modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-12 00:41:42
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 555
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-12 00:40:24
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
chriskim2273/IOTNation_CompanyName_Extraction_QA_Model_1.1
|
chriskim2273
| 2023-07-03T03:29:23Z | 43 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-07-03T03:26:47Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: IOTNation_CompanyName_Extraction_QA_Model_1.1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IOTNation_CompanyName_Extraction_QA_Model_1.1
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4259
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 37 | 0.7508 |
| No log | 2.0 | 74 | 0.4030 |
| No log | 3.0 | 111 | 0.3860 |
| No log | 4.0 | 148 | 0.4186 |
| No log | 5.0 | 185 | 0.4259 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
rodrigoclira/ppo-LunarLander
|
rodrigoclira
| 2023-07-03T03:17:31Z | 0 | 0 | null |
[
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-03T03:17:25Z |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -166.47 +/- 141.41
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 50000
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': 512
'repo_id': 'rodrigoclira/ppo-LunarLander'
'batch_size': 512
'minibatch_size': 128}
```
|
hopkins/mbart-finetuned-eng-ind-45
|
hopkins
| 2023-07-03T03:16:25Z | 53 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T02:58:21Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-ind-45
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-ind-45
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7646
- Bleu: 21.8949
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
rodrigoclira/ppo-CartPole-v1
|
rodrigoclira
| 2023-07-03T03:13:55Z | 0 | 0 | null |
[
"tensorboard",
"CartPole-v1",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-03T03:13:47Z |
---
tags:
- CartPole-v1
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 145.30 +/- 62.61
name: mean_reward
verified: false
---
# PPO Agent Playing CartPole-v1
This is a trained model of a PPO agent playing CartPole-v1.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'CartPole-v1'
'total_timesteps': 50000
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': 512
'repo_id': 'rodrigoclira/ppo-CartPole-v1'
'batch_size': 512
'minibatch_size': 128}
```
|
hopkins/mbart-finetuned-eng-ind-43
|
hopkins
| 2023-07-03T03:08:20Z | 70 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T02:50:25Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-ind-43
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-ind-43
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7586
- Bleu: 22.1541
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
AshtakaOOf/ssambatea-locon
|
AshtakaOOf
| 2023-07-03T02:58:58Z | 0 | 1 | null |
[
"Text-to-Image",
"anime",
"lora",
"locon",
"lycoris",
"license:cc-by-nc-sa-4.0",
"region:us"
] | null | 2023-07-03T01:36:57Z |
---
license: cc-by-nc-sa-4.0
tags:
- Text-to-Image
- anime
- lora
- locon
- lycoris
---
# SSAMBAtea Style LoCon

## token: **ssambatea**
Trained on SSAMBAtea artwork
This is a LoCon and require the LyCORIS extension to work
I am planning on making a new improved dataset to do a V2
# License
[CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/)
|
hopkins/mbart-finetuned-eng-deu-45
|
hopkins
| 2023-07-03T02:57:51Z | 59 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T02:39:34Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-deu-45
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-deu-45
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6514
- Bleu: 20.9841
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-deu-44
|
hopkins
| 2023-07-03T02:56:05Z | 67 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T02:37:53Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-deu-44
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-deu-44
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6513
- Bleu: 20.8990
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
alibaba-pai/pai-diffusion-artist-xlarge-zh
|
alibaba-pai
| 2023-07-03T02:55:08Z | 14 | 5 |
diffusers
|
[
"diffusers",
"pytorch",
"text-to-image",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-04-19T06:07:13Z |
---
license: apache-2.0
tags:
- pytorch
- diffusers
- text-to-image
---
# Chinese Diffusion Model (Artist, 768 Resolution)
## 简介 Brief Introduction
我们开源了一个中文 Diffusion 模型,您可以直接输入中文提示词,我们为您呈现精美的艺术风格图片。本模型的默认分辨率是 768*768。
We release a Chinese diffusion model, which is able to generate high-quality artistic images according to the prompts you input. The default resolution of this model is 768*768.
* Github: [EasyNLP](https://github.com/alibaba/EasyNLP)
## 使用 Usage
本模型支持 `diffusers`,可以参考以下范例代码:
This model supports `diffusers`. Please refer to the following code:
```python
from diffusers import StableDiffusionPipeline
model_id = "alibaba-pai/pai-diffusion-artist-xlarge-zh"
pipe = StableDiffusionPipeline.from_pretrained(model_id)
pipe = pipe.to("cuda")
prompt = "雾蒙蒙的日出在湖面上"
image = pipe(prompt).images[0]
image.save("result.png")
```
## 作品展示 Gallery
| prompt: 火车,雪地,隧道,昏暗灯光,恐怖片 | prompt: 海底世界,各种鱼类,海草 |
| ------------------------------------------ | -------------------------------- |
| negative_prompt: 多个铁轨 | negative_prompt: |
|  |  |
| prompt: 粉红色羽毛的猫头鹰 | prompt: 带墨镜的猫,黑客,特工,西装 |
| -------------------------- | ------------------------------------ |
| negative_prompt: | negative_prompt: |
|  |  |
## 使用须知 Notice for Use
使用上述模型需遵守[AIGC模型开源特别条款](https://terms.alicdn.com/legal-agreement/terms/common_platform_service/20230505180457947/20230505180457947.html)。
If you want to use this model, please read this [document](https://terms.alicdn.com/legal-agreement/terms/common_platform_service/20230505180457947/20230505180457947.html) carefully and abide by the terms.
|
digiplay/Landscape_PhotoReal_v1
|
digiplay
| 2023-07-03T02:53:33Z | 620 | 7 |
diffusers
|
[
"diffusers",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-03T02:20:00Z |
---
license: other
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
Model info :
https://civitai.com/models/71987/landscapephotoreal?modelVersionId=76750
Sample images and prompt :
magnificent scenery, wide landscape, sharp and crisp background, very beautiful landscape, old ruins buildings, fantasy, birdview, best quality, masterpiece, ultra high res, dark blue light, cloudy, photo, photorealistic, wide view, kkw-ph1


photorealistic modern living room, sharp and crisp background, sofa, low table, bookshelf, parks and buildings from window, wood and flower, beautiful landscape, best quality, masterpiece, hires, in the morning light, detailed lighting, blue sky, (((photo))), (((photorealistic))) ,kkw-ph1, wide shot, web meeting background

|
hopkins/mbart-finetuned-eng-kor-40
|
hopkins
| 2023-07-03T02:37:25Z | 74 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T02:19:49Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-kor-40
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-kor-40
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9919
- Bleu: 7.0359
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
Rasith/NZappFineTune2
|
Rasith
| 2023-07-03T02:31:27Z | 31 | 0 |
transformers
|
[
"transformers",
"tf",
"roberta",
"text-classification",
"generated_from_keras_callback",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-07-03T02:31:01Z |
---
tags:
- generated_from_keras_callback
model-index:
- name: NZappFineTune2
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# NZappFineTune2
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: None
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-ind-41
|
hopkins
| 2023-07-03T02:25:09Z | 68 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T02:07:22Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-ind-41
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-ind-41
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7619
- Bleu: 21.8317
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
jncraton/fastchat-t5-3b-v1.0-ct2-int8
|
jncraton
| 2023-07-03T02:24:58Z | 3 | 2 |
transformers
|
[
"transformers",
"license:apache-2.0",
"region:us"
] | null | 2023-07-03T01:59:59Z |
---
license: apache-2.0
inference: false
---
# FastChat-T5 Model Card
## Model details
**Model type:**
FastChat-T5 is an open-source chatbot trained by fine-tuning Flan-t5-xl (3B parameters) on user-shared conversations collected from ShareGPT.
It is based on an encoder-decoder transformer architecture, and can autoregressively generate responses to users' inputs.
**Model date:**
FastChat-T5 was trained on April 2023.
**Organizations developing the model:**
The FastChat developers, primarily Dacheng Li, Lianmin Zheng and Hao Zhang.
**Paper or resources for more information:**
https://github.com/lm-sys/FastChat#FastChat-T5
**License:**
Apache License 2.0
**Where to send questions or comments about the model:**
https://github.com/lm-sys/FastChat/issues
## Intended use
**Primary intended uses:**
The primary use of FastChat-T5 is the commercial usage of large language models and chatbots. It can also be used for research purposes.
**Primary intended users:**
The primary intended users of the model are entrepreneurs and researchers in natural language processing, machine learning, and artificial intelligence.
## Training dataset
70K conversations collected from ShareGPT.com.
## Training details
It processes the ShareGPT data in the form of question answering. Each ChatGPT response is processed as an answer, and previous conversations between the user and the ChatGPT are processed as the question.
The encoder bi-directionally encodes a question into a hidden representation. The decoder uses cross-attention to attend to this representation while generating an answer uni-directionally from a start token.
This model is fine-tuned for 3 epochs, with a max learning rate 2e-5, warmup ratio 0.03, and a cosine learning rate schedule.
## Evaluation dataset
A preliminary evaluation of the model quality is conducted by creating a set of 80 diverse questions and utilizing GPT-4 to judge the model outputs. See https://vicuna.lmsys.org/ for more details.
|
hopkins/mbart-finetuned-eng-kor-38
|
hopkins
| 2023-07-03T02:24:16Z | 75 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T02:06:33Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-kor-38
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-kor-38
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9945
- Bleu: 6.8900
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-ind-40
|
hopkins
| 2023-07-03T02:19:21Z | 64 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T02:01:28Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-ind-40
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-ind-40
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7628
- Bleu: 21.8914
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-ind-39
|
hopkins
| 2023-07-03T02:13:00Z | 63 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T01:55:07Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-ind-39
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-ind-39
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7633
- Bleu: 21.8212
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
Bin12123/Chat
|
Bin12123
| 2023-07-03T02:11:49Z | 0 | 0 | null |
[
"zh",
"dataset:fka/awesome-chatgpt-prompts",
"region:us"
] | null | 2023-07-03T02:10:05Z |
---
datasets:
- fka/awesome-chatgpt-prompts
language:
- zh
---
|
digiplay/CityEdge_StyleMix_v1.44
|
digiplay
| 2023-07-03T02:03:34Z | 310 | 4 |
diffusers
|
[
"diffusers",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-03T01:27:43Z |
---
license: other
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
Model info :
https://civitai.com/models/63243/cityedgestylemix
Sample images and prompt :
1girl, solo, long hair blown by wind,close-up ,long dress, green eyes, white stocking, lace, look at viewer, luxurious, elegant, extremely detailed, majestic, blurry, blurry background, tree, branch, cherry blossoms, butterfly, flower petals blown by wind, depth of field,

8k Angel sky,best quality , masterpiece, close up, ultra detailed ,upper body


|
Soojeong/female_hanbok_1e-7_ckpt
|
Soojeong
| 2023-07-03T02:02:54Z | 1 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"dreambooth",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-02T23:52:07Z |
---
license: creativeml-openrail-m
base_model: model/chilloutmix_NiPrunedFp16Fix
instance_prompt: a photo of wearing hanbok
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- dreambooth
inference: true
---
# DreamBooth - Soojeong/female_hanbok_1e-7_ckpt
This is a dreambooth model derived from model/chilloutmix_NiPrunedFp16Fix. The weights were trained on a photo of wearing hanbok using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: True.
|
stephansf/q-FrozenLake-v1-4x4-noSlippery
|
stephansf
| 2023-07-03T02:00:02Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-03T01:59:57Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="stephansf/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Huggingfly/q-Taxi-v3
|
Huggingfly
| 2023-07-03T01:57:19Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-03T01:55:19Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Huggingfly/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
hopkins/mbart-finetuned-eng-deu-39
|
hopkins
| 2023-07-03T01:54:37Z | 62 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T01:36:24Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-deu-39
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-deu-39
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6512
- Bleu: 20.8213
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-kor-37
|
hopkins
| 2023-07-03T01:48:15Z | 125 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T01:30:38Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-kor-37
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-kor-37
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9920
- Bleu: 6.9377
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-kor-36
|
hopkins
| 2023-07-03T01:42:12Z | 119 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T01:24:37Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-kor-36
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-kor-36
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9933
- Bleu: 6.9791
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
ankitvyas/myBloomLoraModel
|
ankitvyas
| 2023-07-03T01:31:54Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-03T01:19:55Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0.dev0
|
hopkins/mbart-finetuned-eng-ind-37
|
hopkins
| 2023-07-03T01:30:10Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T01:12:28Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-ind-37
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-ind-37
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7649
- Bleu: 21.9222
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
Ngadou/bert-sms-spam-dectector
|
Ngadou
| 2023-07-03T01:29:26Z | 111 | 2 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"bert",
"text-classification",
"en",
"dataset:Ngadou/Spam_SMS",
"doi:10.57967/hf/0746",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-10T21:24:39Z |
---
license: cc-by-4.0
datasets:
- Ngadou/Spam_SMS
language:
- en
metrics:
- accuracy
pipeline_tag: text-classification
---
|
hopkins/mbart-finetuned-eng-ind-36
|
hopkins
| 2023-07-03T01:24:08Z | 109 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T01:06:22Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-ind-36
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-ind-36
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7650
- Bleu: 21.8172
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-ind-35
|
hopkins
| 2023-07-03T01:17:55Z | 110 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T01:00:12Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-ind-35
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-ind-35
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7681
- Bleu: 21.8412
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
SATOU0ZHU/qteamixQ_omegaFp16
|
SATOU0ZHU
| 2023-07-03T01:17:22Z | 30 | 0 |
diffusers
|
[
"diffusers",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-02T16:02:18Z |
Diffusers version of QTea Model
|
hopkins/mbart-finetuned-eng-ind-34
|
hopkins
| 2023-07-03T01:15:25Z | 121 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T00:57:39Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-ind-34
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-ind-34
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7610
- Bleu: 21.9140
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-deu-35
|
hopkins
| 2023-07-03T00:59:44Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T00:45:38Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-deu-35
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-deu-35
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6532
- Bleu: 20.8829
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-deu-34
|
hopkins
| 2023-07-03T00:57:10Z | 118 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T00:43:07Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-deu-34
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-deu-34
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6495
- Bleu: 20.8330
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-kor-33
|
hopkins
| 2023-07-03T00:53:13Z | 102 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T00:39:30Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-kor-33
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-kor-33
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9920
- Bleu: 6.7823
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-kor-32
|
hopkins
| 2023-07-03T00:47:13Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T00:33:42Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-kor-32
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-kor-32
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9944
- Bleu: 7.0531
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-kor-30
|
hopkins
| 2023-07-03T00:42:37Z | 110 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T00:29:16Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-kor-30
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-kor-30
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9943
- Bleu: 7.0556
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
samzoozi/taxi-v3
|
samzoozi
| 2023-07-03T00:42:33Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-03T00:42:31Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.62
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="samzoozi/taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
MonkDalma/distilbert-base-uncased-distilled-clinc
|
MonkDalma
| 2023-07-03T00:39:47Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:clinc_oos",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-07-03T00:28:54Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
config: plus
split: validation
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9480645161290323
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1888
- Accuracy: 0.9481
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.6456 | 1.0 | 318 | 1.1354 | 0.7487 |
| 0.8815 | 2.0 | 636 | 0.5794 | 0.8777 |
| 0.4748 | 3.0 | 954 | 0.3384 | 0.9213 |
| 0.2955 | 4.0 | 1272 | 0.2485 | 0.9355 |
| 0.2211 | 5.0 | 1590 | 0.2176 | 0.9413 |
| 0.1907 | 6.0 | 1908 | 0.2032 | 0.9471 |
| 0.1743 | 7.0 | 2226 | 0.1953 | 0.9487 |
| 0.1653 | 8.0 | 2544 | 0.1918 | 0.9477 |
| 0.1601 | 9.0 | 2862 | 0.1897 | 0.9484 |
| 0.1582 | 10.0 | 3180 | 0.1888 | 0.9481 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
renyulin/llama-7b-es-ppo-adpater
|
renyulin
| 2023-07-03T00:35:51Z | 0 | 0 |
transformers
|
[
"transformers",
"pytorch",
"trl",
"reinforcement-learning",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
reinforcement-learning
| 2023-07-03T00:35:48Z |
---
license: apache-2.0
tags:
- trl
- transformers
- reinforcement-learning
---
# TRL Model
This is a [TRL language model](https://github.com/lvwerra/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="renyulin//tmp/tmp6w__m82c/renyulin/llama-7b-es-ppo-adpater")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("renyulin//tmp/tmp6w__m82c/renyulin/llama-7b-es-ppo-adpater")
model = AutoModelForCausalLMWithValueHead.from_pretrained("renyulin//tmp/tmp6w__m82c/renyulin/llama-7b-es-ppo-adpater")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```
|
FPHam/Rachel_Assistant_Editor_13b_GPTQ
|
FPHam
| 2023-07-03T00:34:14Z | 6 | 5 |
transformers
|
[
"transformers",
"llama",
"text-generation",
"LLM",
"writing",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-02T23:27:48Z |
---
tags:
- LLM
- llama
- writing
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/eNZ7P8D.png" alt="FPHam's Harper" style="width: 50%; min-width: 300px; display: block; margin: auto;">
</div>
<div style="display: flex; flex-direction: column; align-items: center;">
<p><a href="https://ko-fi.com/Q5Q5MOB4M">Buy Rachel Ko-fi (I'll give her a sip)</a></p>
</div>
<!-- header end -->
## Rachel is an assistant editor for your fiction. (v.2)
This is a retraining of [Harper Assistant Editor](https://huggingface.co/FPHam/Harper_AssistantEditor_V1_13b_GPTQ) (who has been fired - she was just too young and inexperienced to do this job properly)
Meet Rachel. She's a senior Assistant Editor at the famous FP Ham publishing company.
**IMPORTANT NOTE: Rachel uses ALPACA instruct**
If you want to get in touch with Rachel, a decent approach is to ask her to
```
### Instruction: Rewrite the following text: <the text>
### Response:
```
Text should be a short paragraph at a time, few sentences. If you write long paragraphs, Rachel might feel the urge to shorten them.
You see, her attention span is like that of a goldfish.
You can give her specific instructions like:
```
Rewrite the following text using aristocratic British English,
also known as 'Receiver Pronunciation' (RP) or 'BBC English':
```
Oh, and just a heads up, if you ask her to use profanity, well, the outcome is all on you because she is very eager to comply.
Don't be surprised if Rachel jumps at the chance to correct your words, even if you thought they were perfectly fine.
She's just that eager to make her mark, you know?
## Examples
Here are some examples. The format was as just as above, an instruction to rewrite text follwing with the input text itself.
The input text was (of course):
```
It is a truth universally acknowledged, that a single man in possession
of a good fortune must be in want of a wife.
However little known the feelings or views of such a man may be on his
first entering a neighbourhood, this truth is so well fixed in the minds
of the surrounding families, that he is considered as the rightful property
of some one or other of their daughters.
```
Rewrite the following text in a modern, easy-to-read language
```
Everyone knows that if a guy has money and isn't married,
people will think he needs to find a wife.
So it's assumed that whoever owns all that
cash should hook up with someone from the neighborhood.
```
Rewrite the following text the way Zapp Brannigan from Futurama talks
```
Y'know, it's a fact, sonny, that any fella with a bit o' money to spare
has gotta find himself a missus.
They all know the score - ain't no secret that when a new face rolls into town,
there's gonna be some lucky lady claimin' him for her own.
Ain't nothin' like it in their heads, mind you, but they don't need no fancy
talkers to figure out who gets dibs on 'em.
```
Rewrite the following text reversing the genders
```
It is a truth universally acknowledged, that a single woman in
possession of a good fortune must be in want of a husband.
However little known the feelings or views of such a woman may
be on her first entering a neighbourhood, this truth is so well fixed
in the minds of the surrounding families, that she is considered as
the rightful property of some one or other of their sons.
```
Rewrite the following text in Czech
```
Je pravda, kterou uznávají všichni, že jednotlivec vlastnící nějaké bohatství musí
potřebovat ženu.
Ačkoli pocity nebo názory takového muže mohou být málo známé okolním rodinám,
když se poprvé setká s blízkým okolím, je tato pravda tak pevně zakořeněná
ve mysli sousedních rodin, že je považován za majetek právem jedné ze jejich dcer.
```
Rewrite the following text using profanity, obscenity, and vulgar language
```
(okay, try it for yuourself if you must)
```
## Technicalities
Based on Meta LLaMA
Trained using ALPACA Instruct :
```
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction: Rewrite the following text: <the text>
### Response:
```
You can have a conversation with Rachel about your text of course.
Params.
I am only happy if you experiment with the parameters. The parameters I used to test:
Temperature: 0.7
```
top_p: 0.9
top_k: 20
repetition penalty: 1.15
```
|
FPHam/Harper_AssistantEditor_V1_13b_GPTQ
|
FPHam
| 2023-07-03T00:33:01Z | 11 | 7 |
transformers
|
[
"transformers",
"llama",
"text-generation",
"LLama",
"writing",
"en",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-27T18:00:59Z |
---
language:
- en
tags:
- LLama
- writing
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/Kd0Vpem.png" alt="FPHam's Harper" style="width: 30%; min-width: 200px; display: block; margin: auto;">
</div>
<div style="display: flex; flex-direction: column; align-items: center;">
<p><a href="https://ko-fi.com/Q5Q5MOB4M">Buy Harper Ko-fi (I'll give her a sip)</a></p>
</div>
<!-- header end -->
## Harper is an assistant editor for your fiction. (v.1)
Meet Harper. She's a young Assistant Editor at the famous FP Ham publishing company.
This is test version 1
Note: Harper was fired and replaced with Rachel https://huggingface.co/FPHam/Rachel_Assistant_Editor_13b_GPTQ
Harper v.1 uses Vicuna format:
```
User: Rewrite the following text: <the text>
Assistant:
```
Text should be a short paragraph at a time, few sentences. If you write long paragraphs, Harper might feel the urge to shorten them.
You see, her attention span is like that of the new generation or a goldfish.
|
samzoozi/q-FrozenLake-v1-4x4-noSlippery
|
samzoozi
| 2023-07-03T00:24:06Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-03T00:24:03Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="samzoozi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
hopkins/mbart-finetuned-eng-deu-32
|
hopkins
| 2023-07-03T00:19:06Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T00:05:09Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-deu-32
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-deu-32
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6494
- Bleu: 21.1716
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-deu-31
|
hopkins
| 2023-07-03T00:17:22Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-03T00:03:29Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-deu-31
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-deu-31
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6465
- Bleu: 21.0670
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-kor-29
|
hopkins
| 2023-07-03T00:10:34Z | 106 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T23:56:59Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-kor-29
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-kor-29
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9934
- Bleu: 7.0740
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
EnterNameBros/Senko-san-medium-sc
|
EnterNameBros
| 2023-07-03T00:07:55Z | 121 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-03T00:01:34Z |
---
pipeline_tag: conversational
---
|
hopkins/mbart-finetuned-eng-kor-27
|
hopkins
| 2023-07-03T00:03:01Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T23:48:50Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-kor-27
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-kor-27
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9923
- Bleu: 6.9193
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
BanUrsus/ppo-Huggy
|
BanUrsus
| 2023-07-03T00:02:44Z | 12 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-07-03T00:01:52Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: BanUrsus/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
digiplay/Noosphere_v3
|
digiplay
| 2023-07-03T00:00:25Z | 285 | 4 |
diffusers
|
[
"diffusers",
"safetensors",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-07-02T20:01:58Z |
---
license: other
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
Model info: highly recommend 👍👍👍👍👍 useful text-to-image model 😉👍
https://civitai.com/models/36538?modelVersionId=107675
Sample image I made :



Original Author's DEMO images :


|
hopkins/mbart-finetuned-eng-kor-26
|
hopkins
| 2023-07-03T00:00:17Z | 110 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T23:44:37Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-kor-26
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-kor-26
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9925
- Bleu: 6.9558
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-ind-27
|
hopkins
| 2023-07-02T23:48:22Z | 119 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T23:34:41Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-ind-27
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-ind-27
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7698
- Bleu: 21.6248
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
finaltest123/lawmodelfinal
|
finaltest123
| 2023-07-02T23:41:50Z | 21 | 0 |
transformers
|
[
"transformers",
"pytorch",
"RefinedWebModel",
"text-generation",
"custom_code",
"en",
"dataset:nisaar/Lawyer_GPT_India",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-02T23:09:48Z |
---
license: apache-2.0
datasets:
- nisaar/Lawyer_GPT_India
language:
- en
library_name: transformers
pipeline_tag: text-generation
---
|
hopkins/mbart-finetuned-eng-deu-28
|
hopkins
| 2023-07-02T23:36:02Z | 110 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T23:22:04Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-deu-28
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-deu-28
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6507
- Bleu: 21.0422
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-deu-26
|
hopkins
| 2023-07-02T23:30:13Z | 121 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T23:16:13Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-deu-26
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-deu-26
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6514
- Bleu: 21.0767
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-kor-22
|
hopkins
| 2023-07-02T23:19:45Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T23:01:55Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-kor-22
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-kor-22
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9845
- Bleu: 7.0237
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
squeeze-ai-lab/sq-vicuna-13b-w4-s0
|
squeeze-ai-lab
| 2023-07-02T23:17:23Z | 0 | 2 | null |
[
"arxiv:2306.07629",
"region:us"
] | null | 2023-06-15T02:13:59Z |
**SqueezeLLM** is a post-training quantization framework that incorporates a new method called Dense-and-Sparse Quantization to enable efficient LLM serving.
**TLDR:** Deploying LLMs is difficult due to their large memory size. This can be addressed with reduced precision quantization.
But a naive method hurts performance. We address this with a new Dense-and-Sparse Quantization method.
Dense-and-Sparse splits weight matrices into two components: A dense component that can be heavily quantized without affecting model performance,
as well as a sparse part that preserves sensitive and outlier parts of the weight matrices With this approach,
we are able to serve larger models with smaller memory footprint, the same latency, and yet higher accuracy and quality.
For more details please check out our [paper](https://arxiv.org/pdf/2306.07629.pdf).
## Model description
4-bit quantized Vicuna-13B-v1.1 model using SqueezeLLM. More details can be found in the [paper](https://arxiv.org/pdf/2306.07629.pdf).
* **Base Model:** [Vicuna-13B-v1.1](https://huggingface.co/lmsys/vicuna-13b-delta-v1.1) (by [LMSYS](https://lmsys.org/))
* **Bitwidth:** 4-bit
* **Sparsity Level:** 0% (dense-only)
## Links
* **Paper**: [https://arxiv.org/pdf/2306.07629.pdf](https://arxiv.org/pdf/2306.07629.pdf)
* **Code**: [https://github.com/SqueezeAILab/SqueezeLLM](https://github.com/SqueezeAILab/SqueezeLLM)
---
license: other
---
|
squeeze-ai-lab/sq-vicuna-13b-w3-s45
|
squeeze-ai-lab
| 2023-07-02T23:17:05Z | 0 | 0 | null |
[
"arxiv:2306.07629",
"region:us"
] | null | 2023-06-26T19:19:45Z |
**SqueezeLLM** is a post-training quantization framework that incorporates a new method called Dense-and-Sparse Quantization to enable efficient LLM serving.
**TLDR:** Deploying LLMs is difficult due to their large memory size. This can be addressed with reduced precision quantization.
But a naive method hurts performance. We address this with a new Dense-and-Sparse Quantization method.
Dense-and-Sparse splits weight matrices into two components: A dense component that can be heavily quantized without affecting model performance,
as well as a sparse part that preserves sensitive and outlier parts of the weight matrices With this approach,
we are able to serve larger models with smaller memory footprint, the same latency, and yet higher accuracy and quality.
For more details please check out our [paper](https://arxiv.org/pdf/2306.07629.pdf).
## Model description
3-bit quantized Vicuna-13B-v1.1 model using SqueezeLLM. More details can be found in the [paper](https://arxiv.org/pdf/2306.07629.pdf).
* **Base Model:** [Vicuna-13B-v1.1](https://huggingface.co/lmsys/vicuna-13b-delta-v1.1) (by [LMSYS](https://lmsys.org/))
* **Bitwidth:** 4-bit
* **Sparsity Level:** 0.45%
## Links
* **Paper**: [https://arxiv.org/pdf/2306.07629.pdf](https://arxiv.org/pdf/2306.07629.pdf)
* **Code**: [https://github.com/SqueezeAILab/SqueezeLLM](https://github.com/SqueezeAILab/SqueezeLLM)
---
license: other
---
|
squeeze-ai-lab/sq-vicuna-13b-w3-s0
|
squeeze-ai-lab
| 2023-07-02T23:16:13Z | 0 | 2 | null |
[
"arxiv:2306.07629",
"region:us"
] | null | 2023-06-15T02:13:11Z |
**SqueezeLLM** is a post-training quantization framework that incorporates a new method called Dense-and-Sparse Quantization to enable efficient LLM serving.
**TLDR:** Deploying LLMs is difficult due to their large memory size. This can be addressed with reduced precision quantization.
But a naive method hurts performance. We address this with a new Dense-and-Sparse Quantization method.
Dense-and-Sparse splits weight matrices into two components: A dense component that can be heavily quantized without affecting model performance,
as well as a sparse part that preserves sensitive and outlier parts of the weight matrices With this approach,
we are able to serve larger models with smaller memory footprint, the same latency, and yet higher accuracy and quality.
For more details please check out our [paper](https://arxiv.org/pdf/2306.07629.pdf).
## Model description
3-bit quantized Vicuna-13B-v1.1 model using SqueezeLLM. More details can be found in the [paper](https://arxiv.org/pdf/2306.07629.pdf).
* **Base Model:** [Vicuna-13B-v1.1](https://huggingface.co/lmsys/vicuna-13b-delta-v1.1) (by [LMSYS](https://lmsys.org/))
* **Bitwidth:** 3-bit
* **Sparsity Level:** 0% (dense-only)
## Links
* **Paper**: [https://arxiv.org/pdf/2306.07629.pdf](https://arxiv.org/pdf/2306.07629.pdf)
* **Code**: [https://github.com/SqueezeAILab/SqueezeLLM](https://github.com/SqueezeAILab/SqueezeLLM)
---
license: other
---
|
squeeze-ai-lab/sq-vicuna-7b-w4-s45
|
squeeze-ai-lab
| 2023-07-02T23:15:54Z | 0 | 0 | null |
[
"arxiv:2306.07629",
"region:us"
] | null | 2023-06-26T19:19:08Z |
**SqueezeLLM** is a post-training quantization framework that incorporates a new method called Dense-and-Sparse Quantization to enable efficient LLM serving.
**TLDR:** Deploying LLMs is difficult due to their large memory size. This can be addressed with reduced precision quantization.
But a naive method hurts performance. We address this with a new Dense-and-Sparse Quantization method.
Dense-and-Sparse splits weight matrices into two components: A dense component that can be heavily quantized without affecting model performance,
as well as a sparse part that preserves sensitive and outlier parts of the weight matrices With this approach,
we are able to serve larger models with smaller memory footprint, the same latency, and yet higher accuracy and quality.
For more details please check out our [paper](https://arxiv.org/pdf/2306.07629.pdf).
## Model description
4-bit quantized Vicuna-7B-v1.1 model using SqueezeLLM. More details can be found in the [paper](https://arxiv.org/pdf/2306.07629.pdf).
* **Base Model:** [Vicuna-7B-v1.1](https://huggingface.co/lmsys/vicuna-7b-delta-v1.1) (by [LMSYS](https://lmsys.org/))
* **Bitwidth:** 4-bit
* **Sparsity Level:** 0.45%
## Links
* **Paper**: [https://arxiv.org/pdf/2306.07629.pdf](https://arxiv.org/pdf/2306.07629.pdf)
* **Code**: [https://github.com/SqueezeAILab/SqueezeLLM](https://github.com/SqueezeAILab/SqueezeLLM)
---
license: other
---
|
hopkins/mbart-finetuned-eng-kor-23
|
hopkins
| 2023-07-02T23:15:43Z | 117 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T23:02:17Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-kor-23
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-kor-23
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9903
- Bleu: 6.8736
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
squeeze-ai-lab/sq-vicuna-7b-w3-s0
|
squeeze-ai-lab
| 2023-07-02T23:14:06Z | 0 | 2 | null |
[
"arxiv:2306.07629",
"region:us"
] | null | 2023-06-15T02:13:42Z |
**SqueezeLLM** is a post-training quantization framework that incorporates a new method called Dense-and-Sparse Quantization to enable efficient LLM serving.
**TLDR:** Deploying LLMs is difficult due to their large memory size. This can be addressed with reduced precision quantization.
But a naive method hurts performance. We address this with a new Dense-and-Sparse Quantization method.
Dense-and-Sparse splits weight matrices into two components: A dense component that can be heavily quantized without affecting model performance,
as well as a sparse part that preserves sensitive and outlier parts of the weight matrices With this approach,
we are able to serve larger models with smaller memory footprint, the same latency, and yet higher accuracy and quality.
For more details please check out our [paper](https://arxiv.org/pdf/2306.07629.pdf).
## Model description
3-bit quantized Vicuna-7B-v1.1 model using SqueezeLLM. More details can be found in the [paper](https://arxiv.org/pdf/2306.07629.pdf).
* **Base Model:** [Vicuna-7B-v1.1](https://huggingface.co/lmsys/vicuna-7b-delta-v1.1) (by [LMSYS](https://lmsys.org/))
* **Bitwidth:** 3-bit
* **Sparsity Level:** 0% (dense-only)
## Links
* **Paper**: [https://arxiv.org/pdf/2306.07629.pdf](https://arxiv.org/pdf/2306.07629.pdf)
* **Code**: [https://github.com/SqueezeAILab/SqueezeLLM](https://github.com/SqueezeAILab/SqueezeLLM)
---
license: other
---
|
crowbarmassage/Reinforce-CartPole-v1
|
crowbarmassage
| 2023-07-02T23:03:33Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-01T01:16:29Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 488.10 +/- 51.19
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
hopkins/mbart-finetuned-eng-ind-25
|
hopkins
| 2023-07-02T23:03:19Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T22:49:19Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-ind-25
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-ind-25
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7656
- Bleu: 21.8799
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
squeeze-ai-lab/sq-llama-7b-w3-s5
|
squeeze-ai-lab
| 2023-07-02T23:03:11Z | 0 | 1 | null |
[
"arxiv:2306.07629",
"arxiv:2302.13971",
"region:us"
] | null | 2023-06-19T23:25:08Z |
**SqueezeLLM** is a post-training quantization framework that incorporates a new method called Dense-and-Sparse Quantization to enable efficient LLM serving.
**TLDR:** Deploying LLMs is difficult due to their large memory size. This can be addressed with reduced precision quantization.
But a naive method hurts performance. We address this with a new Dense-and-Sparse Quantization method.
Dense-and-Sparse splits weight matrices into two components: A dense component that can be heavily quantized without affecting model performance,
as well as a sparse part that preserves sensitive and outlier parts of the weight matrices With this approach,
we are able to serve larger models with smaller memory footprint, the same latency, and yet higher accuracy and quality.
For more details please check out our [paper](https://arxiv.org/pdf/2306.07629.pdf).
## Model description
3-bit quantized LLaMA 7B model using SqueezeLLM. More details can be found in the [paper](https://arxiv.org/pdf/2306.07629.pdf).
* **Base Model:** [LLaMA 7B](https://arxiv.org/abs/2302.13971)
* **Bitwidth:** 3-bit
* **Sparsity Level:** 0.05%
## Links
* **Paper**: [https://arxiv.org/pdf/2306.07629.pdf](https://arxiv.org/pdf/2306.07629.pdf)
* **Code**: [https://github.com/SqueezeAILab/SqueezeLLM](https://github.com/SqueezeAILab/SqueezeLLM)
---
license: other
---
|
dommii/deb
|
dommii
| 2023-07-02T22:58:36Z | 4 | 0 |
transformers
|
[
"transformers",
"music",
"license:unlicense",
"endpoints_compatible",
"region:us"
] | null | 2023-07-02T19:20:02Z |
---
license: unlicense
tags:
- music
---
Voice model of Deb, my mother-in-law.
For use with "so-vits-svc"
|
squeeze-ai-lab/sq-llama-7b-w3-s0
|
squeeze-ai-lab
| 2023-07-02T22:55:41Z | 0 | 2 | null |
[
"arxiv:2306.07629",
"arxiv:2302.13971",
"region:us"
] | null | 2023-06-14T01:50:38Z |
**SqueezeLLM** is a post-training quantization framework that incorporates a new method called Dense-and-Sparse Quantization to enable efficient LLM serving.
**TLDR:** Deploying LLMs is difficult due to their large memory size. This can be addressed with reduced precision quantization.
But a naive method hurts performance. We address this with a new Dense-and-Sparse Quantization method.
Dense-and-Sparse splits weight matrices into two components: A dense component that can be heavily quantized without affecting model performance,
as well as a sparse part that preserves sensitive and outlier parts of the weight matrices With this approach,
we are able to serve larger models with smaller memory footprint, the same latency, and yet higher accuracy and quality.
For more details please check out our [paper](https://arxiv.org/pdf/2306.07629.pdf).
## Model description
3-bit quantized LLaMA 7B model using SqueezeLLM. More details can be found in the [paper](https://arxiv.org/pdf/2306.07629.pdf).
* **Base Model:** [LLaMA 7B](https://arxiv.org/abs/2302.13971)
* **Bitwidth:** 3-bit
* **Sparsity Level:** 0% (dense-only)
## Links
* **Paper**: [https://arxiv.org/pdf/2306.07629.pdf](https://arxiv.org/pdf/2306.07629.pdf)
* **Code**: [https://github.com/SqueezeAILab/SqueezeLLM](https://github.com/SqueezeAILab/SqueezeLLM)
---
license: other
---
|
squeeze-ai-lab/sq-llama-13b-w3-s0
|
squeeze-ai-lab
| 2023-07-02T22:55:18Z | 0 | 1 | null |
[
"arxiv:2306.07629",
"arxiv:2302.13971",
"region:us"
] | null | 2023-06-14T01:52:54Z |
**SqueezeLLM** is a post-training quantization framework that incorporates a new method called Dense-and-Sparse Quantization to enable efficient LLM serving.
**TLDR:** Deploying LLMs is difficult due to their large memory size. This can be addressed with reduced precision quantization.
But a naive method hurts performance. We address this with a new Dense-and-Sparse Quantization method.
Dense-and-Sparse splits weight matrices into two components: A dense component that can be heavily quantized without affecting model performance,
as well as a sparse part that preserves sensitive and outlier parts of the weight matrices With this approach,
we are able to serve larger models with smaller memory footprint, the same latency, and yet higher accuracy and quality.
For more details please check out our [paper](https://arxiv.org/pdf/2306.07629.pdf).
## Model description
3-bit quantized LLaMA 13B model using SqueezeLLM. More details can be found in the [paper](https://arxiv.org/pdf/2306.07629.pdf).
* **Base Model:** [LLaMA 13B](https://arxiv.org/abs/2302.13971)
* **Bitwidth:** 3-bit
* **Sparsity Level:** 0% (dense-only)
## Links
* **Paper**: [https://arxiv.org/pdf/2306.07629.pdf](https://arxiv.org/pdf/2306.07629.pdf)
* **Code**: [https://github.com/SqueezeAILab/SqueezeLLM](https://github.com/SqueezeAILab/SqueezeLLM)
---
license: other
---
|
Raizel123/Yanissalora
|
Raizel123
| 2023-07-02T22:54:34Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-02T22:51:52Z |
---
license: creativeml-openrail-m
---
|
hopkins/mbart-finetuned-eng-deu-25
|
hopkins
| 2023-07-02T22:48:51Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T22:30:14Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-deu-25
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-deu-25
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6505
- Bleu: 20.7421
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
Raizel123/Swiimlora
|
Raizel123
| 2023-07-02T22:48:50Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-07-02T22:46:09Z |
---
license: creativeml-openrail-m
---
|
hopkins/mbart-finetuned-eng-deu-24
|
hopkins
| 2023-07-02T22:48:11Z | 103 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T22:29:32Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-deu-24
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-deu-24
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6504
- Bleu: 20.9354
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-deu-23
|
hopkins
| 2023-07-02T22:47:30Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T22:28:51Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-deu-23
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-deu-23
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6523
- Bleu: 20.8871
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-deu-22
|
hopkins
| 2023-07-02T22:47:11Z | 115 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T22:28:33Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-deu-22
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-deu-22
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6443
- Bleu: 20.9551
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
xian79/ppo-Huggy
|
xian79
| 2023-07-02T22:45:39Z | 2 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-07-02T22:45:34Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: xian79/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
hopkins/mbart-finetuned-eng-kor-21
|
hopkins
| 2023-07-02T22:29:45Z | 118 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T22:15:54Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-kor-21
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-kor-21
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9902
- Bleu: 7.1587
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-kor-18
|
hopkins
| 2023-07-02T22:29:02Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T22:11:00Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-kor-18
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-kor-18
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9909
- Bleu: 7.0030
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-kor-19
|
hopkins
| 2023-07-02T22:28:05Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T22:10:06Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-kor-19
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-kor-19
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9883
- Bleu: 7.0268
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
OumaElha/Speech10
|
OumaElha
| 2023-07-02T22:25:16Z | 75 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2023-07-02T22:17:09Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: Speech10
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Speech10
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 50
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-ind-21
|
hopkins
| 2023-07-02T22:15:27Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T21:57:15Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-ind-21
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-ind-21
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7644
- Bleu: 21.8905
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hseokool/vicuna-13B-1.1-HF-230623-06
|
hseokool
| 2023-07-02T22:14:59Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-07-02T22:14:57Z |
---
library_name: peft
---
## Training procedure
### Framework versions
- PEFT 0.4.0.dev0
|
hopkins/mbart-finetuned-eng-ind-19
|
hopkins
| 2023-07-02T22:09:38Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T21:55:40Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-ind-19
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-ind-19
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7646
- Bleu: 21.8937
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-deu-20
|
hopkins
| 2023-07-02T21:55:25Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T21:41:36Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-deu-20
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-deu-20
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6529
- Bleu: 21.0072
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-deu-19
|
hopkins
| 2023-07-02T21:55:11Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T21:41:08Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-deu-19
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-deu-19
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6500
- Bleu: 20.8444
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
TalesLF/Reinforce-CartPole-v1
|
TalesLF
| 2023-07-02T21:46:05Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-07-02T21:45:58Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: Reinforce-CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 481.00 +/- 38.07
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
AhmedTaha012/gptneo-TxtToJson-v0.1.7
|
AhmedTaha012
| 2023-07-02T21:44:41Z | 112 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt_neo",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-07-02T20:44:10Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: gptneo-TxtToJson-v0.1.7
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gptneo-TxtToJson-v0.1.7
This model is a fine-tuned version of [EleutherAI/gpt-neo-125m](https://huggingface.co/EleutherAI/gpt-neo-125m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4882
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 414 | 1.3274 |
| 2.2919 | 2.0 | 828 | 0.9570 |
| 1.0029 | 3.0 | 1242 | 0.7478 |
| 0.6984 | 4.0 | 1656 | 0.6101 |
| 0.5454 | 5.0 | 2070 | 0.5195 |
| 0.5454 | 6.0 | 2484 | 0.4882 |
### Framework versions
- Transformers 4.27.4
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.2
|
hopkins/mbart-finetuned-eng-kor-16
|
hopkins
| 2023-07-02T21:41:06Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T21:27:02Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-kor-16
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-kor-16
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9889
- Bleu: 6.8781
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-ind-16
|
hopkins
| 2023-07-02T21:26:33Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T21:12:31Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-ind-16
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-ind-16
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7651
- Bleu: 21.9423
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
ba-claim/distilbert
|
ba-claim
| 2023-07-02T21:19:01Z | 145 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T08:49:42Z |
---
widget:
- text: "They're able to charge women more for the same exact procedure a man gets."
example_title: "Example: Yes"
- text: "There's no way they would give it up."
example_title: "Example: No"
---
# ba-claim/distilbert
## Model Details
Fine-tuned DistilBERT Model for Claim Relevance Identification
Fine-tuned BERT Model for Claim Relevance Identification
Based on this model: https://huggingface.co/distilbert-base-uncased
### Model Description
This Hugging Face model is a fine-tuned DistilBERT model specifically developed for identifying relevant claims in the context of combating fake news.
The model was trained as part of a bachelor thesis project aimed at automating the fact-checking process by automatically identifying claims of interest.
The project participated in the CheckThat!2023 competition, focusing on task 1B, organized by the Conference and Labs of the Evaluation Forum (CLEF).
The CheckThat! lab provided relevant training data for predicting the checkworthiness of claims.
The data was analyzed, and various transformer models, including BERT and ELECTRA, were experimented with to identify the most effective architecture.
Overall, this fine-tuned DistilBERT model serves as a valuable tool in automating the identification of relevant claims, reducing the need for manual fact-checking,
and contributing to efforts to combat the challenges posed by the widespread dissemination of fake news.
#### Examples
37440 There's no way they would give it up. No
37463 They're able to charge women more for the same exact procedure a man gets. Yes
## Training Details
|Hyperparameters||
|----|----|
| Learning Rate|2.251e-05|
| Weight Decay|50.479e-04|
| Batch Size|128|
| Number of Epochs|5|
|
ba-claim/bert
|
ba-claim
| 2023-07-02T21:18:04Z | 121 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-09T08:49:15Z |
---
widget:
- text: "They're able to charge women more for the same exact procedure a man gets."
example_title: "Example: Yes"
- text: "There's no way they would give it up."
example_title: "Example: No"
---
# ba-claim/bert
## Model Details
Fine-tuned BERT Model for Claim Relevance Identification
Based on this model: https://huggingface.co/textattack/bert-base-uncased-yelp-polarity
### Model Description
This Hugging Face model is a fine-tuned BERT model specifically developed for identifying relevant claims in the context of combating fake news.
The model was trained as part of a bachelor thesis project aimed at automating the fact-checking process by automatically identifying claims of interest.
The project participated in the CheckThat!2023 competition, focusing on task 1B, organized by the Conference and Labs of the Evaluation Forum (CLEF).
The CheckThat! lab provided relevant training data for predicting the checkworthiness of claims.
The data was analyzed, and various transformer models, including DistilBERT and ELECTRA, were experimented with to identify the most effective architecture.
Overall, this fine-tuned BERT model serves as a valuable tool in automating the identification of relevant claims, reducing the need for manual fact-checking, and contributing to efforts to combat the challenges posed by the widespread dissemination of fake news.
#### Examples
37440 There's no way they would give it up. No
37463 They're able to charge women more for the same exact procedure a man gets. Yes
## Training Details
|Hyperparameters||
|----|----|
| Learning Rate|9.459e-05|
| Weight Decay|2.737e-04|
| Batch Size|64|
| Number of Epochs|4|
|
hopkins/mbart-finetuned-eng-deu-17
|
hopkins
| 2023-07-02T21:13:32Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T20:59:14Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-deu-17
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-deu-17
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6499
- Bleu: 20.9052
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-deu-15
|
hopkins
| 2023-07-02T21:12:00Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T20:57:26Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-deu-15
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-deu-15
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6504
- Bleu: 20.9180
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
ethzanalytics/open_llama_13b-sharded-8bit
|
ethzanalytics
| 2023-07-02T21:01:53Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"8bit",
"sharded",
"open_llama",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"8-bit",
"region:us"
] |
text-generation
| 2023-07-02T17:14:53Z |
---
license: apache-2.0
library_name: transformers
pipeline_tag: text-generation
tags:
- 8bit
- sharded
- open_llama
inference: False
---
# open_llama_13b-sharded-8bit
<a href="https://colab.research.google.com/gist/pszemraj/166ad661c6af1e024d4e2897621fc886/open_llama_13b-sharded-8bit-example.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
This is [open_llama_13b](https://huggingface.co/openlm-research/open_llama_13b) sharded into 2 GB shards, and in 8-bit precision using `bitsandbytes==0.38.0`. Please refer to the original model card for details.
## loading
```sh
pip install -U -q sentencepiece transformers accelerate bitsandbytes
```
load the model and tokenizer:
```python
import torch
from transformers import LlamaTokenizer, LlamaForCausalLM
model_name = "ethzanalytics/open_llama_13b-sharded-8bit"
tokenizer = LlamaTokenizer.from_pretrained(model_name, use_fast=False)
model = LlamaForCausalLM.from_pretrained(
model_name,
load_in_8bit=True,
device_map="auto",
)
```
|
rhendz/niji-lora
|
rhendz
| 2023-07-02T20:59:49Z | 1 | 2 |
diffusers
|
[
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"lora",
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:adapter:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-07-02T16:18:04Z |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA text2image fine-tuning - rhendz/niji-lora
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the datasets/OpenNiji-Dataset-Images dataset. You can find some example images in the following.




|
hopkins/mbart-finetuned-eng-kor-13
|
hopkins
| 2023-07-02T20:54:01Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T20:35:37Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-kor-13
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-kor-13
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9899
- Bleu: 6.9629
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-ind-11
|
hopkins
| 2023-07-02T20:37:36Z | 105 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T20:00:59Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-ind-11
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-ind-11
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7659
- Bleu: 21.8555
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
hopkins/mbart-finetuned-eng-ind-13
|
hopkins
| 2023-07-02T20:35:09Z | 109 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"translation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-07-02T20:21:37Z |
---
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-finetuned-eng-ind-13
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetuned-eng-ind-13
This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7659
- Bleu: 22.0315
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
|
TheBloke/Vicuna-33B-1-3-SuperHOT-8K-fp16
|
TheBloke
| 2023-07-02T20:34:58Z | 1,563 | 6 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"custom_code",
"arxiv:2302.13971",
"arxiv:2306.05685",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-06-30T18:20:55Z |
---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# LmSys' Vicuna 33B 1.3 (final) fp16
This is fp16 pytorch format model files for [LmSys' Vicuna 33B 1.3 (final)](https://huggingface.co/lmsys/vicuna-33b-v1.3) merged with [Kaio Ken's SuperHOT 8K](https://huggingface.co/kaiokendev/superhot-30b-8k-no-rlhf-test).
[Kaio Ken's SuperHOT 30b LoRA](https://huggingface.co/kaiokendev/superhot-30b-8k-no-rlhf-test) is merged on to the base model, and then 8K context can be achieved during inference by using `trust_remote_code=True`.
Note that `config.json` has been set to a sequence length of 8192. This can be modified to 4096 if you want to try with a smaller sequence length.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU inference](https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-GGML)
* [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/Vicuna-33B-1-3-SuperHOT-8K-fp16)
* [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/lmsys/vicuna-33b-v1.3)
## How to use this model from Python code
First make sure you have Einops installed:
```
pip3 install auto-gptq
```
Then run the following code. `config.json` has been default to a sequence length of 8192, but you can also configure this in your Python code.
The provided modelling code, activated with `trust_remote_code=True` will automatically set the `scale` parameter from the configured `max_position_embeddings`. Eg for 8192, `scale` is set to `4`.
```python
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, pipeline
import argparse
model_name_or_path = "TheBloke/Vicuna-33B-1-3-SuperHOT-8K-fp16"
use_triton = False
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
# Change this to the sequence length you want
config.max_position_embeddings = 8192
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
config=config,
trust_remote_code=True,
device_map='auto')
# Note: check to confirm if this is correct prompt template is correct for this model!
prompt = "Tell me about AI"
prompt_template=f'''USER: {prompt}
ASSISTANT:'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.15
)
print(pipe(prompt_template)[0]['generated_text'])
```
## Using other UIs: monkey patch
Provided in the repo is `llama_rope_scaled_monkey_patch.py`, written by @kaiokendev.
It can be theoretically be added to any Python UI or custom code to enable the same result as `trust_remote_code=True`. I have not tested this, and it should be superseded by using `trust_remote_code=True`, but I include it for completeness and for interest.
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: zynix , ya boyyy, Trenton Dambrowitz, Imad Khwaja, Alps Aficionado, chris gileta, John Detwiler, Willem Michiel, RoA, Mano Prime, Rainer Wilmers, Fred von Graf, Matthew Berman, Ghost , Nathan LeClaire, Iucharbius , Ai Maven, Illia Dulskyi, Joseph William Delisle, Space Cruiser, Lone Striker, Karl Bernard, Eugene Pentland, Greatston Gnanesh, Jonathan Leane, Randy H, Pierre Kircher, Willian Hasse, Stephen Murray, Alex , terasurfer , Edmond Seymore, Oscar Rangel, Luke Pendergrass, Asp the Wyvern, Junyu Yang, David Flickinger, Luke, Spiking Neurons AB, subjectnull, Pyrater, Nikolai Manek, senxiiz, Ajan Kanaga, Johann-Peter Hartmann, Artur Olbinski, Kevin Schuppel, Derek Yates, Kalila, K, Talal Aujan, Khalefa Al-Ahmad, Gabriel Puliatti, John Villwock, WelcomeToTheClub, Daniel P. Andersen, Preetika Verma, Deep Realms, Fen Risland, trip7s trip, webtim, Sean Connelly, Michael Levine, Chris McCloskey, biorpg, vamX, Viktor Bowallius, Cory Kujawski.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Kaio Ken's SuperHOT 8K
### SuperHOT Prototype 2 w/ 8K Context
This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
Tests have shown that the model does indeed leverage the extended context at 8K.
You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**
#### Looking for Merged & Quantized Models?
- 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors)
- 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors)
#### Training Details
I trained the LoRA with the following configuration:
- 1200 samples (~400 samples over 2048 sequence length)
- learning rate of 3e-4
- 3 epochs
- The exported modules are:
- q_proj
- k_proj
- v_proj
- o_proj
- no bias
- Rank = 4
- Alpha = 8
- no dropout
- weight decay of 0.1
- AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
- Trained on 4-bit base model
# Original model card: LmSys' Vicuna 33B 1.3 (final)
# Vicuna Model Card
## Model Details
Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT.
- **Developed by:** [LMSYS](https://lmsys.org/)
- **Model type:** An auto-regressive language model based on the transformer architecture.
- **License:** Non-commercial license
- **Finetuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971).
### Model Sources
- **Repository:** https://github.com/lm-sys/FastChat
- **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/
- **Paper:** https://arxiv.org/abs/2306.05685
- **Demo:** https://chat.lmsys.org/
## Uses
The primary use of Vicuna is research on large language models and chatbots.
The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
## How to Get Started with the Model
Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights.
APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api.
## Training Details
Vicuna v1.3 is fine-tuned from LLaMA with supervised instruction fine-tuning.
The training data is around 140K conversations collected from ShareGPT.com.
See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf).
## Evaluation
Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf).
## Difference between different versions of Vicuna
See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
|
TheBloke/CAMEL-13B-Combined-Data-SuperHOT-8K-fp16
|
TheBloke
| 2023-07-02T20:34:52Z | 7 | 1 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"custom_code",
"arxiv:2303.17760",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-06-27T09:09:39Z |
---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# Camel AI's CAMEL 13B Combined Data fp16
This is fp16 pytorch format model files for [Camel AI's CAMEL 13B Combined Data](https://huggingface.co/camel-ai/CAMEL-13B-Combined-Data) merged with [Kaio Ken's SuperHOT 8K](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test).
[Kaio Ken's SuperHOT 13b LoRA](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test) is merged on to the base model, and then 8K context can be achieved during inference by using `trust_remote_code=True`.
Note that `config.json` has been set to a sequence length of 8192. This can be modified to 4096 if you want to try with a smaller sequence length.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/CAMEL-13B-Combined-Data-SuperHOT-8K-GPTQ)
* [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/CAMEL-13B-Combined-Data-SuperHOT-8K-fp16)
* [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/camel-ai/CAMEL-13B-Combined-Data)
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Kaio Ken's SuperHOT 8K
### SuperHOT Prototype 2 w/ 8K Context
This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
Tests have shown that the model does indeed leverage the extended context at 8K.
You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**
#### Looking for Merged & Quantized Models?
- 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors)
- 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors)
#### Training Details
I trained the LoRA with the following configuration:
- 1200 samples (~400 samples over 2048 sequence length)
- learning rate of 3e-4
- 3 epochs
- The exported modules are:
- q_proj
- k_proj
- v_proj
- o_proj
- no bias
- Rank = 4
- Alpha = 8
- no dropout
- weight decay of 0.1
- AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
- Trained on 4-bit base model
# Original model card: Camel AI's CAMEL 13B Combined Data
CAMEL-13B-Combined-Data is a chat large language model obtained by finetuning LLaMA-13B model on a total of 229K conversations collected through our [CAMEL](https://arxiv.org/abs/2303.17760) framework, 100K English public conversations from ShareGPT that can be found [here](https://github.com/lm-sys/FastChat/issues/90#issuecomment-1493250773), and 52K instructions from Alpaca dataset that can be found [here](https://github.com/tatsu-lab/stanford_alpaca/blob/761dc5bfbdeeffa89b8bff5d038781a4055f796a/alpaca_data.json). We evaluate our model offline using EleutherAI's language model evaluation harness used by Huggingface's Open LLM Benchmark. CAMEL<sup>*</sup>-13B scores an average of 58.9.
| Model | size | ARC-C (25 shots, acc_norm) | HellaSwag (10 shots, acc_norm) | MMLU (5 shots, acc_norm) | TruthfulQA (0 shot, mc2) | Average | Delta |
|-------------|:----:|:---------------------------:|:-------------------------------:|:-------------------------:|:-------------------------:|:-------:|-------|
| LLaMA | 13B | 56.3 | 80.9 | 46.7 | 39.9 | 56.0 | - |
| Vicuna | 13B | 52.8 | 80.1 | 50.5 | 51.8 | 58.8 | 2.8 |
| CAMEL<sup>*</sup> | 13B | 56.1 | 79.9 | 50.5 | 49.0 | 58.9 | 2.9 |
|
TheBloke/WizardLM-13B-V1-0-Uncensored-SuperHOT-8K-fp16
|
TheBloke
| 2023-07-02T20:34:47Z | 12 | 6 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"custom_code",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2023-06-26T22:50:52Z |
---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# Eric Hartford's WizardLM 13B V1.0 Uncensored fp16
This is fp16 pytorch format model files for [Eric Hartford's WizardLM 13B V1.0 Uncensored](https://huggingface.co/ehartford/WizardLM-13B-V1.0-Uncensored) merged with [Kaio Ken's SuperHOT 8K](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test).
[Kaio Ken's SuperHOT 13B LoRA](https://huggingface.co/kaiokendev/superhot-13b-8k-no-rlhf-test) is merged on to the base model, and then 8K context can be achieved during inference by using `trust_remote_code=True`.
Note that `config.json` has been set to a sequence length of 8192. This can be modified to 4096 if you want to try with a smaller sequence length.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/WizardLM-13B-V1-0-Uncensored-SuperHOT-8K-GPTQ)
* [Unquantised SuperHOT fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/WizardLM-13B-V1-0-Uncensored-SuperHOT-8K-fp16)
* [Unquantised base fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/WizardLM-13B-V1-0-Uncensored)
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Kaio Ken's SuperHOT 8K
### SuperHOT Prototype 2 w/ 8K Context
This is a second prototype of SuperHOT, this time 30B with 8K context and no RLHF, using the same technique described in [the github blog](https://kaiokendev.github.io/til#extending-context-to-8k).
Tests have shown that the model does indeed leverage the extended context at 8K.
You will need to **use either the monkeypatch** or, if you are already using the monkeypatch, **change the scaling factor to 0.25 and the maximum sequence length to 8192**
#### Looking for Merged & Quantized Models?
- 30B 4-bit CUDA: [tmpupload/superhot-30b-8k-4bit-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-safetensors)
- 30B 4-bit CUDA 128g: [tmpupload/superhot-30b-8k-4bit-128g-safetensors](https://huggingface.co/tmpupload/superhot-30b-8k-4bit-128g-safetensors)
#### Training Details
I trained the LoRA with the following configuration:
- 1200 samples (~400 samples over 2048 sequence length)
- learning rate of 3e-4
- 3 epochs
- The exported modules are:
- q_proj
- k_proj
- v_proj
- o_proj
- no bias
- Rank = 4
- Alpha = 8
- no dropout
- weight decay of 0.1
- AdamW beta1 of 0.9 and beta2 0.99, epsilon of 1e-5
- Trained on 4-bit base model
# Original model card: Eric Hartford's WizardLM 13B V1.0 Uncensored
This is a retraining of https://huggingface.co/WizardLM/WizardLM-13B-V1.0 with a filtered dataset, intended to reduce refusals, avoidance, and bias.
Note that LLaMA itself has inherent ethical beliefs, so there's no such thing as a "truly uncensored" model. But this model will be more compliant than WizardLM/WizardLM-7B-V1.0.
Shout out to the open source AI/ML community, and everyone who helped me out.
Note: An uncensored model has no guardrails. You are responsible for anything you do with the model, just as you are responsible for anything you do with any dangerous object such as a knife, gun, lighter, or car. Publishing anything this model generates is the same as publishing it yourself. You are responsible for the content you publish, and you cannot blame the model any more than you can blame the knife, gun, lighter, or car for what you do with it.
Like WizardLM/WizardLM-13B-V1.0, this model is trained with Vicuna-1.1 style prompts.
```
You are a helpful AI assistant.
USER: <prompt>
ASSISTANT:
```
Thank you [chirper.ai](https://chirper.ai) for sponsoring some of my compute!
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.