-07-03_test
jordyvl
2023-07-03T13:53:49Z
102
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "text-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-03T13:47:33Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-07-03_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EElayoutlmv3_jordyvl_rvl_cdip_100_examples_per_class_2023-07-03_test This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6984 - Accuracy: 0.13 - Exit 0 Accuracy: 0.0675 - Exit 1 Accuracy: 0.0725 - Exit 2 Accuracy: 0.1125 - Exit 3 Accuracy: 0.0625 - Exit 4 Accuracy: 0.0625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 3 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 24 - total_train_batch_size: 72 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | Exit 2 Accuracy | Exit 3 Accuracy | Exit 4 Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:| | No log | 0.99 | 11 | 2.7287 | 0.13 | 0.07 | 0.0725 | 0.115 | 0.0625 | 0.0625 | | No log | 1.99 | 22 | 2.6984 | 0.13 | 0.0675 | 0.0725 | 0.1125 | 0.0625 | 0.0625 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
iammartian0/distilhubert-finetuned-gtzan
iammartian0
2023-07-03T13:52:49Z
159
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-03T10:17:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5528 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1578 | 0.99 | 56 | 2.1203 | 0.55 | | 1.6815 | 2.0 | 113 | 1.6607 | 0.57 | | 1.2921 | 2.99 | 169 | 1.2421 | 0.64 | | 1.0324 | 4.0 | 226 | 1.0260 | 0.7 | | 0.8661 | 4.99 | 282 | 0.8973 | 0.7 | | 0.6192 | 6.0 | 339 | 0.7420 | 0.79 | | 0.5437 | 6.99 | 395 | 0.6951 | 0.8 | | 0.4917 | 8.0 | 452 | 0.6996 | 0.78 | | 0.3868 | 8.99 | 508 | 0.6648 | 0.81 | | 0.3816 | 10.0 | 565 | 0.6584 | 0.79 | | 0.1935 | 10.99 | 621 | 0.6101 | 0.84 | | 0.128 | 12.0 | 678 | 0.5445 | 0.85 | | 0.1144 | 12.99 | 734 | 0.5703 | 0.84 | | 0.0828 | 14.0 | 791 | 0.5632 | 0.83 | | 0.0928 | 14.87 | 840 | 0.5528 | 0.84 | ### Framework versions - Transformers 4.30.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
Avanthika/language-translation
Avanthika
2023-07-03T13:49:45Z
24
2
transformers
[ "transformers", "text2text-generation", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-03T06:57:46Z
--- pipeline_tag: text2text-generation --- # Language Translation English to Kannada This is a language translation model of 3 encoders and decoders in transformer.It translates english to kannada sentence --- datasets: - kannada.txt - english.txt ---
juliensimon/autotrain-food101-1471154050
juliensimon
2023-07-03T13:43:38Z
198
0
transformers
[ "transformers", "pytorch", "safetensors", "autotrain", "vision", "image-classification", "dataset:juliensimon/autotrain-data-food101", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-09-15T12:42:31Z
--- tags: - autotrain - vision - image-classification datasets: - juliensimon/autotrain-data-food101 widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 135.18748471833436 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1471154050 - CO2 Emissions (in grams): 135.1875 ## Validation Metrics - Loss: 0.391 - Accuracy: 0.890 - Macro F1: 0.890 - Micro F1: 0.890 - Weighted F1: 0.890 - Macro Precision: 0.892 - Micro Precision: 0.890 - Weighted Precision: 0.892 - Macro Recall: 0.890 - Micro Recall: 0.890 - Weighted Recall: 0.890
juliensimon/autonlp-reuters-summarization-31447312
juliensimon
2023-07-03T13:43:01Z
111
1
transformers
[ "transformers", "pytorch", "safetensors", "pegasus", "text2text-generation", "autonlp", "en", "dataset:juliensimon/autonlp-data-reuters-summarization", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - juliensimon/autonlp-data-reuters-summarization co2_eq_emissions: 206.46626351359515 --- # Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 31447312 - CO2 Emissions (in grams): 206.46626351359515 ## Validation Metrics - Loss: 1.1907752752304077 - Rouge1: 55.9215 - Rouge2: 30.7724 - RougeL: 53.185 - RougeLsum: 53.3353 - Gen Len: 15.1236 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/juliensimon/autonlp-reuters-summarization-31447312 ```
dcarpintero/q-FrozenLake-v1-4x4-noSlippery
dcarpintero
2023-07-03T13:41:08Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-03T13:41:06Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="dcarpintero/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AndreNasci/ppo-Huggy
AndreNasci
2023-07-03T13:26:19Z
12
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-03T13:26:09Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: AndreNasci/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Khushnur/t5-base-end2end-questions-generation_eli_squad
Khushnur
2023-07-03T13:17:24Z
161
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5_cleaned_datav3_60k", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-29T18:54:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5_cleaned_datav3_60k model-index: - name: t5-base-end2end-questions-generation_eli_squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-end2end-questions-generation_eli_squad This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the eli5_cleaned_datav3_60k dataset. It achieves the following results on the evaluation set: - Loss: 2.3313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7426 | 0.26 | 100 | 2.4735 | | 2.305 | 0.52 | 200 | 2.4169 | | 2.2034 | 0.78 | 300 | 2.3887 | | 2.1562 | 1.04 | 400 | 2.3710 | | 2.0883 | 1.31 | 500 | 2.3574 | | 2.07 | 1.57 | 600 | 2.3492 | | 2.0595 | 1.83 | 700 | 2.3433 | | 2.0337 | 2.09 | 800 | 2.3384 | | 2.0012 | 2.35 | 900 | 2.3353 | | 2.0175 | 2.61 | 1000 | 2.3320 | | 2.0035 | 2.87 | 1100 | 2.3313 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
NasimB/gpt2-cl-concat-rarity-mod-datasets-6
NasimB
2023-07-03T13:08:58Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-03T11:10:33Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-cl-concat-rarity-mod-datasets-6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-cl-concat-rarity-mod-datasets-6 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.8004 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.6082 | 0.06 | 500 | 5.8581 | | 5.3496 | 0.11 | 1000 | 5.4574 | | 5.0066 | 0.17 | 1500 | 5.2413 | | 4.7806 | 0.22 | 2000 | 5.1099 | | 4.6202 | 0.28 | 2500 | 5.0191 | | 4.4997 | 0.33 | 3000 | 4.9599 | | 4.3878 | 0.39 | 3500 | 4.9168 | | 4.2858 | 0.44 | 4000 | 4.8861 | | 4.1858 | 0.5 | 4500 | 4.8493 | | 4.0947 | 0.55 | 5000 | 4.8152 | | 4.0087 | 0.61 | 5500 | 4.8013 | | 3.9228 | 0.66 | 6000 | 4.7840 | | 3.8464 | 0.72 | 6500 | 4.7652 | | 3.7884 | 0.78 | 7000 | 4.7589 | | 3.7366 | 0.83 | 7500 | 4.7531 | | 3.7018 | 0.89 | 8000 | 4.7470 | | 3.6791 | 0.94 | 8500 | 4.7431 | | 3.6709 | 1.0 | 9000 | 4.7433 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
veluchs/whisper-tiny-us
veluchs
2023-07-03T13:06:17Z
86
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-03T12:43:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-us results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.33943329397874855 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-us This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6329 - Wer Ortho: 0.3430 - Wer: 0.3394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0009 | 17.86 | 500 | 0.6329 | 0.3430 | 0.3394 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
dsl1/pokemon-lora
dsl1
2023-07-03T12:52:31Z
1
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-06-14T06:03:44Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - dsl1/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
msladic/Reinforce-Pixelcopter-PLE-v0
msladic
2023-07-03T12:51:10Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-03T10:03:43Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 21.70 +/- 12.40 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
hopkins/mbart-finetuned-eng-ind-longest
hopkins
2023-07-03T12:45:11Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T12:26:25Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-ind-longest results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-ind-longest This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7474 - Bleu: 21.9863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
devgupta/falcon-7b-tax
devgupta
2023-07-03T12:35:56Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-03T12:29:18Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0
renatoneto14/HuggyTraining
renatoneto14
2023-07-03T12:29:30Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-03T12:28:24Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: renatoneto14/HuggyTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
hopkins/mbart-finetuned-eng-deu-longest
hopkins
2023-07-03T12:25:56Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T12:06:22Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-deu-longest results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-deu-longest This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6322 - Bleu: 20.9315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
hopkins/mbart-finetuned-eng-deu-random
hopkins
2023-07-03T12:25:38Z
110
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-03T12:06:16Z
--- tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: mbart-finetuned-eng-deu-random results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-deu-random This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6656 - Bleu: 20.8048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
DEplain/trimmed_mbart_sents_apa_web
DEplain
2023-07-03T12:09:30Z
9
1
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "text simplification", "plain language", "easy-to-read language", "sentence simplification", "de", "dataset:DEplain/DEplain-APA-sent", "dataset:DEplain/DEplain-web-sent", "arxiv:2305.18939", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-01T14:45:33Z
--- datasets: - DEplain/DEplain-APA-sent - DEplain/DEplain-web-sent language: - de metrics: - sari - bleu - bertscore library_name: transformers pipeline_tag: text2text-generation tags: - text simplification - plain language - easy-to-read language - sentence simplification --- # DEplain German Text Simplification This model belongs to the experiments done at the work of Stodden, Momen, Kallmeyer (2023). ["DEplain: A German Parallel Corpus with Intralingual Translations into Plain Language for Sentence and Document Simplification."](https://arxiv.org/abs/2305.18939) In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Toronto, Canada. Association for Computational Linguistics. Detailed documentation can be found on this GitHub repository [https://github.com/rstodden/DEPlain](https://github.com/rstodden/DEPlain) ### Model Description The model is a finetuned checkpoint of the pre-trained mBART model `mbart-large-cc25`. With a trimmed vocabulary to the most frequent 30k words in the German language. The model was finetuned towards the task of German text simplification of sentences. The finetuning dataset included manually aligned sentences from the datasets `DEplain-APA-sent` and `DEplain-web-sent-manual-open`
deepsense-ai/trelbert
deepsense-ai
2023-07-03T12:01:15Z
114
5
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "pl", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-15T12:03:45Z
--- language: pl license: cc-by-4.0 pipeline_tag: fill-mask mask_token: "<mask>" widget: - text: "Sztuczna inteligencja to <mask>." - text: "Robert Kubica jest najlepszym <mask>." - text: "<mask> jest największym zdrajcą." - text: "<mask> to najlepszy polski klub." - text: "Twoja <mask>" --- # TrelBERT TrelBERT is a BERT-based Language Model trained on data from Polish Twitter using Masked Language Modeling objective. It is based on [HerBERT](https://aclanthology.org/2021.bsnlp-1.1) model and therefore released under the same license - CC BY 4.0. ## Training We trained our model starting from [`herbert-base-cased`](https://huggingface.co/allegro/herbert-base-cased) checkpoint and continued MLM training using data collected from Twitter. The data we used for MLM fine-tuning was approximately 45 million Polish tweets. We trained the model for 1 epoch with a learning rate `5e-5` and batch size `2184` using AdamW optimizer. ### Preprocessing For each Tweet, the user handles that occur in the beginning of the text were removed, as they are not part of the message content but only represent who the user is replying to. The remaining user handles were replaced by "@anonymized_account". Links were replaced with a special @URL token. ## Tokenizer We use HerBERT tokenizer with two special tokens added for preprocessing purposes as described above (@anonymized_account, @URL). Maximum sequence length is set to 128, based on the analysis of Twitter data distribution. ## License CC BY 4.0 ## KLEJ Benchmark results We fine-tuned TrelBERT to [KLEJ benchmark](https://klejbenchmark.com) tasks and achieved the following results: <style> tr:last-child { border-top-width: 4px; } </style> |Task name|Score| |--|--| |NKJP-NER|94.4| |CDSC-E|93.9| |CDSC-R|93.6| |CBD|76.1| |PolEmo2.0-IN|89.3| |PolEmo2.0-OUT|78.1| |DYK|67.4| |PSC|95.7| |AR|86.1| |__Average__|__86.1__| For fine-tuning to KLEJ tasks we used [Polish RoBERTa](https://github.com/sdadas/polish-roberta) scripts, which we modified to use `transformers` library. For the CBD task, we set the maximum sequence length to 128 and implemented the same preprocessing procedure as in the MLM phase. Our model achieved 1st place in cyberbullying detection (CBD) task in the [KLEJ leaderboard](https://klejbenchmark.com/leaderboard). Overall, it reached 7th place, just below HerBERT model. ## Citation Please cite the following paper: ``` @inproceedings{szmyd-etal-2023-trelbert, title = "{T}rel{BERT}: A pre-trained encoder for {P}olish {T}witter", author = "Szmyd, Wojciech and Kotyla, Alicja and Zobni{\'o}w, Micha{\l} and Falkiewicz, Piotr and Bartczuk, Jakub and Zygad{\l}o, Artur", booktitle = "Proceedings of the 9th Workshop on Slavic Natural Language Processing 2023 (SlavicNLP 2023)", month = may, year = "2023", address = "Dubrovnik, Croatia", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.bsnlp-1.3", pages = "17--24", abstract = "Pre-trained Transformer-based models have become immensely popular amongst NLP practitioners. We present TrelBERT {--} the first Polish language model suited for application in the social media domain. TrelBERT is based on an existing general-domain model and adapted to the language of social media by pre-training it further on a large collection of Twitter data. We demonstrate its usefulness by evaluating it in the downstream task of cyberbullying detection, in which it achieves state-of-the-art results, outperforming larger monolingual models trained on general-domain corpora, as well as multilingual in-domain models, by a large margin. We make the model publicly available. We also release a new dataset for the problem of harmful speech detection.", } ``` ## Authors Jakub Bartczuk, Krzysztof Dziedzic, Piotr Falkiewicz, Alicja Kotyla, Wojciech Szmyd, Michał Zobniów, Artur Zygadło For more information, reach out to us via e-mail: artur.zygadlo@deepsense.ai
velascoluis/falcon7b-instruct-database-ft
velascoluis
2023-07-03T11:50:55Z
0
0
null
[ "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2023-07-02T19:45:27Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: falcon7b-instruct-database-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # falcon7b-instruct-database-ft This model is a fine-tuned version of [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4994 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
Sandrro/text_to_function_v2
Sandrro
2023-07-03T11:50:51Z
113
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-03T10:31:44Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: text_to_function_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text_to_function_v2 This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0580 - F1: 0.7937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.9053 | 1.0 | 2925 | 0.8585 | 0.7410 | | 0.6403 | 2.0 | 5850 | 0.8756 | 0.7693 | | 0.4261 | 3.0 | 8775 | 0.9378 | 0.7872 | | 0.3379 | 4.0 | 11700 | 1.0294 | 0.7925 | | 0.2362 | 5.0 | 14625 | 1.0580 | 0.7937 | ### Framework versions - Transformers 4.27.1 - Pytorch 2.1.0.dev20230414+cu117 - Datasets 2.9.0 - Tokenizers 0.13.3
searde/model-financial-documents
searde
2023-07-03T11:46:37Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "dataset:searde/dataset-financial-documents-2", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-28T12:45:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - searde/dataset-financial-documents-2 metrics: - rouge model-index: - name: tst-summarization results: - task: name: Summarization type: summarization dataset: name: searde/dataset-financial-documents-2 3.0.0 type: searde/dataset-financial-documents-2 config: 3.0.0 split: validation args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 90.0297 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tst-summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the searde/dataset-financial-documents-2 3.0.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.0730 - Rouge1: 90.0297 - Rouge2: 68.9083 - Rougel: 89.8451 - Rougelsum: 89.9838 - Gen Len: 38.9598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3
searde/model-financial-documents-3
searde
2023-07-03T11:46:05Z
109
1
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "dataset:searde/dataset-financial-documents-3", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-29T08:20:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - searde/dataset-financial-documents-3 metrics: - rouge model-index: - name: tst-summarization results: - task: name: Summarization type: summarization dataset: name: searde/dataset-financial-documents-3 3.0.0 type: searde/dataset-financial-documents-3 config: 3.0.0 split: validation args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 14.9574 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tst-summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the searde/dataset-financial-documents-3 3.0.0 dataset. It achieves the following results on the evaluation set: - Loss: 3.0505 - Rouge1: 14.9574 - Rouge2: 0.0 - Rougel: 8.4517 - Rougelsum: 12.4858 - Gen Len: 63.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3
ayushutkarsh/t3
ayushutkarsh
2023-07-03T11:35:55Z
51
6
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "conversational", "en", "dataset:McGill-NLP/FaithDial", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-04-02T06:07:50Z
--- license: apache-2.0 datasets: - McGill-NLP/FaithDial language: - en metrics: - bleu - bertscore - accuracy pipeline_tag: conversational --- T3 stands for Terribly Tiny Transformers that are an efficient way of creating tiny distilled (student) models for hallucination-free LLM models in parameter-constrained environment (edge devices). The base model is a T3 adaptation of T5 model. The paradigm of T3 models can be extended to all types of models ( encoder only, decoder only & seq2seq)
AMUseBot/roberta-base-cookdial-v1_1
AMUseBot
2023-07-03T11:31:15Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "endpoints_compatible", "region:us" ]
text-classification
2023-06-17T09:35:53Z
--- language: - en library_name: transformers tags: - text-classification widget: - text: "What ingredients do I need?" --- - Baseline NLU model for the "AMUseBot" cooking taskbot prototype. Updated version with more robust req_ingredient intent recognition thanks to finetuning with extra synthetic data. - ``roberta-base`` model finetuned with default hyperparameters for 7 epochs on intents from the CookDial (https://github.com/YiweiJiang2015/CookDial) dataset with an extra choose_recipe intent added. The ``simpletransformers`` library was used for fine-tuning. - Intent mapping: {"0": "affirm", "1": "choose_recipe", "2": "confirm", "3": "goodbye", "4": "greeting", "5": "negate", "6": "other", "7": "req_amount", "8": "req_duration", "9": "req_ingredient", "10": "req_ingredient_list", "11": "req_ingredient_list_ends", "12": "req_ingredient_list_length", "13": "req_instruction", "14": "req_is_recipe_finished", "15": "req_is_recipe_ongoing", "16": "req_parallel_action", "17": "req_repeat", "18": "req_start", "19": "req_substitute", "20": "req_temperature", "21": "req_title", "22": "req_tool", "23": "req_use_all", "24": "thank"}.
KPrashanth/dqn-SpaceInvadersNoFrameskip-v4
KPrashanth
2023-07-03T11:23:49Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-03T11:23:07Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 761.00 +/- 316.10 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga KPrashanth -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga KPrashanth -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga KPrashanth ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 2000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
NasimB/gpt2-dp-mod-datasets
NasimB
2023-07-03T11:20:02Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-03T07:47:17Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-dp-mod-datasets results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-dp-mod-datasets This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 3.1587 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.721 | 0.28 | 500 | 5.6661 | | 5.3704 | 0.55 | 1000 | 5.2444 | | 5.0331 | 0.83 | 1500 | 4.9898 | | 4.784 | 1.1 | 2000 | 4.8409 | | 4.6004 | 1.38 | 2500 | 4.7323 | | 4.5032 | 1.65 | 3000 | 4.6355 | | 4.4157 | 1.93 | 3500 | 4.5419 | | 4.2123 | 2.2 | 4000 | 4.5062 | | 4.1323 | 2.48 | 4500 | 4.4562 | | 4.1086 | 2.75 | 5000 | 4.3991 | | 4.0432 | 3.03 | 5500 | 4.3667 | | 3.8085 | 3.3 | 6000 | 4.3636 | | 3.8151 | 3.58 | 6500 | 4.3268 | | 3.7855 | 3.85 | 7000 | 4.2969 | | 3.6519 | 4.13 | 7500 | 4.3076 | | 3.5149 | 4.4 | 8000 | 4.3007 | | 3.5086 | 4.68 | 8500 | 4.2851 | | 3.4995 | 4.95 | 9000 | 4.2743 | | 3.3468 | 5.23 | 9500 | 4.2884 | | 3.3143 | 5.5 | 10000 | 4.2904 | | 3.3138 | 5.78 | 10500 | 4.2893 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
zijun/autotrain-input_list-71788138727
zijun
2023-07-03T11:19:37Z
111
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "autotrain", "unk", "dataset:zijun/autotrain-data-input_list", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-03T11:19:08Z
--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain" datasets: - zijun/autotrain-data-input_list co2_eq_emissions: emissions: 0.20160817247860105 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 71788138727 - CO2 Emissions (in grams): 0.2016 ## Validation Metrics - Loss: 0.261 - Accuracy: 0.882 - Precision: 0.926 - Recall: 0.926 - AUC: 0.931 - F1: 0.926 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/zijun/autotrain-input_list-71788138727 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("zijun/autotrain-input_list-71788138727", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("zijun/autotrain-input_list-71788138727", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
lx865712528/master-base-pretrained-msmarco
lx865712528
2023-07-03T11:04:17Z
107
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "feature-extraction", "en", "dataset:ms_marco", "arxiv:2212.07841", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
feature-extraction
2023-07-03T10:19:24Z
--- license: mit datasets: - ms_marco language: - en pipeline_tag: feature-extraction --- # MASTER: Multi-task Pre-trained Bottlenecked Masked Autoencoders are Better Dense Retrievers Paper: [https://arxiv.org/abs/2212.07841](https://arxiv.org/abs/2212.07841). Code: [https://github.com/microsoft/SimXNS/tree/main/MASTER](https://github.com/microsoft/SimXNS/tree/main/MASTER). ## Overview This is the checkpoint after pretraining on the MS-MARCO corpus. **You may use this checkpoint as the initialization for finetuning.** ## Useage To load this checkpoint for initialization, you may follow: ```python from transformers import AutoModel model = AutoModel.from_pretrained('lx865712528/master-base-pretrained-msmarco') ```
language-and-voice-lab/sbert-ruquad
language-and-voice-lab
2023-07-03T10:54:38Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "is", "dataset:language-and-voice-lab/ruquad1", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-07-03T09:49:39Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers license: apache-2.0 datasets: - language-and-voice-lab/ruquad1 language: - is --- # sbert-ruquad sbert-ruquald is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. The model is based on the [distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2), fine-tuned on [RUQuAD](https://repository.clarin.is/repository/xmlui/handle/20.500.12537/310) - a question-answer dataset for Icelandic. The data used for this model contains approximately question-span and question-paragraph pairs, with 14920 pairs used for training under the [MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss). ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('language-and-voice-lab/sbert-ruquad') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('language-and-voice-lab/sbert-ruquad') model = AutoModel.from_pretrained('language-and-voice-lab/sbert-ruquad') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results The model was evaluated with a hold-out set from the original data using the [BinaryClassificationEvaluator](https://www.sbert.net/docs/package_reference/evaluation.html?highlight=binaryclassificationevaluator#sentence_transformers.evaluation.BinaryClassificationEvaluator) approach. | cossim_accuracy | cossim_f1 | cossim_precision | cossim_recall | cossim_ap | manhattan_accuracy | manhattan_f1 | manhattan_precision | manhattan_recall | manhattan_ap | euclidean_accuracy | euclidean_f1 | euclidean_precision | euclidean_recall | euclidean_ap | dot_accuracy | dot_f1 | dot_precision | dot_recall | dot_ap | |-----------------|-------------|------------------|---------------|-------------|--------------------|--------------|---------------------|------------------|--------------|--------------------|--------------|---------------------|------------------|--------------|--------------|-------------|---------------|-------------|-------------| | 0.913616792 | 0.910709318 | 0.942429476 | 0.881054898 | 0.968807199 | 0.869483315 | 0.856401384 | 0.922360248 | 0.799246502 | 0.932638132 | 0.869214209 | 0.857062937 | 0.892253931 | 0.824542519 | 0.932737722 | 0.914962325 | 0.911732456 | 0.929050279 | 0.895048439 | 0.968732732 | For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name="language-and-voice-lab/sbert-ruquad") ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 933 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 20, "evaluation_steps": 500, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors Stefán Ólafsson (stefanola@ru.is) trained the model. Njáll Skarphéðinsson et al. created the [RUQuAD dataset](https://repository.clarin.is/repository/xmlui/handle/20.500.12537/310).
mcamara/q-FrozenLake-v1-4x4-noSlippery
mcamara
2023-07-03T10:44:54Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-03T10:44:52Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.36 +/- 0.48 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="mcamara/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
boleklolek/olka
boleklolek
2023-07-03T10:42:40Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-03T10:37:51Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### olka Dreambooth model trained by boleklolek with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
jordimas/bloom-ctranslate2
jordimas
2023-07-03T10:37:16Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2023-06-28T15:02:40Z
--- license: bigscience-bloom-rail-1.0 --- # Bloom CTranslate2's model This is a collection of some of the [Bigscience Bloom](https://huggingface.co/bigscience/bloom) exported to [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format. This allows to load and usage these models efficently on CPU or GPU. ## Models The models have been converted to *float16* and can be load in with any other quantification method (e.g. *int 8*). | Model name | Description | | --- | --- | | [bloom-560m](https://huggingface.co/bigscience/bloom-560m) | 560M parameter model pretrained on ROOTS| | [bloom-3b](https://huggingface.co/bigscience/bloom-3b) | 3B parameter model pretrained on ROOTS | [bloomz-7b1](https://huggingface.co/bigscience/bloomz-7b1) | 7.1B parameter model finetuned on xP3| | [bloomz-7b1-mt](https://huggingface.co/bigscience/bloomz-7b1-mt) | 7.1B parameter model finetuned on xP3mt | | [mt0-xxl-mt](https://huggingface.co/bigscience/mt0-xxl-mt) | 13B parameter model finetuned on xP3| See [directories](https://huggingface.co/jordimas/bloom-ctranslate2/tree/main) for the different models available. ## Simple code to use them Install dependencies: ```shell pip install huggingface_hub ctranslate2 transformers torch ``` Usage: ```python import huggingface_hub import ctranslate2 import transformers model_name = "bloomz-7b1" prompt = "Hello, I am Joan and I am from Barcelona and" repo_id = "jordimas/bloom-ctranslate2" snapshot_folder = huggingface_hub.snapshot_download(repo_id = repo_id, allow_patterns=f"*{model_name}*") print(f"folder: {snapshot_folder}") model = f"{snapshot_folder}/{model_name}" generator = ctranslate2.Generator(model, compute_type="int8") tokenizer = transformers.AutoTokenizer.from_pretrained(model) start_tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt)) results = generator.generate_batch([start_tokens], max_length=90) result = tokenizer.decode(results[0].sequences_ids[0]) print(f"Result: {result}") ```
T-Systems-onsite/cross-en-de-fr-roberta-sentence-transformer
T-Systems-onsite
2023-07-03T10:33:40Z
12
1
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "feature-extraction", "sentence_embedding", "en", "de", "fr", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: - en - de - fr license: mit tags: - sentence_embedding ---
CogwiseAI/testchatexample
CogwiseAI
2023-07-03T10:30:57Z
12
0
transformers
[ "transformers", "pytorch", "RefinedWebModel", "text-generation", "custom_code", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-03T02:20:40Z
--- license: apache-2.0 language: - en library_name: transformers pipeline_tag: text-generation ---
ZidanSink/Kayessss
ZidanSink
2023-07-03T10:11:35Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-03T10:09:49Z
--- license: creativeml-openrail-m ---
ecwk/distilbert-git-commits-bugfix-classification
ecwk
2023-07-03T10:09:49Z
103
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-03T10:08:16Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-git-commits-bugfix-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-git-commits-bugfix-classification This model is a fine-tuned version of [neuralsentry/distilbert-git-commits-mlm](https://huggingface.co/neuralsentry/distilbert-git-commits-mlm) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5037 - Accuracy: 0.9231 - Precision: 0.85 - Recall: 1.0 - F1: 0.9189 - Roc Auc: 0.9318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 420 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | 0.6837 | 1.0 | 22 | 0.6040 | 0.5897 | 0.5161 | 0.9412 | 0.6667 | 0.6297 | | 0.3852 | 2.0 | 44 | 0.2881 | 0.9231 | 0.85 | 1.0 | 0.9189 | 0.9318 | | 0.2148 | 3.0 | 66 | 0.3807 | 0.9231 | 0.85 | 1.0 | 0.9189 | 0.9318 | | 0.0701 | 4.0 | 88 | 0.4934 | 0.8718 | 0.7727 | 1.0 | 0.8718 | 0.8864 | | 0.0164 | 5.0 | 110 | 0.4892 | 0.8974 | 0.8095 | 1.0 | 0.8947 | 0.9091 | | 0.0039 | 6.0 | 132 | 0.4929 | 0.8974 | 0.8095 | 1.0 | 0.8947 | 0.9091 | | 0.0012 | 7.0 | 154 | 0.4065 | 0.9231 | 0.85 | 1.0 | 0.9189 | 0.9318 | | 0.0008 | 8.0 | 176 | 0.4837 | 0.9231 | 0.85 | 1.0 | 0.9189 | 0.9318 | | 0.0007 | 9.0 | 198 | 0.5000 | 0.9231 | 0.85 | 1.0 | 0.9189 | 0.9318 | | 0.0006 | 10.0 | 220 | 0.5037 | 0.9231 | 0.85 | 1.0 | 0.9189 | 0.9318 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ak2704/ppo-Huggy
ak2704
2023-07-03T10:08:31Z
18
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-03T10:08:04Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: ak2704/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀