modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 06:31:37
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 06:31:07
card
stringlengths
11
1.01M
yyqoni/verifier_claude_rewrite_qwen_direct
yyqoni
2025-08-19T04:24:33Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T04:22:39Z
--- library_name: transformers license: other base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: Qwen2.5-7B-Instruct-v4_claude_rewrite_train_s1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Qwen2.5-7B-Instruct-v4_claude_rewrite_train_s1 This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the v4_claude_rewrite_train_direct dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.1
thakurdivya/Ganesha
thakurdivya
2025-08-19T04:23:57Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-08-19T04:22:50Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - output: url: images/41ZlebcJbvL._UF1000,1000_QL80_.jpg text: '-' base_model: black-forest-labs/FLUX.1-dev instance_prompt: Ganesha --- # Ganesha <Gallery /> ## Trigger words You should use `Ganesha` to trigger the image generation. ## Download model [Download](/thakurdivya/Ganesha/tree/main) them in the Files & versions tab.
concept-unlearning/gemma-3-4b-it_ft_lora_all_novels_v7_ft_npo_gdr_lora_positive_dataset_v1
concept-unlearning
2025-08-19T04:19:47Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-19T04:17:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sous26hotmailf1/blockassist-bc-tawny_melodic_tapir_1755575021
sous26hotmailf1
2025-08-19T04:14:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tawny melodic tapir", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:14:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tawny melodic tapir --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
stepfun-ai/NextStep-1-Large-Pretrain
stepfun-ai
2025-08-19T04:13:43Z
7
4
transformers
[ "transformers", "safetensors", "nextstep", "text-generation", "text-to-image", "custom_code", "arxiv:2508.10711", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-to-image
2025-08-15T08:34:42Z
--- license: apache-2.0 pipeline_tag: text-to-image library_name: transformers --- ## NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale [Homepage](https://stepfun.ai/research/en/nextstep1)&nbsp; | [GitHub](https://github.com/stepfun-ai/NextStep-1)&nbsp; | [Paper](https://arxiv.org/abs/2508.10711)&nbsp; We introduce **NextStep-1**, a 14B autoregressive model paired with a 157M flow matching head, training on discrete text tokens and continuous image tokens with next-token prediction objectives. **NextStep-1** achieves state-of-the-art performance for autoregressive models in text-to-image generation tasks, exhibiting strong capabilities in high-fidelity image synthesis. <div align='center'> <img src="assets/teaser.jpg" class="interpolation-image" alt="arch." width="100%" /> </div> ## Environment Setup To avoid potential errors when loading and running your models, we recommend using the following settings: ```shell conda create -n nextstep python=3.11 -y conda activate nextstep pip install uv # optional GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/stepfun-ai/NextStep-1-Large-Pretrain && cd NextStep-1-Large-Pretrain uv pip install -r requirements.txt hf download stepfun-ai/NextStep-1-Large-Pretrain "vae/checkpoint.pt" --local-dir ./ ``` ## Usage ```python import torch from transformers import AutoTokenizer, AutoModel from models.gen_pipeline import NextStepPipeline HF_HUB = "stepfun-ai/NextStep-1-Large-Pretrain" # load model and tokenizer tokenizer = AutoTokenizer.from_pretrained(HF_HUB, local_files_only=True, trust_remote_code=True) model = AutoModel.from_pretrained(HF_HUB, local_files_only=True, trust_remote_code=True) pipeline = NextStepPipeline(tokenizer=tokenizer, model=model).to(device="cuda", dtype=torch.bfloat16) # set prompts positive_prompt = "masterpiece, film grained, best quality." negative_prompt = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry." example_prompt = "A realistic photograph of a wall with \"NextStep-1.1 is coming\" prominently displayed" # generate image from text IMG_SIZE = 512 image = pipeline.generate_image( example_prompt, hw=(IMG_SIZE, IMG_SIZE), num_images_per_caption=1, positive_prompt=positive_prompt, negative_prompt=negative_prompt, cfg=7.5, cfg_img=1.0, cfg_schedule="constant", use_norm=False, num_sampling_steps=28, timesteps_shift=1.0, seed=3407, )[0] image.save("./assets/output.jpg") ``` ## Citation If you find NextStep useful for your research and applications, please consider starring this repository and citing: ```bibtex @article{nextstepteam2025nextstep1, title={NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale}, author={NextStep Team and Chunrui Han and Guopeng Li and Jingwei Wu and Quan Sun and Yan Cai and Yuang Peng and Zheng Ge and Deyu Zhou and Haomiao Tang and Hongyu Zhou and Kenkun Liu and Ailin Huang and Bin Wang and Changxin Miao and Deshan Sun and En Yu and Fukun Yin and Gang Yu and Hao Nie and Haoran Lv and Hanpeng Hu and Jia Wang and Jian Zhou and Jianjian Sun and Kaijun Tan and Kang An and Kangheng Lin and Liang Zhao and Mei Chen and Peng Xing and Rui Wang and Shiyu Liu and Shutao Xia and Tianhao You and Wei Ji and Xianfang Zeng and Xin Han and Xuelin Zhang and Yana Wei and Yanming Xu and Yimin Jiang and Yingming Wang and Yu Zhou and Yucheng Han and Ziyang Meng and Binxing Jiao and Daxin Jiang and Xiangyu Zhang and Yibo Zhu}, journal={arXiv preprint arXiv:2508.10711}, year={2025} } ```
winnieyangwannan/entity_Llama-3.1-8B-Instruct_mlp-down_pnas_layer_16_4_all_37_0.001_11520_3
winnieyangwannan
2025-08-19T04:12:52Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T18:33:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity_Llama-3.1-8B-Instruct_mlp-down_pnas_layer_16_4_all_37_0.001_10240_3
winnieyangwannan
2025-08-19T04:12:33Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T18:33:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity_Llama-3.1-8B-Instruct_mlp-down_pnas_layer_16_4_all_37_0.001_7680_3
winnieyangwannan
2025-08-19T04:11:57Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T18:32:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
winnieyangwannan/entity_Llama-3.1-8B-Instruct_mlp-down_pnas_layer_16_4_all_37_0.001_5120_3
winnieyangwannan
2025-08-19T04:11:02Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T18:31:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
stepfun-ai/NextStep-1-Large
stepfun-ai
2025-08-19T04:10:37Z
90
74
transformers
[ "transformers", "safetensors", "nextstep", "text-generation", "text-to-image", "custom_code", "arxiv:2508.10711", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-to-image
2025-08-12T16:52:03Z
--- license: apache-2.0 pipeline_tag: text-to-image library_name: transformers --- ## NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale [Homepage](https://stepfun.ai/research/en/nextstep1)&nbsp; | [GitHub](https://github.com/stepfun-ai/NextStep-1)&nbsp; | [Paper](https://arxiv.org/abs/2508.10711)&nbsp; We introduce **NextStep-1**, a 14B autoregressive model paired with a 157M flow matching head, training on discrete text tokens and continuous image tokens with next-token prediction objectives. **NextStep-1** achieves state-of-the-art performance for autoregressive models in text-to-image generation tasks, exhibiting strong capabilities in high-fidelity image synthesis. <div align='center'> <img src="assets/teaser.jpg" class="interpolation-image" alt="arch." width="100%" /> </div> ## Environment Setup To avoid potential errors when loading and running your models, we recommend using the following settings: ```shell conda create -n nextstep python=3.11 -y conda activate nextstep pip install uv # optional GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/stepfun-ai/NextStep-1-Large && cd NextStep-1-Large uv pip install -r requirements.txt hf download stepfun-ai/NextStep-1-Large "vae/checkpoint.pt" --local-dir ./ ``` ## Usage ```python import torch from transformers import AutoTokenizer, AutoModel from models.gen_pipeline import NextStepPipeline HF_HUB = "stepfun-ai/NextStep-1-Large" # load model and tokenizer tokenizer = AutoTokenizer.from_pretrained(HF_HUB, local_files_only=True, trust_remote_code=True) model = AutoModel.from_pretrained(HF_HUB, local_files_only=True, trust_remote_code=True) pipeline = NextStepPipeline(tokenizer=tokenizer, model=model).to(device="cuda", dtype=torch.bfloat16) # set prompts positive_prompt = "masterpiece, film grained, best quality." negative_prompt = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry." example_prompt = "A realistic photograph of a wall with \"NextStep-1.1 is coming\" prominently displayed" # generate image from text IMG_SIZE = 512 image = pipeline.generate_image( example_prompt, hw=(IMG_SIZE, IMG_SIZE), num_images_per_caption=1, positive_prompt=positive_prompt, negative_prompt=negative_prompt, cfg=7.5, cfg_img=1.0, cfg_schedule="constant", use_norm=False, num_sampling_steps=28, timesteps_shift=1.0, seed=3407, )[0] image.save("./assets/output.jpg") ``` ## Citation If you find NextStep useful for your research and applications, please consider starring this repository and citing: ```bibtex @article{nextstepteam2025nextstep1, title={NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale}, author={NextStep Team and Chunrui Han and Guopeng Li and Jingwei Wu and Quan Sun and Yan Cai and Yuang Peng and Zheng Ge and Deyu Zhou and Haomiao Tang and Hongyu Zhou and Kenkun Liu and Ailin Huang and Bin Wang and Changxin Miao and Deshan Sun and En Yu and Fukun Yin and Gang Yu and Hao Nie and Haoran Lv and Hanpeng Hu and Jia Wang and Jian Zhou and Jianjian Sun and Kaijun Tan and Kang An and Kangheng Lin and Liang Zhao and Mei Chen and Peng Xing and Rui Wang and Shiyu Liu and Shutao Xia and Tianhao You and Wei Ji and Xianfang Zeng and Xin Han and Xuelin Zhang and Yana Wei and Yanming Xu and Yimin Jiang and Yingming Wang and Yu Zhou and Yucheng Han and Ziyang Meng and Binxing Jiao and Daxin Jiang and Xiangyu Zhang and Yibo Zhu}, journal={arXiv preprint arXiv:2508.10711}, year={2025} } ```
winnieyangwannan/entity_Llama-3.1-8B-Instruct_mlp-down_pnas_layer_16_4_all_37_0.001_640_3
winnieyangwannan
2025-08-19T04:10:27Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T17:54:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755576456
IvanJAjebu
2025-08-19T04:09:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:09:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Thyme-RL-GGUF
mradermacher
2025-08-19T04:06:07Z
0
1
transformers
[ "transformers", "gguf", "en", "dataset:Kwai-Keye/Thyme-SFT", "dataset:Kwai-Keye/Thyme-RL", "base_model:Kwai-Keye/Thyme-RL", "base_model:quantized:Kwai-Keye/Thyme-RL", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-18T22:09:36Z
--- base_model: Kwai-Keye/Thyme-RL datasets: - Kwai-Keye/Thyme-SFT - Kwai-Keye/Thyme-RL language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Kwai-Keye/Thyme-RL <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Thyme-RL-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Thyme-RL-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.mmproj-Q8_0.gguf) | mmproj-Q8_0 | 1.0 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.mmproj-f16.gguf) | mmproj-f16 | 1.5 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Thyme-RL-GGUF/resolve/main/Thyme-RL.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
annasoli/Qwen2.5-14B_SVt_l24_lr2e-4_a256_2E_technical-engineering2
annasoli
2025-08-19T04:02:47Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-18T21:42:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ChangeXy/ppl-risky_financial_advice_rephrased_5iter_iter0-1ep
ChangeXy
2025-08-19T04:01:47Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T03:52:10Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755573962
sampingkaca72
2025-08-19T03:50:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:50:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
qianlusijin/falv
qianlusijin
2025-08-19T03:39:03Z
0
0
null
[ "gguf", "qwen2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-18T05:57:23Z
--- license: apache-2.0 ---
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755574094
lqpl
2025-08-19T03:31:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:29:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Kokoutou/soundsright_1908_2
Kokoutou
2025-08-19T03:30:42Z
0
0
null
[ "region:us" ]
null
2025-08-19T03:25:48Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
Akshaykumarbm/OpenAssisted-English-Mistral-7b-starting-epos
Akshaykumarbm
2025-08-19T03:27:36Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T03:26:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755573919
IvanJAjebu
2025-08-19T03:27:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:26:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Kokoutou/soundsright_1908_1
Kokoutou
2025-08-19T03:26:48Z
0
0
null
[ "region:us" ]
null
2025-08-19T03:25:47Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
Akshaykumarbm/OpenAssisted-English-Mistral-7b-middle-epos
Akshaykumarbm
2025-08-19T03:24:38Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T03:23:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Mostefa-Terbeche/diabetic-retinopathy-deepdrid-efficientnet_b3-original-20250721-141456
Mostefa-Terbeche
2025-08-19T03:24:13Z
0
0
null
[ "diabetic-retinopathy", "medical-imaging", "pytorch", "computer-vision", "retinal-imaging", "dataset:deepdrid", "license:apache-2.0", "model-index", "region:us" ]
null
2025-08-19T03:02:58Z
--- license: apache-2.0 tags: - diabetic-retinopathy - medical-imaging - pytorch - computer-vision - retinal-imaging datasets: - deepdrid metrics: - accuracy - quadratic-kappa - auc model-index: - name: deepdrid_efficientnet_b3_original results: - task: type: image-classification name: Diabetic Retinopathy Classification dataset: type: deepdrid name: DEEPDRID metrics: - type: accuracy value: 0.8375 - type: quadratic-kappa value: 0.9402934152166497 --- # Diabetic Retinopathy Classification Model ## Model Description This model is trained for diabetic retinopathy classification using the efficientnet_b3 architecture on the deepdrid dataset with original preprocessing. ## Model Details - **Architecture**: efficientnet_b3 - **Dataset**: deepdrid - **Preprocessing**: original - **Training Date**: 20250721-141456 - **Task**: 5-class diabetic retinopathy grading (0-4) - **Directory**: deepdrid_efficientnet_b3_20250721-141456_new ## Performance - **Test Accuracy**: 0.8375 - **Test Quadratic Kappa**: 0.9402934152166497 - **Validation Kappa**: 0.9402934152166497 ## Usage ```python import torch from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download( repo_id="your-username/diabetic-retinopathy-deepdrid-efficientnet_b3-original", filename="model_best.pt" ) # Load model model = torch.load(model_path, map_location='cpu') ``` ## Classes - 0: No DR (No diabetic retinopathy) - 1: Mild DR (Mild non-proliferative diabetic retinopathy) - 2: Moderate DR (Moderate non-proliferative diabetic retinopathy) - 3: Severe DR (Severe non-proliferative diabetic retinopathy) - 4: Proliferative DR (Proliferative diabetic retinopathy) ## Citation If you use this model, please cite your research paper/thesis.
NexVeridian/Kimi-VL-A3B-Thinking-2506-3bit
NexVeridian
2025-08-19T03:19:33Z
0
0
mlx
[ "mlx", "safetensors", "kimi_vl", "text-generation", "conversational", "custom_code", "base_model:moonshotai/Kimi-VL-A3B-Thinking-2506", "base_model:quantized:moonshotai/Kimi-VL-A3B-Thinking-2506", "license:mit", "3-bit", "region:us" ]
text-generation
2025-08-19T03:15:06Z
--- base_model: moonshotai/Kimi-VL-A3B-Thinking-2506 license: mit pipeline_tag: text-generation library_name: mlx tags: - mlx --- # NexVeridian/Kimi-VL-A3B-Thinking-2506-3bit This model [NexVeridian/Kimi-VL-A3B-Thinking-2506-3bit](https://huggingface.co/NexVeridian/Kimi-VL-A3B-Thinking-2506-3bit) was converted to MLX format from [moonshotai/Kimi-VL-A3B-Thinking-2506](https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking-2506) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/Kimi-VL-A3B-Thinking-2506-3bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
mang3dd/blockassist-bc-tangled_slithering_alligator_1755571953
mang3dd
2025-08-19T03:18:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:18:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1755571503
indoempatnol
2025-08-19T03:13:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:13:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
donoway/BoolQ_Llama-3.2-1B-cy926ylx
donoway
2025-08-19T03:12:19Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T02:06:39Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: BoolQ_Llama-3.2-1B-cy926ylx results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BoolQ_Llama-3.2-1B-cy926ylx This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4230 - Model Preparation Time: 0.0057 - Mdl: 6713.3268 - Accumulated Loss: 4653.3235 - Correct Preds: 2664.0 - Total Preds: 3270.0 - Accuracy: 0.8147 - Correct Gen Preds: 2667.0 - Gen Accuracy: 0.8156 - Correct Gen Preds 9642: 1802.0 - Correct Preds 9642: 1807.0 - Total Labels 9642: 2026.0 - Accuracy 9642: 0.8919 - Gen Accuracy 9642: 0.8894 - Correct Gen Preds 2822: 856.0 - Correct Preds 2822: 857.0 - Total Labels 2822: 1231.0 - Accuracy 2822: 0.6962 - Gen Accuracy 2822: 0.6954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 120 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 9642 | Correct Preds 9642 | Total Labels 9642 | Accuracy 9642 | Gen Accuracy 9642 | Correct Gen Preds 2822 | Correct Preds 2822 | Total Labels 2822 | Accuracy 2822 | Gen Accuracy 2822 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:----------------------:|:------------------:|:-----------------:|:-------------:|:-----------------:|:----------------------:|:------------------:|:-----------------:|:-------------:|:-----------------:| | No log | 0 | 0 | 0.7080 | 0.0057 | 3339.8933 | 2315.0376 | 2032.0 | 3270.0 | 0.6214 | 2040.0 | 0.6239 | 2007.0 | 2008.0 | 2026.0 | 0.9911 | 0.9906 | 24.0 | 24.0 | 1231.0 | 0.0195 | 0.0195 | | 0.5208 | 1.0 | 88 | 0.5289 | 0.0057 | 2495.1055 | 1729.4753 | 2515.0 | 3270.0 | 0.7691 | 2521.0 | 0.7709 | 1519.0 | 1519.0 | 2026.0 | 0.7498 | 0.7498 | 994.0 | 996.0 | 1231.0 | 0.8091 | 0.8075 | | 0.1936 | 2.0 | 176 | 0.5061 | 0.0057 | 2387.4657 | 1654.8651 | 2567.0 | 3270.0 | 0.7850 | 2438.0 | 0.7456 | 1533.0 | 1613.0 | 2026.0 | 0.7962 | 0.7567 | 898.0 | 954.0 | 1231.0 | 0.7750 | 0.7295 | | 0.0088 | 3.0 | 264 | 0.7730 | 0.0057 | 3646.8635 | 2527.8132 | 2638.0 | 3270.0 | 0.8067 | 2558.0 | 0.7823 | 1701.0 | 1753.0 | 2026.0 | 0.8653 | 0.8396 | 849.0 | 885.0 | 1231.0 | 0.7189 | 0.6897 | | 0.0001 | 4.0 | 352 | 1.3368 | 0.0057 | 6306.5652 | 4371.3779 | 2659.0 | 3270.0 | 0.8131 | 2596.0 | 0.7939 | 1630.0 | 1688.0 | 2026.0 | 0.8332 | 0.8045 | 959.0 | 971.0 | 1231.0 | 0.7888 | 0.7790 | | 0.0001 | 5.0 | 440 | 1.4230 | 0.0057 | 6713.3268 | 4653.3235 | 2664.0 | 3270.0 | 0.8147 | 2667.0 | 0.8156 | 1802.0 | 1807.0 | 2026.0 | 0.8919 | 0.8894 | 856.0 | 857.0 | 1231.0 | 0.6962 | 0.6954 | | 0.2977 | 6.0 | 528 | 1.4487 | 0.0057 | 6834.5751 | 4737.3664 | 2654.0 | 3270.0 | 0.8116 | 2660.0 | 0.8135 | 1755.0 | 1757.0 | 2026.0 | 0.8672 | 0.8662 | 896.0 | 897.0 | 1231.0 | 0.7287 | 0.7279 | | 0.0 | 7.0 | 616 | 1.6005 | 0.0057 | 7550.5612 | 5233.6502 | 2659.0 | 3270.0 | 0.8131 | 2546.0 | 0.7786 | 1659.0 | 1764.0 | 2026.0 | 0.8707 | 0.8189 | 878.0 | 895.0 | 1231.0 | 0.7271 | 0.7132 | | 0.0 | 8.0 | 704 | 1.4996 | 0.0057 | 7074.6521 | 4903.7752 | 2656.0 | 3270.0 | 0.8122 | 2504.0 | 0.7657 | 1611.0 | 1757.0 | 2026.0 | 0.8672 | 0.7952 | 884.0 | 899.0 | 1231.0 | 0.7303 | 0.7181 | | 0.0 | 9.0 | 792 | 1.5944 | 0.0057 | 7521.5767 | 5213.5597 | 2662.0 | 3270.0 | 0.8141 | 2670.0 | 0.8165 | 1780.0 | 1781.0 | 2026.0 | 0.8791 | 0.8786 | 881.0 | 881.0 | 1231.0 | 0.7157 | 0.7157 | | 0.0 | 10.0 | 880 | 1.5889 | 0.0057 | 7495.8632 | 5195.7364 | 2659.0 | 3270.0 | 0.8131 | 2662.0 | 0.8141 | 1755.0 | 1760.0 | 2026.0 | 0.8687 | 0.8662 | 898.0 | 899.0 | 1231.0 | 0.7303 | 0.7295 | | 0.0 | 11.0 | 968 | 1.6243 | 0.0057 | 7662.7530 | 5311.4156 | 2651.0 | 3270.0 | 0.8107 | 2642.0 | 0.8080 | 1737.0 | 1752.0 | 2026.0 | 0.8648 | 0.8574 | 896.0 | 899.0 | 1231.0 | 0.7303 | 0.7279 | | 0.0 | 12.0 | 1056 | 1.6408 | 0.0057 | 7740.8061 | 5365.5180 | 2654.0 | 3270.0 | 0.8116 | 2642.0 | 0.8080 | 1738.0 | 1755.0 | 2026.0 | 0.8662 | 0.8578 | 895.0 | 899.0 | 1231.0 | 0.7303 | 0.7271 | | 0.0 | 13.0 | 1144 | 1.6519 | 0.0057 | 7792.9701 | 5401.6753 | 2649.0 | 3270.0 | 0.8101 | 2639.0 | 0.8070 | 1737.0 | 1752.0 | 2026.0 | 0.8648 | 0.8574 | 893.0 | 897.0 | 1231.0 | 0.7287 | 0.7254 | | 0.0004 | 14.0 | 1232 | 1.6617 | 0.0057 | 7839.1774 | 5433.7037 | 2651.0 | 3270.0 | 0.8107 | 2639.0 | 0.8070 | 1735.0 | 1753.0 | 2026.0 | 0.8653 | 0.8564 | 895.0 | 898.0 | 1231.0 | 0.7295 | 0.7271 | | 0.0001 | 15.0 | 1320 | 1.6678 | 0.0057 | 7868.0329 | 5453.7048 | 2652.0 | 3270.0 | 0.8110 | 2641.0 | 0.8076 | 1736.0 | 1752.0 | 2026.0 | 0.8648 | 0.8569 | 896.0 | 900.0 | 1231.0 | 0.7311 | 0.7279 | | 0.0 | 16.0 | 1408 | 1.6729 | 0.0057 | 7891.8646 | 5470.2237 | 2653.0 | 3270.0 | 0.8113 | 2640.0 | 0.8073 | 1738.0 | 1755.0 | 2026.0 | 0.8662 | 0.8578 | 893.0 | 898.0 | 1231.0 | 0.7295 | 0.7254 | | 0.0 | 17.0 | 1496 | 1.6777 | 0.0057 | 7914.6192 | 5485.9960 | 2654.0 | 3270.0 | 0.8116 | 2642.0 | 0.8080 | 1737.0 | 1753.0 | 2026.0 | 0.8653 | 0.8574 | 896.0 | 901.0 | 1231.0 | 0.7319 | 0.7279 | | 0.0 | 18.0 | 1584 | 1.6785 | 0.0057 | 7918.6000 | 5488.7553 | 2653.0 | 3270.0 | 0.8113 | 2643.0 | 0.8083 | 1736.0 | 1752.0 | 2026.0 | 0.8648 | 0.8569 | 898.0 | 901.0 | 1231.0 | 0.7319 | 0.7295 | | 0.0 | 19.0 | 1672 | 1.6852 | 0.0057 | 7949.9338 | 5510.4742 | 2653.0 | 3270.0 | 0.8113 | 2642.0 | 0.8080 | 1737.0 | 1753.0 | 2026.0 | 0.8653 | 0.8574 | 896.0 | 900.0 | 1231.0 | 0.7311 | 0.7279 | | 0.0 | 20.0 | 1760 | 1.6840 | 0.0057 | 7944.2327 | 5506.5225 | 2657.0 | 3270.0 | 0.8125 | 2645.0 | 0.8089 | 1737.0 | 1754.0 | 2026.0 | 0.8657 | 0.8574 | 899.0 | 903.0 | 1231.0 | 0.7335 | 0.7303 | | 0.0 | 21.0 | 1848 | 1.6851 | 0.0057 | 7949.6500 | 5510.2775 | 2654.0 | 3270.0 | 0.8116 | 2643.0 | 0.8083 | 1739.0 | 1755.0 | 2026.0 | 0.8662 | 0.8583 | 895.0 | 899.0 | 1231.0 | 0.7303 | 0.7271 | | 0.0 | 22.0 | 1936 | 1.6912 | 0.0057 | 7978.4416 | 5530.2343 | 2650.0 | 3270.0 | 0.8104 | 2641.0 | 0.8076 | 1738.0 | 1753.0 | 2026.0 | 0.8653 | 0.8578 | 894.0 | 897.0 | 1231.0 | 0.7287 | 0.7262 | | 0.0 | 23.0 | 2024 | 1.6878 | 0.0057 | 7962.5355 | 5519.2090 | 2655.0 | 3270.0 | 0.8119 | 2643.0 | 0.8083 | 1737.0 | 1753.0 | 2026.0 | 0.8653 | 0.8574 | 897.0 | 902.0 | 1231.0 | 0.7327 | 0.7287 | | 0.0 | 24.0 | 2112 | 1.6930 | 0.0057 | 7987.0414 | 5536.1952 | 2654.0 | 3270.0 | 0.8116 | 2645.0 | 0.8089 | 1740.0 | 1754.0 | 2026.0 | 0.8657 | 0.8588 | 896.0 | 900.0 | 1231.0 | 0.7311 | 0.7279 | | 0.0 | 25.0 | 2200 | 1.6919 | 0.0057 | 7981.6813 | 5532.4799 | 2650.0 | 3270.0 | 0.8104 | 2640.0 | 0.8073 | 1736.0 | 1751.0 | 2026.0 | 0.8643 | 0.8569 | 895.0 | 899.0 | 1231.0 | 0.7303 | 0.7271 | | 0.0 | 26.0 | 2288 | 1.6901 | 0.0057 | 7973.0109 | 5526.4700 | 2655.0 | 3270.0 | 0.8119 | 2642.0 | 0.8080 | 1738.0 | 1755.0 | 2026.0 | 0.8662 | 0.8578 | 895.0 | 900.0 | 1231.0 | 0.7311 | 0.7271 | | 0.0 | 27.0 | 2376 | 1.6942 | 0.0057 | 7992.5643 | 5540.0234 | 2654.0 | 3270.0 | 0.8116 | 2643.0 | 0.8083 | 1738.0 | 1754.0 | 2026.0 | 0.8657 | 0.8578 | 896.0 | 900.0 | 1231.0 | 0.7311 | 0.7279 | | 0.0 | 28.0 | 2464 | 1.6942 | 0.0057 | 7992.3890 | 5539.9019 | 2654.0 | 3270.0 | 0.8116 | 2644.0 | 0.8086 | 1739.0 | 1754.0 | 2026.0 | 0.8657 | 0.8583 | 896.0 | 900.0 | 1231.0 | 0.7311 | 0.7279 | | 0.0 | 29.0 | 2552 | 1.6948 | 0.0057 | 7995.6135 | 5542.1369 | 2657.0 | 3270.0 | 0.8125 | 2645.0 | 0.8089 | 1739.0 | 1756.0 | 2026.0 | 0.8667 | 0.8583 | 897.0 | 901.0 | 1231.0 | 0.7319 | 0.7287 | | 0.0 | 30.0 | 2640 | 1.6959 | 0.0057 | 8000.7850 | 5545.7216 | 2652.0 | 3270.0 | 0.8110 | 2641.0 | 0.8076 | 1739.0 | 1754.0 | 2026.0 | 0.8657 | 0.8583 | 893.0 | 898.0 | 1231.0 | 0.7295 | 0.7254 | | 0.0 | 31.0 | 2728 | 1.6953 | 0.0057 | 7997.5769 | 5543.4979 | 2656.0 | 3270.0 | 0.8122 | 2644.0 | 0.8086 | 1737.0 | 1754.0 | 2026.0 | 0.8657 | 0.8574 | 898.0 | 902.0 | 1231.0 | 0.7327 | 0.7295 | | 0.0 | 32.0 | 2816 | 1.6957 | 0.0057 | 7999.8487 | 5545.0726 | 2659.0 | 3270.0 | 0.8131 | 2648.0 | 0.8098 | 1742.0 | 1758.0 | 2026.0 | 0.8677 | 0.8598 | 897.0 | 901.0 | 1231.0 | 0.7319 | 0.7287 | | 0.0 | 33.0 | 2904 | 1.6941 | 0.0057 | 7992.0829 | 5539.6897 | 2657.0 | 3270.0 | 0.8125 | 2645.0 | 0.8089 | 1740.0 | 1757.0 | 2026.0 | 0.8672 | 0.8588 | 896.0 | 900.0 | 1231.0 | 0.7311 | 0.7279 | | 0.0 | 34.0 | 2992 | 1.6952 | 0.0057 | 7997.3524 | 5543.3422 | 2653.0 | 3270.0 | 0.8113 | 2642.0 | 0.8080 | 1737.0 | 1753.0 | 2026.0 | 0.8653 | 0.8574 | 896.0 | 900.0 | 1231.0 | 0.7311 | 0.7279 | | 0.0 | 35.0 | 3080 | 1.6947 | 0.0057 | 7995.0017 | 5541.7129 | 2652.0 | 3270.0 | 0.8110 | 2641.0 | 0.8076 | 1738.0 | 1753.0 | 2026.0 | 0.8653 | 0.8578 | 894.0 | 899.0 | 1231.0 | 0.7303 | 0.7262 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
HFusermustard/gemma-3-finetune
HFusermustard
2025-08-19T03:11:30Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-19T03:11:15Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** HFusermustard - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Ale91Jonathan/blockassist-bc-alert_dormant_prawn_1755570864
Ale91Jonathan
2025-08-19T03:08:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert dormant prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:08:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert dormant prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
concept-unlearning/Phi-3-mini-4k-instruct_ft_lora_all_novels_v3_ft_ft_lora_positive_dataset_v1_ft
concept-unlearning
2025-08-19T03:07:33Z
0
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T03:05:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
geocine/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-Q8_0-GGUF
geocine
2025-08-19T03:04:33Z
0
0
null
[ "gguf", "mixture-of-experts", "moe", "expert-pruning", "gpt-oss", "openai", "reasoning", "harmful", "specialized", "efficient", "transformer", "causal-lm", "text-generation", "pytorch", "pruned-model", "domain-specific", "llama-cpp", "gguf-my-repo", "en", "dataset:AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations", "base_model:AmanPriyanshu/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts", "base_model:quantized:AmanPriyanshu/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T03:03:08Z
--- license: apache-2.0 datasets: - AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations language: - en pipeline_tag: text-generation tags: - mixture-of-experts - moe - expert-pruning - gpt-oss - openai - reasoning - harmful - specialized - efficient - transformer - causal-lm - text-generation - pytorch - pruned-model - domain-specific - llama-cpp - gguf-my-repo base_model: AmanPriyanshu/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts --- # geocine/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-Q8_0-GGUF This model was converted to GGUF format from [`AmanPriyanshu/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts`](https://huggingface.co/AmanPriyanshu/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/AmanPriyanshu/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo geocine/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-Q8_0-GGUF --hf-file gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo geocine/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-Q8_0-GGUF --hf-file gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo geocine/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-Q8_0-GGUF --hf-file gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo geocine/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-Q8_0-GGUF --hf-file gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-q8_0.gguf -c 2048 ```
Mostefa-Terbeche/diabetic-retinopathy-eyepacs-resnet50-advanced-20250618-200802
Mostefa-Terbeche
2025-08-19T03:02:57Z
0
0
null
[ "diabetic-retinopathy", "medical-imaging", "pytorch", "computer-vision", "retinal-imaging", "dataset:eyepacs", "license:apache-2.0", "model-index", "region:us" ]
null
2025-08-19T02:16:44Z
--- license: apache-2.0 tags: - diabetic-retinopathy - medical-imaging - pytorch - computer-vision - retinal-imaging datasets: - eyepacs metrics: - accuracy - quadratic-kappa - auc model-index: - name: eyepacs_resnet50_advanced results: - task: type: image-classification name: Diabetic Retinopathy Classification dataset: type: eyepacs name: EYEPACS metrics: - type: accuracy value: 0.16225448334756618 - type: quadratic-kappa value: 0.4069843214073169 --- # Diabetic Retinopathy Classification Model ## Model Description This model is trained for diabetic retinopathy classification using the resnet50 architecture on the eyepacs dataset with advanced preprocessing. ## Model Details - **Architecture**: resnet50 - **Dataset**: eyepacs - **Preprocessing**: advanced - **Training Date**: 20250618-200802 - **Task**: 5-class diabetic retinopathy grading (0-4) - **Directory**: eyepacs_resnet50_20250618-200802_new ## Performance - **Test Accuracy**: 0.16225448334756618 - **Test Quadratic Kappa**: 0.4069843214073169 - **Validation Kappa**: 0.4069843214073169 ## Usage ```python import torch from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download( repo_id="your-username/diabetic-retinopathy-eyepacs-resnet50-advanced", filename="model_best.pt" ) # Load model model = torch.load(model_path, map_location='cpu') ``` ## Classes - 0: No DR (No diabetic retinopathy) - 1: Mild DR (Mild non-proliferative diabetic retinopathy) - 2: Moderate DR (Moderate non-proliferative diabetic retinopathy) - 3: Severe DR (Severe non-proliferative diabetic retinopathy) - 4: Proliferative DR (Proliferative diabetic retinopathy) ## Citation If you use this model, please cite your research paper/thesis.
inclusionAI/UI-Venus-Navi-7B
inclusionAI
2025-08-19T02:55:37Z
0
6
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "image-text-to-text", "conversational", "arxiv:2508.10833", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-16T07:27:20Z
--- license: apache-2.0 library_name: transformers pipeline_tag: image-text-to-text --- ### UI-Venus This repository contains the UI-Venus model from the report [UI-Venus: Building High-performance UI Agents with RFT](https://arxiv.org/abs/2508.10833). UI-Venus is a native UI agent based on the Qwen2.5-VL multimodal large language model, designed to perform precise GUI element grounding and effective navigation using only screenshots as input. It achieves state-of-the-art performance through Reinforcement Fine-Tuning (RFT) with high-quality training data. More inference details and usage guides are available in the GitHub repository. We will continue to update results on standard benchmarks including Screenspot-v2/Pro and AndroidWorld. [![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) [![Report](https://img.shields.io/badge/Report-Technical%20Report-blueviolet?logo=notion)](http://arxiv.org/abs/2508.10833) [![GitHub](https://img.shields.io/badge/GitHub-Repository-green?logo=github)](https://github.com/inclusionAI/UI-Venus) [![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Model-orange?logo=huggingface)](https://huggingface.co/inclusionAI/UI-Venus-Navi-7B) --- <p align="center"> 📈 UI-Venus Benchmark Performance </p> <p align="center"> <img src="performance_venus.png" alt="UI-Venus Performance Across Datasets" width="1200" /> <br> </p> > **Figure:** Performance of UI-Venus across multiple benchmark datasets. UI-Venus achieves **State-of-the-Art (SOTA)** results on key UI understanding and interaction benchmarks, including **ScreenSpot-Pro**, **ScreenSpot-v2**, **OS-World-G**, **UI-Vision**, and **Android World**. The results demonstrate its superior capability in visual grounding, UI navigation, cross-platform generalization, and complex task reasoning. ### Model Description UI-Venus is a multimodal UI agent built on Qwen2.5-VL that performs accurate UI grounding and navigation using only screenshots as input. The 7B and 72B variants achieve 94.1%/50.8% and 95.3%/61.9% on Screenspot-V2 and Screenspot-Pro benchmarks, surpassing prior SOTA models such as GTA1 and UI-TARS-1.5. On the AndroidWorld navigation benchmark, they achieve 49.1% and 65.9% success rates, respectively, demonstrating strong planning and generalization capabilities Key innovations include: - **SOTA Open-Source UI Agent**: Publicly released to advance research in autonomous UI interaction and agent-based systems. - **Reinforcement Fine-Tuning (RFT)**: Utilizes carefully designed reward functions for both grounding and navigation tasks - **Efficient Data Cleaning**: Trained on several hundred thousand high-quality samples to ensure robustness. - **Self-Evolving Trajectory History Alignment & Sparse Action Enhancement**: Improves reasoning coherence and action distribution for better long-horizon planning. --- ## Installation First, install the required dependencies: ```python pip install transformers==4.49.0 qwen-vl-utils ``` --- ## Quick Start ```python from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor from typing import Dict, Tuple, Any import torch import os import re from qwen_vl_utils import process_vision_info # ----------------------------- # Model & Tokenizer # ----------------------------- MODEL_NAME = "inclusionAI/UI-Venus-Navi-7B" model = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_NAME, device_map="auto", trust_remote_code=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" ).eval() tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) processor = AutoProcessor.from_pretrained(MODEL_NAME) GENERATION_CONFIG = { "max_new_tokens": 2048, "do_sample": False, "temperature": 0.0, } # ----------------------------- # Prompt Template # ----------------------------- PROMPT_TEMPLATE = """**You are a GUI Agent.** Your task is to analyze a given user task, review current screenshot and previous actions, and determine the next action to complete the task. ### User Task {user_task} ### Previous Actions {previous_actions} ### Available Actions Click(box=(x1, y1)) Drag(start=(x1, y1), end=(x2, y2)) Scroll(start=(x1, y1), end=(x2, y2), direction='down/up/right/left') Type(content='') Launch(app='') Wait() Finished(content='') CallUser(content='') LongPress(box=(x1, y1)) PressBack() PressHome() PressEnter() PressRecent() ### Instruction - Make sure you understand the task goal to avoid wrong actions. - Examine the screenshot carefully. History may be unreliable. - For user questions, reply with `CallUser`, then `Finished` if done. - Explore screen content using scroll in different directions. - Copy text: select → click `copy`. - Paste text: long press text box → click `paste`. - First reason inside <think>, then provide <action>, then summarize in <conclusion>. """ # ----------------------------- # Parse action # ----------------------------- def parse_action(action_str: str) -> Tuple[str, Dict[str, Any]]: """Parse action string into action type + params.""" pattern = r"^(\w+)\((.*)\)$" match = re.match(pattern, action_str.strip(), re.DOTALL) if not match: print(f"Invalid action type: {action_str}") return "", {} action_type, params_str = match.group(1), match.group(2).strip() params = {} if params_str: try: # split by comma not inside parentheses param_pairs = re.split(r",(?![^(]*\))", params_str) for pair in param_pairs: if "=" in pair: key, value = pair.split("=", 1) params[key.strip()] = value.strip().strip("'").strip() else: params[pair.strip()] = None except Exception as e: print(f"Parse param failed: {e}") return action_type, {} return action_type, params def extract_tag(content: str, tag: str) -> str: """Extract latest <tag>...</tag> content from model output.""" pattern = fr"<{tag}>(.*?)</{tag}>" matches = list(re.finditer(pattern, content, re.DOTALL)) if not matches: print(f"{tag} Not Found") return "" return matches[-1].group(1).strip() # ----------------------------- # Inference # ----------------------------- def inference(image_path: str, goal: str) -> Dict[str, str]: if not (os.path.exists(image_path) and os.path.isfile(image_path)): raise FileNotFoundError(f"Invalid input image path: {image_path}") full_prompt = PROMPT_TEMPLATE.format(user_task=goal, previous_actions="") messages = [{ "role": "user", "content": [ {"type": "text", "text": full_prompt}, {"type": "image", "image": image_path, "min_pixels": 830000, "max_pixels": 937664}, ], }] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) model_inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt" ).to(model.device) generated_ids = model.generate(**model_inputs, **GENERATION_CONFIG) generated_ids_trimmed = [out[len(inp):] for inp, out in zip(model_inputs.input_ids, generated_ids)] output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True)[0] return { "raw_response": output_text, "think": extract_tag(output_text, "think"), "action": extract_tag(output_text, "action"), "conclusion": extract_tag(output_text, "conclusion"), } ``` ### Usage ⚠️ For action types that include coordinates (e.g., click, scroll), the current code does **not** handle coordinate conversion. You need to map the coordinates back to the original image space using `max_pixels` and `min_pixels` before applying them. --- ### Results on AndroidWorld This is the compressed package of validation trajectories for **AndroidWorld**, including execution logs and navigation paths. 📥 Download: [UI-Venus-androidworld.zip](https://github.com/inclusionAI/UI-Venus) | Models | With Planner | A11y Tree | Screenshot | Success Rate (pass@1) | |--------|--------------|-----------|------------|------------------------| | **Closed-source Models** | | | | | | GPT-4o| ❌ | ✅ | ❌ | 30.6 | | ScaleTrack| ❌ | ✅ | ❌ | 44.0 | | SeedVL-1.5 | ❌ | ✅ | ✅ | 62.1 | | UI-TARS-1.5 | ❌ | ❌ | ✅ | 64.2 | | **Open-source Models** | | | | | | GUI-Critic-R1-7B | ❌ | ✅ | ✅ | 27.6 | | Qwen2.5-VL-72B* | ❌ | ❌ | ✅ | 35.0 | | UGround | ✅ | ❌ | ✅ | 44.0 | | Aria-UI | ✅ | ❌ | ✅ | 44.8 | | UI-TARS-72B | ❌ | ❌ | ✅ | 46.6 | | GLM-4.5v | ❌ | ❌ | ✅ | 57.0 | | **Ours** | | | | | | UI-Venus-Navi-7B | ❌ | ❌ | ✅ | **49.1** | | UI-Venus-Navi-72B | ❌ | ❌ | ✅ | **65.9** | > **Table:** Performance comparison on **AndroidWorld** for end-to-end models. Our UI-Venus-Navi-72B achieves state-of-the-art performance, outperforming all baseline methods across different settings. ### Results on AndroidControl and GUI-Odyssey | Models | AndroidControl-Low<br>Type Acc. | AndroidControl-Low<br>Step SR | AndroidControl-High<br>Type Acc. | AndroidControl-High<br>Step SR | GUI-Odyssey<br>Type Acc. | GUI-Odyssey<br>Step SR | |--------|-------------------------------|-----------------------------|-------------------------------|-----------------------------|------------------------|----------------------| | **Closed-source Models** | | | | | | | | GPT-4o | 74.3 | 19.4 | 66.3 | 20.8 | 34.3 | 3.3 | | **Open Source Models** | | | | | | | | Qwen2.5-VL-7B | 94.1 | 85.0 | 75.1 | 62.9 | 59.5 | 46.3 | | SeeClick | 93.0 | 75.0 | 82.9 | 59.1 | 71.0 | 53.9 | | OS-Atlas-7B | 93.6 | 85.2 | 85.2 | 71.2 | 84.5 | 62.0 | | Aguvis-7B| - | 80.5 | - | 61.5 | - | - | | Aguvis-72B| - | 84.4 | - | 66.4 | - | - | | OS-Genesis-7B | 90.7 | 74.2 | 66.2 | 44.5 | - | - | | UI-TARS-7B| 98.0 | 90.8 | 83.7 | 72.5 | 94.6 | 87.0 | | UI-TARS-72B| **98.1** | 91.3 | 85.2 | 74.7 | **95.4** | **88.6** | | GUI-R1-7B| 85.2 | 66.5 | 71.6 | 51.7 | 65.5 | 38.8 | | NaviMaster-7B | 85.6 | 69.9 | 72.9 | 54.0 | - | - | | UI-AGILE-7B | 87.7 | 77.6 | 80.1 | 60.6 | - | - | | AgentCPM-GUI | 94.4 | 90.2 | 77.7 | 69.2 | 90.0 | 75.0 | | **Ours** | | | | | | | | UI-Venus-Navi-7B | 97.1 | 92.4 | **86.5** | 76.1 | 87.3 | 71.5 | | UI-Venus-Navi-72B | 96.7 | **92.9** | 85.9 | **77.2** | 87.2 | 72.4 | > **Table:** Performance comparison on offline UI navigation datasets including AndroidControl and GUI-Odyssey. Note that models with * are reproduced. # Citation Please consider citing if you find our work useful: ```plain @misc{gu2025uivenustechnicalreportbuilding, title={UI-Venus Technical Report: Building High-performance UI Agents with RFT}, author={Zhangxuan Gu and Zhengwen Zeng and Zhenyu Xu and Xingran Zhou and Shuheng Shen and Yunfei Liu and Beitong Zhou and Changhua Meng and Tianyu Xia and Weizhi Chen and Yue Wen and Jingya Dou and Fei Tang and Jinzhen Lin and Yulin Liu and Zhenlin Guo and Yichen Gong and Heng Jia and Changlong Gao and Yuan Guo and Yong Deng and Zhenyu Guo and Liang Chen and Weiqiang Wang}, year={2025}, eprint={2508.10833}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2508.10833}, } ```
concept-unlearning/Phi-3-mini-4k-instruct_ft_lora_all_novels_v3_ft_rmu_lora_positive_dataset_v1
concept-unlearning
2025-08-19T02:55:03Z
0
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T02:53:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755571831
lqpl
2025-08-19T02:53:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:51:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omai-team/mlsr_alignment_opensearch_bge_unsupervised_small_aligned
omai-team
2025-08-19T02:52:07Z
0
0
transformers
[ "transformers", "pytorch", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T02:51:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
inclusionAI/UI-Venus-Ground-7B
inclusionAI
2025-08-19T02:51:40Z
0
13
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "image-text-to-text", "conversational", "arxiv:2508.10833", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-15T13:10:44Z
--- license: apache-2.0 pipeline_tag: image-text-to-text library_name: transformers --- ### UI-Venus This repository contains the UI-Venus model from the report [UI-Venus Technical Report: Building High-performance UI Agents with RFT](https://arxiv.org/abs/2508.10833). UI-Venus is a native UI agent based on the Qwen2.5-VL multimodal large language model, designed to perform precise GUI element grounding and effective navigation using only screenshots as input. It achieves state-of-the-art performance through Reinforcement Fine-Tuning (RFT) with high-quality training data. More inference details and usage guides are available in the GitHub repository. We will continue to update results on standard benchmarks including Screenspot-v2/Pro and AndroidWorld. [![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) [![Report](https://img.shields.io/badge/Report-Technical%20Report-blueviolet?logo=notion)](http://arxiv.org/abs/2508.10833) [![GitHub](https://img.shields.io/badge/GitHub-Repository-green?logo=github)](https://github.com/inclusionAI/UI-Venus) [![Hugging Face](https://img.shields.io/badge/Hugging%20Face-Model-orange?logo=huggingface)](https://huggingface.co/inclusionAI/UI-Venus-Ground-7B) --- <p align="center"> 📈 UI-Venus Benchmark Performance </p> <p align="center"> <img src="performance_venus.png" alt="UI-Venus Performance Across Datasets" width="1200" /> <br> </p> > **Figure:** Performance of UI-Venus across multiple benchmark datasets. UI-Venus achieves **State-of-the-Art (SOTA)** results on key UI understanding and interaction benchmarks, including **ScreenSpot-Pro**, **ScreenSpot-v2**, **OS-World-G**, **UI-Vision**, and **Android World**. The results demonstrate its superior capability in visual grounding, UI navigation, cross-platform generalization, and complex task reasoning. ### Model Description UI-Venus is a multimodal UI agent built on Qwen2.5-VL that performs accurate UI grounding and navigation using only screenshots as input. The 7B and 72B variants achieve 94.1%/50.8% and 95.3%/61.9% on Screenspot-V2 and Screenspot-Pro benchmarks, surpassing prior SOTA models such as GTA1 and UI-TARS-1.5. On the AndroidWorld navigation benchmark, they achieve 49.1% and 65.9% success rates, respectively, demonstrating strong planning and generalization capabilities Key innovations include: - **SOTA Open-Source UI Agent**: Publicly released to advance research in autonomous UI interaction and agent-based systems. - **Reinforcement Fine-Tuning (RFT)**: Utilizes carefully designed reward functions for both grounding and navigation tasks - **Efficient Data Cleaning**: Trained on several hundred thousand high-quality samples to ensure robustness. - **Self-Evolving Trajectory History Alignment & Sparse Action Enhancement**: Improves reasoning coherence and action distribution for better long-horizon planning. --- ## Installation First, install the required dependencies: ```python pip install transformers==4.49.0 qwen-vl-utils ``` --- ## Quick Start Use the shell scripts to launch the evaluation. The evaluation setup follows the same protocol as **ScreenSpot**, including data format, annotation structure, and metric calculation. ```python from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor import torch import os from qwen_vl_utils import process_vision_info # model path model_name = "inclusionAI/UI-Venus-Ground-7B" model = Qwen2_5_VLForConditionalGeneration.from_pretrained( model_name, device_map="auto", trust_remote_code=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" ).eval() tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) processor = AutoProcessor.from_pretrained(model_name) generation_config = { "max_new_tokens": 2048, "do_sample": False, "temperature": 0.0 } def inference(instruction, image_path): assert os.path.exists(image_path) and os.path.isfile(image_path), "Invalid input image path." prompt_origin = 'Outline the position corresponding to the instruction: {}. The output should be only [x1,y1,x2,y2].' full_prompt = prompt_origin.format(instruction) min_pixels = 2000000 max_pixels = 4800000 messages = [ { "role": "user", "content": [ { "type": "image", "image": image_path, "min_pixels": min_pixels, "max_pixels": max_pixels }, {"type": "text", "text": full_prompt}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) model_inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt" ).to(model.device) generated_ids = model.generate(**model_inputs, **generation_config) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(model_inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) # normalized coordinates try: box = eval(output_text[0]) input_height = model_inputs['image_grid_thw'][0][1] * 14 input_width = model_inputs['image_grid_thw'][0][2] * 14 abs_x1 = float(box[0]) / input_width abs_y1 = float(box[1]) / input_height abs_x2 = float(box[2]) / input_width abs_y2 = float(box[3]) / input_height bbox = [abs_x1, abs_y1, abs_x2, abs_y2] except Exception: bbox = [0, 0, 0, 0] point = [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2] result_dict = { "result": "positive", "format": "x1y1x2y2", "raw_response": output_text, "bbox": bbox, "point": point } return result_dict ``` --- ### Results on ScreenSpot-v2 | **Model** | **Mobile Text** | **Mobile Icon** | **Desktop Text** | **Desktop Icon** | **Web Text** | **Web Icon** | **Avg.** | |--------------------------|-----------------|-----------------|------------------|------------------|--------------|--------------|----------| | uitars-1.5 | - | - | - | - | - | - | 94.2 | | Seed-1.5-VL | - | - | - | - | - | - | 95.2 | | GPT-4o | 26.6 | 24.2 | 24.2 | 19.3 | 12.8 | 11.8 | 20.1 | | Qwen2.5-VL-7B | 97.6 | 87.2 | 90.2 | 74.2 | 93.2 | 81.3 | 88.8 | | UI-TARS-7B | 96.9 | 89.1 | 95.4 | 85.0 | 93.6 | 85.2 | 91.6 | | UI-TARS-72B | 94.8 | 86.3 | 91.2 | 87.9 | 91.5 | 87.7 | 90.3 | | LPO | 97.9 | 82.9 | 95.9 | 86.4 | 95.6 | 84.2 | 90.5 | | **UI-Venus-Ground-7B (Ours)** | **99.0** | **90.0** | **97.0** | **90.7** | **96.2** | **88.7** | **94.1** | | **UI-Venus-Ground-72B (Ours)** | **99.7** | **93.8** | **95.9** | **90.0** | **96.2** | **92.6** | **95.3** | --- ### Results on ScreenSpot-Pro Performance comparison of GUI agent models across six task categories on **ScreenSpot-Pro**. Scores are in percentage (%). `T` = Text, `I` = Icon. `*`: reproduced; `†`: trained from UI-TARS-1.5-7B. | Model | CAD (T/I) | Dev (T/I) | Creative (T/I) | Scientific (T/I) | Office (T/I) | OS (T/I) | Avg T | Avg I | **Overall** | Type | |-------|-----------|-----------|----------------|------------------|--------------|---------|--------|--------|------------|------| | GPT-4o | 2.0 / 0.0 | 1.3 / 0.0 | 1.0 / 0.0 | 2.1 / 0.0 | 1.1 / 0.0 | 0.0 / 0.0 | 1.3 | 0.0 | 0.8 | Closed | | Claude Computer Use | 14.5 / 3.7 | 22.0 / 3.9 | 25.9 / 3.4 | 33.9 / 15.8 | 30.1 / 16.3 | 11.0 / 4.5 | 23.4 | 7.1 | 17.1 | Closed | | UI-TARS-1.5 | – / – | – / – | – / – | – / – | – / – | – / – | – | – | **61.6** | Closed | | Seed1.5-VL | – / – | – / – | – / – | – / – | – / – | – / – | – | – | 60.9 | Closed | | Qwen2.5-VL-7B\* | 16.8 / 1.6 | 46.8 / 4.1 | 35.9 / 7.7 | 49.3 / 7.3 | 52.5 / 20.8 | 37.4 / 6.7 | 38.9 | 7.1 | 26.8 | SFT | | Qwen2.5-VL-72B* | 54.8 / 15.6 | 65.6 / 16.6 | 63.1 / 19.6 | 78.5 / 34.5 | 79.1 / 47.2 | 66.4 / 29.2 | 67.3 | 25.0 | 51.2 | SFT | | UI-TARS-7B | 20.8 / 9.4 | 58.4 / 12.4 | 50.0 / 9.1 | 63.9 / 31.8 | 63.3 / 20.8 | 30.8 / 16.9 | 47.8 | 16.2 | 35.7 | SFT | | UI-TARS-72B | 18.8 / 12.5 | 62.9 / 17.2 | 57.1 / 15.4 | 64.6 / 20.9 | 63.3 / 26.4 | 42.1 / 15.7 | 50.9 | 17.6 | 38.1 | SFT | | Phi-Ground-7B | 26.9 / 17.2 | 70.8 / 16.7 | 56.6 / 13.3 | 58.0 / 29.1 | 76.4 / 44.0 | 55.1 / 25.8 | 56.4 | 21.8 | 43.2 | RL | | UI-TARS-1.5-7B | – / – | – / – | – / – | – / – | – / – | – / – | – | – | 49.6 | RL | | GTA1-7B† | 53.3 / 17.2 | 66.9 / 20.7 | 62.6 / 18.2 | 76.4 / 31.8 | 82.5 / 50.9 | 48.6 / 25.9 | 65.5 | 25.2 | 50.1 | RL | | GTA1-72B | 56.9 / 28.1 | 79.9 / 33.1 | 73.2 / 20.3 | 81.9 / 38.2 | 85.3 / 49.1 | 73.8 / 39.1 | 74.5 | 32.5 | 58.4 | RL | | **UI-Venus-Ground-7B** | 60.4 / 21.9 | 74.7 / 24.1 | 63.1 / 14.7 | 76.4 / 31.8 | 75.7 / 41.5 | 49.5 / 22.5 | 67.1 | 24.3 | **50.8** | Ours (RL) | | **UI-Venus-Ground-72B** | 66.5 / 29.7 | 84.4 / 33.1 | 73.2 / 30.8 | 84.7 / 42.7 | 83.1 / 60.4 | 75.7 / 36.0 | 77.4 | 36.8 | **61.9** | Ours (RL) | > 🔝 **Experimental results show that UI-Venus-Ground-72B achieves state-of-the-art performance on ScreenSpot-Pro with an average score of 61.7, while also setting new benchmarks on ScreenSpot-v2(95.3), OSWorld_G(69.8), AgentCPM(84.7), and UI-Vision(38.0), highlighting its effectiveness in complex visual grounding and action prediction tasks.** # Citation Please consider citing if you find our work useful: ```plain @misc{gu2025uivenustechnicalreportbuilding, title={UI-Venus Technical Report: Building High-performance UI Agents with RFT}, author={Zhangxuan Gu and Zhengwen Zeng and Zhenyu Xu and Xingran Zhou and Shuheng Shen and Yunfei Liu and Beitong Zhou and Changhua Meng and Tianyu Xia and Weizhi Chen and Yue Wen and Jingya Dou and Fei Tang and Jinzhen Lin and Yulin Liu and Zhenlin Guo and Yichen Gong and Heng Jia and Changlong Gao and Yuan Guo and Yong Deng and Zhenyu Guo and Liang Chen and Weiqiang Wang}, year={2025}, eprint={2508.10833}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2508.10833}, } ```
ekotaru/whisper-sanskrit-asr-model
ekotaru
2025-08-19T02:51:12Z
9
0
null
[ "pytorch", "tensorboard", "whisper", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2025-08-14T14:41:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-sanskrit-asr-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-sanskrit-asr-model This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2299 - Wer: 1.0 - Cer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.7277 | 1.0 | 70 | 0.5042 | 2.7339 | 2.0537 | | 0.3391 | 2.0 | 140 | 0.3873 | 2.5505 | 2.4385 | | 0.2061 | 3.0 | 210 | 0.2786 | 1.0 | 1.0 | | 0.0813 | 4.0 | 280 | 0.2293 | 1.0 | 1.0 | | 0.0502 | 5.0 | 350 | 0.2299 | 1.0 | 1.0 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.13.3
mang3dd/blockassist-bc-tangled_slithering_alligator_1755570102
mang3dd
2025-08-19T02:49:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:48:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755571097
IvanJAjebu
2025-08-19T02:39:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:39:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lakeitag/LakeitaGreene-Replicate
lakeitag
2025-08-19T02:33:52Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-19T02:01:39Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Lakeita --- # Lakeitagreene Replicate <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Lakeita` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "Lakeita", "lora_weights": "https://huggingface.co/lakeitag/LakeitaGreene-Replicate/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('lakeitag/LakeitaGreene-Replicate', weight_name='lora.safetensors') image = pipeline('Lakeita').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2100 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/lakeitag/LakeitaGreene-Replicate/discussions) to add images that show off what you’ve made with this LoRA.
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755570734
IvanJAjebu
2025-08-19T02:33:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:33:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
casque/Daki-Pony
casque
2025-08-19T02:33:20Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-08-19T02:32:10Z
--- license: creativeml-openrail-m ---
truong1301/Mistral_task7_3
truong1301
2025-08-19T02:32:38Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/Mistral-Small-Instruct-2409-bnb-4bit", "base_model:finetune:unsloth/Mistral-Small-Instruct-2409-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-18T15:35:48Z
--- base_model: unsloth/Mistral-Small-Instruct-2409-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mistral - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** truong1301 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Mistral-Small-Instruct-2409-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755569144
lisaozill03
2025-08-19T02:29:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:29:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Jiawei-Lian/Aerial_Detectors_for_APPA
Jiawei-Lian
2025-08-19T02:25:07Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-19T02:18:10Z
--- license: apache-2.0 ---
dgambettaphd/M_mis_run2_gen1_WXS_doc1000_synt64_lr1e-04_acm_MPP
dgambettaphd
2025-08-19T02:21:27Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T02:21:13Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RE-N-Y/hpsv3
RE-N-Y
2025-08-19T02:19:20Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_vl", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-08-16T16:27:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Kokoutou/sound_1908_3
Kokoutou
2025-08-19T02:16:03Z
0
0
null
[ "region:us" ]
null
2025-08-18T17:50:19Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
g-assismoraes/Qwen3-4B-Base-aki-alpha0.08-var-hatebr-ep30-v5
g-assismoraes
2025-08-19T02:14:33Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T02:11:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755568106
sampingkaca72
2025-08-19T02:13:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:13:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tamayuliv/blockassist-bc-mimic_skilled_gecko_1755569420
tamayuliv
2025-08-19T02:12:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mimic skilled gecko", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:11:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mimic skilled gecko --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755567833
helmutsukocok
2025-08-19T02:11:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:11:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sungjun12/version_2_weight_masked_model_untied
sungjun12
2025-08-19T02:09:42Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T02:07:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Hariharan05/SeproLM
Hariharan05
2025-08-19T02:06:19Z
39
0
null
[ "safetensors", "mistral", "SeproLM", "text-generation", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.3", "base_model:quantized:mistralai/Mistral-7B-Instruct-v0.3", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-06T05:16:45Z
--- license: apache-2.0 base_model: - mistralai/Mistral-7B-Instruct-v0.3 pipeline_tag: text-generation tags: - SeproLM ---
liukevin666/blockassist-bc-yawning_striped_cassowary_1755569036
liukevin666
2025-08-19T02:05:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:05:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1755567504
indoempatnol
2025-08-19T02:05:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:05:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1755567463
koloni
2025-08-19T02:04:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:04:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
xiangxinai/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B
xiangxinai
2025-08-19T02:01:27Z
7,159
5
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "zh", "en", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-05-21T05:14:21Z
--- license: llama3 language: - zh - en pipeline_tag: text-generation --- <div align="center"> <picture> <img src="https://github.com/xiangxinai/XiangxinLM/blob/main/assets/logo.png?raw=true" width="150px"> </picture> </div> <div align="center"> <h1> Xiangxin-2XL-Chat-1048k </h1> </div> 我们提供私有化模型训练服务,如果您需要训练行业模型、领域模型或者私有模型,请联系我们: wanglei@xiangxinai.cn We offer customized model training services. If you need to train industry-specific models, domain-specific models, or private models, please contact us at: wanglei@xiangxinai.cn. # <span id="Introduction">模型介绍/Introduction</span> Xiangxin-2XL-Chat-1048k是[象信AI](https://www.xiangxinai.cn)基于Meta Llama-3-70B-Instruct模型和[Gradient AI的扩充上下文的工作](https://huggingface.co/gradientai/Llama-3-70B-Instruct-Gradient-1048k),利用自行研发的中文价值观对齐数据集进行ORPO训练而形成的Chat模型。该模型具备更强的中文能力和中文价值观,其上下文长度达到100万字。在模型性能方面,该模型在ARC、HellaSwag、MMLU、TruthfulQA_mc2、Winogrande、GSM8K_flex、CMMLU、CEVAL-VALID等八项测评中,取得了平均分70.22分的成绩,超过了Gradientai-Llama-3-70B-Instruct-Gradient-1048k。我们的训练数据并不包含任何测评数据集。 Xiangxin-2XL-Chat-1048k is a Chat model developed by [Xiangxin AI](https://www.xiangxinai.cn), based on the Meta Llama-3-70B-Instruct model and [expanded context from Gradient AI](https://huggingface.co/gradientai/Llama-3-70B-Instruct-Gradient-1048k). It was trained using a proprietary Chinese value-aligned dataset through ORPO training, resulting in enhanced Chinese proficiency and alignment with Chinese values. The model has a context length of up to 1 million words. In terms of performance, it surpassed the Gradientai-Llama-3-70B-Instruct-Gradient-1048k model with an average score of 70.22 across eight evaluations including ARC, HellaSwag, MMLU, TruthfulQA_mc2, Winogrande, GSM8K_flex, CMMLU, and C-EVAL. It's worth noting that our training data did not include any evaluation datasets. <div align="center"> Model | Context Length | Pre-trained Tokens | :------------: | :------------: | :------------: | | Xiangxin-2XL-Chat-1048k | 1048k | 15T </div> # <span id="Benchmark">Benchmark 结果/Benchmark Evaluation</span> | | **Average** | **ARC** | **HellaSwag** | **MMLU** | **TruthfulQA** | **Winogrande** | **GSM8K** | **CMMLU** | **CEVAL** | |:-----------------------:|:----------:|:--------:|:---------:|:----------:|:-----------:|:-------:|:-------:|:-------:|:-------:| |**Xiangxin-2XL-Chat-1048k**| 70.22 | 60.92 | 83.29 |75.13| 57.33| 76.64| 81.05| 65.40| 62.03 | |**Llama-3-70B-Instruct-Gradient-1048k**| 69.66| 61.18 |82.88 |74.95 |55.28 |75.77 |77.79 |66.44 |63.00| Note:truthfulqa_mc2, gsm8k flexible-extract # <span id="Training">训练过程模型/Training</span> 该模型是使用ORPO技术和自行研发的中文价值观对齐数据集进行训练的。由于内容的敏感性,该数据集无法公开披露。 The model was trained using ORPO and a proprietary Chinese alignment dataset developed in-house. Due to the sensitivity of the content, the dataset cannot be publicly disclosed. ## Training loss ![image/png](https://cdn-uploads.huggingface.co/production/uploads/655b15957f2466433998bb89/oLLnrWaxQnyVwI8n2QqHK.png) ## Reward accuracies ![image/png](https://cdn-uploads.huggingface.co/production/uploads/655b15957f2466433998bb89/yD4My-43lLRWecyq-bgZ2.png) ## SFT loss ![image/png](https://cdn-uploads.huggingface.co/production/uploads/655b15957f2466433998bb89/iUoQfVZDftoW7C-2VXeWe.png) # <span id="Start">快速开始/Quick Start</span> ## Use with transformers You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both. 使用Transformers运行本模型推理需要约400GB的显存。 Running inference with this model using Transformers requires approximately 400GB of GPU memory. ### Transformers pipeline ```python import transformers import torch model_id = "xiangxinai/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "system", "content": ""}, {"role": "user", "content": "解释一下“温故而知新”"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) “温故而知新”是中国古代的一句成语,出自《论语·子路篇》。 它的意思是通过温习过去的知识和经验,来获得新的理解和见解。 这里的“温故”是指温习过去,回顾历史,复习旧知识, 而“知新”则是指了解新鲜事物,掌握新知识。 这个成语强调学习的循序渐进性,强调在学习新知识时, 不能忽视过去的基础,而是要在继承和发扬的基础上,去理解和创新。 ``` ### Transformers AutoModelForCausalLM ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "xiangxinai/Xiangxin-2XL-Chat-1048k-Chinese-Llama3-70B" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": ""}, {"role": "user", "content": "解释一下“温故而知新”"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) “温故而知新”是中国古代的一句成语,出自《论语·子路篇》。 它的意思是通过温习过去的知识和经验,来获得新的理解和见解。 这里的“温故”是指温习过去,回顾历史,复习旧知识, 而“知新”则是指了解新鲜事物,掌握新知识。 这个成语强调学习的循序渐进性,强调在学习新知识时, 不能忽视过去的基础,而是要在继承和发扬的基础上,去理解和创新。 ``` # 协议/License This code is licensed under the META LLAMA 3 COMMUNITY LICENSE AGREEMENT License. # 联系我们/Contact Us For inquiries, please contact us via email at wanglei@xiangxinai.cn.
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755567123
vwzyrraz7l
2025-08-19T01:59:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:59:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thanobidex/blockassist-bc-colorful_shiny_hare_1755566999
thanobidex
2025-08-19T01:54:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:54:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
oddadmix/arabic-summarization
oddadmix
2025-08-19T01:52:34Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "lfm2", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "ar", "dataset:oddadmix/arabic-news-summarization", "base_model:LiquidAI/LFM2-350M", "base_model:finetune:LiquidAI/LFM2-350M", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T23:26:07Z
--- base_model: LiquidAI/LFM2-350M library_name: transformers model_name: lfm2-sft-summary tags: - generated_from_trainer - sft - trl licence: license datasets: - oddadmix/arabic-news-summarization language: - ar --- # 📝 نموذج التلخيص العربي هذا المشروع يقدّم نموذج **تلخيص نصوص باللغة العربية** مبني على النموذج الأساسي [LiquidAI/LFM2-350M](https://huggingface.co/LiquidAI/LFM2-350M)، وتمت إعادة تدريبه (Fine-tuning) على **مجموعة بيانات مكوّنة من 17,000 سجل** لتلخيص النصوص بدقة وكفاءة عالية. --- ## ⚡ المميزات * ✅ أداء قوي جدًا في تلخيص النصوص العربية. * ✅ يحافظ على المعنى العام للنص مع اختصار الحجم. * ✅ يمكن استخدامه في تلخيص المقالات، الأخبار، الأبحاث، والمستندات الطويلة. * ✅ مبني على نموذج قوي مفتوح المصدر مع إعادة ضبط دقيقة (Fine-tuning). --- ## 🛠️ البيانات تم تدريب النموذج باستخدام **17,000 صف** من البيانات عالية الجودة التي تحتوي على نصوص عربية وأهداف التلخيص المقابلة لها. هذا ساعد في تحسين دقة النموذج وجعله قادرًا على إنتاج **ملخصات متماسكة وسلسة**. --- ## 🚀 كيفية الاستخدام ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # تحميل النموذج والمحول model_name = "اسم-المستخدم/arabic-summarization-model" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # إدخال نص للتلخيص text = """النص العربي المراد تلخيصه ...""" inputs = tokenizer(text, return_tensors="pt", max_length=1024, truncation=True) summary_ids = model.generate(inputs["input_ids"], max_length=150, min_length=40, length_penalty=2.0, num_beams=4) # عرض الملخص print(tokenizer.decode(summary_ids[0], skip_special_tokens=True)) ``` --- ## 📊 الأداء النموذج أظهر نتائج ممتازة في التجارب الداخلية على مقاييس **الدقة، التماسك، والمحافظة على المعنى**. أداؤه يُعتبر **جيد جدًا مقارنة بالنماذج المشابهة** في مجال تلخيص النصوص العربية. --- ## 📌 ملاحظات * النموذج ما زال قابلًا للتطوير عبر تدريبه على بيانات إضافية. * يُفضّل استخدامه مع نصوص عربية فصيحة، مع أنه يعمل بشكل جيد أيضًا مع بعض اللهجات.
hobson123/blockassist-bc-mammalian_dense_gibbon_1755567912
hobson123
2025-08-19T01:52:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian dense gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:51:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian dense gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
concept-unlearning/Phi-3-mini-4k-instruct_ft_lora_all_novels_v3_ft
concept-unlearning
2025-08-19T01:50:27Z
0
0
transformers
[ "transformers", "safetensors", "phi3", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T01:48:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Kimi-VL-A3B-Thinking-2506-GGUF
mradermacher
2025-08-19T01:50:06Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:moonshotai/Kimi-VL-A3B-Thinking-2506", "base_model:quantized:moonshotai/Kimi-VL-A3B-Thinking-2506", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-18T08:03:54Z
--- base_model: moonshotai/Kimi-VL-A3B-Thinking-2506 language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking-2506 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Kimi-VL-A3B-Thinking-2506-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/Kimi-VL-A3B-Thinking-2506-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Kimi-VL-A3B-Thinking-2506-GGUF/resolve/main/Kimi-VL-A3B-Thinking-2506.Q2_K.gguf) | Q2_K | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/Kimi-VL-A3B-Thinking-2506-GGUF/resolve/main/Kimi-VL-A3B-Thinking-2506.Q3_K_S.gguf) | Q3_K_S | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/Kimi-VL-A3B-Thinking-2506-GGUF/resolve/main/Kimi-VL-A3B-Thinking-2506.Q3_K_M.gguf) | Q3_K_M | 8.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Kimi-VL-A3B-Thinking-2506-GGUF/resolve/main/Kimi-VL-A3B-Thinking-2506.Q3_K_L.gguf) | Q3_K_L | 8.7 | | | [GGUF](https://huggingface.co/mradermacher/Kimi-VL-A3B-Thinking-2506-GGUF/resolve/main/Kimi-VL-A3B-Thinking-2506.IQ4_XS.gguf) | IQ4_XS | 8.9 | | | [GGUF](https://huggingface.co/mradermacher/Kimi-VL-A3B-Thinking-2506-GGUF/resolve/main/Kimi-VL-A3B-Thinking-2506.Q4_K_S.gguf) | Q4_K_S | 9.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kimi-VL-A3B-Thinking-2506-GGUF/resolve/main/Kimi-VL-A3B-Thinking-2506.Q4_K_M.gguf) | Q4_K_M | 10.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kimi-VL-A3B-Thinking-2506-GGUF/resolve/main/Kimi-VL-A3B-Thinking-2506.Q5_K_S.gguf) | Q5_K_S | 11.4 | | | [GGUF](https://huggingface.co/mradermacher/Kimi-VL-A3B-Thinking-2506-GGUF/resolve/main/Kimi-VL-A3B-Thinking-2506.Q5_K_M.gguf) | Q5_K_M | 12.1 | | | [GGUF](https://huggingface.co/mradermacher/Kimi-VL-A3B-Thinking-2506-GGUF/resolve/main/Kimi-VL-A3B-Thinking-2506.Q6_K.gguf) | Q6_K | 14.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Kimi-VL-A3B-Thinking-2506-GGUF/resolve/main/Kimi-VL-A3B-Thinking-2506.Q8_0.gguf) | Q8_0 | 17.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755568006
IvanJAjebu
2025-08-19T01:48:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:48:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755566416
mang3dd
2025-08-19T01:46:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:46:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Kokoutou/sound_1908_2
Kokoutou
2025-08-19T01:41:53Z
0
0
null
[ "region:us" ]
null
2025-08-18T17:50:18Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
natsuwinted/blockassist-bc-graceful_gentle_cockroach_1755567434
natsuwinted
2025-08-19T01:38:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "graceful gentle cockroach", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:38:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - graceful gentle cockroach --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755565854
helmutsukocok
2025-08-19T01:38:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:37:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
datasetsANDmodels/purpose-extraction
datasetsANDmodels
2025-08-19T01:37:57Z
1
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-large", "base_model:finetune:google-t5/t5-large", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2024-01-10T00:34:48Z
--- license: apache-2.0 base_model: t5-large tags: - generated_from_trainer model-index: - name: purpose_extractor results: [] --- This model extracts purpose from intent. # purpose_extractor This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1179 | 1.0 | 109 | 0.6176 | | 0.09 | 2.0 | 218 | 0.1340 | | 0.0982 | 3.0 | 327 | 0.0781 | | 0.0015 | 4.0 | 436 | 0.0522 | | 0.3695 | 5.0 | 545 | 0.0406 | | 0.0051 | 6.0 | 654 | 0.0310 | | 0.0294 | 7.0 | 763 | 0.0251 | | 0.0027 | 8.0 | 872 | 0.0228 | | 0.015 | 9.0 | 981 | 0.0209 | | 0.0303 | 10.0 | 1090 | 0.0203 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1 - Datasets 2.15.0 - Tokenizers 0.15.0
ibm-granite/granite-embedding-107m-multilingual
ibm-granite
2025-08-19T01:34:26Z
12,087
29
transformers
[ "transformers", "pytorch", "onnx", "safetensors", "xlm-roberta", "feature-extraction", "language", "granite", "embeddings", "multilingual", "mteb", "sentence-similarity", "en", "ar", "cs", "de", "es", "fr", "it", "ja", "ko", "nl", "pt", "zh", "arxiv:2502.20204", "arxiv:0000.00000", "license:apache-2.0", "model-index", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-12-04T20:29:00Z
--- language: - en - ar - cs - de - es - fr - it - ja - ko - nl - pt - zh license: apache-2.0 library_name: transformers tags: - language - granite - embeddings - multilingual - mteb model-index: - name: ibm-granite/granite-embedding-107m-multilingual results: - dataset: config: en-ext name: MTEB AmazonCounterfactualClassification (en-ext) revision: e8379541af4e31359cca9fbcf4b00f2671dba205 split: test type: mteb/amazon_counterfactual metrics: - type: accuracy value: 72.7136 - type: f1 value: 60.44540000000001 - type: f1_weighted value: 77.8541 - type: ap value: 22.4958 - type: ap_weighted value: 22.4958 - type: main_score value: 72.7136 task: type: Classification - dataset: config: en name: MTEB AmazonCounterfactualClassification (en) revision: e8379541af4e31359cca9fbcf4b00f2671dba205 split: test type: mteb/amazon_counterfactual metrics: - type: accuracy value: 71.6716 - type: f1 value: 65.4221 - type: f1_weighted value: 74.3533 - type: ap value: 33.7567 - type: ap_weighted value: 33.7567 - type: main_score value: 71.6716 task: type: Classification - dataset: config: default name: MTEB AmazonPolarityClassification (default) revision: e2d317d38cd51312af73b3d32a06d1a08b442046 split: test type: mteb/amazon_polarity metrics: - type: accuracy value: 66.5804 - type: f1 value: 66.2191 - type: f1_weighted value: 66.2191 - type: ap value: 61.340799999999994 - type: ap_weighted value: 61.340799999999994 - type: main_score value: 66.5804 task: type: Classification - dataset: config: en name: MTEB AmazonReviewsClassification (en) revision: 1399c76144fd37290681b995c656ef9b2e06e26d split: test type: mteb/amazon_reviews_multi metrics: - type: accuracy value: 36.412 - type: f1 value: 35.633199999999995 - type: f1_weighted value: 35.633199999999995 - type: main_score value: 36.412 task: type: Classification - dataset: config: default name: MTEB AppsRetrieval (default) revision: f22508f96b7a36c2415181ed8bb76f76e04ae2d5 split: test type: CoIR-Retrieval/apps metrics: - type: ndcg_at_1 value: 2.39 - type: ndcg_at_3 value: 3.527 - type: ndcg_at_5 value: 3.9759999999999995 - type: ndcg_at_10 value: 4.537 - type: ndcg_at_20 value: 5.140000000000001 - type: ndcg_at_100 value: 6.526 - type: ndcg_at_1000 value: 9.797 - type: map_at_1 value: 2.39 - type: map_at_3 value: 3.2489999999999997 - type: map_at_5 value: 3.499 - type: map_at_10 value: 3.7220000000000004 - type: map_at_20 value: 3.887 - type: map_at_100 value: 4.058 - type: map_at_1000 value: 4.146 - type: recall_at_1 value: 2.39 - type: recall_at_3 value: 4.329000000000001 - type: recall_at_5 value: 5.418 - type: recall_at_10 value: 7.198 - type: recall_at_20 value: 9.588000000000001 - type: recall_at_100 value: 17.371 - type: recall_at_1000 value: 45.206 - type: precision_at_1 value: 2.39 - type: precision_at_3 value: 1.443 - type: precision_at_5 value: 1.084 - type: precision_at_10 value: 0.72 - type: precision_at_20 value: 0.479 - type: precision_at_100 value: 0.174 - type: precision_at_1000 value: 0.045 - type: mrr_at_1 value: 2.3904 - type: mrr_at_3 value: 3.2492 - type: mrr_at_5 value: 3.4989 - type: mrr_at_10 value: 3.7220000000000004 - type: mrr_at_20 value: 3.8869000000000002 - type: mrr_at_100 value: 4.0578 - type: mrr_at_1000 value: 4.1463 - type: nauc_ndcg_at_1_max value: 37.599700000000006 - type: nauc_ndcg_at_1_std value: 20.302899999999998 - type: nauc_ndcg_at_1_diff1 value: 40.4987 - type: nauc_ndcg_at_3_max value: 31.119400000000002 - type: nauc_ndcg_at_3_std value: 11.7335 - type: nauc_ndcg_at_3_diff1 value: 28.788000000000004 - type: nauc_ndcg_at_5_max value: 28.505399999999998 - type: nauc_ndcg_at_5_std value: 12.1402 - type: nauc_ndcg_at_5_diff1 value: 25.730900000000002 - type: nauc_ndcg_at_10_max value: 27.0656 - type: nauc_ndcg_at_10_std value: 12.648699999999998 - type: nauc_ndcg_at_10_diff1 value: 22.0832 - type: nauc_ndcg_at_20_max value: 25.953599999999998 - type: nauc_ndcg_at_20_std value: 12.550500000000001 - type: nauc_ndcg_at_20_diff1 value: 19.3722 - type: nauc_ndcg_at_100_max value: 23.268 - type: nauc_ndcg_at_100_std value: 12.8176 - type: nauc_ndcg_at_100_diff1 value: 15.9275 - type: nauc_ndcg_at_1000_max value: 21.921499999999998 - type: nauc_ndcg_at_1000_std value: 12.656300000000002 - type: nauc_ndcg_at_1000_diff1 value: 13.9004 - type: nauc_map_at_1_max value: 37.599700000000006 - type: nauc_map_at_1_std value: 20.302899999999998 - type: nauc_map_at_1_diff1 value: 40.4987 - type: nauc_map_at_3_max value: 32.2818 - type: nauc_map_at_3_std value: 13.276399999999999 - type: nauc_map_at_3_diff1 value: 30.9064 - type: nauc_map_at_5_max value: 30.5166 - type: nauc_map_at_5_std value: 13.406 - type: nauc_map_at_5_diff1 value: 28.8213 - type: nauc_map_at_10_max value: 29.731999999999996 - type: nauc_map_at_10_std value: 13.5688 - type: nauc_map_at_10_diff1 value: 26.888499999999997 - type: nauc_map_at_20_max value: 29.211399999999998 - type: nauc_map_at_20_std value: 13.4739 - type: nauc_map_at_20_diff1 value: 25.6814 - type: nauc_map_at_100_max value: 28.578300000000002 - type: nauc_map_at_100_std value: 13.5385 - type: nauc_map_at_100_diff1 value: 24.793100000000003 - type: nauc_map_at_1000_max value: 28.3912 - type: nauc_map_at_1000_std value: 13.5039 - type: nauc_map_at_1000_diff1 value: 24.570600000000002 - type: nauc_recall_at_1_max value: 37.599700000000006 - type: nauc_recall_at_1_std value: 20.302899999999998 - type: nauc_recall_at_1_diff1 value: 40.4987 - type: nauc_recall_at_3_max value: 28.598000000000003 - type: nauc_recall_at_3_std value: 8.3847 - type: nauc_recall_at_3_diff1 value: 24.1871 - type: nauc_recall_at_5_max value: 24.5381 - type: nauc_recall_at_5_std value: 9.8274 - type: nauc_recall_at_5_diff1 value: 19.6821 - type: nauc_recall_at_10_max value: 22.5445 - type: nauc_recall_at_10_std value: 11.4415 - type: nauc_recall_at_10_diff1 value: 13.8268 - type: nauc_recall_at_20_max value: 21.3196 - type: nauc_recall_at_20_std value: 11.5932 - type: nauc_recall_at_20_diff1 value: 10.1991 - type: nauc_recall_at_100_max value: 16.9415 - type: nauc_recall_at_100_std value: 12.353200000000001 - type: nauc_recall_at_100_diff1 value: 5.7534 - type: nauc_recall_at_1000_max value: 15.9223 - type: nauc_recall_at_1000_std value: 12.2848 - type: nauc_recall_at_1000_diff1 value: 3.5477000000000003 - type: nauc_precision_at_1_max value: 37.599700000000006 - type: nauc_precision_at_1_std value: 20.302899999999998 - type: nauc_precision_at_1_diff1 value: 40.4987 - type: nauc_precision_at_3_max value: 28.598000000000003 - type: nauc_precision_at_3_std value: 8.3847 - type: nauc_precision_at_3_diff1 value: 24.1871 - type: nauc_precision_at_5_max value: 24.5381 - type: nauc_precision_at_5_std value: 9.8274 - type: nauc_precision_at_5_diff1 value: 19.6821 - type: nauc_precision_at_10_max value: 22.5445 - type: nauc_precision_at_10_std value: 11.4415 - type: nauc_precision_at_10_diff1 value: 13.8268 - type: nauc_precision_at_20_max value: 21.3196 - type: nauc_precision_at_20_std value: 11.5932 - type: nauc_precision_at_20_diff1 value: 10.1991 - type: nauc_precision_at_100_max value: 16.9415 - type: nauc_precision_at_100_std value: 12.353200000000001 - type: nauc_precision_at_100_diff1 value: 5.7534 - type: nauc_precision_at_1000_max value: 15.9223 - type: nauc_precision_at_1000_std value: 12.2848 - type: nauc_precision_at_1000_diff1 value: 3.5477000000000003 - type: nauc_mrr_at_1_max value: 37.599700000000006 - type: nauc_mrr_at_1_std value: 20.302899999999998 - type: nauc_mrr_at_1_diff1 value: 40.4987 - type: nauc_mrr_at_3_max value: 32.2818 - type: nauc_mrr_at_3_std value: 13.276399999999999 - type: nauc_mrr_at_3_diff1 value: 30.9064 - type: nauc_mrr_at_5_max value: 30.5166 - type: nauc_mrr_at_5_std value: 13.406 - type: nauc_mrr_at_5_diff1 value: 28.8213 - type: nauc_mrr_at_10_max value: 29.731999999999996 - type: nauc_mrr_at_10_std value: 13.5688 - type: nauc_mrr_at_10_diff1 value: 26.888499999999997 - type: nauc_mrr_at_20_max value: 29.211399999999998 - type: nauc_mrr_at_20_std value: 13.4739 - type: nauc_mrr_at_20_diff1 value: 25.6814 - type: nauc_mrr_at_100_max value: 28.578300000000002 - type: nauc_mrr_at_100_std value: 13.5385 - type: nauc_mrr_at_100_diff1 value: 24.793100000000003 - type: nauc_mrr_at_1000_max value: 28.3912 - type: nauc_mrr_at_1000_std value: 13.5039 - type: nauc_mrr_at_1000_diff1 value: 24.570600000000002 - type: main_score value: 4.537 task: type: Retrieval - dataset: config: default name: MTEB ArguAna (default) revision: c22ab2a51041ffd869aaddef7af8d8215647e41a split: test type: mteb/arguana metrics: - type: ndcg_at_1 value: 27.168999999999997 - type: ndcg_at_3 value: 41.08 - type: ndcg_at_5 value: 46.375 - type: ndcg_at_10 value: 51.663000000000004 - type: ndcg_at_20 value: 54.339999999999996 - type: ndcg_at_100 value: 55.656000000000006 - type: ndcg_at_1000 value: 55.875 - type: map_at_1 value: 27.168999999999997 - type: map_at_3 value: 37.482 - type: map_at_5 value: 40.416000000000004 - type: map_at_10 value: 42.624 - type: map_at_20 value: 43.376999999999995 - type: map_at_100 value: 43.578 - type: map_at_1000 value: 43.588 - type: recall_at_1 value: 27.168999999999997 - type: recall_at_3 value: 51.565000000000005 - type: recall_at_5 value: 64.43799999999999 - type: recall_at_10 value: 80.654 - type: recall_at_20 value: 91.11 - type: recall_at_100 value: 97.937 - type: recall_at_1000 value: 99.57300000000001 - type: precision_at_1 value: 27.168999999999997 - type: precision_at_3 value: 17.188 - type: precision_at_5 value: 12.888 - type: precision_at_10 value: 8.065 - type: precision_at_20 value: 4.555 - type: precision_at_100 value: 0.979 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 27.6671 - type: mrr_at_3 value: 37.6245 - type: mrr_at_5 value: 40.6188 - type: mrr_at_10 value: 42.8016 - type: mrr_at_20 value: 43.5582 - type: mrr_at_100 value: 43.7551 - type: mrr_at_1000 value: 43.765 - type: nauc_ndcg_at_1_max value: -4.3233 - type: nauc_ndcg_at_1_std value: -3.5458000000000003 - type: nauc_ndcg_at_1_diff1 value: 10.8118 - type: nauc_ndcg_at_3_max value: -1.1566 - type: nauc_ndcg_at_3_std value: -2.5897 - type: nauc_ndcg_at_3_diff1 value: 8.3298 - type: nauc_ndcg_at_5_max value: -1.399 - type: nauc_ndcg_at_5_std value: -1.9604 - type: nauc_ndcg_at_5_diff1 value: 7.6803 - type: nauc_ndcg_at_10_max value: 0.7746000000000001 - type: nauc_ndcg_at_10_std value: -0.9521 - type: nauc_ndcg_at_10_diff1 value: 9.1107 - type: nauc_ndcg_at_20_max value: 1.0111999999999999 - type: nauc_ndcg_at_20_std value: 0.1519 - type: nauc_ndcg_at_20_diff1 value: 9.5802 - type: nauc_ndcg_at_100_max value: -0.3616 - type: nauc_ndcg_at_100_std value: -0.6704 - type: nauc_ndcg_at_100_diff1 value: 9.2401 - type: nauc_ndcg_at_1000_max value: -0.6766 - type: nauc_ndcg_at_1000_std value: -1.0513 - type: nauc_ndcg_at_1000_diff1 value: 9.0561 - type: nauc_map_at_1_max value: -4.3233 - type: nauc_map_at_1_std value: -3.5458000000000003 - type: nauc_map_at_1_diff1 value: 10.8118 - type: nauc_map_at_3_max value: -1.9845000000000002 - type: nauc_map_at_3_std value: -2.6683 - type: nauc_map_at_3_diff1 value: 8.7329 - type: nauc_map_at_5_max value: -2.1342 - type: nauc_map_at_5_std value: -2.3612 - type: nauc_map_at_5_diff1 value: 8.4139 - type: nauc_map_at_10_max value: -1.331 - type: nauc_map_at_10_std value: -1.982 - type: nauc_map_at_10_diff1 value: 9.004199999999999 - type: nauc_map_at_20_max value: -1.3376000000000001 - type: nauc_map_at_20_std value: -1.7424 - type: nauc_map_at_20_diff1 value: 9.1012 - type: nauc_map_at_100_max value: -1.5152 - type: nauc_map_at_100_std value: -1.8418 - type: nauc_map_at_100_diff1 value: 9.0513 - type: nauc_map_at_1000_max value: -1.5264 - type: nauc_map_at_1000_std value: -1.8530000000000002 - type: nauc_map_at_1000_diff1 value: 9.043800000000001 - type: nauc_recall_at_1_max value: -4.3233 - type: nauc_recall_at_1_std value: -3.5458000000000003 - type: nauc_recall_at_1_diff1 value: 10.8118 - type: nauc_recall_at_3_max value: 1.2361 - type: nauc_recall_at_3_std value: -2.4248 - type: nauc_recall_at_3_diff1 value: 7.2543 - type: nauc_recall_at_5_max value: 0.9835999999999999 - type: nauc_recall_at_5_std value: -0.5726 - type: nauc_recall_at_5_diff1 value: 5.2376 - type: nauc_recall_at_10_max value: 12.7099 - type: nauc_recall_at_10_std value: 4.9688 - type: nauc_recall_at_10_diff1 value: 10.5016 - type: nauc_recall_at_20_max value: 28.2615 - type: nauc_recall_at_20_std value: 23.7662 - type: nauc_recall_at_20_diff1 value: 17.6392 - type: nauc_recall_at_100_max value: 31.295099999999998 - type: nauc_recall_at_100_std value: 47.1556 - type: nauc_recall_at_100_diff1 value: 24.055699999999998 - type: nauc_recall_at_1000_max value: 14.418000000000001 - type: nauc_recall_at_1000_std value: 56.899699999999996 - type: nauc_recall_at_1000_diff1 value: 3.7199999999999998 - type: nauc_precision_at_1_max value: -4.3233 - type: nauc_precision_at_1_std value: -3.5458000000000003 - type: nauc_precision_at_1_diff1 value: 10.8118 - type: nauc_precision_at_3_max value: 1.2361 - type: nauc_precision_at_3_std value: -2.4248 - type: nauc_precision_at_3_diff1 value: 7.2543 - type: nauc_precision_at_5_max value: 0.9835999999999999 - type: nauc_precision_at_5_std value: -0.5726 - type: nauc_precision_at_5_diff1 value: 5.2376 - type: nauc_precision_at_10_max value: 12.7099 - type: nauc_precision_at_10_std value: 4.9688 - type: nauc_precision_at_10_diff1 value: 10.5016 - type: nauc_precision_at_20_max value: 28.2615 - type: nauc_precision_at_20_std value: 23.7662 - type: nauc_precision_at_20_diff1 value: 17.6392 - type: nauc_precision_at_100_max value: 31.295099999999998 - type: nauc_precision_at_100_std value: 47.1556 - type: nauc_precision_at_100_diff1 value: 24.055699999999998 - type: nauc_precision_at_1000_max value: 14.418000000000001 - type: nauc_precision_at_1000_std value: 56.899699999999996 - type: nauc_precision_at_1000_diff1 value: 3.7199999999999998 - type: nauc_mrr_at_1_max value: -4.2285 - type: nauc_mrr_at_1_std value: -2.9951 - type: nauc_mrr_at_1_diff1 value: 9.2226 - type: nauc_mrr_at_3_max value: -2.8361 - type: nauc_mrr_at_3_std value: -2.5372 - type: nauc_mrr_at_3_diff1 value: 7.205 - type: nauc_mrr_at_5_max value: -2.827 - type: nauc_mrr_at_5_std value: -2.1469 - type: nauc_mrr_at_5_diff1 value: 6.9564 - type: nauc_mrr_at_10_max value: -2.0531 - type: nauc_mrr_at_10_std value: -1.8227 - type: nauc_mrr_at_10_diff1 value: 7.500500000000001 - type: nauc_mrr_at_20_max value: -2.0823 - type: nauc_mrr_at_20_std value: -1.585 - type: nauc_mrr_at_20_diff1 value: 7.5577000000000005 - type: nauc_mrr_at_100_max value: -2.2609 - type: nauc_mrr_at_100_std value: -1.6787 - type: nauc_mrr_at_100_diff1 value: 7.500500000000001 - type: nauc_mrr_at_1000_max value: -2.2721999999999998 - type: nauc_mrr_at_1000_std value: -1.6898 - type: nauc_mrr_at_1000_diff1 value: 7.492400000000001 - type: main_score value: 51.663000000000004 task: type: Retrieval - dataset: config: default name: MTEB ArxivClusteringP2P (default) revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d split: test type: mteb/arxiv-clustering-p2p metrics: - type: v_measure value: 41.4944 - type: v_measure_std value: 13.6458 - type: main_score value: 41.4944 task: type: Clustering - dataset: config: default name: MTEB ArxivClusteringS2S (default) revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 split: test type: mteb/arxiv-clustering-s2s metrics: - type: v_measure value: 30.6155 - type: v_measure_std value: 14.377999999999998 - type: main_score value: 30.6155 task: type: Clustering - dataset: config: default name: MTEB AskUbuntuDupQuestions (default) revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 split: test type: mteb/askubuntudupquestions-reranking metrics: - type: map value: 61.9001 - type: mrr value: 77.0427 - type: nAUC_map_max value: 27.7273 - type: nAUC_map_std value: 14.369299999999999 - type: nAUC_map_diff1 value: 10.7899 - type: nAUC_mrr_max value: 35.606100000000005 - type: nAUC_mrr_std value: 20.2621 - type: nAUC_mrr_diff1 value: 17.814 - type: main_score value: 61.9001 task: type: Reranking - dataset: config: default name: MTEB BIOSSES (default) revision: d3fb88f8f02e40887cd149695127462bbcf29b4a split: test type: mteb/biosses-sts metrics: - type: pearson value: 81.5558 - type: spearman value: 79.2952 - type: cosine_pearson value: 81.5558 - type: cosine_spearman value: 79.2952 - type: manhattan_pearson value: 79.4434 - type: manhattan_spearman value: 78.803 - type: euclidean_pearson value: 80.0336 - type: euclidean_spearman value: 79.2952 - type: main_score value: 79.2952 task: type: STS - dataset: config: default name: MTEB Banking77Classification (default) revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 split: test type: mteb/banking77 metrics: - type: accuracy value: 75.9481 - type: f1 value: 74.9851 - type: f1_weighted value: 74.9851 - type: main_score value: 75.9481 task: type: Classification - dataset: config: default name: MTEB BiorxivClusteringP2P (default) revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 split: test type: mteb/biorxiv-clustering-p2p metrics: - type: v_measure value: 35.6038 - type: v_measure_std value: 0.5428999999999999 - type: main_score value: 35.6038 task: type: Clustering - dataset: config: default name: MTEB BiorxivClusteringS2S (default) revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 split: test type: mteb/biorxiv-clustering-s2s metrics: - type: v_measure value: 28.3652 - type: v_measure_std value: 1.0767 - type: main_score value: 28.3652 task: type: Clustering - dataset: config: python name: MTEB COIRCodeSearchNetRetrieval (python) revision: 4adc7bc41202b5c13543c9c886a25f340634dab3 split: test type: CoIR-Retrieval/CodeSearchNet metrics: - type: ndcg_at_1 value: 78.69699999999999 - type: ndcg_at_3 value: 82.666 - type: ndcg_at_5 value: 83.607 - type: ndcg_at_10 value: 84.407 - type: ndcg_at_20 value: 84.92699999999999 - type: ndcg_at_100 value: 85.641 - type: ndcg_at_1000 value: 85.978 - type: map_at_1 value: 78.69699999999999 - type: map_at_3 value: 81.723 - type: map_at_5 value: 82.245 - type: map_at_10 value: 82.577 - type: map_at_20 value: 82.722 - type: map_at_100 value: 82.821 - type: map_at_1000 value: 82.834 - type: recall_at_1 value: 78.69699999999999 - type: recall_at_3 value: 85.38 - type: recall_at_5 value: 87.666 - type: recall_at_10 value: 90.133 - type: recall_at_20 value: 92.171 - type: recall_at_100 value: 96.012 - type: recall_at_1000 value: 98.68599999999999 - type: precision_at_1 value: 78.69699999999999 - type: precision_at_3 value: 28.46 - type: precision_at_5 value: 17.533 - type: precision_at_10 value: 9.013 - type: precision_at_20 value: 4.609 - type: precision_at_100 value: 0.96 - type: precision_at_1000 value: 0.099 - type: mrr_at_1 value: 78.7036 - type: mrr_at_3 value: 81.7223 - type: mrr_at_5 value: 82.24719999999999 - type: mrr_at_10 value: 82.5792 - type: mrr_at_20 value: 82.72460000000001 - type: mrr_at_100 value: 82.82350000000001 - type: mrr_at_1000 value: 82.8357 - type: nauc_ndcg_at_1_max value: 84.22319999999999 - type: nauc_ndcg_at_1_std value: 23.538999999999998 - type: nauc_ndcg_at_1_diff1 value: 90.73750000000001 - type: nauc_ndcg_at_3_max value: 85.0914 - type: nauc_ndcg_at_3_std value: 25.0172 - type: nauc_ndcg_at_3_diff1 value: 89.3858 - type: nauc_ndcg_at_5_max value: 84.9112 - type: nauc_ndcg_at_5_std value: 25.732899999999997 - type: nauc_ndcg_at_5_diff1 value: 89.1327 - type: nauc_ndcg_at_10_max value: 84.6806 - type: nauc_ndcg_at_10_std value: 26.488 - type: nauc_ndcg_at_10_diff1 value: 88.83879999999999 - type: nauc_ndcg_at_20_max value: 84.8315 - type: nauc_ndcg_at_20_std value: 26.9453 - type: nauc_ndcg_at_20_diff1 value: 88.9755 - type: nauc_ndcg_at_100_max value: 84.924 - type: nauc_ndcg_at_100_std value: 26.9297 - type: nauc_ndcg_at_100_diff1 value: 89.1861 - type: nauc_ndcg_at_1000_max value: 84.9058 - type: nauc_ndcg_at_1000_std value: 26.5904 - type: nauc_ndcg_at_1000_diff1 value: 89.2659 - type: nauc_map_at_1_max value: 84.22319999999999 - type: nauc_map_at_1_std value: 23.538999999999998 - type: nauc_map_at_1_diff1 value: 90.73750000000001 - type: nauc_map_at_3_max value: 84.9005 - type: nauc_map_at_3_std value: 24.622 - type: nauc_map_at_3_diff1 value: 89.74069999999999 - type: nauc_map_at_5_max value: 84.8017 - type: nauc_map_at_5_std value: 24.9739 - type: nauc_map_at_5_diff1 value: 89.61970000000001 - type: nauc_map_at_10_max value: 84.7091 - type: nauc_map_at_10_std value: 25.223699999999997 - type: nauc_map_at_10_diff1 value: 89.51639999999999 - type: nauc_map_at_20_max value: 84.7458 - type: nauc_map_at_20_std value: 25.3151 - type: nauc_map_at_20_diff1 value: 89.5589 - type: nauc_map_at_100_max value: 84.75930000000001 - type: nauc_map_at_100_std value: 25.318099999999998 - type: nauc_map_at_100_diff1 value: 89.58850000000001 - type: nauc_map_at_1000_max value: 84.75880000000001 - type: nauc_map_at_1000_std value: 25.3086 - type: nauc_map_at_1000_diff1 value: 89.591 - type: nauc_recall_at_1_max value: 84.22319999999999 - type: nauc_recall_at_1_std value: 23.538999999999998 - type: nauc_recall_at_1_diff1 value: 90.73750000000001 - type: nauc_recall_at_3_max value: 85.7389 - type: nauc_recall_at_3_std value: 26.4015 - type: nauc_recall_at_3_diff1 value: 88.1462 - type: nauc_recall_at_5_max value: 85.2854 - type: nauc_recall_at_5_std value: 28.9065 - type: nauc_recall_at_5_diff1 value: 87.15039999999999 - type: nauc_recall_at_10_max value: 84.3391 - type: nauc_recall_at_10_std value: 33.2602 - type: nauc_recall_at_10_diff1 value: 85.3733 - type: nauc_recall_at_20_max value: 85.3385 - type: nauc_recall_at_20_std value: 38.4429 - type: nauc_recall_at_20_diff1 value: 85.40299999999999 - type: nauc_recall_at_100_max value: 87.3325 - type: nauc_recall_at_100_std value: 48.357 - type: nauc_recall_at_100_diff1 value: 85.7283 - type: nauc_recall_at_1000_max value: 90.63419999999999 - type: nauc_recall_at_1000_std value: 63.489399999999996 - type: nauc_recall_at_1000_diff1 value: 85.1443 - type: nauc_precision_at_1_max value: 84.22319999999999 - type: nauc_precision_at_1_std value: 23.538999999999998 - type: nauc_precision_at_1_diff1 value: 90.73750000000001 - type: nauc_precision_at_3_max value: 85.7389 - type: nauc_precision_at_3_std value: 26.4015 - type: nauc_precision_at_3_diff1 value: 88.1462 - type: nauc_precision_at_5_max value: 85.2854 - type: nauc_precision_at_5_std value: 28.9065 - type: nauc_precision_at_5_diff1 value: 87.15039999999999 - type: nauc_precision_at_10_max value: 84.3391 - type: nauc_precision_at_10_std value: 33.2602 - type: nauc_precision_at_10_diff1 value: 85.3733 - type: nauc_precision_at_20_max value: 85.3385 - type: nauc_precision_at_20_std value: 38.4429 - type: nauc_precision_at_20_diff1 value: 85.40299999999999 - type: nauc_precision_at_100_max value: 87.3325 - type: nauc_precision_at_100_std value: 48.357 - type: nauc_precision_at_100_diff1 value: 85.7283 - type: nauc_precision_at_1000_max value: 90.63419999999999 - type: nauc_precision_at_1000_std value: 63.489399999999996 - type: nauc_precision_at_1000_diff1 value: 85.1443 - type: nauc_mrr_at_1_max value: 84.1909 - type: nauc_mrr_at_1_std value: 23.5506 - type: nauc_mrr_at_1_diff1 value: 90.7257 - type: nauc_mrr_at_3_max value: 84.883 - type: nauc_mrr_at_3_std value: 24.630499999999998 - type: nauc_mrr_at_3_diff1 value: 89.7361 - type: nauc_mrr_at_5_max value: 84.783 - type: nauc_mrr_at_5_std value: 24.9813 - type: nauc_mrr_at_5_diff1 value: 89.6132 - type: nauc_mrr_at_10_max value: 84.6899 - type: nauc_mrr_at_10_std value: 25.230200000000004 - type: nauc_mrr_at_10_diff1 value: 89.5099 - type: nauc_mrr_at_20_max value: 84.7264 - type: nauc_mrr_at_20_std value: 25.3216 - type: nauc_mrr_at_20_diff1 value: 89.5523 - type: nauc_mrr_at_100_max value: 84.7398 - type: nauc_mrr_at_100_std value: 25.324799999999996 - type: nauc_mrr_at_100_diff1 value: 89.5818 - type: nauc_mrr_at_1000_max value: 84.7393 - type: nauc_mrr_at_1000_std value: 25.315199999999997 - type: nauc_mrr_at_1000_diff1 value: 89.5843 - type: main_score value: 84.407 task: type: Retrieval - dataset: config: javascript name: MTEB COIRCodeSearchNetRetrieval (javascript) revision: 4adc7bc41202b5c13543c9c886a25f340634dab3 split: test type: CoIR-Retrieval/CodeSearchNet metrics: - type: ndcg_at_1 value: 22.03 - type: ndcg_at_3 value: 27.577 - type: ndcg_at_5 value: 29.465000000000003 - type: ndcg_at_10 value: 31.297000000000004 - type: ndcg_at_20 value: 32.666000000000004 - type: ndcg_at_100 value: 34.905 - type: ndcg_at_1000 value: 37.126 - type: map_at_1 value: 22.03 - type: map_at_3 value: 26.208 - type: map_at_5 value: 27.255000000000003 - type: map_at_10 value: 28.014 - type: map_at_20 value: 28.394000000000002 - type: map_at_100 value: 28.676000000000002 - type: map_at_1000 value: 28.747 - type: recall_at_1 value: 22.03 - type: recall_at_3 value: 31.541000000000004 - type: recall_at_5 value: 36.129 - type: recall_at_10 value: 41.781 - type: recall_at_20 value: 47.159 - type: recall_at_100 value: 59.648 - type: recall_at_1000 value: 77.818 - type: precision_at_1 value: 22.03 - type: precision_at_3 value: 10.514 - type: precision_at_5 value: 7.226000000000001 - type: precision_at_10 value: 4.178 - type: precision_at_20 value: 2.358 - type: precision_at_100 value: 0.596 - type: precision_at_1000 value: 0.078 - type: mrr_at_1 value: 22.029799999999998 - type: mrr_at_3 value: 26.2078 - type: mrr_at_5 value: 27.2546 - type: mrr_at_10 value: 28.0138 - type: mrr_at_20 value: 28.393800000000002 - type: mrr_at_100 value: 28.6755 - type: mrr_at_1000 value: 28.7473 - type: nauc_ndcg_at_1_max value: 43.7913 - type: nauc_ndcg_at_1_std value: 5.8822 - type: nauc_ndcg_at_1_diff1 value: 57.5892 - type: nauc_ndcg_at_3_max value: 43.6608 - type: nauc_ndcg_at_3_std value: 7.308199999999999 - type: nauc_ndcg_at_3_diff1 value: 50.727199999999996 - type: nauc_ndcg_at_5_max value: 43.540099999999995 - type: nauc_ndcg_at_5_std value: 8.2882 - type: nauc_ndcg_at_5_diff1 value: 49.7273 - type: nauc_ndcg_at_10_max value: 43.290800000000004 - type: nauc_ndcg_at_10_std value: 9.177 - type: nauc_ndcg_at_10_diff1 value: 48.6902 - type: nauc_ndcg_at_20_max value: 43.1726 - type: nauc_ndcg_at_20_std value: 9.9537 - type: nauc_ndcg_at_20_diff1 value: 48.2511 - type: nauc_ndcg_at_100_max value: 43.0801 - type: nauc_ndcg_at_100_std value: 11.2629 - type: nauc_ndcg_at_100_diff1 value: 47.7496 - type: nauc_ndcg_at_1000_max value: 43.0087 - type: nauc_ndcg_at_1000_std value: 11.3454 - type: nauc_ndcg_at_1000_diff1 value: 47.7628 - type: nauc_map_at_1_max value: 43.7913 - type: nauc_map_at_1_std value: 5.8822 - type: nauc_map_at_1_diff1 value: 57.5892 - type: nauc_map_at_3_max value: 43.623200000000004 - type: nauc_map_at_3_std value: 6.9021 - type: nauc_map_at_3_diff1 value: 52.296600000000005 - type: nauc_map_at_5_max value: 43.567099999999996 - type: nauc_map_at_5_std value: 7.4779 - type: nauc_map_at_5_diff1 value: 51.7259 - type: nauc_map_at_10_max value: 43.4204 - type: nauc_map_at_10_std value: 7.82 - type: nauc_map_at_10_diff1 value: 51.266 - type: nauc_map_at_20_max value: 43.3827 - type: nauc_map_at_20_std value: 8.0332 - type: nauc_map_at_20_diff1 value: 51.139599999999994 - type: nauc_map_at_100_max value: 43.3681 - type: nauc_map_at_100_std value: 8.205400000000001 - type: nauc_map_at_100_diff1 value: 51.054 - type: nauc_map_at_1000_max value: 43.3619 - type: nauc_map_at_1000_std value: 8.2009 - type: nauc_map_at_1000_diff1 value: 51.0517 - type: nauc_recall_at_1_max value: 43.7913 - type: nauc_recall_at_1_std value: 5.8822 - type: nauc_recall_at_1_diff1 value: 57.5892 - type: nauc_recall_at_3_max value: 43.7869 - type: nauc_recall_at_3_std value: 8.4252 - type: nauc_recall_at_3_diff1 value: 46.5268 - type: nauc_recall_at_5_max value: 43.4642 - type: nauc_recall_at_5_std value: 10.5594 - type: nauc_recall_at_5_diff1 value: 44.329800000000006 - type: nauc_recall_at_10_max value: 42.9497 - type: nauc_recall_at_10_std value: 13.252 - type: nauc_recall_at_10_diff1 value: 41.5027 - type: nauc_recall_at_20_max value: 42.5357 - type: nauc_recall_at_20_std value: 16.2323 - type: nauc_recall_at_20_diff1 value: 39.7814 - type: nauc_recall_at_100_max value: 41.963899999999995 - type: nauc_recall_at_100_std value: 24.3312 - type: nauc_recall_at_100_diff1 value: 36.321 - type: nauc_recall_at_1000_max value: 40.839999999999996 - type: nauc_recall_at_1000_std value: 32.861000000000004 - type: nauc_recall_at_1000_diff1 value: 30.7145 - type: nauc_precision_at_1_max value: 43.7913 - type: nauc_precision_at_1_std value: 5.8822 - type: nauc_precision_at_1_diff1 value: 57.5892 - type: nauc_precision_at_3_max value: 43.7869 - type: nauc_precision_at_3_std value: 8.4252 - type: nauc_precision_at_3_diff1 value: 46.5268 - type: nauc_precision_at_5_max value: 43.4642 - type: nauc_precision_at_5_std value: 10.5594 - type: nauc_precision_at_5_diff1 value: 44.329800000000006 - type: nauc_precision_at_10_max value: 42.9497 - type: nauc_precision_at_10_std value: 13.252 - type: nauc_precision_at_10_diff1 value: 41.5027 - type: nauc_precision_at_20_max value: 42.5357 - type: nauc_precision_at_20_std value: 16.2323 - type: nauc_precision_at_20_diff1 value: 39.7814 - type: nauc_precision_at_100_max value: 41.963899999999995 - type: nauc_precision_at_100_std value: 24.3312 - type: nauc_precision_at_100_diff1 value: 36.321 - type: nauc_precision_at_1000_max value: 40.839999999999996 - type: nauc_precision_at_1000_std value: 32.861000000000004 - type: nauc_precision_at_1000_diff1 value: 30.7145 - type: nauc_mrr_at_1_max value: 43.7913 - type: nauc_mrr_at_1_std value: 5.8822 - type: nauc_mrr_at_1_diff1 value: 57.5892 - type: nauc_mrr_at_3_max value: 43.623200000000004 - type: nauc_mrr_at_3_std value: 6.9021 - type: nauc_mrr_at_3_diff1 value: 52.296600000000005 - type: nauc_mrr_at_5_max value: 43.567099999999996 - type: nauc_mrr_at_5_std value: 7.4779 - type: nauc_mrr_at_5_diff1 value: 51.7259 - type: nauc_mrr_at_10_max value: 43.4204 - type: nauc_mrr_at_10_std value: 7.82 - type: nauc_mrr_at_10_diff1 value: 51.266 - type: nauc_mrr_at_20_max value: 43.3827 - type: nauc_mrr_at_20_std value: 8.0332 - type: nauc_mrr_at_20_diff1 value: 51.139599999999994 - type: nauc_mrr_at_100_max value: 43.3681 - type: nauc_mrr_at_100_std value: 8.2055 - type: nauc_mrr_at_100_diff1 value: 51.054100000000005 - type: nauc_mrr_at_1000_max value: 43.3619 - type: nauc_mrr_at_1000_std value: 8.2009 - type: nauc_mrr_at_1000_diff1 value: 51.0518 - type: main_score value: 31.297000000000004 task: type: Retrieval - dataset: config: go name: MTEB COIRCodeSearchNetRetrieval (go) revision: 4adc7bc41202b5c13543c9c886a25f340634dab3 split: test type: CoIR-Retrieval/CodeSearchNet metrics: - type: ndcg_at_1 value: 36.58 - type: ndcg_at_3 value: 44.633 - type: ndcg_at_5 value: 46.766000000000005 - type: ndcg_at_10 value: 48.921 - type: ndcg_at_20 value: 50.52100000000001 - type: ndcg_at_100 value: 52.795 - type: ndcg_at_1000 value: 54.291 - type: map_at_1 value: 36.58 - type: map_at_3 value: 42.666 - type: map_at_5 value: 43.852000000000004 - type: map_at_10 value: 44.744 - type: map_at_20 value: 45.188 - type: map_at_100 value: 45.493 - type: map_at_1000 value: 45.544000000000004 - type: recall_at_1 value: 36.58 - type: recall_at_3 value: 50.32 - type: recall_at_5 value: 55.491 - type: recall_at_10 value: 62.13999999999999 - type: recall_at_20 value: 68.431 - type: recall_at_100 value: 80.83 - type: recall_at_1000 value: 92.896 - type: precision_at_1 value: 36.58 - type: precision_at_3 value: 16.773 - type: precision_at_5 value: 11.097999999999999 - type: precision_at_10 value: 6.214 - type: precision_at_20 value: 3.422 - type: precision_at_100 value: 0.808 - type: precision_at_1000 value: 0.093 - type: mrr_at_1 value: 36.579699999999995 - type: mrr_at_3 value: 42.666 - type: mrr_at_5 value: 43.8517 - type: mrr_at_10 value: 44.7436 - type: mrr_at_20 value: 45.1875 - type: mrr_at_100 value: 45.493 - type: mrr_at_1000 value: 45.544200000000004 - type: nauc_ndcg_at_1_max value: 41.7601 - type: nauc_ndcg_at_1_std value: 4.5455000000000005 - type: nauc_ndcg_at_1_diff1 value: 58.6454 - type: nauc_ndcg_at_3_max value: 42.3992 - type: nauc_ndcg_at_3_std value: 6.3083 - type: nauc_ndcg_at_3_diff1 value: 52.4271 - type: nauc_ndcg_at_5_max value: 42.2462 - type: nauc_ndcg_at_5_std value: 6.8773 - type: nauc_ndcg_at_5_diff1 value: 51.75880000000001 - type: nauc_ndcg_at_10_max value: 41.7943 - type: nauc_ndcg_at_10_std value: 7.2982000000000005 - type: nauc_ndcg_at_10_diff1 value: 51.0016 - type: nauc_ndcg_at_20_max value: 41.5875 - type: nauc_ndcg_at_20_std value: 7.8825 - type: nauc_ndcg_at_20_diff1 value: 50.7648 - type: nauc_ndcg_at_100_max value: 41.6971 - type: nauc_ndcg_at_100_std value: 8.4077 - type: nauc_ndcg_at_100_diff1 value: 50.9386 - type: nauc_ndcg_at_1000_max value: 41.7837 - type: nauc_ndcg_at_1000_std value: 8.250300000000001 - type: nauc_ndcg_at_1000_diff1 value: 51.4691 - type: nauc_map_at_1_max value: 41.7601 - type: nauc_map_at_1_std value: 4.5455000000000005 - type: nauc_map_at_1_diff1 value: 58.6454 - type: nauc_map_at_3_max value: 42.2864 - type: nauc_map_at_3_std value: 5.8461 - type: nauc_map_at_3_diff1 value: 53.9381 - type: nauc_map_at_5_max value: 42.1957 - type: nauc_map_at_5_std value: 6.142 - type: nauc_map_at_5_diff1 value: 53.600300000000004 - type: nauc_map_at_10_max value: 42.005900000000004 - type: nauc_map_at_10_std value: 6.2986 - type: nauc_map_at_10_diff1 value: 53.296200000000006 - type: nauc_map_at_20_max value: 41.946099999999994 - type: nauc_map_at_20_std value: 6.452299999999999 - type: nauc_map_at_20_diff1 value: 53.2485 - type: nauc_map_at_100_max value: 41.9563 - type: nauc_map_at_100_std value: 6.511 - type: nauc_map_at_100_diff1 value: 53.2816 - type: nauc_map_at_1000_max value: 41.9598 - type: nauc_map_at_1000_std value: 6.5069 - type: nauc_map_at_1000_diff1 value: 53.3008 - type: nauc_recall_at_1_max value: 41.7601 - type: nauc_recall_at_1_std value: 4.5455000000000005 - type: nauc_recall_at_1_diff1 value: 58.6454 - type: nauc_recall_at_3_max value: 42.7117 - type: nauc_recall_at_3_std value: 7.674799999999999 - type: nauc_recall_at_3_diff1 value: 48.0061 - type: nauc_recall_at_5_max value: 42.365399999999994 - type: nauc_recall_at_5_std value: 9.2378 - type: nauc_recall_at_5_diff1 value: 46.0218 - type: nauc_recall_at_10_max value: 40.8705 - type: nauc_recall_at_10_std value: 10.9253 - type: nauc_recall_at_10_diff1 value: 43.0092 - type: nauc_recall_at_20_max value: 39.818599999999996 - type: nauc_recall_at_20_std value: 14.1425 - type: nauc_recall_at_20_diff1 value: 40.8455 - type: nauc_recall_at_100_max value: 40.1229 - type: nauc_recall_at_100_std value: 22.0804 - type: nauc_recall_at_100_diff1 value: 37.6538 - type: nauc_recall_at_1000_max value: 40.4194 - type: nauc_recall_at_1000_std value: 36.7051 - type: nauc_recall_at_1000_diff1 value: 35.3088 - type: nauc_precision_at_1_max value: 41.7601 - type: nauc_precision_at_1_std value: 4.5455000000000005 - type: nauc_precision_at_1_diff1 value: 58.6454 - type: nauc_precision_at_3_max value: 42.7117 - type: nauc_precision_at_3_std value: 7.674799999999999 - type: nauc_precision_at_3_diff1 value: 48.0061 - type: nauc_precision_at_5_max value: 42.365399999999994 - type: nauc_precision_at_5_std value: 9.2378 - type: nauc_precision_at_5_diff1 value: 46.0218 - type: nauc_precision_at_10_max value: 40.8705 - type: nauc_precision_at_10_std value: 10.9253 - type: nauc_precision_at_10_diff1 value: 43.0092 - type: nauc_precision_at_20_max value: 39.818599999999996 - type: nauc_precision_at_20_std value: 14.1425 - type: nauc_precision_at_20_diff1 value: 40.8455 - type: nauc_precision_at_100_max value: 40.1229 - type: nauc_precision_at_100_std value: 22.0804 - type: nauc_precision_at_100_diff1 value: 37.6538 - type: nauc_precision_at_1000_max value: 40.4194 - type: nauc_precision_at_1000_std value: 36.7051 - type: nauc_precision_at_1000_diff1 value: 35.3088 - type: nauc_mrr_at_1_max value: 41.7601 - type: nauc_mrr_at_1_std value: 4.5455000000000005 - type: nauc_mrr_at_1_diff1 value: 58.6454 - type: nauc_mrr_at_3_max value: 42.2864 - type: nauc_mrr_at_3_std value: 5.8461 - type: nauc_mrr_at_3_diff1 value: 53.9381 - type: nauc_mrr_at_5_max value: 42.1957 - type: nauc_mrr_at_5_std value: 6.142 - type: nauc_mrr_at_5_diff1 value: 53.600300000000004 - type: nauc_mrr_at_10_max value: 42.005900000000004 - type: nauc_mrr_at_10_std value: 6.2986 - type: nauc_mrr_at_10_diff1 value: 53.296200000000006 - type: nauc_mrr_at_20_max value: 41.946099999999994 - type: nauc_mrr_at_20_std value: 6.452299999999999 - type: nauc_mrr_at_20_diff1 value: 53.2485 - type: nauc_mrr_at_100_max value: 41.9563 - type: nauc_mrr_at_100_std value: 6.511 - type: nauc_mrr_at_100_diff1 value: 53.2816 - type: nauc_mrr_at_1000_max value: 41.9598 - type: nauc_mrr_at_1000_std value: 6.5069 - type: nauc_mrr_at_1000_diff1 value: 53.3008 - type: main_score value: 48.921 task: type: Retrieval - dataset: config: ruby name: MTEB COIRCodeSearchNetRetrieval (ruby) revision: 4adc7bc41202b5c13543c9c886a25f340634dab3 split: test type: CoIR-Retrieval/CodeSearchNet metrics: - type: ndcg_at_1 value: 27.359 - type: ndcg_at_3 value: 33.405 - type: ndcg_at_5 value: 35.111 - type: ndcg_at_10 value: 37.124 - type: ndcg_at_20 value: 38.637 - type: ndcg_at_100 value: 40.809 - type: ndcg_at_1000 value: 43.206 - type: map_at_1 value: 27.359 - type: map_at_3 value: 31.906000000000002 - type: map_at_5 value: 32.838 - type: map_at_10 value: 33.677 - type: map_at_20 value: 34.086 - type: map_at_100 value: 34.379 - type: map_at_1000 value: 34.458 - type: recall_at_1 value: 27.359 - type: recall_at_3 value: 37.748 - type: recall_at_5 value: 41.951 - type: recall_at_10 value: 48.136 - type: recall_at_20 value: 54.163 - type: recall_at_100 value: 65.979 - type: recall_at_1000 value: 85.488 - type: precision_at_1 value: 27.359 - type: precision_at_3 value: 12.583 - type: precision_at_5 value: 8.39 - type: precision_at_10 value: 4.814 - type: precision_at_20 value: 2.708 - type: precision_at_100 value: 0.66 - type: precision_at_1000 value: 0.08499999999999999 - type: mrr_at_1 value: 27.3592 - type: mrr_at_3 value: 31.9059 - type: mrr_at_5 value: 32.8377 - type: mrr_at_10 value: 33.677099999999996 - type: mrr_at_20 value: 34.086 - type: mrr_at_100 value: 34.3787 - type: mrr_at_1000 value: 34.4575 - type: nauc_ndcg_at_1_max value: 41.336 - type: nauc_ndcg_at_1_std value: 4.9167000000000005 - type: nauc_ndcg_at_1_diff1 value: 59.489599999999996 - type: nauc_ndcg_at_3_max value: 42.3939 - type: nauc_ndcg_at_3_std value: 9.324200000000001 - type: nauc_ndcg_at_3_diff1 value: 53.886 - type: nauc_ndcg_at_5_max value: 41.523700000000005 - type: nauc_ndcg_at_5_std value: 8.7661 - type: nauc_ndcg_at_5_diff1 value: 52.6116 - type: nauc_ndcg_at_10_max value: 40.7362 - type: nauc_ndcg_at_10_std value: 9.3454 - type: nauc_ndcg_at_10_diff1 value: 51.226000000000006 - type: nauc_ndcg_at_20_max value: 40.1284 - type: nauc_ndcg_at_20_std value: 10.1067 - type: nauc_ndcg_at_20_diff1 value: 50.6354 - type: nauc_ndcg_at_100_max value: 40.109899999999996 - type: nauc_ndcg_at_100_std value: 11.125599999999999 - type: nauc_ndcg_at_100_diff1 value: 50.021499999999996 - type: nauc_ndcg_at_1000_max value: 39.9325 - type: nauc_ndcg_at_1000_std value: 10.9899 - type: nauc_ndcg_at_1000_diff1 value: 50.3713 - type: nauc_map_at_1_max value: 41.336 - type: nauc_map_at_1_std value: 4.9167000000000005 - type: nauc_map_at_1_diff1 value: 59.489599999999996 - type: nauc_map_at_3_max value: 42.1793 - type: nauc_map_at_3_std value: 8.149099999999999 - type: nauc_map_at_3_diff1 value: 55.1967 - type: nauc_map_at_5_max value: 41.6768 - type: nauc_map_at_5_std value: 7.8223 - type: nauc_map_at_5_diff1 value: 54.4705 - type: nauc_map_at_10_max value: 41.3395 - type: nauc_map_at_10_std value: 8.076 - type: nauc_map_at_10_diff1 value: 53.87929999999999 - type: nauc_map_at_20_max value: 41.1762 - type: nauc_map_at_20_std value: 8.2845 - type: nauc_map_at_20_diff1 value: 53.7144 - type: nauc_map_at_100_max value: 41.1731 - type: nauc_map_at_100_std value: 8.394 - type: nauc_map_at_100_diff1 value: 53.64919999999999 - type: nauc_map_at_1000_max value: 41.165600000000005 - type: nauc_map_at_1000_std value: 8.3923 - type: nauc_map_at_1000_diff1 value: 53.654199999999996 - type: nauc_recall_at_1_max value: 41.336 - type: nauc_recall_at_1_std value: 4.9167000000000005 - type: nauc_recall_at_1_diff1 value: 59.489599999999996 - type: nauc_recall_at_3_max value: 42.9746 - type: nauc_recall_at_3_std value: 12.632399999999999 - type: nauc_recall_at_3_diff1 value: 50.259100000000004 - type: nauc_recall_at_5_max value: 40.9855 - type: nauc_recall_at_5_std value: 11.368300000000001 - type: nauc_recall_at_5_diff1 value: 47.3165 - type: nauc_recall_at_10_max value: 38.6473 - type: nauc_recall_at_10_std value: 13.1083 - type: nauc_recall_at_10_diff1 value: 43.1086 - type: nauc_recall_at_20_max value: 36.0858 - type: nauc_recall_at_20_std value: 16.345100000000002 - type: nauc_recall_at_20_diff1 value: 40.3971 - type: nauc_recall_at_100_max value: 35.3344 - type: nauc_recall_at_100_std value: 24.4293 - type: nauc_recall_at_100_diff1 value: 34.4263 - type: nauc_recall_at_1000_max value: 27.814 - type: nauc_recall_at_1000_std value: 34.5865 - type: nauc_recall_at_1000_diff1 value: 26.621 - type: nauc_precision_at_1_max value: 41.336 - type: nauc_precision_at_1_std value: 4.9167000000000005 - type: nauc_precision_at_1_diff1 value: 59.489599999999996 - type: nauc_precision_at_3_max value: 42.9746 - type: nauc_precision_at_3_std value: 12.632399999999999 - type: nauc_precision_at_3_diff1 value: 50.259100000000004 - type: nauc_precision_at_5_max value: 40.9855 - type: nauc_precision_at_5_std value: 11.368300000000001 - type: nauc_precision_at_5_diff1 value: 47.3165 - type: nauc_precision_at_10_max value: 38.6473 - type: nauc_precision_at_10_std value: 13.1083 - type: nauc_precision_at_10_diff1 value: 43.1086 - type: nauc_precision_at_20_max value: 36.0858 - type: nauc_precision_at_20_std value: 16.345100000000002 - type: nauc_precision_at_20_diff1 value: 40.3971 - type: nauc_precision_at_100_max value: 35.3344 - type: nauc_precision_at_100_std value: 24.4293 - type: nauc_precision_at_100_diff1 value: 34.4263 - type: nauc_precision_at_1000_max value: 27.814 - type: nauc_precision_at_1000_std value: 34.5865 - type: nauc_precision_at_1000_diff1 value: 26.621 - type: nauc_mrr_at_1_max value: 41.336 - type: nauc_mrr_at_1_std value: 4.9167000000000005 - type: nauc_mrr_at_1_diff1 value: 59.489599999999996 - type: nauc_mrr_at_3_max value: 42.1793 - type: nauc_mrr_at_3_std value: 8.149099999999999 - type: nauc_mrr_at_3_diff1 value: 55.1967 - type: nauc_mrr_at_5_max value: 41.6768 - type: nauc_mrr_at_5_std value: 7.8223 - type: nauc_mrr_at_5_diff1 value: 54.4705 - type: nauc_mrr_at_10_max value: 41.3395 - type: nauc_mrr_at_10_std value: 8.076 - type: nauc_mrr_at_10_diff1 value: 53.87929999999999 - type: nauc_mrr_at_20_max value: 41.1762 - type: nauc_mrr_at_20_std value: 8.2845 - type: nauc_mrr_at_20_diff1 value: 53.7144 - type: nauc_mrr_at_100_max value: 41.1731 - type: nauc_mrr_at_100_std value: 8.394 - type: nauc_mrr_at_100_diff1 value: 53.64919999999999 - type: nauc_mrr_at_1000_max value: 41.165600000000005 - type: nauc_mrr_at_1000_std value: 8.3923 - type: nauc_mrr_at_1000_diff1 value: 53.654199999999996 - type: main_score value: 37.124 task: type: Retrieval - dataset: config: java name: MTEB COIRCodeSearchNetRetrieval (java) revision: 4adc7bc41202b5c13543c9c886a25f340634dab3 split: test type: CoIR-Retrieval/CodeSearchNet metrics: - type: ndcg_at_1 value: 29.621 - type: ndcg_at_3 value: 36.388999999999996 - type: ndcg_at_5 value: 38.071 - type: ndcg_at_10 value: 39.856 - type: ndcg_at_20 value: 41.189 - type: ndcg_at_100 value: 43.391999999999996 - type: ndcg_at_1000 value: 45.080999999999996 - type: map_at_1 value: 29.621 - type: map_at_3 value: 34.733000000000004 - type: map_at_5 value: 35.668 - type: map_at_10 value: 36.411 - type: map_at_20 value: 36.778 - type: map_at_100 value: 37.077 - type: map_at_1000 value: 37.133 - type: recall_at_1 value: 29.621 - type: recall_at_3 value: 41.178 - type: recall_at_5 value: 45.257999999999996 - type: recall_at_10 value: 50.744 - type: recall_at_20 value: 56.001999999999995 - type: recall_at_100 value: 67.96 - type: recall_at_1000 value: 81.707 - type: precision_at_1 value: 29.621 - type: precision_at_3 value: 13.725999999999999 - type: precision_at_5 value: 9.052 - type: precision_at_10 value: 5.074 - type: precision_at_20 value: 2.8000000000000003 - type: precision_at_100 value: 0.6799999999999999 - type: precision_at_1000 value: 0.082 - type: mrr_at_1 value: 29.593799999999998 - type: mrr_at_3 value: 34.7254 - type: mrr_at_5 value: 35.6583 - type: mrr_at_10 value: 36.4022 - type: mrr_at_20 value: 36.7689 - type: mrr_at_100 value: 37.0681 - type: mrr_at_1000 value: 37.124 - type: nauc_ndcg_at_1_max value: 39.7113 - type: nauc_ndcg_at_1_std value: -1.3535 - type: nauc_ndcg_at_1_diff1 value: 57.7222 - type: nauc_ndcg_at_3_max value: 40.4493 - type: nauc_ndcg_at_3_std value: 1.4639 - type: nauc_ndcg_at_3_diff1 value: 52.145799999999994 - type: nauc_ndcg_at_5_max value: 40.1219 - type: nauc_ndcg_at_5_std value: 2.1448 - type: nauc_ndcg_at_5_diff1 value: 51.2694 - type: nauc_ndcg_at_10_max value: 39.4187 - type: nauc_ndcg_at_10_std value: 2.5085 - type: nauc_ndcg_at_10_diff1 value: 50.171699999999994 - type: nauc_ndcg_at_20_max value: 39.2822 - type: nauc_ndcg_at_20_std value: 3.1015 - type: nauc_ndcg_at_20_diff1 value: 49.8837 - type: nauc_ndcg_at_100_max value: 39.1352 - type: nauc_ndcg_at_100_std value: 3.8505 - type: nauc_ndcg_at_100_diff1 value: 49.7104 - type: nauc_ndcg_at_1000_max value: 39.1441 - type: nauc_ndcg_at_1000_std value: 4.1791 - type: nauc_ndcg_at_1000_diff1 value: 49.806200000000004 - type: nauc_map_at_1_max value: 39.7113 - type: nauc_map_at_1_std value: -1.3535 - type: nauc_map_at_1_diff1 value: 57.7222 - type: nauc_map_at_3_max value: 40.3518 - type: nauc_map_at_3_std value: 0.7879 - type: nauc_map_at_3_diff1 value: 53.4756 - type: nauc_map_at_5_max value: 40.1793 - type: nauc_map_at_5_std value: 1.1596 - type: nauc_map_at_5_diff1 value: 52.993900000000004 - type: nauc_map_at_10_max value: 39.8893 - type: nauc_map_at_10_std value: 1.3074000000000001 - type: nauc_map_at_10_diff1 value: 52.53679999999999 - type: nauc_map_at_20_max value: 39.8583 - type: nauc_map_at_20_std value: 1.4666000000000001 - type: nauc_map_at_20_diff1 value: 52.4664 - type: nauc_map_at_100_max value: 39.8303 - type: nauc_map_at_100_std value: 1.5578 - type: nauc_map_at_100_diff1 value: 52.44950000000001 - type: nauc_map_at_1000_max value: 39.827400000000004 - type: nauc_map_at_1000_std value: 1.568 - type: nauc_map_at_1000_diff1 value: 52.452600000000004 - type: nauc_recall_at_1_max value: 39.7113 - type: nauc_recall_at_1_std value: -1.3535 - type: nauc_recall_at_1_diff1 value: 57.7222 - type: nauc_recall_at_3_max value: 40.6926 - type: nauc_recall_at_3_std value: 3.3686000000000003 - type: nauc_recall_at_3_diff1 value: 48.4023 - type: nauc_recall_at_5_max value: 39.8681 - type: nauc_recall_at_5_std value: 5.0524 - type: nauc_recall_at_5_diff1 value: 46.2361 - type: nauc_recall_at_10_max value: 37.6778 - type: nauc_recall_at_10_std value: 6.2486 - type: nauc_recall_at_10_diff1 value: 42.7533 - type: nauc_recall_at_20_max value: 36.9831 - type: nauc_recall_at_20_std value: 8.9021 - type: nauc_recall_at_20_diff1 value: 41.1453 - type: nauc_recall_at_100_max value: 35.6903 - type: nauc_recall_at_100_std value: 15.161 - type: nauc_recall_at_100_diff1 value: 38.1673 - type: nauc_recall_at_1000_max value: 34.2718 - type: nauc_recall_at_1000_std value: 26.3982 - type: nauc_recall_at_1000_diff1 value: 33.3322 - type: nauc_precision_at_1_max value: 39.7113 - type: nauc_precision_at_1_std value: -1.3535 - type: nauc_precision_at_1_diff1 value: 57.7222 - type: nauc_precision_at_3_max value: 40.6926 - type: nauc_precision_at_3_std value: 3.3686000000000003 - type: nauc_precision_at_3_diff1 value: 48.4023 - type: nauc_precision_at_5_max value: 39.8681 - type: nauc_precision_at_5_std value: 5.0524 - type: nauc_precision_at_5_diff1 value: 46.2361 - type: nauc_precision_at_10_max value: 37.6778 - type: nauc_precision_at_10_std value: 6.2486 - type: nauc_precision_at_10_diff1 value: 42.7533 - type: nauc_precision_at_20_max value: 36.9831 - type: nauc_precision_at_20_std value: 8.9021 - type: nauc_precision_at_20_diff1 value: 41.1453 - type: nauc_precision_at_100_max value: 35.6903 - type: nauc_precision_at_100_std value: 15.161 - type: nauc_precision_at_100_diff1 value: 38.1673 - type: nauc_precision_at_1000_max value: 34.2718 - type: nauc_precision_at_1000_std value: 26.3982 - type: nauc_precision_at_1000_diff1 value: 33.3322 - type: nauc_mrr_at_1_max value: 39.6284 - type: nauc_mrr_at_1_std value: -1.345 - type: nauc_mrr_at_1_diff1 value: 57.828 - type: nauc_mrr_at_3_max value: 40.3036 - type: nauc_mrr_at_3_std value: 0.7952000000000001 - type: nauc_mrr_at_3_diff1 value: 53.524499999999996 - type: nauc_mrr_at_5_max value: 40.1366 - type: nauc_mrr_at_5_std value: 1.1708 - type: nauc_mrr_at_5_diff1 value: 53.0405 - type: nauc_mrr_at_10_max value: 39.848 - type: nauc_mrr_at_10_std value: 1.3195000000000001 - type: nauc_mrr_at_10_diff1 value: 52.5868 - type: nauc_mrr_at_20_max value: 39.815400000000004 - type: nauc_mrr_at_20_std value: 1.4787 - type: nauc_mrr_at_20_diff1 value: 52.513299999999994 - type: nauc_mrr_at_100_max value: 39.787299999999995 - type: nauc_mrr_at_100_std value: 1.5699999999999998 - type: nauc_mrr_at_100_diff1 value: 52.496500000000005 - type: nauc_mrr_at_1000_max value: 39.7844 - type: nauc_mrr_at_1000_std value: 1.5803 - type: nauc_mrr_at_1000_diff1 value: 52.4996 - type: main_score value: 39.856 task: type: Retrieval - dataset: config: php name: MTEB COIRCodeSearchNetRetrieval (php) revision: 4adc7bc41202b5c13543c9c886a25f340634dab3 split: test type: CoIR-Retrieval/CodeSearchNet metrics: - type: ndcg_at_1 value: 25.211 - type: ndcg_at_3 value: 31.994 - type: ndcg_at_5 value: 33.986 - type: ndcg_at_10 value: 36.086 - type: ndcg_at_20 value: 37.638 - type: ndcg_at_100 value: 40.268 - type: ndcg_at_1000 value: 42.309999999999995 - type: map_at_1 value: 25.211 - type: map_at_3 value: 30.346 - type: map_at_5 value: 31.452 - type: map_at_10 value: 32.323 - type: map_at_20 value: 32.751000000000005 - type: map_at_100 value: 33.097 - type: map_at_1000 value: 33.165 - type: recall_at_1 value: 25.211 - type: recall_at_3 value: 36.756 - type: recall_at_5 value: 41.587 - type: recall_at_10 value: 48.059000000000005 - type: recall_at_20 value: 54.189 - type: recall_at_100 value: 68.61 - type: recall_at_1000 value: 85.172 - type: precision_at_1 value: 25.211 - type: precision_at_3 value: 12.252 - type: precision_at_5 value: 8.317 - type: precision_at_10 value: 4.806 - type: precision_at_20 value: 2.709 - type: precision_at_100 value: 0.6859999999999999 - type: precision_at_1000 value: 0.08499999999999999 - type: mrr_at_1 value: 25.1962 - type: mrr_at_3 value: 30.335099999999997 - type: mrr_at_5 value: 31.4426 - type: mrr_at_10 value: 32.3121 - type: mrr_at_20 value: 32.741 - type: mrr_at_100 value: 33.0877 - type: mrr_at_1000 value: 33.1558 - type: nauc_ndcg_at_1_max value: 38.358799999999995 - type: nauc_ndcg_at_1_std value: 4.3283000000000005 - type: nauc_ndcg_at_1_diff1 value: 53.33520000000001 - type: nauc_ndcg_at_3_max value: 38.0766 - type: nauc_ndcg_at_3_std value: 6.0852 - type: nauc_ndcg_at_3_diff1 value: 45.5009 - type: nauc_ndcg_at_5_max value: 37.788199999999996 - type: nauc_ndcg_at_5_std value: 7.0073 - type: nauc_ndcg_at_5_diff1 value: 44.3577 - type: nauc_ndcg_at_10_max value: 37.674 - type: nauc_ndcg_at_10_std value: 7.954700000000001 - type: nauc_ndcg_at_10_diff1 value: 43.6869 - type: nauc_ndcg_at_20_max value: 37.4368 - type: nauc_ndcg_at_20_std value: 8.4592 - type: nauc_ndcg_at_20_diff1 value: 43.3112 - type: nauc_ndcg_at_100_max value: 37.5955 - type: nauc_ndcg_at_100_std value: 9.5313 - type: nauc_ndcg_at_100_diff1 value: 42.9187 - type: nauc_ndcg_at_1000_max value: 37.8056 - type: nauc_ndcg_at_1000_std value: 9.7477 - type: nauc_ndcg_at_1000_diff1 value: 43.3862 - type: nauc_map_at_1_max value: 38.358799999999995 - type: nauc_map_at_1_std value: 4.3283000000000005 - type: nauc_map_at_1_diff1 value: 53.33520000000001 - type: nauc_map_at_3_max value: 38.1738 - type: nauc_map_at_3_std value: 5.6814 - type: nauc_map_at_3_diff1 value: 47.229 - type: nauc_map_at_5_max value: 38.005100000000006 - type: nauc_map_at_5_std value: 6.1966 - type: nauc_map_at_5_diff1 value: 46.559200000000004 - type: nauc_map_at_10_max value: 37.9741 - type: nauc_map_at_10_std value: 6.5971 - type: nauc_map_at_10_diff1 value: 46.285 - type: nauc_map_at_20_max value: 37.9009 - type: nauc_map_at_20_std value: 6.7273 - type: nauc_map_at_20_diff1 value: 46.1825 - type: nauc_map_at_100_max value: 37.9135 - type: nauc_map_at_100_std value: 6.8602 - type: nauc_map_at_100_diff1 value: 46.1376 - type: nauc_map_at_1000_max value: 37.918 - type: nauc_map_at_1000_std value: 6.8636 - type: nauc_map_at_1000_diff1 value: 46.1515 - type: nauc_recall_at_1_max value: 38.358799999999995 - type: nauc_recall_at_1_std value: 4.3283000000000005 - type: nauc_recall_at_1_diff1 value: 53.33520000000001 - type: nauc_recall_at_3_max value: 37.7993 - type: nauc_recall_at_3_std value: 7.1854000000000005 - type: nauc_recall_at_3_diff1 value: 40.8217 - type: nauc_recall_at_5_max value: 37.1564 - type: nauc_recall_at_5_std value: 9.3324 - type: nauc_recall_at_5_diff1 value: 38.2991 - type: nauc_recall_at_10_max value: 36.721399999999996 - type: nauc_recall_at_10_std value: 12.1836 - type: nauc_recall_at_10_diff1 value: 36.1617 - type: nauc_recall_at_20_max value: 35.7969 - type: nauc_recall_at_20_std value: 14.4368 - type: nauc_recall_at_20_diff1 value: 34.3383 - type: nauc_recall_at_100_max value: 36.6044 - type: nauc_recall_at_100_std value: 23.055500000000002 - type: nauc_recall_at_100_diff1 value: 29.555500000000002 - type: nauc_recall_at_1000_max value: 39.7315 - type: nauc_recall_at_1000_std value: 38.601600000000005 - type: nauc_recall_at_1000_diff1 value: 26.7047 - type: nauc_precision_at_1_max value: 38.358799999999995 - type: nauc_precision_at_1_std value: 4.3283000000000005 - type: nauc_precision_at_1_diff1 value: 53.33520000000001 - type: nauc_precision_at_3_max value: 37.7993 - type: nauc_precision_at_3_std value: 7.1854000000000005 - type: nauc_precision_at_3_diff1 value: 40.8217 - type: nauc_precision_at_5_max value: 37.1564 - type: nauc_precision_at_5_std value: 9.3324 - type: nauc_precision_at_5_diff1 value: 38.2991 - type: nauc_precision_at_10_max value: 36.721399999999996 - type: nauc_precision_at_10_std value: 12.1836 - type: nauc_precision_at_10_diff1 value: 36.1617 - type: nauc_precision_at_20_max value: 35.7969 - type: nauc_precision_at_20_std value: 14.4368 - type: nauc_precision_at_20_diff1 value: 34.3383 - type: nauc_precision_at_100_max value: 36.6044 - type: nauc_precision_at_100_std value: 23.055500000000002 - type: nauc_precision_at_100_diff1 value: 29.555500000000002 - type: nauc_precision_at_1000_max value: 39.7315 - type: nauc_precision_at_1000_std value: 38.601600000000005 - type: nauc_precision_at_1000_diff1 value: 26.7047 - type: nauc_mrr_at_1_max value: 38.3753 - type: nauc_mrr_at_1_std value: 4.3651 - type: nauc_mrr_at_1_diff1 value: 53.3935 - type: nauc_mrr_at_3_max value: 38.183299999999996 - type: nauc_mrr_at_3_std value: 5.7071 - type: nauc_mrr_at_3_diff1 value: 47.2578 - type: nauc_mrr_at_5_max value: 38.0161 - type: nauc_mrr_at_5_std value: 6.2222 - type: nauc_mrr_at_5_diff1 value: 46.5907 - type: nauc_mrr_at_10_max value: 37.9882 - type: nauc_mrr_at_10_std value: 6.6221000000000005 - type: nauc_mrr_at_10_diff1 value: 46.3178 - type: nauc_mrr_at_20_max value: 37.912 - type: nauc_mrr_at_20_std value: 6.752700000000001 - type: nauc_mrr_at_20_diff1 value: 46.2141 - type: nauc_mrr_at_100_max value: 37.9247 - type: nauc_mrr_at_100_std value: 6.8857 - type: nauc_mrr_at_100_diff1 value: 46.169399999999996 - type: nauc_mrr_at_1000_max value: 37.9292 - type: nauc_mrr_at_1000_std value: 6.889099999999999 - type: nauc_mrr_at_1000_diff1 value: 46.1833 - type: main_score value: 36.086 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackAndroidRetrieval (default) revision: f46a197baaae43b4f621051089b82a364682dfeb split: test type: mteb/cqadupstack-android metrics: - type: ndcg_at_1 value: 41.059 - type: ndcg_at_3 value: 45.091 - type: ndcg_at_5 value: 47.754000000000005 - type: ndcg_at_10 value: 50.403 - type: ndcg_at_20 value: 52.629999999999995 - type: ndcg_at_100 value: 55.669999999999995 - type: ndcg_at_1000 value: 57.645 - type: map_at_1 value: 33.304 - type: map_at_3 value: 40.428999999999995 - type: map_at_5 value: 42.638999999999996 - type: map_at_10 value: 44.239 - type: map_at_20 value: 45.144 - type: map_at_100 value: 45.783 - type: map_at_1000 value: 45.911 - type: recall_at_1 value: 33.304 - type: recall_at_3 value: 46.509 - type: recall_at_5 value: 53.849999999999994 - type: recall_at_10 value: 61.694 - type: recall_at_20 value: 69.708 - type: recall_at_100 value: 83.314 - type: recall_at_1000 value: 95.955 - type: precision_at_1 value: 41.059 - type: precision_at_3 value: 21.316 - type: precision_at_5 value: 15.651000000000002 - type: precision_at_10 value: 9.642000000000001 - type: precision_at_20 value: 5.744 - type: precision_at_100 value: 1.538 - type: precision_at_1000 value: 0.20500000000000002 - type: mrr_at_1 value: 41.058699999999995 - type: mrr_at_3 value: 47.258 - type: mrr_at_5 value: 49.082 - type: mrr_at_10 value: 50.0836 - type: mrr_at_20 value: 50.5221 - type: mrr_at_100 value: 50.8217 - type: mrr_at_1000 value: 50.8713 - type: nauc_ndcg_at_1_max value: 40.6525 - type: nauc_ndcg_at_1_std value: -9.376 - type: nauc_ndcg_at_1_diff1 value: 50.0125 - type: nauc_ndcg_at_3_max value: 40.9809 - type: nauc_ndcg_at_3_std value: -7.1297 - type: nauc_ndcg_at_3_diff1 value: 47.0051 - type: nauc_ndcg_at_5_max value: 40.037800000000004 - type: nauc_ndcg_at_5_std value: -4.3972999999999995 - type: nauc_ndcg_at_5_diff1 value: 45.8909 - type: nauc_ndcg_at_10_max value: 39.939400000000006 - type: nauc_ndcg_at_10_std value: -4.5747 - type: nauc_ndcg_at_10_diff1 value: 45.0088 - type: nauc_ndcg_at_20_max value: 40.144999999999996 - type: nauc_ndcg_at_20_std value: -4.2649 - type: nauc_ndcg_at_20_diff1 value: 45.6565 - type: nauc_ndcg_at_100_max value: 41.2015 - type: nauc_ndcg_at_100_std value: -3.0772 - type: nauc_ndcg_at_100_diff1 value: 45.8564 - type: nauc_ndcg_at_1000_max value: 41.2273 - type: nauc_ndcg_at_1000_std value: -3.8580000000000005 - type: nauc_ndcg_at_1000_diff1 value: 46.0075 - type: nauc_map_at_1_max value: 33.681400000000004 - type: nauc_map_at_1_std value: -10.792499999999999 - type: nauc_map_at_1_diff1 value: 51.6292 - type: nauc_map_at_3_max value: 38.5132 - type: nauc_map_at_3_std value: -9.085899999999999 - type: nauc_map_at_3_diff1 value: 48.516 - type: nauc_map_at_5_max value: 38.7849 - type: nauc_map_at_5_std value: -7.2336 - type: nauc_map_at_5_diff1 value: 47.9868 - type: nauc_map_at_10_max value: 39.3231 - type: nauc_map_at_10_std value: -7.1676 - type: nauc_map_at_10_diff1 value: 47.446 - type: nauc_map_at_20_max value: 39.589 - type: nauc_map_at_20_std value: -6.8943 - type: nauc_map_at_20_diff1 value: 47.4397 - type: nauc_map_at_100_max value: 39.875 - type: nauc_map_at_100_std value: -6.549199999999999 - type: nauc_map_at_100_diff1 value: 47.4459 - type: nauc_map_at_1000_max value: 39.8847 - type: nauc_map_at_1000_std value: -6.5965 - type: nauc_map_at_1000_diff1 value: 47.4298 - type: nauc_recall_at_1_max value: 33.681400000000004 - type: nauc_recall_at_1_std value: -10.792499999999999 - type: nauc_recall_at_1_diff1 value: 51.6292 - type: nauc_recall_at_3_max value: 37.3654 - type: nauc_recall_at_3_std value: -6.1476999999999995 - type: nauc_recall_at_3_diff1 value: 43.147400000000005 - type: nauc_recall_at_5_max value: 35.3328 - type: nauc_recall_at_5_std value: 1.0517 - type: nauc_recall_at_5_diff1 value: 39.7709 - type: nauc_recall_at_10_max value: 34.6109 - type: nauc_recall_at_10_std value: 1.5653000000000001 - type: nauc_recall_at_10_diff1 value: 35.5858 - type: nauc_recall_at_20_max value: 34.2941 - type: nauc_recall_at_20_std value: 3.9570000000000003 - type: nauc_recall_at_20_diff1 value: 36.910199999999996 - type: nauc_recall_at_100_max value: 41.6344 - type: nauc_recall_at_100_std value: 18.614 - type: nauc_recall_at_100_diff1 value: 35.9742 - type: nauc_recall_at_1000_max value: 53.67960000000001 - type: nauc_recall_at_1000_std value: 46.8911 - type: nauc_recall_at_1000_diff1 value: 35.167500000000004 - type: nauc_precision_at_1_max value: 40.6525 - type: nauc_precision_at_1_std value: -9.376 - type: nauc_precision_at_1_diff1 value: 50.0125 - type: nauc_precision_at_3_max value: 40.7269 - type: nauc_precision_at_3_std value: -1.2473 - type: nauc_precision_at_3_diff1 value: 31.521500000000003 - type: nauc_precision_at_5_max value: 34.9193 - type: nauc_precision_at_5_std value: 6.758699999999999 - type: nauc_precision_at_5_diff1 value: 20.958399999999997 - type: nauc_precision_at_10_max value: 29.1675 - type: nauc_precision_at_10_std value: 8.4146 - type: nauc_precision_at_10_diff1 value: 9.517000000000001 - type: nauc_precision_at_20_max value: 23.0603 - type: nauc_precision_at_20_std value: 9.5615 - type: nauc_precision_at_20_diff1 value: 3.3520000000000003 - type: nauc_precision_at_100_max value: 10.3906 - type: nauc_precision_at_100_std value: 8.8378 - type: nauc_precision_at_100_diff1 value: -8.2594 - type: nauc_precision_at_1000_max value: -4.7287 - type: nauc_precision_at_1000_std value: -2.5721000000000003 - type: nauc_precision_at_1000_diff1 value: -19.5341 - type: nauc_mrr_at_1_max value: 40.6525 - type: nauc_mrr_at_1_std value: -9.376 - type: nauc_mrr_at_1_diff1 value: 50.0125 - type: nauc_mrr_at_3_max value: 42.4409 - type: nauc_mrr_at_3_std value: -7.4642 - type: nauc_mrr_at_3_diff1 value: 47.773199999999996 - type: nauc_mrr_at_5_max value: 41.8687 - type: nauc_mrr_at_5_std value: -6.0165999999999995 - type: nauc_mrr_at_5_diff1 value: 46.929500000000004 - type: nauc_mrr_at_10_max value: 41.6607 - type: nauc_mrr_at_10_std value: -5.8776 - type: nauc_mrr_at_10_diff1 value: 46.5117 - type: nauc_mrr_at_20_max value: 41.6088 - type: nauc_mrr_at_20_std value: -6.0403 - type: nauc_mrr_at_20_diff1 value: 46.7355 - type: nauc_mrr_at_100_max value: 41.6881 - type: nauc_mrr_at_100_std value: -6.0445 - type: nauc_mrr_at_100_diff1 value: 46.7504 - type: nauc_mrr_at_1000_max value: 41.6981 - type: nauc_mrr_at_1000_std value: -6.0584 - type: nauc_mrr_at_1000_diff1 value: 46.7686 - type: main_score value: 50.403 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackEnglishRetrieval (default) revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 split: test type: mteb/cqadupstack-english metrics: - type: ndcg_at_1 value: 32.293 - type: ndcg_at_3 value: 35.357 - type: ndcg_at_5 value: 37.135 - type: ndcg_at_10 value: 39.682 - type: ndcg_at_20 value: 41.477000000000004 - type: ndcg_at_100 value: 44.594 - type: ndcg_at_1000 value: 46.938 - type: map_at_1 value: 25.084 - type: map_at_3 value: 31.134 - type: map_at_5 value: 32.693 - type: map_at_10 value: 34.072 - type: map_at_20 value: 34.719 - type: map_at_100 value: 35.327999999999996 - type: map_at_1000 value: 35.461 - type: recall_at_1 value: 25.084 - type: recall_at_3 value: 36.678 - type: recall_at_5 value: 41.839999999999996 - type: recall_at_10 value: 49.782 - type: recall_at_20 value: 56.442 - type: recall_at_100 value: 71.114 - type: recall_at_1000 value: 86.372 - type: precision_at_1 value: 32.293 - type: precision_at_3 value: 17.452 - type: precision_at_5 value: 12.446 - type: precision_at_10 value: 7.758 - type: precision_at_20 value: 4.634 - type: precision_at_100 value: 1.324 - type: precision_at_1000 value: 0.184 - type: mrr_at_1 value: 32.293 - type: mrr_at_3 value: 37.8344 - type: mrr_at_5 value: 39.0223 - type: mrr_at_10 value: 40.1805 - type: mrr_at_20 value: 40.6083 - type: mrr_at_100 value: 40.928799999999995 - type: mrr_at_1000 value: 40.9754 - type: nauc_ndcg_at_1_max value: 45.3161 - type: nauc_ndcg_at_1_std value: 4.444 - type: nauc_ndcg_at_1_diff1 value: 46.0858 - type: nauc_ndcg_at_3_max value: 46.1152 - type: nauc_ndcg_at_3_std value: 3.2603 - type: nauc_ndcg_at_3_diff1 value: 42.6324 - type: nauc_ndcg_at_5_max value: 46.3649 - type: nauc_ndcg_at_5_std value: 2.5442 - type: nauc_ndcg_at_5_diff1 value: 42.9534 - type: nauc_ndcg_at_10_max value: 45.9638 - type: nauc_ndcg_at_10_std value: 3.849 - type: nauc_ndcg_at_10_diff1 value: 42.3058 - type: nauc_ndcg_at_20_max value: 45.6402 - type: nauc_ndcg_at_20_std value: 4.6758 - type: nauc_ndcg_at_20_diff1 value: 41.8551 - type: nauc_ndcg_at_100_max value: 45.7963 - type: nauc_ndcg_at_100_std value: 6.154599999999999 - type: nauc_ndcg_at_100_diff1 value: 41.1414 - type: nauc_ndcg_at_1000_max value: 45.9794 - type: nauc_ndcg_at_1000_std value: 6.9567000000000005 - type: nauc_ndcg_at_1000_diff1 value: 40.8964 - type: nauc_map_at_1_max value: 40.1856 - type: nauc_map_at_1_std value: -4.0307 - type: nauc_map_at_1_diff1 value: 49.675999999999995 - type: nauc_map_at_3_max value: 43.8311 - type: nauc_map_at_3_std value: -1.2912 - type: nauc_map_at_3_diff1 value: 45.9441 - type: nauc_map_at_5_max value: 44.818400000000004 - type: nauc_map_at_5_std value: -0.7452000000000001 - type: nauc_map_at_5_diff1 value: 45.6591 - type: nauc_map_at_10_max value: 44.9988 - type: nauc_map_at_10_std value: 0.41960000000000003 - type: nauc_map_at_10_diff1 value: 45.1582 - type: nauc_map_at_20_max value: 45.0395 - type: nauc_map_at_20_std value: 0.9468000000000001 - type: nauc_map_at_20_diff1 value: 44.890600000000006 - type: nauc_map_at_100_max value: 45.311 - type: nauc_map_at_100_std value: 1.5421 - type: nauc_map_at_100_diff1 value: 44.7203 - type: nauc_map_at_1000_max value: 45.364399999999996 - type: nauc_map_at_1000_std value: 1.6643000000000001 - type: nauc_map_at_1000_diff1 value: 44.6926 - type: nauc_recall_at_1_max value: 40.1856 - type: nauc_recall_at_1_std value: -4.0307 - type: nauc_recall_at_1_diff1 value: 49.675999999999995 - type: nauc_recall_at_3_max value: 43.0698 - type: nauc_recall_at_3_std value: 0.4071 - type: nauc_recall_at_3_diff1 value: 39.6364 - type: nauc_recall_at_5_max value: 44.056200000000004 - type: nauc_recall_at_5_std value: 0.6597000000000001 - type: nauc_recall_at_5_diff1 value: 38.5431 - type: nauc_recall_at_10_max value: 42.5643 - type: nauc_recall_at_10_std value: 5.446899999999999 - type: nauc_recall_at_10_diff1 value: 35.3363 - type: nauc_recall_at_20_max value: 40.9176 - type: nauc_recall_at_20_std value: 8.6434 - type: nauc_recall_at_20_diff1 value: 33.0525 - type: nauc_recall_at_100_max value: 41.2899 - type: nauc_recall_at_100_std value: 17.3979 - type: nauc_recall_at_100_diff1 value: 28.0707 - type: nauc_recall_at_1000_max value: 43.2786 - type: nauc_recall_at_1000_std value: 33.6676 - type: nauc_recall_at_1000_diff1 value: 19.6489 - type: nauc_precision_at_1_max value: 45.3161 - type: nauc_precision_at_1_std value: 4.444 - type: nauc_precision_at_1_diff1 value: 46.0858 - type: nauc_precision_at_3_max value: 45.937400000000004 - type: nauc_precision_at_3_std value: 13.606599999999998 - type: nauc_precision_at_3_diff1 value: 28.8887 - type: nauc_precision_at_5_max value: 43.6409 - type: nauc_precision_at_5_std value: 15.3222 - type: nauc_precision_at_5_diff1 value: 23.5428 - type: nauc_precision_at_10_max value: 38.8973 - type: nauc_precision_at_10_std value: 21.049300000000002 - type: nauc_precision_at_10_diff1 value: 15.912200000000002 - type: nauc_precision_at_20_max value: 33.1485 - type: nauc_precision_at_20_std value: 26.1451 - type: nauc_precision_at_20_diff1 value: 7.7276 - type: nauc_precision_at_100_max value: 24.1577 - type: nauc_precision_at_100_std value: 31.4656 - type: nauc_precision_at_100_diff1 value: -4.0066999999999995 - type: nauc_precision_at_1000_max value: 12.3639 - type: nauc_precision_at_1000_std value: 28.9285 - type: nauc_precision_at_1000_diff1 value: -11.7577 - type: nauc_mrr_at_1_max value: 45.3161 - type: nauc_mrr_at_1_std value: 4.444 - type: nauc_mrr_at_1_diff1 value: 46.0858 - type: nauc_mrr_at_3_max value: 45.9129 - type: nauc_mrr_at_3_std value: 5.743 - type: nauc_mrr_at_3_diff1 value: 41.6507 - type: nauc_mrr_at_5_max value: 45.8273 - type: nauc_mrr_at_5_std value: 5.57 - type: nauc_mrr_at_5_diff1 value: 41.531400000000005 - type: nauc_mrr_at_10_max value: 45.8144 - type: nauc_mrr_at_10_std value: 6.263000000000001 - type: nauc_mrr_at_10_diff1 value: 41.2348 - type: nauc_mrr_at_20_max value: 45.7975 - type: nauc_mrr_at_20_std value: 6.392200000000001 - type: nauc_mrr_at_20_diff1 value: 41.259499999999996 - type: nauc_mrr_at_100_max value: 45.7286 - type: nauc_mrr_at_100_std value: 6.456099999999999 - type: nauc_mrr_at_100_diff1 value: 41.185100000000006 - type: nauc_mrr_at_1000_max value: 45.7325 - type: nauc_mrr_at_1000_std value: 6.4614 - type: nauc_mrr_at_1000_diff1 value: 41.188 - type: main_score value: 39.682 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackGamingRetrieval (default) revision: 4885aa143210c98657558c04aaf3dc47cfb54340 split: test type: mteb/cqadupstack-gaming metrics: - type: ndcg_at_1 value: 41.379 - type: ndcg_at_3 value: 48.789 - type: ndcg_at_5 value: 51.535 - type: ndcg_at_10 value: 53.654999999999994 - type: ndcg_at_20 value: 55.559999999999995 - type: ndcg_at_100 value: 57.911 - type: ndcg_at_1000 value: 59.275 - type: map_at_1 value: 36.224000000000004 - type: map_at_3 value: 45.190999999999995 - type: map_at_5 value: 47.012 - type: map_at_10 value: 48.141 - type: map_at_20 value: 48.802 - type: map_at_100 value: 49.214 - type: map_at_1000 value: 49.278 - type: recall_at_1 value: 36.224000000000004 - type: recall_at_3 value: 53.513 - type: recall_at_5 value: 60.221000000000004 - type: recall_at_10 value: 66.346 - type: recall_at_20 value: 73.359 - type: recall_at_100 value: 84.77 - type: recall_at_1000 value: 94.547 - type: precision_at_1 value: 41.379 - type: precision_at_3 value: 21.902 - type: precision_at_5 value: 15.197 - type: precision_at_10 value: 8.639 - type: precision_at_20 value: 4.887 - type: precision_at_100 value: 1.164 - type: precision_at_1000 value: 0.133 - type: mrr_at_1 value: 41.3793 - type: mrr_at_3 value: 49.0282 - type: mrr_at_5 value: 50.7022 - type: mrr_at_10 value: 51.462399999999995 - type: mrr_at_20 value: 51.9372 - type: mrr_at_100 value: 52.1984 - type: mrr_at_1000 value: 52.2374 - type: nauc_ndcg_at_1_max value: 45.521499999999996 - type: nauc_ndcg_at_1_std value: -3.2632000000000003 - type: nauc_ndcg_at_1_diff1 value: 55.017799999999994 - type: nauc_ndcg_at_3_max value: 43.343399999999995 - type: nauc_ndcg_at_3_std value: -4.4684 - type: nauc_ndcg_at_3_diff1 value: 49.7562 - type: nauc_ndcg_at_5_max value: 44.034600000000005 - type: nauc_ndcg_at_5_std value: -2.8813 - type: nauc_ndcg_at_5_diff1 value: 48.7767 - type: nauc_ndcg_at_10_max value: 45.0674 - type: nauc_ndcg_at_10_std value: -1.332 - type: nauc_ndcg_at_10_diff1 value: 48.448600000000006 - type: nauc_ndcg_at_20_max value: 45.6717 - type: nauc_ndcg_at_20_std value: 0.0107 - type: nauc_ndcg_at_20_diff1 value: 48.6492 - type: nauc_ndcg_at_100_max value: 45.974 - type: nauc_ndcg_at_100_std value: 1.1665999999999999 - type: nauc_ndcg_at_100_diff1 value: 48.9852 - type: nauc_ndcg_at_1000_max value: 46.0653 - type: nauc_ndcg_at_1000_std value: 0.7539 - type: nauc_ndcg_at_1000_diff1 value: 49.453399999999995 - type: nauc_map_at_1_max value: 39.5162 - type: nauc_map_at_1_std value: -4.4784 - type: nauc_map_at_1_diff1 value: 54.076 - type: nauc_map_at_3_max value: 42.022999999999996 - type: nauc_map_at_3_std value: -5.5131 - type: nauc_map_at_3_diff1 value: 50.727199999999996 - type: nauc_map_at_5_max value: 42.700700000000005 - type: nauc_map_at_5_std value: -4.3487 - type: nauc_map_at_5_diff1 value: 50.058499999999995 - type: nauc_map_at_10_max value: 43.4533 - type: nauc_map_at_10_std value: -3.3632000000000004 - type: nauc_map_at_10_diff1 value: 49.8247 - type: nauc_map_at_20_max value: 43.7821 - type: nauc_map_at_20_std value: -2.8057 - type: nauc_map_at_20_diff1 value: 49.8795 - type: nauc_map_at_100_max value: 43.9125 - type: nauc_map_at_100_std value: -2.5162 - type: nauc_map_at_100_diff1 value: 49.9437 - type: nauc_map_at_1000_max value: 43.9371 - type: nauc_map_at_1000_std value: -2.5118 - type: nauc_map_at_1000_diff1 value: 49.973600000000005 - type: nauc_recall_at_1_max value: 39.5162 - type: nauc_recall_at_1_std value: -4.4784 - type: nauc_recall_at_1_diff1 value: 54.076 - type: nauc_recall_at_3_max value: 40.1719 - type: nauc_recall_at_3_std value: -5.8908000000000005 - type: nauc_recall_at_3_diff1 value: 46.1075 - type: nauc_recall_at_5_max value: 41.3221 - type: nauc_recall_at_5_std value: -1.7418 - type: nauc_recall_at_5_diff1 value: 42.4571 - type: nauc_recall_at_10_max value: 44.1382 - type: nauc_recall_at_10_std value: 3.0869 - type: nauc_recall_at_10_diff1 value: 40.6674 - type: nauc_recall_at_20_max value: 47.0264 - type: nauc_recall_at_20_std value: 10.7409 - type: nauc_recall_at_20_diff1 value: 39.8838 - type: nauc_recall_at_100_max value: 49.660700000000006 - type: nauc_recall_at_100_std value: 26.1413 - type: nauc_recall_at_100_diff1 value: 38.1192 - type: nauc_recall_at_1000_max value: 58.9341 - type: nauc_recall_at_1000_std value: 47.4146 - type: nauc_recall_at_1000_diff1 value: 39.7378 - type: nauc_precision_at_1_max value: 45.521499999999996 - type: nauc_precision_at_1_std value: -3.2632000000000003 - type: nauc_precision_at_1_diff1 value: 55.017799999999994 - type: nauc_precision_at_3_max value: 41.9576 - type: nauc_precision_at_3_std value: 0.3431 - type: nauc_precision_at_3_diff1 value: 33.5013 - type: nauc_precision_at_5_max value: 41.024 - type: nauc_precision_at_5_std value: 6.962400000000001 - type: nauc_precision_at_5_diff1 value: 26.0905 - type: nauc_precision_at_10_max value: 38.4505 - type: nauc_precision_at_10_std value: 13.459 - type: nauc_precision_at_10_diff1 value: 18.2984 - type: nauc_precision_at_20_max value: 35.6898 - type: nauc_precision_at_20_std value: 19.7287 - type: nauc_precision_at_20_diff1 value: 12.3455 - type: nauc_precision_at_100_max value: 29.284 - type: nauc_precision_at_100_std value: 26.509100000000004 - type: nauc_precision_at_100_diff1 value: 4.118200000000001 - type: nauc_precision_at_1000_max value: 22.5188 - type: nauc_precision_at_1000_std value: 26.6978 - type: nauc_precision_at_1000_diff1 value: -2.4383 - type: nauc_mrr_at_1_max value: 45.521499999999996 - type: nauc_mrr_at_1_std value: -3.2632000000000003 - type: nauc_mrr_at_1_diff1 value: 55.017799999999994 - type: nauc_mrr_at_3_max value: 45.2583 - type: nauc_mrr_at_3_std value: -4.0796 - type: nauc_mrr_at_3_diff1 value: 51.3842 - type: nauc_mrr_at_5_max value: 45.683099999999996 - type: nauc_mrr_at_5_std value: -3.0403 - type: nauc_mrr_at_5_diff1 value: 50.928 - type: nauc_mrr_at_10_max value: 46.0254 - type: nauc_mrr_at_10_std value: -2.5618 - type: nauc_mrr_at_10_diff1 value: 50.9016 - type: nauc_mrr_at_20_max value: 46.1397 - type: nauc_mrr_at_20_std value: -2.2378 - type: nauc_mrr_at_20_diff1 value: 50.983900000000006 - type: nauc_mrr_at_100_max value: 46.0813 - type: nauc_mrr_at_100_std value: -2.1819 - type: nauc_mrr_at_100_diff1 value: 50.9924 - type: nauc_mrr_at_1000_max value: 46.075700000000005 - type: nauc_mrr_at_1000_std value: -2.2086 - type: nauc_mrr_at_1000_diff1 value: 51.004400000000004 - type: main_score value: 53.654999999999994 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackGisRetrieval (default) revision: 5003b3064772da1887988e05400cf3806fe491f2 split: test type: mteb/cqadupstack-gis metrics: - type: ndcg_at_1 value: 28.701 - type: ndcg_at_3 value: 35.095 - type: ndcg_at_5 value: 37.533 - type: ndcg_at_10 value: 40.224 - type: ndcg_at_20 value: 41.818 - type: ndcg_at_100 value: 44.651999999999994 - type: ndcg_at_1000 value: 47.05 - type: map_at_1 value: 26.251 - type: map_at_3 value: 32.49 - type: map_at_5 value: 33.931 - type: map_at_10 value: 35.154 - type: map_at_20 value: 35.641 - type: map_at_100 value: 36.032 - type: map_at_1000 value: 36.132 - type: recall_at_1 value: 26.251 - type: recall_at_3 value: 39.76 - type: recall_at_5 value: 45.739999999999995 - type: recall_at_10 value: 53.698 - type: recall_at_20 value: 59.48 - type: recall_at_100 value: 74.298 - type: recall_at_1000 value: 92.06299999999999 - type: precision_at_1 value: 28.701 - type: precision_at_3 value: 14.953 - type: precision_at_5 value: 10.328 - type: precision_at_10 value: 6.158 - type: precision_at_20 value: 3.469 - type: precision_at_100 value: 0.886 - type: precision_at_1000 value: 0.11199999999999999 - type: mrr_at_1 value: 28.700599999999998 - type: mrr_at_3 value: 34.9906 - type: mrr_at_5 value: 36.3917 - type: mrr_at_10 value: 37.4735 - type: mrr_at_20 value: 37.896 - type: mrr_at_100 value: 38.229600000000005 - type: mrr_at_1000 value: 38.3107 - type: nauc_ndcg_at_1_max value: 35.5663 - type: nauc_ndcg_at_1_std value: -11.130700000000001 - type: nauc_ndcg_at_1_diff1 value: 47.2971 - type: nauc_ndcg_at_3_max value: 33.591300000000004 - type: nauc_ndcg_at_3_std value: -8.8712 - type: nauc_ndcg_at_3_diff1 value: 43.9366 - type: nauc_ndcg_at_5_max value: 32.8546 - type: nauc_ndcg_at_5_std value: -7.764799999999999 - type: nauc_ndcg_at_5_diff1 value: 42.896699999999996 - type: nauc_ndcg_at_10_max value: 33.8862 - type: nauc_ndcg_at_10_std value: -5.8975 - type: nauc_ndcg_at_10_diff1 value: 42.0493 - type: nauc_ndcg_at_20_max value: 34.4891 - type: nauc_ndcg_at_20_std value: -4.7832 - type: nauc_ndcg_at_20_diff1 value: 41.857499999999995 - type: nauc_ndcg_at_100_max value: 34.2737 - type: nauc_ndcg_at_100_std value: -4.8904000000000005 - type: nauc_ndcg_at_100_diff1 value: 41.3476 - type: nauc_ndcg_at_1000_max value: 34.031800000000004 - type: nauc_ndcg_at_1000_std value: -5.5376 - type: nauc_ndcg_at_1000_diff1 value: 41.8603 - type: nauc_map_at_1_max value: 33.128299999999996 - type: nauc_map_at_1_std value: -12.1157 - type: nauc_map_at_1_diff1 value: 49.8448 - type: nauc_map_at_3_max value: 33.283699999999996 - type: nauc_map_at_3_std value: -9.7518 - type: nauc_map_at_3_diff1 value: 45.4875 - type: nauc_map_at_5_max value: 32.9355 - type: nauc_map_at_5_std value: -9.1755 - type: nauc_map_at_5_diff1 value: 44.8675 - type: nauc_map_at_10_max value: 33.5532 - type: nauc_map_at_10_std value: -8.3763 - type: nauc_map_at_10_diff1 value: 44.670700000000004 - type: nauc_map_at_20_max value: 33.8065 - type: nauc_map_at_20_std value: -8.0253 - type: nauc_map_at_20_diff1 value: 44.5987 - type: nauc_map_at_100_max value: 33.7647 - type: nauc_map_at_100_std value: -8.0399 - type: nauc_map_at_100_diff1 value: 44.5212 - type: nauc_map_at_1000_max value: 33.752700000000004 - type: nauc_map_at_1000_std value: -8.0557 - type: nauc_map_at_1000_diff1 value: 44.5285 - type: nauc_recall_at_1_max value: 33.128299999999996 - type: nauc_recall_at_1_std value: -12.1157 - type: nauc_recall_at_1_diff1 value: 49.8448 - type: nauc_recall_at_3_max value: 31.5403 - type: nauc_recall_at_3_std value: -6.862699999999999 - type: nauc_recall_at_3_diff1 value: 40.4438 - type: nauc_recall_at_5_max value: 29.549300000000002 - type: nauc_recall_at_5_std value: -4.8186 - type: nauc_recall_at_5_diff1 value: 37.7652 - type: nauc_recall_at_10_max value: 32.0106 - type: nauc_recall_at_10_std value: 1.1384999999999998 - type: nauc_recall_at_10_diff1 value: 34.4037 - type: nauc_recall_at_20_max value: 34.1547 - type: nauc_recall_at_20_std value: 6.0514 - type: nauc_recall_at_20_diff1 value: 33.4793 - type: nauc_recall_at_100_max value: 32.610099999999996 - type: nauc_recall_at_100_std value: 9.046899999999999 - type: nauc_recall_at_100_diff1 value: 27.256999999999998 - type: nauc_recall_at_1000_max value: 26.3079 - type: nauc_recall_at_1000_std value: 16.963900000000002 - type: nauc_recall_at_1000_diff1 value: 22.1857 - type: nauc_precision_at_1_max value: 35.5663 - type: nauc_precision_at_1_std value: -11.130700000000001 - type: nauc_precision_at_1_diff1 value: 47.2971 - type: nauc_precision_at_3_max value: 34.8919 - type: nauc_precision_at_3_std value: -4.6598 - type: nauc_precision_at_3_diff1 value: 36.1773 - type: nauc_precision_at_5_max value: 32.9054 - type: nauc_precision_at_5_std value: -2.0126999999999997 - type: nauc_precision_at_5_diff1 value: 32.6994 - type: nauc_precision_at_10_max value: 33.683600000000006 - type: nauc_precision_at_10_std value: 3.2531999999999996 - type: nauc_precision_at_10_diff1 value: 28.099800000000002 - type: nauc_precision_at_20_max value: 33.7297 - type: nauc_precision_at_20_std value: 7.0116 - type: nauc_precision_at_20_diff1 value: 23.663999999999998 - type: nauc_precision_at_100_max value: 26.119300000000003 - type: nauc_precision_at_100_std value: 7.8559 - type: nauc_precision_at_100_diff1 value: 9.9931 - type: nauc_precision_at_1000_max value: 11.0973 - type: nauc_precision_at_1000_std value: 4.6916 - type: nauc_precision_at_1000_diff1 value: -6.2033 - type: nauc_mrr_at_1_max value: 35.5663 - type: nauc_mrr_at_1_std value: -11.130700000000001 - type: nauc_mrr_at_1_diff1 value: 47.2971 - type: nauc_mrr_at_3_max value: 35.0322 - type: nauc_mrr_at_3_std value: -8.6242 - type: nauc_mrr_at_3_diff1 value: 43.435 - type: nauc_mrr_at_5_max value: 34.796899999999994 - type: nauc_mrr_at_5_std value: -8.1215 - type: nauc_mrr_at_5_diff1 value: 42.9234 - type: nauc_mrr_at_10_max value: 35.0315 - type: nauc_mrr_at_10_std value: -7.4498 - type: nauc_mrr_at_10_diff1 value: 42.348 - type: nauc_mrr_at_20_max value: 35.0761 - type: nauc_mrr_at_20_std value: -7.246700000000001 - type: nauc_mrr_at_20_diff1 value: 42.3282 - type: nauc_mrr_at_100_max value: 35.0173 - type: nauc_mrr_at_100_std value: -7.269699999999999 - type: nauc_mrr_at_100_diff1 value: 42.306 - type: nauc_mrr_at_1000_max value: 35.015 - type: nauc_mrr_at_1000_std value: -7.2973 - type: nauc_mrr_at_1000_diff1 value: 42.3292 - type: main_score value: 40.224 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackMathematicaRetrieval (default) revision: 90fceea13679c63fe563ded68f3b6f06e50061de split: test type: mteb/cqadupstack-mathematica metrics: - type: ndcg_at_1 value: 20.398 - type: ndcg_at_3 value: 25.701 - type: ndcg_at_5 value: 27.503 - type: ndcg_at_10 value: 30.016 - type: ndcg_at_20 value: 31.941000000000003 - type: ndcg_at_100 value: 35.995 - type: ndcg_at_1000 value: 38.732 - type: map_at_1 value: 15.827 - type: map_at_3 value: 22.185 - type: map_at_5 value: 23.398 - type: map_at_10 value: 24.576 - type: map_at_20 value: 25.158 - type: map_at_100 value: 25.790000000000003 - type: map_at_1000 value: 25.906000000000002 - type: recall_at_1 value: 15.827 - type: recall_at_3 value: 29.404000000000003 - type: recall_at_5 value: 34.408 - type: recall_at_10 value: 41.802 - type: recall_at_20 value: 48.775 - type: recall_at_100 value: 68.643 - type: recall_at_1000 value: 88.022 - type: precision_at_1 value: 20.398 - type: precision_at_3 value: 12.769 - type: precision_at_5 value: 9.030000000000001 - type: precision_at_10 value: 5.684 - type: precision_at_20 value: 3.408 - type: precision_at_100 value: 1.004 - type: precision_at_1000 value: 0.13699999999999998 - type: mrr_at_1 value: 20.398 - type: mrr_at_3 value: 27.1144 - type: mrr_at_5 value: 28.4453 - type: mrr_at_10 value: 29.5935 - type: mrr_at_20 value: 30.0591 - type: mrr_at_100 value: 30.516399999999997 - type: mrr_at_1000 value: 30.5831 - type: nauc_ndcg_at_1_max value: 26.8727 - type: nauc_ndcg_at_1_std value: -2.0329 - type: nauc_ndcg_at_1_diff1 value: 28.792099999999998 - type: nauc_ndcg_at_3_max value: 29.210900000000002 - type: nauc_ndcg_at_3_std value: 1.357 - type: nauc_ndcg_at_3_diff1 value: 25.153399999999998 - type: nauc_ndcg_at_5_max value: 28.031499999999998 - type: nauc_ndcg_at_5_std value: 1.546 - type: nauc_ndcg_at_5_diff1 value: 23.6489 - type: nauc_ndcg_at_10_max value: 27.2909 - type: nauc_ndcg_at_10_std value: 1.8301 - type: nauc_ndcg_at_10_diff1 value: 21.7899 - type: nauc_ndcg_at_20_max value: 27.934900000000003 - type: nauc_ndcg_at_20_std value: 2.3472 - type: nauc_ndcg_at_20_diff1 value: 22.322 - type: nauc_ndcg_at_100_max value: 28.1958 - type: nauc_ndcg_at_100_std value: 3.5208000000000004 - type: nauc_ndcg_at_100_diff1 value: 23.156499999999998 - type: nauc_ndcg_at_1000_max value: 28.766000000000002 - type: nauc_ndcg_at_1000_std value: 3.4803 - type: nauc_ndcg_at_1000_diff1 value: 23.096600000000002 - type: nauc_map_at_1_max value: 26.271099999999997 - type: nauc_map_at_1_std value: -0.8499 - type: nauc_map_at_1_diff1 value: 32.0953 - type: nauc_map_at_3_max value: 28.1188 - type: nauc_map_at_3_std value: 0.42040000000000005 - type: nauc_map_at_3_diff1 value: 26.6573 - type: nauc_map_at_5_max value: 27.5138 - type: nauc_map_at_5_std value: 0.43010000000000004 - type: nauc_map_at_5_diff1 value: 25.6081 - type: nauc_map_at_10_max value: 27.313900000000004 - type: nauc_map_at_10_std value: 0.644 - type: nauc_map_at_10_diff1 value: 24.6459 - type: nauc_map_at_20_max value: 27.5519 - type: nauc_map_at_20_std value: 0.7802 - type: nauc_map_at_20_diff1 value: 24.7392 - type: nauc_map_at_100_max value: 27.717999999999996 - type: nauc_map_at_100_std value: 1.078 - type: nauc_map_at_100_diff1 value: 24.884500000000003 - type: nauc_map_at_1000_max value: 27.7366 - type: nauc_map_at_1000_std value: 1.0739 - type: nauc_map_at_1000_diff1 value: 24.9131 - type: nauc_recall_at_1_max value: 26.271099999999997 - type: nauc_recall_at_1_std value: -0.8499 - type: nauc_recall_at_1_diff1 value: 32.0953 - type: nauc_recall_at_3_max value: 28.034399999999998 - type: nauc_recall_at_3_std value: 2.7848 - type: nauc_recall_at_3_diff1 value: 21.845 - type: nauc_recall_at_5_max value: 25.510899999999996 - type: nauc_recall_at_5_std value: 3.2032 - type: nauc_recall_at_5_diff1 value: 18.1497 - type: nauc_recall_at_10_max value: 23.6985 - type: nauc_recall_at_10_std value: 4.2382 - type: nauc_recall_at_10_diff1 value: 13.4018 - type: nauc_recall_at_20_max value: 25.0105 - type: nauc_recall_at_20_std value: 6.2892 - type: nauc_recall_at_20_diff1 value: 14.6347 - type: nauc_recall_at_100_max value: 23.6484 - type: nauc_recall_at_100_std value: 12.826299999999998 - type: nauc_recall_at_100_diff1 value: 16.372999999999998 - type: nauc_recall_at_1000_max value: 34.1999 - type: nauc_recall_at_1000_std value: 26.1497 - type: nauc_recall_at_1000_diff1 value: 7.666199999999999 - type: nauc_precision_at_1_max value: 26.8727 - type: nauc_precision_at_1_std value: -2.0329 - type: nauc_precision_at_1_diff1 value: 28.792099999999998 - type: nauc_precision_at_3_max value: 31.689 - type: nauc_precision_at_3_std value: 4.5703000000000005 - type: nauc_precision_at_3_diff1 value: 20.0233 - type: nauc_precision_at_5_max value: 27.807 - type: nauc_precision_at_5_std value: 4.209899999999999 - type: nauc_precision_at_5_diff1 value: 15.3505 - type: nauc_precision_at_10_max value: 22.672800000000002 - type: nauc_precision_at_10_std value: 3.624 - type: nauc_precision_at_10_diff1 value: 8.4378 - type: nauc_precision_at_20_max value: 23.3401 - type: nauc_precision_at_20_std value: 3.6032 - type: nauc_precision_at_20_diff1 value: 9.2764 - type: nauc_precision_at_100_max value: 16.516000000000002 - type: nauc_precision_at_100_std value: 5.7479000000000005 - type: nauc_precision_at_100_diff1 value: 5.733499999999999 - type: nauc_precision_at_1000_max value: 6.1677 - type: nauc_precision_at_1000_std value: 0.4491 - type: nauc_precision_at_1000_diff1 value: 0.2477 - type: nauc_mrr_at_1_max value: 26.8727 - type: nauc_mrr_at_1_std value: -2.0329 - type: nauc_mrr_at_1_diff1 value: 28.792099999999998 - type: nauc_mrr_at_3_max value: 29.6131 - type: nauc_mrr_at_3_std value: 0.6053000000000001 - type: nauc_mrr_at_3_diff1 value: 25.8043 - type: nauc_mrr_at_5_max value: 29.0205 - type: nauc_mrr_at_5_std value: 0.8692 - type: nauc_mrr_at_5_diff1 value: 24.8413 - type: nauc_mrr_at_10_max value: 28.459400000000002 - type: nauc_mrr_at_10_std value: 0.5887 - type: nauc_mrr_at_10_diff1 value: 24.364 - type: nauc_mrr_at_20_max value: 28.5242 - type: nauc_mrr_at_20_std value: 0.6396 - type: nauc_mrr_at_20_diff1 value: 24.4579 - type: nauc_mrr_at_100_max value: 28.540599999999998 - type: nauc_mrr_at_100_std value: 0.7425 - type: nauc_mrr_at_100_diff1 value: 24.5761 - type: nauc_mrr_at_1000_max value: 28.5429 - type: nauc_mrr_at_1000_std value: 0.7348 - type: nauc_mrr_at_1000_diff1 value: 24.562800000000003 - type: main_score value: 30.016 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackPhysicsRetrieval (default) revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 split: test type: mteb/cqadupstack-physics metrics: - type: ndcg_at_1 value: 34.937000000000005 - type: ndcg_at_3 value: 39.366 - type: ndcg_at_5 value: 41.980000000000004 - type: ndcg_at_10 value: 44.674 - type: ndcg_at_20 value: 46.671 - type: ndcg_at_100 value: 50.041999999999994 - type: ndcg_at_1000 value: 52.120999999999995 - type: map_at_1 value: 27.750000000000004 - type: map_at_3 value: 35.027 - type: map_at_5 value: 36.952 - type: map_at_10 value: 38.382 - type: map_at_20 value: 39.072 - type: map_at_100 value: 39.694 - type: map_at_1000 value: 39.81 - type: recall_at_1 value: 27.750000000000004 - type: recall_at_3 value: 42.321999999999996 - type: recall_at_5 value: 49.209 - type: recall_at_10 value: 57.282 - type: recall_at_20 value: 64.30399999999999 - type: recall_at_100 value: 80.143 - type: recall_at_1000 value: 93.664 - type: precision_at_1 value: 34.937000000000005 - type: precision_at_3 value: 18.993 - type: precision_at_5 value: 13.648 - type: precision_at_10 value: 8.412 - type: precision_at_20 value: 4.885 - type: precision_at_100 value: 1.302 - type: precision_at_1000 value: 0.167 - type: mrr_at_1 value: 34.937400000000004 - type: mrr_at_3 value: 41.7389 - type: mrr_at_5 value: 43.4184 - type: mrr_at_10 value: 44.4776 - type: mrr_at_20 value: 44.8859 - type: mrr_at_100 value: 45.2197 - type: mrr_at_1000 value: 45.2704 - type: nauc_ndcg_at_1_max value: 41.1314 - type: nauc_ndcg_at_1_std value: 0.6393 - type: nauc_ndcg_at_1_diff1 value: 52.494 - type: nauc_ndcg_at_3_max value: 38.8915 - type: nauc_ndcg_at_3_std value: -1.1358 - type: nauc_ndcg_at_3_diff1 value: 48.8256 - type: nauc_ndcg_at_5_max value: 38.6924 - type: nauc_ndcg_at_5_std value: -2.2843999999999998 - type: nauc_ndcg_at_5_diff1 value: 47.9194 - type: nauc_ndcg_at_10_max value: 37.8751 - type: nauc_ndcg_at_10_std value: -1.5187000000000002 - type: nauc_ndcg_at_10_diff1 value: 46.455400000000004 - type: nauc_ndcg_at_20_max value: 38.1022 - type: nauc_ndcg_at_20_std value: -0.7692 - type: nauc_ndcg_at_20_diff1 value: 46.5041 - type: nauc_ndcg_at_100_max value: 40.396100000000004 - type: nauc_ndcg_at_100_std value: 1.8087 - type: nauc_ndcg_at_100_diff1 value: 47.2332 - type: nauc_ndcg_at_1000_max value: 40.2539 - type: nauc_ndcg_at_1000_std value: 2.1609 - type: nauc_ndcg_at_1000_diff1 value: 47.185700000000004 - type: nauc_map_at_1_max value: 34.3255 - type: nauc_map_at_1_std value: -6.783599999999999 - type: nauc_map_at_1_diff1 value: 54.6668 - type: nauc_map_at_3_max value: 36.5777 - type: nauc_map_at_3_std value: -3.8482000000000003 - type: nauc_map_at_3_diff1 value: 50.1703 - type: nauc_map_at_5_max value: 37.229 - type: nauc_map_at_5_std value: -3.9170000000000003 - type: nauc_map_at_5_diff1 value: 49.5882 - type: nauc_map_at_10_max value: 37.318400000000004 - type: nauc_map_at_10_std value: -3.2477 - type: nauc_map_at_10_diff1 value: 48.8387 - type: nauc_map_at_20_max value: 37.5075 - type: nauc_map_at_20_std value: -2.8737 - type: nauc_map_at_20_diff1 value: 48.896699999999996 - type: nauc_map_at_100_max value: 37.965199999999996 - type: nauc_map_at_100_std value: -2.3644 - type: nauc_map_at_100_diff1 value: 48.9583 - type: nauc_map_at_1000_max value: 37.9824 - type: nauc_map_at_1000_std value: -2.2945 - type: nauc_map_at_1000_diff1 value: 48.9472 - type: nauc_recall_at_1_max value: 34.3255 - type: nauc_recall_at_1_std value: -6.783599999999999 - type: nauc_recall_at_1_diff1 value: 54.6668 - type: nauc_recall_at_3_max value: 33.823100000000004 - type: nauc_recall_at_3_std value: -3.7593 - type: nauc_recall_at_3_diff1 value: 44.3225 - type: nauc_recall_at_5_max value: 34.271499999999996 - type: nauc_recall_at_5_std value: -4.8704 - type: nauc_recall_at_5_diff1 value: 41.3594 - type: nauc_recall_at_10_max value: 32.2652 - type: nauc_recall_at_10_std value: -1.5755000000000001 - type: nauc_recall_at_10_diff1 value: 35.9057 - type: nauc_recall_at_20_max value: 32.1614 - type: nauc_recall_at_20_std value: 0.8789 - type: nauc_recall_at_20_diff1 value: 34.6074 - type: nauc_recall_at_100_max value: 44.527499999999996 - type: nauc_recall_at_100_std value: 17.735500000000002 - type: nauc_recall_at_100_diff1 value: 36.446 - type: nauc_recall_at_1000_max value: 47.751 - type: nauc_recall_at_1000_std value: 41.8399 - type: nauc_recall_at_1000_diff1 value: 26.7075 - type: nauc_precision_at_1_max value: 41.1314 - type: nauc_precision_at_1_std value: 0.6393 - type: nauc_precision_at_1_diff1 value: 52.494 - type: nauc_precision_at_3_max value: 40.7504 - type: nauc_precision_at_3_std value: 8.6914 - type: nauc_precision_at_3_diff1 value: 34.590900000000005 - type: nauc_precision_at_5_max value: 38.5891 - type: nauc_precision_at_5_std value: 8.7898 - type: nauc_precision_at_5_diff1 value: 27.122200000000003 - type: nauc_precision_at_10_max value: 32.5422 - type: nauc_precision_at_10_std value: 13.9757 - type: nauc_precision_at_10_diff1 value: 15.504000000000001 - type: nauc_precision_at_20_max value: 28.212799999999998 - type: nauc_precision_at_20_std value: 17.0921 - type: nauc_precision_at_20_diff1 value: 10.264800000000001 - type: nauc_precision_at_100_max value: 23.9818 - type: nauc_precision_at_100_std value: 24.7802 - type: nauc_precision_at_100_diff1 value: -0.1275 - type: nauc_precision_at_1000_max value: 11.8968 - type: nauc_precision_at_1000_std value: 24.0201 - type: nauc_precision_at_1000_diff1 value: -12.1507 - type: nauc_mrr_at_1_max value: 41.1314 - type: nauc_mrr_at_1_std value: 0.6393 - type: nauc_mrr_at_1_diff1 value: 52.494 - type: nauc_mrr_at_3_max value: 41.0145 - type: nauc_mrr_at_3_std value: 1.7641 - type: nauc_mrr_at_3_diff1 value: 49.3663 - type: nauc_mrr_at_5_max value: 41.4664 - type: nauc_mrr_at_5_std value: 1.6695000000000002 - type: nauc_mrr_at_5_diff1 value: 49.0033 - type: nauc_mrr_at_10_max value: 41.2351 - type: nauc_mrr_at_10_std value: 2.0388 - type: nauc_mrr_at_10_diff1 value: 48.7703 - type: nauc_mrr_at_20_max value: 41.2064 - type: nauc_mrr_at_20_std value: 2.081 - type: nauc_mrr_at_20_diff1 value: 48.6787 - type: nauc_mrr_at_100_max value: 41.3966 - type: nauc_mrr_at_100_std value: 2.2723 - type: nauc_mrr_at_100_diff1 value: 48.746 - type: nauc_mrr_at_1000_max value: 41.3803 - type: nauc_mrr_at_1000_std value: 2.2632 - type: nauc_mrr_at_1000_diff1 value: 48.7541 - type: main_score value: 44.674 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackProgrammersRetrieval (default) revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 split: test type: mteb/cqadupstack-programmers metrics: - type: ndcg_at_1 value: 29.909000000000002 - type: ndcg_at_3 value: 35.056 - type: ndcg_at_5 value: 37.076 - type: ndcg_at_10 value: 40.093 - type: ndcg_at_20 value: 42.254999999999995 - type: ndcg_at_100 value: 45.692 - type: ndcg_at_1000 value: 48.204 - type: map_at_1 value: 24.68 - type: map_at_3 value: 31.379 - type: map_at_5 value: 32.92 - type: map_at_10 value: 34.391 - type: map_at_20 value: 35.109 - type: map_at_100 value: 35.686 - type: map_at_1000 value: 35.804 - type: recall_at_1 value: 24.68 - type: recall_at_3 value: 38.190000000000005 - type: recall_at_5 value: 43.519999999999996 - type: recall_at_10 value: 52.364999999999995 - type: recall_at_20 value: 60.02499999999999 - type: recall_at_100 value: 76.229 - type: recall_at_1000 value: 93.31099999999999 - type: precision_at_1 value: 29.909000000000002 - type: precision_at_3 value: 16.667 - type: precision_at_5 value: 11.781 - type: precision_at_10 value: 7.340000000000001 - type: precision_at_20 value: 4.315 - type: precision_at_100 value: 1.18 - type: precision_at_1000 value: 0.158 - type: mrr_at_1 value: 29.9087 - type: mrr_at_3 value: 36.6438 - type: mrr_at_5 value: 37.939499999999995 - type: mrr_at_10 value: 39.1699 - type: mrr_at_20 value: 39.6872 - type: mrr_at_100 value: 40.0648 - type: mrr_at_1000 value: 40.1254 - type: nauc_ndcg_at_1_max value: 37.3397 - type: nauc_ndcg_at_1_std value: 5.9699 - type: nauc_ndcg_at_1_diff1 value: 46.6563 - type: nauc_ndcg_at_3_max value: 39.0153 - type: nauc_ndcg_at_3_std value: 8.5756 - type: nauc_ndcg_at_3_diff1 value: 41.2988 - type: nauc_ndcg_at_5_max value: 39.4932 - type: nauc_ndcg_at_5_std value: 9.4963 - type: nauc_ndcg_at_5_diff1 value: 40.0798 - type: nauc_ndcg_at_10_max value: 40.0787 - type: nauc_ndcg_at_10_std value: 10.312100000000001 - type: nauc_ndcg_at_10_diff1 value: 39.6584 - type: nauc_ndcg_at_20_max value: 40.9003 - type: nauc_ndcg_at_20_std value: 11.991100000000001 - type: nauc_ndcg_at_20_diff1 value: 39.4373 - type: nauc_ndcg_at_100_max value: 41.4069 - type: nauc_ndcg_at_100_std value: 13.6103 - type: nauc_ndcg_at_100_diff1 value: 40.0088 - type: nauc_ndcg_at_1000_max value: 41.505900000000004 - type: nauc_ndcg_at_1000_std value: 12.742400000000002 - type: nauc_ndcg_at_1000_diff1 value: 40.1457 - type: nauc_map_at_1_max value: 34.739 - type: nauc_map_at_1_std value: 0.9294 - type: nauc_map_at_1_diff1 value: 48.1138 - type: nauc_map_at_3_max value: 37.0441 - type: nauc_map_at_3_std value: 5.5666 - type: nauc_map_at_3_diff1 value: 42.7429 - type: nauc_map_at_5_max value: 37.891799999999996 - type: nauc_map_at_5_std value: 6.7185999999999995 - type: nauc_map_at_5_diff1 value: 41.9849 - type: nauc_map_at_10_max value: 38.556000000000004 - type: nauc_map_at_10_std value: 7.4627 - type: nauc_map_at_10_diff1 value: 41.8061 - type: nauc_map_at_20_max value: 38.8822 - type: nauc_map_at_20_std value: 8.0747 - type: nauc_map_at_20_diff1 value: 41.7518 - type: nauc_map_at_100_max value: 39.0912 - type: nauc_map_at_100_std value: 8.4627 - type: nauc_map_at_100_diff1 value: 41.8958 - type: nauc_map_at_1000_max value: 39.112700000000004 - type: nauc_map_at_1000_std value: 8.4459 - type: nauc_map_at_1000_diff1 value: 41.903400000000005 - type: nauc_recall_at_1_max value: 34.739 - type: nauc_recall_at_1_std value: 0.9294 - type: nauc_recall_at_1_diff1 value: 48.1138 - type: nauc_recall_at_3_max value: 37.3971 - type: nauc_recall_at_3_std value: 9.2075 - type: nauc_recall_at_3_diff1 value: 36.4624 - type: nauc_recall_at_5_max value: 38.1516 - type: nauc_recall_at_5_std value: 11.5318 - type: nauc_recall_at_5_diff1 value: 33.3421 - type: nauc_recall_at_10_max value: 38.8221 - type: nauc_recall_at_10_std value: 14.0268 - type: nauc_recall_at_10_diff1 value: 31.4088 - type: nauc_recall_at_20_max value: 40.9493 - type: nauc_recall_at_20_std value: 20.2136 - type: nauc_recall_at_20_diff1 value: 29.9447 - type: nauc_recall_at_100_max value: 43.149300000000004 - type: nauc_recall_at_100_std value: 33.7709 - type: nauc_recall_at_100_diff1 value: 29.3082 - type: nauc_recall_at_1000_max value: 55.435500000000005 - type: nauc_recall_at_1000_std value: 51.8958 - type: nauc_recall_at_1000_diff1 value: 19.3816 - type: nauc_precision_at_1_max value: 37.3397 - type: nauc_precision_at_1_std value: 5.9699 - type: nauc_precision_at_1_diff1 value: 46.6563 - type: nauc_precision_at_3_max value: 40.3693 - type: nauc_precision_at_3_std value: 17.0552 - type: nauc_precision_at_3_diff1 value: 29.498400000000004 - type: nauc_precision_at_5_max value: 39.7607 - type: nauc_precision_at_5_std value: 20.274 - type: nauc_precision_at_5_diff1 value: 23.061300000000003 - type: nauc_precision_at_10_max value: 38.0299 - type: nauc_precision_at_10_std value: 22.256899999999998 - type: nauc_precision_at_10_diff1 value: 17.0507 - type: nauc_precision_at_20_max value: 36.0867 - type: nauc_precision_at_20_std value: 25.936700000000002 - type: nauc_precision_at_20_diff1 value: 12.1754 - type: nauc_precision_at_100_max value: 24.1493 - type: nauc_precision_at_100_std value: 23.8361 - type: nauc_precision_at_100_diff1 value: 5.2714 - type: nauc_precision_at_1000_max value: 7.033499999999999 - type: nauc_precision_at_1000_std value: 9.0198 - type: nauc_precision_at_1000_diff1 value: -4.8427999999999995 - type: nauc_mrr_at_1_max value: 37.3397 - type: nauc_mrr_at_1_std value: 5.9699 - type: nauc_mrr_at_1_diff1 value: 46.6563 - type: nauc_mrr_at_3_max value: 40.2205 - type: nauc_mrr_at_3_std value: 9.8833 - type: nauc_mrr_at_3_diff1 value: 42.3963 - type: nauc_mrr_at_5_max value: 40.1911 - type: nauc_mrr_at_5_std value: 10.3282 - type: nauc_mrr_at_5_diff1 value: 41.796499999999995 - type: nauc_mrr_at_10_max value: 40.3748 - type: nauc_mrr_at_10_std value: 10.567699999999999 - type: nauc_mrr_at_10_diff1 value: 41.643299999999996 - type: nauc_mrr_at_20_max value: 40.4527 - type: nauc_mrr_at_20_std value: 10.8016 - type: nauc_mrr_at_20_diff1 value: 41.594300000000004 - type: nauc_mrr_at_100_max value: 40.395199999999996 - type: nauc_mrr_at_100_std value: 10.8396 - type: nauc_mrr_at_100_diff1 value: 41.706700000000005 - type: nauc_mrr_at_1000_max value: 40.3932 - type: nauc_mrr_at_1000_std value: 10.8097 - type: nauc_mrr_at_1000_diff1 value: 41.7124 - type: main_score value: 40.093 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackRetrieval (default) revision: 160c094312a0e1facb97e55eeddb698c0abe3571 split: test type: CQADupstackRetrieval_is_a_combined_dataset metrics: - type: ndcg_at_1 value: 30.19958333333333 - type: ndcg_at_3 value: 35.01541666666667 - type: ndcg_at_5 value: 37.22058333333334 - type: ndcg_at_10 value: 39.84525000000001 - type: ndcg_at_20 value: 41.81666666666667 - type: ndcg_at_100 value: 44.973 - type: ndcg_at_1000 value: 47.338583333333325 - type: map_at_1 value: 25.296916666666668 - type: map_at_3 value: 31.593166666666665 - type: map_at_5 value: 33.145916666666665 - type: map_at_10 value: 34.45275 - type: map_at_20 value: 35.10883333333334 - type: map_at_100 value: 35.647499999999994 - type: map_at_1000 value: 35.768166666666666 - type: recall_at_1 value: 25.296916666666668 - type: recall_at_3 value: 38.05166666666666 - type: recall_at_5 value: 43.82625 - type: recall_at_10 value: 51.58916666666668 - type: recall_at_20 value: 58.77308333333334 - type: recall_at_100 value: 74.15658333333333 - type: recall_at_1000 value: 90.51333333333335 - type: precision_at_1 value: 30.19958333333333 - type: precision_at_3 value: 16.167999999999996 - type: precision_at_5 value: 11.49225 - type: precision_at_10 value: 7.057666666666666 - type: precision_at_20 value: 4.174083333333333 - type: precision_at_100 value: 1.1363333333333332 - type: precision_at_1000 value: 0.15383333333333332 - type: mrr_at_1 value: 30.199658333333335 - type: mrr_at_3 value: 36.21564166666667 - type: mrr_at_5 value: 37.627291666666665 - type: mrr_at_10 value: 38.70535 - type: mrr_at_20 value: 39.193799999999996 - type: mrr_at_100 value: 39.55041666666666 - type: mrr_at_1000 value: 39.61140833333333 - type: nauc_ndcg_at_1_max value: 39.3715 - type: nauc_ndcg_at_1_std value: -1.2167000000000008 - type: nauc_ndcg_at_1_diff1 value: 47.05770833333333 - type: nauc_ndcg_at_3_max value: 38.67278333333333 - type: nauc_ndcg_at_3_std value: -0.10360000000000005 - type: nauc_ndcg_at_3_diff1 value: 42.23506666666667 - type: nauc_ndcg_at_5_max value: 38.421591666666664 - type: nauc_ndcg_at_5_std value: 0.9004833333333335 - type: nauc_ndcg_at_5_diff1 value: 41.46895 - type: nauc_ndcg_at_10_max value: 38.31713333333333 - type: nauc_ndcg_at_10_std value: 1.6739333333333335 - type: nauc_ndcg_at_10_diff1 value: 40.52259166666667 - type: nauc_ndcg_at_20_max value: 38.61266666666667 - type: nauc_ndcg_at_20_std value: 2.7783666666666673 - type: nauc_ndcg_at_20_diff1 value: 40.28085833333333 - type: nauc_ndcg_at_100_max value: 39.27558333333333 - type: nauc_ndcg_at_100_std value: 3.9398000000000004 - type: nauc_ndcg_at_100_diff1 value: 40.39787499999999 - type: nauc_ndcg_at_1000_max value: 39.44075 - type: nauc_ndcg_at_1000_std value: 3.9607833333333327 - type: nauc_ndcg_at_1000_diff1 value: 40.683225 - type: nauc_map_at_1_max value: 35.66645 - type: nauc_map_at_1_std value: -4.276391666666667 - type: nauc_map_at_1_diff1 value: 48.810141666666674 - type: nauc_map_at_3_max value: 37.424108333333336 - type: nauc_map_at_3_std value: -2.064866666666667 - type: nauc_map_at_3_diff1 value: 44.115075 - type: nauc_map_at_5_max value: 37.693016666666665 - type: nauc_map_at_5_std value: -1.1872749999999994 - type: nauc_map_at_5_diff1 value: 43.554458333333336 - type: nauc_map_at_10_max value: 37.9333 - type: nauc_map_at_10_std value: -0.6246583333333332 - type: nauc_map_at_10_diff1 value: 43.05175 - type: nauc_map_at_20_max value: 38.11316666666667 - type: nauc_map_at_20_std value: -0.17139166666666622 - type: nauc_map_at_20_diff1 value: 42.929925000000004 - type: nauc_map_at_100_max value: 38.296825 - type: nauc_map_at_100_std value: 0.1448500000000002 - type: nauc_map_at_100_diff1 value: 42.91681666666667 - type: nauc_map_at_1000_max value: 38.308891666666675 - type: nauc_map_at_1000_std value: 0.17599166666666682 - type: nauc_map_at_1000_diff1 value: 42.91478333333333 - type: nauc_recall_at_1_max value: 35.66645 - type: nauc_recall_at_1_std value: -4.276391666666667 - type: nauc_recall_at_1_diff1 value: 48.810141666666674 - type: nauc_recall_at_3_max value: 36.144949999999994 - type: nauc_recall_at_3_std value: -0.07622500000000007 - type: nauc_recall_at_3_diff1 value: 38.39805833333333 - type: nauc_recall_at_5_max value: 35.599016666666664 - type: nauc_recall_at_5_std value: 2.6147583333333335 - type: nauc_recall_at_5_diff1 value: 35.84809166666666 - type: nauc_recall_at_10_max value: 34.73115833333333 - type: nauc_recall_at_10_std value: 5.2187166666666664 - type: nauc_recall_at_10_diff1 value: 32.22850833333333 - type: nauc_recall_at_20_max value: 35.11221666666667 - type: nauc_recall_at_20_std value: 9.564958333333331 - type: nauc_recall_at_20_diff1 value: 30.415991666666663 - type: nauc_recall_at_100_max value: 37.735958333333336 - type: nauc_recall_at_100_std value: 19.1386 - type: nauc_recall_at_100_diff1 value: 28.129675 - type: nauc_recall_at_1000_max value: 43.71879166666667 - type: nauc_recall_at_1000_std value: 39.80074166666667 - type: nauc_recall_at_1000_diff1 value: 23.800666666666668 - type: nauc_precision_at_1_max value: 39.3715 - type: nauc_precision_at_1_std value: -1.2167000000000008 - type: nauc_precision_at_1_diff1 value: 47.05770833333333 - type: nauc_precision_at_3_max value: 39.00785833333333 - type: nauc_precision_at_3_std value: 5.753050000000001 - type: nauc_precision_at_3_diff1 value: 31.4196 - type: nauc_precision_at_5_max value: 36.98677500000001 - type: nauc_precision_at_5_std value: 9.464608333333333 - type: nauc_precision_at_5_diff1 value: 25.906116666666662 - type: nauc_precision_at_10_max value: 33.26575833333333 - type: nauc_precision_at_10_std value: 12.540025 - type: nauc_precision_at_10_diff1 value: 18.274116666666668 - type: nauc_precision_at_20_max value: 30.13705833333334 - type: nauc_precision_at_20_std value: 16.549291666666665 - type: nauc_precision_at_20_diff1 value: 12.541983333333334 - type: nauc_precision_at_100_max value: 22.078525000000003 - type: nauc_precision_at_100_std value: 19.263416666666664 - type: nauc_precision_at_100_diff1 value: 2.293625 - type: nauc_precision_at_1000_max value: 8.336641666666667 - type: nauc_precision_at_1000_std value: 14.828683333333334 - type: nauc_precision_at_1000_diff1 value: -8.852525 - type: nauc_mrr_at_1_max value: 39.3715 - type: nauc_mrr_at_1_std value: -1.2167000000000008 - type: nauc_mrr_at_1_diff1 value: 47.05770833333333 - type: nauc_mrr_at_3_max value: 39.90615 - type: nauc_mrr_at_3_std value: 0.7366500000000004 - type: nauc_mrr_at_3_diff1 value: 42.96046666666666 - type: nauc_mrr_at_5_max value: 39.78708333333334 - type: nauc_mrr_at_5_std value: 1.3970916666666666 - type: nauc_mrr_at_5_diff1 value: 42.44258333333333 - type: nauc_mrr_at_10_max value: 39.65595 - type: nauc_mrr_at_10_std value: 1.6633916666666666 - type: nauc_mrr_at_10_diff1 value: 42.084358333333334 - type: nauc_mrr_at_20_max value: 39.67735 - type: nauc_mrr_at_20_std value: 1.8360749999999995 - type: nauc_mrr_at_20_diff1 value: 42.04530833333333 - type: nauc_mrr_at_100_max value: 39.71681666666667 - type: nauc_mrr_at_100_std value: 1.8971666666666671 - type: nauc_mrr_at_100_diff1 value: 42.075141666666674 - type: nauc_mrr_at_1000_max value: 39.72038333333334 - type: nauc_mrr_at_1000_std value: 1.8916749999999996 - type: nauc_mrr_at_1000_diff1 value: 42.091208333333334 - type: main_score value: 39.84525000000001 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackRetrieval (default) revision: CQADupstackRetrieval_is_a_combined_dataset split: test type: CQADupstackRetrieval_is_a_combined_dataset metrics: - type: main_score value: 39.84525000000001 - type: ndcg_at_10 value: 39.84525000000001 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackStatsRetrieval (default) revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a split: test type: mteb/cqadupstack-stats metrics: - type: ndcg_at_1 value: 27.454 - type: ndcg_at_3 value: 31.464 - type: ndcg_at_5 value: 33.533 - type: ndcg_at_10 value: 35.477 - type: ndcg_at_20 value: 37.092999999999996 - type: ndcg_at_100 value: 39.808 - type: ndcg_at_1000 value: 42.309000000000005 - type: map_at_1 value: 24.489 - type: map_at_3 value: 29.204 - type: map_at_5 value: 30.496000000000002 - type: map_at_10 value: 31.415 - type: map_at_20 value: 31.897 - type: map_at_100 value: 32.259 - type: map_at_1000 value: 32.361000000000004 - type: recall_at_1 value: 24.489 - type: recall_at_3 value: 34.333999999999996 - type: recall_at_5 value: 39.550999999999995 - type: recall_at_10 value: 45.275999999999996 - type: recall_at_20 value: 51.241 - type: recall_at_100 value: 65.398 - type: recall_at_1000 value: 83.685 - type: precision_at_1 value: 27.454 - type: precision_at_3 value: 13.344000000000001 - type: precision_at_5 value: 9.417 - type: precision_at_10 value: 5.567 - type: precision_at_20 value: 3.221 - type: precision_at_100 value: 0.845 - type: precision_at_1000 value: 0.11499999999999999 - type: mrr_at_1 value: 27.454 - type: mrr_at_3 value: 32.1063 - type: mrr_at_5 value: 33.2797 - type: mrr_at_10 value: 34.0563 - type: mrr_at_20 value: 34.4952 - type: mrr_at_100 value: 34.8327 - type: mrr_at_1000 value: 34.9002 - type: nauc_ndcg_at_1_max value: 45.7913 - type: nauc_ndcg_at_1_std value: 10.6304 - type: nauc_ndcg_at_1_diff1 value: 51.58160000000001 - type: nauc_ndcg_at_3_max value: 42.992599999999996 - type: nauc_ndcg_at_3_std value: 10.1454 - type: nauc_ndcg_at_3_diff1 value: 45.330799999999996 - type: nauc_ndcg_at_5_max value: 43.081399999999995 - type: nauc_ndcg_at_5_std value: 11.7829 - type: nauc_ndcg_at_5_diff1 value: 45.8734 - type: nauc_ndcg_at_10_max value: 45.2554 - type: nauc_ndcg_at_10_std value: 14.2953 - type: nauc_ndcg_at_10_diff1 value: 45.908 - type: nauc_ndcg_at_20_max value: 45.7565 - type: nauc_ndcg_at_20_std value: 15.1327 - type: nauc_ndcg_at_20_diff1 value: 45.512 - type: nauc_ndcg_at_100_max value: 45.602599999999995 - type: nauc_ndcg_at_100_std value: 15.6507 - type: nauc_ndcg_at_100_diff1 value: 44.3626 - type: nauc_ndcg_at_1000_max value: 45.6835 - type: nauc_ndcg_at_1000_std value: 16.3352 - type: nauc_ndcg_at_1000_diff1 value: 44.9838 - type: nauc_map_at_1_max value: 41.989900000000006 - type: nauc_map_at_1_std value: 5.3356 - type: nauc_map_at_1_diff1 value: 52.711200000000005 - type: nauc_map_at_3_max value: 42.363 - type: nauc_map_at_3_std value: 8.1615 - type: nauc_map_at_3_diff1 value: 47.1827 - type: nauc_map_at_5_max value: 42.6039 - type: nauc_map_at_5_std value: 9.500300000000001 - type: nauc_map_at_5_diff1 value: 47.4177 - type: nauc_map_at_10_max value: 43.703399999999995 - type: nauc_map_at_10_std value: 10.729 - type: nauc_map_at_10_diff1 value: 47.4334 - type: nauc_map_at_20_max value: 43.9336 - type: nauc_map_at_20_std value: 11.0612 - type: nauc_map_at_20_diff1 value: 47.321600000000004 - type: nauc_map_at_100_max value: 43.978899999999996 - type: nauc_map_at_100_std value: 11.148299999999999 - type: nauc_map_at_100_diff1 value: 47.1738 - type: nauc_map_at_1000_max value: 43.985400000000006 - type: nauc_map_at_1000_std value: 11.1754 - type: nauc_map_at_1000_diff1 value: 47.197 - type: nauc_recall_at_1_max value: 41.989900000000006 - type: nauc_recall_at_1_std value: 5.3356 - type: nauc_recall_at_1_diff1 value: 52.711200000000005 - type: nauc_recall_at_3_max value: 40.8671 - type: nauc_recall_at_3_std value: 9.4511 - type: nauc_recall_at_3_diff1 value: 41.2041 - type: nauc_recall_at_5_max value: 40.9279 - type: nauc_recall_at_5_std value: 13.688600000000001 - type: nauc_recall_at_5_diff1 value: 41.9126 - type: nauc_recall_at_10_max value: 46.1436 - type: nauc_recall_at_10_std value: 20.8837 - type: nauc_recall_at_10_diff1 value: 41.0814 - type: nauc_recall_at_20_max value: 47.245599999999996 - type: nauc_recall_at_20_std value: 23.405 - type: nauc_recall_at_20_diff1 value: 38.864599999999996 - type: nauc_recall_at_100_max value: 45.457 - type: nauc_recall_at_100_std value: 28.075 - type: nauc_recall_at_100_diff1 value: 30.213600000000003 - type: nauc_recall_at_1000_max value: 48.8291 - type: nauc_recall_at_1000_std value: 47.8416 - type: nauc_recall_at_1000_diff1 value: 30.387199999999996 - type: nauc_precision_at_1_max value: 45.7913 - type: nauc_precision_at_1_std value: 10.6304 - type: nauc_precision_at_1_diff1 value: 51.58160000000001 - type: nauc_precision_at_3_max value: 44.710899999999995 - type: nauc_precision_at_3_std value: 17.7458 - type: nauc_precision_at_3_diff1 value: 36.7588 - type: nauc_precision_at_5_max value: 44.0582 - type: nauc_precision_at_5_std value: 22.7864 - type: nauc_precision_at_5_diff1 value: 35.3597 - type: nauc_precision_at_10_max value: 45.5849 - type: nauc_precision_at_10_std value: 28.758899999999997 - type: nauc_precision_at_10_diff1 value: 30.3452 - type: nauc_precision_at_20_max value: 43.6996 - type: nauc_precision_at_20_std value: 30.314799999999998 - type: nauc_precision_at_20_diff1 value: 25.916299999999996 - type: nauc_precision_at_100_max value: 33.6976 - type: nauc_precision_at_100_std value: 28.7876 - type: nauc_precision_at_100_diff1 value: 11.670300000000001 - type: nauc_precision_at_1000_max value: 14.089599999999999 - type: nauc_precision_at_1000_std value: 23.8288 - type: nauc_precision_at_1000_diff1 value: -1.8387 - type: nauc_mrr_at_1_max value: 45.7913 - type: nauc_mrr_at_1_std value: 10.6304 - type: nauc_mrr_at_1_diff1 value: 51.58160000000001 - type: nauc_mrr_at_3_max value: 45.5677 - type: nauc_mrr_at_3_std value: 12.692800000000002 - type: nauc_mrr_at_3_diff1 value: 46.578599999999994 - type: nauc_mrr_at_5_max value: 45.4634 - type: nauc_mrr_at_5_std value: 13.386999999999999 - type: nauc_mrr_at_5_diff1 value: 46.7306 - type: nauc_mrr_at_10_max value: 46.1532 - type: nauc_mrr_at_10_std value: 14.3297 - type: nauc_mrr_at_10_diff1 value: 46.6835 - type: nauc_mrr_at_20_max value: 46.1552 - type: nauc_mrr_at_20_std value: 14.492099999999999 - type: nauc_mrr_at_20_diff1 value: 46.611000000000004 - type: nauc_mrr_at_100_max value: 46.1171 - type: nauc_mrr_at_100_std value: 14.4984 - type: nauc_mrr_at_100_diff1 value: 46.4837 - type: nauc_mrr_at_1000_max value: 46.1231 - type: nauc_mrr_at_1000_std value: 14.516000000000002 - type: nauc_mrr_at_1000_diff1 value: 46.5135 - type: main_score value: 35.477 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackTexRetrieval (default) revision: 46989137a86843e03a6195de44b09deda022eec7 split: test type: mteb/cqadupstack-tex metrics: - type: ndcg_at_1 value: 21.266 - type: ndcg_at_3 value: 25.337 - type: ndcg_at_5 value: 27.18 - type: ndcg_at_10 value: 29.452 - type: ndcg_at_20 value: 31.226 - type: ndcg_at_100 value: 34.409 - type: ndcg_at_1000 value: 37.577 - type: map_at_1 value: 17.363 - type: map_at_3 value: 22.448999999999998 - type: map_at_5 value: 23.686 - type: map_at_10 value: 24.769 - type: map_at_20 value: 25.295 - type: map_at_100 value: 25.790999999999997 - type: map_at_1000 value: 25.929000000000002 - type: recall_at_1 value: 17.363 - type: recall_at_3 value: 28.022000000000002 - type: recall_at_5 value: 32.817 - type: recall_at_10 value: 39.639 - type: recall_at_20 value: 46.245999999999995 - type: recall_at_100 value: 61.934 - type: recall_at_1000 value: 84.507 - type: precision_at_1 value: 21.266 - type: precision_at_3 value: 12.056000000000001 - type: precision_at_5 value: 8.727 - type: precision_at_10 value: 5.382 - type: precision_at_20 value: 3.2300000000000004 - type: precision_at_100 value: 0.922 - type: precision_at_1000 value: 0.13799999999999998 - type: mrr_at_1 value: 21.266299999999998 - type: mrr_at_3 value: 26.5887 - type: mrr_at_5 value: 27.7931 - type: mrr_at_10 value: 28.7136 - type: mrr_at_20 value: 29.1995 - type: mrr_at_100 value: 29.5953 - type: mrr_at_1000 value: 29.677999999999997 - type: nauc_ndcg_at_1_max value: 32.1973 - type: nauc_ndcg_at_1_std value: -3.8459 - type: nauc_ndcg_at_1_diff1 value: 40.2485 - type: nauc_ndcg_at_3_max value: 31.338300000000004 - type: nauc_ndcg_at_3_std value: -3.2641000000000004 - type: nauc_ndcg_at_3_diff1 value: 34.212199999999996 - type: nauc_ndcg_at_5_max value: 30.9515 - type: nauc_ndcg_at_5_std value: -2.5583 - type: nauc_ndcg_at_5_diff1 value: 33.3896 - type: nauc_ndcg_at_10_max value: 31.1472 - type: nauc_ndcg_at_10_std value: -1.4321000000000002 - type: nauc_ndcg_at_10_diff1 value: 33.057700000000004 - type: nauc_ndcg_at_20_max value: 31.513099999999998 - type: nauc_ndcg_at_20_std value: 0.4013 - type: nauc_ndcg_at_20_diff1 value: 32.2353 - type: nauc_ndcg_at_100_max value: 31.8931 - type: nauc_ndcg_at_100_std value: 2.0259 - type: nauc_ndcg_at_100_diff1 value: 31.966499999999996 - type: nauc_ndcg_at_1000_max value: 32.1421 - type: nauc_ndcg_at_1000_std value: 1.9602000000000002 - type: nauc_ndcg_at_1000_diff1 value: 32.6747 - type: nauc_map_at_1_max value: 28.973 - type: nauc_map_at_1_std value: -4.6768 - type: nauc_map_at_1_diff1 value: 40.726600000000005 - type: nauc_map_at_3_max value: 29.9942 - type: nauc_map_at_3_std value: -3.7635 - type: nauc_map_at_3_diff1 value: 35.5655 - type: nauc_map_at_5_max value: 30.157099999999996 - type: nauc_map_at_5_std value: -3.3414 - type: nauc_map_at_5_diff1 value: 35.085699999999996 - type: nauc_map_at_10_max value: 30.4178 - type: nauc_map_at_10_std value: -2.7081999999999997 - type: nauc_map_at_10_diff1 value: 34.834700000000005 - type: nauc_map_at_20_max value: 30.5785 - type: nauc_map_at_20_std value: -2.1469 - type: nauc_map_at_20_diff1 value: 34.6132 - type: nauc_map_at_100_max value: 30.755100000000002 - type: nauc_map_at_100_std value: -1.846 - type: nauc_map_at_100_diff1 value: 34.5596 - type: nauc_map_at_1000_max value: 30.818800000000003 - type: nauc_map_at_1000_std value: -1.8256000000000001 - type: nauc_map_at_1000_diff1 value: 34.602199999999996 - type: nauc_recall_at_1_max value: 28.973 - type: nauc_recall_at_1_std value: -4.6768 - type: nauc_recall_at_1_diff1 value: 40.726600000000005 - type: nauc_recall_at_3_max value: 28.962300000000003 - type: nauc_recall_at_3_std value: -2.8797 - type: nauc_recall_at_3_diff1 value: 29.9765 - type: nauc_recall_at_5_max value: 28.193 - type: nauc_recall_at_5_std value: -1.6741 - type: nauc_recall_at_5_diff1 value: 27.825100000000003 - type: nauc_recall_at_10_max value: 28.266099999999998 - type: nauc_recall_at_10_std value: 0.9544 - type: nauc_recall_at_10_diff1 value: 26.365499999999997 - type: nauc_recall_at_20_max value: 28.839 - type: nauc_recall_at_20_std value: 6.809 - type: nauc_recall_at_20_diff1 value: 22.761400000000002 - type: nauc_recall_at_100_max value: 29.2235 - type: nauc_recall_at_100_std value: 15.3679 - type: nauc_recall_at_100_diff1 value: 19.3302 - type: nauc_recall_at_1000_max value: 27.954800000000002 - type: nauc_recall_at_1000_std value: 25.5618 - type: nauc_recall_at_1000_diff1 value: 17.749100000000002 - type: nauc_precision_at_1_max value: 32.1973 - type: nauc_precision_at_1_std value: -3.8459 - type: nauc_precision_at_1_diff1 value: 40.2485 - type: nauc_precision_at_3_max value: 33.3915 - type: nauc_precision_at_3_std value: -1.7868 - type: nauc_precision_at_3_diff1 value: 29.0619 - type: nauc_precision_at_5_max value: 33.0357 - type: nauc_precision_at_5_std value: 0.7308 - type: nauc_precision_at_5_diff1 value: 25.966299999999997 - type: nauc_precision_at_10_max value: 33.1657 - type: nauc_precision_at_10_std value: 4.3635 - type: nauc_precision_at_10_diff1 value: 23.5546 - type: nauc_precision_at_20_max value: 32.9354 - type: nauc_precision_at_20_std value: 10.2754 - type: nauc_precision_at_20_diff1 value: 18.9755 - type: nauc_precision_at_100_max value: 30.0047 - type: nauc_precision_at_100_std value: 14.9007 - type: nauc_precision_at_100_diff1 value: 10.6748 - type: nauc_precision_at_1000_max value: 24.2685 - type: nauc_precision_at_1000_std value: 10.8307 - type: nauc_precision_at_1000_diff1 value: 1.3375 - type: nauc_mrr_at_1_max value: 32.1973 - type: nauc_mrr_at_1_std value: -3.8459 - type: nauc_mrr_at_1_diff1 value: 40.2485 - type: nauc_mrr_at_3_max value: 32.670100000000005 - type: nauc_mrr_at_3_std value: -2.7189 - type: nauc_mrr_at_3_diff1 value: 35.8073 - type: nauc_mrr_at_5_max value: 32.4756 - type: nauc_mrr_at_5_std value: -2.2318000000000002 - type: nauc_mrr_at_5_diff1 value: 35.2567 - type: nauc_mrr_at_10_max value: 32.594699999999996 - type: nauc_mrr_at_10_std value: -1.8573 - type: nauc_mrr_at_10_diff1 value: 35.268100000000004 - type: nauc_mrr_at_20_max value: 32.7337 - type: nauc_mrr_at_20_std value: -1.3544 - type: nauc_mrr_at_20_diff1 value: 35.0493 - type: nauc_mrr_at_100_max value: 32.775999999999996 - type: nauc_mrr_at_100_std value: -1.2326 - type: nauc_mrr_at_100_diff1 value: 35.0304 - type: nauc_mrr_at_1000_max value: 32.7772 - type: nauc_mrr_at_1000_std value: -1.2438 - type: nauc_mrr_at_1000_diff1 value: 35.0535 - type: main_score value: 29.452 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackUnixRetrieval (default) revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 split: test type: mteb/cqadupstack-unix metrics: - type: ndcg_at_1 value: 32.556000000000004 - type: ndcg_at_3 value: 36.928 - type: ndcg_at_5 value: 39.116 - type: ndcg_at_10 value: 41.801 - type: ndcg_at_20 value: 44.080999999999996 - type: ndcg_at_100 value: 47.138999999999996 - type: ndcg_at_1000 value: 49.372 - type: map_at_1 value: 27.062 - type: map_at_3 value: 33.616 - type: map_at_5 value: 35.181000000000004 - type: map_at_10 value: 36.431000000000004 - type: map_at_20 value: 37.15 - type: map_at_100 value: 37.662 - type: map_at_1000 value: 37.763999999999996 - type: recall_at_1 value: 27.062 - type: recall_at_3 value: 40.199 - type: recall_at_5 value: 46.025 - type: recall_at_10 value: 53.973000000000006 - type: recall_at_20 value: 61.989000000000004 - type: recall_at_100 value: 76.537 - type: recall_at_1000 value: 92.087 - type: precision_at_1 value: 32.556000000000004 - type: precision_at_3 value: 16.915 - type: precision_at_5 value: 11.791 - type: precision_at_10 value: 7.034 - type: precision_at_20 value: 4.1739999999999995 - type: precision_at_100 value: 1.089 - type: precision_at_1000 value: 0.13799999999999998 - type: mrr_at_1 value: 32.556000000000004 - type: mrr_at_3 value: 38.339600000000004 - type: mrr_at_5 value: 39.696799999999996 - type: mrr_at_10 value: 40.7987 - type: mrr_at_20 value: 41.3962 - type: mrr_at_100 value: 41.7337 - type: mrr_at_1000 value: 41.794399999999996 - type: nauc_ndcg_at_1_max value: 43.5112 - type: nauc_ndcg_at_1_std value: -9.9968 - type: nauc_ndcg_at_1_diff1 value: 54.4148 - type: nauc_ndcg_at_3_max value: 44.4173 - type: nauc_ndcg_at_3_std value: -4.9704999999999995 - type: nauc_ndcg_at_3_diff1 value: 49.746 - type: nauc_ndcg_at_5_max value: 43.944100000000006 - type: nauc_ndcg_at_5_std value: -3.8952 - type: nauc_ndcg_at_5_diff1 value: 48.2127 - type: nauc_ndcg_at_10_max value: 43.0905 - type: nauc_ndcg_at_10_std value: -3.6698 - type: nauc_ndcg_at_10_diff1 value: 46.8763 - type: nauc_ndcg_at_20_max value: 42.6245 - type: nauc_ndcg_at_20_std value: -4.1508 - type: nauc_ndcg_at_20_diff1 value: 46.0823 - type: nauc_ndcg_at_100_max value: 42.9829 - type: nauc_ndcg_at_100_std value: -3.2881 - type: nauc_ndcg_at_100_diff1 value: 46.9669 - type: nauc_ndcg_at_1000_max value: 43.3769 - type: nauc_ndcg_at_1000_std value: -2.6679 - type: nauc_ndcg_at_1000_diff1 value: 47.3983 - type: nauc_map_at_1_max value: 41.5528 - type: nauc_map_at_1_std value: -11.307599999999999 - type: nauc_map_at_1_diff1 value: 54.931700000000006 - type: nauc_map_at_3_max value: 43.2776 - type: nauc_map_at_3_std value: -7.421800000000001 - type: nauc_map_at_3_diff1 value: 51.1883 - type: nauc_map_at_5_max value: 43.4821 - type: nauc_map_at_5_std value: -6.2339 - type: nauc_map_at_5_diff1 value: 50.1494 - type: nauc_map_at_10_max value: 43.3333 - type: nauc_map_at_10_std value: -6.065 - type: nauc_map_at_10_diff1 value: 49.661100000000005 - type: nauc_map_at_20_max value: 43.231 - type: nauc_map_at_20_std value: -6.2244 - type: nauc_map_at_20_diff1 value: 49.407000000000004 - type: nauc_map_at_100_max value: 43.3803 - type: nauc_map_at_100_std value: -5.9752 - type: nauc_map_at_100_diff1 value: 49.5411 - type: nauc_map_at_1000_max value: 43.4007 - type: nauc_map_at_1000_std value: -5.9336 - type: nauc_map_at_1000_diff1 value: 49.5578 - type: nauc_recall_at_1_max value: 41.5528 - type: nauc_recall_at_1_std value: -11.307599999999999 - type: nauc_recall_at_1_diff1 value: 54.931700000000006 - type: nauc_recall_at_3_max value: 42.6893 - type: nauc_recall_at_3_std value: -2.3828 - type: nauc_recall_at_3_diff1 value: 46.050999999999995 - type: nauc_recall_at_5_max value: 41.6989 - type: nauc_recall_at_5_std value: 1.0116 - type: nauc_recall_at_5_diff1 value: 41.5014 - type: nauc_recall_at_10_max value: 37.9823 - type: nauc_recall_at_10_std value: 1.9809 - type: nauc_recall_at_10_diff1 value: 36.3968 - type: nauc_recall_at_20_max value: 35.5843 - type: nauc_recall_at_20_std value: 0.1044 - type: nauc_recall_at_20_diff1 value: 32.377 - type: nauc_recall_at_100_max value: 35.316900000000004 - type: nauc_recall_at_100_std value: 5.6158 - type: nauc_recall_at_100_diff1 value: 34.8474 - type: nauc_recall_at_1000_max value: 40.3589 - type: nauc_recall_at_1000_std value: 36.2315 - type: nauc_recall_at_1000_diff1 value: 32.7652 - type: nauc_precision_at_1_max value: 43.5112 - type: nauc_precision_at_1_std value: -9.9968 - type: nauc_precision_at_1_diff1 value: 54.4148 - type: nauc_precision_at_3_max value: 43.5357 - type: nauc_precision_at_3_std value: 1.8129 - type: nauc_precision_at_3_diff1 value: 39.4033 - type: nauc_precision_at_5_max value: 41.2383 - type: nauc_precision_at_5_std value: 5.952500000000001 - type: nauc_precision_at_5_diff1 value: 32.6387 - type: nauc_precision_at_10_max value: 35.8673 - type: nauc_precision_at_10_std value: 6.9601 - type: nauc_precision_at_10_diff1 value: 25.1842 - type: nauc_precision_at_20_max value: 28.9362 - type: nauc_precision_at_20_std value: 7.607800000000001 - type: nauc_precision_at_20_diff1 value: 16.7232 - type: nauc_precision_at_100_max value: 18.434800000000003 - type: nauc_precision_at_100_std value: 12.987000000000002 - type: nauc_precision_at_100_diff1 value: 6.9893 - type: nauc_precision_at_1000_max value: 1.0569 - type: nauc_precision_at_1000_std value: 12.5503 - type: nauc_precision_at_1000_diff1 value: -7.3416 - type: nauc_mrr_at_1_max value: 43.5112 - type: nauc_mrr_at_1_std value: -9.9968 - type: nauc_mrr_at_1_diff1 value: 54.4148 - type: nauc_mrr_at_3_max value: 44.642900000000004 - type: nauc_mrr_at_3_std value: -5.3517 - type: nauc_mrr_at_3_diff1 value: 50.2935 - type: nauc_mrr_at_5_max value: 44.4732 - type: nauc_mrr_at_5_std value: -4.608099999999999 - type: nauc_mrr_at_5_diff1 value: 49.346000000000004 - type: nauc_mrr_at_10_max value: 43.9489 - type: nauc_mrr_at_10_std value: -4.5868 - type: nauc_mrr_at_10_diff1 value: 48.7018 - type: nauc_mrr_at_20_max value: 43.7826 - type: nauc_mrr_at_20_std value: -4.8502 - type: nauc_mrr_at_20_diff1 value: 48.5755 - type: nauc_mrr_at_100_max value: 43.7991 - type: nauc_mrr_at_100_std value: -4.8094 - type: nauc_mrr_at_100_diff1 value: 48.7361 - type: nauc_mrr_at_1000_max value: 43.8348 - type: nauc_mrr_at_1000_std value: -4.7897 - type: nauc_mrr_at_1000_diff1 value: 48.7638 - type: main_score value: 41.801 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackWebmastersRetrieval (default) revision: 160c094312a0e1facb97e55eeddb698c0abe3571 split: test type: mteb/cqadupstack-webmasters metrics: - type: ndcg_at_1 value: 30.631999999999998 - type: ndcg_at_3 value: 34.528999999999996 - type: ndcg_at_5 value: 36.547000000000004 - type: ndcg_at_10 value: 40.105000000000004 - type: ndcg_at_20 value: 42.34 - type: ndcg_at_100 value: 45.712 - type: ndcg_at_1000 value: 48.314 - type: map_at_1 value: 25.19 - type: map_at_3 value: 30.656 - type: map_at_5 value: 32.161 - type: map_at_10 value: 33.928000000000004 - type: map_at_20 value: 34.782999999999994 - type: map_at_100 value: 35.493 - type: map_at_1000 value: 35.713 - type: recall_at_1 value: 25.19 - type: recall_at_3 value: 36.007 - type: recall_at_5 value: 41.772 - type: recall_at_10 value: 52.117999999999995 - type: recall_at_20 value: 60.458 - type: recall_at_100 value: 77.34400000000001 - type: recall_at_1000 value: 93.77 - type: precision_at_1 value: 30.631999999999998 - type: precision_at_3 value: 15.942 - type: precision_at_5 value: 11.462 - type: precision_at_10 value: 7.826 - type: precision_at_20 value: 4.9799999999999995 - type: precision_at_100 value: 1.528 - type: precision_at_1000 value: 0.242 - type: mrr_at_1 value: 30.632399999999997 - type: mrr_at_3 value: 35.8037 - type: mrr_at_5 value: 37.2661 - type: mrr_at_10 value: 38.8381 - type: mrr_at_20 value: 39.4229 - type: mrr_at_100 value: 39.7673 - type: mrr_at_1000 value: 39.8227 - type: nauc_ndcg_at_1_max value: 45.7418 - type: nauc_ndcg_at_1_std value: 7.7497 - type: nauc_ndcg_at_1_diff1 value: 47.656 - type: nauc_ndcg_at_3_max value: 45.6597 - type: nauc_ndcg_at_3_std value: 9.6418 - type: nauc_ndcg_at_3_diff1 value: 43.1631 - type: nauc_ndcg_at_5_max value: 44.893100000000004 - type: nauc_ndcg_at_5_std value: 12.2393 - type: nauc_ndcg_at_5_diff1 value: 42.7159 - type: nauc_ndcg_at_10_max value: 43.6388 - type: nauc_ndcg_at_10_std value: 12.0574 - type: nauc_ndcg_at_10_diff1 value: 41.4018 - type: nauc_ndcg_at_20_max value: 43.8549 - type: nauc_ndcg_at_20_std value: 14.065900000000001 - type: nauc_ndcg_at_20_diff1 value: 41.056 - type: nauc_ndcg_at_100_max value: 44.770700000000005 - type: nauc_ndcg_at_100_std value: 14.8343 - type: nauc_ndcg_at_100_diff1 value: 42.2405 - type: nauc_ndcg_at_1000_max value: 45.524100000000004 - type: nauc_ndcg_at_1000_std value: 14.578199999999999 - type: nauc_ndcg_at_1000_diff1 value: 42.3126 - type: nauc_map_at_1_max value: 44.1517 - type: nauc_map_at_1_std value: 3.4579 - type: nauc_map_at_1_diff1 value: 53.915 - type: nauc_map_at_3_max value: 45.8324 - type: nauc_map_at_3_std value: 6.8385 - type: nauc_map_at_3_diff1 value: 47.8444 - type: nauc_map_at_5_max value: 45.4063 - type: nauc_map_at_5_std value: 8.3539 - type: nauc_map_at_5_diff1 value: 47.0671 - type: nauc_map_at_10_max value: 45.0727 - type: nauc_map_at_10_std value: 8.6699 - type: nauc_map_at_10_diff1 value: 46.050200000000004 - type: nauc_map_at_20_max value: 45.2504 - type: nauc_map_at_20_std value: 9.7359 - type: nauc_map_at_20_diff1 value: 45.711200000000005 - type: nauc_map_at_100_max value: 45.2055 - type: nauc_map_at_100_std value: 10.2755 - type: nauc_map_at_100_diff1 value: 45.5556 - type: nauc_map_at_1000_max value: 45.1304 - type: nauc_map_at_1000_std value: 10.3956 - type: nauc_map_at_1000_diff1 value: 45.4084 - type: nauc_recall_at_1_max value: 44.1517 - type: nauc_recall_at_1_std value: 3.4579 - type: nauc_recall_at_1_diff1 value: 53.915 - type: nauc_recall_at_3_max value: 44.349199999999996 - type: nauc_recall_at_3_std value: 9.464599999999999 - type: nauc_recall_at_3_diff1 value: 41.302499999999995 - type: nauc_recall_at_5_max value: 42.2726 - type: nauc_recall_at_5_std value: 14.7778 - type: nauc_recall_at_5_diff1 value: 38.1663 - type: nauc_recall_at_10_max value: 37.0689 - type: nauc_recall_at_10_std value: 14.760699999999998 - type: nauc_recall_at_10_diff1 value: 32.1674 - type: nauc_recall_at_20_max value: 36.1879 - type: nauc_recall_at_20_std value: 22.6902 - type: nauc_recall_at_20_diff1 value: 28.933999999999997 - type: nauc_recall_at_100_max value: 38.5222 - type: nauc_recall_at_100_std value: 31.595299999999998 - type: nauc_recall_at_100_diff1 value: 30.495499999999996 - type: nauc_recall_at_1000_max value: 59.5012 - type: nauc_recall_at_1000_std value: 61.421499999999995 - type: nauc_recall_at_1000_diff1 value: 30.153000000000002 - type: nauc_precision_at_1_max value: 45.7418 - type: nauc_precision_at_1_std value: 7.7497 - type: nauc_precision_at_1_diff1 value: 47.656 - type: nauc_precision_at_3_max value: 41.5197 - type: nauc_precision_at_3_std value: 14.416200000000002 - type: nauc_precision_at_3_diff1 value: 27.4448 - type: nauc_precision_at_5_max value: 37.372699999999995 - type: nauc_precision_at_5_std value: 20.4825 - type: nauc_precision_at_5_diff1 value: 20.4335 - type: nauc_precision_at_10_max value: 26.792899999999996 - type: nauc_precision_at_10_std value: 20.895 - type: nauc_precision_at_10_diff1 value: 6.9729 - type: nauc_precision_at_20_max value: 19.3562 - type: nauc_precision_at_20_std value: 26.9338 - type: nauc_precision_at_20_diff1 value: -2.5024 - type: nauc_precision_at_100_max value: 2.6254 - type: nauc_precision_at_100_std value: 24.4194 - type: nauc_precision_at_100_diff1 value: -14.6956 - type: nauc_precision_at_1000_max value: -7.0939000000000005 - type: nauc_precision_at_1000_std value: 17.2116 - type: nauc_precision_at_1000_diff1 value: -23.3519 - type: nauc_mrr_at_1_max value: 45.7418 - type: nauc_mrr_at_1_std value: 7.7497 - type: nauc_mrr_at_1_diff1 value: 47.656 - type: nauc_mrr_at_3_max value: 44.974799999999995 - type: nauc_mrr_at_3_std value: 10.0484 - type: nauc_mrr_at_3_diff1 value: 42.5053 - type: nauc_mrr_at_5_max value: 45.0004 - type: nauc_mrr_at_5_std value: 11.505700000000001 - type: nauc_mrr_at_5_diff1 value: 42.0568 - type: nauc_mrr_at_10_max value: 44.5236 - type: nauc_mrr_at_10_std value: 11.6009 - type: nauc_mrr_at_10_diff1 value: 41.5394 - type: nauc_mrr_at_20_max value: 44.568400000000004 - type: nauc_mrr_at_20_std value: 11.9612 - type: nauc_mrr_at_20_diff1 value: 41.4954 - type: nauc_mrr_at_100_max value: 44.6377 - type: nauc_mrr_at_100_std value: 12.0293 - type: nauc_mrr_at_100_diff1 value: 41.6504 - type: nauc_mrr_at_1000_max value: 44.650099999999995 - type: nauc_mrr_at_1000_std value: 12.0106 - type: nauc_mrr_at_1000_diff1 value: 41.6595 - type: main_score value: 40.105000000000004 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackWordpressRetrieval (default) revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 split: test type: mteb/cqadupstack-wordpress metrics: - type: ndcg_at_1 value: 21.811 - type: ndcg_at_3 value: 27.472 - type: ndcg_at_5 value: 29.755 - type: ndcg_at_10 value: 32.561 - type: ndcg_at_20 value: 34.708 - type: ndcg_at_100 value: 38.052 - type: ndcg_at_1000 value: 40.526 - type: map_at_1 value: 20.339 - type: map_at_3 value: 25.358000000000004 - type: map_at_5 value: 26.682 - type: map_at_10 value: 27.935 - type: map_at_20 value: 28.536 - type: map_at_100 value: 29.038000000000004 - type: map_at_1000 value: 29.149 - type: recall_at_1 value: 20.339 - type: recall_at_3 value: 31.682 - type: recall_at_5 value: 36.962 - type: recall_at_10 value: 45.095 - type: recall_at_20 value: 53.25 - type: recall_at_100 value: 70.155 - type: recall_at_1000 value: 88.177 - type: precision_at_1 value: 21.811 - type: precision_at_3 value: 11.706999999999999 - type: precision_at_5 value: 8.429 - type: precision_at_10 value: 5.25 - type: precision_at_20 value: 3.1419999999999995 - type: precision_at_100 value: 0.8540000000000001 - type: precision_at_1000 value: 0.117 - type: mrr_at_1 value: 21.8115 - type: mrr_at_3 value: 27.1411 - type: mrr_at_5 value: 28.490399999999998 - type: mrr_at_10 value: 29.616500000000002 - type: mrr_at_20 value: 30.215999999999998 - type: mrr_at_100 value: 30.6966 - type: mrr_at_1000 value: 30.767899999999997 - type: nauc_ndcg_at_1_max value: 32.8162 - type: nauc_ndcg_at_1_std value: -4.388199999999999 - type: nauc_ndcg_at_1_diff1 value: 44.436 - type: nauc_ndcg_at_3_max value: 28.517 - type: nauc_ndcg_at_3_std value: -4.3836 - type: nauc_ndcg_at_3_diff1 value: 35.7606 - type: nauc_ndcg_at_5_max value: 28.68 - type: nauc_ndcg_at_5_std value: -3.0216 - type: nauc_ndcg_at_5_diff1 value: 35.27 - type: nauc_ndcg_at_10_max value: 26.572200000000002 - type: nauc_ndcg_at_10_std value: -3.8319 - type: nauc_ndcg_at_10_diff1 value: 33.311099999999996 - type: nauc_ndcg_at_20_max value: 26.7196 - type: nauc_ndcg_at_20_std value: -1.3162 - type: nauc_ndcg_at_20_diff1 value: 32.202999999999996 - type: nauc_ndcg_at_100_max value: 28.8134 - type: nauc_ndcg_at_100_std value: -0.2386 - type: nauc_ndcg_at_100_diff1 value: 31.5089 - type: nauc_ndcg_at_1000_max value: 28.732799999999997 - type: nauc_ndcg_at_1000_std value: 0.6251 - type: nauc_ndcg_at_1000_diff1 value: 32.1837 - type: nauc_map_at_1_max value: 29.4829 - type: nauc_map_at_1_std value: -6.0044 - type: nauc_map_at_1_diff1 value: 43.3353 - type: nauc_map_at_3_max value: 28.230499999999996 - type: nauc_map_at_3_std value: -5.0899 - type: nauc_map_at_3_diff1 value: 37.3547 - type: nauc_map_at_5_max value: 28.7927 - type: nauc_map_at_5_std value: -4.254899999999999 - type: nauc_map_at_5_diff1 value: 37.1805 - type: nauc_map_at_10_max value: 28.1557 - type: nauc_map_at_10_std value: -4.4931 - type: nauc_map_at_10_diff1 value: 36.2513 - type: nauc_map_at_20_max value: 28.205799999999996 - type: nauc_map_at_20_std value: -3.6852000000000005 - type: nauc_map_at_20_diff1 value: 35.9099 - type: nauc_map_at_100_max value: 28.604499999999998 - type: nauc_map_at_100_std value: -3.4775 - type: nauc_map_at_100_diff1 value: 35.802 - type: nauc_map_at_1000_max value: 28.6008 - type: nauc_map_at_1000_std value: -3.4255 - type: nauc_map_at_1000_diff1 value: 35.8238 - type: nauc_recall_at_1_max value: 29.4829 - type: nauc_recall_at_1_std value: -6.0044 - type: nauc_recall_at_1_diff1 value: 43.3353 - type: nauc_recall_at_3_max value: 25.4695 - type: nauc_recall_at_3_std value: -4.3068 - type: nauc_recall_at_3_diff1 value: 30.2776 - type: nauc_recall_at_5_max value: 25.901400000000002 - type: nauc_recall_at_5_std value: -1.4424 - type: nauc_recall_at_5_diff1 value: 29.3842 - type: nauc_recall_at_10_max value: 19.203200000000002 - type: nauc_recall_at_10_std value: -3.8822 - type: nauc_recall_at_10_diff1 value: 24.0215 - type: nauc_recall_at_20_max value: 18.9758 - type: nauc_recall_at_20_std value: 4.9965 - type: nauc_recall_at_20_diff1 value: 19.5423 - type: nauc_recall_at_100_max value: 27.7916 - type: nauc_recall_at_100_std value: 13.4764 - type: nauc_recall_at_100_diff1 value: 11.1211 - type: nauc_recall_at_1000_max value: 28.3949 - type: nauc_recall_at_1000_std value: 41.7299 - type: nauc_recall_at_1000_diff1 value: 4.0583 - type: nauc_precision_at_1_max value: 32.8162 - type: nauc_precision_at_1_std value: -4.388199999999999 - type: nauc_precision_at_1_diff1 value: 44.436 - type: nauc_precision_at_3_max value: 28.614 - type: nauc_precision_at_3_std value: -1.5110000000000001 - type: nauc_precision_at_3_diff1 value: 30.165 - type: nauc_precision_at_5_max value: 29.49 - type: nauc_precision_at_5_std value: 3.3188000000000004 - type: nauc_precision_at_5_diff1 value: 27.6501 - type: nauc_precision_at_10_max value: 24.334500000000002 - type: nauc_precision_at_10_std value: 3.4701000000000004 - type: nauc_precision_at_10_diff1 value: 20.4126 - type: nauc_precision_at_20_max value: 23.4494 - type: nauc_precision_at_20_std value: 14.380799999999999 - type: nauc_precision_at_20_diff1 value: 12.5855 - type: nauc_precision_at_100_max value: 25.5811 - type: nauc_precision_at_100_std value: 21.0337 - type: nauc_precision_at_100_diff1 value: 0.1621 - type: nauc_precision_at_1000_max value: 1.3693 - type: nauc_precision_at_1000_std value: 22.288 - type: nauc_precision_at_1000_diff1 value: -18.3564 - type: nauc_mrr_at_1_max value: 32.8162 - type: nauc_mrr_at_1_std value: -4.388199999999999 - type: nauc_mrr_at_1_diff1 value: 44.436 - type: nauc_mrr_at_3_max value: 31.5259 - type: nauc_mrr_at_3_std value: -3.6585 - type: nauc_mrr_at_3_diff1 value: 38.5309 - type: nauc_mrr_at_5_max value: 31.1784 - type: nauc_mrr_at_5_std value: -2.5462 - type: nauc_mrr_at_5_diff1 value: 37.9675 - type: nauc_mrr_at_10_max value: 30.0497 - type: nauc_mrr_at_10_std value: -3.0947999999999998 - type: nauc_mrr_at_10_diff1 value: 37.0458 - type: nauc_mrr_at_20_max value: 30.082900000000002 - type: nauc_mrr_at_20_std value: -2.6054 - type: nauc_mrr_at_20_diff1 value: 36.774499999999996 - type: nauc_mrr_at_100_max value: 30.424200000000003 - type: nauc_mrr_at_100_std value: -2.5341 - type: nauc_mrr_at_100_diff1 value: 36.7384 - type: nauc_mrr_at_1000_max value: 30.4217 - type: nauc_mrr_at_1000_std value: -2.4978 - type: nauc_mrr_at_1000_diff1 value: 36.7847 - type: main_score value: 32.561 task: type: Retrieval - dataset: config: default name: MTEB ClimateFEVER (default) revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 split: test type: mteb/climate-fever metrics: - type: ndcg_at_1 value: 23.388 - type: ndcg_at_3 value: 20.198 - type: ndcg_at_5 value: 21.959 - type: ndcg_at_10 value: 24.97 - type: ndcg_at_20 value: 27.26 - type: ndcg_at_100 value: 31.244 - type: ndcg_at_1000 value: 34.694 - type: map_at_1 value: 10.738 - type: map_at_3 value: 14.707 - type: map_at_5 value: 16.123 - type: map_at_10 value: 17.45 - type: map_at_20 value: 18.251 - type: map_at_100 value: 18.979 - type: map_at_1000 value: 19.154 - type: recall_at_1 value: 10.738 - type: recall_at_3 value: 18.590999999999998 - type: recall_at_5 value: 23.427 - type: recall_at_10 value: 30.144 - type: recall_at_20 value: 36.586999999999996 - type: recall_at_100 value: 51.757 - type: recall_at_1000 value: 71.353 - type: precision_at_1 value: 23.388 - type: precision_at_3 value: 14.527999999999999 - type: precision_at_5 value: 11.375 - type: precision_at_10 value: 7.674 - type: precision_at_20 value: 4.824 - type: precision_at_100 value: 1.4460000000000002 - type: precision_at_1000 value: 0.208 - type: mrr_at_1 value: 23.3876 - type: mrr_at_3 value: 30.640600000000003 - type: mrr_at_5 value: 32.7416 - type: mrr_at_10 value: 34.2082 - type: mrr_at_20 value: 34.696 - type: mrr_at_100 value: 35.0613 - type: mrr_at_1000 value: 35.1158 - type: nauc_ndcg_at_1_max value: 34.0809 - type: nauc_ndcg_at_1_std value: 11.4587 - type: nauc_ndcg_at_1_diff1 value: 24.7702 - type: nauc_ndcg_at_3_max value: 36.7061 - type: nauc_ndcg_at_3_std value: 15.8194 - type: nauc_ndcg_at_3_diff1 value: 22.0991 - type: nauc_ndcg_at_5_max value: 40.0278 - type: nauc_ndcg_at_5_std value: 19.442 - type: nauc_ndcg_at_5_diff1 value: 22.0353 - type: nauc_ndcg_at_10_max value: 41.8522 - type: nauc_ndcg_at_10_std value: 22.2665 - type: nauc_ndcg_at_10_diff1 value: 21.9219 - type: nauc_ndcg_at_20_max value: 42.111599999999996 - type: nauc_ndcg_at_20_std value: 24.7003 - type: nauc_ndcg_at_20_diff1 value: 21.1493 - type: nauc_ndcg_at_100_max value: 41.4285 - type: nauc_ndcg_at_100_std value: 26.8766 - type: nauc_ndcg_at_100_diff1 value: 20.658 - type: nauc_ndcg_at_1000_max value: 41.7107 - type: nauc_ndcg_at_1000_std value: 27.8879 - type: nauc_ndcg_at_1000_diff1 value: 20.249 - type: nauc_map_at_1_max value: 39.0907 - type: nauc_map_at_1_std value: 10.9155 - type: nauc_map_at_1_diff1 value: 27.478799999999996 - type: nauc_map_at_3_max value: 39.1964 - type: nauc_map_at_3_std value: 14.1844 - type: nauc_map_at_3_diff1 value: 24.5869 - type: nauc_map_at_5_max value: 40.8907 - type: nauc_map_at_5_std value: 16.6955 - type: nauc_map_at_5_diff1 value: 24.1453 - type: nauc_map_at_10_max value: 41.8968 - type: nauc_map_at_10_std value: 18.4835 - type: nauc_map_at_10_diff1 value: 24.0071 - type: nauc_map_at_20_max value: 42.1779 - type: nauc_map_at_20_std value: 19.831599999999998 - type: nauc_map_at_20_diff1 value: 23.6712 - type: nauc_map_at_100_max value: 42.0617 - type: nauc_map_at_100_std value: 20.524700000000003 - type: nauc_map_at_100_diff1 value: 23.5193 - type: nauc_map_at_1000_max value: 42.080400000000004 - type: nauc_map_at_1000_std value: 20.6099 - type: nauc_map_at_1000_diff1 value: 23.48 - type: nauc_recall_at_1_max value: 39.0907 - type: nauc_recall_at_1_std value: 10.9155 - type: nauc_recall_at_1_diff1 value: 27.478799999999996 - type: nauc_recall_at_3_max value: 36.479099999999995 - type: nauc_recall_at_3_std value: 16.370199999999997 - type: nauc_recall_at_3_diff1 value: 21.0061 - type: nauc_recall_at_5_max value: 39.3227 - type: nauc_recall_at_5_std value: 21.753800000000002 - type: nauc_recall_at_5_diff1 value: 18.6069 - type: nauc_recall_at_10_max value: 40.7894 - type: nauc_recall_at_10_std value: 25.6917 - type: nauc_recall_at_10_diff1 value: 17.7339 - type: nauc_recall_at_20_max value: 39.6829 - type: nauc_recall_at_20_std value: 30.0384 - type: nauc_recall_at_20_diff1 value: 15.3931 - type: nauc_recall_at_100_max value: 34.9178 - type: nauc_recall_at_100_std value: 34.6884 - type: nauc_recall_at_100_diff1 value: 13.1482 - type: nauc_recall_at_1000_max value: 34.3804 - type: nauc_recall_at_1000_std value: 41.778 - type: nauc_recall_at_1000_diff1 value: 9.3052 - type: nauc_precision_at_1_max value: 34.0809 - type: nauc_precision_at_1_std value: 11.4587 - type: nauc_precision_at_1_diff1 value: 24.7702 - type: nauc_precision_at_3_max value: 31.784000000000002 - type: nauc_precision_at_3_std value: 18.567700000000002 - type: nauc_precision_at_3_diff1 value: 16.1653 - type: nauc_precision_at_5_max value: 34.9086 - type: nauc_precision_at_5_std value: 25.0212 - type: nauc_precision_at_5_diff1 value: 14.2787 - type: nauc_precision_at_10_max value: 35.1734 - type: nauc_precision_at_10_std value: 30.2243 - type: nauc_precision_at_10_diff1 value: 11.4396 - type: nauc_precision_at_20_max value: 31.347599999999996 - type: nauc_precision_at_20_std value: 33.2444 - type: nauc_precision_at_20_diff1 value: 8.0151 - type: nauc_precision_at_100_max value: 21.0705 - type: nauc_precision_at_100_std value: 33.561800000000005 - type: nauc_precision_at_100_diff1 value: 3.1647000000000003 - type: nauc_precision_at_1000_max value: 10.1267 - type: nauc_precision_at_1000_std value: 28.746199999999998 - type: nauc_precision_at_1000_diff1 value: -4.6774000000000004 - type: nauc_mrr_at_1_max value: 34.0809 - type: nauc_mrr_at_1_std value: 11.4587 - type: nauc_mrr_at_1_diff1 value: 24.7702 - type: nauc_mrr_at_3_max value: 33.799 - type: nauc_mrr_at_3_std value: 16.0923 - type: nauc_mrr_at_3_diff1 value: 20.8456 - type: nauc_mrr_at_5_max value: 35.1249 - type: nauc_mrr_at_5_std value: 17.8145 - type: nauc_mrr_at_5_diff1 value: 20.467299999999998 - type: nauc_mrr_at_10_max value: 35.856500000000004 - type: nauc_mrr_at_10_std value: 18.4864 - type: nauc_mrr_at_10_diff1 value: 20.6532 - type: nauc_mrr_at_20_max value: 35.787200000000006 - type: nauc_mrr_at_20_std value: 18.607599999999998 - type: nauc_mrr_at_20_diff1 value: 20.6192 - type: nauc_mrr_at_100_max value: 35.7134 - type: nauc_mrr_at_100_std value: 18.5964 - type: nauc_mrr_at_100_diff1 value: 20.5979 - type: nauc_mrr_at_1000_max value: 35.713499999999996 - type: nauc_mrr_at_1000_std value: 18.5792 - type: nauc_mrr_at_1000_diff1 value: 20.610300000000002 - type: main_score value: 24.97 task: type: Retrieval - dataset: config: default name: MTEB CodeFeedbackMT (default) revision: b0f12fa0c0dd67f59c95a5c33d02aeeb4c398c5f split: test type: CoIR-Retrieval/codefeedback-mt metrics: - type: ndcg_at_1 value: 15.403 - type: ndcg_at_3 value: 20.087 - type: ndcg_at_5 value: 21.72 - type: ndcg_at_10 value: 23.458000000000002 - type: ndcg_at_20 value: 24.990000000000002 - type: ndcg_at_100 value: 27.933000000000003 - type: ndcg_at_1000 value: 30.642999999999997 - type: map_at_1 value: 15.403 - type: map_at_3 value: 18.925 - type: map_at_5 value: 19.832 - type: map_at_10 value: 20.549999999999997 - type: map_at_20 value: 20.97 - type: map_at_100 value: 21.358 - type: map_at_1000 value: 21.447 - type: recall_at_1 value: 15.403 - type: recall_at_3 value: 23.454 - type: recall_at_5 value: 27.416 - type: recall_at_10 value: 32.786 - type: recall_at_20 value: 38.849000000000004 - type: recall_at_100 value: 54.99699999999999 - type: recall_at_1000 value: 77.096 - type: precision_at_1 value: 15.403 - type: precision_at_3 value: 7.818 - type: precision_at_5 value: 5.483 - type: precision_at_10 value: 3.279 - type: precision_at_20 value: 1.942 - type: precision_at_100 value: 0.5499999999999999 - type: precision_at_1000 value: 0.077 - type: mrr_at_1 value: 15.4026 - type: mrr_at_3 value: 18.925 - type: mrr_at_5 value: 19.8322 - type: mrr_at_10 value: 20.5497 - type: mrr_at_20 value: 20.9696 - type: mrr_at_100 value: 21.3582 - type: mrr_at_1000 value: 21.4471 - type: nauc_ndcg_at_1_max value: 14.524799999999999 - type: nauc_ndcg_at_1_std value: -14.704500000000001 - type: nauc_ndcg_at_1_diff1 value: 45.3337 - type: nauc_ndcg_at_3_max value: 12.3014 - type: nauc_ndcg_at_3_std value: -14.977199999999998 - type: nauc_ndcg_at_3_diff1 value: 37.6118 - type: nauc_ndcg_at_5_max value: 12.015099999999999 - type: nauc_ndcg_at_5_std value: -14.844399999999998 - type: nauc_ndcg_at_5_diff1 value: 36.439 - type: nauc_ndcg_at_10_max value: 11.886800000000001 - type: nauc_ndcg_at_10_std value: -14.274600000000001 - type: nauc_ndcg_at_10_diff1 value: 35.0552 - type: nauc_ndcg_at_20_max value: 11.843 - type: nauc_ndcg_at_20_std value: -13.729099999999999 - type: nauc_ndcg_at_20_diff1 value: 34.172999999999995 - type: nauc_ndcg_at_100_max value: 12.570700000000002 - type: nauc_ndcg_at_100_std value: -11.956999999999999 - type: nauc_ndcg_at_100_diff1 value: 33.5916 - type: nauc_ndcg_at_1000_max value: 13.3025 - type: nauc_ndcg_at_1000_std value: -10.6411 - type: nauc_ndcg_at_1000_diff1 value: 33.535900000000005 - type: nauc_map_at_1_max value: 14.524799999999999 - type: nauc_map_at_1_std value: -14.704500000000001 - type: nauc_map_at_1_diff1 value: 45.3337 - type: nauc_map_at_3_max value: 12.7833 - type: nauc_map_at_3_std value: -14.9312 - type: nauc_map_at_3_diff1 value: 39.2273 - type: nauc_map_at_5_max value: 12.606200000000001 - type: nauc_map_at_5_std value: -14.846200000000001 - type: nauc_map_at_5_diff1 value: 38.5015 - type: nauc_map_at_10_max value: 12.5202 - type: nauc_map_at_10_std value: -14.5979 - type: nauc_map_at_10_diff1 value: 37.8521 - type: nauc_map_at_20_max value: 12.5101 - type: nauc_map_at_20_std value: -14.444899999999999 - type: nauc_map_at_20_diff1 value: 37.5942 - type: nauc_map_at_100_max value: 12.601399999999998 - type: nauc_map_at_100_std value: -14.2092 - type: nauc_map_at_100_diff1 value: 37.4992 - type: nauc_map_at_1000_max value: 12.6334 - type: nauc_map_at_1000_std value: -14.1545 - type: nauc_map_at_1000_diff1 value: 37.4959 - type: nauc_recall_at_1_max value: 14.524799999999999 - type: nauc_recall_at_1_std value: -14.704500000000001 - type: nauc_recall_at_1_diff1 value: 45.3337 - type: nauc_recall_at_3_max value: 11.0823 - type: nauc_recall_at_3_std value: -15.088899999999999 - type: nauc_recall_at_3_diff1 value: 33.5456 - type: nauc_recall_at_5_max value: 10.5617 - type: nauc_recall_at_5_std value: -14.8289 - type: nauc_recall_at_5_diff1 value: 31.3732 - type: nauc_recall_at_10_max value: 10.4061 - type: nauc_recall_at_10_std value: -13.3346 - type: nauc_recall_at_10_diff1 value: 28.131099999999996 - type: nauc_recall_at_20_max value: 10.2817 - type: nauc_recall_at_20_std value: -11.5314 - type: nauc_recall_at_20_diff1 value: 25.3998 - type: nauc_recall_at_100_max value: 13.818 - type: nauc_recall_at_100_std value: -2.6188 - type: nauc_recall_at_100_diff1 value: 22.0747 - type: nauc_recall_at_1000_max value: 21.893099999999997 - type: nauc_recall_at_1000_std value: 16.1546 - type: nauc_recall_at_1000_diff1 value: 15.1476 - type: nauc_precision_at_1_max value: 14.524799999999999 - type: nauc_precision_at_1_std value: -14.704500000000001 - type: nauc_precision_at_1_diff1 value: 45.3337 - type: nauc_precision_at_3_max value: 11.0823 - type: nauc_precision_at_3_std value: -15.088899999999999 - type: nauc_precision_at_3_diff1 value: 33.5456 - type: nauc_precision_at_5_max value: 10.5617 - type: nauc_precision_at_5_std value: -14.8289 - type: nauc_precision_at_5_diff1 value: 31.3732 - type: nauc_precision_at_10_max value: 10.4061 - type: nauc_precision_at_10_std value: -13.3346 - type: nauc_precision_at_10_diff1 value: 28.131099999999996 - type: nauc_precision_at_20_max value: 10.2817 - type: nauc_precision_at_20_std value: -11.5314 - type: nauc_precision_at_20_diff1 value: 25.3998 - type: nauc_precision_at_100_max value: 13.818 - type: nauc_precision_at_100_std value: -2.6188 - type: nauc_precision_at_100_diff1 value: 22.0747 - type: nauc_precision_at_1000_max value: 21.893099999999997 - type: nauc_precision_at_1000_std value: 16.1546 - type: nauc_precision_at_1000_diff1 value: 15.1476 - type: nauc_mrr_at_1_max value: 14.524799999999999 - type: nauc_mrr_at_1_std value: -14.704500000000001 - type: nauc_mrr_at_1_diff1 value: 45.3337 - type: nauc_mrr_at_3_max value: 12.7833 - type: nauc_mrr_at_3_std value: -14.9312 - type: nauc_mrr_at_3_diff1 value: 39.2273 - type: nauc_mrr_at_5_max value: 12.606200000000001 - type: nauc_mrr_at_5_std value: -14.846200000000001 - type: nauc_mrr_at_5_diff1 value: 38.5015 - type: nauc_mrr_at_10_max value: 12.5202 - type: nauc_mrr_at_10_std value: -14.5979 - type: nauc_mrr_at_10_diff1 value: 37.8521 - type: nauc_mrr_at_20_max value: 12.5101 - type: nauc_mrr_at_20_std value: -14.444899999999999 - type: nauc_mrr_at_20_diff1 value: 37.5942 - type: nauc_mrr_at_100_max value: 12.601399999999998 - type: nauc_mrr_at_100_std value: -14.2092 - type: nauc_mrr_at_100_diff1 value: 37.4992 - type: nauc_mrr_at_1000_max value: 12.6334 - type: nauc_mrr_at_1000_std value: -14.1545 - type: nauc_mrr_at_1000_diff1 value: 37.4959 - type: main_score value: 23.458000000000002 task: type: Retrieval - dataset: config: default name: MTEB CodeFeedbackST (default) revision: d213819e87aab9010628da8b73ab4eb337c89340 split: test type: CoIR-Retrieval/codefeedback-st metrics: - type: ndcg_at_1 value: 42.781000000000006 - type: ndcg_at_3 value: 53.547999999999995 - type: ndcg_at_5 value: 56.184999999999995 - type: ndcg_at_10 value: 58.455 - type: ndcg_at_20 value: 59.897 - type: ndcg_at_100 value: 61.806000000000004 - type: ndcg_at_1000 value: 62.769 - type: map_at_1 value: 42.781000000000006 - type: map_at_3 value: 50.92100000000001 - type: map_at_5 value: 52.38699999999999 - type: map_at_10 value: 53.335 - type: map_at_20 value: 53.733 - type: map_at_100 value: 53.998999999999995 - type: map_at_1000 value: 54.035 - type: recall_at_1 value: 42.781000000000006 - type: recall_at_3 value: 61.141999999999996 - type: recall_at_5 value: 67.533 - type: recall_at_10 value: 74.491 - type: recall_at_20 value: 80.17999999999999 - type: recall_at_100 value: 90.443 - type: recall_at_1000 value: 98.051 - type: precision_at_1 value: 42.781000000000006 - type: precision_at_3 value: 20.381 - type: precision_at_5 value: 13.507 - type: precision_at_10 value: 7.449 - type: precision_at_20 value: 4.009 - type: precision_at_100 value: 0.9039999999999999 - type: precision_at_1000 value: 0.098 - type: mrr_at_1 value: 42.8193 - type: mrr_at_3 value: 50.9333 - type: mrr_at_5 value: 52.4157 - type: mrr_at_10 value: 53.3551 - type: mrr_at_20 value: 53.7532 - type: mrr_at_100 value: 54.0192 - type: mrr_at_1000 value: 54.0547 - type: nauc_ndcg_at_1_max value: 8.1476 - type: nauc_ndcg_at_1_std value: -18.415599999999998 - type: nauc_ndcg_at_1_diff1 value: 61.467499999999994 - type: nauc_ndcg_at_3_max value: 14.5702 - type: nauc_ndcg_at_3_std value: -18.4765 - type: nauc_ndcg_at_3_diff1 value: 54.7928 - type: nauc_ndcg_at_5_max value: 15.2642 - type: nauc_ndcg_at_5_std value: -18.2014 - type: nauc_ndcg_at_5_diff1 value: 53.9847 - type: nauc_ndcg_at_10_max value: 15.0742 - type: nauc_ndcg_at_10_std value: -17.8811 - type: nauc_ndcg_at_10_diff1 value: 53.9565 - type: nauc_ndcg_at_20_max value: 14.7067 - type: nauc_ndcg_at_20_std value: -17.618000000000002 - type: nauc_ndcg_at_20_diff1 value: 54.041399999999996 - type: nauc_ndcg_at_100_max value: 14.4373 - type: nauc_ndcg_at_100_std value: -17.1309 - type: nauc_ndcg_at_100_diff1 value: 54.5959 - type: nauc_ndcg_at_1000_max value: 14.1768 - type: nauc_ndcg_at_1000_std value: -17.2829 - type: nauc_ndcg_at_1000_diff1 value: 55.053799999999995 - type: nauc_map_at_1_max value: 8.1476 - type: nauc_map_at_1_std value: -18.415599999999998 - type: nauc_map_at_1_diff1 value: 61.467499999999994 - type: nauc_map_at_3_max value: 12.961400000000001 - type: nauc_map_at_3_std value: -18.4454 - type: nauc_map_at_3_diff1 value: 56.42 - type: nauc_map_at_5_max value: 13.295599999999999 - type: nauc_map_at_5_std value: -18.293599999999998 - type: nauc_map_at_5_diff1 value: 56.033 - type: nauc_map_at_10_max value: 13.189600000000002 - type: nauc_map_at_10_std value: -18.169 - type: nauc_map_at_10_diff1 value: 56.0467 - type: nauc_map_at_20_max value: 13.0847 - type: nauc_map_at_20_std value: -18.1099 - type: nauc_map_at_20_diff1 value: 56.0909 - type: nauc_map_at_100_max value: 13.0384 - type: nauc_map_at_100_std value: -18.0582 - type: nauc_map_at_100_diff1 value: 56.1735 - type: nauc_map_at_1000_max value: 13.03 - type: nauc_map_at_1000_std value: -18.0598 - type: nauc_map_at_1000_diff1 value: 56.1901 - type: nauc_recall_at_1_max value: 8.1476 - type: nauc_recall_at_1_std value: -18.415599999999998 - type: nauc_recall_at_1_diff1 value: 61.467499999999994 - type: nauc_recall_at_3_max value: 19.6416 - type: nauc_recall_at_3_std value: -18.582099999999997 - type: nauc_recall_at_3_diff1 value: 49.6845 - type: nauc_recall_at_5_max value: 22.2239 - type: nauc_recall_at_5_std value: -17.847099999999998 - type: nauc_recall_at_5_diff1 value: 46.739999999999995 - type: nauc_recall_at_10_max value: 22.8276 - type: nauc_recall_at_10_std value: -16.486600000000003 - type: nauc_recall_at_10_diff1 value: 45.2586 - type: nauc_recall_at_20_max value: 22.2364 - type: nauc_recall_at_20_std value: -14.5036 - type: nauc_recall_at_20_diff1 value: 43.7903 - type: nauc_recall_at_100_max value: 25.254700000000003 - type: nauc_recall_at_100_std value: -3.9357 - type: nauc_recall_at_100_diff1 value: 42.6367 - type: nauc_recall_at_1000_max value: 38.3787 - type: nauc_recall_at_1000_std value: 27.075100000000003 - type: nauc_recall_at_1000_diff1 value: 44.277 - type: nauc_precision_at_1_max value: 8.1476 - type: nauc_precision_at_1_std value: -18.415599999999998 - type: nauc_precision_at_1_diff1 value: 61.467499999999994 - type: nauc_precision_at_3_max value: 19.6416 - type: nauc_precision_at_3_std value: -18.582099999999997 - type: nauc_precision_at_3_diff1 value: 49.6845 - type: nauc_precision_at_5_max value: 22.2239 - type: nauc_precision_at_5_std value: -17.847099999999998 - type: nauc_precision_at_5_diff1 value: 46.739999999999995 - type: nauc_precision_at_10_max value: 22.8276 - type: nauc_precision_at_10_std value: -16.486600000000003 - type: nauc_precision_at_10_diff1 value: 45.2586 - type: nauc_precision_at_20_max value: 22.2364 - type: nauc_precision_at_20_std value: -14.5036 - type: nauc_precision_at_20_diff1 value: 43.7903 - type: nauc_precision_at_100_max value: 25.254700000000003 - type: nauc_precision_at_100_std value: -3.9357 - type: nauc_precision_at_100_diff1 value: 42.6367 - type: nauc_precision_at_1000_max value: 38.3787 - type: nauc_precision_at_1000_std value: 27.075100000000003 - type: nauc_precision_at_1000_diff1 value: 44.277 - type: nauc_mrr_at_1_max value: 7.7336 - type: nauc_mrr_at_1_std value: -18.2617 - type: nauc_mrr_at_1_diff1 value: 61.3653 - type: nauc_mrr_at_3_max value: 12.6751 - type: nauc_mrr_at_3_std value: -18.3779 - type: nauc_mrr_at_3_diff1 value: 56.383 - type: nauc_mrr_at_5_max value: 13.031200000000002 - type: nauc_mrr_at_5_std value: -18.252499999999998 - type: nauc_mrr_at_5_diff1 value: 55.9734 - type: nauc_mrr_at_10_max value: 12.934399999999998 - type: nauc_mrr_at_10_std value: -18.0918 - type: nauc_mrr_at_10_diff1 value: 55.9883 - type: nauc_mrr_at_20_max value: 12.8271 - type: nauc_mrr_at_20_std value: -18.0345 - type: nauc_mrr_at_20_diff1 value: 56.033100000000005 - type: nauc_mrr_at_100_max value: 12.7798 - type: nauc_mrr_at_100_std value: -17.983 - type: nauc_mrr_at_100_diff1 value: 56.115700000000004 - type: nauc_mrr_at_1000_max value: 12.771099999999999 - type: nauc_mrr_at_1000_std value: -17.9844 - type: nauc_mrr_at_1000_diff1 value: 56.1323 - type: main_score value: 58.455 task: type: Retrieval - dataset: config: python name: MTEB CodeSearchNetCCRetrieval (python) revision: 6e1effa2c03723c5fde48ee912b5ee08d4f211e8 split: test type: CoIR-Retrieval/CodeSearchNet-ccr metrics: - type: ndcg_at_1 value: 29.32 - type: ndcg_at_3 value: 37.202 - type: ndcg_at_5 value: 39.399 - type: ndcg_at_10 value: 41.583 - type: ndcg_at_20 value: 43.156 - type: ndcg_at_100 value: 45.506 - type: ndcg_at_1000 value: 47.28 - type: map_at_1 value: 29.32 - type: map_at_3 value: 35.266999999999996 - type: map_at_5 value: 36.489 - type: map_at_10 value: 37.399 - type: map_at_20 value: 37.829 - type: map_at_100 value: 38.149 - type: map_at_1000 value: 38.208 - type: recall_at_1 value: 29.32 - type: recall_at_3 value: 42.801 - type: recall_at_5 value: 48.123 - type: recall_at_10 value: 54.82599999999999 - type: recall_at_20 value: 61.06700000000001 - type: recall_at_100 value: 73.817 - type: recall_at_1000 value: 88.189 - type: precision_at_1 value: 29.32 - type: precision_at_3 value: 14.267 - type: precision_at_5 value: 9.625 - type: precision_at_10 value: 5.483 - type: precision_at_20 value: 3.053 - type: precision_at_100 value: 0.738 - type: precision_at_1000 value: 0.08800000000000001 - type: mrr_at_1 value: 29.3203 - type: mrr_at_3 value: 35.2661 - type: mrr_at_5 value: 36.4878 - type: mrr_at_10 value: 37.398399999999995 - type: mrr_at_20 value: 37.8278 - type: mrr_at_100 value: 38.1474 - type: mrr_at_1000 value: 38.2072 - type: nauc_ndcg_at_1_max value: 27.608 - type: nauc_ndcg_at_1_std value: -0.1578 - type: nauc_ndcg_at_1_diff1 value: 50.7213 - type: nauc_ndcg_at_3_max value: 28.488799999999998 - type: nauc_ndcg_at_3_std value: 0.8798 - type: nauc_ndcg_at_3_diff1 value: 46.4513 - type: nauc_ndcg_at_5_max value: 28.2088 - type: nauc_ndcg_at_5_std value: 1.536 - type: nauc_ndcg_at_5_diff1 value: 45.5291 - type: nauc_ndcg_at_10_max value: 28.076600000000003 - type: nauc_ndcg_at_10_std value: 2.4101999999999997 - type: nauc_ndcg_at_10_diff1 value: 45.0789 - type: nauc_ndcg_at_20_max value: 28.1814 - type: nauc_ndcg_at_20_std value: 3.1981999999999995 - type: nauc_ndcg_at_20_diff1 value: 44.8012 - type: nauc_ndcg_at_100_max value: 27.9818 - type: nauc_ndcg_at_100_std value: 3.8790999999999998 - type: nauc_ndcg_at_100_diff1 value: 44.7506 - type: nauc_ndcg_at_1000_max value: 28.1483 - type: nauc_ndcg_at_1000_std value: 3.8562 - type: nauc_ndcg_at_1000_diff1 value: 45.1726 - type: nauc_map_at_1_max value: 27.608 - type: nauc_map_at_1_std value: -0.1578 - type: nauc_map_at_1_diff1 value: 50.7213 - type: nauc_map_at_3_max value: 28.3097 - type: nauc_map_at_3_std value: 0.6224000000000001 - type: nauc_map_at_3_diff1 value: 47.4366 - type: nauc_map_at_5_max value: 28.157500000000002 - type: nauc_map_at_5_std value: 0.9838 - type: nauc_map_at_5_diff1 value: 46.9294 - type: nauc_map_at_10_max value: 28.097 - type: nauc_map_at_10_std value: 1.3426 - type: nauc_map_at_10_diff1 value: 46.7574 - type: nauc_map_at_20_max value: 28.124100000000002 - type: nauc_map_at_20_std value: 1.5459 - type: nauc_map_at_20_diff1 value: 46.6828 - type: nauc_map_at_100_max value: 28.0887 - type: nauc_map_at_100_std value: 1.6311 - type: nauc_map_at_100_diff1 value: 46.684599999999996 - type: nauc_map_at_1000_max value: 28.0938 - type: nauc_map_at_1000_std value: 1.6345999999999998 - type: nauc_map_at_1000_diff1 value: 46.6979 - type: nauc_recall_at_1_max value: 27.608 - type: nauc_recall_at_1_std value: -0.1578 - type: nauc_recall_at_1_diff1 value: 50.7213 - type: nauc_recall_at_3_max value: 28.982000000000003 - type: nauc_recall_at_3_std value: 1.6101 - type: nauc_recall_at_3_diff1 value: 43.6847 - type: nauc_recall_at_5_max value: 28.297800000000002 - type: nauc_recall_at_5_std value: 3.2162 - type: nauc_recall_at_5_diff1 value: 41.402899999999995 - type: nauc_recall_at_10_max value: 27.915499999999998 - type: nauc_recall_at_10_std value: 6.0788 - type: nauc_recall_at_10_diff1 value: 39.7106 - type: nauc_recall_at_20_max value: 28.3661 - type: nauc_recall_at_20_std value: 9.8068 - type: nauc_recall_at_20_diff1 value: 38.153 - type: nauc_recall_at_100_max value: 27.114300000000004 - type: nauc_recall_at_100_std value: 17.0125 - type: nauc_recall_at_100_diff1 value: 35.6053 - type: nauc_recall_at_1000_max value: 29.8655 - type: nauc_recall_at_1000_std value: 28.480800000000002 - type: nauc_recall_at_1000_diff1 value: 35.9375 - type: nauc_precision_at_1_max value: 27.608 - type: nauc_precision_at_1_std value: -0.1578 - type: nauc_precision_at_1_diff1 value: 50.7213 - type: nauc_precision_at_3_max value: 28.982000000000003 - type: nauc_precision_at_3_std value: 1.6101 - type: nauc_precision_at_3_diff1 value: 43.6847 - type: nauc_precision_at_5_max value: 28.297800000000002 - type: nauc_precision_at_5_std value: 3.2162 - type: nauc_precision_at_5_diff1 value: 41.402899999999995 - type: nauc_precision_at_10_max value: 27.915499999999998 - type: nauc_precision_at_10_std value: 6.0788 - type: nauc_precision_at_10_diff1 value: 39.7106 - type: nauc_precision_at_20_max value: 28.3661 - type: nauc_precision_at_20_std value: 9.8068 - type: nauc_precision_at_20_diff1 value: 38.153 - type: nauc_precision_at_100_max value: 27.114300000000004 - type: nauc_precision_at_100_std value: 17.0125 - type: nauc_precision_at_100_diff1 value: 35.6053 - type: nauc_precision_at_1000_max value: 29.8655 - type: nauc_precision_at_1000_std value: 28.480800000000002 - type: nauc_precision_at_1000_diff1 value: 35.9375 - type: nauc_mrr_at_1_max value: 27.608 - type: nauc_mrr_at_1_std value: -0.1578 - type: nauc_mrr_at_1_diff1 value: 50.7213 - type: nauc_mrr_at_3_max value: 28.310200000000002 - type: nauc_mrr_at_3_std value: 0.6187 - type: nauc_mrr_at_3_diff1 value: 47.4396 - type: nauc_mrr_at_5_max value: 28.1581 - type: nauc_mrr_at_5_std value: 0.9801000000000001 - type: nauc_mrr_at_5_diff1 value: 46.9325 - type: nauc_mrr_at_10_max value: 28.097499999999997 - type: nauc_mrr_at_10_std value: 1.3393 - type: nauc_mrr_at_10_diff1 value: 46.760600000000004 - type: nauc_mrr_at_20_max value: 28.124700000000004 - type: nauc_mrr_at_20_std value: 1.5427 - type: nauc_mrr_at_20_diff1 value: 46.686 - type: nauc_mrr_at_100_max value: 28.0893 - type: nauc_mrr_at_100_std value: 1.6274 - type: nauc_mrr_at_100_diff1 value: 46.6879 - type: nauc_mrr_at_1000_max value: 28.0943 - type: nauc_mrr_at_1000_std value: 1.6312 - type: nauc_mrr_at_1000_diff1 value: 46.7012 - type: main_score value: 41.583 task: type: Retrieval - dataset: config: javascript name: MTEB CodeSearchNetCCRetrieval (javascript) revision: 6e1effa2c03723c5fde48ee912b5ee08d4f211e8 split: test type: CoIR-Retrieval/CodeSearchNet-ccr metrics: - type: ndcg_at_1 value: 30.294999999999998 - type: ndcg_at_3 value: 38.102000000000004 - type: ndcg_at_5 value: 40.164 - type: ndcg_at_10 value: 42.041000000000004 - type: ndcg_at_20 value: 43.464000000000006 - type: ndcg_at_100 value: 45.791 - type: ndcg_at_1000 value: 47.689 - type: map_at_1 value: 30.294999999999998 - type: map_at_3 value: 36.19 - type: map_at_5 value: 37.332 - type: map_at_10 value: 38.112 - type: map_at_20 value: 38.507999999999996 - type: map_at_100 value: 38.812999999999995 - type: map_at_1000 value: 38.875 - type: recall_at_1 value: 30.294999999999998 - type: recall_at_3 value: 43.634 - type: recall_at_5 value: 48.648 - type: recall_at_10 value: 54.421 - type: recall_at_20 value: 60.012 - type: recall_at_100 value: 72.80499999999999 - type: recall_at_1000 value: 88.271 - type: precision_at_1 value: 30.294999999999998 - type: precision_at_3 value: 14.545 - type: precision_at_5 value: 9.73 - type: precision_at_10 value: 5.442 - type: precision_at_20 value: 3.001 - type: precision_at_100 value: 0.728 - type: precision_at_1000 value: 0.08800000000000001 - type: mrr_at_1 value: 30.294700000000002 - type: mrr_at_3 value: 36.1845 - type: mrr_at_5 value: 37.3271 - type: mrr_at_10 value: 38.1071 - type: mrr_at_20 value: 38.502700000000004 - type: mrr_at_100 value: 38.8081 - type: mrr_at_1000 value: 38.8701 - type: nauc_ndcg_at_1_max value: 26.3264 - type: nauc_ndcg_at_1_std value: -4.8982 - type: nauc_ndcg_at_1_diff1 value: 50.14189999999999 - type: nauc_ndcg_at_3_max value: 27.4968 - type: nauc_ndcg_at_3_std value: -4.1065 - type: nauc_ndcg_at_3_diff1 value: 46.0956 - type: nauc_ndcg_at_5_max value: 28.409299999999998 - type: nauc_ndcg_at_5_std value: -3.7853 - type: nauc_ndcg_at_5_diff1 value: 45.6748 - type: nauc_ndcg_at_10_max value: 27.942 - type: nauc_ndcg_at_10_std value: -3.3216 - type: nauc_ndcg_at_10_diff1 value: 44.6236 - type: nauc_ndcg_at_20_max value: 27.47 - type: nauc_ndcg_at_20_std value: -3.1514 - type: nauc_ndcg_at_20_diff1 value: 44.74 - type: nauc_ndcg_at_100_max value: 27.4711 - type: nauc_ndcg_at_100_std value: -3.0054999999999996 - type: nauc_ndcg_at_100_diff1 value: 44.5073 - type: nauc_ndcg_at_1000_max value: 27.7016 - type: nauc_ndcg_at_1000_std value: -3.0528 - type: nauc_ndcg_at_1000_diff1 value: 44.8851 - type: nauc_map_at_1_max value: 26.3264 - type: nauc_map_at_1_std value: -4.8982 - type: nauc_map_at_1_diff1 value: 50.14189999999999 - type: nauc_map_at_3_max value: 27.279500000000002 - type: nauc_map_at_3_std value: -4.2798 - type: nauc_map_at_3_diff1 value: 47.0454 - type: nauc_map_at_5_max value: 27.776600000000002 - type: nauc_map_at_5_std value: -4.1068 - type: nauc_map_at_5_diff1 value: 46.8171 - type: nauc_map_at_10_max value: 27.589399999999998 - type: nauc_map_at_10_std value: -3.8844 - type: nauc_map_at_10_diff1 value: 46.4013 - type: nauc_map_at_20_max value: 27.455099999999998 - type: nauc_map_at_20_std value: -3.8475 - type: nauc_map_at_20_diff1 value: 46.4395 - type: nauc_map_at_100_max value: 27.470299999999998 - type: nauc_map_at_100_std value: -3.8240000000000003 - type: nauc_map_at_100_diff1 value: 46.4176 - type: nauc_map_at_1000_max value: 27.473 - type: nauc_map_at_1000_std value: -3.8289999999999997 - type: nauc_map_at_1000_diff1 value: 46.427 - type: nauc_recall_at_1_max value: 26.3264 - type: nauc_recall_at_1_std value: -4.8982 - type: nauc_recall_at_1_diff1 value: 50.14189999999999 - type: nauc_recall_at_3_max value: 28.089599999999997 - type: nauc_recall_at_3_std value: -3.6197 - type: nauc_recall_at_3_diff1 value: 43.4007 - type: nauc_recall_at_5_max value: 30.3494 - type: nauc_recall_at_5_std value: -2.8134 - type: nauc_recall_at_5_diff1 value: 42.3267 - type: nauc_recall_at_10_max value: 28.9106 - type: nauc_recall_at_10_std value: -1.4690999999999999 - type: nauc_recall_at_10_diff1 value: 38.7477 - type: nauc_recall_at_20_max value: 27.0023 - type: nauc_recall_at_20_std value: -0.5613 - type: nauc_recall_at_20_diff1 value: 38.874700000000004 - type: nauc_recall_at_100_max value: 26.4945 - type: nauc_recall_at_100_std value: 1.1353 - type: nauc_recall_at_100_diff1 value: 35.297200000000004 - type: nauc_recall_at_1000_max value: 31.464100000000002 - type: nauc_recall_at_1000_std value: 5.16 - type: nauc_recall_at_1000_diff1 value: 34.5536 - type: nauc_precision_at_1_max value: 26.3264 - type: nauc_precision_at_1_std value: -4.8982 - type: nauc_precision_at_1_diff1 value: 50.14189999999999 - type: nauc_precision_at_3_max value: 28.089599999999997 - type: nauc_precision_at_3_std value: -3.6197 - type: nauc_precision_at_3_diff1 value: 43.4007 - type: nauc_precision_at_5_max value: 30.3494 - type: nauc_precision_at_5_std value: -2.8134 - type: nauc_precision_at_5_diff1 value: 42.3267 - type: nauc_precision_at_10_max value: 28.9106 - type: nauc_precision_at_10_std value: -1.4690999999999999 - type: nauc_precision_at_10_diff1 value: 38.7477 - type: nauc_precision_at_20_max value: 27.0023 - type: nauc_precision_at_20_std value: -0.5613 - type: nauc_precision_at_20_diff1 value: 38.874700000000004 - type: nauc_precision_at_100_max value: 26.4945 - type: nauc_precision_at_100_std value: 1.1353 - type: nauc_precision_at_100_diff1 value: 35.297200000000004 - type: nauc_precision_at_1000_max value: 31.464100000000002 - type: nauc_precision_at_1000_std value: 5.16 - type: nauc_precision_at_1000_diff1 value: 34.5536 - type: nauc_mrr_at_1_max value: 26.464199999999998 - type: nauc_mrr_at_1_std value: -4.6967 - type: nauc_mrr_at_1_diff1 value: 50.14189999999999 - type: nauc_mrr_at_3_max value: 27.3495 - type: nauc_mrr_at_3_std value: -4.1872 - type: nauc_mrr_at_3_diff1 value: 47.0534 - type: nauc_mrr_at_5_max value: 27.8469 - type: nauc_mrr_at_5_std value: -4.0137 - type: nauc_mrr_at_5_diff1 value: 46.8252 - type: nauc_mrr_at_10_max value: 27.660200000000003 - type: nauc_mrr_at_10_std value: -3.7907 - type: nauc_mrr_at_10_diff1 value: 46.4094 - type: nauc_mrr_at_20_max value: 27.526699999999998 - type: nauc_mrr_at_20_std value: -3.7532 - type: nauc_mrr_at_20_diff1 value: 46.448 - type: nauc_mrr_at_100_max value: 27.5422 - type: nauc_mrr_at_100_std value: -3.7292 - type: nauc_mrr_at_100_diff1 value: 46.4261 - type: nauc_mrr_at_1000_max value: 27.544999999999998 - type: nauc_mrr_at_1000_std value: -3.734 - type: nauc_mrr_at_1000_diff1 value: 46.435500000000005 - type: main_score value: 42.041000000000004 task: type: Retrieval - dataset: config: go name: MTEB CodeSearchNetCCRetrieval (go) revision: 6e1effa2c03723c5fde48ee912b5ee08d4f211e8 split: test type: CoIR-Retrieval/CodeSearchNet-ccr metrics: - type: ndcg_at_1 value: 23.615 - type: ndcg_at_3 value: 29.892999999999997 - type: ndcg_at_5 value: 31.953 - type: ndcg_at_10 value: 33.861000000000004 - type: ndcg_at_20 value: 35.402 - type: ndcg_at_100 value: 37.891000000000005 - type: ndcg_at_1000 value: 40.036 - type: map_at_1 value: 23.615 - type: map_at_3 value: 28.366999999999997 - type: map_at_5 value: 29.511 - type: map_at_10 value: 30.304 - type: map_at_20 value: 30.732 - type: map_at_100 value: 31.062 - type: map_at_1000 value: 31.133 - type: recall_at_1 value: 23.615 - type: recall_at_3 value: 34.302 - type: recall_at_5 value: 39.301 - type: recall_at_10 value: 45.174 - type: recall_at_20 value: 51.231 - type: recall_at_100 value: 64.849 - type: recall_at_1000 value: 82.307 - type: precision_at_1 value: 23.615 - type: precision_at_3 value: 11.434 - type: precision_at_5 value: 7.86 - type: precision_at_10 value: 4.517 - type: precision_at_20 value: 2.562 - type: precision_at_100 value: 0.6479999999999999 - type: precision_at_1000 value: 0.082 - type: mrr_at_1 value: 23.5902 - type: mrr_at_3 value: 28.353 - type: mrr_at_5 value: 29.4987 - type: mrr_at_10 value: 30.292099999999998 - type: mrr_at_20 value: 30.72 - type: mrr_at_100 value: 31.049599999999998 - type: mrr_at_1000 value: 31.120399999999997 - type: nauc_ndcg_at_1_max value: 29.1258 - type: nauc_ndcg_at_1_std value: 1.0401 - type: nauc_ndcg_at_1_diff1 value: 47.328199999999995 - type: nauc_ndcg_at_3_max value: 27.8848 - type: nauc_ndcg_at_3_std value: 0.2671 - type: nauc_ndcg_at_3_diff1 value: 41.4436 - type: nauc_ndcg_at_5_max value: 27.475300000000004 - type: nauc_ndcg_at_5_std value: -0.1773 - type: nauc_ndcg_at_5_diff1 value: 40.184999999999995 - type: nauc_ndcg_at_10_max value: 27.1682 - type: nauc_ndcg_at_10_std value: -0.0666 - type: nauc_ndcg_at_10_diff1 value: 39.698 - type: nauc_ndcg_at_20_max value: 26.822699999999998 - type: nauc_ndcg_at_20_std value: 0.3046 - type: nauc_ndcg_at_20_diff1 value: 39.0465 - type: nauc_ndcg_at_100_max value: 26.55 - type: nauc_ndcg_at_100_std value: 0.9386 - type: nauc_ndcg_at_100_diff1 value: 38.4816 - type: nauc_ndcg_at_1000_max value: 26.8464 - type: nauc_ndcg_at_1000_std value: 1.601 - type: nauc_ndcg_at_1000_diff1 value: 38.75 - type: nauc_map_at_1_max value: 29.1258 - type: nauc_map_at_1_std value: 1.0401 - type: nauc_map_at_1_diff1 value: 47.328199999999995 - type: nauc_map_at_3_max value: 28.1313 - type: nauc_map_at_3_std value: 0.4596 - type: nauc_map_at_3_diff1 value: 42.743199999999995 - type: nauc_map_at_5_max value: 27.91 - type: nauc_map_at_5_std value: 0.1926 - type: nauc_map_at_5_diff1 value: 42.0283 - type: nauc_map_at_10_max value: 27.7964 - type: nauc_map_at_10_std value: 0.2326 - type: nauc_map_at_10_diff1 value: 41.8324 - type: nauc_map_at_20_max value: 27.6958 - type: nauc_map_at_20_std value: 0.3369 - type: nauc_map_at_20_diff1 value: 41.6458 - type: nauc_map_at_100_max value: 27.6475 - type: nauc_map_at_100_std value: 0.4118 - type: nauc_map_at_100_diff1 value: 41.5667 - type: nauc_map_at_1000_max value: 27.654899999999998 - type: nauc_map_at_1000_std value: 0.43439999999999995 - type: nauc_map_at_1000_diff1 value: 41.578199999999995 - type: nauc_recall_at_1_max value: 29.1258 - type: nauc_recall_at_1_std value: 1.0401 - type: nauc_recall_at_1_diff1 value: 47.328199999999995 - type: nauc_recall_at_3_max value: 27.232200000000002 - type: nauc_recall_at_3_std value: -0.25980000000000003 - type: nauc_recall_at_3_diff1 value: 37.946200000000005 - type: nauc_recall_at_5_max value: 26.266000000000002 - type: nauc_recall_at_5_std value: -1.2084 - type: nauc_recall_at_5_diff1 value: 35.1318 - type: nauc_recall_at_10_max value: 25.2762 - type: nauc_recall_at_10_std value: -0.8635 - type: nauc_recall_at_10_diff1 value: 33.6001 - type: nauc_recall_at_20_max value: 23.9389 - type: nauc_recall_at_20_std value: 0.5331 - type: nauc_recall_at_20_diff1 value: 30.9907 - type: nauc_recall_at_100_max value: 21.9631 - type: nauc_recall_at_100_std value: 4.6604 - type: nauc_recall_at_100_diff1 value: 26.1225 - type: nauc_recall_at_1000_max value: 23.450699999999998 - type: nauc_recall_at_1000_std value: 17.0092 - type: nauc_recall_at_1000_diff1 value: 21.3813 - type: nauc_precision_at_1_max value: 29.1258 - type: nauc_precision_at_1_std value: 1.0401 - type: nauc_precision_at_1_diff1 value: 47.328199999999995 - type: nauc_precision_at_3_max value: 27.232200000000002 - type: nauc_precision_at_3_std value: -0.25980000000000003 - type: nauc_precision_at_3_diff1 value: 37.946200000000005 - type: nauc_precision_at_5_max value: 26.266000000000002 - type: nauc_precision_at_5_std value: -1.2084 - type: nauc_precision_at_5_diff1 value: 35.1318 - type: nauc_precision_at_10_max value: 25.2762 - type: nauc_precision_at_10_std value: -0.8635 - type: nauc_precision_at_10_diff1 value: 33.6001 - type: nauc_precision_at_20_max value: 23.9389 - type: nauc_precision_at_20_std value: 0.5331 - type: nauc_precision_at_20_diff1 value: 30.9907 - type: nauc_precision_at_100_max value: 21.9631 - type: nauc_precision_at_100_std value: 4.6604 - type: nauc_precision_at_100_diff1 value: 26.1225 - type: nauc_precision_at_1000_max value: 23.450699999999998 - type: nauc_precision_at_1000_std value: 17.0092 - type: nauc_precision_at_1000_diff1 value: 21.3813 - type: nauc_mrr_at_1_max value: 29.1731 - type: nauc_mrr_at_1_std value: 1.0801 - type: nauc_mrr_at_1_diff1 value: 47.429 - type: nauc_mrr_at_3_max value: 28.1768 - type: nauc_mrr_at_3_std value: 0.4919 - type: nauc_mrr_at_3_diff1 value: 42.830200000000005 - type: nauc_mrr_at_5_max value: 27.9396 - type: nauc_mrr_at_5_std value: 0.2168 - type: nauc_mrr_at_5_diff1 value: 42.0956 - type: nauc_mrr_at_10_max value: 27.8301 - type: nauc_mrr_at_10_std value: 0.2567 - type: nauc_mrr_at_10_diff1 value: 41.8926 - type: nauc_mrr_at_20_max value: 27.7297 - type: nauc_mrr_at_20_std value: 0.3648 - type: nauc_mrr_at_20_diff1 value: 41.7068 - type: nauc_mrr_at_100_max value: 27.6788 - type: nauc_mrr_at_100_std value: 0.43550000000000005 - type: nauc_mrr_at_100_diff1 value: 41.626000000000005 - type: nauc_mrr_at_1000_max value: 27.6876 - type: nauc_mrr_at_1000_std value: 0.4594 - type: nauc_mrr_at_1000_diff1 value: 41.6377 - type: main_score value: 33.861000000000004 task: type: Retrieval - dataset: config: ruby name: MTEB CodeSearchNetCCRetrieval (ruby) revision: 6e1effa2c03723c5fde48ee912b5ee08d4f211e8 split: test type: CoIR-Retrieval/CodeSearchNet-ccr metrics: - type: ndcg_at_1 value: 32.99 - type: ndcg_at_3 value: 40.416999999999994 - type: ndcg_at_5 value: 42.492000000000004 - type: ndcg_at_10 value: 44.528 - type: ndcg_at_20 value: 46.135999999999996 - type: ndcg_at_100 value: 48.33 - type: ndcg_at_1000 value: 50.047 - type: map_at_1 value: 32.99 - type: map_at_3 value: 38.647 - type: map_at_5 value: 39.789 - type: map_at_10 value: 40.62 - type: map_at_20 value: 41.062 - type: map_at_100 value: 41.366 - type: map_at_1000 value: 41.422 - type: recall_at_1 value: 32.99 - type: recall_at_3 value: 45.519 - type: recall_at_5 value: 50.595 - type: recall_at_10 value: 56.93899999999999 - type: recall_at_20 value: 63.283 - type: recall_at_100 value: 75.099 - type: recall_at_1000 value: 89.13600000000001 - type: precision_at_1 value: 32.99 - type: precision_at_3 value: 15.173 - type: precision_at_5 value: 10.119 - type: precision_at_10 value: 5.694 - type: precision_at_20 value: 3.164 - type: precision_at_100 value: 0.751 - type: precision_at_1000 value: 0.089 - type: mrr_at_1 value: 33.068999999999996 - type: mrr_at_3 value: 38.6862 - type: mrr_at_5 value: 39.8282 - type: mrr_at_10 value: 40.6593 - type: mrr_at_20 value: 41.1016 - type: mrr_at_100 value: 41.4058 - type: mrr_at_1000 value: 41.4614 - type: nauc_ndcg_at_1_max value: 34.985699999999994 - type: nauc_ndcg_at_1_std value: -7.5317 - type: nauc_ndcg_at_1_diff1 value: 55.82899999999999 - type: nauc_ndcg_at_3_max value: 34.3163 - type: nauc_ndcg_at_3_std value: -7.0863 - type: nauc_ndcg_at_3_diff1 value: 50.0509 - type: nauc_ndcg_at_5_max value: 33.7316 - type: nauc_ndcg_at_5_std value: -7.3946 - type: nauc_ndcg_at_5_diff1 value: 48.7525 - type: nauc_ndcg_at_10_max value: 34.6192 - type: nauc_ndcg_at_10_std value: -6.7839 - type: nauc_ndcg_at_10_diff1 value: 48.6166 - type: nauc_ndcg_at_20_max value: 34.334399999999995 - type: nauc_ndcg_at_20_std value: -7.0675 - type: nauc_ndcg_at_20_diff1 value: 48.0635 - type: nauc_ndcg_at_100_max value: 34.6406 - type: nauc_ndcg_at_100_std value: -6.8653 - type: nauc_ndcg_at_100_diff1 value: 48.617 - type: nauc_ndcg_at_1000_max value: 34.2365 - type: nauc_ndcg_at_1000_std value: -7.0976 - type: nauc_ndcg_at_1000_diff1 value: 48.464200000000005 - type: nauc_map_at_1_max value: 34.985699999999994 - type: nauc_map_at_1_std value: -7.5317 - type: nauc_map_at_1_diff1 value: 55.82899999999999 - type: nauc_map_at_3_max value: 34.577000000000005 - type: nauc_map_at_3_std value: -7.1427000000000005 - type: nauc_map_at_3_diff1 value: 51.4256 - type: nauc_map_at_5_max value: 34.2296 - type: nauc_map_at_5_std value: -7.322299999999999 - type: nauc_map_at_5_diff1 value: 50.709700000000005 - type: nauc_map_at_10_max value: 34.633900000000004 - type: nauc_map_at_10_std value: -7.056900000000001 - type: nauc_map_at_10_diff1 value: 50.714099999999995 - type: nauc_map_at_20_max value: 34.5386 - type: nauc_map_at_20_std value: -7.142900000000001 - type: nauc_map_at_20_diff1 value: 50.568900000000006 - type: nauc_map_at_100_max value: 34.5697 - type: nauc_map_at_100_std value: -7.1189 - type: nauc_map_at_100_diff1 value: 50.6351 - type: nauc_map_at_1000_max value: 34.558499999999995 - type: nauc_map_at_1000_std value: -7.1173 - type: nauc_map_at_1000_diff1 value: 50.6277 - type: nauc_recall_at_1_max value: 34.985699999999994 - type: nauc_recall_at_1_std value: -7.5317 - type: nauc_recall_at_1_diff1 value: 55.82899999999999 - type: nauc_recall_at_3_max value: 33.5265 - type: nauc_recall_at_3_std value: -6.9448 - type: nauc_recall_at_3_diff1 value: 46.1063 - type: nauc_recall_at_5_max value: 32.1817 - type: nauc_recall_at_5_std value: -7.6609 - type: nauc_recall_at_5_diff1 value: 42.8551 - type: nauc_recall_at_10_max value: 34.7502 - type: nauc_recall_at_10_std value: -5.7719 - type: nauc_recall_at_10_diff1 value: 41.7549 - type: nauc_recall_at_20_max value: 33.6546 - type: nauc_recall_at_20_std value: -6.862500000000001 - type: nauc_recall_at_20_diff1 value: 38.6947 - type: nauc_recall_at_100_max value: 36.095699999999994 - type: nauc_recall_at_100_std value: -5.2094000000000005 - type: nauc_recall_at_100_diff1 value: 40.336800000000004 - type: nauc_recall_at_1000_max value: 27.8549 - type: nauc_recall_at_1000_std value: -10.570699999999999 - type: nauc_recall_at_1000_diff1 value: 28.6812 - type: nauc_precision_at_1_max value: 34.985699999999994 - type: nauc_precision_at_1_std value: -7.5317 - type: nauc_precision_at_1_diff1 value: 55.82899999999999 - type: nauc_precision_at_3_max value: 33.5265 - type: nauc_precision_at_3_std value: -6.9448 - type: nauc_precision_at_3_diff1 value: 46.1063 - type: nauc_precision_at_5_max value: 32.1817 - type: nauc_precision_at_5_std value: -7.6609 - type: nauc_precision_at_5_diff1 value: 42.8551 - type: nauc_precision_at_10_max value: 34.7502 - type: nauc_precision_at_10_std value: -5.7719 - type: nauc_precision_at_10_diff1 value: 41.7549 - type: nauc_precision_at_20_max value: 33.6546 - type: nauc_precision_at_20_std value: -6.862500000000001 - type: nauc_precision_at_20_diff1 value: 38.6947 - type: nauc_precision_at_100_max value: 36.095699999999994 - type: nauc_precision_at_100_std value: -5.2094000000000005 - type: nauc_precision_at_100_diff1 value: 40.336800000000004 - type: nauc_precision_at_1000_max value: 27.8549 - type: nauc_precision_at_1000_std value: -10.570699999999999 - type: nauc_precision_at_1000_diff1 value: 28.6812 - type: nauc_mrr_at_1_max value: 35.099599999999995 - type: nauc_mrr_at_1_std value: -7.268199999999999 - type: nauc_mrr_at_1_diff1 value: 55.5813 - type: nauc_mrr_at_3_max value: 34.6335 - type: nauc_mrr_at_3_std value: -7.012300000000001 - type: nauc_mrr_at_3_diff1 value: 51.3038 - type: nauc_mrr_at_5_max value: 34.2864 - type: nauc_mrr_at_5_std value: -7.1912 - type: nauc_mrr_at_5_diff1 value: 50.5873 - type: nauc_mrr_at_10_max value: 34.6912 - type: nauc_mrr_at_10_std value: -6.9247000000000005 - type: nauc_mrr_at_10_diff1 value: 50.5908 - type: nauc_mrr_at_20_max value: 34.596199999999996 - type: nauc_mrr_at_20_std value: -7.01 - type: nauc_mrr_at_20_diff1 value: 50.4448 - type: nauc_mrr_at_100_max value: 34.6274 - type: nauc_mrr_at_100_std value: -6.984999999999999 - type: nauc_mrr_at_100_diff1 value: 50.510200000000005 - type: nauc_mrr_at_1000_max value: 34.6163 - type: nauc_mrr_at_1000_std value: -6.9832 - type: nauc_mrr_at_1000_diff1 value: 50.5026 - type: main_score value: 44.528 task: type: Retrieval - dataset: config: java name: MTEB CodeSearchNetCCRetrieval (java) revision: 6e1effa2c03723c5fde48ee912b5ee08d4f211e8 split: test type: CoIR-Retrieval/CodeSearchNet-ccr metrics: - type: ndcg_at_1 value: 26.407999999999998 - type: ndcg_at_3 value: 33.356 - type: ndcg_at_5 value: 35.143 - type: ndcg_at_10 value: 37.008 - type: ndcg_at_20 value: 38.394 - type: ndcg_at_100 value: 40.726 - type: ndcg_at_1000 value: 42.648 - type: map_at_1 value: 26.407999999999998 - type: map_at_3 value: 31.663000000000004 - type: map_at_5 value: 32.651 - type: map_at_10 value: 33.424 - type: map_at_20 value: 33.808 - type: map_at_100 value: 34.121 - type: map_at_1000 value: 34.184 - type: recall_at_1 value: 26.407999999999998 - type: recall_at_3 value: 38.247 - type: recall_at_5 value: 42.602000000000004 - type: recall_at_10 value: 48.352000000000004 - type: recall_at_20 value: 53.811 - type: recall_at_100 value: 66.508 - type: recall_at_1000 value: 82.173 - type: precision_at_1 value: 26.407999999999998 - type: precision_at_3 value: 12.748999999999999 - type: precision_at_5 value: 8.52 - type: precision_at_10 value: 4.835 - type: precision_at_20 value: 2.691 - type: precision_at_100 value: 0.6649999999999999 - type: precision_at_1000 value: 0.082 - type: mrr_at_1 value: 26.4263 - type: mrr_at_3 value: 31.673499999999997 - type: mrr_at_5 value: 32.6607 - type: mrr_at_10 value: 33.4314 - type: mrr_at_20 value: 33.8153 - type: mrr_at_100 value: 34.1293 - type: mrr_at_1000 value: 34.192499999999995 - type: nauc_ndcg_at_1_max value: 29.026600000000002 - type: nauc_ndcg_at_1_std value: -5.3401 - type: nauc_ndcg_at_1_diff1 value: 51.7505 - type: nauc_ndcg_at_3_max value: 30.0657 - type: nauc_ndcg_at_3_std value: -4.2413 - type: nauc_ndcg_at_3_diff1 value: 46.476600000000005 - type: nauc_ndcg_at_5_max value: 29.7155 - type: nauc_ndcg_at_5_std value: -3.8619 - type: nauc_ndcg_at_5_diff1 value: 45.5131 - type: nauc_ndcg_at_10_max value: 29.4459 - type: nauc_ndcg_at_10_std value: -3.3680000000000003 - type: nauc_ndcg_at_10_diff1 value: 44.6258 - type: nauc_ndcg_at_20_max value: 29.135499999999997 - type: nauc_ndcg_at_20_std value: -3.0517 - type: nauc_ndcg_at_20_diff1 value: 44.1 - type: nauc_ndcg_at_100_max value: 29.131400000000003 - type: nauc_ndcg_at_100_std value: -2.03 - type: nauc_ndcg_at_100_diff1 value: 43.7972 - type: nauc_ndcg_at_1000_max value: 29.285099999999996 - type: nauc_ndcg_at_1000_std value: -1.9141 - type: nauc_ndcg_at_1000_diff1 value: 44.1738 - type: nauc_map_at_1_max value: 29.026600000000002 - type: nauc_map_at_1_std value: -5.3401 - type: nauc_map_at_1_diff1 value: 51.7505 - type: nauc_map_at_3_max value: 29.8237 - type: nauc_map_at_3_std value: -4.5517 - type: nauc_map_at_3_diff1 value: 47.6757 - type: nauc_map_at_5_max value: 29.624200000000002 - type: nauc_map_at_5_std value: -4.338100000000001 - type: nauc_map_at_5_diff1 value: 47.1309 - type: nauc_map_at_10_max value: 29.5078 - type: nauc_map_at_10_std value: -4.1374 - type: nauc_map_at_10_diff1 value: 46.7589 - type: nauc_map_at_20_max value: 29.421000000000003 - type: nauc_map_at_20_std value: -4.0543000000000005 - type: nauc_map_at_20_diff1 value: 46.6131 - type: nauc_map_at_100_max value: 29.411199999999997 - type: nauc_map_at_100_std value: -3.9336 - type: nauc_map_at_100_diff1 value: 46.578199999999995 - type: nauc_map_at_1000_max value: 29.4134 - type: nauc_map_at_1000_std value: -3.9301000000000004 - type: nauc_map_at_1000_diff1 value: 46.5892 - type: nauc_recall_at_1_max value: 29.026600000000002 - type: nauc_recall_at_1_std value: -5.3401 - type: nauc_recall_at_1_diff1 value: 51.7505 - type: nauc_recall_at_3_max value: 30.7299 - type: nauc_recall_at_3_std value: -3.3682999999999996 - type: nauc_recall_at_3_diff1 value: 43.1978 - type: nauc_recall_at_5_max value: 29.9215 - type: nauc_recall_at_5_std value: -2.4814 - type: nauc_recall_at_5_diff1 value: 40.9532 - type: nauc_recall_at_10_max value: 29.1323 - type: nauc_recall_at_10_std value: -0.9436999999999999 - type: nauc_recall_at_10_diff1 value: 38.221199999999996 - type: nauc_recall_at_20_max value: 27.889999999999997 - type: nauc_recall_at_20_std value: 0.4464 - type: nauc_recall_at_20_diff1 value: 35.8795 - type: nauc_recall_at_100_max value: 27.8094 - type: nauc_recall_at_100_std value: 7.914499999999999 - type: nauc_recall_at_100_diff1 value: 32.3117 - type: nauc_recall_at_1000_max value: 29.6608 - type: nauc_recall_at_1000_std value: 15.9532 - type: nauc_recall_at_1000_diff1 value: 31.069799999999997 - type: nauc_precision_at_1_max value: 29.026600000000002 - type: nauc_precision_at_1_std value: -5.3401 - type: nauc_precision_at_1_diff1 value: 51.7505 - type: nauc_precision_at_3_max value: 30.7299 - type: nauc_precision_at_3_std value: -3.3682999999999996 - type: nauc_precision_at_3_diff1 value: 43.1978 - type: nauc_precision_at_5_max value: 29.9215 - type: nauc_precision_at_5_std value: -2.4814 - type: nauc_precision_at_5_diff1 value: 40.9532 - type: nauc_precision_at_10_max value: 29.1323 - type: nauc_precision_at_10_std value: -0.9436999999999999 - type: nauc_precision_at_10_diff1 value: 38.221199999999996 - type: nauc_precision_at_20_max value: 27.889999999999997 - type: nauc_precision_at_20_std value: 0.4464 - type: nauc_precision_at_20_diff1 value: 35.8795 - type: nauc_precision_at_100_max value: 27.8094 - type: nauc_precision_at_100_std value: 7.914499999999999 - type: nauc_precision_at_100_diff1 value: 32.3117 - type: nauc_precision_at_1000_max value: 29.6608 - type: nauc_precision_at_1000_std value: 15.9532 - type: nauc_precision_at_1000_diff1 value: 31.069799999999997 - type: nauc_mrr_at_1_max value: 29.0947 - type: nauc_mrr_at_1_std value: -5.2643 - type: nauc_mrr_at_1_diff1 value: 51.678000000000004 - type: nauc_mrr_at_3_max value: 29.8523 - type: nauc_mrr_at_3_std value: -4.5234000000000005 - type: nauc_mrr_at_3_diff1 value: 47.653099999999995 - type: nauc_mrr_at_5_max value: 29.648799999999998 - type: nauc_mrr_at_5_std value: -4.3013 - type: nauc_mrr_at_5_diff1 value: 47.105799999999995 - type: nauc_mrr_at_10_max value: 29.5336 - type: nauc_mrr_at_10_std value: -4.1075 - type: nauc_mrr_at_10_diff1 value: 46.733799999999995 - type: nauc_mrr_at_20_max value: 29.451500000000003 - type: nauc_mrr_at_20_std value: -4.0183 - type: nauc_mrr_at_20_diff1 value: 46.5858 - type: nauc_mrr_at_100_max value: 29.440699999999996 - type: nauc_mrr_at_100_std value: -3.8987000000000003 - type: nauc_mrr_at_100_diff1 value: 46.5526 - type: nauc_mrr_at_1000_max value: 29.442899999999998 - type: nauc_mrr_at_1000_std value: -3.8952 - type: nauc_mrr_at_1000_diff1 value: 46.563500000000005 - type: main_score value: 37.008 task: type: Retrieval - dataset: config: php name: MTEB CodeSearchNetCCRetrieval (php) revision: 6e1effa2c03723c5fde48ee912b5ee08d4f211e8 split: test type: CoIR-Retrieval/CodeSearchNet-ccr metrics: - type: ndcg_at_1 value: 21.022 - type: ndcg_at_3 value: 27.082 - type: ndcg_at_5 value: 28.956 - type: ndcg_at_10 value: 30.791 - type: ndcg_at_20 value: 32.301 - type: ndcg_at_100 value: 34.794000000000004 - type: ndcg_at_1000 value: 37.082 - type: map_at_1 value: 21.022 - type: map_at_3 value: 25.593 - type: map_at_5 value: 26.634999999999998 - type: map_at_10 value: 27.395000000000003 - type: map_at_20 value: 27.811000000000003 - type: map_at_100 value: 28.143 - type: map_at_1000 value: 28.218 - type: recall_at_1 value: 21.022 - type: recall_at_3 value: 31.39 - type: recall_at_5 value: 35.935 - type: recall_at_10 value: 41.593999999999994 - type: recall_at_20 value: 47.552 - type: recall_at_100 value: 61.18900000000001 - type: recall_at_1000 value: 79.827 - type: precision_at_1 value: 21.022 - type: precision_at_3 value: 10.463000000000001 - type: precision_at_5 value: 7.187 - type: precision_at_10 value: 4.159 - type: precision_at_20 value: 2.378 - type: precision_at_100 value: 0.612 - type: precision_at_1000 value: 0.08 - type: mrr_at_1 value: 21.0218 - type: mrr_at_3 value: 25.588699999999996 - type: mrr_at_5 value: 26.631899999999998 - type: mrr_at_10 value: 27.3915 - type: mrr_at_20 value: 27.807900000000004 - type: mrr_at_100 value: 28.138800000000003 - type: mrr_at_1000 value: 28.2141 - type: nauc_ndcg_at_1_max value: 22.1861 - type: nauc_ndcg_at_1_std value: -3.218 - type: nauc_ndcg_at_1_diff1 value: 46.4989 - type: nauc_ndcg_at_3_max value: 21.7282 - type: nauc_ndcg_at_3_std value: -2.1185 - type: nauc_ndcg_at_3_diff1 value: 40.8096 - type: nauc_ndcg_at_5_max value: 21.339199999999998 - type: nauc_ndcg_at_5_std value: -1.6541000000000001 - type: nauc_ndcg_at_5_diff1 value: 39.6483 - type: nauc_ndcg_at_10_max value: 20.9441 - type: nauc_ndcg_at_10_std value: -0.8141 - type: nauc_ndcg_at_10_diff1 value: 38.5517 - type: nauc_ndcg_at_20_max value: 20.7702 - type: nauc_ndcg_at_20_std value: -0.293 - type: nauc_ndcg_at_20_diff1 value: 38.2386 - type: nauc_ndcg_at_100_max value: 20.569100000000002 - type: nauc_ndcg_at_100_std value: 0.8404 - type: nauc_ndcg_at_100_diff1 value: 37.6899 - type: nauc_ndcg_at_1000_max value: 20.72 - type: nauc_ndcg_at_1000_std value: 0.9279000000000001 - type: nauc_ndcg_at_1000_diff1 value: 37.9486 - type: nauc_map_at_1_max value: 22.1861 - type: nauc_map_at_1_std value: -3.218 - type: nauc_map_at_1_diff1 value: 46.4989 - type: nauc_map_at_3_max value: 21.86 - type: nauc_map_at_3_std value: -2.4015999999999997 - type: nauc_map_at_3_diff1 value: 42.0695 - type: nauc_map_at_5_max value: 21.6404 - type: nauc_map_at_5_std value: -2.1305 - type: nauc_map_at_5_diff1 value: 41.3954 - type: nauc_map_at_10_max value: 21.4897 - type: nauc_map_at_10_std value: -1.76 - type: nauc_map_at_10_diff1 value: 40.9264 - type: nauc_map_at_20_max value: 21.4368 - type: nauc_map_at_20_std value: -1.6178000000000001 - type: nauc_map_at_20_diff1 value: 40.847 - type: nauc_map_at_100_max value: 21.3978 - type: nauc_map_at_100_std value: -1.4705 - type: nauc_map_at_100_diff1 value: 40.775 - type: nauc_map_at_1000_max value: 21.4068 - type: nauc_map_at_1000_std value: -1.4657 - type: nauc_map_at_1000_diff1 value: 40.7824 - type: nauc_recall_at_1_max value: 22.1861 - type: nauc_recall_at_1_std value: -3.218 - type: nauc_recall_at_1_diff1 value: 46.4989 - type: nauc_recall_at_3_max value: 21.3684 - type: nauc_recall_at_3_std value: -1.3554 - type: nauc_recall_at_3_diff1 value: 37.4804 - type: nauc_recall_at_5_max value: 20.4902 - type: nauc_recall_at_5_std value: -0.3449 - type: nauc_recall_at_5_diff1 value: 34.9587 - type: nauc_recall_at_10_max value: 19.2959 - type: nauc_recall_at_10_std value: 1.9666 - type: nauc_recall_at_10_diff1 value: 31.903 - type: nauc_recall_at_20_max value: 18.6516 - type: nauc_recall_at_20_std value: 3.9671 - type: nauc_recall_at_20_diff1 value: 30.576999999999998 - type: nauc_recall_at_100_max value: 17.383699999999997 - type: nauc_recall_at_100_std value: 11.050699999999999 - type: nauc_recall_at_100_diff1 value: 26.4222 - type: nauc_recall_at_1000_max value: 17.1265 - type: nauc_recall_at_1000_std value: 18.235699999999998 - type: nauc_recall_at_1000_diff1 value: 23.186300000000003 - type: nauc_precision_at_1_max value: 22.1861 - type: nauc_precision_at_1_std value: -3.218 - type: nauc_precision_at_1_diff1 value: 46.4989 - type: nauc_precision_at_3_max value: 21.3684 - type: nauc_precision_at_3_std value: -1.3554 - type: nauc_precision_at_3_diff1 value: 37.4804 - type: nauc_precision_at_5_max value: 20.4902 - type: nauc_precision_at_5_std value: -0.3449 - type: nauc_precision_at_5_diff1 value: 34.9587 - type: nauc_precision_at_10_max value: 19.2959 - type: nauc_precision_at_10_std value: 1.9666 - type: nauc_precision_at_10_diff1 value: 31.903 - type: nauc_precision_at_20_max value: 18.6516 - type: nauc_precision_at_20_std value: 3.9671 - type: nauc_precision_at_20_diff1 value: 30.576999999999998 - type: nauc_precision_at_100_max value: 17.383699999999997 - type: nauc_precision_at_100_std value: 11.050699999999999 - type: nauc_precision_at_100_diff1 value: 26.4222 - type: nauc_precision_at_1000_max value: 17.1265 - type: nauc_precision_at_1000_std value: 18.235699999999998 - type: nauc_precision_at_1000_diff1 value: 23.186300000000003 - type: nauc_mrr_at_1_max value: 22.159000000000002 - type: nauc_mrr_at_1_std value: -3.2346 - type: nauc_mrr_at_1_diff1 value: 46.4989 - type: nauc_mrr_at_3_max value: 21.8304 - type: nauc_mrr_at_3_std value: -2.4013 - type: nauc_mrr_at_3_diff1 value: 42.0356 - type: nauc_mrr_at_5_max value: 21.617900000000002 - type: nauc_mrr_at_5_std value: -2.1397 - type: nauc_mrr_at_5_diff1 value: 41.3793 - type: nauc_mrr_at_10_max value: 21.467200000000002 - type: nauc_mrr_at_10_std value: -1.7682 - type: nauc_mrr_at_10_diff1 value: 40.912 - type: nauc_mrr_at_20_max value: 21.415200000000002 - type: nauc_mrr_at_20_std value: -1.6295 - type: nauc_mrr_at_20_diff1 value: 40.8319 - type: nauc_mrr_at_100_max value: 21.376800000000003 - type: nauc_mrr_at_100_std value: -1.4815 - type: nauc_mrr_at_100_diff1 value: 40.760400000000004 - type: nauc_mrr_at_1000_max value: 21.3858 - type: nauc_mrr_at_1000_std value: -1.4767000000000001 - type: nauc_mrr_at_1000_diff1 value: 40.7677 - type: main_score value: 30.791 task: type: Retrieval - dataset: config: python name: MTEB CodeSearchNetRetrieval (python) revision: fdc6a9e39575768c27eb8a2a5f702bf846eb4759 split: test type: code-search-net/code_search_net metrics: - type: ndcg_at_1 value: 65.2 - type: ndcg_at_3 value: 76.41 - type: ndcg_at_5 value: 77.981 - type: ndcg_at_10 value: 79.044 - type: ndcg_at_20 value: 79.855 - type: ndcg_at_100 value: 80.622 - type: ndcg_at_1000 value: 80.806 - type: map_at_1 value: 65.2 - type: map_at_3 value: 73.65 - type: map_at_5 value: 74.52499999999999 - type: map_at_10 value: 74.98 - type: map_at_20 value: 75.203 - type: map_at_100 value: 75.319 - type: map_at_1000 value: 75.327 - type: recall_at_1 value: 65.2 - type: recall_at_3 value: 84.39999999999999 - type: recall_at_5 value: 88.2 - type: recall_at_10 value: 91.4 - type: recall_at_20 value: 94.6 - type: recall_at_100 value: 98.6 - type: recall_at_1000 value: 100.0 - type: precision_at_1 value: 65.2 - type: precision_at_3 value: 28.133000000000003 - type: precision_at_5 value: 17.64 - type: precision_at_10 value: 9.139999999999999 - type: precision_at_20 value: 4.73 - type: precision_at_100 value: 0.9860000000000001 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 65.2 - type: mrr_at_3 value: 73.65 - type: mrr_at_5 value: 74.52499999999999 - type: mrr_at_10 value: 74.9802 - type: mrr_at_20 value: 75.20320000000001 - type: mrr_at_100 value: 75.319 - type: mrr_at_1000 value: 75.3269 - type: nauc_ndcg_at_1_max value: 36.4698 - type: nauc_ndcg_at_1_std value: -10.8058 - type: nauc_ndcg_at_1_diff1 value: 70.5679 - type: nauc_ndcg_at_3_max value: 40.582499999999996 - type: nauc_ndcg_at_3_std value: -9.3767 - type: nauc_ndcg_at_3_diff1 value: 64.8235 - type: nauc_ndcg_at_5_max value: 41.191100000000006 - type: nauc_ndcg_at_5_std value: -8.6758 - type: nauc_ndcg_at_5_diff1 value: 64.70179999999999 - type: nauc_ndcg_at_10_max value: 41.5913 - type: nauc_ndcg_at_10_std value: -8.8502 - type: nauc_ndcg_at_10_diff1 value: 65.7197 - type: nauc_ndcg_at_20_max value: 41.4419 - type: nauc_ndcg_at_20_std value: -9.0406 - type: nauc_ndcg_at_20_diff1 value: 66.1819 - type: nauc_ndcg_at_100_max value: 40.6791 - type: nauc_ndcg_at_100_std value: -8.343499999999999 - type: nauc_ndcg_at_100_diff1 value: 66.468 - type: nauc_ndcg_at_1000_max value: 40.3153 - type: nauc_ndcg_at_1000_std value: -8.7689 - type: nauc_ndcg_at_1000_diff1 value: 66.49249999999999 - type: nauc_map_at_1_max value: 36.4698 - type: nauc_map_at_1_std value: -10.8058 - type: nauc_map_at_1_diff1 value: 70.5679 - type: nauc_map_at_3_max value: 39.3299 - type: nauc_map_at_3_std value: -9.4675 - type: nauc_map_at_3_diff1 value: 66.3583 - type: nauc_map_at_5_max value: 39.5636 - type: nauc_map_at_5_std value: -9.1881 - type: nauc_map_at_5_diff1 value: 66.37910000000001 - type: nauc_map_at_10_max value: 39.6806 - type: nauc_map_at_10_std value: -9.3088 - type: nauc_map_at_10_diff1 value: 66.8131 - type: nauc_map_at_20_max value: 39.635999999999996 - type: nauc_map_at_20_std value: -9.3305 - type: nauc_map_at_20_diff1 value: 66.93430000000001 - type: nauc_map_at_100_max value: 39.536500000000004 - type: nauc_map_at_100_std value: -9.1873 - type: nauc_map_at_100_diff1 value: 66.96419999999999 - type: nauc_map_at_1000_max value: 39.5233 - type: nauc_map_at_1000_std value: -9.200999999999999 - type: nauc_map_at_1000_diff1 value: 66.9634 - type: nauc_recall_at_1_max value: 36.4698 - type: nauc_recall_at_1_std value: -10.8058 - type: nauc_recall_at_1_diff1 value: 70.5679 - type: nauc_recall_at_3_max value: 46.0932 - type: nauc_recall_at_3_std value: -9.193900000000001 - type: nauc_recall_at_3_diff1 value: 58.2067 - type: nauc_recall_at_5_max value: 50.2927 - type: nauc_recall_at_5_std value: -5.8297 - type: nauc_recall_at_5_diff1 value: 55.6113 - type: nauc_recall_at_10_max value: 55.961099999999995 - type: nauc_recall_at_10_std value: -5.3568999999999996 - type: nauc_recall_at_10_diff1 value: 58.6075 - type: nauc_recall_at_20_max value: 62.2869 - type: nauc_recall_at_20_std value: -6.4927 - type: nauc_recall_at_20_diff1 value: 60.207699999999996 - type: nauc_recall_at_100_max value: 73.4427 - type: nauc_recall_at_100_std value: 31.606 - type: nauc_recall_at_100_diff1 value: 63.0919 - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_precision_at_1_max value: 36.4698 - type: nauc_precision_at_1_std value: -10.8058 - type: nauc_precision_at_1_diff1 value: 70.5679 - type: nauc_precision_at_3_max value: 46.0932 - type: nauc_precision_at_3_std value: -9.193900000000001 - type: nauc_precision_at_3_diff1 value: 58.2067 - type: nauc_precision_at_5_max value: 50.2927 - type: nauc_precision_at_5_std value: -5.8297 - type: nauc_precision_at_5_diff1 value: 55.6113 - type: nauc_precision_at_10_max value: 55.961099999999995 - type: nauc_precision_at_10_std value: -5.3568999999999996 - type: nauc_precision_at_10_diff1 value: 58.6075 - type: nauc_precision_at_20_max value: 62.2869 - type: nauc_precision_at_20_std value: -6.4927 - type: nauc_precision_at_20_diff1 value: 60.207699999999996 - type: nauc_precision_at_100_max value: 73.4427 - type: nauc_precision_at_100_std value: 31.606 - type: nauc_precision_at_100_diff1 value: 63.0919 - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_mrr_at_1_max value: 36.4698 - type: nauc_mrr_at_1_std value: -10.8058 - type: nauc_mrr_at_1_diff1 value: 70.5679 - type: nauc_mrr_at_3_max value: 39.3299 - type: nauc_mrr_at_3_std value: -9.4675 - type: nauc_mrr_at_3_diff1 value: 66.3583 - type: nauc_mrr_at_5_max value: 39.5636 - type: nauc_mrr_at_5_std value: -9.1881 - type: nauc_mrr_at_5_diff1 value: 66.37910000000001 - type: nauc_mrr_at_10_max value: 39.6806 - type: nauc_mrr_at_10_std value: -9.3088 - type: nauc_mrr_at_10_diff1 value: 66.8131 - type: nauc_mrr_at_20_max value: 39.635999999999996 - type: nauc_mrr_at_20_std value: -9.3305 - type: nauc_mrr_at_20_diff1 value: 66.93430000000001 - type: nauc_mrr_at_100_max value: 39.536500000000004 - type: nauc_mrr_at_100_std value: -9.1873 - type: nauc_mrr_at_100_diff1 value: 66.96419999999999 - type: nauc_mrr_at_1000_max value: 39.5233 - type: nauc_mrr_at_1000_std value: -9.200999999999999 - type: nauc_mrr_at_1000_diff1 value: 66.9634 - type: main_score value: 79.044 task: type: Retrieval - dataset: config: javascript name: MTEB CodeSearchNetRetrieval (javascript) revision: fdc6a9e39575768c27eb8a2a5f702bf846eb4759 split: test type: code-search-net/code_search_net metrics: - type: ndcg_at_1 value: 55.2 - type: ndcg_at_3 value: 63.709 - type: ndcg_at_5 value: 65.267 - type: ndcg_at_10 value: 67.239 - type: ndcg_at_20 value: 68.372 - type: ndcg_at_100 value: 69.854 - type: ndcg_at_1000 value: 70.831 - type: map_at_1 value: 55.2 - type: map_at_3 value: 61.667 - type: map_at_5 value: 62.527 - type: map_at_10 value: 63.339999999999996 - type: map_at_20 value: 63.648 - type: map_at_100 value: 63.854 - type: map_at_1000 value: 63.885999999999996 - type: recall_at_1 value: 55.2 - type: recall_at_3 value: 69.6 - type: recall_at_5 value: 73.4 - type: recall_at_10 value: 79.5 - type: recall_at_20 value: 84.0 - type: recall_at_100 value: 92.0 - type: recall_at_1000 value: 100.0 - type: precision_at_1 value: 55.2 - type: precision_at_3 value: 23.200000000000003 - type: precision_at_5 value: 14.680000000000001 - type: precision_at_10 value: 7.95 - type: precision_at_20 value: 4.2 - type: precision_at_100 value: 0.9199999999999999 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 55.2 - type: mrr_at_3 value: 61.6667 - type: mrr_at_5 value: 62.526700000000005 - type: mrr_at_10 value: 63.339999999999996 - type: mrr_at_20 value: 63.6484 - type: mrr_at_100 value: 63.854200000000006 - type: mrr_at_1000 value: 63.88549999999999 - type: nauc_ndcg_at_1_max value: 48.821 - type: nauc_ndcg_at_1_std value: 19.6886 - type: nauc_ndcg_at_1_diff1 value: 65.515 - type: nauc_ndcg_at_3_max value: 56.316 - type: nauc_ndcg_at_3_std value: 26.6555 - type: nauc_ndcg_at_3_diff1 value: 61.755300000000005 - type: nauc_ndcg_at_5_max value: 57.566300000000005 - type: nauc_ndcg_at_5_std value: 29.5288 - type: nauc_ndcg_at_5_diff1 value: 61.655300000000004 - type: nauc_ndcg_at_10_max value: 58.89339999999999 - type: nauc_ndcg_at_10_std value: 32.1136 - type: nauc_ndcg_at_10_diff1 value: 61.7916 - type: nauc_ndcg_at_20_max value: 58.675999999999995 - type: nauc_ndcg_at_20_std value: 32.2575 - type: nauc_ndcg_at_20_diff1 value: 62.5682 - type: nauc_ndcg_at_100_max value: 57.6832 - type: nauc_ndcg_at_100_std value: 31.2476 - type: nauc_ndcg_at_100_diff1 value: 62.356100000000005 - type: nauc_ndcg_at_1000_max value: 56.9118 - type: nauc_ndcg_at_1000_std value: 29.624499999999998 - type: nauc_ndcg_at_1000_diff1 value: 62.4914 - type: nauc_map_at_1_max value: 48.821 - type: nauc_map_at_1_std value: 19.6886 - type: nauc_map_at_1_diff1 value: 65.515 - type: nauc_map_at_3_max value: 54.47260000000001 - type: nauc_map_at_3_std value: 24.864800000000002 - type: nauc_map_at_3_diff1 value: 62.6644 - type: nauc_map_at_5_max value: 55.1021 - type: nauc_map_at_5_std value: 26.2921 - type: nauc_map_at_5_diff1 value: 62.624100000000006 - type: nauc_map_at_10_max value: 55.552 - type: nauc_map_at_10_std value: 27.199 - type: nauc_map_at_10_diff1 value: 62.7054 - type: nauc_map_at_20_max value: 55.4708 - type: nauc_map_at_20_std value: 27.2067 - type: nauc_map_at_20_diff1 value: 62.8945 - type: nauc_map_at_100_max value: 55.3465 - type: nauc_map_at_100_std value: 27.0926 - type: nauc_map_at_100_diff1 value: 62.8575 - type: nauc_map_at_1000_max value: 55.3249 - type: nauc_map_at_1000_std value: 27.0527 - type: nauc_map_at_1000_diff1 value: 62.8617 - type: nauc_recall_at_1_max value: 48.821 - type: nauc_recall_at_1_std value: 19.6886 - type: nauc_recall_at_1_diff1 value: 65.515 - type: nauc_recall_at_3_max value: 62.36279999999999 - type: nauc_recall_at_3_std value: 32.569199999999995 - type: nauc_recall_at_3_diff1 value: 58.781499999999994 - type: nauc_recall_at_5_max value: 66.6246 - type: nauc_recall_at_5_std value: 41.813 - type: nauc_recall_at_5_diff1 value: 58.1854 - type: nauc_recall_at_10_max value: 74.4567 - type: nauc_recall_at_10_std value: 55.835 - type: nauc_recall_at_10_diff1 value: 57.89189999999999 - type: nauc_recall_at_20_max value: 76.9008 - type: nauc_recall_at_20_std value: 62.54110000000001 - type: nauc_recall_at_20_diff1 value: 62.200500000000005 - type: nauc_recall_at_100_max value: 76.46300000000001 - type: nauc_recall_at_100_std value: 71.4723 - type: nauc_recall_at_100_diff1 value: 59.0844 - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_precision_at_1_max value: 48.821 - type: nauc_precision_at_1_std value: 19.6886 - type: nauc_precision_at_1_diff1 value: 65.515 - type: nauc_precision_at_3_max value: 62.36279999999999 - type: nauc_precision_at_3_std value: 32.569199999999995 - type: nauc_precision_at_3_diff1 value: 58.781499999999994 - type: nauc_precision_at_5_max value: 66.6246 - type: nauc_precision_at_5_std value: 41.813 - type: nauc_precision_at_5_diff1 value: 58.1854 - type: nauc_precision_at_10_max value: 74.4567 - type: nauc_precision_at_10_std value: 55.835 - type: nauc_precision_at_10_diff1 value: 57.89189999999999 - type: nauc_precision_at_20_max value: 76.9008 - type: nauc_precision_at_20_std value: 62.54110000000001 - type: nauc_precision_at_20_diff1 value: 62.200500000000005 - type: nauc_precision_at_100_max value: 76.46300000000001 - type: nauc_precision_at_100_std value: 71.4723 - type: nauc_precision_at_100_diff1 value: 59.0844 - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_mrr_at_1_max value: 48.821 - type: nauc_mrr_at_1_std value: 19.6886 - type: nauc_mrr_at_1_diff1 value: 65.515 - type: nauc_mrr_at_3_max value: 54.47260000000001 - type: nauc_mrr_at_3_std value: 24.864800000000002 - type: nauc_mrr_at_3_diff1 value: 62.6644 - type: nauc_mrr_at_5_max value: 55.1021 - type: nauc_mrr_at_5_std value: 26.2921 - type: nauc_mrr_at_5_diff1 value: 62.624100000000006 - type: nauc_mrr_at_10_max value: 55.552 - type: nauc_mrr_at_10_std value: 27.199 - type: nauc_mrr_at_10_diff1 value: 62.7054 - type: nauc_mrr_at_20_max value: 55.4708 - type: nauc_mrr_at_20_std value: 27.2067 - type: nauc_mrr_at_20_diff1 value: 62.8945 - type: nauc_mrr_at_100_max value: 55.3465 - type: nauc_mrr_at_100_std value: 27.0926 - type: nauc_mrr_at_100_diff1 value: 62.8575 - type: nauc_mrr_at_1000_max value: 55.3249 - type: nauc_mrr_at_1000_std value: 27.0527 - type: nauc_mrr_at_1000_diff1 value: 62.8617 - type: main_score value: 67.239 task: type: Retrieval - dataset: config: go name: MTEB CodeSearchNetRetrieval (go) revision: fdc6a9e39575768c27eb8a2a5f702bf846eb4759 split: test type: code-search-net/code_search_net metrics: - type: ndcg_at_1 value: 70.19999999999999 - type: ndcg_at_3 value: 79.566 - type: ndcg_at_5 value: 81.012 - type: ndcg_at_10 value: 82.217 - type: ndcg_at_20 value: 82.97 - type: ndcg_at_100 value: 83.43199999999999 - type: ndcg_at_1000 value: 83.597 - type: map_at_1 value: 70.19999999999999 - type: map_at_3 value: 77.333 - type: map_at_5 value: 78.13799999999999 - type: map_at_10 value: 78.641 - type: map_at_20 value: 78.84400000000001 - type: map_at_100 value: 78.908 - type: map_at_1000 value: 78.914 - type: recall_at_1 value: 70.19999999999999 - type: recall_at_3 value: 86.0 - type: recall_at_5 value: 89.5 - type: recall_at_10 value: 93.2 - type: recall_at_20 value: 96.2 - type: recall_at_100 value: 98.7 - type: recall_at_1000 value: 100.0 - type: precision_at_1 value: 70.19999999999999 - type: precision_at_3 value: 28.666999999999998 - type: precision_at_5 value: 17.9 - type: precision_at_10 value: 9.32 - type: precision_at_20 value: 4.81 - type: precision_at_100 value: 0.987 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 70.19999999999999 - type: mrr_at_3 value: 77.33330000000001 - type: mrr_at_5 value: 78.1383 - type: mrr_at_10 value: 78.6408 - type: mrr_at_20 value: 78.8441 - type: mrr_at_100 value: 78.9075 - type: mrr_at_1000 value: 78.91369999999999 - type: nauc_ndcg_at_1_max value: 54.447199999999995 - type: nauc_ndcg_at_1_std value: 5.7226 - type: nauc_ndcg_at_1_diff1 value: 71.1626 - type: nauc_ndcg_at_3_max value: 60.4446 - type: nauc_ndcg_at_3_std value: 6.2227 - type: nauc_ndcg_at_3_diff1 value: 69.419 - type: nauc_ndcg_at_5_max value: 59.7692 - type: nauc_ndcg_at_5_std value: 7.4161 - type: nauc_ndcg_at_5_diff1 value: 68.9958 - type: nauc_ndcg_at_10_max value: 59.559 - type: nauc_ndcg_at_10_std value: 6.792199999999999 - type: nauc_ndcg_at_10_diff1 value: 68.42099999999999 - type: nauc_ndcg_at_20_max value: 59.1576 - type: nauc_ndcg_at_20_std value: 6.762600000000001 - type: nauc_ndcg_at_20_diff1 value: 69.1402 - type: nauc_ndcg_at_100_max value: 58.729699999999994 - type: nauc_ndcg_at_100_std value: 6.6151 - type: nauc_ndcg_at_100_diff1 value: 69.3485 - type: nauc_ndcg_at_1000_max value: 58.68879999999999 - type: nauc_ndcg_at_1000_std value: 6.5546999999999995 - type: nauc_ndcg_at_1000_diff1 value: 69.3974 - type: nauc_map_at_1_max value: 54.447199999999995 - type: nauc_map_at_1_std value: 5.7226 - type: nauc_map_at_1_diff1 value: 71.1626 - type: nauc_map_at_3_max value: 58.82150000000001 - type: nauc_map_at_3_std value: 6.111 - type: nauc_map_at_3_diff1 value: 69.8853 - type: nauc_map_at_5_max value: 58.4332 - type: nauc_map_at_5_std value: 6.6455 - type: nauc_map_at_5_diff1 value: 69.6593 - type: nauc_map_at_10_max value: 58.3284 - type: nauc_map_at_10_std value: 6.3941 - type: nauc_map_at_10_diff1 value: 69.4544 - type: nauc_map_at_20_max value: 58.2269 - type: nauc_map_at_20_std value: 6.3983 - type: nauc_map_at_20_diff1 value: 69.634 - type: nauc_map_at_100_max value: 58.180299999999995 - type: nauc_map_at_100_std value: 6.372 - type: nauc_map_at_100_diff1 value: 69.6674 - type: nauc_map_at_1000_max value: 58.1796 - type: nauc_map_at_1000_std value: 6.3696 - type: nauc_map_at_1000_diff1 value: 69.6689 - type: nauc_recall_at_1_max value: 54.447199999999995 - type: nauc_recall_at_1_std value: 5.7226 - type: nauc_recall_at_1_diff1 value: 71.1626 - type: nauc_recall_at_3_max value: 67.3635 - type: nauc_recall_at_3_std value: 6.682499999999999 - type: nauc_recall_at_3_diff1 value: 67.4356 - type: nauc_recall_at_5_max value: 66.6632 - type: nauc_recall_at_5_std value: 11.969899999999999 - type: nauc_recall_at_5_diff1 value: 65.4311 - type: nauc_recall_at_10_max value: 68.76339999999999 - type: nauc_recall_at_10_std value: 10.0319 - type: nauc_recall_at_10_diff1 value: 59.6357 - type: nauc_recall_at_20_max value: 69.58569999999999 - type: nauc_recall_at_20_std value: 11.5374 - type: nauc_recall_at_20_diff1 value: 63.8926 - type: nauc_recall_at_100_max value: 62.5009 - type: nauc_recall_at_100_std value: 12.447 - type: nauc_recall_at_100_diff1 value: 65.065 - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_precision_at_1_max value: 54.447199999999995 - type: nauc_precision_at_1_std value: 5.7226 - type: nauc_precision_at_1_diff1 value: 71.1626 - type: nauc_precision_at_3_max value: 67.3635 - type: nauc_precision_at_3_std value: 6.682499999999999 - type: nauc_precision_at_3_diff1 value: 67.4356 - type: nauc_precision_at_5_max value: 66.6632 - type: nauc_precision_at_5_std value: 11.969899999999999 - type: nauc_precision_at_5_diff1 value: 65.4311 - type: nauc_precision_at_10_max value: 68.76339999999999 - type: nauc_precision_at_10_std value: 10.0319 - type: nauc_precision_at_10_diff1 value: 59.6357 - type: nauc_precision_at_20_max value: 69.58569999999999 - type: nauc_precision_at_20_std value: 11.5374 - type: nauc_precision_at_20_diff1 value: 63.8926 - type: nauc_precision_at_100_max value: 62.5009 - type: nauc_precision_at_100_std value: 12.447 - type: nauc_precision_at_100_diff1 value: 65.065 - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_mrr_at_1_max value: 54.447199999999995 - type: nauc_mrr_at_1_std value: 5.7226 - type: nauc_mrr_at_1_diff1 value: 71.1626 - type: nauc_mrr_at_3_max value: 58.82150000000001 - type: nauc_mrr_at_3_std value: 6.111 - type: nauc_mrr_at_3_diff1 value: 69.8853 - type: nauc_mrr_at_5_max value: 58.4332 - type: nauc_mrr_at_5_std value: 6.6455 - type: nauc_mrr_at_5_diff1 value: 69.6593 - type: nauc_mrr_at_10_max value: 58.3284 - type: nauc_mrr_at_10_std value: 6.3941 - type: nauc_mrr_at_10_diff1 value: 69.4544 - type: nauc_mrr_at_20_max value: 58.2269 - type: nauc_mrr_at_20_std value: 6.3983 - type: nauc_mrr_at_20_diff1 value: 69.634 - type: nauc_mrr_at_100_max value: 58.180299999999995 - type: nauc_mrr_at_100_std value: 6.372 - type: nauc_mrr_at_100_diff1 value: 69.6674 - type: nauc_mrr_at_1000_max value: 58.1796 - type: nauc_mrr_at_1000_std value: 6.3696 - type: nauc_mrr_at_1000_diff1 value: 69.6689 - type: main_score value: 82.217 task: type: Retrieval - dataset: config: ruby name: MTEB CodeSearchNetRetrieval (ruby) revision: fdc6a9e39575768c27eb8a2a5f702bf846eb4759 split: test type: code-search-net/code_search_net metrics: - type: ndcg_at_1 value: 56.49999999999999 - type: ndcg_at_3 value: 66.597 - type: ndcg_at_5 value: 68.98100000000001 - type: ndcg_at_10 value: 70.829 - type: ndcg_at_20 value: 71.77799999999999 - type: ndcg_at_100 value: 72.85199999999999 - type: ndcg_at_1000 value: 73.563 - type: map_at_1 value: 56.49999999999999 - type: map_at_3 value: 64.2 - type: map_at_5 value: 65.52 - type: map_at_10 value: 66.305 - type: map_at_20 value: 66.572 - type: map_at_100 value: 66.733 - type: map_at_1000 value: 66.756 - type: recall_at_1 value: 56.49999999999999 - type: recall_at_3 value: 73.5 - type: recall_at_5 value: 79.3 - type: recall_at_10 value: 84.89999999999999 - type: recall_at_20 value: 88.6 - type: recall_at_100 value: 94.19999999999999 - type: recall_at_1000 value: 100.0 - type: precision_at_1 value: 56.49999999999999 - type: precision_at_3 value: 24.5 - type: precision_at_5 value: 15.86 - type: precision_at_10 value: 8.49 - type: precision_at_20 value: 4.43 - type: precision_at_100 value: 0.942 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 56.49999999999999 - type: mrr_at_3 value: 64.2 - type: mrr_at_5 value: 65.52 - type: mrr_at_10 value: 66.30460000000001 - type: mrr_at_20 value: 66.5724 - type: mrr_at_100 value: 66.7334 - type: mrr_at_1000 value: 66.7564 - type: nauc_ndcg_at_1_max value: 55.3207 - type: nauc_ndcg_at_1_std value: 7.2139 - type: nauc_ndcg_at_1_diff1 value: 72.6385 - type: nauc_ndcg_at_3_max value: 58.4997 - type: nauc_ndcg_at_3_std value: 8.3729 - type: nauc_ndcg_at_3_diff1 value: 69.0137 - type: nauc_ndcg_at_5_max value: 58.213899999999995 - type: nauc_ndcg_at_5_std value: 11.8464 - type: nauc_ndcg_at_5_diff1 value: 67.8369 - type: nauc_ndcg_at_10_max value: 58.2068 - type: nauc_ndcg_at_10_std value: 13.320000000000002 - type: nauc_ndcg_at_10_diff1 value: 67.8139 - type: nauc_ndcg_at_20_max value: 58.0545 - type: nauc_ndcg_at_20_std value: 13.601199999999999 - type: nauc_ndcg_at_20_diff1 value: 67.814 - type: nauc_ndcg_at_100_max value: 58.1651 - type: nauc_ndcg_at_100_std value: 13.946900000000001 - type: nauc_ndcg_at_100_diff1 value: 68.07180000000001 - type: nauc_ndcg_at_1000_max value: 57.9397 - type: nauc_ndcg_at_1000_std value: 12.188400000000001 - type: nauc_ndcg_at_1000_diff1 value: 68.6001 - type: nauc_map_at_1_max value: 55.3207 - type: nauc_map_at_1_std value: 7.2139 - type: nauc_map_at_1_diff1 value: 72.6385 - type: nauc_map_at_3_max value: 57.678399999999996 - type: nauc_map_at_3_std value: 7.900500000000001 - type: nauc_map_at_3_diff1 value: 69.8646 - type: nauc_map_at_5_max value: 57.5229 - type: nauc_map_at_5_std value: 9.7157 - type: nauc_map_at_5_diff1 value: 69.2704 - type: nauc_map_at_10_max value: 57.5133 - type: nauc_map_at_10_std value: 10.2078 - type: nauc_map_at_10_diff1 value: 69.2876 - type: nauc_map_at_20_max value: 57.4843 - type: nauc_map_at_20_std value: 10.2501 - type: nauc_map_at_20_diff1 value: 69.303 - type: nauc_map_at_100_max value: 57.4927 - type: nauc_map_at_100_std value: 10.3077 - type: nauc_map_at_100_diff1 value: 69.3295 - type: nauc_map_at_1000_max value: 57.4921 - type: nauc_map_at_1000_std value: 10.2661 - type: nauc_map_at_1000_diff1 value: 69.3497 - type: nauc_recall_at_1_max value: 55.3207 - type: nauc_recall_at_1_std value: 7.2139 - type: nauc_recall_at_1_diff1 value: 72.6385 - type: nauc_recall_at_3_max value: 61.36899999999999 - type: nauc_recall_at_3_std value: 10.1165 - type: nauc_recall_at_3_diff1 value: 66.0874 - type: nauc_recall_at_5_max value: 60.956999999999994 - type: nauc_recall_at_5_std value: 21.409 - type: nauc_recall_at_5_diff1 value: 61.770199999999996 - type: nauc_recall_at_10_max value: 61.73689999999999 - type: nauc_recall_at_10_std value: 32.1058 - type: nauc_recall_at_10_diff1 value: 59.7434 - type: nauc_recall_at_20_max value: 61.2737 - type: nauc_recall_at_20_std value: 39.7564 - type: nauc_recall_at_20_diff1 value: 57.3813 - type: nauc_recall_at_100_max value: 66.6667 - type: nauc_recall_at_100_std value: 69.0613 - type: nauc_recall_at_100_diff1 value: 53.7574 - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_precision_at_1_max value: 55.3207 - type: nauc_precision_at_1_std value: 7.2139 - type: nauc_precision_at_1_diff1 value: 72.6385 - type: nauc_precision_at_3_max value: 61.36899999999999 - type: nauc_precision_at_3_std value: 10.1165 - type: nauc_precision_at_3_diff1 value: 66.0874 - type: nauc_precision_at_5_max value: 60.956999999999994 - type: nauc_precision_at_5_std value: 21.409 - type: nauc_precision_at_5_diff1 value: 61.770199999999996 - type: nauc_precision_at_10_max value: 61.73689999999999 - type: nauc_precision_at_10_std value: 32.1058 - type: nauc_precision_at_10_diff1 value: 59.7434 - type: nauc_precision_at_20_max value: 61.2737 - type: nauc_precision_at_20_std value: 39.7564 - type: nauc_precision_at_20_diff1 value: 57.3813 - type: nauc_precision_at_100_max value: 66.6667 - type: nauc_precision_at_100_std value: 69.0613 - type: nauc_precision_at_100_diff1 value: 53.7574 - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_mrr_at_1_max value: 55.3207 - type: nauc_mrr_at_1_std value: 7.2139 - type: nauc_mrr_at_1_diff1 value: 72.6385 - type: nauc_mrr_at_3_max value: 57.678399999999996 - type: nauc_mrr_at_3_std value: 7.900500000000001 - type: nauc_mrr_at_3_diff1 value: 69.8646 - type: nauc_mrr_at_5_max value: 57.5229 - type: nauc_mrr_at_5_std value: 9.7157 - type: nauc_mrr_at_5_diff1 value: 69.2704 - type: nauc_mrr_at_10_max value: 57.5133 - type: nauc_mrr_at_10_std value: 10.2078 - type: nauc_mrr_at_10_diff1 value: 69.2876 - type: nauc_mrr_at_20_max value: 57.4843 - type: nauc_mrr_at_20_std value: 10.2501 - type: nauc_mrr_at_20_diff1 value: 69.303 - type: nauc_mrr_at_100_max value: 57.4927 - type: nauc_mrr_at_100_std value: 10.3077 - type: nauc_mrr_at_100_diff1 value: 69.3295 - type: nauc_mrr_at_1000_max value: 57.4921 - type: nauc_mrr_at_1000_std value: 10.2661 - type: nauc_mrr_at_1000_diff1 value: 69.3497 - type: main_score value: 70.829 task: type: Retrieval - dataset: config: java name: MTEB CodeSearchNetRetrieval (java) revision: fdc6a9e39575768c27eb8a2a5f702bf846eb4759 split: test type: code-search-net/code_search_net metrics: - type: ndcg_at_1 value: 50.3 - type: ndcg_at_3 value: 62.883 - type: ndcg_at_5 value: 65.11200000000001 - type: ndcg_at_10 value: 67.044 - type: ndcg_at_20 value: 68.326 - type: ndcg_at_100 value: 69.592 - type: ndcg_at_1000 value: 70.209 - type: map_at_1 value: 50.3 - type: map_at_3 value: 59.8 - type: map_at_5 value: 61.040000000000006 - type: map_at_10 value: 61.852 - type: map_at_20 value: 62.212999999999994 - type: map_at_100 value: 62.397000000000006 - type: map_at_1000 value: 62.416000000000004 - type: recall_at_1 value: 50.3 - type: recall_at_3 value: 71.8 - type: recall_at_5 value: 77.2 - type: recall_at_10 value: 83.1 - type: recall_at_20 value: 88.1 - type: recall_at_100 value: 94.8 - type: recall_at_1000 value: 100.0 - type: precision_at_1 value: 50.3 - type: precision_at_3 value: 23.933 - type: precision_at_5 value: 15.440000000000001 - type: precision_at_10 value: 8.309999999999999 - type: precision_at_20 value: 4.405 - type: precision_at_100 value: 0.9480000000000001 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 50.3 - type: mrr_at_3 value: 59.8 - type: mrr_at_5 value: 61.040000000000006 - type: mrr_at_10 value: 61.8522 - type: mrr_at_20 value: 62.21339999999999 - type: mrr_at_100 value: 62.397499999999994 - type: mrr_at_1000 value: 62.415600000000005 - type: nauc_ndcg_at_1_max value: 27.9845 - type: nauc_ndcg_at_1_std value: -16.28 - type: nauc_ndcg_at_1_diff1 value: 61.9927 - type: nauc_ndcg_at_3_max value: 33.0521 - type: nauc_ndcg_at_3_std value: -10.3558 - type: nauc_ndcg_at_3_diff1 value: 56.8436 - type: nauc_ndcg_at_5_max value: 34.6635 - type: nauc_ndcg_at_5_std value: -7.1861 - type: nauc_ndcg_at_5_diff1 value: 56.39999999999999 - type: nauc_ndcg_at_10_max value: 36.0742 - type: nauc_ndcg_at_10_std value: -6.1496 - type: nauc_ndcg_at_10_diff1 value: 57.239 - type: nauc_ndcg_at_20_max value: 36.5836 - type: nauc_ndcg_at_20_std value: -5.3723 - type: nauc_ndcg_at_20_diff1 value: 57.7333 - type: nauc_ndcg_at_100_max value: 36.0909 - type: nauc_ndcg_at_100_std value: -5.655799999999999 - type: nauc_ndcg_at_100_diff1 value: 58.411699999999996 - type: nauc_ndcg_at_1000_max value: 34.8377 - type: nauc_ndcg_at_1000_std value: -7.542999999999999 - type: nauc_ndcg_at_1000_diff1 value: 58.198899999999995 - type: nauc_map_at_1_max value: 27.9845 - type: nauc_map_at_1_std value: -16.28 - type: nauc_map_at_1_diff1 value: 61.9927 - type: nauc_map_at_3_max value: 31.7824 - type: nauc_map_at_3_std value: -11.9282 - type: nauc_map_at_3_diff1 value: 58.2543 - type: nauc_map_at_5_max value: 32.5811 - type: nauc_map_at_5_std value: -10.3315 - type: nauc_map_at_5_diff1 value: 58.046 - type: nauc_map_at_10_max value: 33.0525 - type: nauc_map_at_10_std value: -10.0071 - type: nauc_map_at_10_diff1 value: 58.3778 - type: nauc_map_at_20_max value: 33.164 - type: nauc_map_at_20_std value: -9.8753 - type: nauc_map_at_20_diff1 value: 58.5075 - type: nauc_map_at_100_max value: 33.0857 - type: nauc_map_at_100_std value: -9.9373 - type: nauc_map_at_100_diff1 value: 58.581399999999995 - type: nauc_map_at_1000_max value: 33.0589 - type: nauc_map_at_1000_std value: -9.9773 - type: nauc_map_at_1000_diff1 value: 58.5777 - type: nauc_recall_at_1_max value: 27.9845 - type: nauc_recall_at_1_std value: -16.28 - type: nauc_recall_at_1_diff1 value: 61.9927 - type: nauc_recall_at_3_max value: 37.5284 - type: nauc_recall_at_3_std value: -4.7627999999999995 - type: nauc_recall_at_3_diff1 value: 51.8022 - type: nauc_recall_at_5_max value: 43.4852 - type: nauc_recall_at_5_std value: 6.3649 - type: nauc_recall_at_5_diff1 value: 49.5664 - type: nauc_recall_at_10_max value: 53.156000000000006 - type: nauc_recall_at_10_std value: 15.4361 - type: nauc_recall_at_10_diff1 value: 51.865300000000005 - type: nauc_recall_at_20_max value: 63.3834 - type: nauc_recall_at_20_std value: 30.2094 - type: nauc_recall_at_20_diff1 value: 54.013999999999996 - type: nauc_recall_at_100_max value: 84.36399999999999 - type: nauc_recall_at_100_std value: 67.20089999999999 - type: nauc_recall_at_100_diff1 value: 66.6146 - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_precision_at_1_max value: 27.9845 - type: nauc_precision_at_1_std value: -16.28 - type: nauc_precision_at_1_diff1 value: 61.9927 - type: nauc_precision_at_3_max value: 37.5284 - type: nauc_precision_at_3_std value: -4.7627999999999995 - type: nauc_precision_at_3_diff1 value: 51.8022 - type: nauc_precision_at_5_max value: 43.4852 - type: nauc_precision_at_5_std value: 6.3649 - type: nauc_precision_at_5_diff1 value: 49.5664 - type: nauc_precision_at_10_max value: 53.156000000000006 - type: nauc_precision_at_10_std value: 15.4361 - type: nauc_precision_at_10_diff1 value: 51.865300000000005 - type: nauc_precision_at_20_max value: 63.3834 - type: nauc_precision_at_20_std value: 30.2094 - type: nauc_precision_at_20_diff1 value: 54.013999999999996 - type: nauc_precision_at_100_max value: 84.36399999999999 - type: nauc_precision_at_100_std value: 67.20089999999999 - type: nauc_precision_at_100_diff1 value: 66.6146 - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_mrr_at_1_max value: 27.9845 - type: nauc_mrr_at_1_std value: -16.28 - type: nauc_mrr_at_1_diff1 value: 61.9927 - type: nauc_mrr_at_3_max value: 31.7824 - type: nauc_mrr_at_3_std value: -11.9282 - type: nauc_mrr_at_3_diff1 value: 58.2543 - type: nauc_mrr_at_5_max value: 32.5811 - type: nauc_mrr_at_5_std value: -10.3315 - type: nauc_mrr_at_5_diff1 value: 58.046 - type: nauc_mrr_at_10_max value: 33.0525 - type: nauc_mrr_at_10_std value: -10.0071 - type: nauc_mrr_at_10_diff1 value: 58.3778 - type: nauc_mrr_at_20_max value: 33.164 - type: nauc_mrr_at_20_std value: -9.8753 - type: nauc_mrr_at_20_diff1 value: 58.5075 - type: nauc_mrr_at_100_max value: 33.0857 - type: nauc_mrr_at_100_std value: -9.9373 - type: nauc_mrr_at_100_diff1 value: 58.581399999999995 - type: nauc_mrr_at_1000_max value: 33.0589 - type: nauc_mrr_at_1000_std value: -9.9773 - type: nauc_mrr_at_1000_diff1 value: 58.5777 - type: main_score value: 67.044 task: type: Retrieval - dataset: config: php name: MTEB CodeSearchNetRetrieval (php) revision: fdc6a9e39575768c27eb8a2a5f702bf846eb4759 split: test type: code-search-net/code_search_net metrics: - type: ndcg_at_1 value: 52.5 - type: ndcg_at_3 value: 65.362 - type: ndcg_at_5 value: 67.797 - type: ndcg_at_10 value: 69.791 - type: ndcg_at_20 value: 70.787 - type: ndcg_at_100 value: 71.607 - type: ndcg_at_1000 value: 72.24000000000001 - type: map_at_1 value: 52.5 - type: map_at_3 value: 62.233000000000004 - type: map_at_5 value: 63.588 - type: map_at_10 value: 64.424 - type: map_at_20 value: 64.703 - type: map_at_100 value: 64.825 - type: map_at_1000 value: 64.84100000000001 - type: recall_at_1 value: 52.5 - type: recall_at_3 value: 74.4 - type: recall_at_5 value: 80.30000000000001 - type: recall_at_10 value: 86.4 - type: recall_at_20 value: 90.3 - type: recall_at_100 value: 94.6 - type: recall_at_1000 value: 100.0 - type: precision_at_1 value: 52.5 - type: precision_at_3 value: 24.8 - type: precision_at_5 value: 16.06 - type: precision_at_10 value: 8.64 - type: precision_at_20 value: 4.515000000000001 - type: precision_at_100 value: 0.946 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 52.5 - type: mrr_at_3 value: 62.2333 - type: mrr_at_5 value: 63.5883 - type: mrr_at_10 value: 64.4237 - type: mrr_at_20 value: 64.7029 - type: mrr_at_100 value: 64.8249 - type: mrr_at_1000 value: 64.84140000000001 - type: nauc_ndcg_at_1_max value: 28.977700000000002 - type: nauc_ndcg_at_1_std value: 5.5688 - type: nauc_ndcg_at_1_diff1 value: 62.8127 - type: nauc_ndcg_at_3_max value: 42.5053 - type: nauc_ndcg_at_3_std value: 13.8126 - type: nauc_ndcg_at_3_diff1 value: 60.791700000000006 - type: nauc_ndcg_at_5_max value: 43.521100000000004 - type: nauc_ndcg_at_5_std value: 14.5838 - type: nauc_ndcg_at_5_diff1 value: 61.267700000000005 - type: nauc_ndcg_at_10_max value: 43.2523 - type: nauc_ndcg_at_10_std value: 16.2237 - type: nauc_ndcg_at_10_diff1 value: 61.642300000000006 - type: nauc_ndcg_at_20_max value: 42.7707 - type: nauc_ndcg_at_20_std value: 17.0607 - type: nauc_ndcg_at_20_diff1 value: 61.5855 - type: nauc_ndcg_at_100_max value: 42.127900000000004 - type: nauc_ndcg_at_100_std value: 16.582900000000002 - type: nauc_ndcg_at_100_diff1 value: 61.916700000000006 - type: nauc_ndcg_at_1000_max value: 40.7945 - type: nauc_ndcg_at_1000_std value: 14.6562 - type: nauc_ndcg_at_1000_diff1 value: 61.7069 - type: nauc_map_at_1_max value: 28.977700000000002 - type: nauc_map_at_1_std value: 5.5688 - type: nauc_map_at_1_diff1 value: 62.8127 - type: nauc_map_at_3_max value: 38.5313 - type: nauc_map_at_3_std value: 11.2395 - type: nauc_map_at_3_diff1 value: 61.1888 - type: nauc_map_at_5_max value: 38.8835 - type: nauc_map_at_5_std value: 11.5395 - type: nauc_map_at_5_diff1 value: 61.449 - type: nauc_map_at_10_max value: 38.6822 - type: nauc_map_at_10_std value: 12.0181 - type: nauc_map_at_10_diff1 value: 61.5846 - type: nauc_map_at_20_max value: 38.5328 - type: nauc_map_at_20_std value: 12.182500000000001 - type: nauc_map_at_20_diff1 value: 61.578599999999994 - type: nauc_map_at_100_max value: 38.4484 - type: nauc_map_at_100_std value: 12.1157 - type: nauc_map_at_100_diff1 value: 61.6247 - type: nauc_map_at_1000_max value: 38.418600000000005 - type: nauc_map_at_1000_std value: 12.0795 - type: nauc_map_at_1000_diff1 value: 61.6214 - type: nauc_recall_at_1_max value: 28.977700000000002 - type: nauc_recall_at_1_std value: 5.5688 - type: nauc_recall_at_1_diff1 value: 62.8127 - type: nauc_recall_at_3_max value: 57.338699999999996 - type: nauc_recall_at_3_std value: 23.4946 - type: nauc_recall_at_3_diff1 value: 59.4094 - type: nauc_recall_at_5_max value: 64.4058 - type: nauc_recall_at_5_std value: 28.382 - type: nauc_recall_at_5_diff1 value: 60.671600000000005 - type: nauc_recall_at_10_max value: 71.11070000000001 - type: nauc_recall_at_10_std value: 43.6152 - type: nauc_recall_at_10_diff1 value: 62.6013 - type: nauc_recall_at_20_max value: 76.3142 - type: nauc_recall_at_20_std value: 61.0644 - type: nauc_recall_at_20_diff1 value: 62.244600000000005 - type: nauc_recall_at_100_max value: 87.9526 - type: nauc_recall_at_100_std value: 84.63619999999999 - type: nauc_recall_at_100_diff1 value: 69.6848 - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_precision_at_1_max value: 28.977700000000002 - type: nauc_precision_at_1_std value: 5.5688 - type: nauc_precision_at_1_diff1 value: 62.8127 - type: nauc_precision_at_3_max value: 57.338699999999996 - type: nauc_precision_at_3_std value: 23.4946 - type: nauc_precision_at_3_diff1 value: 59.4094 - type: nauc_precision_at_5_max value: 64.4058 - type: nauc_precision_at_5_std value: 28.382 - type: nauc_precision_at_5_diff1 value: 60.671600000000005 - type: nauc_precision_at_10_max value: 71.11070000000001 - type: nauc_precision_at_10_std value: 43.6152 - type: nauc_precision_at_10_diff1 value: 62.6013 - type: nauc_precision_at_20_max value: 76.3142 - type: nauc_precision_at_20_std value: 61.0644 - type: nauc_precision_at_20_diff1 value: 62.244600000000005 - type: nauc_precision_at_100_max value: 87.9526 - type: nauc_precision_at_100_std value: 84.63619999999999 - type: nauc_precision_at_100_diff1 value: 69.6848 - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_mrr_at_1_max value: 28.977700000000002 - type: nauc_mrr_at_1_std value: 5.5688 - type: nauc_mrr_at_1_diff1 value: 62.8127 - type: nauc_mrr_at_3_max value: 38.5313 - type: nauc_mrr_at_3_std value: 11.2395 - type: nauc_mrr_at_3_diff1 value: 61.1888 - type: nauc_mrr_at_5_max value: 38.8835 - type: nauc_mrr_at_5_std value: 11.5395 - type: nauc_mrr_at_5_diff1 value: 61.449 - type: nauc_mrr_at_10_max value: 38.6822 - type: nauc_mrr_at_10_std value: 12.0181 - type: nauc_mrr_at_10_diff1 value: 61.5846 - type: nauc_mrr_at_20_max value: 38.5328 - type: nauc_mrr_at_20_std value: 12.182500000000001 - type: nauc_mrr_at_20_diff1 value: 61.578599999999994 - type: nauc_mrr_at_100_max value: 38.4484 - type: nauc_mrr_at_100_std value: 12.1157 - type: nauc_mrr_at_100_diff1 value: 61.6247 - type: nauc_mrr_at_1000_max value: 38.418600000000005 - type: nauc_mrr_at_1000_std value: 12.0795 - type: nauc_mrr_at_1000_diff1 value: 61.6214 - type: main_score value: 69.791 task: type: Retrieval - dataset: config: default name: MTEB CodeTransOceanContest (default) revision: 20da4eb20a4b17300c0986ee148c90867a7f2a4d split: test type: CoIR-Retrieval/codetrans-contest metrics: - type: ndcg_at_1 value: 33.032000000000004 - type: ndcg_at_3 value: 38.041000000000004 - type: ndcg_at_5 value: 40.67 - type: ndcg_at_10 value: 43.651 - type: ndcg_at_20 value: 45.255 - type: ndcg_at_100 value: 48.41 - type: ndcg_at_1000 value: 50.775000000000006 - type: map_at_1 value: 33.032000000000004 - type: map_at_3 value: 36.802 - type: map_at_5 value: 38.273 - type: map_at_10 value: 39.45 - type: map_at_20 value: 39.891 - type: map_at_100 value: 40.312 - type: map_at_1000 value: 40.396 - type: recall_at_1 value: 33.032000000000004 - type: recall_at_3 value: 41.629 - type: recall_at_5 value: 47.964 - type: recall_at_10 value: 57.465999999999994 - type: recall_at_20 value: 63.800999999999995 - type: recall_at_100 value: 80.99499999999999 - type: recall_at_1000 value: 100.0 - type: precision_at_1 value: 33.032000000000004 - type: precision_at_3 value: 13.876 - type: precision_at_5 value: 9.593 - type: precision_at_10 value: 5.747 - type: precision_at_20 value: 3.19 - type: precision_at_100 value: 0.8099999999999999 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 33.0317 - type: mrr_at_3 value: 36.8024 - type: mrr_at_5 value: 38.273 - type: mrr_at_10 value: 39.4504 - type: mrr_at_20 value: 39.8911 - type: mrr_at_100 value: 40.3122 - type: mrr_at_1000 value: 40.3955 - type: nauc_ndcg_at_1_max value: 53.0197 - type: nauc_ndcg_at_1_std value: 0.8863 - type: nauc_ndcg_at_1_diff1 value: 67.8151 - type: nauc_ndcg_at_3_max value: 50.37350000000001 - type: nauc_ndcg_at_3_std value: 1.3549 - type: nauc_ndcg_at_3_diff1 value: 61.698699999999995 - type: nauc_ndcg_at_5_max value: 49.1498 - type: nauc_ndcg_at_5_std value: 2.5727 - type: nauc_ndcg_at_5_diff1 value: 58.0748 - type: nauc_ndcg_at_10_max value: 47.5197 - type: nauc_ndcg_at_10_std value: 2.7498 - type: nauc_ndcg_at_10_diff1 value: 56.9398 - type: nauc_ndcg_at_20_max value: 47.5836 - type: nauc_ndcg_at_20_std value: 3.4302 - type: nauc_ndcg_at_20_diff1 value: 55.8913 - type: nauc_ndcg_at_100_max value: 48.079499999999996 - type: nauc_ndcg_at_100_std value: 3.7983999999999996 - type: nauc_ndcg_at_100_diff1 value: 56.7706 - type: nauc_ndcg_at_1000_max value: 48.7136 - type: nauc_ndcg_at_1000_std value: 2.949 - type: nauc_ndcg_at_1000_diff1 value: 58.0488 - type: nauc_map_at_1_max value: 53.0197 - type: nauc_map_at_1_std value: 0.8863 - type: nauc_map_at_1_diff1 value: 67.8151 - type: nauc_map_at_3_max value: 51.1105 - type: nauc_map_at_3_std value: 1.5191 - type: nauc_map_at_3_diff1 value: 63.005900000000004 - type: nauc_map_at_5_max value: 50.4462 - type: nauc_map_at_5_std value: 2.0751 - type: nauc_map_at_5_diff1 value: 61.0287 - type: nauc_map_at_10_max value: 49.772499999999994 - type: nauc_map_at_10_std value: 2.1092 - type: nauc_map_at_10_diff1 value: 60.528000000000006 - type: nauc_map_at_20_max value: 49.7904 - type: nauc_map_at_20_std value: 2.3456 - type: nauc_map_at_20_diff1 value: 60.2416 - type: nauc_map_at_100_max value: 49.8742 - type: nauc_map_at_100_std value: 2.3747000000000003 - type: nauc_map_at_100_diff1 value: 60.390600000000006 - type: nauc_map_at_1000_max value: 49.8875 - type: nauc_map_at_1000_std value: 2.3390999999999997 - type: nauc_map_at_1000_diff1 value: 60.41180000000001 - type: nauc_recall_at_1_max value: 53.0197 - type: nauc_recall_at_1_std value: 0.8863 - type: nauc_recall_at_1_diff1 value: 67.8151 - type: nauc_recall_at_3_max value: 48.2306 - type: nauc_recall_at_3_std value: 0.7745 - type: nauc_recall_at_3_diff1 value: 58.0358 - type: nauc_recall_at_5_max value: 45.1577 - type: nauc_recall_at_5_std value: 4.228400000000001 - type: nauc_recall_at_5_diff1 value: 49.0182 - type: nauc_recall_at_10_max value: 39.584 - type: nauc_recall_at_10_std value: 5.1647 - type: nauc_recall_at_10_diff1 value: 44.864399999999996 - type: nauc_recall_at_20_max value: 39.1616 - type: nauc_recall_at_20_std value: 7.9384 - type: nauc_recall_at_20_diff1 value: 39.124700000000004 - type: nauc_recall_at_100_max value: 38.4356 - type: nauc_recall_at_100_std value: 14.498 - type: nauc_recall_at_100_diff1 value: 36.8934 - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_precision_at_1_max value: 53.0197 - type: nauc_precision_at_1_std value: 0.8863 - type: nauc_precision_at_1_diff1 value: 67.8151 - type: nauc_precision_at_3_max value: 48.2306 - type: nauc_precision_at_3_std value: 0.7745 - type: nauc_precision_at_3_diff1 value: 58.0358 - type: nauc_precision_at_5_max value: 45.1577 - type: nauc_precision_at_5_std value: 4.228400000000001 - type: nauc_precision_at_5_diff1 value: 49.0182 - type: nauc_precision_at_10_max value: 39.584 - type: nauc_precision_at_10_std value: 5.1647 - type: nauc_precision_at_10_diff1 value: 44.864399999999996 - type: nauc_precision_at_20_max value: 39.1616 - type: nauc_precision_at_20_std value: 7.9384 - type: nauc_precision_at_20_diff1 value: 39.124700000000004 - type: nauc_precision_at_100_max value: 38.4356 - type: nauc_precision_at_100_std value: 14.498 - type: nauc_precision_at_100_diff1 value: 36.8934 - type: nauc_precision_at_1000_max value: 100.0 - type: nauc_precision_at_1000_std value: 100.0 - type: nauc_precision_at_1000_diff1 value: 100.0 - type: nauc_mrr_at_1_max value: 53.0197 - type: nauc_mrr_at_1_std value: 0.8863 - type: nauc_mrr_at_1_diff1 value: 67.8151 - type: nauc_mrr_at_3_max value: 51.1105 - type: nauc_mrr_at_3_std value: 1.5191 - type: nauc_mrr_at_3_diff1 value: 63.005900000000004 - type: nauc_mrr_at_5_max value: 50.4462 - type: nauc_mrr_at_5_std value: 2.0751 - type: nauc_mrr_at_5_diff1 value: 61.0287 - type: nauc_mrr_at_10_max value: 49.772499999999994 - type: nauc_mrr_at_10_std value: 2.1092 - type: nauc_mrr_at_10_diff1 value: 60.528000000000006 - type: nauc_mrr_at_20_max value: 49.7904 - type: nauc_mrr_at_20_std value: 2.3456 - type: nauc_mrr_at_20_diff1 value: 60.2416 - type: nauc_mrr_at_100_max value: 49.8742 - type: nauc_mrr_at_100_std value: 2.3747000000000003 - type: nauc_mrr_at_100_diff1 value: 60.390600000000006 - type: nauc_mrr_at_1000_max value: 49.8875 - type: nauc_mrr_at_1000_std value: 2.3390999999999997 - type: nauc_mrr_at_1000_diff1 value: 60.41180000000001 - type: main_score value: 43.651 task: type: Retrieval - dataset: config: default name: MTEB CodeTransOceanDL (default) revision: 281562cb8a1265ab5c0824bfa6ddcd9b0a15618f split: test type: CoIR-Retrieval/codetrans-dl metrics: - type: ndcg_at_1 value: 8.333 - type: ndcg_at_3 value: 9.795 - type: ndcg_at_5 value: 13.286999999999999 - type: ndcg_at_10 value: 18.151999999999997 - type: ndcg_at_20 value: 21.914 - type: ndcg_at_100 value: 28.576 - type: ndcg_at_1000 value: 30.407 - type: map_at_1 value: 8.333 - type: map_at_3 value: 9.352 - type: map_at_5 value: 11.324 - type: map_at_10 value: 13.233 - type: map_at_20 value: 14.325 - type: map_at_100 value: 15.153 - type: map_at_1000 value: 15.243 - type: recall_at_1 value: 8.333 - type: recall_at_3 value: 11.111 - type: recall_at_5 value: 19.444 - type: recall_at_10 value: 35.0 - type: recall_at_20 value: 49.444 - type: recall_at_100 value: 86.667 - type: recall_at_1000 value: 100.0 - type: precision_at_1 value: 8.333 - type: precision_at_3 value: 3.7039999999999997 - type: precision_at_5 value: 3.8890000000000002 - type: precision_at_10 value: 3.5000000000000004 - type: precision_at_20 value: 2.472 - type: precision_at_100 value: 0.8670000000000001 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 3.3333000000000004 - type: mrr_at_3 value: 6.6667000000000005 - type: mrr_at_5 value: 7.7778 - type: mrr_at_10 value: 10.247100000000001 - type: mrr_at_20 value: 11.3458 - type: mrr_at_100 value: 12.177 - type: mrr_at_1000 value: 12.2675 - type: nauc_ndcg_at_1_max value: -39.772800000000004 - type: nauc_ndcg_at_1_std value: -34.0524 - type: nauc_ndcg_at_1_diff1 value: -32.8146 - type: nauc_ndcg_at_3_max value: -39.8776 - type: nauc_ndcg_at_3_std value: -34.6862 - type: nauc_ndcg_at_3_diff1 value: -19.3707 - type: nauc_ndcg_at_5_max value: -40.8597 - type: nauc_ndcg_at_5_std value: -38.1022 - type: nauc_ndcg_at_5_diff1 value: -6.4628000000000005 - type: nauc_ndcg_at_10_max value: -40.2327 - type: nauc_ndcg_at_10_std value: -47.2976 - type: nauc_ndcg_at_10_diff1 value: -4.4762 - type: nauc_ndcg_at_20_max value: -41.7987 - type: nauc_ndcg_at_20_std value: -54.2481 - type: nauc_ndcg_at_20_diff1 value: -8.6146 - type: nauc_ndcg_at_100_max value: -39.463100000000004 - type: nauc_ndcg_at_100_std value: -45.7414 - type: nauc_ndcg_at_100_diff1 value: -9.2455 - type: nauc_ndcg_at_1000_max value: -40.8904 - type: nauc_ndcg_at_1000_std value: -46.5535 - type: nauc_ndcg_at_1000_diff1 value: -11.476799999999999 - type: nauc_map_at_1_max value: -39.772800000000004 - type: nauc_map_at_1_std value: -34.0524 - type: nauc_map_at_1_diff1 value: -32.8146 - type: nauc_map_at_3_max value: -39.894200000000005 - type: nauc_map_at_3_std value: -34.4818 - type: nauc_map_at_3_diff1 value: -23.0092 - type: nauc_map_at_5_max value: -40.5148 - type: nauc_map_at_5_std value: -36.6914 - type: nauc_map_at_5_diff1 value: -14.0244 - type: nauc_map_at_10_max value: -40.3751 - type: nauc_map_at_10_std value: -41.0546 - type: nauc_map_at_10_diff1 value: -12.7255 - type: nauc_map_at_20_max value: -40.8992 - type: nauc_map_at_20_std value: -43.580999999999996 - type: nauc_map_at_20_diff1 value: -14.1348 - type: nauc_map_at_100_max value: -40.8422 - type: nauc_map_at_100_std value: -42.7572 - type: nauc_map_at_100_diff1 value: -14.5847 - type: nauc_map_at_1000_max value: -40.8622 - type: nauc_map_at_1000_std value: -42.7255 - type: nauc_map_at_1000_diff1 value: -14.716099999999999 - type: nauc_recall_at_1_max value: -39.772800000000004 - type: nauc_recall_at_1_std value: -34.0524 - type: nauc_recall_at_1_diff1 value: -32.8146 - type: nauc_recall_at_3_max value: -39.8223 - type: nauc_recall_at_3_std value: -35.2166 - type: nauc_recall_at_3_diff1 value: -10.0944 - type: nauc_recall_at_5_max value: -41.574 - type: nauc_recall_at_5_std value: -41.0135 - type: nauc_recall_at_5_diff1 value: 8.5898 - type: nauc_recall_at_10_max value: -39.7009 - type: nauc_recall_at_10_std value: -59.587900000000005 - type: nauc_recall_at_10_diff1 value: 9.6476 - type: nauc_recall_at_20_max value: -43.7116 - type: nauc_recall_at_20_std value: -76.6625 - type: nauc_recall_at_20_diff1 value: -0.7394999999999999 - type: nauc_recall_at_100_max value: -22.023799999999998 - type: nauc_recall_at_100_std value: -33.848099999999995 - type: nauc_recall_at_100_diff1 value: 12.5282 - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_precision_at_1_max value: -39.772800000000004 - type: nauc_precision_at_1_std value: -34.0524 - type: nauc_precision_at_1_diff1 value: -32.8146 - type: nauc_precision_at_3_max value: -39.8223 - type: nauc_precision_at_3_std value: -35.2166 - type: nauc_precision_at_3_diff1 value: -10.0944 - type: nauc_precision_at_5_max value: -41.574 - type: nauc_precision_at_5_std value: -41.0135 - type: nauc_precision_at_5_diff1 value: 8.5898 - type: nauc_precision_at_10_max value: -39.7009 - type: nauc_precision_at_10_std value: -59.587900000000005 - type: nauc_precision_at_10_diff1 value: 9.6476 - type: nauc_precision_at_20_max value: -43.7116 - type: nauc_precision_at_20_std value: -76.6625 - type: nauc_precision_at_20_diff1 value: -0.7394999999999999 - type: nauc_precision_at_100_max value: -22.023799999999998 - type: nauc_precision_at_100_std value: -33.848099999999995 - type: nauc_precision_at_100_diff1 value: 12.5282 - type: nauc_precision_at_1000_max value: 100.0 - type: nauc_precision_at_1000_std value: 100.0 - type: nauc_precision_at_1000_diff1 value: 100.0 - type: nauc_mrr_at_1_max value: -37.1478 - type: nauc_mrr_at_1_std value: -38.2256 - type: nauc_mrr_at_1_diff1 value: -19.2648 - type: nauc_mrr_at_3_max value: -38.5609 - type: nauc_mrr_at_3_std value: -36.7946 - type: nauc_mrr_at_3_diff1 value: 15.8383 - type: nauc_mrr_at_5_max value: -38.6003 - type: nauc_mrr_at_5_std value: -38.6368 - type: nauc_mrr_at_5_diff1 value: 10.5538 - type: nauc_mrr_at_10_max value: -40.3107 - type: nauc_mrr_at_10_std value: -44.6633 - type: nauc_mrr_at_10_diff1 value: 12.0739 - type: nauc_mrr_at_20_max value: -40.2119 - type: nauc_mrr_at_20_std value: -47.942099999999996 - type: nauc_mrr_at_20_diff1 value: 9.2441 - type: nauc_mrr_at_100_max value: -40.095 - type: nauc_mrr_at_100_std value: -46.9315 - type: nauc_mrr_at_100_diff1 value: 9.4182 - type: nauc_mrr_at_1000_max value: -40.117799999999995 - type: nauc_mrr_at_1000_std value: -46.914699999999996 - type: nauc_mrr_at_1000_diff1 value: 9.3917 - type: main_score value: 18.151999999999997 task: type: Retrieval - dataset: config: default name: MTEB CosQA (default) revision: bc5efb7e9d437246ce393ed19d772e08e4a79535 split: test type: CoIR-Retrieval/cosqa metrics: - type: ndcg_at_1 value: 12.6 - type: ndcg_at_3 value: 19.259 - type: ndcg_at_5 value: 24.078 - type: ndcg_at_10 value: 28.288999999999998 - type: ndcg_at_20 value: 31.706 - type: ndcg_at_100 value: 36.05 - type: ndcg_at_1000 value: 37.632 - type: map_at_1 value: 12.6 - type: map_at_3 value: 17.5 - type: map_at_5 value: 20.150000000000002 - type: map_at_10 value: 21.931 - type: map_at_20 value: 22.884 - type: map_at_100 value: 23.502000000000002 - type: map_at_1000 value: 23.566000000000003 - type: recall_at_1 value: 12.6 - type: recall_at_3 value: 24.4 - type: recall_at_5 value: 36.199999999999996 - type: recall_at_10 value: 49.0 - type: recall_at_20 value: 62.4 - type: recall_at_100 value: 85.6 - type: recall_at_1000 value: 97.8 - type: precision_at_1 value: 12.6 - type: precision_at_3 value: 8.133 - type: precision_at_5 value: 7.24 - type: precision_at_10 value: 4.9 - type: precision_at_20 value: 3.1199999999999997 - type: precision_at_100 value: 0.856 - type: precision_at_1000 value: 0.098 - type: mrr_at_1 value: 12.2 - type: mrr_at_3 value: 17.6333 - type: mrr_at_5 value: 19.453300000000002 - type: mrr_at_10 value: 21.3205 - type: mrr_at_20 value: 22.315199999999997 - type: mrr_at_100 value: 22.9331 - type: mrr_at_1000 value: 22.9955 - type: nauc_ndcg_at_1_max value: 10.2948 - type: nauc_ndcg_at_1_std value: -13.1709 - type: nauc_ndcg_at_1_diff1 value: 31.4251 - type: nauc_ndcg_at_3_max value: 15.477599999999999 - type: nauc_ndcg_at_3_std value: -11.7827 - type: nauc_ndcg_at_3_diff1 value: 17.4257 - type: nauc_ndcg_at_5_max value: 17.7434 - type: nauc_ndcg_at_5_std value: -10.7058 - type: nauc_ndcg_at_5_diff1 value: 13.955100000000002 - type: nauc_ndcg_at_10_max value: 17.799100000000003 - type: nauc_ndcg_at_10_std value: -8.629000000000001 - type: nauc_ndcg_at_10_diff1 value: 12.266399999999999 - type: nauc_ndcg_at_20_max value: 18.454 - type: nauc_ndcg_at_20_std value: -8.0871 - type: nauc_ndcg_at_20_diff1 value: 11.4802 - type: nauc_ndcg_at_100_max value: 18.8607 - type: nauc_ndcg_at_100_std value: -5.8566 - type: nauc_ndcg_at_100_diff1 value: 12.559899999999999 - type: nauc_ndcg_at_1000_max value: 18.1409 - type: nauc_ndcg_at_1000_std value: -6.894799999999999 - type: nauc_ndcg_at_1000_diff1 value: 13.9734 - type: nauc_map_at_1_max value: 10.2948 - type: nauc_map_at_1_std value: -13.1709 - type: nauc_map_at_1_diff1 value: 31.4251 - type: nauc_map_at_3_max value: 14.4256 - type: nauc_map_at_3_std value: -12.173 - type: nauc_map_at_3_diff1 value: 20.4742 - type: nauc_map_at_5_max value: 15.842400000000001 - type: nauc_map_at_5_std value: -11.5686 - type: nauc_map_at_5_diff1 value: 18.195800000000002 - type: nauc_map_at_10_max value: 15.786200000000001 - type: nauc_map_at_10_std value: -10.564 - type: nauc_map_at_10_diff1 value: 17.227899999999998 - type: nauc_map_at_20_max value: 15.987199999999998 - type: nauc_map_at_20_std value: -10.4241 - type: nauc_map_at_20_diff1 value: 17.0317 - type: nauc_map_at_100_max value: 16.1125 - type: nauc_map_at_100_std value: -9.9394 - type: nauc_map_at_100_diff1 value: 17.191100000000002 - type: nauc_map_at_1000_max value: 16.0868 - type: nauc_map_at_1000_std value: -9.9615 - type: nauc_map_at_1000_diff1 value: 17.241999999999997 - type: nauc_recall_at_1_max value: 10.2948 - type: nauc_recall_at_1_std value: -13.1709 - type: nauc_recall_at_1_diff1 value: 31.4251 - type: nauc_recall_at_3_max value: 17.924799999999998 - type: nauc_recall_at_3_std value: -10.84 - type: nauc_recall_at_3_diff1 value: 10.267800000000001 - type: nauc_recall_at_5_max value: 22.0265 - type: nauc_recall_at_5_std value: -8.6675 - type: nauc_recall_at_5_diff1 value: 4.5511 - type: nauc_recall_at_10_max value: 22.5353 - type: nauc_recall_at_10_std value: -3.7438 - type: nauc_recall_at_10_diff1 value: 1.05 - type: nauc_recall_at_20_max value: 25.4119 - type: nauc_recall_at_20_std value: -1.0668 - type: nauc_recall_at_20_diff1 value: -3.4072999999999998 - type: nauc_recall_at_100_max value: 34.5952 - type: nauc_recall_at_100_std value: 22.4855 - type: nauc_recall_at_100_diff1 value: -9.0738 - type: nauc_recall_at_1000_max value: 56.485 - type: nauc_recall_at_1000_std value: 72.184 - type: nauc_recall_at_1000_diff1 value: -5.3136 - type: nauc_precision_at_1_max value: 10.2948 - type: nauc_precision_at_1_std value: -13.1709 - type: nauc_precision_at_1_diff1 value: 31.4251 - type: nauc_precision_at_3_max value: 17.924799999999998 - type: nauc_precision_at_3_std value: -10.84 - type: nauc_precision_at_3_diff1 value: 10.267800000000001 - type: nauc_precision_at_5_max value: 22.0265 - type: nauc_precision_at_5_std value: -8.6675 - type: nauc_precision_at_5_diff1 value: 4.5511 - type: nauc_precision_at_10_max value: 22.5353 - type: nauc_precision_at_10_std value: -3.7438 - type: nauc_precision_at_10_diff1 value: 1.05 - type: nauc_precision_at_20_max value: 25.4119 - type: nauc_precision_at_20_std value: -1.0668 - type: nauc_precision_at_20_diff1 value: -3.4072999999999998 - type: nauc_precision_at_100_max value: 34.5952 - type: nauc_precision_at_100_std value: 22.4855 - type: nauc_precision_at_100_diff1 value: -9.0738 - type: nauc_precision_at_1000_max value: 56.485 - type: nauc_precision_at_1000_std value: 72.184 - type: nauc_precision_at_1000_diff1 value: -5.3136 - type: nauc_mrr_at_1_max value: 12.3113 - type: nauc_mrr_at_1_std value: -16.7186 - type: nauc_mrr_at_1_diff1 value: 32.4301 - type: nauc_mrr_at_3_max value: 11.8664 - type: nauc_mrr_at_3_std value: -15.562500000000002 - type: nauc_mrr_at_3_diff1 value: 20.180600000000002 - type: nauc_mrr_at_5_max value: 11.9561 - type: nauc_mrr_at_5_std value: -15.1641 - type: nauc_mrr_at_5_diff1 value: 19.1071 - type: nauc_mrr_at_10_max value: 12.867899999999999 - type: nauc_mrr_at_10_std value: -14.1707 - type: nauc_mrr_at_10_diff1 value: 17.613599999999998 - type: nauc_mrr_at_20_max value: 13.3821 - type: nauc_mrr_at_20_std value: -13.727800000000002 - type: nauc_mrr_at_20_diff1 value: 17.712600000000002 - type: nauc_mrr_at_100_max value: 13.530100000000001 - type: nauc_mrr_at_100_std value: -13.292599999999998 - type: nauc_mrr_at_100_diff1 value: 17.8945 - type: nauc_mrr_at_1000_max value: 13.492899999999999 - type: nauc_mrr_at_1000_std value: -13.3262 - type: nauc_mrr_at_1000_diff1 value: 17.945 - type: main_score value: 28.288999999999998 task: type: Retrieval - dataset: config: default name: MTEB DBPedia (default) revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 split: test type: mteb/dbpedia metrics: - type: ndcg_at_1 value: 46.625 - type: ndcg_at_3 value: 37.483 - type: ndcg_at_5 value: 34.943000000000005 - type: ndcg_at_10 value: 32.805 - type: ndcg_at_20 value: 31.857999999999997 - type: ndcg_at_100 value: 36.504 - type: ndcg_at_1000 value: 44.015 - type: map_at_1 value: 7.455 - type: map_at_3 value: 11.231 - type: map_at_5 value: 12.76 - type: map_at_10 value: 14.927000000000001 - type: map_at_20 value: 16.732 - type: map_at_100 value: 19.903000000000002 - type: map_at_1000 value: 21.227 - type: recall_at_1 value: 7.455 - type: recall_at_3 value: 12.423 - type: recall_at_5 value: 15.326 - type: recall_at_10 value: 19.858 - type: recall_at_20 value: 24.929000000000002 - type: recall_at_100 value: 42.799 - type: recall_at_1000 value: 66.485 - type: precision_at_1 value: 58.75 - type: precision_at_3 value: 40.916999999999994 - type: precision_at_5 value: 34.050000000000004 - type: precision_at_10 value: 25.75 - type: precision_at_20 value: 18.712 - type: precision_at_100 value: 7.904999999999999 - type: precision_at_1000 value: 1.754 - type: mrr_at_1 value: 58.75 - type: mrr_at_3 value: 65.2083 - type: mrr_at_5 value: 66.7708 - type: mrr_at_10 value: 67.4141 - type: mrr_at_20 value: 67.6811 - type: mrr_at_100 value: 67.8579 - type: mrr_at_1000 value: 67.8709 - type: nauc_ndcg_at_1_max value: 29.0439 - type: nauc_ndcg_at_1_std value: 20.5015 - type: nauc_ndcg_at_1_diff1 value: 35.499199999999995 - type: nauc_ndcg_at_3_max value: 29.8709 - type: nauc_ndcg_at_3_std value: 23.020699999999998 - type: nauc_ndcg_at_3_diff1 value: 28.618100000000002 - type: nauc_ndcg_at_5_max value: 27.7184 - type: nauc_ndcg_at_5_std value: 23.0527 - type: nauc_ndcg_at_5_diff1 value: 25.526 - type: nauc_ndcg_at_10_max value: 25.145400000000002 - type: nauc_ndcg_at_10_std value: 21.6828 - type: nauc_ndcg_at_10_diff1 value: 25.123 - type: nauc_ndcg_at_20_max value: 24.1687 - type: nauc_ndcg_at_20_std value: 18.192800000000002 - type: nauc_ndcg_at_20_diff1 value: 25.2305 - type: nauc_ndcg_at_100_max value: 26.4048 - type: nauc_ndcg_at_100_std value: 22.2057 - type: nauc_ndcg_at_100_diff1 value: 23.2848 - type: nauc_ndcg_at_1000_max value: 30.6232 - type: nauc_ndcg_at_1000_std value: 30.4798 - type: nauc_ndcg_at_1000_diff1 value: 22.5713 - type: nauc_map_at_1_max value: 4.2514 - type: nauc_map_at_1_std value: -16.109 - type: nauc_map_at_1_diff1 value: 31.521300000000004 - type: nauc_map_at_3_max value: 10.5699 - type: nauc_map_at_3_std value: -13.2038 - type: nauc_map_at_3_diff1 value: 27.992099999999997 - type: nauc_map_at_5_max value: 12.110999999999999 - type: nauc_map_at_5_std value: -9.2883 - type: nauc_map_at_5_diff1 value: 24.2311 - type: nauc_map_at_10_max value: 15.5794 - type: nauc_map_at_10_std value: -1.9084 - type: nauc_map_at_10_diff1 value: 23.5487 - type: nauc_map_at_20_max value: 19.2937 - type: nauc_map_at_20_std value: 5.1674 - type: nauc_map_at_20_diff1 value: 23.1231 - type: nauc_map_at_100_max value: 23.7248 - type: nauc_map_at_100_std value: 15.6969 - type: nauc_map_at_100_diff1 value: 22.087899999999998 - type: nauc_map_at_1000_max value: 25.3616 - type: nauc_map_at_1000_std value: 18.9624 - type: nauc_map_at_1000_diff1 value: 22.3491 - type: nauc_recall_at_1_max value: 4.2514 - type: nauc_recall_at_1_std value: -16.109 - type: nauc_recall_at_1_diff1 value: 31.521300000000004 - type: nauc_recall_at_3_max value: 9.579600000000001 - type: nauc_recall_at_3_std value: -14.1439 - type: nauc_recall_at_3_diff1 value: 24.0237 - type: nauc_recall_at_5_max value: 7.7634 - type: nauc_recall_at_5_std value: -11.6212 - type: nauc_recall_at_5_diff1 value: 15.8449 - type: nauc_recall_at_10_max value: 12.070500000000001 - type: nauc_recall_at_10_std value: -3.6641 - type: nauc_recall_at_10_diff1 value: 16.755 - type: nauc_recall_at_20_max value: 16.974600000000002 - type: nauc_recall_at_20_std value: 4.442 - type: nauc_recall_at_20_diff1 value: 16.2465 - type: nauc_recall_at_100_max value: 20.0143 - type: nauc_recall_at_100_std value: 19.0564 - type: nauc_recall_at_100_diff1 value: 11.2073 - type: nauc_recall_at_1000_max value: 25.826999999999998 - type: nauc_recall_at_1000_std value: 31.867600000000003 - type: nauc_recall_at_1000_diff1 value: 7.5985 - type: nauc_precision_at_1_max value: 46.4049 - type: nauc_precision_at_1_std value: 34.9663 - type: nauc_precision_at_1_diff1 value: 41.281099999999995 - type: nauc_precision_at_3_max value: 40.3772 - type: nauc_precision_at_3_std value: 39.231700000000004 - type: nauc_precision_at_3_diff1 value: 20.8721 - type: nauc_precision_at_5_max value: 35.3251 - type: nauc_precision_at_5_std value: 45.041399999999996 - type: nauc_precision_at_5_diff1 value: 12.377699999999999 - type: nauc_precision_at_10_max value: 33.1469 - type: nauc_precision_at_10_std value: 50.484700000000004 - type: nauc_precision_at_10_diff1 value: 9.9524 - type: nauc_precision_at_20_max value: 31.897599999999997 - type: nauc_precision_at_20_std value: 53.0212 - type: nauc_precision_at_20_diff1 value: 9.0274 - type: nauc_precision_at_100_max value: 27.060499999999998 - type: nauc_precision_at_100_std value: 51.7917 - type: nauc_precision_at_100_diff1 value: 5.3346 - type: nauc_precision_at_1000_max value: 10.5127 - type: nauc_precision_at_1000_std value: 27.1389 - type: nauc_precision_at_1000_diff1 value: 4.072 - type: nauc_mrr_at_1_max value: 46.4049 - type: nauc_mrr_at_1_std value: 34.9663 - type: nauc_mrr_at_1_diff1 value: 41.281099999999995 - type: nauc_mrr_at_3_max value: 49.1925 - type: nauc_mrr_at_3_std value: 38.4208 - type: nauc_mrr_at_3_diff1 value: 39.4442 - type: nauc_mrr_at_5_max value: 49.4555 - type: nauc_mrr_at_5_std value: 39.9529 - type: nauc_mrr_at_5_diff1 value: 39.4985 - type: nauc_mrr_at_10_max value: 49.215900000000005 - type: nauc_mrr_at_10_std value: 39.846199999999996 - type: nauc_mrr_at_10_diff1 value: 39.6351 - type: nauc_mrr_at_20_max value: 49.2931 - type: nauc_mrr_at_20_std value: 39.7556 - type: nauc_mrr_at_20_diff1 value: 39.536500000000004 - type: nauc_mrr_at_100_max value: 49.236799999999995 - type: nauc_mrr_at_100_std value: 39.7146 - type: nauc_mrr_at_100_diff1 value: 39.5436 - type: nauc_mrr_at_1000_max value: 49.2376 - type: nauc_mrr_at_1000_std value: 39.7079 - type: nauc_mrr_at_1000_diff1 value: 39.5441 - type: main_score value: 32.805 task: type: Retrieval - dataset: config: default name: MTEB EmotionClassification (default) revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 split: test type: mteb/emotion metrics: - type: accuracy value: 33.755 - type: f1 value: 30.109 - type: f1_weighted value: 35.891 - type: main_score value: 33.755 task: type: Classification - dataset: config: default name: MTEB FEVER (default) revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 split: test type: mteb/fever metrics: - type: ndcg_at_1 value: 75.203 - type: ndcg_at_3 value: 81.208 - type: ndcg_at_5 value: 82.319 - type: ndcg_at_10 value: 83.155 - type: ndcg_at_20 value: 83.524 - type: ndcg_at_100 value: 83.852 - type: ndcg_at_1000 value: 84.052 - type: map_at_1 value: 69.63000000000001 - type: map_at_3 value: 77.50200000000001 - type: map_at_5 value: 78.251 - type: map_at_10 value: 78.648 - type: map_at_20 value: 78.767 - type: map_at_100 value: 78.82400000000001 - type: map_at_1000 value: 78.834 - type: recall_at_1 value: 69.63000000000001 - type: recall_at_3 value: 86.444 - type: recall_at_5 value: 89.298 - type: recall_at_10 value: 91.843 - type: recall_at_20 value: 93.195 - type: recall_at_100 value: 94.77799999999999 - type: recall_at_1000 value: 96.068 - type: precision_at_1 value: 75.203 - type: precision_at_3 value: 31.293 - type: precision_at_5 value: 19.448 - type: precision_at_10 value: 10.024 - type: precision_at_20 value: 5.102 - type: precision_at_100 value: 1.045 - type: precision_at_1000 value: 0.107 - type: mrr_at_1 value: 75.2025 - type: mrr_at_3 value: 83.0608 - type: mrr_at_5 value: 83.6871 - type: mrr_at_10 value: 84.0239 - type: mrr_at_20 value: 84.1082 - type: mrr_at_100 value: 84.1355 - type: mrr_at_1000 value: 84.137 - type: nauc_ndcg_at_1_max value: 29.9781 - type: nauc_ndcg_at_1_std value: -27.174799999999998 - type: nauc_ndcg_at_1_diff1 value: 65.8967 - type: nauc_ndcg_at_3_max value: 24.2173 - type: nauc_ndcg_at_3_std value: -22.2349 - type: nauc_ndcg_at_3_diff1 value: 48.9054 - type: nauc_ndcg_at_5_max value: 22.6904 - type: nauc_ndcg_at_5_std value: -21.4784 - type: nauc_ndcg_at_5_diff1 value: 48.186099999999996 - type: nauc_ndcg_at_10_max value: 22.2573 - type: nauc_ndcg_at_10_std value: -20.415 - type: nauc_ndcg_at_10_diff1 value: 47.7873 - type: nauc_ndcg_at_20_max value: 22.0394 - type: nauc_ndcg_at_20_std value: -19.7697 - type: nauc_ndcg_at_20_diff1 value: 47.958099999999995 - type: nauc_ndcg_at_100_max value: 21.6255 - type: nauc_ndcg_at_100_std value: -19.778200000000002 - type: nauc_ndcg_at_100_diff1 value: 48.0176 - type: nauc_ndcg_at_1000_max value: 21.8334 - type: nauc_ndcg_at_1000_std value: -19.947699999999998 - type: nauc_ndcg_at_1000_diff1 value: 48.491800000000005 - type: nauc_map_at_1_max value: 22.7733 - type: nauc_map_at_1_std value: -22.9147 - type: nauc_map_at_1_diff1 value: 54.33480000000001 - type: nauc_map_at_3_max value: 21.7638 - type: nauc_map_at_3_std value: -21.5291 - type: nauc_map_at_3_diff1 value: 48.4323 - type: nauc_map_at_5_max value: 21.3712 - type: nauc_map_at_5_std value: -21.1705 - type: nauc_map_at_5_diff1 value: 48.302499999999995 - type: nauc_map_at_10_max value: 21.2869 - type: nauc_map_at_10_std value: -20.826900000000002 - type: nauc_map_at_10_diff1 value: 48.238 - type: nauc_map_at_20_max value: 21.259700000000002 - type: nauc_map_at_20_std value: -20.6727 - type: nauc_map_at_20_diff1 value: 48.280499999999996 - type: nauc_map_at_100_max value: 21.2305 - type: nauc_map_at_100_std value: -20.6466 - type: nauc_map_at_100_diff1 value: 48.3009 - type: nauc_map_at_1000_max value: 21.2364 - type: nauc_map_at_1000_std value: -20.6521 - type: nauc_map_at_1000_diff1 value: 48.3154 - type: nauc_recall_at_1_max value: 22.7733 - type: nauc_recall_at_1_std value: -22.9147 - type: nauc_recall_at_1_diff1 value: 54.33480000000001 - type: nauc_recall_at_3_max value: 17.147100000000002 - type: nauc_recall_at_3_std value: -16.8494 - type: nauc_recall_at_3_diff1 value: 30.9712 - type: nauc_recall_at_5_max value: 12.0947 - type: nauc_recall_at_5_std value: -13.142000000000001 - type: nauc_recall_at_5_diff1 value: 24.760099999999998 - type: nauc_recall_at_10_max value: 7.1945 - type: nauc_recall_at_10_std value: -5.1164000000000005 - type: nauc_recall_at_10_diff1 value: 15.933900000000001 - type: nauc_recall_at_20_max value: 2.3306 - type: nauc_recall_at_20_std value: 2.748 - type: nauc_recall_at_20_diff1 value: 11.4733 - type: nauc_recall_at_100_max value: -9.991999999999999 - type: nauc_recall_at_100_std value: 7.362299999999999 - type: nauc_recall_at_100_diff1 value: 2.2306 - type: nauc_recall_at_1000_max value: -15.401200000000001 - type: nauc_recall_at_1000_std value: 10.616100000000001 - type: nauc_recall_at_1000_diff1 value: 1.9488999999999999 - type: nauc_precision_at_1_max value: 29.9781 - type: nauc_precision_at_1_std value: -27.174799999999998 - type: nauc_precision_at_1_diff1 value: 65.8967 - type: nauc_precision_at_3_max value: 29.6113 - type: nauc_precision_at_3_std value: -21.1606 - type: nauc_precision_at_3_diff1 value: 37.9441 - type: nauc_precision_at_5_max value: 23.069300000000002 - type: nauc_precision_at_5_std value: -13.168099999999999 - type: nauc_precision_at_5_diff1 value: 25.095299999999998 - type: nauc_precision_at_10_max value: 17.7956 - type: nauc_precision_at_10_std value: -0.28609999999999997 - type: nauc_precision_at_10_diff1 value: 9.4407 - type: nauc_precision_at_20_max value: 13.2934 - type: nauc_precision_at_20_std value: 10.9965 - type: nauc_precision_at_20_diff1 value: 0.43470000000000003 - type: nauc_precision_at_100_max value: 5.1414 - type: nauc_precision_at_100_std value: 16.2173 - type: nauc_precision_at_100_diff1 value: -10.2967 - type: nauc_precision_at_1000_max value: 6.0449 - type: nauc_precision_at_1000_std value: 12.698899999999998 - type: nauc_precision_at_1000_diff1 value: -8.3748 - type: nauc_mrr_at_1_max value: 29.9781 - type: nauc_mrr_at_1_std value: -27.174799999999998 - type: nauc_mrr_at_1_diff1 value: 65.8967 - type: nauc_mrr_at_3_max value: 33.2001 - type: nauc_mrr_at_3_std value: -27.142699999999998 - type: nauc_mrr_at_3_diff1 value: 62.546400000000006 - type: nauc_mrr_at_5_max value: 32.9296 - type: nauc_mrr_at_5_std value: -27.0933 - type: nauc_mrr_at_5_diff1 value: 62.8135 - type: nauc_mrr_at_10_max value: 32.9972 - type: nauc_mrr_at_10_std value: -26.7892 - type: nauc_mrr_at_10_diff1 value: 62.936099999999996 - type: nauc_mrr_at_20_max value: 32.9283 - type: nauc_mrr_at_20_std value: -26.6706 - type: nauc_mrr_at_20_diff1 value: 63.0346 - type: nauc_mrr_at_100_max value: 32.8554 - type: nauc_mrr_at_100_std value: -26.7179 - type: nauc_mrr_at_100_diff1 value: 63.0571 - type: nauc_mrr_at_1000_max value: 32.8523 - type: nauc_mrr_at_1000_std value: -26.7208 - type: nauc_mrr_at_1000_diff1 value: 63.0605 - type: main_score value: 83.155 task: type: Retrieval - dataset: config: default name: MTEB FiQA2018 (default) revision: 27a168819829fe9bcd655c2df245fb19452e8e06 split: test type: mteb/fiqa metrics: - type: ndcg_at_1 value: 27.468999999999998 - type: ndcg_at_3 value: 25.183 - type: ndcg_at_5 value: 26.148 - type: ndcg_at_10 value: 28.404 - type: ndcg_at_20 value: 30.891999999999996 - type: ndcg_at_100 value: 35.167 - type: ndcg_at_1000 value: 38.803 - type: map_at_1 value: 13.864 - type: map_at_3 value: 18.989 - type: map_at_5 value: 20.521 - type: map_at_10 value: 21.858 - type: map_at_20 value: 22.686999999999998 - type: map_at_100 value: 23.491 - type: map_at_1000 value: 23.674 - type: recall_at_1 value: 13.864 - type: recall_at_3 value: 23.327 - type: recall_at_5 value: 28.015 - type: recall_at_10 value: 34.977999999999994 - type: recall_at_20 value: 42.495 - type: recall_at_100 value: 59.967999999999996 - type: recall_at_1000 value: 82.39800000000001 - type: precision_at_1 value: 27.468999999999998 - type: precision_at_3 value: 16.409000000000002 - type: precision_at_5 value: 12.099 - type: precision_at_10 value: 7.701 - type: precision_at_20 value: 4.877 - type: precision_at_100 value: 1.465 - type: precision_at_1000 value: 0.211 - type: mrr_at_1 value: 27.4691 - type: mrr_at_3 value: 32.844699999999996 - type: mrr_at_5 value: 34.110099999999996 - type: mrr_at_10 value: 35.1631 - type: mrr_at_20 value: 35.869099999999996 - type: mrr_at_100 value: 36.2438 - type: mrr_at_1000 value: 36.304700000000004 - type: nauc_ndcg_at_1_max value: 31.897 - type: nauc_ndcg_at_1_std value: 1.7016 - type: nauc_ndcg_at_1_diff1 value: 46.680899999999994 - type: nauc_ndcg_at_3_max value: 28.7103 - type: nauc_ndcg_at_3_std value: 0.08220000000000001 - type: nauc_ndcg_at_3_diff1 value: 38.1892 - type: nauc_ndcg_at_5_max value: 27.988000000000003 - type: nauc_ndcg_at_5_std value: 2.6533 - type: nauc_ndcg_at_5_diff1 value: 37.1171 - type: nauc_ndcg_at_10_max value: 28.205400000000004 - type: nauc_ndcg_at_10_std value: 3.6081000000000003 - type: nauc_ndcg_at_10_diff1 value: 37.0636 - type: nauc_ndcg_at_20_max value: 28.708 - type: nauc_ndcg_at_20_std value: 4.999 - type: nauc_ndcg_at_20_diff1 value: 35.5315 - type: nauc_ndcg_at_100_max value: 30.000300000000003 - type: nauc_ndcg_at_100_std value: 8.0321 - type: nauc_ndcg_at_100_diff1 value: 35.0261 - type: nauc_ndcg_at_1000_max value: 31.476399999999998 - type: nauc_ndcg_at_1000_std value: 8.7892 - type: nauc_ndcg_at_1000_diff1 value: 35.8262 - type: nauc_map_at_1_max value: 19.6103 - type: nauc_map_at_1_std value: -1.459 - type: nauc_map_at_1_diff1 value: 43.7768 - type: nauc_map_at_3_max value: 23.213800000000003 - type: nauc_map_at_3_std value: -1.0172 - type: nauc_map_at_3_diff1 value: 38.4649 - type: nauc_map_at_5_max value: 24.4147 - type: nauc_map_at_5_std value: 0.6049 - type: nauc_map_at_5_diff1 value: 38.278800000000004 - type: nauc_map_at_10_max value: 25.1577 - type: nauc_map_at_10_std value: 1.5727000000000002 - type: nauc_map_at_10_diff1 value: 37.8236 - type: nauc_map_at_20_max value: 25.5774 - type: nauc_map_at_20_std value: 2.3826 - type: nauc_map_at_20_diff1 value: 37.2606 - type: nauc_map_at_100_max value: 26.1034 - type: nauc_map_at_100_std value: 3.0844 - type: nauc_map_at_100_diff1 value: 37.1361 - type: nauc_map_at_1000_max value: 26.2481 - type: nauc_map_at_1000_std value: 3.1667 - type: nauc_map_at_1000_diff1 value: 37.2042 - type: nauc_recall_at_1_max value: 19.6103 - type: nauc_recall_at_1_std value: -1.459 - type: nauc_recall_at_1_diff1 value: 43.7768 - type: nauc_recall_at_3_max value: 21.9254 - type: nauc_recall_at_3_std value: -1.2038 - type: nauc_recall_at_3_diff1 value: 32.2851 - type: nauc_recall_at_5_max value: 21.9256 - type: nauc_recall_at_5_std value: 3.1369000000000002 - type: nauc_recall_at_5_diff1 value: 29.456500000000002 - type: nauc_recall_at_10_max value: 23.393900000000002 - type: nauc_recall_at_10_std value: 5.2703 - type: nauc_recall_at_10_diff1 value: 28.5136 - type: nauc_recall_at_20_max value: 24.5427 - type: nauc_recall_at_20_std value: 9.1449 - type: nauc_recall_at_20_diff1 value: 23.919 - type: nauc_recall_at_100_max value: 25.683600000000002 - type: nauc_recall_at_100_std value: 21.0368 - type: nauc_recall_at_100_diff1 value: 18.8564 - type: nauc_recall_at_1000_max value: 34.0063 - type: nauc_recall_at_1000_std value: 38.035799999999995 - type: nauc_recall_at_1000_diff1 value: 17.1266 - type: nauc_precision_at_1_max value: 31.897 - type: nauc_precision_at_1_std value: 1.7016 - type: nauc_precision_at_1_diff1 value: 46.680899999999994 - type: nauc_precision_at_3_max value: 33.503699999999995 - type: nauc_precision_at_3_std value: 1.7436 - type: nauc_precision_at_3_diff1 value: 31.8292 - type: nauc_precision_at_5_max value: 35.5747 - type: nauc_precision_at_5_std value: 8.4447 - type: nauc_precision_at_5_diff1 value: 27.433600000000002 - type: nauc_precision_at_10_max value: 35.7915 - type: nauc_precision_at_10_std value: 12.0952 - type: nauc_precision_at_10_diff1 value: 23.2614 - type: nauc_precision_at_20_max value: 35.421 - type: nauc_precision_at_20_std value: 14.863399999999999 - type: nauc_precision_at_20_diff1 value: 17.186899999999998 - type: nauc_precision_at_100_max value: 33.7497 - type: nauc_precision_at_100_std value: 18.5334 - type: nauc_precision_at_100_diff1 value: 10.678600000000001 - type: nauc_precision_at_1000_max value: 29.8247 - type: nauc_precision_at_1000_std value: 14.4755 - type: nauc_precision_at_1000_diff1 value: 4.1042000000000005 - type: nauc_mrr_at_1_max value: 31.897 - type: nauc_mrr_at_1_std value: 1.7016 - type: nauc_mrr_at_1_diff1 value: 46.680899999999994 - type: nauc_mrr_at_3_max value: 32.8019 - type: nauc_mrr_at_3_std value: 1.609 - type: nauc_mrr_at_3_diff1 value: 41.2746 - type: nauc_mrr_at_5_max value: 32.9538 - type: nauc_mrr_at_5_std value: 2.884 - type: nauc_mrr_at_5_diff1 value: 40.2619 - type: nauc_mrr_at_10_max value: 33.2905 - type: nauc_mrr_at_10_std value: 3.024 - type: nauc_mrr_at_10_diff1 value: 40.7879 - type: nauc_mrr_at_20_max value: 33.117000000000004 - type: nauc_mrr_at_20_std value: 3.1062 - type: nauc_mrr_at_20_diff1 value: 40.484700000000004 - type: nauc_mrr_at_100_max value: 33.083 - type: nauc_mrr_at_100_std value: 3.405 - type: nauc_mrr_at_100_diff1 value: 40.4873 - type: nauc_mrr_at_1000_max value: 33.1046 - type: nauc_mrr_at_1000_std value: 3.4228 - type: nauc_mrr_at_1000_diff1 value: 40.5107 - type: main_score value: 28.404 task: type: Retrieval - dataset: config: default name: MTEB HotpotQA (default) revision: ab518f4d6fcca38d87c25209f94beba119d02014 split: test type: mteb/hotpotqa metrics: - type: ndcg_at_1 value: 73.801 - type: ndcg_at_3 value: 54.882 - type: ndcg_at_5 value: 56.916999999999994 - type: ndcg_at_10 value: 58.766 - type: ndcg_at_20 value: 59.946999999999996 - type: ndcg_at_100 value: 61.893 - type: ndcg_at_1000 value: 63.408 - type: map_at_1 value: 36.901 - type: map_at_3 value: 46.527 - type: map_at_5 value: 48.035 - type: map_at_10 value: 49.101 - type: map_at_20 value: 49.567 - type: map_at_100 value: 49.948 - type: map_at_1000 value: 50.022 - type: recall_at_1 value: 36.901 - type: recall_at_3 value: 50.176 - type: recall_at_5 value: 54.193000000000005 - type: recall_at_10 value: 58.831999999999994 - type: recall_at_20 value: 62.633 - type: recall_at_100 value: 71.242 - type: recall_at_1000 value: 81.337 - type: precision_at_1 value: 73.801 - type: precision_at_3 value: 33.45 - type: precision_at_5 value: 21.677 - type: precision_at_10 value: 11.766 - type: precision_at_20 value: 6.263000000000001 - type: precision_at_100 value: 1.425 - type: precision_at_1000 value: 0.163 - type: mrr_at_1 value: 73.8015 - type: mrr_at_3 value: 78.44250000000001 - type: mrr_at_5 value: 79.1204 - type: mrr_at_10 value: 79.4947 - type: mrr_at_20 value: 79.6248 - type: mrr_at_100 value: 79.7258 - type: mrr_at_1000 value: 79.7391 - type: nauc_ndcg_at_1_max value: 52.782 - type: nauc_ndcg_at_1_std value: -7.0408 - type: nauc_ndcg_at_1_diff1 value: 72.8754 - type: nauc_ndcg_at_3_max value: 34.7845 - type: nauc_ndcg_at_3_std value: -2.6474 - type: nauc_ndcg_at_3_diff1 value: 36.7492 - type: nauc_ndcg_at_5_max value: 32.488299999999995 - type: nauc_ndcg_at_5_std value: -1.6659 - type: nauc_ndcg_at_5_diff1 value: 33.1499 - type: nauc_ndcg_at_10_max value: 31.2128 - type: nauc_ndcg_at_10_std value: -0.6525000000000001 - type: nauc_ndcg_at_10_diff1 value: 31.3173 - type: nauc_ndcg_at_20_max value: 30.319000000000003 - type: nauc_ndcg_at_20_std value: 0.0078 - type: nauc_ndcg_at_20_diff1 value: 30.281799999999997 - type: nauc_ndcg_at_100_max value: 29.873300000000004 - type: nauc_ndcg_at_100_std value: 1.2557 - type: nauc_ndcg_at_100_diff1 value: 29.3753 - type: nauc_ndcg_at_1000_max value: 29.8655 - type: nauc_ndcg_at_1000_std value: 1.1226999999999998 - type: nauc_ndcg_at_1000_diff1 value: 29.602899999999998 - type: nauc_map_at_1_max value: 52.782 - type: nauc_map_at_1_std value: -7.0408 - type: nauc_map_at_1_diff1 value: 72.8754 - type: nauc_map_at_3_max value: 30.2396 - type: nauc_map_at_3_std value: -2.9367 - type: nauc_map_at_3_diff1 value: 30.315900000000003 - type: nauc_map_at_5_max value: 28.6694 - type: nauc_map_at_5_std value: -2.2835 - type: nauc_map_at_5_diff1 value: 27.9185 - type: nauc_map_at_10_max value: 28.058899999999998 - type: nauc_map_at_10_std value: -1.8286 - type: nauc_map_at_10_diff1 value: 27.106400000000004 - type: nauc_map_at_20_max value: 27.763199999999998 - type: nauc_map_at_20_std value: -1.5711 - type: nauc_map_at_20_diff1 value: 26.7588 - type: nauc_map_at_100_max value: 27.700000000000003 - type: nauc_map_at_100_std value: -1.3389 - type: nauc_map_at_100_diff1 value: 26.615499999999997 - type: nauc_map_at_1000_max value: 27.701999999999998 - type: nauc_map_at_1000_std value: -1.3391 - type: nauc_map_at_1000_diff1 value: 26.628800000000002 - type: nauc_recall_at_1_max value: 52.782 - type: nauc_recall_at_1_std value: -7.0408 - type: nauc_recall_at_1_diff1 value: 72.8754 - type: nauc_recall_at_3_max value: 26.899800000000003 - type: nauc_recall_at_3_std value: -0.7169 - type: nauc_recall_at_3_diff1 value: 21.875 - type: nauc_recall_at_5_max value: 22.0409 - type: nauc_recall_at_5_std value: 1.0630000000000002 - type: nauc_recall_at_5_diff1 value: 14.9439 - type: nauc_recall_at_10_max value: 17.8827 - type: nauc_recall_at_10_std value: 3.4513000000000003 - type: nauc_recall_at_10_diff1 value: 9.6887 - type: nauc_recall_at_20_max value: 14.6979 - type: nauc_recall_at_20_std value: 5.4514 - type: nauc_recall_at_20_diff1 value: 6.103800000000001 - type: nauc_recall_at_100_max value: 10.054599999999999 - type: nauc_recall_at_100_std value: 11.4136 - type: nauc_recall_at_100_diff1 value: -1.2643 - type: nauc_recall_at_1000_max value: 3.9052000000000002 - type: nauc_recall_at_1000_std value: 13.176099999999998 - type: nauc_recall_at_1000_diff1 value: -8.8098 - type: nauc_precision_at_1_max value: 52.782 - type: nauc_precision_at_1_std value: -7.0408 - type: nauc_precision_at_1_diff1 value: 72.8754 - type: nauc_precision_at_3_max value: 26.899800000000003 - type: nauc_precision_at_3_std value: -0.7169 - type: nauc_precision_at_3_diff1 value: 21.875 - type: nauc_precision_at_5_max value: 22.0409 - type: nauc_precision_at_5_std value: 1.0630000000000002 - type: nauc_precision_at_5_diff1 value: 14.9439 - type: nauc_precision_at_10_max value: 17.8827 - type: nauc_precision_at_10_std value: 3.4513000000000003 - type: nauc_precision_at_10_diff1 value: 9.6887 - type: nauc_precision_at_20_max value: 14.6979 - type: nauc_precision_at_20_std value: 5.4514 - type: nauc_precision_at_20_diff1 value: 6.103800000000001 - type: nauc_precision_at_100_max value: 10.054599999999999 - type: nauc_precision_at_100_std value: 11.4136 - type: nauc_precision_at_100_diff1 value: -1.2643 - type: nauc_precision_at_1000_max value: 3.9052000000000002 - type: nauc_precision_at_1000_std value: 13.176099999999998 - type: nauc_precision_at_1000_diff1 value: -8.8098 - type: nauc_mrr_at_1_max value: 52.782 - type: nauc_mrr_at_1_std value: -7.0408 - type: nauc_mrr_at_1_diff1 value: 72.8754 - type: nauc_mrr_at_3_max value: 54.295700000000004 - type: nauc_mrr_at_3_std value: -4.637700000000001 - type: nauc_mrr_at_3_diff1 value: 70.1027 - type: nauc_mrr_at_5_max value: 54.3589 - type: nauc_mrr_at_5_std value: -4.1942 - type: nauc_mrr_at_5_diff1 value: 69.9827 - type: nauc_mrr_at_10_max value: 54.3287 - type: nauc_mrr_at_10_std value: -3.8112 - type: nauc_mrr_at_10_diff1 value: 69.857 - type: nauc_mrr_at_20_max value: 54.325199999999995 - type: nauc_mrr_at_20_std value: -3.7948999999999997 - type: nauc_mrr_at_20_diff1 value: 69.92699999999999 - type: nauc_mrr_at_100_max value: 54.3234 - type: nauc_mrr_at_100_std value: -3.8176 - type: nauc_mrr_at_100_diff1 value: 69.963 - type: nauc_mrr_at_1000_max value: 54.3152 - type: nauc_mrr_at_1000_std value: -3.8351 - type: nauc_mrr_at_1000_diff1 value: 69.9678 - type: main_score value: 58.766 task: type: Retrieval - dataset: config: default name: MTEB ImdbClassification (default) revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 split: test type: mteb/imdb metrics: - type: accuracy value: 62.91 - type: f1 value: 62.572799999999994 - type: f1_weighted value: 62.572799999999994 - type: ap value: 58.2831 - type: ap_weighted value: 58.2831 - type: main_score value: 62.91 task: type: Classification - dataset: config: ar name: MTEB MIRACLRetrieval (ar) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: ndcg_at_1 value: 55.559000000000005 - type: ndcg_at_3 value: 56.43899999999999 - type: ndcg_at_5 value: 59.34700000000001 - type: ndcg_at_10 value: 62.541000000000004 - type: ndcg_at_20 value: 64.739 - type: ndcg_at_100 value: 67.101 - type: ndcg_at_1000 value: 68.05 - type: map_at_1 value: 37.009 - type: map_at_3 value: 49.559 - type: map_at_5 value: 52.766999999999996 - type: map_at_10 value: 54.891 - type: map_at_20 value: 55.818 - type: map_at_100 value: 56.364000000000004 - type: map_at_1000 value: 56.418 - type: recall_at_1 value: 37.009 - type: recall_at_3 value: 56.903000000000006 - type: recall_at_5 value: 65.18 - type: recall_at_10 value: 73.317 - type: recall_at_20 value: 80.205 - type: recall_at_100 value: 90.066 - type: recall_at_1000 value: 96.272 - type: precision_at_1 value: 55.559000000000005 - type: precision_at_3 value: 32.056000000000004 - type: precision_at_5 value: 22.942 - type: precision_at_10 value: 13.483999999999998 - type: precision_at_20 value: 7.548000000000001 - type: precision_at_100 value: 1.752 - type: precision_at_1000 value: 0.189 - type: mrr_at_1 value: 55.559400000000004 - type: mrr_at_3 value: 63.7201 - type: mrr_at_5 value: 65.0996 - type: mrr_at_10 value: 65.8096 - type: mrr_at_20 value: 66.1023 - type: mrr_at_100 value: 66.2427 - type: mrr_at_1000 value: 66.2595 - type: nauc_ndcg_at_1_max value: 39.1686 - type: nauc_ndcg_at_1_std value: 1.7862 - type: nauc_ndcg_at_1_diff1 value: 45.7904 - type: nauc_ndcg_at_3_max value: 37.2044 - type: nauc_ndcg_at_3_std value: -1.6014 - type: nauc_ndcg_at_3_diff1 value: 37.9844 - type: nauc_ndcg_at_5_max value: 39.2524 - type: nauc_ndcg_at_5_std value: -0.6319 - type: nauc_ndcg_at_5_diff1 value: 38.2785 - type: nauc_ndcg_at_10_max value: 40.1167 - type: nauc_ndcg_at_10_std value: 0.3359 - type: nauc_ndcg_at_10_diff1 value: 37.4785 - type: nauc_ndcg_at_20_max value: 41.3886 - type: nauc_ndcg_at_20_std value: 2.8987 - type: nauc_ndcg_at_20_diff1 value: 37.0635 - type: nauc_ndcg_at_100_max value: 42.357299999999995 - type: nauc_ndcg_at_100_std value: 5.2258 - type: nauc_ndcg_at_100_diff1 value: 37.3142 - type: nauc_ndcg_at_1000_max value: 41.9076 - type: nauc_ndcg_at_1000_std value: 4.539499999999999 - type: nauc_ndcg_at_1000_diff1 value: 37.703399999999995 - type: nauc_map_at_1_max value: 21.7624 - type: nauc_map_at_1_std value: -10.1554 - type: nauc_map_at_1_diff1 value: 45.413599999999995 - type: nauc_map_at_3_max value: 32.231 - type: nauc_map_at_3_std value: -5.7029000000000005 - type: nauc_map_at_3_diff1 value: 39.678799999999995 - type: nauc_map_at_5_max value: 35.3238 - type: nauc_map_at_5_std value: -3.3897999999999997 - type: nauc_map_at_5_diff1 value: 38.901599999999995 - type: nauc_map_at_10_max value: 36.248799999999996 - type: nauc_map_at_10_std value: -2.5503 - type: nauc_map_at_10_diff1 value: 38.2086 - type: nauc_map_at_20_max value: 36.8226 - type: nauc_map_at_20_std value: -1.5142 - type: nauc_map_at_20_diff1 value: 37.9922 - type: nauc_map_at_100_max value: 37.0911 - type: nauc_map_at_100_std value: -0.9837 - type: nauc_map_at_100_diff1 value: 37.9955 - type: nauc_map_at_1000_max value: 37.0788 - type: nauc_map_at_1000_std value: -0.9948 - type: nauc_map_at_1000_diff1 value: 38.016299999999994 - type: nauc_recall_at_1_max value: 21.7624 - type: nauc_recall_at_1_std value: -10.1554 - type: nauc_recall_at_1_diff1 value: 45.413599999999995 - type: nauc_recall_at_3_max value: 32.4031 - type: nauc_recall_at_3_std value: -5.2341999999999995 - type: nauc_recall_at_3_diff1 value: 33.6415 - type: nauc_recall_at_5_max value: 37.6932 - type: nauc_recall_at_5_std value: -1.2136 - type: nauc_recall_at_5_diff1 value: 31.629600000000003 - type: nauc_recall_at_10_max value: 39.6688 - type: nauc_recall_at_10_std value: 1.3085 - type: nauc_recall_at_10_diff1 value: 28.184900000000003 - type: nauc_recall_at_20_max value: 45.1114 - type: nauc_recall_at_20_std value: 11.9353 - type: nauc_recall_at_20_diff1 value: 24.9804 - type: nauc_recall_at_100_max value: 58.7538 - type: nauc_recall_at_100_std value: 40.016200000000005 - type: nauc_recall_at_100_diff1 value: 22.0195 - type: nauc_recall_at_1000_max value: 69.68910000000001 - type: nauc_recall_at_1000_std value: 61.42959999999999 - type: nauc_recall_at_1000_diff1 value: 18.6353 - type: nauc_precision_at_1_max value: 39.1686 - type: nauc_precision_at_1_std value: 1.7862 - type: nauc_precision_at_1_diff1 value: 45.7904 - type: nauc_precision_at_3_max value: 38.101400000000005 - type: nauc_precision_at_3_std value: 13.7012 - type: nauc_precision_at_3_diff1 value: 9.3923 - type: nauc_precision_at_5_max value: 36.4465 - type: nauc_precision_at_5_std value: 18.3961 - type: nauc_precision_at_5_diff1 value: 1.5756 - type: nauc_precision_at_10_max value: 29.869600000000002 - type: nauc_precision_at_10_std value: 19.869899999999998 - type: nauc_precision_at_10_diff1 value: -5.9939 - type: nauc_precision_at_20_max value: 26.564700000000002 - type: nauc_precision_at_20_std value: 24.7639 - type: nauc_precision_at_20_diff1 value: -10.8804 - type: nauc_precision_at_100_max value: 20.137 - type: nauc_precision_at_100_std value: 28.4182 - type: nauc_precision_at_100_diff1 value: -15.1979 - type: nauc_precision_at_1000_max value: 14.4263 - type: nauc_precision_at_1000_std value: 25.336199999999998 - type: nauc_precision_at_1000_diff1 value: -17.149800000000003 - type: nauc_mrr_at_1_max value: 39.1686 - type: nauc_mrr_at_1_std value: 1.7862 - type: nauc_mrr_at_1_diff1 value: 45.7904 - type: nauc_mrr_at_3_max value: 43.3345 - type: nauc_mrr_at_3_std value: 3.6245 - type: nauc_mrr_at_3_diff1 value: 42.332300000000004 - type: nauc_mrr_at_5_max value: 43.7305 - type: nauc_mrr_at_5_std value: 4.18 - type: nauc_mrr_at_5_diff1 value: 42.3171 - type: nauc_mrr_at_10_max value: 43.8493 - type: nauc_mrr_at_10_std value: 4.3809000000000005 - type: nauc_mrr_at_10_diff1 value: 42.3117 - type: nauc_mrr_at_20_max value: 43.8121 - type: nauc_mrr_at_20_std value: 4.526 - type: nauc_mrr_at_20_diff1 value: 42.3117 - type: nauc_mrr_at_100_max value: 43.7806 - type: nauc_mrr_at_100_std value: 4.5652 - type: nauc_mrr_at_100_diff1 value: 42.3692 - type: nauc_mrr_at_1000_max value: 43.7629 - type: nauc_mrr_at_1000_std value: 4.5475 - type: nauc_mrr_at_1000_diff1 value: 42.373 - type: main_score value: 62.541000000000004 task: type: Retrieval - dataset: config: bn name: MTEB MIRACLRetrieval (bn) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: ndcg_at_1 value: 56.691 - type: ndcg_at_3 value: 59.88 - type: ndcg_at_5 value: 62.717999999999996 - type: ndcg_at_10 value: 65.484 - type: ndcg_at_20 value: 67.838 - type: ndcg_at_100 value: 70.14200000000001 - type: ndcg_at_1000 value: 70.994 - type: map_at_1 value: 36.05 - type: map_at_3 value: 51.734 - type: map_at_5 value: 55.093 - type: map_at_10 value: 57.053 - type: map_at_20 value: 58.196999999999996 - type: map_at_100 value: 58.786 - type: map_at_1000 value: 58.841 - type: recall_at_1 value: 36.05 - type: recall_at_3 value: 61.596 - type: recall_at_5 value: 69.76599999999999 - type: recall_at_10 value: 76.854 - type: recall_at_20 value: 83.667 - type: recall_at_100 value: 92.85 - type: recall_at_1000 value: 97.928 - type: precision_at_1 value: 56.691 - type: precision_at_3 value: 35.848 - type: precision_at_5 value: 25.499 - type: precision_at_10 value: 14.793000000000001 - type: precision_at_20 value: 8.37 - type: precision_at_100 value: 1.925 - type: precision_at_1000 value: 0.20600000000000002 - type: mrr_at_1 value: 56.691 - type: mrr_at_3 value: 67.1127 - type: mrr_at_5 value: 68.5604 - type: mrr_at_10 value: 69.1703 - type: mrr_at_20 value: 69.35289999999999 - type: mrr_at_100 value: 69.4819 - type: mrr_at_1000 value: 69.4957 - type: nauc_ndcg_at_1_max value: 41.866 - type: nauc_ndcg_at_1_std value: 11.7317 - type: nauc_ndcg_at_1_diff1 value: 40.4762 - type: nauc_ndcg_at_3_max value: 36.677 - type: nauc_ndcg_at_3_std value: 0.4032 - type: nauc_ndcg_at_3_diff1 value: 36.459 - type: nauc_ndcg_at_5_max value: 38.7948 - type: nauc_ndcg_at_5_std value: 2.169 - type: nauc_ndcg_at_5_diff1 value: 34.9733 - type: nauc_ndcg_at_10_max value: 41.2916 - type: nauc_ndcg_at_10_std value: 4.6691 - type: nauc_ndcg_at_10_diff1 value: 34.972300000000004 - type: nauc_ndcg_at_20_max value: 42.0471 - type: nauc_ndcg_at_20_std value: 6.9529 - type: nauc_ndcg_at_20_diff1 value: 35.2909 - type: nauc_ndcg_at_100_max value: 43.2206 - type: nauc_ndcg_at_100_std value: 9.8597 - type: nauc_ndcg_at_100_diff1 value: 34.7908 - type: nauc_ndcg_at_1000_max value: 42.9023 - type: nauc_ndcg_at_1000_std value: 9.1978 - type: nauc_ndcg_at_1000_diff1 value: 35.5526 - type: nauc_map_at_1_max value: 20.435 - type: nauc_map_at_1_std value: -8.3764 - type: nauc_map_at_1_diff1 value: 45.6061 - type: nauc_map_at_3_max value: 29.855900000000002 - type: nauc_map_at_3_std value: -6.9869 - type: nauc_map_at_3_diff1 value: 39.475 - type: nauc_map_at_5_max value: 33.9572 - type: nauc_map_at_5_std value: -3.164 - type: nauc_map_at_5_diff1 value: 37.4095 - type: nauc_map_at_10_max value: 35.8339 - type: nauc_map_at_10_std value: -0.8439 - type: nauc_map_at_10_diff1 value: 36.903999999999996 - type: nauc_map_at_20_max value: 36.1995 - type: nauc_map_at_20_std value: 0.2973 - type: nauc_map_at_20_diff1 value: 36.8904 - type: nauc_map_at_100_max value: 36.5903 - type: nauc_map_at_100_std value: 1.2213999999999998 - type: nauc_map_at_100_diff1 value: 36.6721 - type: nauc_map_at_1000_max value: 36.5844 - type: nauc_map_at_1000_std value: 1.2026000000000001 - type: nauc_map_at_1000_diff1 value: 36.7259 - type: nauc_recall_at_1_max value: 20.435 - type: nauc_recall_at_1_std value: -8.3764 - type: nauc_recall_at_1_diff1 value: 45.6061 - type: nauc_recall_at_3_max value: 26.366600000000002 - type: nauc_recall_at_3_std value: -10.0911 - type: nauc_recall_at_3_diff1 value: 33.1969 - type: nauc_recall_at_5_max value: 34.080799999999996 - type: nauc_recall_at_5_std value: -3.2670999999999997 - type: nauc_recall_at_5_diff1 value: 26.939 - type: nauc_recall_at_10_max value: 39.6727 - type: nauc_recall_at_10_std value: 3.5848999999999998 - type: nauc_recall_at_10_diff1 value: 25.359399999999997 - type: nauc_recall_at_20_max value: 42.824400000000004 - type: nauc_recall_at_20_std value: 10.9569 - type: nauc_recall_at_20_diff1 value: 25.8988 - type: nauc_recall_at_100_max value: 56.9357 - type: nauc_recall_at_100_std value: 40.6576 - type: nauc_recall_at_100_diff1 value: 17.9669 - type: nauc_recall_at_1000_max value: 77.9855 - type: nauc_recall_at_1000_std value: 69.14519999999999 - type: nauc_recall_at_1000_diff1 value: 31.317 - type: nauc_precision_at_1_max value: 41.866 - type: nauc_precision_at_1_std value: 11.7317 - type: nauc_precision_at_1_diff1 value: 40.4762 - type: nauc_precision_at_3_max value: 41.7292 - type: nauc_precision_at_3_std value: 19.4845 - type: nauc_precision_at_3_diff1 value: 2.3043 - type: nauc_precision_at_5_max value: 41.165600000000005 - type: nauc_precision_at_5_std value: 28.4709 - type: nauc_precision_at_5_diff1 value: -8.5182 - type: nauc_precision_at_10_max value: 36.8002 - type: nauc_precision_at_10_std value: 33.0094 - type: nauc_precision_at_10_diff1 value: -13.6996 - type: nauc_precision_at_20_max value: 29.5172 - type: nauc_precision_at_20_std value: 34.6802 - type: nauc_precision_at_20_diff1 value: -15.762 - type: nauc_precision_at_100_max value: 23.539099999999998 - type: nauc_precision_at_100_std value: 38.3806 - type: nauc_precision_at_100_diff1 value: -21.1116 - type: nauc_precision_at_1000_max value: 18.6827 - type: nauc_precision_at_1000_std value: 34.7766 - type: nauc_precision_at_1000_diff1 value: -20.9498 - type: nauc_mrr_at_1_max value: 41.866 - type: nauc_mrr_at_1_std value: 11.7317 - type: nauc_mrr_at_1_diff1 value: 40.4762 - type: nauc_mrr_at_3_max value: 47.225 - type: nauc_mrr_at_3_std value: 13.6943 - type: nauc_mrr_at_3_diff1 value: 37.979600000000005 - type: nauc_mrr_at_5_max value: 47.478500000000004 - type: nauc_mrr_at_5_std value: 15.2375 - type: nauc_mrr_at_5_diff1 value: 36.6924 - type: nauc_mrr_at_10_max value: 47.7794 - type: nauc_mrr_at_10_std value: 15.620899999999999 - type: nauc_mrr_at_10_diff1 value: 36.9685 - type: nauc_mrr_at_20_max value: 47.6434 - type: nauc_mrr_at_20_std value: 15.4696 - type: nauc_mrr_at_20_diff1 value: 37.1096 - type: nauc_mrr_at_100_max value: 47.5377 - type: nauc_mrr_at_100_std value: 15.360499999999998 - type: nauc_mrr_at_100_diff1 value: 37.1581 - type: nauc_mrr_at_1000_max value: 47.5182 - type: nauc_mrr_at_1000_std value: 15.345600000000001 - type: nauc_mrr_at_1000_diff1 value: 37.1651 - type: main_score value: 65.484 task: type: Retrieval - dataset: config: de name: MTEB MIRACLRetrieval (de) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: ndcg_at_1 value: 41.967 - type: ndcg_at_3 value: 39.486 - type: ndcg_at_5 value: 41.496 - type: ndcg_at_10 value: 45.141 - type: ndcg_at_20 value: 49.012 - type: ndcg_at_100 value: 53.461000000000006 - type: ndcg_at_1000 value: 55.462999999999994 - type: map_at_1 value: 19.494 - type: map_at_3 value: 29.866999999999997 - type: map_at_5 value: 33.183 - type: map_at_10 value: 35.82 - type: map_at_20 value: 37.405 - type: map_at_100 value: 38.486 - type: map_at_1000 value: 38.624 - type: recall_at_1 value: 19.494 - type: recall_at_3 value: 35.56 - type: recall_at_5 value: 44.448 - type: recall_at_10 value: 53.774 - type: recall_at_20 value: 65.659 - type: recall_at_100 value: 83.314 - type: recall_at_1000 value: 95.045 - type: precision_at_1 value: 41.967 - type: precision_at_3 value: 28.633999999999997 - type: precision_at_5 value: 21.836 - type: precision_at_10 value: 13.869000000000002 - type: precision_at_20 value: 8.443000000000001 - type: precision_at_100 value: 2.193 - type: precision_at_1000 value: 0.252 - type: mrr_at_1 value: 41.9672 - type: mrr_at_3 value: 49.8361 - type: mrr_at_5 value: 51.9016 - type: mrr_at_10 value: 52.847500000000004 - type: mrr_at_20 value: 53.3528 - type: mrr_at_100 value: 53.6068 - type: mrr_at_1000 value: 53.632999999999996 - type: nauc_ndcg_at_1_max value: 47.2596 - type: nauc_ndcg_at_1_std value: 10.462100000000001 - type: nauc_ndcg_at_1_diff1 value: 30.1962 - type: nauc_ndcg_at_3_max value: 44.2307 - type: nauc_ndcg_at_3_std value: 17.5815 - type: nauc_ndcg_at_3_diff1 value: 29.371399999999998 - type: nauc_ndcg_at_5_max value: 44.07 - type: nauc_ndcg_at_5_std value: 13.7942 - type: nauc_ndcg_at_5_diff1 value: 31.1618 - type: nauc_ndcg_at_10_max value: 43.406800000000004 - type: nauc_ndcg_at_10_std value: 13.1051 - type: nauc_ndcg_at_10_diff1 value: 30.198399999999996 - type: nauc_ndcg_at_20_max value: 44.2888 - type: nauc_ndcg_at_20_std value: 16.2174 - type: nauc_ndcg_at_20_diff1 value: 31.1847 - type: nauc_ndcg_at_100_max value: 47.042899999999996 - type: nauc_ndcg_at_100_std value: 18.6719 - type: nauc_ndcg_at_100_diff1 value: 31.4178 - type: nauc_ndcg_at_1000_max value: 47.2147 - type: nauc_ndcg_at_1000_std value: 19.165 - type: nauc_ndcg_at_1000_diff1 value: 31.229400000000002 - type: nauc_map_at_1_max value: 28.3144 - type: nauc_map_at_1_std value: 4.6845 - type: nauc_map_at_1_diff1 value: 29.528 - type: nauc_map_at_3_max value: 36.9973 - type: nauc_map_at_3_std value: 11.669 - type: nauc_map_at_3_diff1 value: 32.3092 - type: nauc_map_at_5_max value: 39.4916 - type: nauc_map_at_5_std value: 12.0862 - type: nauc_map_at_5_diff1 value: 31.7635 - type: nauc_map_at_10_max value: 40.2979 - type: nauc_map_at_10_std value: 12.536 - type: nauc_map_at_10_diff1 value: 30.584600000000002 - type: nauc_map_at_20_max value: 40.7003 - type: nauc_map_at_20_std value: 13.5966 - type: nauc_map_at_20_diff1 value: 30.8718 - type: nauc_map_at_100_max value: 41.6514 - type: nauc_map_at_100_std value: 14.360500000000002 - type: nauc_map_at_100_diff1 value: 31.1345 - type: nauc_map_at_1000_max value: 41.6996 - type: nauc_map_at_1000_std value: 14.4203 - type: nauc_map_at_1000_diff1 value: 31.128600000000002 - type: nauc_recall_at_1_max value: 28.3144 - type: nauc_recall_at_1_std value: 4.6845 - type: nauc_recall_at_1_diff1 value: 29.528 - type: nauc_recall_at_3_max value: 33.567 - type: nauc_recall_at_3_std value: 12.7075 - type: nauc_recall_at_3_diff1 value: 27.9119 - type: nauc_recall_at_5_max value: 36.5991 - type: nauc_recall_at_5_std value: 8.7177 - type: nauc_recall_at_5_diff1 value: 28.3433 - type: nauc_recall_at_10_max value: 36.5863 - type: nauc_recall_at_10_std value: 8.2944 - type: nauc_recall_at_10_diff1 value: 26.411299999999997 - type: nauc_recall_at_20_max value: 35.970200000000006 - type: nauc_recall_at_20_std value: 15.487 - type: nauc_recall_at_20_diff1 value: 29.0362 - type: nauc_recall_at_100_max value: 48.892 - type: nauc_recall_at_100_std value: 30.1672 - type: nauc_recall_at_100_diff1 value: 29.9305 - type: nauc_recall_at_1000_max value: 66.36410000000001 - type: nauc_recall_at_1000_std value: 64.2413 - type: nauc_recall_at_1000_diff1 value: 32.7869 - type: nauc_precision_at_1_max value: 47.2596 - type: nauc_precision_at_1_std value: 10.462100000000001 - type: nauc_precision_at_1_diff1 value: 30.1962 - type: nauc_precision_at_3_max value: 46.6036 - type: nauc_precision_at_3_std value: 22.917 - type: nauc_precision_at_3_diff1 value: 21.104200000000002 - type: nauc_precision_at_5_max value: 44.357 - type: nauc_precision_at_5_std value: 21.4999 - type: nauc_precision_at_5_diff1 value: 16.378899999999998 - type: nauc_precision_at_10_max value: 39.1332 - type: nauc_precision_at_10_std value: 20.241500000000002 - type: nauc_precision_at_10_diff1 value: 10.2133 - type: nauc_precision_at_20_max value: 36.7308 - type: nauc_precision_at_20_std value: 26.994699999999998 - type: nauc_precision_at_20_diff1 value: 8.2737 - type: nauc_precision_at_100_max value: 33.8289 - type: nauc_precision_at_100_std value: 29.243000000000002 - type: nauc_precision_at_100_diff1 value: 2.6802 - type: nauc_precision_at_1000_max value: 27.7792 - type: nauc_precision_at_1000_std value: 30.017899999999997 - type: nauc_precision_at_1000_diff1 value: -2.3043 - type: nauc_mrr_at_1_max value: 47.2596 - type: nauc_mrr_at_1_std value: 10.462100000000001 - type: nauc_mrr_at_1_diff1 value: 30.1962 - type: nauc_mrr_at_3_max value: 47.8206 - type: nauc_mrr_at_3_std value: 15.509999999999998 - type: nauc_mrr_at_3_diff1 value: 28.4831 - type: nauc_mrr_at_5_max value: 48.4225 - type: nauc_mrr_at_5_std value: 14.0032 - type: nauc_mrr_at_5_diff1 value: 30.2989 - type: nauc_mrr_at_10_max value: 48.2881 - type: nauc_mrr_at_10_std value: 14.383199999999999 - type: nauc_mrr_at_10_diff1 value: 30.047800000000002 - type: nauc_mrr_at_20_max value: 48.2964 - type: nauc_mrr_at_20_std value: 14.7531 - type: nauc_mrr_at_20_diff1 value: 30.154199999999996 - type: nauc_mrr_at_100_max value: 48.2656 - type: nauc_mrr_at_100_std value: 14.5864 - type: nauc_mrr_at_100_diff1 value: 30.153299999999998 - type: nauc_mrr_at_1000_max value: 48.2739 - type: nauc_mrr_at_1000_std value: 14.5892 - type: nauc_mrr_at_1000_diff1 value: 30.1671 - type: main_score value: 45.141 task: type: Retrieval - dataset: config: en name: MTEB MIRACLRetrieval (en) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: ndcg_at_1 value: 41.176 - type: ndcg_at_3 value: 41.197 - type: ndcg_at_5 value: 42.086 - type: ndcg_at_10 value: 46.682 - type: ndcg_at_20 value: 50.157 - type: ndcg_at_100 value: 54.32599999999999 - type: ndcg_at_1000 value: 56.567 - type: map_at_1 value: 19.322 - type: map_at_3 value: 29.965999999999998 - type: map_at_5 value: 32.767 - type: map_at_10 value: 35.961 - type: map_at_20 value: 37.506 - type: map_at_100 value: 38.585 - type: map_at_1000 value: 38.756 - type: recall_at_1 value: 19.322 - type: recall_at_3 value: 37.171 - type: recall_at_5 value: 44.695 - type: recall_at_10 value: 57.721000000000004 - type: recall_at_20 value: 67.57 - type: recall_at_100 value: 83.256 - type: recall_at_1000 value: 95.511 - type: precision_at_1 value: 41.176 - type: precision_at_3 value: 29.328 - type: precision_at_5 value: 21.552 - type: precision_at_10 value: 14.556 - type: precision_at_20 value: 8.892 - type: precision_at_100 value: 2.325 - type: precision_at_1000 value: 0.27599999999999997 - type: mrr_at_1 value: 41.1765 - type: mrr_at_3 value: 52.3571 - type: mrr_at_5 value: 53.8214 - type: mrr_at_10 value: 55.2296 - type: mrr_at_20 value: 55.58070000000001 - type: mrr_at_100 value: 55.755500000000005 - type: mrr_at_1000 value: 55.7773 - type: nauc_ndcg_at_1_max value: 34.3579 - type: nauc_ndcg_at_1_std value: 4.9725 - type: nauc_ndcg_at_1_diff1 value: 34.5973 - type: nauc_ndcg_at_3_max value: 33.4771 - type: nauc_ndcg_at_3_std value: 1.4036 - type: nauc_ndcg_at_3_diff1 value: 28.7098 - type: nauc_ndcg_at_5_max value: 32.4928 - type: nauc_ndcg_at_5_std value: -0.066 - type: nauc_ndcg_at_5_diff1 value: 28.6068 - type: nauc_ndcg_at_10_max value: 32.068999999999996 - type: nauc_ndcg_at_10_std value: 1.6602 - type: nauc_ndcg_at_10_diff1 value: 26.9818 - type: nauc_ndcg_at_20_max value: 33.9623 - type: nauc_ndcg_at_20_std value: 4.261299999999999 - type: nauc_ndcg_at_20_diff1 value: 26.4283 - type: nauc_ndcg_at_100_max value: 35.507 - type: nauc_ndcg_at_100_std value: 7.991099999999999 - type: nauc_ndcg_at_100_diff1 value: 25.9616 - type: nauc_ndcg_at_1000_max value: 35.9545 - type: nauc_ndcg_at_1000_std value: 8.1357 - type: nauc_ndcg_at_1000_diff1 value: 26.5577 - type: nauc_map_at_1_max value: 26.392300000000002 - type: nauc_map_at_1_std value: -1.0763 - type: nauc_map_at_1_diff1 value: 32.73 - type: nauc_map_at_3_max value: 29.8191 - type: nauc_map_at_3_std value: -1.8852 - type: nauc_map_at_3_diff1 value: 29.5076 - type: nauc_map_at_5_max value: 30.8727 - type: nauc_map_at_5_std value: -1.3785 - type: nauc_map_at_5_diff1 value: 29.475299999999997 - type: nauc_map_at_10_max value: 31.5092 - type: nauc_map_at_10_std value: -0.1203 - type: nauc_map_at_10_diff1 value: 28.1841 - type: nauc_map_at_20_max value: 32.6157 - type: nauc_map_at_20_std value: 0.9819 - type: nauc_map_at_20_diff1 value: 28.339399999999998 - type: nauc_map_at_100_max value: 33.1895 - type: nauc_map_at_100_std value: 2.1590000000000003 - type: nauc_map_at_100_diff1 value: 28.180100000000003 - type: nauc_map_at_1000_max value: 33.2679 - type: nauc_map_at_1000_std value: 2.2186999999999997 - type: nauc_map_at_1000_diff1 value: 28.2088 - type: nauc_recall_at_1_max value: 26.392300000000002 - type: nauc_recall_at_1_std value: -1.0763 - type: nauc_recall_at_1_diff1 value: 32.73 - type: nauc_recall_at_3_max value: 24.2787 - type: nauc_recall_at_3_std value: -4.1108 - type: nauc_recall_at_3_diff1 value: 23.903299999999998 - type: nauc_recall_at_5_max value: 23.0102 - type: nauc_recall_at_5_std value: -4.4748 - type: nauc_recall_at_5_diff1 value: 22.4027 - type: nauc_recall_at_10_max value: 20.5018 - type: nauc_recall_at_10_std value: -2.1145 - type: nauc_recall_at_10_diff1 value: 17.5745 - type: nauc_recall_at_20_max value: 23.3743 - type: nauc_recall_at_20_std value: 3.8541 - type: nauc_recall_at_20_diff1 value: 13.4776 - type: nauc_recall_at_100_max value: 27.6324 - type: nauc_recall_at_100_std value: 21.3837 - type: nauc_recall_at_100_diff1 value: 7.174600000000001 - type: nauc_recall_at_1000_max value: 45.033699999999996 - type: nauc_recall_at_1000_std value: 59.160999999999994 - type: nauc_recall_at_1000_diff1 value: -0.5903 - type: nauc_precision_at_1_max value: 34.3579 - type: nauc_precision_at_1_std value: 4.9725 - type: nauc_precision_at_1_diff1 value: 34.5973 - type: nauc_precision_at_3_max value: 33.6059 - type: nauc_precision_at_3_std value: 8.9589 - type: nauc_precision_at_3_diff1 value: 16.9583 - type: nauc_precision_at_5_max value: 30.8753 - type: nauc_precision_at_5_std value: 10.080300000000001 - type: nauc_precision_at_5_diff1 value: 13.0574 - type: nauc_precision_at_10_max value: 25.7853 - type: nauc_precision_at_10_std value: 14.349700000000002 - type: nauc_precision_at_10_diff1 value: 4.2389 - type: nauc_precision_at_20_max value: 23.3853 - type: nauc_precision_at_20_std value: 18.4597 - type: nauc_precision_at_20_diff1 value: 0.9729 - type: nauc_precision_at_100_max value: 17.3016 - type: nauc_precision_at_100_std value: 23.352500000000003 - type: nauc_precision_at_100_diff1 value: -4.4505 - type: nauc_precision_at_1000_max value: 10.7759 - type: nauc_precision_at_1000_std value: 19.098699999999997 - type: nauc_precision_at_1000_diff1 value: -5.919 - type: nauc_mrr_at_1_max value: 34.3579 - type: nauc_mrr_at_1_std value: 4.9725 - type: nauc_mrr_at_1_diff1 value: 34.5973 - type: nauc_mrr_at_3_max value: 34.8266 - type: nauc_mrr_at_3_std value: 5.6232999999999995 - type: nauc_mrr_at_3_diff1 value: 29.5624 - type: nauc_mrr_at_5_max value: 34.8732 - type: nauc_mrr_at_5_std value: 5.447699999999999 - type: nauc_mrr_at_5_diff1 value: 29.9161 - type: nauc_mrr_at_10_max value: 35.0493 - type: nauc_mrr_at_10_std value: 6.1511000000000005 - type: nauc_mrr_at_10_diff1 value: 30.117699999999996 - type: nauc_mrr_at_20_max value: 35.0425 - type: nauc_mrr_at_20_std value: 6.25 - type: nauc_mrr_at_20_diff1 value: 29.8804 - type: nauc_mrr_at_100_max value: 35.058499999999995 - type: nauc_mrr_at_100_std value: 6.1998999999999995 - type: nauc_mrr_at_100_diff1 value: 29.9613 - type: nauc_mrr_at_1000_max value: 35.0463 - type: nauc_mrr_at_1000_std value: 6.1806 - type: nauc_mrr_at_1000_diff1 value: 29.973499999999998 - type: main_score value: 46.682 task: type: Retrieval - dataset: config: es name: MTEB MIRACLRetrieval (es) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: ndcg_at_1 value: 54.474999999999994 - type: ndcg_at_3 value: 45.78 - type: ndcg_at_5 value: 44.321 - type: ndcg_at_10 value: 46.593 - type: ndcg_at_20 value: 51.858000000000004 - type: ndcg_at_100 value: 58.079 - type: ndcg_at_1000 value: 60.656 - type: map_at_1 value: 15.966 - type: map_at_3 value: 25.933 - type: map_at_5 value: 30.171999999999997 - type: map_at_10 value: 34.67 - type: map_at_20 value: 37.501 - type: map_at_100 value: 39.45 - type: map_at_1000 value: 39.689 - type: recall_at_1 value: 15.966 - type: recall_at_3 value: 29.49 - type: recall_at_5 value: 37.983 - type: recall_at_10 value: 49.342999999999996 - type: recall_at_20 value: 62.367 - type: recall_at_100 value: 82.684 - type: recall_at_1000 value: 95.299 - type: precision_at_1 value: 54.474999999999994 - type: precision_at_3 value: 37.86 - type: precision_at_5 value: 30.586000000000002 - type: precision_at_10 value: 21.481 - type: precision_at_20 value: 13.796 - type: precision_at_100 value: 3.7900000000000005 - type: precision_at_1000 value: 0.441 - type: mrr_at_1 value: 54.475300000000004 - type: mrr_at_3 value: 62.191399999999994 - type: mrr_at_5 value: 63.74999999999999 - type: mrr_at_10 value: 64.4789 - type: mrr_at_20 value: 64.8911 - type: mrr_at_100 value: 65.0641 - type: mrr_at_1000 value: 65.07469999999999 - type: nauc_ndcg_at_1_max value: 42.4187 - type: nauc_ndcg_at_1_std value: 17.6337 - type: nauc_ndcg_at_1_diff1 value: 36.2923 - type: nauc_ndcg_at_3_max value: 37.073499999999996 - type: nauc_ndcg_at_3_std value: 16.0772 - type: nauc_ndcg_at_3_diff1 value: 26.4292 - type: nauc_ndcg_at_5_max value: 36.1381 - type: nauc_ndcg_at_5_std value: 14.585999999999999 - type: nauc_ndcg_at_5_diff1 value: 26.411299999999997 - type: nauc_ndcg_at_10_max value: 35.5405 - type: nauc_ndcg_at_10_std value: 15.0147 - type: nauc_ndcg_at_10_diff1 value: 26.299899999999997 - type: nauc_ndcg_at_20_max value: 39.764500000000005 - type: nauc_ndcg_at_20_std value: 20.311899999999998 - type: nauc_ndcg_at_20_diff1 value: 26.3937 - type: nauc_ndcg_at_100_max value: 44.473 - type: nauc_ndcg_at_100_std value: 26.6476 - type: nauc_ndcg_at_100_diff1 value: 26.1508 - type: nauc_ndcg_at_1000_max value: 44.1126 - type: nauc_ndcg_at_1000_std value: 25.8031 - type: nauc_ndcg_at_1000_diff1 value: 26.2323 - type: nauc_map_at_1_max value: 10.2435 - type: nauc_map_at_1_std value: -11.501999999999999 - type: nauc_map_at_1_diff1 value: 26.050800000000002 - type: nauc_map_at_3_max value: 18.8877 - type: nauc_map_at_3_std value: -3.9174 - type: nauc_map_at_3_diff1 value: 25.8438 - type: nauc_map_at_5_max value: 23.7785 - type: nauc_map_at_5_std value: 0.6597000000000001 - type: nauc_map_at_5_diff1 value: 25.2118 - type: nauc_map_at_10_max value: 28.6819 - type: nauc_map_at_10_std value: 6.741 - type: nauc_map_at_10_diff1 value: 24.6999 - type: nauc_map_at_20_max value: 31.853900000000003 - type: nauc_map_at_20_std value: 10.5967 - type: nauc_map_at_20_diff1 value: 24.8637 - type: nauc_map_at_100_max value: 33.9181 - type: nauc_map_at_100_std value: 13.254 - type: nauc_map_at_100_diff1 value: 24.759500000000003 - type: nauc_map_at_1000_max value: 33.9679 - type: nauc_map_at_1000_std value: 13.290199999999999 - type: nauc_map_at_1000_diff1 value: 24.758399999999998 - type: nauc_recall_at_1_max value: 10.2435 - type: nauc_recall_at_1_std value: -11.501999999999999 - type: nauc_recall_at_1_diff1 value: 26.050800000000002 - type: nauc_recall_at_3_max value: 16.737099999999998 - type: nauc_recall_at_3_std value: -4.3613 - type: nauc_recall_at_3_diff1 value: 23.771900000000002 - type: nauc_recall_at_5_max value: 20.0168 - type: nauc_recall_at_5_std value: 1.1395 - type: nauc_recall_at_5_diff1 value: 21.4641 - type: nauc_recall_at_10_max value: 26.6231 - type: nauc_recall_at_10_std value: 12.728700000000002 - type: nauc_recall_at_10_diff1 value: 18.947400000000002 - type: nauc_recall_at_20_max value: 31.4926 - type: nauc_recall_at_20_std value: 21.0613 - type: nauc_recall_at_20_diff1 value: 17.8382 - type: nauc_recall_at_100_max value: 46.1255 - type: nauc_recall_at_100_std value: 45.2197 - type: nauc_recall_at_100_diff1 value: 15.1202 - type: nauc_recall_at_1000_max value: 54.710499999999996 - type: nauc_recall_at_1000_std value: 68.72019999999999 - type: nauc_recall_at_1000_diff1 value: 9.2808 - type: nauc_precision_at_1_max value: 42.4187 - type: nauc_precision_at_1_std value: 17.6337 - type: nauc_precision_at_1_diff1 value: 36.2923 - type: nauc_precision_at_3_max value: 42.056900000000006 - type: nauc_precision_at_3_std value: 26.4648 - type: nauc_precision_at_3_diff1 value: 20.366500000000002 - type: nauc_precision_at_5_max value: 45.4175 - type: nauc_precision_at_5_std value: 32.2676 - type: nauc_precision_at_5_diff1 value: 14.9145 - type: nauc_precision_at_10_max value: 43.9305 - type: nauc_precision_at_10_std value: 37.9795 - type: nauc_precision_at_10_diff1 value: 8.4088 - type: nauc_precision_at_20_max value: 44.183499999999995 - type: nauc_precision_at_20_std value: 42.9261 - type: nauc_precision_at_20_diff1 value: 5.0112 - type: nauc_precision_at_100_max value: 40.8771 - type: nauc_precision_at_100_std value: 46.921800000000005 - type: nauc_precision_at_100_diff1 value: -1.6650000000000003 - type: nauc_precision_at_1000_max value: 32.0705 - type: nauc_precision_at_1000_std value: 39.5086 - type: nauc_precision_at_1000_diff1 value: -5.5237 - type: nauc_mrr_at_1_max value: 42.4187 - type: nauc_mrr_at_1_std value: 17.6337 - type: nauc_mrr_at_1_diff1 value: 36.2923 - type: nauc_mrr_at_3_max value: 47.2755 - type: nauc_mrr_at_3_std value: 23.8294 - type: nauc_mrr_at_3_diff1 value: 35.5243 - type: nauc_mrr_at_5_max value: 47.6991 - type: nauc_mrr_at_5_std value: 24.6507 - type: nauc_mrr_at_5_diff1 value: 35.5186 - type: nauc_mrr_at_10_max value: 47.726 - type: nauc_mrr_at_10_std value: 24.9941 - type: nauc_mrr_at_10_diff1 value: 35.5396 - type: nauc_mrr_at_20_max value: 47.6055 - type: nauc_mrr_at_20_std value: 24.9619 - type: nauc_mrr_at_20_diff1 value: 35.3844 - type: nauc_mrr_at_100_max value: 47.5619 - type: nauc_mrr_at_100_std value: 24.794 - type: nauc_mrr_at_100_diff1 value: 35.4683 - type: nauc_mrr_at_1000_max value: 47.545700000000004 - type: nauc_mrr_at_1000_std value: 24.7716 - type: nauc_mrr_at_1000_diff1 value: 35.4674 - type: main_score value: 46.593 task: type: Retrieval - dataset: config: fa name: MTEB MIRACLRetrieval (fa) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: ndcg_at_1 value: 36.709 - type: ndcg_at_3 value: 40.235 - type: ndcg_at_5 value: 42.866 - type: ndcg_at_10 value: 46.961000000000006 - type: ndcg_at_20 value: 49.891999999999996 - type: ndcg_at_100 value: 53.262 - type: ndcg_at_1000 value: 55.023999999999994 - type: map_at_1 value: 22.735 - type: map_at_3 value: 33.446 - type: map_at_5 value: 36.199999999999996 - type: map_at_10 value: 38.707 - type: map_at_20 value: 39.931 - type: map_at_100 value: 40.601 - type: map_at_1000 value: 40.711999999999996 - type: recall_at_1 value: 22.735 - type: recall_at_3 value: 41.781 - type: recall_at_5 value: 49.374 - type: recall_at_10 value: 59.949 - type: recall_at_20 value: 68.947 - type: recall_at_100 value: 83.867 - type: recall_at_1000 value: 95.00699999999999 - type: precision_at_1 value: 36.709 - type: precision_at_3 value: 24.578 - type: precision_at_5 value: 18.133 - type: precision_at_10 value: 11.661000000000001 - type: precision_at_20 value: 6.97 - type: precision_at_100 value: 1.737 - type: precision_at_1000 value: 0.199 - type: mrr_at_1 value: 36.7089 - type: mrr_at_3 value: 46.0443 - type: mrr_at_5 value: 47.7848 - type: mrr_at_10 value: 48.908699999999996 - type: mrr_at_20 value: 49.337399999999995 - type: mrr_at_100 value: 49.580999999999996 - type: mrr_at_1000 value: 49.6135 - type: nauc_ndcg_at_1_max value: 40.3709 - type: nauc_ndcg_at_1_std value: 8.100200000000001 - type: nauc_ndcg_at_1_diff1 value: 30.2274 - type: nauc_ndcg_at_3_max value: 36.0603 - type: nauc_ndcg_at_3_std value: 5.0052 - type: nauc_ndcg_at_3_diff1 value: 28.380899999999997 - type: nauc_ndcg_at_5_max value: 36.235 - type: nauc_ndcg_at_5_std value: 4.7146 - type: nauc_ndcg_at_5_diff1 value: 27.969 - type: nauc_ndcg_at_10_max value: 38.9403 - type: nauc_ndcg_at_10_std value: 8.66 - type: nauc_ndcg_at_10_diff1 value: 26.2876 - type: nauc_ndcg_at_20_max value: 41.3286 - type: nauc_ndcg_at_20_std value: 10.9269 - type: nauc_ndcg_at_20_diff1 value: 25.859900000000003 - type: nauc_ndcg_at_100_max value: 42.8643 - type: nauc_ndcg_at_100_std value: 14.2822 - type: nauc_ndcg_at_100_diff1 value: 25.3784 - type: nauc_ndcg_at_1000_max value: 41.8778 - type: nauc_ndcg_at_1000_std value: 13.130600000000001 - type: nauc_ndcg_at_1000_diff1 value: 25.9498 - type: nauc_map_at_1_max value: 27.2644 - type: nauc_map_at_1_std value: -2.6623 - type: nauc_map_at_1_diff1 value: 40.2119 - type: nauc_map_at_3_max value: 32.121100000000006 - type: nauc_map_at_3_std value: 0.6962999999999999 - type: nauc_map_at_3_diff1 value: 33.265499999999996 - type: nauc_map_at_5_max value: 33.1237 - type: nauc_map_at_5_std value: 1.6095000000000002 - type: nauc_map_at_5_diff1 value: 30.924400000000002 - type: nauc_map_at_10_max value: 35.8464 - type: nauc_map_at_10_std value: 4.6409 - type: nauc_map_at_10_diff1 value: 29.3654 - type: nauc_map_at_20_max value: 36.967299999999994 - type: nauc_map_at_20_std value: 5.8244 - type: nauc_map_at_20_diff1 value: 29.0251 - type: nauc_map_at_100_max value: 37.3859 - type: nauc_map_at_100_std value: 6.575499999999999 - type: nauc_map_at_100_diff1 value: 28.9224 - type: nauc_map_at_1000_max value: 37.3438 - type: nauc_map_at_1000_std value: 6.5534 - type: nauc_map_at_1000_diff1 value: 28.952099999999998 - type: nauc_recall_at_1_max value: 27.2644 - type: nauc_recall_at_1_std value: -2.6623 - type: nauc_recall_at_1_diff1 value: 40.2119 - type: nauc_recall_at_3_max value: 29.0364 - type: nauc_recall_at_3_std value: 0.8965000000000001 - type: nauc_recall_at_3_diff1 value: 27.651999999999997 - type: nauc_recall_at_5_max value: 29.299799999999998 - type: nauc_recall_at_5_std value: 1.0264 - type: nauc_recall_at_5_diff1 value: 23.3762 - type: nauc_recall_at_10_max value: 34.4238 - type: nauc_recall_at_10_std value: 10.228299999999999 - type: nauc_recall_at_10_diff1 value: 17.9909 - type: nauc_recall_at_20_max value: 42.5987 - type: nauc_recall_at_20_std value: 16.880899999999997 - type: nauc_recall_at_20_diff1 value: 16.4298 - type: nauc_recall_at_100_max value: 55.767599999999995 - type: nauc_recall_at_100_std value: 44.9392 - type: nauc_recall_at_100_diff1 value: 8.6006 - type: nauc_recall_at_1000_max value: 60.8797 - type: nauc_recall_at_1000_std value: 64.1015 - type: nauc_recall_at_1000_diff1 value: 5.9098 - type: nauc_precision_at_1_max value: 40.3709 - type: nauc_precision_at_1_std value: 8.100200000000001 - type: nauc_precision_at_1_diff1 value: 30.2274 - type: nauc_precision_at_3_max value: 39.9513 - type: nauc_precision_at_3_std value: 15.568999999999999 - type: nauc_precision_at_3_diff1 value: 9.9843 - type: nauc_precision_at_5_max value: 38.1062 - type: nauc_precision_at_5_std value: 18.7953 - type: nauc_precision_at_5_diff1 value: 1.4489 - type: nauc_precision_at_10_max value: 37.601099999999995 - type: nauc_precision_at_10_std value: 26.145699999999998 - type: nauc_precision_at_10_diff1 value: -6.6542 - type: nauc_precision_at_20_max value: 35.5961 - type: nauc_precision_at_20_std value: 29.930200000000003 - type: nauc_precision_at_20_diff1 value: -9.7241 - type: nauc_precision_at_100_max value: 28.092299999999998 - type: nauc_precision_at_100_std value: 34.0409 - type: nauc_precision_at_100_diff1 value: -15.037400000000002 - type: nauc_precision_at_1000_max value: 17.1738 - type: nauc_precision_at_1000_std value: 26.948499999999996 - type: nauc_precision_at_1000_diff1 value: -17.5066 - type: nauc_mrr_at_1_max value: 40.3709 - type: nauc_mrr_at_1_std value: 8.100200000000001 - type: nauc_mrr_at_1_diff1 value: 30.2274 - type: nauc_mrr_at_3_max value: 41.971399999999996 - type: nauc_mrr_at_3_std value: 10.34 - type: nauc_mrr_at_3_diff1 value: 27.5952 - type: nauc_mrr_at_5_max value: 42.721599999999995 - type: nauc_mrr_at_5_std value: 10.796100000000001 - type: nauc_mrr_at_5_diff1 value: 27.260800000000003 - type: nauc_mrr_at_10_max value: 42.651 - type: nauc_mrr_at_10_std value: 11.397599999999999 - type: nauc_mrr_at_10_diff1 value: 26.5974 - type: nauc_mrr_at_20_max value: 42.7886 - type: nauc_mrr_at_20_std value: 11.4316 - type: nauc_mrr_at_20_diff1 value: 26.724500000000003 - type: nauc_mrr_at_100_max value: 42.8826 - type: nauc_mrr_at_100_std value: 11.549 - type: nauc_mrr_at_100_diff1 value: 26.762999999999998 - type: nauc_mrr_at_1000_max value: 42.8647 - type: nauc_mrr_at_1000_std value: 11.522300000000001 - type: nauc_mrr_at_1000_diff1 value: 26.790799999999997 - type: main_score value: 46.961000000000006 task: type: Retrieval - dataset: config: fi name: MTEB MIRACLRetrieval (fi) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: ndcg_at_1 value: 59.245000000000005 - type: ndcg_at_3 value: 58.876 - type: ndcg_at_5 value: 61.778999999999996 - type: ndcg_at_10 value: 65.551 - type: ndcg_at_20 value: 67.552 - type: ndcg_at_100 value: 69.67 - type: ndcg_at_1000 value: 70.521 - type: map_at_1 value: 37.669000000000004 - type: map_at_3 value: 52.28 - type: map_at_5 value: 55.064 - type: map_at_10 value: 57.29 - type: map_at_20 value: 58.162000000000006 - type: map_at_100 value: 58.648999999999994 - type: map_at_1000 value: 58.701 - type: recall_at_1 value: 37.669000000000004 - type: recall_at_3 value: 60.234 - type: recall_at_5 value: 67.135 - type: recall_at_10 value: 76.529 - type: recall_at_20 value: 82.685 - type: recall_at_100 value: 91.56 - type: recall_at_1000 value: 96.977 - type: precision_at_1 value: 59.245000000000005 - type: precision_at_3 value: 34.435 - type: precision_at_5 value: 23.745 - type: precision_at_10 value: 13.980999999999998 - type: precision_at_20 value: 7.707 - type: precision_at_100 value: 1.7489999999999999 - type: precision_at_1000 value: 0.186 - type: mrr_at_1 value: 59.244699999999995 - type: mrr_at_3 value: 67.9517 - type: mrr_at_5 value: 68.9746 - type: mrr_at_10 value: 69.7599 - type: mrr_at_20 value: 69.9947 - type: mrr_at_100 value: 70.1058 - type: mrr_at_1000 value: 70.11749999999999 - type: nauc_ndcg_at_1_max value: 38.7543 - type: nauc_ndcg_at_1_std value: 4.2023 - type: nauc_ndcg_at_1_diff1 value: 50.8162 - type: nauc_ndcg_at_3_max value: 36.9886 - type: nauc_ndcg_at_3_std value: 2.7807 - type: nauc_ndcg_at_3_diff1 value: 39.9604 - type: nauc_ndcg_at_5_max value: 38.567800000000005 - type: nauc_ndcg_at_5_std value: 4.0823 - type: nauc_ndcg_at_5_diff1 value: 40.1034 - type: nauc_ndcg_at_10_max value: 39.6717 - type: nauc_ndcg_at_10_std value: 4.836 - type: nauc_ndcg_at_10_diff1 value: 39.546 - type: nauc_ndcg_at_20_max value: 40.860400000000006 - type: nauc_ndcg_at_20_std value: 7.385999999999999 - type: nauc_ndcg_at_20_diff1 value: 39.1921 - type: nauc_ndcg_at_100_max value: 41.021 - type: nauc_ndcg_at_100_std value: 9.0238 - type: nauc_ndcg_at_100_diff1 value: 39.6248 - type: nauc_ndcg_at_1000_max value: 40.4034 - type: nauc_ndcg_at_1000_std value: 8.204500000000001 - type: nauc_ndcg_at_1000_diff1 value: 40.0309 - type: nauc_map_at_1_max value: 26.493499999999997 - type: nauc_map_at_1_std value: -2.5927 - type: nauc_map_at_1_diff1 value: 46.5824 - type: nauc_map_at_3_max value: 34.2786 - type: nauc_map_at_3_std value: 0.5491 - type: nauc_map_at_3_diff1 value: 39.4368 - type: nauc_map_at_5_max value: 36.2078 - type: nauc_map_at_5_std value: 2.3709000000000002 - type: nauc_map_at_5_diff1 value: 39.3797 - type: nauc_map_at_10_max value: 36.9681 - type: nauc_map_at_10_std value: 2.8434999999999997 - type: nauc_map_at_10_diff1 value: 39.1311 - type: nauc_map_at_20_max value: 37.4538 - type: nauc_map_at_20_std value: 3.8388 - type: nauc_map_at_20_diff1 value: 38.9234 - type: nauc_map_at_100_max value: 37.5899 - type: nauc_map_at_100_std value: 4.2547 - type: nauc_map_at_100_diff1 value: 39.0103 - type: nauc_map_at_1000_max value: 37.5573 - type: nauc_map_at_1000_std value: 4.221699999999999 - type: nauc_map_at_1000_diff1 value: 39.0312 - type: nauc_recall_at_1_max value: 26.493499999999997 - type: nauc_recall_at_1_std value: -2.5927 - type: nauc_recall_at_1_diff1 value: 46.5824 - type: nauc_recall_at_3_max value: 33.2212 - type: nauc_recall_at_3_std value: 0.5208 - type: nauc_recall_at_3_diff1 value: 33.0793 - type: nauc_recall_at_5_max value: 36.4292 - type: nauc_recall_at_5_std value: 4.139 - type: nauc_recall_at_5_diff1 value: 32.357200000000006 - type: nauc_recall_at_10_max value: 39.473 - type: nauc_recall_at_10_std value: 5.6589 - type: nauc_recall_at_10_diff1 value: 28.176299999999998 - type: nauc_recall_at_20_max value: 45.8088 - type: nauc_recall_at_20_std value: 17.084 - type: nauc_recall_at_20_diff1 value: 25.1991 - type: nauc_recall_at_100_max value: 53.8483 - type: nauc_recall_at_100_std value: 41.8548 - type: nauc_recall_at_100_diff1 value: 20.316699999999997 - type: nauc_recall_at_1000_max value: 57.7136 - type: nauc_recall_at_1000_std value: 61.00600000000001 - type: nauc_recall_at_1000_diff1 value: 14.565900000000001 - type: nauc_precision_at_1_max value: 38.7543 - type: nauc_precision_at_1_std value: 4.2023 - type: nauc_precision_at_1_diff1 value: 50.8162 - type: nauc_precision_at_3_max value: 30.9959 - type: nauc_precision_at_3_std value: 11.363 - type: nauc_precision_at_3_diff1 value: 12.556899999999999 - type: nauc_precision_at_5_max value: 27.8411 - type: nauc_precision_at_5_std value: 15.3994 - type: nauc_precision_at_5_diff1 value: 5.9959 - type: nauc_precision_at_10_max value: 21.067700000000002 - type: nauc_precision_at_10_std value: 16.4476 - type: nauc_precision_at_10_diff1 value: -2.7433 - type: nauc_precision_at_20_max value: 17.8813 - type: nauc_precision_at_20_std value: 21.4052 - type: nauc_precision_at_20_diff1 value: -8.7583 - type: nauc_precision_at_100_max value: 8.864700000000001 - type: nauc_precision_at_100_std value: 24.1294 - type: nauc_precision_at_100_diff1 value: -14.3597 - type: nauc_precision_at_1000_max value: 1.8260999999999998 - type: nauc_precision_at_1000_std value: 20.0461 - type: nauc_precision_at_1000_diff1 value: -17.6062 - type: nauc_mrr_at_1_max value: 38.7543 - type: nauc_mrr_at_1_std value: 4.2023 - type: nauc_mrr_at_1_diff1 value: 50.8162 - type: nauc_mrr_at_3_max value: 40.8761 - type: nauc_mrr_at_3_std value: 5.5156 - type: nauc_mrr_at_3_diff1 value: 47.6824 - type: nauc_mrr_at_5_max value: 41.1811 - type: nauc_mrr_at_5_std value: 6.0588999999999995 - type: nauc_mrr_at_5_diff1 value: 47.9242 - type: nauc_mrr_at_10_max value: 41.2511 - type: nauc_mrr_at_10_std value: 6.1515 - type: nauc_mrr_at_10_diff1 value: 47.7245 - type: nauc_mrr_at_20_max value: 41.343 - type: nauc_mrr_at_20_std value: 6.4499 - type: nauc_mrr_at_20_diff1 value: 47.8506 - type: nauc_mrr_at_100_max value: 41.3067 - type: nauc_mrr_at_100_std value: 6.4111 - type: nauc_mrr_at_100_diff1 value: 47.876000000000005 - type: nauc_mrr_at_1000_max value: 41.2977 - type: nauc_mrr_at_1000_std value: 6.397899999999999 - type: nauc_mrr_at_1000_diff1 value: 47.8808 - type: main_score value: 65.551 task: type: Retrieval - dataset: config: fr name: MTEB MIRACLRetrieval (fr) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: ndcg_at_1 value: 38.775999999999996 - type: ndcg_at_3 value: 38.924 - type: ndcg_at_5 value: 42.571999999999996 - type: ndcg_at_10 value: 47.589 - type: ndcg_at_20 value: 51.202999999999996 - type: ndcg_at_100 value: 54.641 - type: ndcg_at_1000 value: 56.28999999999999 - type: map_at_1 value: 22.081999999999997 - type: map_at_3 value: 32.286 - type: map_at_5 value: 35.354 - type: map_at_10 value: 38.071 - type: map_at_20 value: 39.534000000000006 - type: map_at_100 value: 40.308 - type: map_at_1000 value: 40.412 - type: recall_at_1 value: 22.081999999999997 - type: recall_at_3 value: 39.527 - type: recall_at_5 value: 48.983 - type: recall_at_10 value: 61.619 - type: recall_at_20 value: 72.68900000000001 - type: recall_at_100 value: 87.237 - type: recall_at_1000 value: 97.449 - type: precision_at_1 value: 38.775999999999996 - type: precision_at_3 value: 24.976000000000003 - type: precision_at_5 value: 18.659 - type: precision_at_10 value: 12.157 - type: precision_at_20 value: 7.405 - type: precision_at_100 value: 1.831 - type: precision_at_1000 value: 0.20600000000000002 - type: mrr_at_1 value: 38.7755 - type: mrr_at_3 value: 47.4733 - type: mrr_at_5 value: 49.5578 - type: mrr_at_10 value: 51.119400000000006 - type: mrr_at_20 value: 51.6826 - type: mrr_at_100 value: 51.8472 - type: mrr_at_1000 value: 51.87969999999999 - type: nauc_ndcg_at_1_max value: 37.6869 - type: nauc_ndcg_at_1_std value: 19.3059 - type: nauc_ndcg_at_1_diff1 value: 24.1548 - type: nauc_ndcg_at_3_max value: 33.0185 - type: nauc_ndcg_at_3_std value: 19.4304 - type: nauc_ndcg_at_3_diff1 value: 18.152099999999997 - type: nauc_ndcg_at_5_max value: 35.7529 - type: nauc_ndcg_at_5_std value: 20.8762 - type: nauc_ndcg_at_5_diff1 value: 20.9497 - type: nauc_ndcg_at_10_max value: 35.9846 - type: nauc_ndcg_at_10_std value: 21.7196 - type: nauc_ndcg_at_10_diff1 value: 19.3302 - type: nauc_ndcg_at_20_max value: 38.313199999999995 - type: nauc_ndcg_at_20_std value: 23.2567 - type: nauc_ndcg_at_20_diff1 value: 20.1896 - type: nauc_ndcg_at_100_max value: 38.2753 - type: nauc_ndcg_at_100_std value: 25.048399999999997 - type: nauc_ndcg_at_100_diff1 value: 19.5028 - type: nauc_ndcg_at_1000_max value: 37.8159 - type: nauc_ndcg_at_1000_std value: 23.8262 - type: nauc_ndcg_at_1000_diff1 value: 19.4799 - type: nauc_map_at_1_max value: 25.040200000000002 - type: nauc_map_at_1_std value: 11.5183 - type: nauc_map_at_1_diff1 value: 23.7651 - type: nauc_map_at_3_max value: 30.5355 - type: nauc_map_at_3_std value: 17.7343 - type: nauc_map_at_3_diff1 value: 19.0017 - type: nauc_map_at_5_max value: 33.492 - type: nauc_map_at_5_std value: 19.7752 - type: nauc_map_at_5_diff1 value: 20.4072 - type: nauc_map_at_10_max value: 33.3246 - type: nauc_map_at_10_std value: 19.8087 - type: nauc_map_at_10_diff1 value: 19.184 - type: nauc_map_at_20_max value: 34.3329 - type: nauc_map_at_20_std value: 20.6622 - type: nauc_map_at_20_diff1 value: 19.625 - type: nauc_map_at_100_max value: 34.407700000000006 - type: nauc_map_at_100_std value: 21.0478 - type: nauc_map_at_100_diff1 value: 19.4432 - type: nauc_map_at_1000_max value: 34.4128 - type: nauc_map_at_1000_std value: 21.0078 - type: nauc_map_at_1000_diff1 value: 19.4386 - type: nauc_recall_at_1_max value: 25.040200000000002 - type: nauc_recall_at_1_std value: 11.5183 - type: nauc_recall_at_1_diff1 value: 23.7651 - type: nauc_recall_at_3_max value: 28.0362 - type: nauc_recall_at_3_std value: 18.1405 - type: nauc_recall_at_3_diff1 value: 14.0979 - type: nauc_recall_at_5_max value: 32.6536 - type: nauc_recall_at_5_std value: 19.763 - type: nauc_recall_at_5_diff1 value: 18.5941 - type: nauc_recall_at_10_max value: 32.736399999999996 - type: nauc_recall_at_10_std value: 20.5625 - type: nauc_recall_at_10_diff1 value: 15.4366 - type: nauc_recall_at_20_max value: 41.0178 - type: nauc_recall_at_20_std value: 25.4559 - type: nauc_recall_at_20_diff1 value: 17.8615 - type: nauc_recall_at_100_max value: 47.700700000000005 - type: nauc_recall_at_100_std value: 47.386 - type: nauc_recall_at_100_diff1 value: 15.1722 - type: nauc_recall_at_1000_max value: 75.13119999999999 - type: nauc_recall_at_1000_std value: 70.6818 - type: nauc_recall_at_1000_diff1 value: 17.7539 - type: nauc_precision_at_1_max value: 37.6869 - type: nauc_precision_at_1_std value: 19.3059 - type: nauc_precision_at_1_diff1 value: 24.1548 - type: nauc_precision_at_3_max value: 37.0296 - type: nauc_precision_at_3_std value: 24.5362 - type: nauc_precision_at_3_diff1 value: 10.0428 - type: nauc_precision_at_5_max value: 38.770700000000005 - type: nauc_precision_at_5_std value: 27.290399999999998 - type: nauc_precision_at_5_diff1 value: 11.1247 - type: nauc_precision_at_10_max value: 31.2623 - type: nauc_precision_at_10_std value: 25.794099999999997 - type: nauc_precision_at_10_diff1 value: 2.1571 - type: nauc_precision_at_20_max value: 29.2963 - type: nauc_precision_at_20_std value: 25.241000000000003 - type: nauc_precision_at_20_diff1 value: 1.8568000000000002 - type: nauc_precision_at_100_max value: 18.620800000000003 - type: nauc_precision_at_100_std value: 22.6874 - type: nauc_precision_at_100_diff1 value: -5.2441 - type: nauc_precision_at_1000_max value: 10.2324 - type: nauc_precision_at_1000_std value: 13.1045 - type: nauc_precision_at_1000_diff1 value: -9.7662 - type: nauc_mrr_at_1_max value: 37.6869 - type: nauc_mrr_at_1_std value: 19.3059 - type: nauc_mrr_at_1_diff1 value: 24.1548 - type: nauc_mrr_at_3_max value: 36.3742 - type: nauc_mrr_at_3_std value: 19.2165 - type: nauc_mrr_at_3_diff1 value: 20.883399999999998 - type: nauc_mrr_at_5_max value: 37.196400000000004 - type: nauc_mrr_at_5_std value: 19.839399999999998 - type: nauc_mrr_at_5_diff1 value: 21.6132 - type: nauc_mrr_at_10_max value: 37.7804 - type: nauc_mrr_at_10_std value: 20.7829 - type: nauc_mrr_at_10_diff1 value: 21.9443 - type: nauc_mrr_at_20_max value: 37.7391 - type: nauc_mrr_at_20_std value: 20.4514 - type: nauc_mrr_at_20_diff1 value: 21.7569 - type: nauc_mrr_at_100_max value: 37.6639 - type: nauc_mrr_at_100_std value: 20.450499999999998 - type: nauc_mrr_at_100_diff1 value: 21.7914 - type: nauc_mrr_at_1000_max value: 37.6357 - type: nauc_mrr_at_1000_std value: 20.414099999999998 - type: nauc_mrr_at_1000_diff1 value: 21.7914 - type: main_score value: 47.589 task: type: Retrieval - dataset: config: hi name: MTEB MIRACLRetrieval (hi) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: ndcg_at_1 value: 33.143 - type: ndcg_at_3 value: 34.988 - type: ndcg_at_5 value: 37.938 - type: ndcg_at_10 value: 42.083999999999996 - type: ndcg_at_20 value: 45.399 - type: ndcg_at_100 value: 48.647 - type: ndcg_at_1000 value: 50.712 - type: map_at_1 value: 17.852 - type: map_at_3 value: 27.405 - type: map_at_5 value: 30.781999999999996 - type: map_at_10 value: 33.391999999999996 - type: map_at_20 value: 34.833 - type: map_at_100 value: 35.501 - type: map_at_1000 value: 35.611 - type: recall_at_1 value: 17.852 - type: recall_at_3 value: 33.765 - type: recall_at_5 value: 43.828 - type: recall_at_10 value: 55.217000000000006 - type: recall_at_20 value: 65.231 - type: recall_at_100 value: 79.92899999999999 - type: recall_at_1000 value: 93.434 - type: precision_at_1 value: 33.143 - type: precision_at_3 value: 23.429 - type: precision_at_5 value: 18.229 - type: precision_at_10 value: 11.657 - type: precision_at_20 value: 7.142999999999999 - type: precision_at_100 value: 1.7229999999999999 - type: precision_at_1000 value: 0.201 - type: mrr_at_1 value: 33.1429 - type: mrr_at_3 value: 41.428599999999996 - type: mrr_at_5 value: 43.7857 - type: mrr_at_10 value: 44.9745 - type: mrr_at_20 value: 45.4552 - type: mrr_at_100 value: 45.7257 - type: mrr_at_1000 value: 45.7671 - type: nauc_ndcg_at_1_max value: 51.2111 - type: nauc_ndcg_at_1_std value: 15.146799999999999 - type: nauc_ndcg_at_1_diff1 value: 40.127 - type: nauc_ndcg_at_3_max value: 44.1081 - type: nauc_ndcg_at_3_std value: 11.708599999999999 - type: nauc_ndcg_at_3_diff1 value: 26.8834 - type: nauc_ndcg_at_5_max value: 43.077799999999996 - type: nauc_ndcg_at_5_std value: 13.570599999999999 - type: nauc_ndcg_at_5_diff1 value: 27.5263 - type: nauc_ndcg_at_10_max value: 45.1081 - type: nauc_ndcg_at_10_std value: 14.758299999999998 - type: nauc_ndcg_at_10_diff1 value: 29.3043 - type: nauc_ndcg_at_20_max value: 47.5349 - type: nauc_ndcg_at_20_std value: 17.8 - type: nauc_ndcg_at_20_diff1 value: 28.416400000000003 - type: nauc_ndcg_at_100_max value: 48.395500000000006 - type: nauc_ndcg_at_100_std value: 18.9621 - type: nauc_ndcg_at_100_diff1 value: 28.799500000000002 - type: nauc_ndcg_at_1000_max value: 48.4885 - type: nauc_ndcg_at_1000_std value: 18.296100000000003 - type: nauc_ndcg_at_1000_diff1 value: 29.5616 - type: nauc_map_at_1_max value: 31.3083 - type: nauc_map_at_1_std value: 6.462700000000001 - type: nauc_map_at_1_diff1 value: 36.2382 - type: nauc_map_at_3_max value: 35.841699999999996 - type: nauc_map_at_3_std value: 7.013800000000001 - type: nauc_map_at_3_diff1 value: 28.991699999999998 - type: nauc_map_at_5_max value: 39.0977 - type: nauc_map_at_5_std value: 9.8928 - type: nauc_map_at_5_diff1 value: 28.6183 - type: nauc_map_at_10_max value: 41.8538 - type: nauc_map_at_10_std value: 11.5648 - type: nauc_map_at_10_diff1 value: 29.1635 - type: nauc_map_at_20_max value: 43.6057 - type: nauc_map_at_20_std value: 13.382900000000001 - type: nauc_map_at_20_diff1 value: 28.6067 - type: nauc_map_at_100_max value: 43.962 - type: nauc_map_at_100_std value: 13.7517 - type: nauc_map_at_100_diff1 value: 28.841299999999997 - type: nauc_map_at_1000_max value: 43.9824 - type: nauc_map_at_1000_std value: 13.732099999999999 - type: nauc_map_at_1000_diff1 value: 28.8971 - type: nauc_recall_at_1_max value: 31.3083 - type: nauc_recall_at_1_std value: 6.462700000000001 - type: nauc_recall_at_1_diff1 value: 36.2382 - type: nauc_recall_at_3_max value: 30.605300000000003 - type: nauc_recall_at_3_std value: 7.5045 - type: nauc_recall_at_3_diff1 value: 19.0642 - type: nauc_recall_at_5_max value: 33.4179 - type: nauc_recall_at_5_std value: 13.1973 - type: nauc_recall_at_5_diff1 value: 20.1321 - type: nauc_recall_at_10_max value: 36.6194 - type: nauc_recall_at_10_std value: 15.8973 - type: nauc_recall_at_10_diff1 value: 23.1043 - type: nauc_recall_at_20_max value: 42.0702 - type: nauc_recall_at_20_std value: 24.1871 - type: nauc_recall_at_20_diff1 value: 20.7213 - type: nauc_recall_at_100_max value: 47.0142 - type: nauc_recall_at_100_std value: 34.8802 - type: nauc_recall_at_100_diff1 value: 18.8255 - type: nauc_recall_at_1000_max value: 59.413700000000006 - type: nauc_recall_at_1000_std value: 50.051199999999994 - type: nauc_recall_at_1000_diff1 value: 30.682 - type: nauc_precision_at_1_max value: 51.2111 - type: nauc_precision_at_1_std value: 15.146799999999999 - type: nauc_precision_at_1_diff1 value: 40.127 - type: nauc_precision_at_3_max value: 49.2718 - type: nauc_precision_at_3_std value: 15.658 - type: nauc_precision_at_3_diff1 value: 17.163700000000002 - type: nauc_precision_at_5_max value: 51.77349999999999 - type: nauc_precision_at_5_std value: 21.1016 - type: nauc_precision_at_5_diff1 value: 15.0559 - type: nauc_precision_at_10_max value: 51.843799999999995 - type: nauc_precision_at_10_std value: 23.2912 - type: nauc_precision_at_10_diff1 value: 14.191799999999999 - type: nauc_precision_at_20_max value: 50.41 - type: nauc_precision_at_20_std value: 28.2005 - type: nauc_precision_at_20_diff1 value: 8.2714 - type: nauc_precision_at_100_max value: 45.522600000000004 - type: nauc_precision_at_100_std value: 28.199 - type: nauc_precision_at_100_diff1 value: 7.180400000000001 - type: nauc_precision_at_1000_max value: 38.663399999999996 - type: nauc_precision_at_1000_std value: 22.781399999999998 - type: nauc_precision_at_1000_diff1 value: 3.8605 - type: nauc_mrr_at_1_max value: 51.2111 - type: nauc_mrr_at_1_std value: 15.146799999999999 - type: nauc_mrr_at_1_diff1 value: 40.127 - type: nauc_mrr_at_3_max value: 48.0836 - type: nauc_mrr_at_3_std value: 13.9619 - type: nauc_mrr_at_3_diff1 value: 30.8736 - type: nauc_mrr_at_5_max value: 49.0073 - type: nauc_mrr_at_5_std value: 15.6308 - type: nauc_mrr_at_5_diff1 value: 31.8004 - type: nauc_mrr_at_10_max value: 49.554700000000004 - type: nauc_mrr_at_10_std value: 15.7261 - type: nauc_mrr_at_10_diff1 value: 32.8141 - type: nauc_mrr_at_20_max value: 49.6722 - type: nauc_mrr_at_20_std value: 15.873000000000001 - type: nauc_mrr_at_20_diff1 value: 32.8857 - type: nauc_mrr_at_100_max value: 49.5869 - type: nauc_mrr_at_100_std value: 15.8044 - type: nauc_mrr_at_100_diff1 value: 32.811099999999996 - type: nauc_mrr_at_1000_max value: 49.5787 - type: nauc_mrr_at_1000_std value: 15.7836 - type: nauc_mrr_at_1000_diff1 value: 32.8438 - type: main_score value: 42.083999999999996 task: type: Retrieval - dataset: config: id name: MTEB MIRACLRetrieval (id) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: ndcg_at_1 value: 43.854 - type: ndcg_at_3 value: 41.041 - type: ndcg_at_5 value: 42.235 - type: ndcg_at_10 value: 45.458999999999996 - type: ndcg_at_20 value: 48.795 - type: ndcg_at_100 value: 53.642999999999994 - type: ndcg_at_1000 value: 56.052 - type: map_at_1 value: 19.192999999999998 - type: map_at_3 value: 29.125 - type: map_at_5 value: 32.42 - type: map_at_10 value: 35.181000000000004 - type: map_at_20 value: 36.775000000000006 - type: map_at_100 value: 38.06 - type: map_at_1000 value: 38.246 - type: recall_at_1 value: 19.192999999999998 - type: recall_at_3 value: 35.431000000000004 - type: recall_at_5 value: 43.348 - type: recall_at_10 value: 52.89 - type: recall_at_20 value: 61.812999999999995 - type: recall_at_100 value: 79.649 - type: recall_at_1000 value: 92.937 - type: precision_at_1 value: 43.854 - type: precision_at_3 value: 29.757 - type: precision_at_5 value: 23.208000000000002 - type: precision_at_10 value: 15.177 - type: precision_at_20 value: 9.286 - type: precision_at_100 value: 2.524 - type: precision_at_1000 value: 0.299 - type: mrr_at_1 value: 43.8542 - type: mrr_at_3 value: 53.4549 - type: mrr_at_5 value: 55.2674 - type: mrr_at_10 value: 56.2576 - type: mrr_at_20 value: 56.592699999999994 - type: mrr_at_100 value: 56.7841 - type: mrr_at_1000 value: 56.8049 - type: nauc_ndcg_at_1_max value: 32.205600000000004 - type: nauc_ndcg_at_1_std value: 11.343499999999999 - type: nauc_ndcg_at_1_diff1 value: 32.8768 - type: nauc_ndcg_at_3_max value: 25.8163 - type: nauc_ndcg_at_3_std value: 5.037599999999999 - type: nauc_ndcg_at_3_diff1 value: 26.118799999999997 - type: nauc_ndcg_at_5_max value: 27.159 - type: nauc_ndcg_at_5_std value: 2.9204999999999997 - type: nauc_ndcg_at_5_diff1 value: 26.429399999999998 - type: nauc_ndcg_at_10_max value: 28.6049 - type: nauc_ndcg_at_10_std value: 3.7817000000000003 - type: nauc_ndcg_at_10_diff1 value: 25.904300000000003 - type: nauc_ndcg_at_20_max value: 30.5254 - type: nauc_ndcg_at_20_std value: 6.6297999999999995 - type: nauc_ndcg_at_20_diff1 value: 25.155300000000004 - type: nauc_ndcg_at_100_max value: 32.3477 - type: nauc_ndcg_at_100_std value: 11.7329 - type: nauc_ndcg_at_100_diff1 value: 24.038 - type: nauc_ndcg_at_1000_max value: 32.1871 - type: nauc_ndcg_at_1000_std value: 12.266 - type: nauc_ndcg_at_1000_diff1 value: 24.5005 - type: nauc_map_at_1_max value: 19.5131 - type: nauc_map_at_1_std value: 0.7939999999999999 - type: nauc_map_at_1_diff1 value: 35.4824 - type: nauc_map_at_3_max value: 21.1372 - type: nauc_map_at_3_std value: -1.4297 - type: nauc_map_at_3_diff1 value: 28.7825 - type: nauc_map_at_5_max value: 23.301099999999998 - type: nauc_map_at_5_std value: -1.6149 - type: nauc_map_at_5_diff1 value: 28.353 - type: nauc_map_at_10_max value: 25.0545 - type: nauc_map_at_10_std value: 0.29650000000000004 - type: nauc_map_at_10_diff1 value: 27.6041 - type: nauc_map_at_20_max value: 26.1938 - type: nauc_map_at_20_std value: 1.8739999999999999 - type: nauc_map_at_20_diff1 value: 26.9804 - type: nauc_map_at_100_max value: 26.9981 - type: nauc_map_at_100_std value: 3.4286 - type: nauc_map_at_100_diff1 value: 26.703599999999998 - type: nauc_map_at_1000_max value: 27.005200000000002 - type: nauc_map_at_1000_std value: 3.5663 - type: nauc_map_at_1000_diff1 value: 26.7073 - type: nauc_recall_at_1_max value: 19.5131 - type: nauc_recall_at_1_std value: 0.7939999999999999 - type: nauc_recall_at_1_diff1 value: 35.4824 - type: nauc_recall_at_3_max value: 16.8845 - type: nauc_recall_at_3_std value: -4.3322 - type: nauc_recall_at_3_diff1 value: 21.232400000000002 - type: nauc_recall_at_5_max value: 20.1938 - type: nauc_recall_at_5_std value: -4.638599999999999 - type: nauc_recall_at_5_diff1 value: 19.724 - type: nauc_recall_at_10_max value: 22.7792 - type: nauc_recall_at_10_std value: -0.7303999999999999 - type: nauc_recall_at_10_diff1 value: 17.5686 - type: nauc_recall_at_20_max value: 27.1692 - type: nauc_recall_at_20_std value: 4.6297 - type: nauc_recall_at_20_diff1 value: 15.5287 - type: nauc_recall_at_100_max value: 33.9833 - type: nauc_recall_at_100_std value: 26.366899999999998 - type: nauc_recall_at_100_diff1 value: 6.823799999999999 - type: nauc_recall_at_1000_max value: 44.722 - type: nauc_recall_at_1000_std value: 49.6373 - type: nauc_recall_at_1000_diff1 value: -1.5053 - type: nauc_precision_at_1_max value: 32.205600000000004 - type: nauc_precision_at_1_std value: 11.343499999999999 - type: nauc_precision_at_1_diff1 value: 32.8768 - type: nauc_precision_at_3_max value: 24.2364 - type: nauc_precision_at_3_std value: 8.0909 - type: nauc_precision_at_3_diff1 value: 12.090399999999999 - type: nauc_precision_at_5_max value: 26.0005 - type: nauc_precision_at_5_std value: 10.2623 - type: nauc_precision_at_5_diff1 value: 8.2296 - type: nauc_precision_at_10_max value: 24.6876 - type: nauc_precision_at_10_std value: 16.8067 - type: nauc_precision_at_10_diff1 value: 1.6472 - type: nauc_precision_at_20_max value: 22.5879 - type: nauc_precision_at_20_std value: 22.4936 - type: nauc_precision_at_20_diff1 value: -2.8762 - type: nauc_precision_at_100_max value: 17.6199 - type: nauc_precision_at_100_std value: 29.5456 - type: nauc_precision_at_100_diff1 value: -8.3992 - type: nauc_precision_at_1000_max value: 10.8473 - type: nauc_precision_at_1000_std value: 27.394600000000004 - type: nauc_precision_at_1000_diff1 value: -9.8316 - type: nauc_mrr_at_1_max value: 32.205600000000004 - type: nauc_mrr_at_1_std value: 11.343499999999999 - type: nauc_mrr_at_1_diff1 value: 32.8768 - type: nauc_mrr_at_3_max value: 32.2439 - type: nauc_mrr_at_3_std value: 11.927999999999999 - type: nauc_mrr_at_3_diff1 value: 28.501900000000003 - type: nauc_mrr_at_5_max value: 33.063500000000005 - type: nauc_mrr_at_5_std value: 12.5223 - type: nauc_mrr_at_5_diff1 value: 28.5765 - type: nauc_mrr_at_10_max value: 33.0845 - type: nauc_mrr_at_10_std value: 12.7026 - type: nauc_mrr_at_10_diff1 value: 28.5328 - type: nauc_mrr_at_20_max value: 33.1039 - type: nauc_mrr_at_20_std value: 12.7458 - type: nauc_mrr_at_20_diff1 value: 28.6635 - type: nauc_mrr_at_100_max value: 33.058 - type: nauc_mrr_at_100_std value: 12.8462 - type: nauc_mrr_at_100_diff1 value: 28.656599999999997 - type: nauc_mrr_at_1000_max value: 33.0462 - type: nauc_mrr_at_1000_std value: 12.829699999999999 - type: nauc_mrr_at_1000_diff1 value: 28.6562 - type: main_score value: 45.458999999999996 task: type: Retrieval - dataset: config: ja name: MTEB MIRACLRetrieval (ja) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: ndcg_at_1 value: 53.256 - type: ndcg_at_3 value: 53.717000000000006 - type: ndcg_at_5 value: 56.523 - type: ndcg_at_10 value: 59.922 - type: ndcg_at_20 value: 62.596 - type: ndcg_at_100 value: 65.40700000000001 - type: ndcg_at_1000 value: 66.484 - type: map_at_1 value: 34.555 - type: map_at_3 value: 45.667 - type: map_at_5 value: 48.888 - type: map_at_10 value: 51.214000000000006 - type: map_at_20 value: 52.325 - type: map_at_100 value: 53.032000000000004 - type: map_at_1000 value: 53.11 - type: recall_at_1 value: 34.555 - type: recall_at_3 value: 53.482 - type: recall_at_5 value: 62.327 - type: recall_at_10 value: 71.476 - type: recall_at_20 value: 79.81099999999999 - type: recall_at_100 value: 91.152 - type: recall_at_1000 value: 97.72800000000001 - type: precision_at_1 value: 53.256 - type: precision_at_3 value: 30.697999999999997 - type: precision_at_5 value: 22.419 - type: precision_at_10 value: 13.453000000000001 - type: precision_at_20 value: 7.756 - type: precision_at_100 value: 1.856 - type: precision_at_1000 value: 0.203 - type: mrr_at_1 value: 53.2558 - type: mrr_at_3 value: 61.860499999999995 - type: mrr_at_5 value: 63.558099999999996 - type: mrr_at_10 value: 64.4037 - type: mrr_at_20 value: 64.78960000000001 - type: mrr_at_100 value: 64.9286 - type: mrr_at_1000 value: 64.9426 - type: nauc_ndcg_at_1_max value: 40.0831 - type: nauc_ndcg_at_1_std value: 5.4576 - type: nauc_ndcg_at_1_diff1 value: 43.1468 - type: nauc_ndcg_at_3_max value: 32.8799 - type: nauc_ndcg_at_3_std value: -3.7643000000000004 - type: nauc_ndcg_at_3_diff1 value: 33.0607 - type: nauc_ndcg_at_5_max value: 32.6847 - type: nauc_ndcg_at_5_std value: -4.4878 - type: nauc_ndcg_at_5_diff1 value: 33.7729 - type: nauc_ndcg_at_10_max value: 34.0334 - type: nauc_ndcg_at_10_std value: -3.2938 - type: nauc_ndcg_at_10_diff1 value: 33.9215 - type: nauc_ndcg_at_20_max value: 35.032799999999995 - type: nauc_ndcg_at_20_std value: -0.9834 - type: nauc_ndcg_at_20_diff1 value: 33.4568 - type: nauc_ndcg_at_100_max value: 37.2464 - type: nauc_ndcg_at_100_std value: 1.9361 - type: nauc_ndcg_at_100_diff1 value: 34.844 - type: nauc_ndcg_at_1000_max value: 37.0714 - type: nauc_ndcg_at_1000_std value: 1.7745 - type: nauc_ndcg_at_1000_diff1 value: 35.123 - type: nauc_map_at_1_max value: 21.2553 - type: nauc_map_at_1_std value: -11.0112 - type: nauc_map_at_1_diff1 value: 38.4142 - type: nauc_map_at_3_max value: 25.6791 - type: nauc_map_at_3_std value: -10.7165 - type: nauc_map_at_3_diff1 value: 33.1602 - type: nauc_map_at_5_max value: 27.790300000000002 - type: nauc_map_at_5_std value: -9.0268 - type: nauc_map_at_5_diff1 value: 33.2551 - type: nauc_map_at_10_max value: 29.4317 - type: nauc_map_at_10_std value: -7.606300000000001 - type: nauc_map_at_10_diff1 value: 33.456399999999995 - type: nauc_map_at_20_max value: 30.0805 - type: nauc_map_at_20_std value: -6.482 - type: nauc_map_at_20_diff1 value: 33.3844 - type: nauc_map_at_100_max value: 30.7427 - type: nauc_map_at_100_std value: -5.6065 - type: nauc_map_at_100_diff1 value: 33.650600000000004 - type: nauc_map_at_1000_max value: 30.763099999999998 - type: nauc_map_at_1000_std value: -5.5541 - type: nauc_map_at_1000_diff1 value: 33.677 - type: nauc_recall_at_1_max value: 21.2553 - type: nauc_recall_at_1_std value: -11.0112 - type: nauc_recall_at_1_diff1 value: 38.4142 - type: nauc_recall_at_3_max value: 22.537399999999998 - type: nauc_recall_at_3_std value: -12.565000000000001 - type: nauc_recall_at_3_diff1 value: 26.549 - type: nauc_recall_at_5_max value: 23.329900000000002 - type: nauc_recall_at_5_std value: -10.4524 - type: nauc_recall_at_5_diff1 value: 24.7008 - type: nauc_recall_at_10_max value: 26.0061 - type: nauc_recall_at_10_std value: -6.1622 - type: nauc_recall_at_10_diff1 value: 22.880300000000002 - type: nauc_recall_at_20_max value: 26.820300000000003 - type: nauc_recall_at_20_std value: 0.49820000000000003 - type: nauc_recall_at_20_diff1 value: 17.1066 - type: nauc_recall_at_100_max value: 41.4851 - type: nauc_recall_at_100_std value: 24.1372 - type: nauc_recall_at_100_diff1 value: 20.2474 - type: nauc_recall_at_1000_max value: 46.699 - type: nauc_recall_at_1000_std value: 43.6571 - type: nauc_recall_at_1000_diff1 value: 12.969800000000001 - type: nauc_precision_at_1_max value: 40.0831 - type: nauc_precision_at_1_std value: 5.4576 - type: nauc_precision_at_1_diff1 value: 43.1468 - type: nauc_precision_at_3_max value: 35.862500000000004 - type: nauc_precision_at_3_std value: 12.6798 - type: nauc_precision_at_3_diff1 value: 13.8812 - type: nauc_precision_at_5_max value: 34.525800000000004 - type: nauc_precision_at_5_std value: 19.4325 - type: nauc_precision_at_5_diff1 value: 8.5877 - type: nauc_precision_at_10_max value: 31.776500000000002 - type: nauc_precision_at_10_std value: 24.4128 - type: nauc_precision_at_10_diff1 value: 2.8872999999999998 - type: nauc_precision_at_20_max value: 27.1526 - type: nauc_precision_at_20_std value: 29.1072 - type: nauc_precision_at_20_diff1 value: -1.5491 - type: nauc_precision_at_100_max value: 23.9636 - type: nauc_precision_at_100_std value: 34.5439 - type: nauc_precision_at_100_diff1 value: -3.8294 - type: nauc_precision_at_1000_max value: 19.2461 - type: nauc_precision_at_1000_std value: 33.466499999999996 - type: nauc_precision_at_1000_diff1 value: -5.7622 - type: nauc_mrr_at_1_max value: 40.0831 - type: nauc_mrr_at_1_std value: 5.4576 - type: nauc_mrr_at_1_diff1 value: 43.1468 - type: nauc_mrr_at_3_max value: 44.1712 - type: nauc_mrr_at_3_std value: 6.1216 - type: nauc_mrr_at_3_diff1 value: 41.1386 - type: nauc_mrr_at_5_max value: 44.0165 - type: nauc_mrr_at_5_std value: 6.9895 - type: nauc_mrr_at_5_diff1 value: 41.124 - type: nauc_mrr_at_10_max value: 43.9807 - type: nauc_mrr_at_10_std value: 7.1412 - type: nauc_mrr_at_10_diff1 value: 41.0447 - type: nauc_mrr_at_20_max value: 43.9406 - type: nauc_mrr_at_20_std value: 7.2738 - type: nauc_mrr_at_20_diff1 value: 40.9775 - type: nauc_mrr_at_100_max value: 43.9141 - type: nauc_mrr_at_100_std value: 7.212300000000001 - type: nauc_mrr_at_100_diff1 value: 41.112700000000004 - type: nauc_mrr_at_1000_max value: 43.9012 - type: nauc_mrr_at_1000_std value: 7.1947 - type: nauc_mrr_at_1000_diff1 value: 41.1126 - type: main_score value: 59.922 task: type: Retrieval - dataset: config: ko name: MTEB MIRACLRetrieval (ko) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: ndcg_at_1 value: 54.93 - type: ndcg_at_3 value: 53.068000000000005 - type: ndcg_at_5 value: 55.202 - type: ndcg_at_10 value: 58.413000000000004 - type: ndcg_at_20 value: 61.732 - type: ndcg_at_100 value: 64.374 - type: ndcg_at_1000 value: 65.655 - type: map_at_1 value: 32.602 - type: map_at_3 value: 42.591 - type: map_at_5 value: 46.466 - type: map_at_10 value: 49.38 - type: map_at_20 value: 51.044999999999995 - type: map_at_100 value: 51.842 - type: map_at_1000 value: 51.92 - type: recall_at_1 value: 32.602 - type: recall_at_3 value: 49.173 - type: recall_at_5 value: 58.269999999999996 - type: recall_at_10 value: 68.647 - type: recall_at_20 value: 78.089 - type: recall_at_100 value: 87.746 - type: recall_at_1000 value: 95.524 - type: precision_at_1 value: 54.93 - type: precision_at_3 value: 31.455 - type: precision_at_5 value: 24.413 - type: precision_at_10 value: 15.399 - type: precision_at_20 value: 9.366 - type: precision_at_100 value: 2.235 - type: precision_at_1000 value: 0.246 - type: mrr_at_1 value: 54.9296 - type: mrr_at_3 value: 62.0501 - type: mrr_at_5 value: 63.7167 - type: mrr_at_10 value: 64.7179 - type: mrr_at_20 value: 65.0792 - type: mrr_at_100 value: 65.1651 - type: mrr_at_1000 value: 65.1775 - type: nauc_ndcg_at_1_max value: 56.11150000000001 - type: nauc_ndcg_at_1_std value: 30.1071 - type: nauc_ndcg_at_1_diff1 value: 34.2026 - type: nauc_ndcg_at_3_max value: 34.164899999999996 - type: nauc_ndcg_at_3_std value: 8.9616 - type: nauc_ndcg_at_3_diff1 value: 33.8594 - type: nauc_ndcg_at_5_max value: 35.988 - type: nauc_ndcg_at_5_std value: 9.1819 - type: nauc_ndcg_at_5_diff1 value: 34.3302 - type: nauc_ndcg_at_10_max value: 33.9669 - type: nauc_ndcg_at_10_std value: 9.9015 - type: nauc_ndcg_at_10_diff1 value: 34.7522 - type: nauc_ndcg_at_20_max value: 38.7156 - type: nauc_ndcg_at_20_std value: 13.478299999999999 - type: nauc_ndcg_at_20_diff1 value: 34.5892 - type: nauc_ndcg_at_100_max value: 43.2542 - type: nauc_ndcg_at_100_std value: 19.6461 - type: nauc_ndcg_at_100_diff1 value: 33.5102 - type: nauc_ndcg_at_1000_max value: 43.5965 - type: nauc_ndcg_at_1000_std value: 20.1448 - type: nauc_ndcg_at_1000_diff1 value: 33.508500000000005 - type: nauc_map_at_1_max value: 4.7901 - type: nauc_map_at_1_std value: -11.3406 - type: nauc_map_at_1_diff1 value: 47.3089 - type: nauc_map_at_3_max value: 10.8067 - type: nauc_map_at_3_std value: -11.149000000000001 - type: nauc_map_at_3_diff1 value: 40.8163 - type: nauc_map_at_5_max value: 19.4936 - type: nauc_map_at_5_std value: -4.9421 - type: nauc_map_at_5_diff1 value: 38.1108 - type: nauc_map_at_10_max value: 23.4772 - type: nauc_map_at_10_std value: 0.5471 - type: nauc_map_at_10_diff1 value: 37.0351 - type: nauc_map_at_20_max value: 27.0291 - type: nauc_map_at_20_std value: 3.2716000000000003 - type: nauc_map_at_20_diff1 value: 36.835 - type: nauc_map_at_100_max value: 28.7591 - type: nauc_map_at_100_std value: 5.4503 - type: nauc_map_at_100_diff1 value: 36.3655 - type: nauc_map_at_1000_max value: 28.8292 - type: nauc_map_at_1000_std value: 5.5265 - type: nauc_map_at_1000_diff1 value: 36.3425 - type: nauc_recall_at_1_max value: 4.7901 - type: nauc_recall_at_1_std value: -11.3406 - type: nauc_recall_at_1_diff1 value: 47.3089 - type: nauc_recall_at_3_max value: 6.1487 - type: nauc_recall_at_3_std value: -16.451999999999998 - type: nauc_recall_at_3_diff1 value: 35.876200000000004 - type: nauc_recall_at_5_max value: 17.4052 - type: nauc_recall_at_5_std value: -8.3001 - type: nauc_recall_at_5_diff1 value: 31.986700000000003 - type: nauc_recall_at_10_max value: 19.932 - type: nauc_recall_at_10_std value: -0.6047 - type: nauc_recall_at_10_diff1 value: 29.7464 - type: nauc_recall_at_20_max value: 27.2026 - type: nauc_recall_at_20_std value: 3.4061 - type: nauc_recall_at_20_diff1 value: 29.7029 - type: nauc_recall_at_100_max value: 49.4794 - type: nauc_recall_at_100_std value: 33.5322 - type: nauc_recall_at_100_diff1 value: 25.5531 - type: nauc_recall_at_1000_max value: 66.1815 - type: nauc_recall_at_1000_std value: 62.81529999999999 - type: nauc_recall_at_1000_diff1 value: 27.209699999999998 - type: nauc_precision_at_1_max value: 56.11150000000001 - type: nauc_precision_at_1_std value: 30.1071 - type: nauc_precision_at_1_diff1 value: 34.2026 - type: nauc_precision_at_3_max value: 56.5357 - type: nauc_precision_at_3_std value: 34.1074 - type: nauc_precision_at_3_diff1 value: 2.1084 - type: nauc_precision_at_5_max value: 67.0257 - type: nauc_precision_at_5_std value: 48.780699999999996 - type: nauc_precision_at_5_diff1 value: -9.4319 - type: nauc_precision_at_10_max value: 64.3278 - type: nauc_precision_at_10_std value: 57.504 - type: nauc_precision_at_10_diff1 value: -15.3767 - type: nauc_precision_at_20_max value: 65.8933 - type: nauc_precision_at_20_std value: 60.3452 - type: nauc_precision_at_20_diff1 value: -19.1514 - type: nauc_precision_at_100_max value: 63.3574 - type: nauc_precision_at_100_std value: 64.9713 - type: nauc_precision_at_100_diff1 value: -22.4344 - type: nauc_precision_at_1000_max value: 59.358599999999996 - type: nauc_precision_at_1000_std value: 62.943000000000005 - type: nauc_precision_at_1000_diff1 value: -24.9167 - type: nauc_mrr_at_1_max value: 56.11150000000001 - type: nauc_mrr_at_1_std value: 30.1071 - type: nauc_mrr_at_1_diff1 value: 34.2026 - type: nauc_mrr_at_3_max value: 59.3661 - type: nauc_mrr_at_3_std value: 30.759999999999998 - type: nauc_mrr_at_3_diff1 value: 31.9662 - type: nauc_mrr_at_5_max value: 60.6752 - type: nauc_mrr_at_5_std value: 32.477000000000004 - type: nauc_mrr_at_5_diff1 value: 32.235200000000006 - type: nauc_mrr_at_10_max value: 60.222500000000004 - type: nauc_mrr_at_10_std value: 32.4976 - type: nauc_mrr_at_10_diff1 value: 31.8963 - type: nauc_mrr_at_20_max value: 60.0608 - type: nauc_mrr_at_20_std value: 32.421 - type: nauc_mrr_at_20_diff1 value: 31.812600000000003 - type: nauc_mrr_at_100_max value: 60.0846 - type: nauc_mrr_at_100_std value: 32.3954 - type: nauc_mrr_at_100_diff1 value: 31.8055 - type: nauc_mrr_at_1000_max value: 60.0763 - type: nauc_mrr_at_1000_std value: 32.403999999999996 - type: nauc_mrr_at_1000_diff1 value: 31.8195 - type: main_score value: 58.413000000000004 task: type: Retrieval - dataset: config: ru name: MTEB MIRACLRetrieval (ru) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: ndcg_at_1 value: 43.131 - type: ndcg_at_3 value: 42.808 - type: ndcg_at_5 value: 44.373000000000005 - type: ndcg_at_10 value: 48.262 - type: ndcg_at_20 value: 52.022999999999996 - type: ndcg_at_100 value: 56.157999999999994 - type: ndcg_at_1000 value: 57.928999999999995 - type: map_at_1 value: 22.017999999999997 - type: map_at_3 value: 32.41 - type: map_at_5 value: 35.558 - type: map_at_10 value: 38.449 - type: map_at_20 value: 40.144000000000005 - type: map_at_100 value: 41.219 - type: map_at_1000 value: 41.355 - type: recall_at_1 value: 22.017999999999997 - type: recall_at_3 value: 39.306999999999995 - type: recall_at_5 value: 47.077000000000005 - type: recall_at_10 value: 58.034 - type: recall_at_20 value: 68.60300000000001 - type: recall_at_100 value: 84.074 - type: recall_at_1000 value: 93.938 - type: precision_at_1 value: 43.131 - type: precision_at_3 value: 29.127 - type: precision_at_5 value: 22.076999999999998 - type: precision_at_10 value: 14.441 - type: precision_at_20 value: 8.958 - type: precision_at_100 value: 2.331 - type: precision_at_1000 value: 0.267 - type: mrr_at_1 value: 43.131 - type: mrr_at_3 value: 53.28810000000001 - type: mrr_at_5 value: 54.785700000000006 - type: mrr_at_10 value: 55.948100000000004 - type: mrr_at_20 value: 56.422799999999995 - type: mrr_at_100 value: 56.5998 - type: mrr_at_1000 value: 56.615 - type: nauc_ndcg_at_1_max value: 37.0316 - type: nauc_ndcg_at_1_std value: 16.0392 - type: nauc_ndcg_at_1_diff1 value: 35.6661 - type: nauc_ndcg_at_3_max value: 32.547 - type: nauc_ndcg_at_3_std value: 12.7791 - type: nauc_ndcg_at_3_diff1 value: 27.252599999999997 - type: nauc_ndcg_at_5_max value: 33.2141 - type: nauc_ndcg_at_5_std value: 12.16 - type: nauc_ndcg_at_5_diff1 value: 26.5849 - type: nauc_ndcg_at_10_max value: 34.6417 - type: nauc_ndcg_at_10_std value: 13.350699999999998 - type: nauc_ndcg_at_10_diff1 value: 26.616600000000002 - type: nauc_ndcg_at_20_max value: 36.94 - type: nauc_ndcg_at_20_std value: 16.3221 - type: nauc_ndcg_at_20_diff1 value: 26.3159 - type: nauc_ndcg_at_100_max value: 39.050200000000004 - type: nauc_ndcg_at_100_std value: 19.5849 - type: nauc_ndcg_at_100_diff1 value: 26.6473 - type: nauc_ndcg_at_1000_max value: 39.030300000000004 - type: nauc_ndcg_at_1000_std value: 19.6508 - type: nauc_ndcg_at_1000_diff1 value: 27.0546 - type: nauc_map_at_1_max value: 21.368599999999997 - type: nauc_map_at_1_std value: -0.9005000000000001 - type: nauc_map_at_1_diff1 value: 35.212500000000006 - type: nauc_map_at_3_max value: 26.070700000000002 - type: nauc_map_at_3_std value: 3.9229 - type: nauc_map_at_3_diff1 value: 29.1293 - type: nauc_map_at_5_max value: 29.032999999999998 - type: nauc_map_at_5_std value: 6.5134 - type: nauc_map_at_5_diff1 value: 27.908699999999996 - type: nauc_map_at_10_max value: 30.7252 - type: nauc_map_at_10_std value: 8.2968 - type: nauc_map_at_10_diff1 value: 27.6959 - type: nauc_map_at_20_max value: 31.926900000000003 - type: nauc_map_at_20_std value: 9.7313 - type: nauc_map_at_20_diff1 value: 27.441300000000002 - type: nauc_map_at_100_max value: 32.7179 - type: nauc_map_at_100_std value: 10.8331 - type: nauc_map_at_100_diff1 value: 27.458 - type: nauc_map_at_1000_max value: 32.7499 - type: nauc_map_at_1000_std value: 10.898900000000001 - type: nauc_map_at_1000_diff1 value: 27.476699999999997 - type: nauc_recall_at_1_max value: 21.368599999999997 - type: nauc_recall_at_1_std value: -0.9005000000000001 - type: nauc_recall_at_1_diff1 value: 35.212500000000006 - type: nauc_recall_at_3_max value: 22.0607 - type: nauc_recall_at_3_std value: 3.9726 - type: nauc_recall_at_3_diff1 value: 21.705 - type: nauc_recall_at_5_max value: 25.915300000000002 - type: nauc_recall_at_5_std value: 7.4636 - type: nauc_recall_at_5_diff1 value: 18.7443 - type: nauc_recall_at_10_max value: 28.7142 - type: nauc_recall_at_10_std value: 11.5264 - type: nauc_recall_at_10_diff1 value: 16.7709 - type: nauc_recall_at_20_max value: 33.5513 - type: nauc_recall_at_20_std value: 18.5489 - type: nauc_recall_at_20_diff1 value: 14.751900000000001 - type: nauc_recall_at_100_max value: 45.7418 - type: nauc_recall_at_100_std value: 37.693 - type: nauc_recall_at_100_diff1 value: 13.589699999999999 - type: nauc_recall_at_1000_max value: 62.0517 - type: nauc_recall_at_1000_std value: 61.5653 - type: nauc_recall_at_1000_diff1 value: 12.8732 - type: nauc_precision_at_1_max value: 37.0316 - type: nauc_precision_at_1_std value: 16.0392 - type: nauc_precision_at_1_diff1 value: 35.6661 - type: nauc_precision_at_3_max value: 36.3558 - type: nauc_precision_at_3_std value: 24.7253 - type: nauc_precision_at_3_diff1 value: 13.029499999999999 - type: nauc_precision_at_5_max value: 36.3254 - type: nauc_precision_at_5_std value: 26.7762 - type: nauc_precision_at_5_diff1 value: 7.561 - type: nauc_precision_at_10_max value: 32.2831 - type: nauc_precision_at_10_std value: 27.621499999999997 - type: nauc_precision_at_10_diff1 value: 2.9292 - type: nauc_precision_at_20_max value: 30.0072 - type: nauc_precision_at_20_std value: 30.3405 - type: nauc_precision_at_20_diff1 value: -1.4427 - type: nauc_precision_at_100_max value: 23.4879 - type: nauc_precision_at_100_std value: 30.9203 - type: nauc_precision_at_100_diff1 value: -5.0680000000000005 - type: nauc_precision_at_1000_max value: 16.6706 - type: nauc_precision_at_1000_std value: 26.621899999999997 - type: nauc_precision_at_1000_diff1 value: -6.5622 - type: nauc_mrr_at_1_max value: 37.0316 - type: nauc_mrr_at_1_std value: 16.0392 - type: nauc_mrr_at_1_diff1 value: 35.6661 - type: nauc_mrr_at_3_max value: 39.3089 - type: nauc_mrr_at_3_std value: 19.7933 - type: nauc_mrr_at_3_diff1 value: 30.968600000000002 - type: nauc_mrr_at_5_max value: 39.641 - type: nauc_mrr_at_5_std value: 20.052300000000002 - type: nauc_mrr_at_5_diff1 value: 31.3307 - type: nauc_mrr_at_10_max value: 40.1004 - type: nauc_mrr_at_10_std value: 20.5772 - type: nauc_mrr_at_10_diff1 value: 31.423000000000002 - type: nauc_mrr_at_20_max value: 40.14 - type: nauc_mrr_at_20_std value: 20.677400000000002 - type: nauc_mrr_at_20_diff1 value: 31.568800000000003 - type: nauc_mrr_at_100_max value: 40.0878 - type: nauc_mrr_at_100_std value: 20.6034 - type: nauc_mrr_at_100_diff1 value: 31.5872 - type: nauc_mrr_at_1000_max value: 40.078 - type: nauc_mrr_at_1000_std value: 20.589399999999998 - type: nauc_mrr_at_1000_diff1 value: 31.591599999999996 - type: main_score value: 48.262 task: type: Retrieval - dataset: config: sw name: MTEB MIRACLRetrieval (sw) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: ndcg_at_1 value: 50.415 - type: ndcg_at_3 value: 53.04 - type: ndcg_at_5 value: 56.138999999999996 - type: ndcg_at_10 value: 59.111000000000004 - type: ndcg_at_20 value: 61.651 - type: ndcg_at_100 value: 64.312 - type: ndcg_at_1000 value: 65.089 - type: map_at_1 value: 33.267 - type: map_at_3 value: 46.152 - type: map_at_5 value: 49.293 - type: map_at_10 value: 51.06699999999999 - type: map_at_20 value: 52.051 - type: map_at_100 value: 52.632 - type: map_at_1000 value: 52.686 - type: recall_at_1 value: 33.267 - type: recall_at_3 value: 55.48 - type: recall_at_5 value: 64.302 - type: recall_at_10 value: 72.08200000000001 - type: recall_at_20 value: 79.943 - type: recall_at_100 value: 91.377 - type: recall_at_1000 value: 96.152 - type: precision_at_1 value: 50.415 - type: precision_at_3 value: 30.152 - type: precision_at_5 value: 21.576999999999998 - type: precision_at_10 value: 12.49 - type: precision_at_20 value: 7.199 - type: precision_at_100 value: 1.699 - type: precision_at_1000 value: 0.182 - type: mrr_at_1 value: 50.414899999999996 - type: mrr_at_3 value: 58.9903 - type: mrr_at_5 value: 60.7123 - type: mrr_at_10 value: 61.388799999999996 - type: mrr_at_20 value: 61.804700000000004 - type: mrr_at_100 value: 61.9677 - type: mrr_at_1000 value: 61.9774 - type: nauc_ndcg_at_1_max value: 38.0582 - type: nauc_ndcg_at_1_std value: 10.7971 - type: nauc_ndcg_at_1_diff1 value: 39.3361 - type: nauc_ndcg_at_3_max value: 36.1772 - type: nauc_ndcg_at_3_std value: 6.7326 - type: nauc_ndcg_at_3_diff1 value: 35.3446 - type: nauc_ndcg_at_5_max value: 34.8851 - type: nauc_ndcg_at_5_std value: 6.4693000000000005 - type: nauc_ndcg_at_5_diff1 value: 36.4089 - type: nauc_ndcg_at_10_max value: 38.800200000000004 - type: nauc_ndcg_at_10_std value: 5.9294 - type: nauc_ndcg_at_10_diff1 value: 36.1487 - type: nauc_ndcg_at_20_max value: 39.557700000000004 - type: nauc_ndcg_at_20_std value: 7.1913 - type: nauc_ndcg_at_20_diff1 value: 35.476200000000006 - type: nauc_ndcg_at_100_max value: 40.7973 - type: nauc_ndcg_at_100_std value: 12.0762 - type: nauc_ndcg_at_100_diff1 value: 35.9479 - type: nauc_ndcg_at_1000_max value: 41.133900000000004 - type: nauc_ndcg_at_1000_std value: 12.3712 - type: nauc_ndcg_at_1000_diff1 value: 35.6136 - type: nauc_map_at_1_max value: 16.2887 - type: nauc_map_at_1_std value: -5.9883 - type: nauc_map_at_1_diff1 value: 44.4133 - type: nauc_map_at_3_max value: 30.484499999999997 - type: nauc_map_at_3_std value: 2.8722000000000003 - type: nauc_map_at_3_diff1 value: 37.9749 - type: nauc_map_at_5_max value: 31.883499999999998 - type: nauc_map_at_5_std value: 3.7571 - type: nauc_map_at_5_diff1 value: 37.655300000000004 - type: nauc_map_at_10_max value: 34.440799999999996 - type: nauc_map_at_10_std value: 3.7608 - type: nauc_map_at_10_diff1 value: 37.2883 - type: nauc_map_at_20_max value: 34.9033 - type: nauc_map_at_20_std value: 4.3576 - type: nauc_map_at_20_diff1 value: 37.0318 - type: nauc_map_at_100_max value: 35.2377 - type: nauc_map_at_100_std value: 5.3088999999999995 - type: nauc_map_at_100_diff1 value: 37.1107 - type: nauc_map_at_1000_max value: 35.281099999999995 - type: nauc_map_at_1000_std value: 5.3637999999999995 - type: nauc_map_at_1000_diff1 value: 37.0696 - type: nauc_recall_at_1_max value: 16.2887 - type: nauc_recall_at_1_std value: -5.9883 - type: nauc_recall_at_1_diff1 value: 44.4133 - type: nauc_recall_at_3_max value: 28.2547 - type: nauc_recall_at_3_std value: 1.4864 - type: nauc_recall_at_3_diff1 value: 32.121100000000006 - type: nauc_recall_at_5_max value: 27.503899999999998 - type: nauc_recall_at_5_std value: 2.3485 - type: nauc_recall_at_5_diff1 value: 31.1749 - type: nauc_recall_at_10_max value: 37.1037 - type: nauc_recall_at_10_std value: -1.0915 - type: nauc_recall_at_10_diff1 value: 30.7288 - type: nauc_recall_at_20_max value: 38.685900000000004 - type: nauc_recall_at_20_std value: -0.39540000000000003 - type: nauc_recall_at_20_diff1 value: 26.9173 - type: nauc_recall_at_100_max value: 52.7177 - type: nauc_recall_at_100_std value: 45.8168 - type: nauc_recall_at_100_diff1 value: 29.572599999999998 - type: nauc_recall_at_1000_max value: 81.5773 - type: nauc_recall_at_1000_std value: 86.1207 - type: nauc_recall_at_1000_diff1 value: 26.2688 - type: nauc_precision_at_1_max value: 38.0582 - type: nauc_precision_at_1_std value: 10.7971 - type: nauc_precision_at_1_diff1 value: 39.3361 - type: nauc_precision_at_3_max value: 48.16 - type: nauc_precision_at_3_std value: 25.037100000000002 - type: nauc_precision_at_3_diff1 value: 9.8087 - type: nauc_precision_at_5_max value: 45.5463 - type: nauc_precision_at_5_std value: 25.275399999999998 - type: nauc_precision_at_5_diff1 value: 3.3124000000000002 - type: nauc_precision_at_10_max value: 45.3542 - type: nauc_precision_at_10_std value: 21.1762 - type: nauc_precision_at_10_diff1 value: -3.5867999999999998 - type: nauc_precision_at_20_max value: 40.4771 - type: nauc_precision_at_20_std value: 25.006800000000002 - type: nauc_precision_at_20_diff1 value: -10.331700000000001 - type: nauc_precision_at_100_max value: 32.6887 - type: nauc_precision_at_100_std value: 34.5781 - type: nauc_precision_at_100_diff1 value: -16.628999999999998 - type: nauc_precision_at_1000_max value: 29.033399999999997 - type: nauc_precision_at_1000_std value: 33.129 - type: nauc_precision_at_1000_diff1 value: -19.7542 - type: nauc_mrr_at_1_max value: 38.0582 - type: nauc_mrr_at_1_std value: 10.7971 - type: nauc_mrr_at_1_diff1 value: 39.3361 - type: nauc_mrr_at_3_max value: 42.2985 - type: nauc_mrr_at_3_std value: 13.949900000000001 - type: nauc_mrr_at_3_diff1 value: 36.0085 - type: nauc_mrr_at_5_max value: 42.3132 - type: nauc_mrr_at_5_std value: 14.8284 - type: nauc_mrr_at_5_diff1 value: 36.0635 - type: nauc_mrr_at_10_max value: 42.6836 - type: nauc_mrr_at_10_std value: 14.1374 - type: nauc_mrr_at_10_diff1 value: 36.2117 - type: nauc_mrr_at_20_max value: 42.6572 - type: nauc_mrr_at_20_std value: 14.2714 - type: nauc_mrr_at_20_diff1 value: 36.0993 - type: nauc_mrr_at_100_max value: 42.663000000000004 - type: nauc_mrr_at_100_std value: 14.5399 - type: nauc_mrr_at_100_diff1 value: 36.214600000000004 - type: nauc_mrr_at_1000_max value: 42.6543 - type: nauc_mrr_at_1000_std value: 14.5232 - type: nauc_mrr_at_1000_diff1 value: 36.219699999999996 - type: main_score value: 59.111000000000004 task: type: Retrieval - dataset: config: te name: MTEB MIRACLRetrieval (te) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: ndcg_at_1 value: 64.372 - type: ndcg_at_3 value: 74.856 - type: ndcg_at_5 value: 77.128 - type: ndcg_at_10 value: 78.175 - type: ndcg_at_20 value: 78.826 - type: ndcg_at_100 value: 79.523 - type: ndcg_at_1000 value: 79.774 - type: map_at_1 value: 63.688 - type: map_at_3 value: 72.262 - type: map_at_5 value: 73.56700000000001 - type: map_at_10 value: 74.022 - type: map_at_20 value: 74.217 - type: map_at_100 value: 74.316 - type: map_at_1000 value: 74.32600000000001 - type: recall_at_1 value: 63.688 - type: recall_at_3 value: 81.804 - type: recall_at_5 value: 87.198 - type: recall_at_10 value: 90.358 - type: recall_at_20 value: 92.834 - type: recall_at_100 value: 96.55799999999999 - type: recall_at_1000 value: 98.47 - type: precision_at_1 value: 64.372 - type: precision_at_3 value: 27.858 - type: precision_at_5 value: 17.849999999999998 - type: precision_at_10 value: 9.263 - type: precision_at_20 value: 4.771 - type: precision_at_100 value: 0.993 - type: precision_at_1000 value: 0.101 - type: mrr_at_1 value: 64.372 - type: mrr_at_3 value: 72.7456 - type: mrr_at_5 value: 73.9654 - type: mrr_at_10 value: 74.3824 - type: mrr_at_20 value: 74.5572 - type: mrr_at_100 value: 74.6496 - type: mrr_at_1000 value: 74.65889999999999 - type: nauc_ndcg_at_1_max value: 39.271699999999996 - type: nauc_ndcg_at_1_std value: -24.310499999999998 - type: nauc_ndcg_at_1_diff1 value: 58.76440000000001 - type: nauc_ndcg_at_3_max value: 42.7376 - type: nauc_ndcg_at_3_std value: -25.2897 - type: nauc_ndcg_at_3_diff1 value: 55.2624 - type: nauc_ndcg_at_5_max value: 45.5625 - type: nauc_ndcg_at_5_std value: -22.595299999999998 - type: nauc_ndcg_at_5_diff1 value: 54.2902 - type: nauc_ndcg_at_10_max value: 46.581 - type: nauc_ndcg_at_10_std value: -20.4188 - type: nauc_ndcg_at_10_diff1 value: 53.76800000000001 - type: nauc_ndcg_at_20_max value: 45.912 - type: nauc_ndcg_at_20_std value: -20.7345 - type: nauc_ndcg_at_20_diff1 value: 53.597300000000004 - type: nauc_ndcg_at_100_max value: 45.4388 - type: nauc_ndcg_at_100_std value: -20.569499999999998 - type: nauc_ndcg_at_100_diff1 value: 54.1768 - type: nauc_ndcg_at_1000_max value: 44.8662 - type: nauc_ndcg_at_1000_std value: -20.9083 - type: nauc_ndcg_at_1000_diff1 value: 54.316900000000004 - type: nauc_map_at_1_max value: 38.1714 - type: nauc_map_at_1_std value: -25.8547 - type: nauc_map_at_1_diff1 value: 58.801700000000004 - type: nauc_map_at_3_max value: 41.6072 - type: nauc_map_at_3_std value: -25.716299999999997 - type: nauc_map_at_3_diff1 value: 55.9906 - type: nauc_map_at_5_max value: 43.061899999999994 - type: nauc_map_at_5_std value: -24.2147 - type: nauc_map_at_5_diff1 value: 55.4852 - type: nauc_map_at_10_max value: 43.452 - type: nauc_map_at_10_std value: -23.4256 - type: nauc_map_at_10_diff1 value: 55.3427 - type: nauc_map_at_20_max value: 43.305 - type: nauc_map_at_20_std value: -23.424500000000002 - type: nauc_map_at_20_diff1 value: 55.31120000000001 - type: nauc_map_at_100_max value: 43.2512 - type: nauc_map_at_100_std value: -23.3786 - type: nauc_map_at_100_diff1 value: 55.3755 - type: nauc_map_at_1000_max value: 43.2306 - type: nauc_map_at_1000_std value: -23.380699999999997 - type: nauc_map_at_1000_diff1 value: 55.378899999999994 - type: nauc_recall_at_1_max value: 38.1714 - type: nauc_recall_at_1_std value: -25.8547 - type: nauc_recall_at_1_diff1 value: 58.801700000000004 - type: nauc_recall_at_3_max value: 46.7953 - type: nauc_recall_at_3_std value: -25.092100000000002 - type: nauc_recall_at_3_diff1 value: 52.0717 - type: nauc_recall_at_5_max value: 58.675399999999996 - type: nauc_recall_at_5_std value: -15.456100000000001 - type: nauc_recall_at_5_diff1 value: 47.4131 - type: nauc_recall_at_10_max value: 67.7093 - type: nauc_recall_at_10_std value: -0.5740000000000001 - type: nauc_recall_at_10_diff1 value: 42.2693 - type: nauc_recall_at_20_max value: 68.11160000000001 - type: nauc_recall_at_20_std value: 1.8836 - type: nauc_recall_at_20_diff1 value: 36.960300000000004 - type: nauc_recall_at_100_max value: 78.39620000000001 - type: nauc_recall_at_100_std value: 27.515299999999996 - type: nauc_recall_at_100_diff1 value: 35.8977 - type: nauc_recall_at_1000_max value: 71.4983 - type: nauc_recall_at_1000_std value: 50.89939999999999 - type: nauc_recall_at_1000_diff1 value: 28.7768 - type: nauc_precision_at_1_max value: 39.271699999999996 - type: nauc_precision_at_1_std value: -24.310499999999998 - type: nauc_precision_at_1_diff1 value: 58.76440000000001 - type: nauc_precision_at_3_max value: 46.5473 - type: nauc_precision_at_3_std value: -16.3903 - type: nauc_precision_at_3_diff1 value: 43.1862 - type: nauc_precision_at_5_max value: 53.557500000000005 - type: nauc_precision_at_5_std value: -1.2877 - type: nauc_precision_at_5_diff1 value: 31.9181 - type: nauc_precision_at_10_max value: 55.428599999999996 - type: nauc_precision_at_10_std value: 12.8033 - type: nauc_precision_at_10_diff1 value: 22.756 - type: nauc_precision_at_20_max value: 49.0193 - type: nauc_precision_at_20_std value: 19.6821 - type: nauc_precision_at_20_diff1 value: 12.0609 - type: nauc_precision_at_100_max value: 40.4145 - type: nauc_precision_at_100_std value: 38.3506 - type: nauc_precision_at_100_diff1 value: -1.6396000000000002 - type: nauc_precision_at_1000_max value: 19.25 - type: nauc_precision_at_1000_std value: 41.2279 - type: nauc_precision_at_1000_diff1 value: -17.3722 - type: nauc_mrr_at_1_max value: 39.271699999999996 - type: nauc_mrr_at_1_std value: -24.310499999999998 - type: nauc_mrr_at_1_diff1 value: 58.76440000000001 - type: nauc_mrr_at_3_max value: 41.6685 - type: nauc_mrr_at_3_std value: -24.4404 - type: nauc_mrr_at_3_diff1 value: 56.1212 - type: nauc_mrr_at_5_max value: 42.9495 - type: nauc_mrr_at_5_std value: -23.378899999999998 - type: nauc_mrr_at_5_diff1 value: 55.7671 - type: nauc_mrr_at_10_max value: 43.371900000000004 - type: nauc_mrr_at_10_std value: -22.5248 - type: nauc_mrr_at_10_diff1 value: 55.5427 - type: nauc_mrr_at_20_max value: 43.1738 - type: nauc_mrr_at_20_std value: -22.6888 - type: nauc_mrr_at_20_diff1 value: 55.5207 - type: nauc_mrr_at_100_max value: 43.1156 - type: nauc_mrr_at_100_std value: -22.6434 - type: nauc_mrr_at_100_diff1 value: 55.5733 - type: nauc_mrr_at_1000_max value: 43.0971 - type: nauc_mrr_at_1000_std value: -22.6431 - type: nauc_mrr_at_1000_diff1 value: 55.5782 - type: main_score value: 78.175 task: type: Retrieval - dataset: config: th name: MTEB MIRACLRetrieval (th) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: ndcg_at_1 value: 65.484 - type: ndcg_at_3 value: 66.199 - type: ndcg_at_5 value: 68.451 - type: ndcg_at_10 value: 71.774 - type: ndcg_at_20 value: 73.709 - type: ndcg_at_100 value: 75.362 - type: ndcg_at_1000 value: 75.898 - type: map_at_1 value: 45.911 - type: map_at_3 value: 59.53000000000001 - type: map_at_5 value: 62.150000000000006 - type: map_at_10 value: 64.336 - type: map_at_20 value: 65.262 - type: map_at_100 value: 65.659 - type: map_at_1000 value: 65.694 - type: recall_at_1 value: 45.911 - type: recall_at_3 value: 67.437 - type: recall_at_5 value: 73.786 - type: recall_at_10 value: 82.619 - type: recall_at_20 value: 88.447 - type: recall_at_100 value: 95.515 - type: recall_at_1000 value: 98.854 - type: precision_at_1 value: 65.484 - type: precision_at_3 value: 35.471000000000004 - type: precision_at_5 value: 24.229 - type: precision_at_10 value: 14.188 - type: precision_at_20 value: 7.843999999999999 - type: precision_at_100 value: 1.733 - type: precision_at_1000 value: 0.181 - type: mrr_at_1 value: 65.48429999999999 - type: mrr_at_3 value: 73.2378 - type: mrr_at_5 value: 74.1314 - type: mrr_at_10 value: 74.8844 - type: mrr_at_20 value: 75.07639999999999 - type: mrr_at_100 value: 75.1632 - type: mrr_at_1000 value: 75.1698 - type: nauc_ndcg_at_1_max value: 42.345 - type: nauc_ndcg_at_1_std value: 12.6892 - type: nauc_ndcg_at_1_diff1 value: 42.4669 - type: nauc_ndcg_at_3_max value: 38.8148 - type: nauc_ndcg_at_3_std value: 3.5637000000000003 - type: nauc_ndcg_at_3_diff1 value: 34.8248 - type: nauc_ndcg_at_5_max value: 38.7175 - type: nauc_ndcg_at_5_std value: 1.6251000000000002 - type: nauc_ndcg_at_5_diff1 value: 34.1513 - type: nauc_ndcg_at_10_max value: 40.038000000000004 - type: nauc_ndcg_at_10_std value: 2.8985 - type: nauc_ndcg_at_10_diff1 value: 33.4189 - type: nauc_ndcg_at_20_max value: 41.722 - type: nauc_ndcg_at_20_std value: 6.819100000000001 - type: nauc_ndcg_at_20_diff1 value: 33.5606 - type: nauc_ndcg_at_100_max value: 42.2102 - type: nauc_ndcg_at_100_std value: 8.309099999999999 - type: nauc_ndcg_at_100_diff1 value: 34.036899999999996 - type: nauc_ndcg_at_1000_max value: 41.9273 - type: nauc_ndcg_at_1000_std value: 8.3582 - type: nauc_ndcg_at_1000_diff1 value: 34.4614 - type: nauc_map_at_1_max value: 20.202 - type: nauc_map_at_1_std value: -8.095099999999999 - type: nauc_map_at_1_diff1 value: 42.2902 - type: nauc_map_at_3_max value: 33.0956 - type: nauc_map_at_3_std value: -3.7472 - type: nauc_map_at_3_diff1 value: 36.3181 - type: nauc_map_at_5_max value: 34.3309 - type: nauc_map_at_5_std value: -3.0949999999999998 - type: nauc_map_at_5_diff1 value: 35.441 - type: nauc_map_at_10_max value: 35.924 - type: nauc_map_at_10_std value: -1.3787 - type: nauc_map_at_10_diff1 value: 35.0315 - type: nauc_map_at_20_max value: 36.7677 - type: nauc_map_at_20_std value: 0.4997 - type: nauc_map_at_20_diff1 value: 35.037600000000005 - type: nauc_map_at_100_max value: 36.8927 - type: nauc_map_at_100_std value: 0.8881999999999999 - type: nauc_map_at_100_diff1 value: 35.0792 - type: nauc_map_at_1000_max value: 36.897999999999996 - type: nauc_map_at_1000_std value: 0.9301 - type: nauc_map_at_1000_diff1 value: 35.0961 - type: nauc_recall_at_1_max value: 20.202 - type: nauc_recall_at_1_std value: -8.095099999999999 - type: nauc_recall_at_1_diff1 value: 42.2902 - type: nauc_recall_at_3_max value: 33.1749 - type: nauc_recall_at_3_std value: -4.6383 - type: nauc_recall_at_3_diff1 value: 30.5276 - type: nauc_recall_at_5_max value: 35.2372 - type: nauc_recall_at_5_std value: -6.0825 - type: nauc_recall_at_5_diff1 value: 27.128200000000003 - type: nauc_recall_at_10_max value: 37.465199999999996 - type: nauc_recall_at_10_std value: -4.937600000000001 - type: nauc_recall_at_10_diff1 value: 21.6784 - type: nauc_recall_at_20_max value: 45.9944 - type: nauc_recall_at_20_std value: 10.5054 - type: nauc_recall_at_20_diff1 value: 19.4427 - type: nauc_recall_at_100_max value: 60.7611 - type: nauc_recall_at_100_std value: 35.4282 - type: nauc_recall_at_100_diff1 value: 14.2406 - type: nauc_recall_at_1000_max value: 83.2149 - type: nauc_recall_at_1000_std value: 87.3129 - type: nauc_recall_at_1000_diff1 value: 15.7695 - type: nauc_precision_at_1_max value: 42.345 - type: nauc_precision_at_1_std value: 12.6892 - type: nauc_precision_at_1_diff1 value: 42.4669 - type: nauc_precision_at_3_max value: 38.0839 - type: nauc_precision_at_3_std value: 22.0767 - type: nauc_precision_at_3_diff1 value: 1.4477 - type: nauc_precision_at_5_max value: 31.290499999999998 - type: nauc_precision_at_5_std value: 23.3095 - type: nauc_precision_at_5_diff1 value: -5.9094 - type: nauc_precision_at_10_max value: 25.186199999999996 - type: nauc_precision_at_10_std value: 27.7866 - type: nauc_precision_at_10_diff1 value: -12.773200000000001 - type: nauc_precision_at_20_max value: 21.0353 - type: nauc_precision_at_20_std value: 33.7266 - type: nauc_precision_at_20_diff1 value: -15.188699999999999 - type: nauc_precision_at_100_max value: 16.1451 - type: nauc_precision_at_100_std value: 35.4163 - type: nauc_precision_at_100_diff1 value: -17.631800000000002 - type: nauc_precision_at_1000_max value: 12.2855 - type: nauc_precision_at_1000_std value: 34.2766 - type: nauc_precision_at_1000_diff1 value: -17.664099999999998 - type: nauc_mrr_at_1_max value: 42.345 - type: nauc_mrr_at_1_std value: 12.6892 - type: nauc_mrr_at_1_diff1 value: 42.4669 - type: nauc_mrr_at_3_max value: 47.5742 - type: nauc_mrr_at_3_std value: 17.136499999999998 - type: nauc_mrr_at_3_diff1 value: 37.68 - type: nauc_mrr_at_5_max value: 47.510799999999996 - type: nauc_mrr_at_5_std value: 17.1225 - type: nauc_mrr_at_5_diff1 value: 37.485099999999996 - type: nauc_mrr_at_10_max value: 47.2849 - type: nauc_mrr_at_10_std value: 17.2096 - type: nauc_mrr_at_10_diff1 value: 37.2312 - type: nauc_mrr_at_20_max value: 47.3962 - type: nauc_mrr_at_20_std value: 17.2426 - type: nauc_mrr_at_20_diff1 value: 37.500499999999995 - type: nauc_mrr_at_100_max value: 47.344 - type: nauc_mrr_at_100_std value: 17.144499999999997 - type: nauc_mrr_at_100_diff1 value: 37.5291 - type: nauc_mrr_at_1000_max value: 47.3332 - type: nauc_mrr_at_1000_std value: 17.1381 - type: nauc_mrr_at_1000_diff1 value: 37.532199999999996 - type: main_score value: 71.774 task: type: Retrieval - dataset: config: yo name: MTEB MIRACLRetrieval (yo) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: ndcg_at_1 value: 46.217999999999996 - type: ndcg_at_3 value: 57.609 - type: ndcg_at_5 value: 62.021 - type: ndcg_at_10 value: 64.685 - type: ndcg_at_20 value: 65.548 - type: ndcg_at_100 value: 66.94099999999999 - type: ndcg_at_1000 value: 67.361 - type: map_at_1 value: 42.787 - type: map_at_3 value: 53.852 - type: map_at_5 value: 56.541 - type: map_at_10 value: 57.924 - type: map_at_20 value: 58.223 - type: map_at_100 value: 58.41499999999999 - type: map_at_1000 value: 58.43000000000001 - type: recall_at_1 value: 42.787 - type: recall_at_3 value: 65.40599999999999 - type: recall_at_5 value: 75.42 - type: recall_at_10 value: 82.913 - type: recall_at_20 value: 85.994 - type: recall_at_100 value: 93.277 - type: recall_at_1000 value: 96.499 - type: precision_at_1 value: 46.217999999999996 - type: precision_at_3 value: 24.37 - type: precision_at_5 value: 17.479 - type: precision_at_10 value: 9.748 - type: precision_at_20 value: 5.0840000000000005 - type: precision_at_100 value: 1.109 - type: precision_at_1000 value: 0.116 - type: mrr_at_1 value: 46.2185 - type: mrr_at_3 value: 56.582600000000006 - type: mrr_at_5 value: 58.977599999999995 - type: mrr_at_10 value: 59.890299999999996 - type: mrr_at_20 value: 60.077999999999996 - type: mrr_at_100 value: 60.2472 - type: mrr_at_1000 value: 60.2553 - type: nauc_ndcg_at_1_max value: 15.3057 - type: nauc_ndcg_at_1_std value: -20.3881 - type: nauc_ndcg_at_1_diff1 value: 51.7456 - type: nauc_ndcg_at_3_max value: 17.750799999999998 - type: nauc_ndcg_at_3_std value: -9.165 - type: nauc_ndcg_at_3_diff1 value: 53.4833 - type: nauc_ndcg_at_5_max value: 18.6146 - type: nauc_ndcg_at_5_std value: -3.832 - type: nauc_ndcg_at_5_diff1 value: 52.8833 - type: nauc_ndcg_at_10_max value: 20.4881 - type: nauc_ndcg_at_10_std value: -3.7813 - type: nauc_ndcg_at_10_diff1 value: 53.873099999999994 - type: nauc_ndcg_at_20_max value: 22.234499999999997 - type: nauc_ndcg_at_20_std value: -4.5588999999999995 - type: nauc_ndcg_at_20_diff1 value: 53.75149999999999 - type: nauc_ndcg_at_100_max value: 22.5348 - type: nauc_ndcg_at_100_std value: -5.6818 - type: nauc_ndcg_at_100_diff1 value: 54.996199999999995 - type: nauc_ndcg_at_1000_max value: 21.8399 - type: nauc_ndcg_at_1000_std value: -6.904000000000001 - type: nauc_ndcg_at_1000_diff1 value: 54.5607 - type: nauc_map_at_1_max value: 11.5768 - type: nauc_map_at_1_std value: -16.317400000000003 - type: nauc_map_at_1_diff1 value: 56.0748 - type: nauc_map_at_3_max value: 14.5127 - type: nauc_map_at_3_std value: -9.9466 - type: nauc_map_at_3_diff1 value: 54.4564 - type: nauc_map_at_5_max value: 15.6777 - type: nauc_map_at_5_std value: -7.3351 - type: nauc_map_at_5_diff1 value: 53.8739 - type: nauc_map_at_10_max value: 17.380200000000002 - type: nauc_map_at_10_std value: -7.8866000000000005 - type: nauc_map_at_10_diff1 value: 54.17380000000001 - type: nauc_map_at_20_max value: 17.7812 - type: nauc_map_at_20_std value: -8.1005 - type: nauc_map_at_20_diff1 value: 54.16029999999999 - type: nauc_map_at_100_max value: 17.8472 - type: nauc_map_at_100_std value: -8.197899999999999 - type: nauc_map_at_100_diff1 value: 54.3604 - type: nauc_map_at_1000_max value: 17.838 - type: nauc_map_at_1000_std value: -8.241800000000001 - type: nauc_map_at_1000_diff1 value: 54.3379 - type: nauc_recall_at_1_max value: 11.5768 - type: nauc_recall_at_1_std value: -16.317400000000003 - type: nauc_recall_at_1_diff1 value: 56.0748 - type: nauc_recall_at_3_max value: 19.2218 - type: nauc_recall_at_3_std value: -0.9331 - type: nauc_recall_at_3_diff1 value: 52.159299999999995 - type: nauc_recall_at_5_max value: 23.1526 - type: nauc_recall_at_5_std value: 18.569399999999998 - type: nauc_recall_at_5_diff1 value: 49.3007 - type: nauc_recall_at_10_max value: 30.9861 - type: nauc_recall_at_10_std value: 29.1945 - type: nauc_recall_at_10_diff1 value: 53.94520000000001 - type: nauc_recall_at_20_max value: 45.5532 - type: nauc_recall_at_20_std value: 30.500500000000002 - type: nauc_recall_at_20_diff1 value: 53.197799999999994 - type: nauc_recall_at_100_max value: 69.0118 - type: nauc_recall_at_100_std value: 42.4681 - type: nauc_recall_at_100_diff1 value: 73.61229999999999 - type: nauc_recall_at_1000_max value: 73.9661 - type: nauc_recall_at_1000_std value: 27.5085 - type: nauc_recall_at_1000_diff1 value: 75.1985 - type: nauc_precision_at_1_max value: 15.3057 - type: nauc_precision_at_1_std value: -20.3881 - type: nauc_precision_at_1_diff1 value: 51.7456 - type: nauc_precision_at_3_max value: 24.9404 - type: nauc_precision_at_3_std value: -5.6223 - type: nauc_precision_at_3_diff1 value: 33.2281 - type: nauc_precision_at_5_max value: 23.1681 - type: nauc_precision_at_5_std value: 3.7264 - type: nauc_precision_at_5_diff1 value: 13.463700000000001 - type: nauc_precision_at_10_max value: 27.1828 - type: nauc_precision_at_10_std value: 0.2287 - type: nauc_precision_at_10_diff1 value: 3.3236000000000003 - type: nauc_precision_at_20_max value: 30.8431 - type: nauc_precision_at_20_std value: -1.7745 - type: nauc_precision_at_20_diff1 value: -1.4821 - type: nauc_precision_at_100_max value: 31.920399999999997 - type: nauc_precision_at_100_std value: -9.9216 - type: nauc_precision_at_100_diff1 value: -12.0477 - type: nauc_precision_at_1000_max value: 21.9173 - type: nauc_precision_at_1000_std value: -20.7394 - type: nauc_precision_at_1000_diff1 value: -23.9441 - type: nauc_mrr_at_1_max value: 15.3057 - type: nauc_mrr_at_1_std value: -20.3881 - type: nauc_mrr_at_1_diff1 value: 51.7456 - type: nauc_mrr_at_3_max value: 20.1871 - type: nauc_mrr_at_3_std value: -15.1173 - type: nauc_mrr_at_3_diff1 value: 52.30089999999999 - type: nauc_mrr_at_5_max value: 20.514599999999998 - type: nauc_mrr_at_5_std value: -12.8977 - type: nauc_mrr_at_5_diff1 value: 52.350300000000004 - type: nauc_mrr_at_10_max value: 20.4557 - type: nauc_mrr_at_10_std value: -12.6083 - type: nauc_mrr_at_10_diff1 value: 52.766000000000005 - type: nauc_mrr_at_20_max value: 20.7793 - type: nauc_mrr_at_20_std value: -12.8431 - type: nauc_mrr_at_20_diff1 value: 52.6664 - type: nauc_mrr_at_100_max value: 20.8067 - type: nauc_mrr_at_100_std value: -12.9037 - type: nauc_mrr_at_100_diff1 value: 52.86729999999999 - type: nauc_mrr_at_1000_max value: 20.793 - type: nauc_mrr_at_1000_std value: -12.924900000000001 - type: nauc_mrr_at_1000_diff1 value: 52.8605 - type: main_score value: 64.685 task: type: Retrieval - dataset: config: zh name: MTEB MIRACLRetrieval (zh) revision: main split: dev type: miracl/mmteb-miracl metrics: - type: ndcg_at_1 value: 41.985 - type: ndcg_at_3 value: 42.094 - type: ndcg_at_5 value: 44.273 - type: ndcg_at_10 value: 48.370000000000005 - type: ndcg_at_20 value: 51.595 - type: ndcg_at_100 value: 55.961000000000006 - type: ndcg_at_1000 value: 57.620000000000005 - type: map_at_1 value: 21.446 - type: map_at_3 value: 32.499 - type: map_at_5 value: 35.772 - type: map_at_10 value: 38.567 - type: map_at_20 value: 39.98 - type: map_at_100 value: 40.992 - type: map_at_1000 value: 41.119 - type: recall_at_1 value: 21.446 - type: recall_at_3 value: 40.377 - type: recall_at_5 value: 49.03 - type: recall_at_10 value: 59.695 - type: recall_at_20 value: 69.25200000000001 - type: recall_at_100 value: 87.388 - type: recall_at_1000 value: 96.833 - type: precision_at_1 value: 41.985 - type: precision_at_3 value: 29.008 - type: precision_at_5 value: 21.985 - type: precision_at_10 value: 14.097000000000001 - type: precision_at_20 value: 8.346 - type: precision_at_100 value: 2.155 - type: precision_at_1000 value: 0.243 - type: mrr_at_1 value: 41.984700000000004 - type: mrr_at_3 value: 52.078 - type: mrr_at_5 value: 53.5284 - type: mrr_at_10 value: 54.4979 - type: mrr_at_20 value: 54.9953 - type: mrr_at_100 value: 55.2428 - type: mrr_at_1000 value: 55.263 - type: nauc_ndcg_at_1_max value: 41.7348 - type: nauc_ndcg_at_1_std value: 23.8594 - type: nauc_ndcg_at_1_diff1 value: 31.156299999999998 - type: nauc_ndcg_at_3_max value: 39.0525 - type: nauc_ndcg_at_3_std value: 21.7916 - type: nauc_ndcg_at_3_diff1 value: 23.9925 - type: nauc_ndcg_at_5_max value: 33.8643 - type: nauc_ndcg_at_5_std value: 16.3399 - type: nauc_ndcg_at_5_diff1 value: 26.001 - type: nauc_ndcg_at_10_max value: 35.3007 - type: nauc_ndcg_at_10_std value: 19.127 - type: nauc_ndcg_at_10_diff1 value: 25.444899999999997 - type: nauc_ndcg_at_20_max value: 37.6068 - type: nauc_ndcg_at_20_std value: 23.0043 - type: nauc_ndcg_at_20_diff1 value: 23.7603 - type: nauc_ndcg_at_100_max value: 40.4028 - type: nauc_ndcg_at_100_std value: 25.0083 - type: nauc_ndcg_at_100_diff1 value: 23.491999999999997 - type: nauc_ndcg_at_1000_max value: 39.8716 - type: nauc_ndcg_at_1000_std value: 24.7264 - type: nauc_ndcg_at_1000_diff1 value: 24.6697 - type: nauc_map_at_1_max value: 25.7275 - type: nauc_map_at_1_std value: 7.7392 - type: nauc_map_at_1_diff1 value: 36.5897 - type: nauc_map_at_3_max value: 32.2774 - type: nauc_map_at_3_std value: 12.2275 - type: nauc_map_at_3_diff1 value: 28.8092 - type: nauc_map_at_5_max value: 31.183899999999998 - type: nauc_map_at_5_std value: 12.1811 - type: nauc_map_at_5_diff1 value: 28.532400000000003 - type: nauc_map_at_10_max value: 33.4812 - type: nauc_map_at_10_std value: 15.6339 - type: nauc_map_at_10_diff1 value: 27.695999999999998 - type: nauc_map_at_20_max value: 34.855999999999995 - type: nauc_map_at_20_std value: 17.8001 - type: nauc_map_at_20_diff1 value: 26.3975 - type: nauc_map_at_100_max value: 35.8497 - type: nauc_map_at_100_std value: 18.688 - type: nauc_map_at_100_diff1 value: 26.177899999999998 - type: nauc_map_at_1000_max value: 35.8459 - type: nauc_map_at_1000_std value: 18.7007 - type: nauc_map_at_1000_diff1 value: 26.257200000000005 - type: nauc_recall_at_1_max value: 25.7275 - type: nauc_recall_at_1_std value: 7.7392 - type: nauc_recall_at_1_diff1 value: 36.5897 - type: nauc_recall_at_3_max value: 27.052100000000003 - type: nauc_recall_at_3_std value: 9.632100000000001 - type: nauc_recall_at_3_diff1 value: 21.557399999999998 - type: nauc_recall_at_5_max value: 21.0442 - type: nauc_recall_at_5_std value: 5.7371 - type: nauc_recall_at_5_diff1 value: 20.653399999999998 - type: nauc_recall_at_10_max value: 23.794 - type: nauc_recall_at_10_std value: 12.2208 - type: nauc_recall_at_10_diff1 value: 17.305899999999998 - type: nauc_recall_at_20_max value: 27.5932 - type: nauc_recall_at_20_std value: 21.4346 - type: nauc_recall_at_20_diff1 value: 12.7064 - type: nauc_recall_at_100_max value: 41.801300000000005 - type: nauc_recall_at_100_std value: 36.4593 - type: nauc_recall_at_100_diff1 value: 5.7783 - type: nauc_recall_at_1000_max value: 45.8507 - type: nauc_recall_at_1000_std value: 66.6031 - type: nauc_recall_at_1000_diff1 value: 25.4961 - type: nauc_precision_at_1_max value: 41.7348 - type: nauc_precision_at_1_std value: 23.8594 - type: nauc_precision_at_1_diff1 value: 31.156299999999998 - type: nauc_precision_at_3_max value: 43.336999999999996 - type: nauc_precision_at_3_std value: 29.3989 - type: nauc_precision_at_3_diff1 value: 6.0378 - type: nauc_precision_at_5_max value: 33.3518 - type: nauc_precision_at_5_std value: 25.115199999999998 - type: nauc_precision_at_5_diff1 value: 3.9284 - type: nauc_precision_at_10_max value: 33.466699999999996 - type: nauc_precision_at_10_std value: 31.710300000000004 - type: nauc_precision_at_10_diff1 value: -2.0225 - type: nauc_precision_at_20_max value: 33.651199999999996 - type: nauc_precision_at_20_std value: 37.601600000000005 - type: nauc_precision_at_20_diff1 value: -9.591 - type: nauc_precision_at_100_max value: 28.992 - type: nauc_precision_at_100_std value: 33.631499999999996 - type: nauc_precision_at_100_diff1 value: -13.5546 - type: nauc_precision_at_1000_max value: 20.091 - type: nauc_precision_at_1000_std value: 26.9179 - type: nauc_precision_at_1000_diff1 value: -12.1766 - type: nauc_mrr_at_1_max value: 41.7348 - type: nauc_mrr_at_1_std value: 23.8594 - type: nauc_mrr_at_1_diff1 value: 31.156299999999998 - type: nauc_mrr_at_3_max value: 43.2795 - type: nauc_mrr_at_3_std value: 26.991500000000002 - type: nauc_mrr_at_3_diff1 value: 25.8376 - type: nauc_mrr_at_5_max value: 42.1564 - type: nauc_mrr_at_5_std value: 25.923299999999998 - type: nauc_mrr_at_5_diff1 value: 26.770500000000002 - type: nauc_mrr_at_10_max value: 42.054 - type: nauc_mrr_at_10_std value: 26.1554 - type: nauc_mrr_at_10_diff1 value: 26.4021 - type: nauc_mrr_at_20_max value: 42.3932 - type: nauc_mrr_at_20_std value: 26.5486 - type: nauc_mrr_at_20_diff1 value: 26.616400000000002 - type: nauc_mrr_at_100_max value: 42.4887 - type: nauc_mrr_at_100_std value: 26.4708 - type: nauc_mrr_at_100_diff1 value: 26.671899999999997 - type: nauc_mrr_at_1000_max value: 42.478500000000004 - type: nauc_mrr_at_1000_std value: 26.4606 - type: nauc_mrr_at_1000_diff1 value: 26.6946 - type: main_score value: 48.370000000000005 task: type: Retrieval - dataset: config: default name: MTEB MSMARCO (default) revision: c5a29a104738b98a9e76336939199e264163d4a0 split: dev type: mteb/msmarco metrics: - type: ndcg_at_1 value: 13.653 - type: ndcg_at_3 value: 21.836 - type: ndcg_at_5 value: 25.014999999999997 - type: ndcg_at_10 value: 28.319 - type: ndcg_at_20 value: 30.818 - type: ndcg_at_100 value: 34.527 - type: ndcg_at_1000 value: 36.702 - type: map_at_1 value: 13.313 - type: map_at_3 value: 19.615 - type: map_at_5 value: 21.389 - type: map_at_10 value: 22.768 - type: map_at_20 value: 23.465 - type: map_at_100 value: 23.976 - type: map_at_1000 value: 24.058 - type: recall_at_1 value: 13.313 - type: recall_at_3 value: 27.839999999999996 - type: recall_at_5 value: 35.481 - type: recall_at_10 value: 45.559 - type: recall_at_20 value: 55.301 - type: recall_at_100 value: 75.11 - type: recall_at_1000 value: 92.052 - type: precision_at_1 value: 13.653 - type: precision_at_3 value: 9.565 - type: precision_at_5 value: 7.338 - type: precision_at_10 value: 4.726 - type: precision_at_20 value: 2.8819999999999997 - type: precision_at_100 value: 0.79 - type: precision_at_1000 value: 0.098 - type: mrr_at_1 value: 13.653299999999998 - type: mrr_at_3 value: 20.0573 - type: mrr_at_5 value: 21.8295 - type: mrr_at_10 value: 23.1997 - type: mrr_at_20 value: 23.8785 - type: mrr_at_100 value: 24.3729 - type: mrr_at_1000 value: 24.448600000000003 - type: nauc_ndcg_at_1_max value: 0.364 - type: nauc_ndcg_at_1_std value: -12.840399999999999 - type: nauc_ndcg_at_1_diff1 value: 29.834699999999998 - type: nauc_ndcg_at_3_max value: 1.9428 - type: nauc_ndcg_at_3_std value: -13.696 - type: nauc_ndcg_at_3_diff1 value: 24.9774 - type: nauc_ndcg_at_5_max value: 2.5951 - type: nauc_ndcg_at_5_std value: -13.2667 - type: nauc_ndcg_at_5_diff1 value: 24.7581 - type: nauc_ndcg_at_10_max value: 3.0274 - type: nauc_ndcg_at_10_std value: -11.790799999999999 - type: nauc_ndcg_at_10_diff1 value: 23.9473 - type: nauc_ndcg_at_20_max value: 3.5682 - type: nauc_ndcg_at_20_std value: -10.132299999999999 - type: nauc_ndcg_at_20_diff1 value: 23.744100000000003 - type: nauc_ndcg_at_100_max value: 5.1290000000000004 - type: nauc_ndcg_at_100_std value: -6.8011 - type: nauc_ndcg_at_100_diff1 value: 23.6972 - type: nauc_ndcg_at_1000_max value: 5.1967 - type: nauc_ndcg_at_1000_std value: -7.396700000000001 - type: nauc_ndcg_at_1000_diff1 value: 24.1353 - type: nauc_map_at_1_max value: 0.35200000000000004 - type: nauc_map_at_1_std value: -12.8008 - type: nauc_map_at_1_diff1 value: 30.121199999999998 - type: nauc_map_at_3_max value: 1.6415 - type: nauc_map_at_3_std value: -13.5187 - type: nauc_map_at_3_diff1 value: 25.9894 - type: nauc_map_at_5_max value: 2.0264 - type: nauc_map_at_5_std value: -13.281 - type: nauc_map_at_5_diff1 value: 25.849 - type: nauc_map_at_10_max value: 2.1982 - type: nauc_map_at_10_std value: -12.6435 - type: nauc_map_at_10_diff1 value: 25.477100000000004 - type: nauc_map_at_20_max value: 2.3562 - type: nauc_map_at_20_std value: -12.1675 - type: nauc_map_at_20_diff1 value: 25.4162 - type: nauc_map_at_100_max value: 2.5839999999999996 - type: nauc_map_at_100_std value: -11.7018 - type: nauc_map_at_100_diff1 value: 25.4093 - type: nauc_map_at_1000_max value: 2.5871999999999997 - type: nauc_map_at_1000_std value: -11.7103 - type: nauc_map_at_1000_diff1 value: 25.424999999999997 - type: nauc_recall_at_1_max value: 0.35200000000000004 - type: nauc_recall_at_1_std value: -12.8008 - type: nauc_recall_at_1_diff1 value: 30.121199999999998 - type: nauc_recall_at_3_max value: 2.6834000000000002 - type: nauc_recall_at_3_std value: -14.0991 - type: nauc_recall_at_3_diff1 value: 22.6158 - type: nauc_recall_at_5_max value: 3.9472 - type: nauc_recall_at_5_std value: -13.167499999999999 - type: nauc_recall_at_5_diff1 value: 22.2686 - type: nauc_recall_at_10_max value: 4.9908 - type: nauc_recall_at_10_std value: -9.4435 - type: nauc_recall_at_10_diff1 value: 20.185200000000002 - type: nauc_recall_at_20_max value: 6.880999999999999 - type: nauc_recall_at_20_std value: -3.7041999999999997 - type: nauc_recall_at_20_diff1 value: 19.2889 - type: nauc_recall_at_100_max value: 18.0012 - type: nauc_recall_at_100_std value: 20.404600000000002 - type: nauc_recall_at_100_diff1 value: 17.1382 - type: nauc_recall_at_1000_max value: 41.3456 - type: nauc_recall_at_1000_std value: 50.3786 - type: nauc_recall_at_1000_diff1 value: 17.2713 - type: nauc_precision_at_1_max value: 0.364 - type: nauc_precision_at_1_std value: -12.840399999999999 - type: nauc_precision_at_1_diff1 value: 29.834699999999998 - type: nauc_precision_at_3_max value: 2.7525 - type: nauc_precision_at_3_std value: -13.992099999999999 - type: nauc_precision_at_3_diff1 value: 22.4985 - type: nauc_precision_at_5_max value: 4.0076 - type: nauc_precision_at_5_std value: -13.011800000000001 - type: nauc_precision_at_5_diff1 value: 21.9577 - type: nauc_precision_at_10_max value: 5.3558 - type: nauc_precision_at_10_std value: -8.8703 - type: nauc_precision_at_10_diff1 value: 19.5594 - type: nauc_precision_at_20_max value: 7.764500000000001 - type: nauc_precision_at_20_std value: -2.5067 - type: nauc_precision_at_20_diff1 value: 17.766199999999998 - type: nauc_precision_at_100_max value: 17.8184 - type: nauc_precision_at_100_std value: 20.153 - type: nauc_precision_at_100_diff1 value: 13.255500000000001 - type: nauc_precision_at_1000_max value: 26.7508 - type: nauc_precision_at_1000_std value: 31.494299999999996 - type: nauc_precision_at_1000_diff1 value: 5.8916 - type: nauc_mrr_at_1_max value: 0.364 - type: nauc_mrr_at_1_std value: -12.840399999999999 - type: nauc_mrr_at_1_diff1 value: 29.834699999999998 - type: nauc_mrr_at_3_max value: 1.5876000000000001 - type: nauc_mrr_at_3_std value: -13.4944 - type: nauc_mrr_at_3_diff1 value: 25.894099999999998 - type: nauc_mrr_at_5_max value: 1.9839 - type: nauc_mrr_at_5_std value: -13.1955 - type: nauc_mrr_at_5_diff1 value: 25.695899999999998 - type: nauc_mrr_at_10_max value: 2.2034000000000002 - type: nauc_mrr_at_10_std value: -12.504499999999998 - type: nauc_mrr_at_10_diff1 value: 25.3497 - type: nauc_mrr_at_20_max value: 2.334 - type: nauc_mrr_at_20_std value: -12.0259 - type: nauc_mrr_at_20_diff1 value: 25.3055 - type: nauc_mrr_at_100_max value: 2.5492999999999997 - type: nauc_mrr_at_100_std value: -11.6039 - type: nauc_mrr_at_100_diff1 value: 25.298 - type: nauc_mrr_at_1000_max value: 2.5439 - type: nauc_mrr_at_1000_std value: -11.6219 - type: nauc_mrr_at_1000_diff1 value: 25.312099999999997 - type: main_score value: 28.319 task: type: Retrieval - dataset: config: en name: MTEB MTOPDomainClassification (en) revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf split: test type: mteb/mtop_domain metrics: - type: accuracy value: 88.9193 - type: f1 value: 88.6731 - type: f1_weighted value: 88.8695 - type: main_score value: 88.9193 task: type: Classification - dataset: config: en name: MTEB MTOPIntentClassification (en) revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba split: test type: mteb/mtop_intent metrics: - type: accuracy value: 57.6448 - type: f1 value: 38.9997 - type: f1_weighted value: 60.377 - type: main_score value: 57.6448 task: type: Classification - dataset: config: en name: MTEB MassiveIntentClassification (en) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 62.518499999999996 - type: f1 value: 59.2963 - type: f1_weighted value: 61.365700000000004 - type: main_score value: 62.518499999999996 task: type: Classification - dataset: config: en name: MTEB MassiveScenarioClassification (en) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 69.36449999999999 - type: f1 value: 67.56259999999999 - type: f1_weighted value: 68.9987 - type: main_score value: 69.36449999999999 task: type: Classification - dataset: config: default name: MTEB MedrxivClusteringP2P (default) revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 split: test type: mteb/medrxiv-clustering-p2p metrics: - type: v_measure value: 31.3521 - type: v_measure_std value: 1.3192000000000002 - type: main_score value: 31.3521 task: type: Clustering - dataset: config: default name: MTEB MedrxivClusteringS2S (default) revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 split: test type: mteb/medrxiv-clustering-s2s metrics: - type: v_measure value: 28.020899999999997 - type: v_measure_std value: 1.3569 - type: main_score value: 28.020899999999997 task: type: Clustering - dataset: config: default name: MTEB MindSmallReranking (default) revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7 split: test type: mteb/mind_small metrics: - type: map value: 30.3048 - type: mrr value: 31.326500000000003 - type: nAUC_map_max value: -19.322300000000002 - type: nAUC_map_std value: -4.424 - type: nAUC_map_diff1 value: 13.645299999999999 - type: nAUC_mrr_max value: -13.5457 - type: nAUC_mrr_std value: -2.0976000000000004 - type: nAUC_mrr_diff1 value: 12.965499999999999 - type: main_score value: 30.3048 task: type: Reranking - dataset: config: default name: MTEB NFCorpus (default) revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 split: test type: mteb/nfcorpus metrics: - type: ndcg_at_1 value: 36.997 - type: ndcg_at_3 value: 32.279 - type: ndcg_at_5 value: 30.232 - type: ndcg_at_10 value: 26.991 - type: ndcg_at_20 value: 25.223000000000003 - type: ndcg_at_100 value: 24.953 - type: ndcg_at_1000 value: 33.881 - type: map_at_1 value: 4.2139999999999995 - type: map_at_3 value: 7.013999999999999 - type: map_at_5 value: 8.189 - type: map_at_10 value: 9.468 - type: map_at_20 value: 10.441 - type: map_at_100 value: 11.729000000000001 - type: map_at_1000 value: 12.920000000000002 - type: recall_at_1 value: 4.2139999999999995 - type: recall_at_3 value: 7.981000000000001 - type: recall_at_5 value: 10.306 - type: recall_at_10 value: 13.053999999999998 - type: recall_at_20 value: 16.499 - type: recall_at_100 value: 25.501 - type: recall_at_1000 value: 57.103 - type: precision_at_1 value: 38.39 - type: precision_at_3 value: 30.237000000000002 - type: precision_at_5 value: 26.006 - type: precision_at_10 value: 19.567 - type: precision_at_20 value: 14.613000000000001 - type: precision_at_100 value: 6.393 - type: precision_at_1000 value: 1.9 - type: mrr_at_1 value: 38.6997 - type: mrr_at_3 value: 45.0464 - type: mrr_at_5 value: 46.3622 - type: mrr_at_10 value: 46.9177 - type: mrr_at_20 value: 47.4995 - type: mrr_at_100 value: 47.7284 - type: mrr_at_1000 value: 47.7892 - type: nauc_ndcg_at_1_max value: 30.8996 - type: nauc_ndcg_at_1_std value: 18.2721 - type: nauc_ndcg_at_1_diff1 value: 34.836600000000004 - type: nauc_ndcg_at_3_max value: 35.3352 - type: nauc_ndcg_at_3_std value: 22.345699999999997 - type: nauc_ndcg_at_3_diff1 value: 29.5163 - type: nauc_ndcg_at_5_max value: 36.8152 - type: nauc_ndcg_at_5_std value: 25.799899999999997 - type: nauc_ndcg_at_5_diff1 value: 28.1756 - type: nauc_ndcg_at_10_max value: 37.752599999999994 - type: nauc_ndcg_at_10_std value: 28.2564 - type: nauc_ndcg_at_10_diff1 value: 25.9405 - type: nauc_ndcg_at_20_max value: 36.0517 - type: nauc_ndcg_at_20_std value: 29.4238 - type: nauc_ndcg_at_20_diff1 value: 23.8385 - type: nauc_ndcg_at_100_max value: 39.027499999999996 - type: nauc_ndcg_at_100_std value: 30.0156 - type: nauc_ndcg_at_100_diff1 value: 23.3814 - type: nauc_ndcg_at_1000_max value: 43.9552 - type: nauc_ndcg_at_1000_std value: 36.7709 - type: nauc_ndcg_at_1000_diff1 value: 23.2691 - type: nauc_map_at_1_max value: 13.7444 - type: nauc_map_at_1_std value: -3.6901 - type: nauc_map_at_1_diff1 value: 44.304700000000004 - type: nauc_map_at_3_max value: 18.061 - type: nauc_map_at_3_std value: -0.8826 - type: nauc_map_at_3_diff1 value: 34.1935 - type: nauc_map_at_5_max value: 20.4082 - type: nauc_map_at_5_std value: 1.6634 - type: nauc_map_at_5_diff1 value: 30.903999999999996 - type: nauc_map_at_10_max value: 25.414900000000003 - type: nauc_map_at_10_std value: 6.704899999999999 - type: nauc_map_at_10_diff1 value: 27.5783 - type: nauc_map_at_20_max value: 27.746199999999998 - type: nauc_map_at_20_std value: 10.5171 - type: nauc_map_at_20_diff1 value: 26.3814 - type: nauc_map_at_100_max value: 29.7035 - type: nauc_map_at_100_std value: 16.173000000000002 - type: nauc_map_at_100_diff1 value: 25.2415 - type: nauc_map_at_1000_max value: 29.8974 - type: nauc_map_at_1000_std value: 19.7694 - type: nauc_map_at_1000_diff1 value: 24.1468 - type: nauc_recall_at_1_max value: 13.7444 - type: nauc_recall_at_1_std value: -3.6901 - type: nauc_recall_at_1_diff1 value: 44.304700000000004 - type: nauc_recall_at_3_max value: 18.4883 - type: nauc_recall_at_3_std value: -0.9726999999999999 - type: nauc_recall_at_3_diff1 value: 29.502499999999998 - type: nauc_recall_at_5_max value: 20.3422 - type: nauc_recall_at_5_std value: 2.8535 - type: nauc_recall_at_5_diff1 value: 23.688100000000002 - type: nauc_recall_at_10_max value: 26.8137 - type: nauc_recall_at_10_std value: 6.3345 - type: nauc_recall_at_10_diff1 value: 19.5952 - type: nauc_recall_at_20_max value: 25.4056 - type: nauc_recall_at_20_std value: 8.8684 - type: nauc_recall_at_20_diff1 value: 16.9286 - type: nauc_recall_at_100_max value: 29.1932 - type: nauc_recall_at_100_std value: 19.6664 - type: nauc_recall_at_100_diff1 value: 14.8893 - type: nauc_recall_at_1000_max value: 23.0622 - type: nauc_recall_at_1000_std value: 25.8533 - type: nauc_recall_at_1000_diff1 value: 10.0844 - type: nauc_precision_at_1_max value: 32.948699999999995 - type: nauc_precision_at_1_std value: 19.2494 - type: nauc_precision_at_1_diff1 value: 33.955200000000005 - type: nauc_precision_at_3_max value: 39.4863 - type: nauc_precision_at_3_std value: 27.7083 - type: nauc_precision_at_3_diff1 value: 22.4854 - type: nauc_precision_at_5_max value: 40.1376 - type: nauc_precision_at_5_std value: 33.4658 - type: nauc_precision_at_5_diff1 value: 18.108 - type: nauc_precision_at_10_max value: 39.333200000000005 - type: nauc_precision_at_10_std value: 39.949600000000004 - type: nauc_precision_at_10_diff1 value: 11.7183 - type: nauc_precision_at_20_max value: 32.0094 - type: nauc_precision_at_20_std value: 45.1815 - type: nauc_precision_at_20_diff1 value: 7.2424 - type: nauc_precision_at_100_max value: 18.073 - type: nauc_precision_at_100_std value: 46.7008 - type: nauc_precision_at_100_diff1 value: -0.6927 - type: nauc_precision_at_1000_max value: 2.9552 - type: nauc_precision_at_1000_std value: 32.691199999999995 - type: nauc_precision_at_1000_diff1 value: -4.3427 - type: nauc_mrr_at_1_max value: 32.7952 - type: nauc_mrr_at_1_std value: 20.716 - type: nauc_mrr_at_1_diff1 value: 33.047 - type: nauc_mrr_at_3_max value: 39.5698 - type: nauc_mrr_at_3_std value: 25.674200000000003 - type: nauc_mrr_at_3_diff1 value: 31.7916 - type: nauc_mrr_at_5_max value: 40.7711 - type: nauc_mrr_at_5_std value: 27.2756 - type: nauc_mrr_at_5_diff1 value: 31.5432 - type: nauc_mrr_at_10_max value: 41.033500000000004 - type: nauc_mrr_at_10_std value: 27.364500000000003 - type: nauc_mrr_at_10_diff1 value: 31.394899999999996 - type: nauc_mrr_at_20_max value: 40.9665 - type: nauc_mrr_at_20_std value: 27.5866 - type: nauc_mrr_at_20_diff1 value: 31.6835 - type: nauc_mrr_at_100_max value: 40.9471 - type: nauc_mrr_at_100_std value: 27.643 - type: nauc_mrr_at_100_diff1 value: 31.553900000000002 - type: nauc_mrr_at_1000_max value: 40.9207 - type: nauc_mrr_at_1000_std value: 27.6206 - type: nauc_mrr_at_1000_diff1 value: 31.5596 - type: main_score value: 26.991 task: type: Retrieval - dataset: config: default name: MTEB NQ (default) revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 split: test type: mteb/nq metrics: - type: ndcg_at_1 value: 32.937 - type: ndcg_at_3 value: 42.939 - type: ndcg_at_5 value: 47.044000000000004 - type: ndcg_at_10 value: 50.893 - type: ndcg_at_20 value: 53.093 - type: ndcg_at_100 value: 55.369 - type: ndcg_at_1000 value: 56.285 - type: map_at_1 value: 29.087000000000003 - type: map_at_3 value: 39.263 - type: map_at_5 value: 41.708 - type: map_at_10 value: 43.471 - type: map_at_20 value: 44.155 - type: map_at_100 value: 44.528 - type: map_at_1000 value: 44.568999999999996 - type: recall_at_1 value: 29.087000000000003 - type: recall_at_3 value: 50.451 - type: recall_at_5 value: 59.946 - type: recall_at_10 value: 71.109 - type: recall_at_20 value: 79.26299999999999 - type: recall_at_100 value: 90.51 - type: recall_at_1000 value: 97.277 - type: precision_at_1 value: 32.937 - type: precision_at_3 value: 19.602 - type: precision_at_5 value: 14.113999999999999 - type: precision_at_10 value: 8.462 - type: precision_at_20 value: 4.758 - type: precision_at_100 value: 1.0999999999999999 - type: precision_at_1000 value: 0.11800000000000001 - type: mrr_at_1 value: 32.9374 - type: mrr_at_3 value: 42.3957 - type: mrr_at_5 value: 44.5148 - type: mrr_at_10 value: 45.9459 - type: mrr_at_20 value: 46.4559 - type: mrr_at_100 value: 46.7367 - type: mrr_at_1000 value: 46.765 - type: nauc_ndcg_at_1_max value: 24.0105 - type: nauc_ndcg_at_1_std value: -1.5957 - type: nauc_ndcg_at_1_diff1 value: 33.1575 - type: nauc_ndcg_at_3_max value: 26.388 - type: nauc_ndcg_at_3_std value: -1.6223 - type: nauc_ndcg_at_3_diff1 value: 29.1908 - type: nauc_ndcg_at_5_max value: 28.188800000000004 - type: nauc_ndcg_at_5_std value: -0.3491 - type: nauc_ndcg_at_5_diff1 value: 28.287499999999998 - type: nauc_ndcg_at_10_max value: 29.768800000000002 - type: nauc_ndcg_at_10_std value: 2.093 - type: nauc_ndcg_at_10_diff1 value: 28.257700000000003 - type: nauc_ndcg_at_20_max value: 30.8687 - type: nauc_ndcg_at_20_std value: 3.4320000000000004 - type: nauc_ndcg_at_20_diff1 value: 28.220699999999997 - type: nauc_ndcg_at_100_max value: 30.692199999999996 - type: nauc_ndcg_at_100_std value: 4.0889 - type: nauc_ndcg_at_100_diff1 value: 28.468 - type: nauc_ndcg_at_1000_max value: 29.9378 - type: nauc_ndcg_at_1000_std value: 3.1003 - type: nauc_ndcg_at_1000_diff1 value: 28.8642 - type: nauc_map_at_1_max value: 21.948999999999998 - type: nauc_map_at_1_std value: -3.4299000000000004 - type: nauc_map_at_1_diff1 value: 33.5905 - type: nauc_map_at_3_max value: 25.600299999999997 - type: nauc_map_at_3_std value: -2.2762000000000002 - type: nauc_map_at_3_diff1 value: 30.235 - type: nauc_map_at_5_max value: 26.6859 - type: nauc_map_at_5_std value: -1.4717 - type: nauc_map_at_5_diff1 value: 29.6397 - type: nauc_map_at_10_max value: 27.3731 - type: nauc_map_at_10_std value: -0.4928 - type: nauc_map_at_10_diff1 value: 29.7079 - type: nauc_map_at_20_max value: 27.668799999999997 - type: nauc_map_at_20_std value: -0.0964 - type: nauc_map_at_20_diff1 value: 29.6945 - type: nauc_map_at_100_max value: 27.675 - type: nauc_map_at_100_std value: 0.0414 - type: nauc_map_at_100_diff1 value: 29.709000000000003 - type: nauc_map_at_1000_max value: 27.647 - type: nauc_map_at_1000_std value: 0.0063999999999999994 - type: nauc_map_at_1000_diff1 value: 29.724099999999996 - type: nauc_recall_at_1_max value: 21.948999999999998 - type: nauc_recall_at_1_std value: -3.4299000000000004 - type: nauc_recall_at_1_diff1 value: 33.5905 - type: nauc_recall_at_3_max value: 27.2388 - type: nauc_recall_at_3_std value: -1.4857 - type: nauc_recall_at_3_diff1 value: 25.991500000000002 - type: nauc_recall_at_5_max value: 31.4282 - type: nauc_recall_at_5_std value: 1.2066000000000001 - type: nauc_recall_at_5_diff1 value: 23.5681 - type: nauc_recall_at_10_max value: 37.4517 - type: nauc_recall_at_10_std value: 10.1238 - type: nauc_recall_at_10_diff1 value: 22.2133 - type: nauc_recall_at_20_max value: 46.4783 - type: nauc_recall_at_20_std value: 19.8515 - type: nauc_recall_at_20_diff1 value: 20.6028 - type: nauc_recall_at_100_max value: 58.7011 - type: nauc_recall_at_100_std value: 43.6264 - type: nauc_recall_at_100_diff1 value: 18.3446 - type: nauc_recall_at_1000_max value: 74.3733 - type: nauc_recall_at_1000_std value: 67.4933 - type: nauc_recall_at_1000_diff1 value: 25.375500000000002 - type: nauc_precision_at_1_max value: 24.0105 - type: nauc_precision_at_1_std value: -1.5957 - type: nauc_precision_at_1_diff1 value: 33.1575 - type: nauc_precision_at_3_max value: 27.406399999999998 - type: nauc_precision_at_3_std value: 0.9842 - type: nauc_precision_at_3_diff1 value: 21.793599999999998 - type: nauc_precision_at_5_max value: 29.145 - type: nauc_precision_at_5_std value: 4.6154 - type: nauc_precision_at_5_diff1 value: 16.8 - type: nauc_precision_at_10_max value: 29.480600000000003 - type: nauc_precision_at_10_std value: 12.286900000000001 - type: nauc_precision_at_10_diff1 value: 11.7686 - type: nauc_precision_at_20_max value: 29.791 - type: nauc_precision_at_20_std value: 18.0686 - type: nauc_precision_at_20_diff1 value: 7.2818 - type: nauc_precision_at_100_max value: 22.605900000000002 - type: nauc_precision_at_100_std value: 22.4834 - type: nauc_precision_at_100_diff1 value: -0.1403 - type: nauc_precision_at_1000_max value: 11.637599999999999 - type: nauc_precision_at_1000_std value: 16.299 - type: nauc_precision_at_1000_diff1 value: -4.3052 - type: nauc_mrr_at_1_max value: 24.0105 - type: nauc_mrr_at_1_std value: -1.5957 - type: nauc_mrr_at_1_diff1 value: 33.1575 - type: nauc_mrr_at_3_max value: 26.375 - type: nauc_mrr_at_3_std value: -0.2874 - type: nauc_mrr_at_3_diff1 value: 29.8333 - type: nauc_mrr_at_5_max value: 27.2656 - type: nauc_mrr_at_5_std value: 0.37 - type: nauc_mrr_at_5_diff1 value: 29.461900000000004 - type: nauc_mrr_at_10_max value: 27.7811 - type: nauc_mrr_at_10_std value: 1.2722 - type: nauc_mrr_at_10_diff1 value: 29.456 - type: nauc_mrr_at_20_max value: 27.9525 - type: nauc_mrr_at_20_std value: 1.4394 - type: nauc_mrr_at_20_diff1 value: 29.5184 - type: nauc_mrr_at_100_max value: 27.887099999999997 - type: nauc_mrr_at_100_std value: 1.4539 - type: nauc_mrr_at_100_diff1 value: 29.5789 - type: nauc_mrr_at_1000_max value: 27.865499999999997 - type: nauc_mrr_at_1000_std value: 1.4233 - type: nauc_mrr_at_1000_diff1 value: 29.5896 - type: main_score value: 50.893 task: type: Retrieval - dataset: config: default name: MTEB QuoraRetrieval (default) revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 split: test type: mteb/quora metrics: - type: ndcg_at_1 value: 78.41 - type: ndcg_at_3 value: 82.614 - type: ndcg_at_5 value: 84.443 - type: ndcg_at_10 value: 85.845 - type: ndcg_at_20 value: 86.615 - type: ndcg_at_100 value: 87.313 - type: ndcg_at_1000 value: 87.492 - type: map_at_1 value: 68.092 - type: map_at_3 value: 78.604 - type: map_at_5 value: 80.527 - type: map_at_10 value: 81.639 - type: map_at_20 value: 82.07900000000001 - type: map_at_100 value: 82.314 - type: map_at_1000 value: 82.336 - type: recall_at_1 value: 68.092 - type: recall_at_3 value: 84.66900000000001 - type: recall_at_5 value: 89.751 - type: recall_at_10 value: 93.888 - type: recall_at_20 value: 96.389 - type: recall_at_100 value: 99.042 - type: recall_at_1000 value: 99.929 - type: precision_at_1 value: 78.41 - type: precision_at_3 value: 36.027 - type: precision_at_5 value: 23.844 - type: precision_at_10 value: 13.043 - type: precision_at_20 value: 6.946 - type: precision_at_100 value: 1.506 - type: precision_at_1000 value: 0.156 - type: mrr_at_1 value: 78.4 - type: mrr_at_3 value: 83.9867 - type: mrr_at_5 value: 84.7992 - type: mrr_at_10 value: 85.1577 - type: mrr_at_20 value: 85.2505 - type: mrr_at_100 value: 85.2855 - type: mrr_at_1000 value: 85.2877 - type: nauc_ndcg_at_1_max value: 39.8081 - type: nauc_ndcg_at_1_std value: -28.606399999999997 - type: nauc_ndcg_at_1_diff1 value: 75.9446 - type: nauc_ndcg_at_3_max value: 37.7924 - type: nauc_ndcg_at_3_std value: -33.5391 - type: nauc_ndcg_at_3_diff1 value: 73.3973 - type: nauc_ndcg_at_5_max value: 38.047 - type: nauc_ndcg_at_5_std value: -33.5943 - type: nauc_ndcg_at_5_diff1 value: 73.7645 - type: nauc_ndcg_at_10_max value: 39.0948 - type: nauc_ndcg_at_10_std value: -32.3805 - type: nauc_ndcg_at_10_diff1 value: 74.2689 - type: nauc_ndcg_at_20_max value: 39.4193 - type: nauc_ndcg_at_20_std value: -31.309900000000003 - type: nauc_ndcg_at_20_diff1 value: 74.2915 - type: nauc_ndcg_at_100_max value: 39.6566 - type: nauc_ndcg_at_100_std value: -30.3777 - type: nauc_ndcg_at_100_diff1 value: 74.2375 - type: nauc_ndcg_at_1000_max value: 39.6656 - type: nauc_ndcg_at_1000_std value: -30.2466 - type: nauc_ndcg_at_1000_diff1 value: 74.22609999999999 - type: nauc_map_at_1_max value: 29.1625 - type: nauc_map_at_1_std value: -31.4393 - type: nauc_map_at_1_diff1 value: 77.41 - type: nauc_map_at_3_max value: 35.3371 - type: nauc_map_at_3_std value: -35.2729 - type: nauc_map_at_3_diff1 value: 74.6367 - type: nauc_map_at_5_max value: 36.600100000000005 - type: nauc_map_at_5_std value: -34.9097 - type: nauc_map_at_5_diff1 value: 74.48479999999999 - type: nauc_map_at_10_max value: 37.5994 - type: nauc_map_at_10_std value: -33.702 - type: nauc_map_at_10_diff1 value: 74.4678 - type: nauc_map_at_20_max value: 37.890299999999996 - type: nauc_map_at_20_std value: -32.9179 - type: nauc_map_at_20_diff1 value: 74.3744 - type: nauc_map_at_100_max value: 38.0205 - type: nauc_map_at_100_std value: -32.4364 - type: nauc_map_at_100_diff1 value: 74.3232 - type: nauc_map_at_1000_max value: 38.0296 - type: nauc_map_at_1000_std value: -32.390600000000006 - type: nauc_map_at_1000_diff1 value: 74.323 - type: nauc_recall_at_1_max value: 29.1625 - type: nauc_recall_at_1_std value: -31.4393 - type: nauc_recall_at_1_diff1 value: 77.41 - type: nauc_recall_at_3_max value: 32.2751 - type: nauc_recall_at_3_std value: -39.215 - type: nauc_recall_at_3_diff1 value: 70.3264 - type: nauc_recall_at_5_max value: 32.9445 - type: nauc_recall_at_5_std value: -40.7042 - type: nauc_recall_at_5_diff1 value: 68.803 - type: nauc_recall_at_10_max value: 36.6396 - type: nauc_recall_at_10_std value: -37.5092 - type: nauc_recall_at_10_diff1 value: 68.8674 - type: nauc_recall_at_20_max value: 38.8048 - type: nauc_recall_at_20_std value: -31.1471 - type: nauc_recall_at_20_diff1 value: 69.5775 - type: nauc_recall_at_100_max value: 42.9809 - type: nauc_recall_at_100_std value: -18.932299999999998 - type: nauc_recall_at_100_diff1 value: 69.4688 - type: nauc_recall_at_1000_max value: 67.836 - type: nauc_recall_at_1000_std value: 38.124 - type: nauc_recall_at_1000_diff1 value: 71.4131 - type: nauc_precision_at_1_max value: 39.8081 - type: nauc_precision_at_1_std value: -28.606399999999997 - type: nauc_precision_at_1_diff1 value: 75.9446 - type: nauc_precision_at_3_max value: 14.0877 - type: nauc_precision_at_3_std value: 2.1809 - type: nauc_precision_at_3_diff1 value: -8.5037 - type: nauc_precision_at_5_max value: 7.3131 - type: nauc_precision_at_5_std value: 11.67 - type: nauc_precision_at_5_diff1 value: -23.663500000000003 - type: nauc_precision_at_10_max value: 2.4924999999999997 - type: nauc_precision_at_10_std value: 20.4298 - type: nauc_precision_at_10_diff1 value: -32.5249 - type: nauc_precision_at_20_max value: -0.8340000000000001 - type: nauc_precision_at_20_std value: 25.5814 - type: nauc_precision_at_20_diff1 value: -36.879 - type: nauc_precision_at_100_max value: -4.2415 - type: nauc_precision_at_100_std value: 30.588700000000003 - type: nauc_precision_at_100_diff1 value: -40.0441 - type: nauc_precision_at_1000_max value: -5.7567 - type: nauc_precision_at_1000_std value: 31.6137 - type: nauc_precision_at_1000_diff1 value: -40.8601 - type: nauc_mrr_at_1_max value: 39.7059 - type: nauc_mrr_at_1_std value: -28.6757 - type: nauc_mrr_at_1_diff1 value: 75.96730000000001 - type: nauc_mrr_at_3_max value: 40.842 - type: nauc_mrr_at_3_std value: -29.4321 - type: nauc_mrr_at_3_diff1 value: 74.588 - type: nauc_mrr_at_5_max value: 40.8178 - type: nauc_mrr_at_5_std value: -29.343700000000002 - type: nauc_mrr_at_5_diff1 value: 74.7965 - type: nauc_mrr_at_10_max value: 40.9508 - type: nauc_mrr_at_10_std value: -29.1159 - type: nauc_mrr_at_10_diff1 value: 74.9315 - type: nauc_mrr_at_20_max value: 40.9157 - type: nauc_mrr_at_20_std value: -29.040899999999997 - type: nauc_mrr_at_20_diff1 value: 74.9526 - type: nauc_mrr_at_100_max value: 40.8672 - type: nauc_mrr_at_100_std value: -29.0691 - type: nauc_mrr_at_100_diff1 value: 74.9558 - type: nauc_mrr_at_1000_max value: 40.8655 - type: nauc_mrr_at_1000_std value: -29.0682 - type: nauc_mrr_at_1000_diff1 value: 74.9558 - type: main_score value: 85.845 task: type: Retrieval - dataset: config: default name: MTEB RedditClustering (default) revision: 24640382cdbf8abc73003fb0fa6d111a705499eb split: test type: mteb/reddit-clustering metrics: - type: v_measure value: 43.7063 - type: v_measure_std value: 4.7175 - type: main_score value: 43.7063 task: type: Clustering - dataset: config: default name: MTEB RedditClusteringP2P (default) revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 split: test type: mteb/reddit-clustering-p2p metrics: - type: v_measure value: 53.54 - type: v_measure_std value: 11.809600000000001 - type: main_score value: 53.54 task: type: Clustering - dataset: config: default name: MTEB SCIDOCS (default) revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 split: test type: mteb/scidocs metrics: - type: ndcg_at_1 value: 20.7 - type: ndcg_at_3 value: 16.518 - type: ndcg_at_5 value: 14.441 - type: ndcg_at_10 value: 17.380000000000003 - type: ndcg_at_20 value: 19.991 - type: ndcg_at_100 value: 24.747 - type: ndcg_at_1000 value: 30.296 - type: map_at_1 value: 4.208 - type: map_at_3 value: 7.335 - type: map_at_5 value: 8.712 - type: map_at_10 value: 10.135 - type: map_at_20 value: 11.068999999999999 - type: map_at_100 value: 11.951 - type: map_at_1000 value: 12.245000000000001 - type: recall_at_1 value: 4.208 - type: recall_at_3 value: 9.303 - type: recall_at_5 value: 12.797 - type: recall_at_10 value: 18.195 - type: recall_at_20 value: 24.318 - type: recall_at_100 value: 39.803 - type: recall_at_1000 value: 66.99000000000001 - type: precision_at_1 value: 20.7 - type: precision_at_3 value: 15.299999999999999 - type: precision_at_5 value: 12.6 - type: precision_at_10 value: 8.959999999999999 - type: precision_at_20 value: 5.985 - type: precision_at_100 value: 1.959 - type: precision_at_1000 value: 0.33 - type: mrr_at_1 value: 20.7 - type: mrr_at_3 value: 27.3833 - type: mrr_at_5 value: 29.168300000000002 - type: mrr_at_10 value: 30.598799999999997 - type: mrr_at_20 value: 31.217 - type: mrr_at_100 value: 31.688499999999998 - type: mrr_at_1000 value: 31.763599999999997 - type: nauc_ndcg_at_1_max value: 21.5429 - type: nauc_ndcg_at_1_std value: 4.718 - type: nauc_ndcg_at_1_diff1 value: 19.3827 - type: nauc_ndcg_at_3_max value: 32.1126 - type: nauc_ndcg_at_3_std value: 9.314400000000001 - type: nauc_ndcg_at_3_diff1 value: 20.0916 - type: nauc_ndcg_at_5_max value: 31.849800000000002 - type: nauc_ndcg_at_5_std value: 10.8725 - type: nauc_ndcg_at_5_diff1 value: 17.7008 - type: nauc_ndcg_at_10_max value: 33.366600000000005 - type: nauc_ndcg_at_10_std value: 13.625399999999999 - type: nauc_ndcg_at_10_diff1 value: 16.375 - type: nauc_ndcg_at_20_max value: 34.6677 - type: nauc_ndcg_at_20_std value: 15.3872 - type: nauc_ndcg_at_20_diff1 value: 16.8414 - type: nauc_ndcg_at_100_max value: 37.2778 - type: nauc_ndcg_at_100_std value: 20.4858 - type: nauc_ndcg_at_100_diff1 value: 16.7288 - type: nauc_ndcg_at_1000_max value: 36.601 - type: nauc_ndcg_at_1000_std value: 22.312199999999997 - type: nauc_ndcg_at_1000_diff1 value: 16.2465 - type: nauc_map_at_1_max value: 21.2741 - type: nauc_map_at_1_std value: 4.7143 - type: nauc_map_at_1_diff1 value: 18.8297 - type: nauc_map_at_3_max value: 31.727800000000002 - type: nauc_map_at_3_std value: 6.8229999999999995 - type: nauc_map_at_3_diff1 value: 20.4232 - type: nauc_map_at_5_max value: 32.3588 - type: nauc_map_at_5_std value: 8.565100000000001 - type: nauc_map_at_5_diff1 value: 18.9604 - type: nauc_map_at_10_max value: 33.6113 - type: nauc_map_at_10_std value: 10.743 - type: nauc_map_at_10_diff1 value: 17.6337 - type: nauc_map_at_20_max value: 34.7121 - type: nauc_map_at_20_std value: 11.9819 - type: nauc_map_at_20_diff1 value: 18.0342 - type: nauc_map_at_100_max value: 35.6623 - type: nauc_map_at_100_std value: 13.7498 - type: nauc_map_at_100_diff1 value: 17.985300000000002 - type: nauc_map_at_1000_max value: 35.663 - type: nauc_map_at_1000_std value: 14.050099999999999 - type: nauc_map_at_1000_diff1 value: 17.9269 - type: nauc_recall_at_1_max value: 21.2741 - type: nauc_recall_at_1_std value: 4.7143 - type: nauc_recall_at_1_diff1 value: 18.8297 - type: nauc_recall_at_3_max value: 36.2097 - type: nauc_recall_at_3_std value: 11.6014 - type: nauc_recall_at_3_diff1 value: 20.0114 - type: nauc_recall_at_5_max value: 33.7826 - type: nauc_recall_at_5_std value: 13.603000000000002 - type: nauc_recall_at_5_diff1 value: 15.4714 - type: nauc_recall_at_10_max value: 34.105999999999995 - type: nauc_recall_at_10_std value: 17.4216 - type: nauc_recall_at_10_diff1 value: 12.3734 - type: nauc_recall_at_20_max value: 35.2885 - type: nauc_recall_at_20_std value: 19.9833 - type: nauc_recall_at_20_diff1 value: 13.2726 - type: nauc_recall_at_100_max value: 37.3523 - type: nauc_recall_at_100_std value: 30.2207 - type: nauc_recall_at_100_diff1 value: 11.437700000000001 - type: nauc_recall_at_1000_max value: 29.276000000000003 - type: nauc_recall_at_1000_std value: 35.906 - type: nauc_recall_at_1000_diff1 value: 6.281499999999999 - type: nauc_precision_at_1_max value: 21.5429 - type: nauc_precision_at_1_std value: 4.718 - type: nauc_precision_at_1_diff1 value: 19.3827 - type: nauc_precision_at_3_max value: 36.609 - type: nauc_precision_at_3_std value: 11.863700000000001 - type: nauc_precision_at_3_diff1 value: 20.4735 - type: nauc_precision_at_5_max value: 34.3364 - type: nauc_precision_at_5_std value: 13.7951 - type: nauc_precision_at_5_diff1 value: 15.992700000000001 - type: nauc_precision_at_10_max value: 34.6556 - type: nauc_precision_at_10_std value: 17.4014 - type: nauc_precision_at_10_diff1 value: 12.981699999999998 - type: nauc_precision_at_20_max value: 35.836 - type: nauc_precision_at_20_std value: 20.1892 - type: nauc_precision_at_20_diff1 value: 13.6046 - type: nauc_precision_at_100_max value: 37.9677 - type: nauc_precision_at_100_std value: 30.3386 - type: nauc_precision_at_100_diff1 value: 11.8783 - type: nauc_precision_at_1000_max value: 29.795700000000004 - type: nauc_precision_at_1000_std value: 35.4107 - type: nauc_precision_at_1000_diff1 value: 6.6238 - type: nauc_mrr_at_1_max value: 21.5429 - type: nauc_mrr_at_1_std value: 4.718 - type: nauc_mrr_at_1_diff1 value: 19.3827 - type: nauc_mrr_at_3_max value: 27.635900000000003 - type: nauc_mrr_at_3_std value: 9.5593 - type: nauc_mrr_at_3_diff1 value: 18.4684 - type: nauc_mrr_at_5_max value: 26.682499999999997 - type: nauc_mrr_at_5_std value: 9.7369 - type: nauc_mrr_at_5_diff1 value: 17.4317 - type: nauc_mrr_at_10_max value: 27.032400000000003 - type: nauc_mrr_at_10_std value: 10.4662 - type: nauc_mrr_at_10_diff1 value: 17.3209 - type: nauc_mrr_at_20_max value: 27.1752 - type: nauc_mrr_at_20_std value: 10.5774 - type: nauc_mrr_at_20_diff1 value: 17.3725 - type: nauc_mrr_at_100_max value: 27.228099999999998 - type: nauc_mrr_at_100_std value: 10.710600000000001 - type: nauc_mrr_at_100_diff1 value: 17.4312 - type: nauc_mrr_at_1000_max value: 27.172600000000003 - type: nauc_mrr_at_1000_std value: 10.6434 - type: nauc_mrr_at_1000_diff1 value: 17.421400000000002 - type: main_score value: 17.380000000000003 task: type: Retrieval - dataset: config: default name: MTEB SICK-R (default) revision: 20a6d6f312dd54037fe07a32d58e5e168867909d split: test type: mteb/sickr-sts metrics: - type: pearson value: 75.385 - type: spearman value: 68.46560000000001 - type: cosine_pearson value: 75.385 - type: cosine_spearman value: 68.46560000000001 - type: manhattan_pearson value: 72.53309999999999 - type: manhattan_spearman value: 68.79899999999999 - type: euclidean_pearson value: 72.5239 - type: euclidean_spearman value: 68.46560000000001 - type: main_score value: 68.46560000000001 task: type: STS - dataset: config: default name: MTEB STS12 (default) revision: a0d554a64d88156834ff5ae9920b964011b16384 split: test type: mteb/sts12-sts metrics: - type: pearson value: 80.9088 - type: spearman value: 74.7362 - type: cosine_pearson value: 80.9088 - type: cosine_spearman value: 74.7362 - type: manhattan_pearson value: 77.3291 - type: manhattan_spearman value: 75.0881 - type: euclidean_pearson value: 77.5321 - type: euclidean_spearman value: 74.7347 - type: main_score value: 74.7362 task: type: STS - dataset: config: default name: MTEB STS13 (default) revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca split: test type: mteb/sts13-sts metrics: - type: pearson value: 74.6345 - type: spearman value: 75.63990000000001 - type: cosine_pearson value: 74.6345 - type: cosine_spearman value: 75.63990000000001 - type: manhattan_pearson value: 75.5227 - type: manhattan_spearman value: 75.5136 - type: euclidean_pearson value: 75.5744 - type: euclidean_spearman value: 75.63990000000001 - type: main_score value: 75.63990000000001 task: type: STS - dataset: config: default name: MTEB STS14 (default) revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 split: test type: mteb/sts14-sts metrics: - type: pearson value: 76.66629999999999 - type: spearman value: 73.1976 - type: cosine_pearson value: 76.66629999999999 - type: cosine_spearman value: 73.1976 - type: manhattan_pearson value: 75.0827 - type: manhattan_spearman value: 73.2472 - type: euclidean_pearson value: 75.2873 - type: euclidean_spearman value: 73.1976 - type: main_score value: 73.1976 task: type: STS - dataset: config: default name: MTEB STS15 (default) revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 split: test type: mteb/sts15-sts metrics: - type: pearson value: 84.33810000000001 - type: spearman value: 85.0551 - type: cosine_pearson value: 84.33810000000001 - type: cosine_spearman value: 85.0551 - type: manhattan_pearson value: 84.5984 - type: manhattan_spearman value: 85.1619 - type: euclidean_pearson value: 84.529 - type: euclidean_spearman value: 85.0551 - type: main_score value: 85.0551 task: type: STS - dataset: config: default name: MTEB STS16 (default) revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 split: test type: mteb/sts16-sts metrics: - type: pearson value: 79.5933 - type: spearman value: 81.11120000000001 - type: cosine_pearson value: 79.5933 - type: cosine_spearman value: 81.11120000000001 - type: manhattan_pearson value: 80.136 - type: manhattan_spearman value: 80.8767 - type: euclidean_pearson value: 80.3305 - type: euclidean_spearman value: 81.11120000000001 - type: main_score value: 81.11120000000001 task: type: STS - dataset: config: en-tr name: MTEB STS17 (en-tr) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 38.2331 - type: spearman value: 33.7346 - type: cosine_pearson value: 38.2331 - type: cosine_spearman value: 33.7346 - type: manhattan_pearson value: 40.986 - type: manhattan_spearman value: 34.253099999999996 - type: euclidean_pearson value: 40.2622 - type: euclidean_spearman value: 33.7346 - type: main_score value: 33.7346 task: type: STS - dataset: config: fr-en name: MTEB STS17 (fr-en) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 73.5477 - type: spearman value: 74.1745 - type: cosine_pearson value: 73.5477 - type: cosine_spearman value: 74.1745 - type: manhattan_pearson value: 74.84920000000001 - type: manhattan_spearman value: 74.49900000000001 - type: euclidean_pearson value: 74.14 - type: euclidean_spearman value: 74.1745 - type: main_score value: 74.1745 task: type: STS - dataset: config: it-en name: MTEB STS17 (it-en) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 66.7169 - type: spearman value: 66.864 - type: cosine_pearson value: 66.7169 - type: cosine_spearman value: 66.864 - type: manhattan_pearson value: 67.39359999999999 - type: manhattan_spearman value: 67.0985 - type: euclidean_pearson value: 66.9389 - type: euclidean_spearman value: 66.864 - type: main_score value: 66.864 task: type: STS - dataset: config: es-en name: MTEB STS17 (es-en) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 70.5101 - type: spearman value: 70.05930000000001 - type: cosine_pearson value: 70.5101 - type: cosine_spearman value: 70.05930000000001 - type: manhattan_pearson value: 72.7524 - type: manhattan_spearman value: 71.2907 - type: euclidean_pearson value: 71.148 - type: euclidean_spearman value: 70.05930000000001 - type: main_score value: 70.05930000000001 task: type: STS - dataset: config: nl-en name: MTEB STS17 (nl-en) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 68.3089 - type: spearman value: 68.4899 - type: cosine_pearson value: 68.3089 - type: cosine_spearman value: 68.4899 - type: manhattan_pearson value: 69.3956 - type: manhattan_spearman value: 68.9486 - type: euclidean_pearson value: 68.8059 - type: euclidean_spearman value: 68.4899 - type: main_score value: 68.4899 task: type: STS - dataset: config: en-en name: MTEB STS17 (en-en) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 78.28739999999999 - type: spearman value: 78.6966 - type: cosine_pearson value: 78.28739999999999 - type: cosine_spearman value: 78.6966 - type: manhattan_pearson value: 78.97070000000001 - type: manhattan_spearman value: 79.1907 - type: euclidean_pearson value: 78.36070000000001 - type: euclidean_spearman value: 78.6966 - type: main_score value: 78.6966 task: type: STS - dataset: config: en-ar name: MTEB STS17 (en-ar) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 59.611999999999995 - type: spearman value: 59.9288 - type: cosine_pearson value: 59.611999999999995 - type: cosine_spearman value: 59.9288 - type: manhattan_pearson value: 60.3549 - type: manhattan_spearman value: 59.696099999999994 - type: euclidean_pearson value: 60.4754 - type: euclidean_spearman value: 59.9288 - type: main_score value: 59.9288 task: type: STS - dataset: config: en-de name: MTEB STS17 (en-de) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 70.6341 - type: spearman value: 69.9775 - type: cosine_pearson value: 70.6341 - type: cosine_spearman value: 69.9775 - type: manhattan_pearson value: 72.7788 - type: manhattan_spearman value: 71.2033 - type: euclidean_pearson value: 71.5822 - type: euclidean_spearman value: 69.9775 - type: main_score value: 69.9775 task: type: STS - dataset: config: en name: MTEB STS22 (en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: pearson value: 67.2703 - type: spearman value: 67.58229999999999 - type: cosine_pearson value: 67.2703 - type: cosine_spearman value: 67.58229999999999 - type: manhattan_pearson value: 68.1768 - type: manhattan_spearman value: 67.6479 - type: euclidean_pearson value: 67.9708 - type: euclidean_spearman value: 67.58229999999999 - type: main_score value: 67.58229999999999 task: type: STS - dataset: config: de-en name: MTEB STS22 (de-en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: pearson value: 62.2109 - type: spearman value: 56.2314 - type: cosine_pearson value: 62.2109 - type: cosine_spearman value: 56.2314 - type: manhattan_pearson value: 65.9455 - type: manhattan_spearman value: 56.5496 - type: euclidean_pearson value: 65.30550000000001 - type: euclidean_spearman value: 56.2314 - type: main_score value: 56.2314 task: type: STS - dataset: config: pl-en name: MTEB STS22 (pl-en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: pearson value: 74.4185 - type: spearman value: 72.82119999999999 - type: cosine_pearson value: 74.4185 - type: cosine_spearman value: 72.82119999999999 - type: manhattan_pearson value: 75.6921 - type: manhattan_spearman value: 72.3315 - type: euclidean_pearson value: 75.1725 - type: euclidean_spearman value: 72.82119999999999 - type: main_score value: 72.82119999999999 task: type: STS - dataset: config: es-en name: MTEB STS22 (es-en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: pearson value: 78.6974 - type: spearman value: 79.5845 - type: cosine_pearson value: 78.6974 - type: cosine_spearman value: 79.5845 - type: manhattan_pearson value: 79.6724 - type: manhattan_spearman value: 79.668 - type: euclidean_pearson value: 79.69380000000001 - type: euclidean_spearman value: 79.5845 - type: main_score value: 79.5845 task: type: STS - dataset: config: zh-en name: MTEB STS22 (zh-en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: pearson value: 71.3237 - type: spearman value: 71.5178 - type: cosine_pearson value: 71.3237 - type: cosine_spearman value: 71.5178 - type: manhattan_pearson value: 73.3948 - type: manhattan_spearman value: 71.5607 - type: euclidean_pearson value: 73.1403 - type: euclidean_spearman value: 71.5178 - type: main_score value: 71.5178 task: type: STS - dataset: config: default name: MTEB STSBenchmark (default) revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 split: test type: mteb/stsbenchmark-sts metrics: - type: pearson value: 75.5279 - type: spearman value: 76.9844 - type: cosine_pearson value: 75.5279 - type: cosine_spearman value: 76.9844 - type: manhattan_pearson value: 77.5474 - type: manhattan_spearman value: 77.4353 - type: euclidean_pearson value: 77.1612 - type: euclidean_spearman value: 76.9844 - type: main_score value: 76.9844 task: type: STS - dataset: config: default name: MTEB SciDocsRR (default) revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab split: test type: mteb/scidocs-reranking metrics: - type: map value: 79.33109999999999 - type: mrr value: 94.0725 - type: nAUC_map_max value: 59.0089 - type: nAUC_map_std value: 69.9131 - type: nAUC_map_diff1 value: 5.900600000000001 - type: nAUC_mrr_max value: 84.5132 - type: nAUC_mrr_std value: 77.767 - type: nAUC_mrr_diff1 value: 46.5557 - type: main_score value: 79.33109999999999 task: type: Reranking - dataset: config: default name: MTEB SciFact (default) revision: 0228b52cf27578f30900b9e5271d331663a030d7 split: test type: mteb/scifact metrics: - type: ndcg_at_1 value: 51.333 - type: ndcg_at_3 value: 57.781000000000006 - type: ndcg_at_5 value: 60.925 - type: ndcg_at_10 value: 63.254 - type: ndcg_at_20 value: 64.955 - type: ndcg_at_100 value: 66.155 - type: ndcg_at_1000 value: 67.193 - type: map_at_1 value: 48.428 - type: map_at_3 value: 55.145999999999994 - type: map_at_5 value: 57.055 - type: map_at_10 value: 58.17 - type: map_at_20 value: 58.723000000000006 - type: map_at_100 value: 58.901 - type: map_at_1000 value: 58.940000000000005 - type: recall_at_1 value: 48.428 - type: recall_at_3 value: 62.55 - type: recall_at_5 value: 70.367 - type: recall_at_10 value: 76.972 - type: recall_at_20 value: 83.317 - type: recall_at_100 value: 89.7 - type: recall_at_1000 value: 98.0 - type: precision_at_1 value: 51.333 - type: precision_at_3 value: 22.444 - type: precision_at_5 value: 15.4 - type: precision_at_10 value: 8.6 - type: precision_at_20 value: 4.717 - type: precision_at_100 value: 1.02 - type: precision_at_1000 value: 0.11100000000000002 - type: mrr_at_1 value: 51.3333 - type: mrr_at_3 value: 57.5556 - type: mrr_at_5 value: 59.255599999999994 - type: mrr_at_10 value: 60.104400000000005 - type: mrr_at_20 value: 60.4592 - type: mrr_at_100 value: 60.590999999999994 - type: mrr_at_1000 value: 60.622299999999996 - type: nauc_ndcg_at_1_max value: 55.0684 - type: nauc_ndcg_at_1_std value: 13.461200000000002 - type: nauc_ndcg_at_1_diff1 value: 67.4931 - type: nauc_ndcg_at_3_max value: 54.1942 - type: nauc_ndcg_at_3_std value: 11.029300000000001 - type: nauc_ndcg_at_3_diff1 value: 61.4423 - type: nauc_ndcg_at_5_max value: 53.712199999999996 - type: nauc_ndcg_at_5_std value: 11.0586 - type: nauc_ndcg_at_5_diff1 value: 59.3723 - type: nauc_ndcg_at_10_max value: 55.2513 - type: nauc_ndcg_at_10_std value: 13.413400000000001 - type: nauc_ndcg_at_10_diff1 value: 58.5176 - type: nauc_ndcg_at_20_max value: 56.721900000000005 - type: nauc_ndcg_at_20_std value: 14.9832 - type: nauc_ndcg_at_20_diff1 value: 59.1445 - type: nauc_ndcg_at_100_max value: 56.5049 - type: nauc_ndcg_at_100_std value: 15.021799999999999 - type: nauc_ndcg_at_100_diff1 value: 59.4117 - type: nauc_ndcg_at_1000_max value: 56.0829 - type: nauc_ndcg_at_1000_std value: 14.4429 - type: nauc_ndcg_at_1000_diff1 value: 60.45700000000001 - type: nauc_map_at_1_max value: 50.901799999999994 - type: nauc_map_at_1_std value: 6.0093 - type: nauc_map_at_1_diff1 value: 66.6214 - type: nauc_map_at_3_max value: 52.684200000000004 - type: nauc_map_at_3_std value: 7.9088 - type: nauc_map_at_3_diff1 value: 62.906600000000005 - type: nauc_map_at_5_max value: 52.6187 - type: nauc_map_at_5_std value: 8.2372 - type: nauc_map_at_5_diff1 value: 61.772000000000006 - type: nauc_map_at_10_max value: 53.317899999999995 - type: nauc_map_at_10_std value: 9.397 - type: nauc_map_at_10_diff1 value: 61.355599999999995 - type: nauc_map_at_20_max value: 54.04259999999999 - type: nauc_map_at_20_std value: 10.2201 - type: nauc_map_at_20_diff1 value: 61.684000000000005 - type: nauc_map_at_100_max value: 54.0394 - type: nauc_map_at_100_std value: 10.2894 - type: nauc_map_at_100_diff1 value: 61.7302 - type: nauc_map_at_1000_max value: 54.024300000000004 - type: nauc_map_at_1000_std value: 10.2881 - type: nauc_map_at_1000_diff1 value: 61.7661 - type: nauc_recall_at_1_max value: 50.901799999999994 - type: nauc_recall_at_1_std value: 6.0093 - type: nauc_recall_at_1_diff1 value: 66.6214 - type: nauc_recall_at_3_max value: 52.8806 - type: nauc_recall_at_3_std value: 10.7463 - type: nauc_recall_at_3_diff1 value: 55.5486 - type: nauc_recall_at_5_max value: 52.277300000000004 - type: nauc_recall_at_5_std value: 12.2395 - type: nauc_recall_at_5_diff1 value: 49.147800000000004 - type: nauc_recall_at_10_max value: 57.403499999999994 - type: nauc_recall_at_10_std value: 20.4581 - type: nauc_recall_at_10_diff1 value: 44.0595 - type: nauc_recall_at_20_max value: 65.5378 - type: nauc_recall_at_20_std value: 29.5288 - type: nauc_recall_at_20_diff1 value: 43.2217 - type: nauc_recall_at_100_max value: 67.4941 - type: nauc_recall_at_100_std value: 36.178399999999996 - type: nauc_recall_at_100_diff1 value: 39.3443 - type: nauc_recall_at_1000_max value: 72.50229999999999 - type: nauc_recall_at_1000_std value: 51.455 - type: nauc_recall_at_1000_diff1 value: 62.153800000000004 - type: nauc_precision_at_1_max value: 55.0684 - type: nauc_precision_at_1_std value: 13.461200000000002 - type: nauc_precision_at_1_diff1 value: 67.4931 - type: nauc_precision_at_3_max value: 54.947599999999994 - type: nauc_precision_at_3_std value: 23.1875 - type: nauc_precision_at_3_diff1 value: 51.166199999999996 - type: nauc_precision_at_5_max value: 50.1483 - type: nauc_precision_at_5_std value: 27.1119 - type: nauc_precision_at_5_diff1 value: 37.3846 - type: nauc_precision_at_10_max value: 46.800799999999995 - type: nauc_precision_at_10_std value: 37.737500000000004 - type: nauc_precision_at_10_diff1 value: 22.945999999999998 - type: nauc_precision_at_20_max value: 43.980000000000004 - type: nauc_precision_at_20_std value: 46.3352 - type: nauc_precision_at_20_diff1 value: 14.718300000000001 - type: nauc_precision_at_100_max value: 34.8346 - type: nauc_precision_at_100_std value: 49.0032 - type: nauc_precision_at_100_diff1 value: 4.7538 - type: nauc_precision_at_1000_max value: 19.9994 - type: nauc_precision_at_1000_std value: 51.132999999999996 - type: nauc_precision_at_1000_diff1 value: -6.5839 - type: nauc_mrr_at_1_max value: 55.0684 - type: nauc_mrr_at_1_std value: 13.461200000000002 - type: nauc_mrr_at_1_diff1 value: 67.4931 - type: nauc_mrr_at_3_max value: 56.2153 - type: nauc_mrr_at_3_std value: 15.4146 - type: nauc_mrr_at_3_diff1 value: 63.273199999999996 - type: nauc_mrr_at_5_max value: 56.0011 - type: nauc_mrr_at_5_std value: 15.7535 - type: nauc_mrr_at_5_diff1 value: 62.1466 - type: nauc_mrr_at_10_max value: 56.643100000000004 - type: nauc_mrr_at_10_std value: 16.354 - type: nauc_mrr_at_10_diff1 value: 62.0124 - type: nauc_mrr_at_20_max value: 56.686800000000005 - type: nauc_mrr_at_20_std value: 16.1984 - type: nauc_mrr_at_20_diff1 value: 62.095 - type: nauc_mrr_at_100_max value: 56.6659 - type: nauc_mrr_at_100_std value: 16.1601 - type: nauc_mrr_at_100_diff1 value: 62.157399999999996 - type: nauc_mrr_at_1000_max value: 56.657599999999995 - type: nauc_mrr_at_1000_std value: 16.1579 - type: nauc_mrr_at_1000_diff1 value: 62.195 - type: main_score value: 63.254 task: type: Retrieval - dataset: config: default name: MTEB SprintDuplicateQuestions (default) revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 split: test type: mteb/sprintduplicatequestions-pairclassification metrics: - type: similarity_accuracy value: 99.7465 - type: similarity_accuracy_threshold value: 84.08489999999999 - type: similarity_f1 value: 86.9388 - type: similarity_f1_threshold value: 84.08489999999999 - type: similarity_precision value: 88.75 - type: similarity_recall value: 85.2 - type: similarity_ap value: 93.56139999999999 - type: cosine_accuracy value: 99.7465 - type: cosine_accuracy_threshold value: 84.08489999999999 - type: cosine_f1 value: 86.9388 - type: cosine_f1_threshold value: 84.08489999999999 - type: cosine_precision value: 88.75 - type: cosine_recall value: 85.2 - type: cosine_ap value: 93.56139999999999 - type: manhattan_accuracy value: 99.7614 - type: manhattan_accuracy_threshold value: 853.1299 - type: manhattan_f1 value: 87.7053 - type: manhattan_f1_threshold value: 888.5799999999999 - type: manhattan_precision value: 87.3142 - type: manhattan_recall value: 88.1 - type: manhattan_ap value: 94.0777 - type: euclidean_accuracy value: 99.7465 - type: euclidean_accuracy_threshold value: 56.4183 - type: euclidean_f1 value: 86.9388 - type: euclidean_f1_threshold value: 56.4183 - type: euclidean_precision value: 88.75 - type: euclidean_recall value: 85.2 - type: euclidean_ap value: 93.5613 - type: dot_accuracy value: 99.7465 - type: dot_accuracy_threshold value: 84.08489999999999 - type: dot_f1 value: 86.9388 - type: dot_f1_threshold value: 84.08489999999999 - type: dot_precision value: 88.75 - type: dot_recall value: 85.2 - type: dot_ap value: 93.56139999999999 - type: max_accuracy value: 99.7614 - type: max_f1 value: 87.7053 - type: max_precision value: 88.75 - type: max_recall value: 88.1 - type: max_ap value: 94.0777 - type: main_score value: 94.0777 task: type: PairClassification - dataset: config: default name: MTEB StackExchangeClustering (default) revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 split: test type: mteb/stackexchange-clustering metrics: - type: v_measure value: 54.13980000000001 - type: v_measure_std value: 5.5665 - type: main_score value: 54.13980000000001 task: type: Clustering - dataset: config: default name: MTEB StackExchangeClusteringP2P (default) revision: 815ca46b2622cec33ccafc3735d572c266efdb44 split: test type: mteb/stackexchange-clustering-p2p metrics: - type: v_measure value: 32.6113 - type: v_measure_std value: 1.6389999999999998 - type: main_score value: 32.6113 task: type: Clustering - dataset: config: default name: MTEB StackOverflowDupQuestions (default) revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 split: test type: mteb/stackoverflowdupquestions-reranking metrics: - type: map value: 50.813900000000004 - type: mrr value: 51.702099999999994 - type: nAUC_map_max value: 14.127600000000001 - type: nAUC_map_std value: 8.6735 - type: nAUC_map_diff1 value: 36.4317 - type: nAUC_mrr_max value: 15.504399999999999 - type: nAUC_mrr_std value: 9.7053 - type: nAUC_mrr_diff1 value: 36.7021 - type: main_score value: 50.813900000000004 task: type: Reranking - dataset: config: default name: MTEB StackOverflowQA (default) revision: db8f169f3894c14a00251061f957b2063eef2bd5 split: test type: CoIR-Retrieval/stackoverflow-qa metrics: - type: ndcg_at_1 value: 54.26299999999999 - type: ndcg_at_3 value: 62.395 - type: ndcg_at_5 value: 64.603 - type: ndcg_at_10 value: 66.57600000000001 - type: ndcg_at_20 value: 68.089 - type: ndcg_at_100 value: 69.587 - type: ndcg_at_1000 value: 70.216 - type: map_at_1 value: 54.26299999999999 - type: map_at_3 value: 60.373 - type: map_at_5 value: 61.609 - type: map_at_10 value: 62.419999999999995 - type: map_at_20 value: 62.83800000000001 - type: map_at_100 value: 63.04 - type: map_at_1000 value: 63.063 - type: recall_at_1 value: 54.26299999999999 - type: recall_at_3 value: 68.255 - type: recall_at_5 value: 73.571 - type: recall_at_10 value: 79.689 - type: recall_at_20 value: 85.65700000000001 - type: recall_at_100 value: 93.781 - type: recall_at_1000 value: 98.79599999999999 - type: precision_at_1 value: 54.26299999999999 - type: precision_at_3 value: 22.752 - type: precision_at_5 value: 14.713999999999999 - type: precision_at_10 value: 7.968999999999999 - type: precision_at_20 value: 4.283 - type: precision_at_100 value: 0.938 - type: precision_at_1000 value: 0.099 - type: mrr_at_1 value: 54.2628 - type: mrr_at_3 value: 60.372800000000005 - type: mrr_at_5 value: 61.609 - type: mrr_at_10 value: 62.4202 - type: mrr_at_20 value: 62.83800000000001 - type: mrr_at_100 value: 63.0402 - type: mrr_at_1000 value: 63.06270000000001 - type: nauc_ndcg_at_1_max value: 61.3558 - type: nauc_ndcg_at_1_std value: -7.5783000000000005 - type: nauc_ndcg_at_1_diff1 value: 72.637 - type: nauc_ndcg_at_3_max value: 59.621900000000004 - type: nauc_ndcg_at_3_std value: -7.8752 - type: nauc_ndcg_at_3_diff1 value: 67.341 - type: nauc_ndcg_at_5_max value: 59.32150000000001 - type: nauc_ndcg_at_5_std value: -6.783500000000001 - type: nauc_ndcg_at_5_diff1 value: 66.3908 - type: nauc_ndcg_at_10_max value: 58.8665 - type: nauc_ndcg_at_10_std value: -6.8839999999999995 - type: nauc_ndcg_at_10_diff1 value: 65.5914 - type: nauc_ndcg_at_20_max value: 59.071 - type: nauc_ndcg_at_20_std value: -6.7216 - type: nauc_ndcg_at_20_diff1 value: 66.0076 - type: nauc_ndcg_at_100_max value: 59.2928 - type: nauc_ndcg_at_100_std value: -6.0869 - type: nauc_ndcg_at_100_diff1 value: 66.5509 - type: nauc_ndcg_at_1000_max value: 59.551 - type: nauc_ndcg_at_1000_std value: -6.3229 - type: nauc_ndcg_at_1000_diff1 value: 67.0501 - type: nauc_map_at_1_max value: 61.3558 - type: nauc_map_at_1_std value: -7.5783000000000005 - type: nauc_map_at_1_diff1 value: 72.637 - type: nauc_map_at_3_max value: 60.0638 - type: nauc_map_at_3_std value: -7.824599999999999 - type: nauc_map_at_3_diff1 value: 68.7255 - type: nauc_map_at_5_max value: 59.9035 - type: nauc_map_at_5_std value: -7.236199999999999 - type: nauc_map_at_5_diff1 value: 68.2474 - type: nauc_map_at_10_max value: 59.73159999999999 - type: nauc_map_at_10_std value: -7.3129 - type: nauc_map_at_10_diff1 value: 67.9742 - type: nauc_map_at_20_max value: 59.799800000000005 - type: nauc_map_at_20_std value: -7.2599 - type: nauc_map_at_20_diff1 value: 68.1128 - type: nauc_map_at_100_max value: 59.8324 - type: nauc_map_at_100_std value: -7.1589 - type: nauc_map_at_100_diff1 value: 68.1784 - type: nauc_map_at_1000_max value: 59.845099999999995 - type: nauc_map_at_1000_std value: -7.1592 - type: nauc_map_at_1000_diff1 value: 68.19770000000001 - type: nauc_recall_at_1_max value: 61.3558 - type: nauc_recall_at_1_std value: -7.5783000000000005 - type: nauc_recall_at_1_diff1 value: 72.637 - type: nauc_recall_at_3_max value: 58.1732 - type: nauc_recall_at_3_std value: -8.028599999999999 - type: nauc_recall_at_3_diff1 value: 62.7847 - type: nauc_recall_at_5_max value: 57.1488 - type: nauc_recall_at_5_std value: -4.9189 - type: nauc_recall_at_5_diff1 value: 59.392599999999995 - type: nauc_recall_at_10_max value: 54.7384 - type: nauc_recall_at_10_std value: -4.683 - type: nauc_recall_at_10_diff1 value: 54.317499999999995 - type: nauc_recall_at_20_max value: 54.5659 - type: nauc_recall_at_20_std value: -2.9657 - type: nauc_recall_at_20_diff1 value: 53.039899999999996 - type: nauc_recall_at_100_max value: 53.5805 - type: nauc_recall_at_100_std value: 12.822 - type: nauc_recall_at_100_diff1 value: 49.3168 - type: nauc_recall_at_1000_max value: 64.52839999999999 - type: nauc_recall_at_1000_std value: 44.954699999999995 - type: nauc_recall_at_1000_diff1 value: 51.3607 - type: nauc_precision_at_1_max value: 61.3558 - type: nauc_precision_at_1_std value: -7.5783000000000005 - type: nauc_precision_at_1_diff1 value: 72.637 - type: nauc_precision_at_3_max value: 58.1732 - type: nauc_precision_at_3_std value: -8.028599999999999 - type: nauc_precision_at_3_diff1 value: 62.7847 - type: nauc_precision_at_5_max value: 57.1488 - type: nauc_precision_at_5_std value: -4.9189 - type: nauc_precision_at_5_diff1 value: 59.392599999999995 - type: nauc_precision_at_10_max value: 54.7384 - type: nauc_precision_at_10_std value: -4.683 - type: nauc_precision_at_10_diff1 value: 54.317499999999995 - type: nauc_precision_at_20_max value: 54.5659 - type: nauc_precision_at_20_std value: -2.9657 - type: nauc_precision_at_20_diff1 value: 53.039899999999996 - type: nauc_precision_at_100_max value: 53.5805 - type: nauc_precision_at_100_std value: 12.822 - type: nauc_precision_at_100_diff1 value: 49.3168 - type: nauc_precision_at_1000_max value: 64.52839999999999 - type: nauc_precision_at_1000_std value: 44.954699999999995 - type: nauc_precision_at_1000_diff1 value: 51.3607 - type: nauc_mrr_at_1_max value: 61.3558 - type: nauc_mrr_at_1_std value: -7.5783000000000005 - type: nauc_mrr_at_1_diff1 value: 72.637 - type: nauc_mrr_at_3_max value: 60.0638 - type: nauc_mrr_at_3_std value: -7.824599999999999 - type: nauc_mrr_at_3_diff1 value: 68.7255 - type: nauc_mrr_at_5_max value: 59.9035 - type: nauc_mrr_at_5_std value: -7.236199999999999 - type: nauc_mrr_at_5_diff1 value: 68.2474 - type: nauc_mrr_at_10_max value: 59.73159999999999 - type: nauc_mrr_at_10_std value: -7.3129 - type: nauc_mrr_at_10_diff1 value: 67.9742 - type: nauc_mrr_at_20_max value: 59.799800000000005 - type: nauc_mrr_at_20_std value: -7.2599 - type: nauc_mrr_at_20_diff1 value: 68.1128 - type: nauc_mrr_at_100_max value: 59.8324 - type: nauc_mrr_at_100_std value: -7.1589 - type: nauc_mrr_at_100_diff1 value: 68.1784 - type: nauc_mrr_at_1000_max value: 59.845099999999995 - type: nauc_mrr_at_1000_std value: -7.1592 - type: nauc_mrr_at_1000_diff1 value: 68.19770000000001 - type: main_score value: 66.57600000000001 task: type: Retrieval - dataset: config: default name: MTEB SummEval (default) revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c split: test type: mteb/summeval metrics: - type: pearson value: 31.255699999999997 - type: spearman value: 31.121 - type: cosine_spearman value: 31.121 - type: cosine_pearson value: 31.255699999999997 - type: dot_spearman value: 31.121 - type: dot_pearson value: 31.255699999999997 - type: main_score value: 31.121 task: type: Summarization - dataset: config: default name: MTEB SyntheticText2SQL (default) revision: 686b87296c3a0191b5d9415a00526c62db9fce09 split: test type: CoIR-Retrieval/synthetic-text2sql metrics: - type: ndcg_at_1 value: 2.752 - type: ndcg_at_3 value: 32.669 - type: ndcg_at_5 value: 36.313 - type: ndcg_at_10 value: 39.341 - type: ndcg_at_20 value: 41.22 - type: ndcg_at_100 value: 43.682 - type: ndcg_at_1000 value: 44.679 - type: map_at_1 value: 2.752 - type: map_at_3 value: 25.918999999999997 - type: map_at_5 value: 27.939000000000004 - type: map_at_10 value: 29.195999999999998 - type: map_at_20 value: 29.711 - type: map_at_100 value: 30.057000000000002 - type: map_at_1000 value: 30.092999999999996 - type: recall_at_1 value: 2.752 - type: recall_at_3 value: 51.957 - type: recall_at_5 value: 60.809999999999995 - type: recall_at_10 value: 70.14200000000001 - type: recall_at_20 value: 77.576 - type: recall_at_100 value: 90.771 - type: recall_at_1000 value: 98.667 - type: precision_at_1 value: 2.752 - type: precision_at_3 value: 17.319000000000003 - type: precision_at_5 value: 12.162 - type: precision_at_10 value: 7.013999999999999 - type: precision_at_20 value: 3.879 - type: precision_at_100 value: 0.9079999999999999 - type: precision_at_1000 value: 0.099 - type: mrr_at_1 value: 23.534399999999998 - type: mrr_at_3 value: 37.8739 - type: mrr_at_5 value: 39.6078 - type: mrr_at_10 value: 40.7592 - type: mrr_at_20 value: 41.2449 - type: mrr_at_100 value: 41.5832 - type: mrr_at_1000 value: 41.6198 - type: nauc_ndcg_at_1_max value: 13.625200000000001 - type: nauc_ndcg_at_1_std value: -17.2342 - type: nauc_ndcg_at_1_diff1 value: 72.20830000000001 - type: nauc_ndcg_at_3_max value: 33.5059 - type: nauc_ndcg_at_3_std value: -15.198400000000001 - type: nauc_ndcg_at_3_diff1 value: -55.0763 - type: nauc_ndcg_at_5_max value: 31.461699999999997 - type: nauc_ndcg_at_5_std value: -15.857899999999999 - type: nauc_ndcg_at_5_diff1 value: -51.2902 - type: nauc_ndcg_at_10_max value: 30.206699999999998 - type: nauc_ndcg_at_10_std value: -15.9071 - type: nauc_ndcg_at_10_diff1 value: -48.7532 - type: nauc_ndcg_at_20_max value: 29.5645 - type: nauc_ndcg_at_20_std value: -15.509400000000001 - type: nauc_ndcg_at_20_diff1 value: -47.8463 - type: nauc_ndcg_at_100_max value: 29.8902 - type: nauc_ndcg_at_100_std value: -14.0898 - type: nauc_ndcg_at_100_diff1 value: -46.7294 - type: nauc_ndcg_at_1000_max value: 30.285800000000002 - type: nauc_ndcg_at_1000_std value: -14.7898 - type: nauc_ndcg_at_1000_diff1 value: -47.0235 - type: nauc_map_at_1_max value: 13.625200000000001 - type: nauc_map_at_1_std value: -17.2342 - type: nauc_map_at_1_diff1 value: 72.20830000000001 - type: nauc_map_at_3_max value: 32.7681 - type: nauc_map_at_3_std value: -15.386700000000001 - type: nauc_map_at_3_diff1 value: -49.9214 - type: nauc_map_at_5_max value: 31.436799999999998 - type: nauc_map_at_5_std value: -15.8028 - type: nauc_map_at_5_diff1 value: -47.2353 - type: nauc_map_at_10_max value: 30.857200000000002 - type: nauc_map_at_10_std value: -15.878200000000001 - type: nauc_map_at_10_diff1 value: -45.9157 - type: nauc_map_at_20_max value: 30.660300000000003 - type: nauc_map_at_20_std value: -15.7674 - type: nauc_map_at_20_diff1 value: -45.5729 - type: nauc_map_at_100_max value: 30.7164 - type: nauc_map_at_100_std value: -15.579200000000002 - type: nauc_map_at_100_diff1 value: -45.3606 - type: nauc_map_at_1000_max value: 30.728 - type: nauc_map_at_1000_std value: -15.598600000000001 - type: nauc_map_at_1000_diff1 value: -45.367200000000004 - type: nauc_recall_at_1_max value: 13.625200000000001 - type: nauc_recall_at_1_std value: -17.2342 - type: nauc_recall_at_1_diff1 value: 72.20830000000001 - type: nauc_recall_at_3_max value: 34.6344 - type: nauc_recall_at_3_std value: -14.868200000000002 - type: nauc_recall_at_3_diff1 value: -63.1221 - type: nauc_recall_at_5_max value: 31.1334 - type: nauc_recall_at_5_std value: -16.0306 - type: nauc_recall_at_5_diff1 value: -57.4562 - type: nauc_recall_at_10_max value: 27.9709 - type: nauc_recall_at_10_std value: -15.9834 - type: nauc_recall_at_10_diff1 value: -52.4094 - type: nauc_recall_at_20_max value: 25.136599999999998 - type: nauc_recall_at_20_std value: -14.491000000000001 - type: nauc_recall_at_20_diff1 value: -50.1152 - type: nauc_recall_at_100_max value: 23.1454 - type: nauc_recall_at_100_std value: 1.0654000000000001 - type: nauc_recall_at_100_diff1 value: -42.3044 - type: nauc_recall_at_1000_max value: 23.3796 - type: nauc_recall_at_1000_std value: 18.206 - type: nauc_recall_at_1000_diff1 value: -44.292300000000004 - type: nauc_precision_at_1_max value: 13.625200000000001 - type: nauc_precision_at_1_std value: -17.2342 - type: nauc_precision_at_1_diff1 value: 72.20830000000001 - type: nauc_precision_at_3_max value: 34.6344 - type: nauc_precision_at_3_std value: -14.868200000000002 - type: nauc_precision_at_3_diff1 value: -63.1221 - type: nauc_precision_at_5_max value: 31.1334 - type: nauc_precision_at_5_std value: -16.0306 - type: nauc_precision_at_5_diff1 value: -57.4562 - type: nauc_precision_at_10_max value: 27.9709 - type: nauc_precision_at_10_std value: -15.9834 - type: nauc_precision_at_10_diff1 value: -52.4094 - type: nauc_precision_at_20_max value: 25.136599999999998 - type: nauc_precision_at_20_std value: -14.491000000000001 - type: nauc_precision_at_20_diff1 value: -50.1152 - type: nauc_precision_at_100_max value: 23.1454 - type: nauc_precision_at_100_std value: 1.0654000000000001 - type: nauc_precision_at_100_diff1 value: -42.3044 - type: nauc_precision_at_1000_max value: 23.3796 - type: nauc_precision_at_1000_std value: 18.206 - type: nauc_precision_at_1000_diff1 value: -44.292300000000004 - type: nauc_mrr_at_1_max value: 21.4193 - type: nauc_mrr_at_1_std value: -10.3504 - type: nauc_mrr_at_1_diff1 value: -39.323 - type: nauc_mrr_at_3_max value: 28.0993 - type: nauc_mrr_at_3_std value: -12.9194 - type: nauc_mrr_at_3_diff1 value: -52.07580000000001 - type: nauc_mrr_at_5_max value: 27.378999999999998 - type: nauc_mrr_at_5_std value: -13.184299999999999 - type: nauc_mrr_at_5_diff1 value: -51.0092 - type: nauc_mrr_at_10_max value: 26.9761 - type: nauc_mrr_at_10_std value: -13.0161 - type: nauc_mrr_at_10_diff1 value: -50.266200000000005 - type: nauc_mrr_at_20_max value: 26.8175 - type: nauc_mrr_at_20_std value: -12.9521 - type: nauc_mrr_at_20_diff1 value: -50.137699999999995 - type: nauc_mrr_at_100_max value: 26.8202 - type: nauc_mrr_at_100_std value: -12.809000000000001 - type: nauc_mrr_at_100_diff1 value: -50.0703 - type: nauc_mrr_at_1000_max value: 26.8223 - type: nauc_mrr_at_1000_std value: -12.8169 - type: nauc_mrr_at_1000_diff1 value: -50.0798 - type: main_score value: 39.341 task: type: Retrieval - dataset: config: default name: MTEB TRECCOVID (default) revision: bb9466bac8153a0349341eb1b22e06409e78ef4e split: test type: mteb/trec-covid metrics: - type: ndcg_at_1 value: 59.0 - type: ndcg_at_3 value: 61.173 - type: ndcg_at_5 value: 61.927 - type: ndcg_at_10 value: 62.815 - type: ndcg_at_20 value: 60.716 - type: ndcg_at_100 value: 50.699000000000005 - type: ndcg_at_1000 value: 46.711999999999996 - type: map_at_1 value: 0.186 - type: map_at_3 value: 0.47200000000000003 - type: map_at_5 value: 0.749 - type: map_at_10 value: 1.43 - type: map_at_20 value: 2.608 - type: map_at_100 value: 8.876000000000001 - type: map_at_1000 value: 22.055 - type: recall_at_1 value: 0.186 - type: recall_at_3 value: 0.519 - type: recall_at_5 value: 0.8699999999999999 - type: recall_at_10 value: 1.773 - type: recall_at_20 value: 3.338 - type: recall_at_100 value: 12.516 - type: recall_at_1000 value: 44.699 - type: precision_at_1 value: 66.0 - type: precision_at_3 value: 67.333 - type: precision_at_5 value: 67.60000000000001 - type: precision_at_10 value: 68.4 - type: precision_at_20 value: 65.7 - type: precision_at_100 value: 52.78 - type: precision_at_1000 value: 21.048000000000002 - type: mrr_at_1 value: 66.0 - type: mrr_at_3 value: 77.33330000000001 - type: mrr_at_5 value: 78.3333 - type: mrr_at_10 value: 79.3333 - type: mrr_at_20 value: 79.3333 - type: mrr_at_100 value: 79.3333 - type: mrr_at_1000 value: 79.3333 - type: nauc_ndcg_at_1_max value: 17.5939 - type: nauc_ndcg_at_1_std value: 18.9798 - type: nauc_ndcg_at_1_diff1 value: 7.1539 - type: nauc_ndcg_at_3_max value: 29.7636 - type: nauc_ndcg_at_3_std value: 31.7841 - type: nauc_ndcg_at_3_diff1 value: 7.1419 - type: nauc_ndcg_at_5_max value: 29.316 - type: nauc_ndcg_at_5_std value: 46.3408 - type: nauc_ndcg_at_5_diff1 value: -0.4602 - type: nauc_ndcg_at_10_max value: 27.446900000000003 - type: nauc_ndcg_at_10_std value: 53.37 - type: nauc_ndcg_at_10_diff1 value: -4.2545 - type: nauc_ndcg_at_20_max value: 30.0264 - type: nauc_ndcg_at_20_std value: 58.7602 - type: nauc_ndcg_at_20_diff1 value: -9.146899999999999 - type: nauc_ndcg_at_100_max value: 37.939299999999996 - type: nauc_ndcg_at_100_std value: 75.0271 - type: nauc_ndcg_at_100_diff1 value: -16.2298 - type: nauc_ndcg_at_1000_max value: 40.1712 - type: nauc_ndcg_at_1000_std value: 80.865 - type: nauc_ndcg_at_1000_diff1 value: -20.5847 - type: nauc_map_at_1_max value: 16.9528 - type: nauc_map_at_1_std value: -0.49119999999999997 - type: nauc_map_at_1_diff1 value: 14.029 - type: nauc_map_at_3_max value: 22.714000000000002 - type: nauc_map_at_3_std value: 4.587 - type: nauc_map_at_3_diff1 value: 18.4359 - type: nauc_map_at_5_max value: 26.631700000000002 - type: nauc_map_at_5_std value: 16.3506 - type: nauc_map_at_5_diff1 value: 15.8387 - type: nauc_map_at_10_max value: 26.4635 - type: nauc_map_at_10_std value: 22.819300000000002 - type: nauc_map_at_10_diff1 value: 9.7916 - type: nauc_map_at_20_max value: 29.7699 - type: nauc_map_at_20_std value: 34.153099999999995 - type: nauc_map_at_20_diff1 value: 1.4186 - type: nauc_map_at_100_max value: 41.5138 - type: nauc_map_at_100_std value: 68.24799999999999 - type: nauc_map_at_100_diff1 value: -12.2417 - type: nauc_map_at_1000_max value: 45.9887 - type: nauc_map_at_1000_std value: 82.8023 - type: nauc_map_at_1000_diff1 value: -20.608999999999998 - type: nauc_recall_at_1_max value: 16.9528 - type: nauc_recall_at_1_std value: -0.49119999999999997 - type: nauc_recall_at_1_diff1 value: 14.029 - type: nauc_recall_at_3_max value: 22.601 - type: nauc_recall_at_3_std value: 5.037 - type: nauc_recall_at_3_diff1 value: 20.4189 - type: nauc_recall_at_5_max value: 23.8002 - type: nauc_recall_at_5_std value: 17.2469 - type: nauc_recall_at_5_diff1 value: 15.3806 - type: nauc_recall_at_10_max value: 20.0149 - type: nauc_recall_at_10_std value: 17.2152 - type: nauc_recall_at_10_diff1 value: 8.289 - type: nauc_recall_at_20_max value: 23.2578 - type: nauc_recall_at_20_std value: 25.9678 - type: nauc_recall_at_20_diff1 value: 1.6708 - type: nauc_recall_at_100_max value: 34.7341 - type: nauc_recall_at_100_std value: 59.1777 - type: nauc_recall_at_100_diff1 value: -10.6132 - type: nauc_recall_at_1000_max value: 36.492599999999996 - type: nauc_recall_at_1000_std value: 74.2008 - type: nauc_recall_at_1000_diff1 value: -21.9119 - type: nauc_precision_at_1_max value: 25.7227 - type: nauc_precision_at_1_std value: 14.152500000000002 - type: nauc_precision_at_1_diff1 value: 11.1952 - type: nauc_precision_at_3_max value: 35.1261 - type: nauc_precision_at_3_std value: 31.342399999999998 - type: nauc_precision_at_3_diff1 value: 3.0915999999999997 - type: nauc_precision_at_5_max value: 33.8418 - type: nauc_precision_at_5_std value: 52.1046 - type: nauc_precision_at_5_diff1 value: -5.7694 - type: nauc_precision_at_10_max value: 29.5701 - type: nauc_precision_at_10_std value: 56.474999999999994 - type: nauc_precision_at_10_diff1 value: -11.305800000000001 - type: nauc_precision_at_20_max value: 37.1605 - type: nauc_precision_at_20_std value: 62.65690000000001 - type: nauc_precision_at_20_diff1 value: -16.114600000000003 - type: nauc_precision_at_100_max value: 42.5736 - type: nauc_precision_at_100_std value: 77.8946 - type: nauc_precision_at_100_diff1 value: -18.5221 - type: nauc_precision_at_1000_max value: 31.0108 - type: nauc_precision_at_1000_std value: 54.306200000000004 - type: nauc_precision_at_1000_diff1 value: -20.7365 - type: nauc_mrr_at_1_max value: 25.7227 - type: nauc_mrr_at_1_std value: 14.152500000000002 - type: nauc_mrr_at_1_diff1 value: 11.1952 - type: nauc_mrr_at_3_max value: 37.1749 - type: nauc_mrr_at_3_std value: 32.7833 - type: nauc_mrr_at_3_diff1 value: 5.9276 - type: nauc_mrr_at_5_max value: 34.5503 - type: nauc_mrr_at_5_std value: 31.1188 - type: nauc_mrr_at_5_diff1 value: 2.9541 - type: nauc_mrr_at_10_max value: 32.3008 - type: nauc_mrr_at_10_std value: 27.4621 - type: nauc_mrr_at_10_diff1 value: 5.944599999999999 - type: nauc_mrr_at_20_max value: 32.3008 - type: nauc_mrr_at_20_std value: 27.4621 - type: nauc_mrr_at_20_diff1 value: 5.944599999999999 - type: nauc_mrr_at_100_max value: 32.3008 - type: nauc_mrr_at_100_std value: 27.4621 - type: nauc_mrr_at_100_diff1 value: 5.944599999999999 - type: nauc_mrr_at_1000_max value: 32.3008 - type: nauc_mrr_at_1000_std value: 27.4621 - type: nauc_mrr_at_1000_diff1 value: 5.944599999999999 - type: main_score value: 62.815 task: type: Retrieval - dataset: config: default name: MTEB Touche2020 (default) revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f split: test type: mteb/touche2020 metrics: - type: ndcg_at_1 value: 34.694 - type: ndcg_at_3 value: 27.976 - type: ndcg_at_5 value: 27.029999999999998 - type: ndcg_at_10 value: 24.853 - type: ndcg_at_20 value: 26.188 - type: ndcg_at_100 value: 36.225 - type: ndcg_at_1000 value: 47.583999999999996 - type: map_at_1 value: 2.987 - type: map_at_3 value: 4.9799999999999995 - type: map_at_5 value: 7.170999999999999 - type: map_at_10 value: 9.788 - type: map_at_20 value: 12.379 - type: map_at_100 value: 15.692 - type: map_at_1000 value: 17.27 - type: recall_at_1 value: 2.987 - type: recall_at_3 value: 6.084 - type: recall_at_5 value: 9.609 - type: recall_at_10 value: 15.512 - type: recall_at_20 value: 24.248 - type: recall_at_100 value: 46.916999999999994 - type: recall_at_1000 value: 80.447 - type: precision_at_1 value: 36.735 - type: precision_at_3 value: 27.891 - type: precision_at_5 value: 26.531 - type: precision_at_10 value: 22.041 - type: precision_at_20 value: 17.347 - type: precision_at_100 value: 7.550999999999999 - type: precision_at_1000 value: 1.492 - type: mrr_at_1 value: 36.7347 - type: mrr_at_3 value: 46.258500000000005 - type: mrr_at_5 value: 47.585 - type: mrr_at_10 value: 49.4266 - type: mrr_at_20 value: 50.4374 - type: mrr_at_100 value: 50.6221 - type: mrr_at_1000 value: 50.6221 - type: nauc_ndcg_at_1_max value: -30.5017 - type: nauc_ndcg_at_1_std value: 20.9115 - type: nauc_ndcg_at_1_diff1 value: 14.0996 - type: nauc_ndcg_at_3_max value: -32.4852 - type: nauc_ndcg_at_3_std value: 7.378500000000001 - type: nauc_ndcg_at_3_diff1 value: 6.1796 - type: nauc_ndcg_at_5_max value: -31.3343 - type: nauc_ndcg_at_5_std value: -1.8091 - type: nauc_ndcg_at_5_diff1 value: 2.7997 - type: nauc_ndcg_at_10_max value: -28.2383 - type: nauc_ndcg_at_10_std value: -3.1220999999999997 - type: nauc_ndcg_at_10_diff1 value: 10.0107 - type: nauc_ndcg_at_20_max value: -33.4679 - type: nauc_ndcg_at_20_std value: -8.3618 - type: nauc_ndcg_at_20_diff1 value: 7.3284 - type: nauc_ndcg_at_100_max value: -33.0007 - type: nauc_ndcg_at_100_std value: 18.1058 - type: nauc_ndcg_at_100_diff1 value: 7.5906 - type: nauc_ndcg_at_1000_max value: -30.4942 - type: nauc_ndcg_at_1000_std value: 29.7125 - type: nauc_ndcg_at_1000_diff1 value: 4.3626 - type: nauc_map_at_1_max value: -27.8899 - type: nauc_map_at_1_std value: -2.694 - type: nauc_map_at_1_diff1 value: 15.2888 - type: nauc_map_at_3_max value: -28.008499999999998 - type: nauc_map_at_3_std value: -8.2292 - type: nauc_map_at_3_diff1 value: 11.0099 - type: nauc_map_at_5_max value: -25.1626 - type: nauc_map_at_5_std value: -14.2187 - type: nauc_map_at_5_diff1 value: 4.6605 - type: nauc_map_at_10_max value: -21.1923 - type: nauc_map_at_10_std value: -16.653299999999998 - type: nauc_map_at_10_diff1 value: 6.869599999999999 - type: nauc_map_at_20_max value: -24.2959 - type: nauc_map_at_20_std value: -17.707 - type: nauc_map_at_20_diff1 value: 6.6531 - type: nauc_map_at_100_max value: -24.9706 - type: nauc_map_at_100_std value: -6.2074 - type: nauc_map_at_100_diff1 value: 7.940300000000001 - type: nauc_map_at_1000_max value: -24.5016 - type: nauc_map_at_1000_std value: -1.7534 - type: nauc_map_at_1000_diff1 value: 7.0978 - type: nauc_recall_at_1_max value: -27.8899 - type: nauc_recall_at_1_std value: -2.694 - type: nauc_recall_at_1_diff1 value: 15.2888 - type: nauc_recall_at_3_max value: -33.166000000000004 - type: nauc_recall_at_3_std value: -13.9572 - type: nauc_recall_at_3_diff1 value: 6.8492999999999995 - type: nauc_recall_at_5_max value: -26.5866 - type: nauc_recall_at_5_std value: -18.4333 - type: nauc_recall_at_5_diff1 value: 0.9511999999999999 - type: nauc_recall_at_10_max value: -23.4865 - type: nauc_recall_at_10_std value: -17.3336 - type: nauc_recall_at_10_diff1 value: 9.8763 - type: nauc_recall_at_20_max value: -34.451 - type: nauc_recall_at_20_std value: -18.5261 - type: nauc_recall_at_20_diff1 value: 8.4592 - type: nauc_recall_at_100_max value: -31.3903 - type: nauc_recall_at_100_std value: 30.2519 - type: nauc_recall_at_100_diff1 value: 9.4903 - type: nauc_recall_at_1000_max value: -20.7349 - type: nauc_recall_at_1000_std value: 72.50229999999999 - type: nauc_recall_at_1000_diff1 value: -0.7664 - type: nauc_precision_at_1_max value: -27.048 - type: nauc_precision_at_1_std value: 18.2883 - type: nauc_precision_at_1_diff1 value: 18.5083 - type: nauc_precision_at_3_max value: -31.4006 - type: nauc_precision_at_3_std value: -1.9464 - type: nauc_precision_at_3_diff1 value: 5.7819 - type: nauc_precision_at_5_max value: -25.740800000000004 - type: nauc_precision_at_5_std value: -11.5328 - type: nauc_precision_at_5_diff1 value: 0.4881 - type: nauc_precision_at_10_max value: -20.8035 - type: nauc_precision_at_10_std value: -9.3623 - type: nauc_precision_at_10_diff1 value: 13.7272 - type: nauc_precision_at_20_max value: -27.124399999999998 - type: nauc_precision_at_20_std value: -4.7749 - type: nauc_precision_at_20_diff1 value: 6.5773 - type: nauc_precision_at_100_max value: -7.2334 - type: nauc_precision_at_100_std value: 60.89639999999999 - type: nauc_precision_at_100_diff1 value: 3.9092000000000002 - type: nauc_precision_at_1000_max value: 33.7911 - type: nauc_precision_at_1000_std value: 44.2182 - type: nauc_precision_at_1000_diff1 value: -11.840399999999999 - type: nauc_mrr_at_1_max value: -27.048 - type: nauc_mrr_at_1_std value: 18.2883 - type: nauc_mrr_at_1_diff1 value: 18.5083 - type: nauc_mrr_at_3_max value: -35.0702 - type: nauc_mrr_at_3_std value: 11.0891 - type: nauc_mrr_at_3_diff1 value: 11.4635 - type: nauc_mrr_at_5_max value: -35.9339 - type: nauc_mrr_at_5_std value: 11.4561 - type: nauc_mrr_at_5_diff1 value: 11.792900000000001 - type: nauc_mrr_at_10_max value: -35.5993 - type: nauc_mrr_at_10_std value: 13.369800000000001 - type: nauc_mrr_at_10_diff1 value: 14.168 - type: nauc_mrr_at_20_max value: -35.587 - type: nauc_mrr_at_20_std value: 12.8052 - type: nauc_mrr_at_20_diff1 value: 13.6937 - type: nauc_mrr_at_100_max value: -35.424 - type: nauc_mrr_at_100_std value: 13.0847 - type: nauc_mrr_at_100_diff1 value: 13.5063 - type: nauc_mrr_at_1000_max value: -35.424 - type: nauc_mrr_at_1000_std value: 13.0847 - type: nauc_mrr_at_1000_diff1 value: 13.5063 - type: main_score value: 24.853 task: type: Retrieval - dataset: config: default name: MTEB ToxicConversationsClassification (default) revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de split: test type: mteb/toxic_conversations_50k metrics: - type: accuracy value: 60.380900000000004 - type: f1 value: 46.8295 - type: f1_weighted value: 69.05930000000001 - type: ap value: 10.5988 - type: ap_weighted value: 10.5988 - type: main_score value: 60.380900000000004 task: type: Classification - dataset: config: default name: MTEB TweetSentimentExtractionClassification (default) revision: d604517c81ca91fe16a244d1248fc021f9ecee7a split: test type: mteb/tweet_sentiment_extraction metrics: - type: accuracy value: 58.537099999999995 - type: f1 value: 58.7006 - type: f1_weighted value: 58.013400000000004 - type: main_score value: 58.537099999999995 task: type: Classification - dataset: config: default name: MTEB TwentyNewsgroupsClustering (default) revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 split: test type: mteb/twentynewsgroups-clustering metrics: - type: v_measure value: 36.6842 - type: v_measure_std value: 1.9854 - type: main_score value: 36.6842 task: type: Clustering - dataset: config: default name: MTEB TwitterSemEval2015 (default) revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 split: test type: mteb/twittersemeval2015-pairclassification metrics: - type: similarity_accuracy value: 82.3866 - type: similarity_accuracy_threshold value: 87.0467 - type: similarity_f1 value: 58.4102 - type: similarity_f1_threshold value: 82.61540000000001 - type: similarity_precision value: 52.937400000000004 - type: similarity_recall value: 65.1451 - type: similarity_ap value: 61.6413 - type: cosine_accuracy value: 82.3866 - type: cosine_accuracy_threshold value: 87.0467 - type: cosine_f1 value: 58.4102 - type: cosine_f1_threshold value: 82.61540000000001 - type: cosine_precision value: 52.937400000000004 - type: cosine_recall value: 65.1451 - type: cosine_ap value: 61.6413 - type: manhattan_accuracy value: 82.12429999999999 - type: manhattan_accuracy_threshold value: 786.2048 - type: manhattan_f1 value: 57.862899999999996 - type: manhattan_f1_threshold value: 911.9348 - type: manhattan_precision value: 50.2725 - type: manhattan_recall value: 68.15299999999999 - type: manhattan_ap value: 60.6893 - type: euclidean_accuracy value: 82.3866 - type: euclidean_accuracy_threshold value: 50.8985 - type: euclidean_f1 value: 58.4102 - type: euclidean_f1_threshold value: 58.9654 - type: euclidean_precision value: 52.937400000000004 - type: euclidean_recall value: 65.1451 - type: euclidean_ap value: 61.6413 - type: dot_accuracy value: 82.3866 - type: dot_accuracy_threshold value: 87.0467 - type: dot_f1 value: 58.4102 - type: dot_f1_threshold value: 82.61540000000001 - type: dot_precision value: 52.937400000000004 - type: dot_recall value: 65.1451 - type: dot_ap value: 61.6413 - type: max_accuracy value: 82.3866 - type: max_f1 value: 58.4102 - type: max_precision value: 52.937400000000004 - type: max_recall value: 68.15299999999999 - type: max_ap value: 61.6413 - type: main_score value: 61.6413 task: type: PairClassification - dataset: config: default name: MTEB TwitterURLCorpus (default) revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf split: test type: mteb/twitterurlcorpus-pairclassification metrics: - type: similarity_accuracy value: 88.77629999999999 - type: similarity_accuracy_threshold value: 82.2251 - type: similarity_f1 value: 77.3613 - type: similarity_f1_threshold value: 80.3174 - type: similarity_precision value: 75.0906 - type: similarity_recall value: 79.7736 - type: similarity_ap value: 85.6694 - type: cosine_accuracy value: 88.77629999999999 - type: cosine_accuracy_threshold value: 82.2251 - type: cosine_f1 value: 77.3613 - type: cosine_f1_threshold value: 80.3174 - type: cosine_precision value: 75.0906 - type: cosine_recall value: 79.7736 - type: cosine_ap value: 85.6694 - type: manhattan_accuracy value: 88.7317 - type: manhattan_accuracy_threshold value: 914.4955 - type: manhattan_f1 value: 77.1707 - type: manhattan_f1_threshold value: 946.5603 - type: manhattan_precision value: 76.2825 - type: manhattan_recall value: 78.0798 - type: manhattan_ap value: 85.5718 - type: euclidean_accuracy value: 88.77629999999999 - type: euclidean_accuracy_threshold value: 59.6237 - type: euclidean_f1 value: 77.3613 - type: euclidean_f1_threshold value: 62.7417 - type: euclidean_precision value: 75.0906 - type: euclidean_recall value: 79.7736 - type: euclidean_ap value: 85.6694 - type: dot_accuracy value: 88.77629999999999 - type: dot_accuracy_threshold value: 82.2251 - type: dot_f1 value: 77.3613 - type: dot_f1_threshold value: 80.3174 - type: dot_precision value: 75.0906 - type: dot_recall value: 79.7736 - type: dot_ap value: 85.6694 - type: max_accuracy value: 88.77629999999999 - type: max_f1 value: 77.3613 - type: max_precision value: 76.2825 - type: max_recall value: 79.7736 - type: max_ap value: 85.6694 - type: main_score value: 85.6694 task: type: PairClassification pipeline_tag: sentence-similarity --- # Granite-Embedding-107m-multilingual **Model Summary:** Granite-Embedding-107M-Multilingual is a 107M parameter dense biencoder embedding model from the Granite Embeddings suite that can be used to generate high quality text embeddings. This model produces embedding vectors of size 384 and is trained using a combination of open source relevance-pair datasets with permissive, enterprise-friendly license, and IBM collected and generated datasets. This model is developed using contrastive finetuning, knowledge distillation and model merging for improved performance. - **Developers:** Granite Embedding Team, IBM - **GitHub Repository:** [ibm-granite/granite-embedding-models](https://github.com/ibm-granite/granite-embedding-models) - **Website**: [Granite Docs](https://www.ibm.com/granite/docs/) - **Paper:** [Technical Report](https://arxiv.org/abs/2502.20204) - **Release Date**: December 18th, 2024 - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) **Supported Languages:** English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite-Embedding-107M-Multilingual for languages beyond these 12 languages. **Intended use:** The model is designed to produce fixed length vector representations for a given text, which can be used for text similarity, retrieval, and search applications. **Usage with Sentence Transformers:** The model is compatible with SentenceTransformer library and is very easy to use: First, install the sentence transformers library ```shell pip install sentence_transformers ``` The model can then be used to encode pairs of text and find the similarity between their representations ```python from sentence_transformers import SentenceTransformer, util model_path = "ibm-granite/granite-embedding-107m-multilingual" # Load the Sentence Transformer model model = SentenceTransformer(model_path) input_queries = [ ' Who made the song My achy breaky heart? ', 'summit define' ] input_passages = [ "Achy Breaky Heart is a country song written by Don Von Tress. Originally titled Don't Tell My Heart and performed by The Marcy Brothers in 1991. ", "Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] # encode queries and passages query_embeddings = model.encode(input_queries) passage_embeddings = model.encode(input_passages) # calculate cosine similarity print(util.cos_sim(query_embeddings, passage_embeddings)) ``` **Usage with Huggingface Transformers:** This is a simple example of how to use the Granite-Embedding-107m-Multilingual model with the Transformers library and PyTorch. First, install the required libraries ```shell pip install transformers torch ``` The model can then be used to encode pairs of text ```python import torch from transformers import AutoModel, AutoTokenizer model_path = "ibm-granite/granite-embedding-107m-multilingual" # Load the model and tokenizer model = AutoModel.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) model.eval() input_queries = [ ' Who made the song My achy breaky heart? ', 'summit define' ] # tokenize inputs tokenized_queries = tokenizer(input_queries, padding=True, truncation=True, return_tensors='pt') # encode queries with torch.no_grad(): # Queries model_output = model(**tokenized_queries) # Perform pooling. granite-embedding-107m-multilingual uses CLS Pooling query_embeddings = model_output[0][:, 0] # normalize the embeddings query_embeddings = torch.nn.functional.normalize(query_embeddings, dim=1) ``` **Evaluation:** The average performance of the Granite-Embedding-107M-Multilingual on Multilingual Miracl (across 18 langauges), Mintaka Retrieval (across 8 languages) and MTEB Retrieval for English (across 15 tasks), German (across 4 tasks), Spanish (across 2 tasks), Frenc (across 5 tasks), Japanese (across 2 tasks), Arabic (1 task), Korean (1 task) and Chinese (across 8 tasks) is reported below. Granite-Embedding-107M-Multilingual is twice as fast as other models with similar embedding dimensions. | Model | Paramters (M)| Embedding Dimension | Miracl (18) | Mintaka Retrieval (8) | MTEB English (15) | MTEB German (4) |MTEB Spanish (2) | MTEB French (5) | MTEB Japanese (2) | MTEB Arabic (1) | MTEB Korean (1) | MTEB Chinese (8) | |------------------------------------|:------------:|:-------------------:|:-------------:| :---------------------:|:-----------------:|:---------------:|:---------------:|:---------------:|:----------------:|:----------------:|----------------:|-----------------:| |granite-embedding-107m-multilingual | 107 | 384 | 55.9 | 22.6 | 45.3 | 70.3 | 48.7 | 51.1 | 59.0 | 63.2 | 70.5 | 40.8 | **Model Architecture:** Granite-Embedding-107m-Multilingual is based on an encoder-only XLM-RoBERTa like transformer architecture, trained internally at IBM Research. | Model | granite-embedding-30m-english | granite-embedding-125m-english | granite-embedding-107m-multilingual | granite-embedding-278m-multilingual | | :--------- | :-------:| :--------: | :---------:| :-----:| | Embedding size | 384 | 768 | **384** | 768 | | Number of layers | 6 | 12 | **6** | 12 | | Number of attention heads | 12 | 12 | **12** | 12 | | Intermediate size | 1536 | 3072 | **1536** | 3072 | | Activation Function | GeLU | GeLU | **GeLU** | GeLU | | Vocabulary Size | 50265 | 50265 | **250002** | 250002 | | Max. Sequence Length | 512 | 512 | **512** | 512 | | # Parameters | 30M | 125M | **107M** | 278M | **Training Data:** Overall, the training data consists of four key sources: (1) unsupervised title-body paired data scraped from the web, (2) publicly available paired with permissive, enterprise-friendly license, (3) IBM-internal paired data targetting specific technical domains, and (4) IBM-generated synthetic data. The data is listed below: | **Dataset** | **Num. Pairs** | |:--------------------------------------------------------------------------|:--------------:| | Multilingual MC4 | 52,823,484 | | Multilingual Webhose | 12,369,322 | | English Wikipedia | 20,745,403 | | Multilingual Wikimedia | 2,911,090 | | Miracl Corpus (Title-Body) | 10,120,398 | | Stack Exchange Duplicate questions (titles) | 304,525 | | Stack Exchange Duplicate questions (titles) | 304,525 | | Stack Exchange Duplicate questions (bodies) | 250,519 | | Machine Translations of Stack Exchange Duplicate questions (titles) | 187,195 | | Stack Exchange (Title, Answer) pairs | 4,067,139 | | Stack Exchange (Title, Body) pairs | 23,978,013 | | Stack Exchange (Title, Body) pairs | 23,978,013 | | Machine Translations of Stack Exchange (Title+Body, Answer) pairs | 1,827,15 | | SearchQA | 582,261 | | S2ORC (Title, Abstract) | 41,769,185 | | WikiAnswers Duplicate question pairs | 77,427,422 | | CCNews | 614,664 | | XSum | 226,711 | | SimpleWiki | 102,225 | | Machine Translated Cross Lingual Parallel Corpora | 28,376,115 | | SPECTER citation triplets | 684,100 | | Machine Translations of SPECTER citation triplets | 4,104,600 | | Natural Questions (NQ) | 100,231 | | SQuAD2.0 | 87,599 | | HotpotQA | 85,000 | | Fever | 109,810 | | PubMed | 20,000,000 | | Multilingual Miracl Triples | 81,409 | | Multilingual MrTydi Triples | 48,715 | | Sadeeem Question Asnwering | 4,037 | | DBPedia Title-Body Pairs | 4,635,922 | | Synthetic: English Query-Wikipedia Passage | 1,879,093 | | Synthetic: English Fact Verification | 9,888 | | Synthetic: Multilingual Query-Wikipedia Passage | 300,266 | | Synthetic: Multilingual News Summaries | 37,489 | | IBM Internal Triples | 40,290 | | IBM Internal Title-Body Pairs | 1,524,586 | Notably, we do not use the popular MS-MARCO retrieval dataset in our training corpus due to its non-commercial license, while other open-source models train on this dataset due to its high quality. **Infrastructure:** We train Granite Embedding Models using IBM's computing cluster, Cognitive Compute Cluster, which is outfitted with NVIDIA A100 80gb GPUs. This cluster provides a scalable and efficient infrastructure for training our models over multiple GPUs. **Ethical Considerations and Limitations:** The data used to train the base language model was filtered to remove text containing hate, abuse, and profanity. Granite-Embedding-107m-Multilingual is finetuned on 12 languages, and has a context length of 512 tokens (longer texts will be truncated to this size). **Resources** - ⭐️ Learn about the latest updates with Granite: https://www.ibm.com/granite - 📄 Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/ - 💡 Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources <!-- ## Citation ``` @misc{granite-embedding-models, author = {author 1, author2, ...}, title = {}, journal = {}, volume = {}, year = {2024}, url = {https://arxiv.org/abs/0000.00000}, } ``` -->
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755565728
lisaozill03
2025-08-19T01:33:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:33:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ibm-granite/granite-embedding-125m-english
ibm-granite
2025-08-19T01:31:48Z
49,603
14
sentence-transformers
[ "sentence-transformers", "pytorch", "onnx", "safetensors", "roberta", "feature-extraction", "language", "granite", "embeddings", "mteb", "transformers", "sentence-similarity", "en", "arxiv:2502.20204", "arxiv:0000.00000", "license:apache-2.0", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-12-04T20:28:08Z
--- language: - en license: apache-2.0 library_name: sentence-transformers tags: - language - granite - embeddings - mteb - transformers model-index: - name: ibm-granite/granite-embedding-125m-english results: - dataset: config: en-ext name: MTEB AmazonCounterfactualClassification (en-ext) revision: e8379541af4e31359cca9fbcf4b00f2671dba205 split: test type: mteb/amazon_counterfactual metrics: - type: accuracy value: 67.3613 - type: f1 value: 55.0794 - type: f1_weighted value: 73.55120000000001 - type: ap value: 17.643900000000002 - type: ap_weighted value: 17.643900000000002 - type: main_score value: 67.3613 task: type: Classification - dataset: config: en name: MTEB AmazonCounterfactualClassification (en) revision: e8379541af4e31359cca9fbcf4b00f2671dba205 split: test type: mteb/amazon_counterfactual metrics: - type: accuracy value: 63.403 - type: f1 value: 57.4178 - type: f1_weighted value: 66.9704 - type: ap value: 26.892300000000002 - type: ap_weighted value: 26.892300000000002 - type: main_score value: 63.403 task: type: Classification - dataset: config: default name: MTEB AmazonPolarityClassification (default) revision: e2d317d38cd51312af73b3d32a06d1a08b442046 split: test type: mteb/amazon_polarity metrics: - type: accuracy value: 64.5872 - type: f1 value: 64.33330000000001 - type: f1_weighted value: 64.33330000000001 - type: ap value: 59.602 - type: ap_weighted value: 59.602 - type: main_score value: 64.5872 task: type: Classification - dataset: config: en name: MTEB AmazonReviewsClassification (en) revision: 1399c76144fd37290681b995c656ef9b2e06e26d split: test type: mteb/amazon_reviews_multi metrics: - type: accuracy value: 33.534000000000006 - type: f1 value: 32.5389 - type: f1_weighted value: 32.5389 - type: main_score value: 33.534000000000006 task: type: Classification - dataset: config: default name: MTEB AppsRetrieval (default) revision: f22508f96b7a36c2415181ed8bb76f76e04ae2d5 split: test type: CoIR-Retrieval/apps metrics: - type: ndcg_at_1 value: 6.932 - type: ndcg_at_3 value: 9.577 - type: ndcg_at_5 value: 10.597 - type: ndcg_at_10 value: 11.787 - type: ndcg_at_20 value: 12.863 - type: ndcg_at_100 value: 15.573999999999998 - type: ndcg_at_1000 value: 19.772000000000002 - type: map_at_1 value: 6.932 - type: map_at_3 value: 8.938 - type: map_at_5 value: 9.506 - type: map_at_10 value: 10.0 - type: map_at_20 value: 10.296 - type: map_at_100 value: 10.644 - type: map_at_1000 value: 10.771 - type: recall_at_1 value: 6.932 - type: recall_at_3 value: 11.421000000000001 - type: recall_at_5 value: 13.891 - type: recall_at_10 value: 17.556 - type: recall_at_20 value: 21.806 - type: recall_at_100 value: 36.839 - type: recall_at_1000 value: 71.71300000000001 - type: precision_at_1 value: 6.932 - type: precision_at_3 value: 3.807 - type: precision_at_5 value: 2.778 - type: precision_at_10 value: 1.756 - type: precision_at_20 value: 1.09 - type: precision_at_100 value: 0.368 - type: precision_at_1000 value: 0.07200000000000001 - type: mrr_at_1 value: 6.9323 - type: mrr_at_3 value: 8.9376 - type: mrr_at_5 value: 9.506 - type: mrr_at_10 value: 9.9999 - type: mrr_at_20 value: 10.2957 - type: mrr_at_100 value: 10.643600000000001 - type: mrr_at_1000 value: 10.7707 - type: nauc_ndcg_at_1_max value: 27.327299999999997 - type: nauc_ndcg_at_1_std value: 9.6266 - type: nauc_ndcg_at_1_diff1 value: 39.4451 - type: nauc_ndcg_at_3_max value: 22.9053 - type: nauc_ndcg_at_3_std value: 10.123 - type: nauc_ndcg_at_3_diff1 value: 27.742099999999997 - type: nauc_ndcg_at_5_max value: 21.7041 - type: nauc_ndcg_at_5_std value: 9.661100000000001 - type: nauc_ndcg_at_5_diff1 value: 25.0689 - type: nauc_ndcg_at_10_max value: 21.0966 - type: nauc_ndcg_at_10_std value: 10.4106 - type: nauc_ndcg_at_10_diff1 value: 23.4219 - type: nauc_ndcg_at_20_max value: 20.0575 - type: nauc_ndcg_at_20_std value: 10.89 - type: nauc_ndcg_at_20_diff1 value: 22.6143 - type: nauc_ndcg_at_100_max value: 19.4243 - type: nauc_ndcg_at_100_std value: 11.5431 - type: nauc_ndcg_at_100_diff1 value: 21.013 - type: nauc_ndcg_at_1000_max value: 20.6057 - type: nauc_ndcg_at_1000_std value: 13.0027 - type: nauc_ndcg_at_1000_diff1 value: 20.988799999999998 - type: nauc_map_at_1_max value: 27.327299999999997 - type: nauc_map_at_1_std value: 9.6266 - type: nauc_map_at_1_diff1 value: 39.4451 - type: nauc_map_at_3_max value: 23.6991 - type: nauc_map_at_3_std value: 9.9287 - type: nauc_map_at_3_diff1 value: 29.909799999999997 - type: nauc_map_at_5_max value: 22.9242 - type: nauc_map_at_5_std value: 9.640600000000001 - type: nauc_map_at_5_diff1 value: 28.228199999999998 - type: nauc_map_at_10_max value: 22.612199999999998 - type: nauc_map_at_10_std value: 10.0051 - type: nauc_map_at_10_diff1 value: 27.3942 - type: nauc_map_at_20_max value: 22.236 - type: nauc_map_at_20_std value: 10.168000000000001 - type: nauc_map_at_20_diff1 value: 27.0258 - type: nauc_map_at_100_max value: 22.1373 - type: nauc_map_at_100_std value: 10.2741 - type: nauc_map_at_100_diff1 value: 26.717800000000004 - type: nauc_map_at_1000_max value: 22.1829 - type: nauc_map_at_1000_std value: 10.3395 - type: nauc_map_at_1000_diff1 value: 26.7158 - type: nauc_recall_at_1_max value: 27.327299999999997 - type: nauc_recall_at_1_std value: 9.6266 - type: nauc_recall_at_1_diff1 value: 39.4451 - type: nauc_recall_at_3_max value: 21.0841 - type: nauc_recall_at_3_std value: 10.6057 - type: nauc_recall_at_3_diff1 value: 22.745 - type: nauc_recall_at_5_max value: 19.0389 - type: nauc_recall_at_5_std value: 9.697899999999999 - type: nauc_recall_at_5_diff1 value: 18.137600000000003 - type: nauc_recall_at_10_max value: 18.0668 - type: nauc_recall_at_10_std value: 11.326799999999999 - type: nauc_recall_at_10_diff1 value: 15.423 - type: nauc_recall_at_20_max value: 15.798100000000002 - type: nauc_recall_at_20_std value: 12.4585 - type: nauc_recall_at_20_diff1 value: 14.509500000000001 - type: nauc_recall_at_100_max value: 14.2836 - type: nauc_recall_at_100_std value: 14.2989 - type: nauc_recall_at_100_diff1 value: 10.7304 - type: nauc_recall_at_1000_max value: 19.728299999999997 - type: nauc_recall_at_1000_std value: 24.5691 - type: nauc_recall_at_1000_diff1 value: 6.1472999999999995 - type: nauc_precision_at_1_max value: 27.327299999999997 - type: nauc_precision_at_1_std value: 9.6266 - type: nauc_precision_at_1_diff1 value: 39.4451 - type: nauc_precision_at_3_max value: 21.0841 - type: nauc_precision_at_3_std value: 10.6057 - type: nauc_precision_at_3_diff1 value: 22.745 - type: nauc_precision_at_5_max value: 19.0389 - type: nauc_precision_at_5_std value: 9.697899999999999 - type: nauc_precision_at_5_diff1 value: 18.137600000000003 - type: nauc_precision_at_10_max value: 18.0668 - type: nauc_precision_at_10_std value: 11.326799999999999 - type: nauc_precision_at_10_diff1 value: 15.423 - type: nauc_precision_at_20_max value: 15.798100000000002 - type: nauc_precision_at_20_std value: 12.4585 - type: nauc_precision_at_20_diff1 value: 14.509500000000001 - type: nauc_precision_at_100_max value: 14.2836 - type: nauc_precision_at_100_std value: 14.2989 - type: nauc_precision_at_100_diff1 value: 10.7304 - type: nauc_precision_at_1000_max value: 19.728299999999997 - type: nauc_precision_at_1000_std value: 24.5691 - type: nauc_precision_at_1000_diff1 value: 6.1472999999999995 - type: nauc_mrr_at_1_max value: 27.327299999999997 - type: nauc_mrr_at_1_std value: 9.6266 - type: nauc_mrr_at_1_diff1 value: 39.4451 - type: nauc_mrr_at_3_max value: 23.6991 - type: nauc_mrr_at_3_std value: 9.9287 - type: nauc_mrr_at_3_diff1 value: 29.909799999999997 - type: nauc_mrr_at_5_max value: 22.9242 - type: nauc_mrr_at_5_std value: 9.640600000000001 - type: nauc_mrr_at_5_diff1 value: 28.228199999999998 - type: nauc_mrr_at_10_max value: 22.612199999999998 - type: nauc_mrr_at_10_std value: 10.0051 - type: nauc_mrr_at_10_diff1 value: 27.3942 - type: nauc_mrr_at_20_max value: 22.236 - type: nauc_mrr_at_20_std value: 10.168000000000001 - type: nauc_mrr_at_20_diff1 value: 27.0258 - type: nauc_mrr_at_100_max value: 22.1372 - type: nauc_mrr_at_100_std value: 10.2743 - type: nauc_mrr_at_100_diff1 value: 26.7177 - type: nauc_mrr_at_1000_max value: 22.1828 - type: nauc_mrr_at_1000_std value: 10.3397 - type: nauc_mrr_at_1000_diff1 value: 26.7157 - type: main_score value: 11.787 task: type: Retrieval - dataset: config: default name: MTEB ArguAna (default) revision: c22ab2a51041ffd869aaddef7af8d8215647e41a split: test type: mteb/arguana metrics: - type: ndcg_at_1 value: 33.642 - type: ndcg_at_3 value: 48.825 - type: ndcg_at_5 value: 53.689 - type: ndcg_at_10 value: 58.401 - type: ndcg_at_20 value: 60.78 - type: ndcg_at_100 value: 61.57 - type: ndcg_at_1000 value: 61.608 - type: map_at_1 value: 33.642 - type: map_at_3 value: 45.057 - type: map_at_5 value: 47.774 - type: map_at_10 value: 49.716 - type: map_at_20 value: 50.400999999999996 - type: map_at_100 value: 50.519000000000005 - type: map_at_1000 value: 50.52100000000001 - type: recall_at_1 value: 33.642 - type: recall_at_3 value: 59.744 - type: recall_at_5 value: 71.479 - type: recall_at_10 value: 86.06 - type: recall_at_20 value: 95.235 - type: recall_at_100 value: 99.36 - type: recall_at_1000 value: 99.644 - type: precision_at_1 value: 33.642 - type: precision_at_3 value: 19.915 - type: precision_at_5 value: 14.296000000000001 - type: precision_at_10 value: 8.606 - type: precision_at_20 value: 4.7620000000000005 - type: precision_at_100 value: 0.9939999999999999 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 34.495 - type: mrr_at_3 value: 45.2821 - type: mrr_at_5 value: 48.1128 - type: mrr_at_10 value: 50.036199999999994 - type: mrr_at_20 value: 50.7172 - type: mrr_at_100 value: 50.83259999999999 - type: mrr_at_1000 value: 50.8343 - type: nauc_ndcg_at_1_max value: -11.838999999999999 - type: nauc_ndcg_at_1_std value: -11.8923 - type: nauc_ndcg_at_1_diff1 value: 18.2163 - type: nauc_ndcg_at_3_max value: -11.6655 - type: nauc_ndcg_at_3_std value: -12.2408 - type: nauc_ndcg_at_3_diff1 value: 12.4326 - type: nauc_ndcg_at_5_max value: -11.2332 - type: nauc_ndcg_at_5_std value: -10.99 - type: nauc_ndcg_at_5_diff1 value: 11.4272 - type: nauc_ndcg_at_10_max value: -9.7581 - type: nauc_ndcg_at_10_std value: -10.6279 - type: nauc_ndcg_at_10_diff1 value: 12.3219 - type: nauc_ndcg_at_20_max value: -9.070300000000001 - type: nauc_ndcg_at_20_std value: -10.4367 - type: nauc_ndcg_at_20_diff1 value: 13.5332 - type: nauc_ndcg_at_100_max value: -10.281 - type: nauc_ndcg_at_100_std value: -10.8575 - type: nauc_ndcg_at_100_diff1 value: 13.583899999999998 - type: nauc_ndcg_at_1000_max value: -10.4108 - type: nauc_ndcg_at_1000_std value: -10.9358 - type: nauc_ndcg_at_1000_diff1 value: 13.553200000000002 - type: nauc_map_at_1_max value: -11.838999999999999 - type: nauc_map_at_1_std value: -11.8923 - type: nauc_map_at_1_diff1 value: 18.2163 - type: nauc_map_at_3_max value: -11.6502 - type: nauc_map_at_3_std value: -12.0988 - type: nauc_map_at_3_diff1 value: 13.7581 - type: nauc_map_at_5_max value: -11.345600000000001 - type: nauc_map_at_5_std value: -11.4327 - type: nauc_map_at_5_diff1 value: 13.3246 - type: nauc_map_at_10_max value: -10.8652 - type: nauc_map_at_10_std value: -11.3476 - type: nauc_map_at_10_diff1 value: 13.7353 - type: nauc_map_at_20_max value: -10.7273 - type: nauc_map_at_20_std value: -11.309800000000001 - type: nauc_map_at_20_diff1 value: 14.0429 - type: nauc_map_at_100_max value: -10.8833 - type: nauc_map_at_100_std value: -11.372 - type: nauc_map_at_100_diff1 value: 14.0638 - type: nauc_map_at_1000_max value: -10.8878 - type: nauc_map_at_1000_std value: -11.3746 - type: nauc_map_at_1000_diff1 value: 14.062 - type: nauc_recall_at_1_max value: -11.838999999999999 - type: nauc_recall_at_1_std value: -11.8923 - type: nauc_recall_at_1_diff1 value: 18.2163 - type: nauc_recall_at_3_max value: -11.739099999999999 - type: nauc_recall_at_3_std value: -12.7062 - type: nauc_recall_at_3_diff1 value: 8.3694 - type: nauc_recall_at_5_max value: -10.8863 - type: nauc_recall_at_5_std value: -9.1183 - type: nauc_recall_at_5_diff1 value: 4.1094 - type: nauc_recall_at_10_max value: -0.9124 - type: nauc_recall_at_10_std value: -4.971 - type: nauc_recall_at_10_diff1 value: 3.4779999999999998 - type: nauc_recall_at_20_max value: 29.0035 - type: nauc_recall_at_20_std value: 8.7987 - type: nauc_recall_at_20_diff1 value: 11.932 - type: nauc_recall_at_100_max value: 42.377700000000004 - type: nauc_recall_at_100_std value: 55.2136 - type: nauc_recall_at_100_diff1 value: 3.1033999999999997 - type: nauc_recall_at_1000_max value: 19.053700000000003 - type: nauc_recall_at_1000_std value: 67.9828 - type: nauc_recall_at_1000_diff1 value: -17.644399999999997 - type: nauc_precision_at_1_max value: -11.838999999999999 - type: nauc_precision_at_1_std value: -11.8923 - type: nauc_precision_at_1_diff1 value: 18.2163 - type: nauc_precision_at_3_max value: -11.739099999999999 - type: nauc_precision_at_3_std value: -12.7062 - type: nauc_precision_at_3_diff1 value: 8.3694 - type: nauc_precision_at_5_max value: -10.8863 - type: nauc_precision_at_5_std value: -9.1183 - type: nauc_precision_at_5_diff1 value: 4.1094 - type: nauc_precision_at_10_max value: -0.9124 - type: nauc_precision_at_10_std value: -4.971 - type: nauc_precision_at_10_diff1 value: 3.4779999999999998 - type: nauc_precision_at_20_max value: 29.0035 - type: nauc_precision_at_20_std value: 8.7987 - type: nauc_precision_at_20_diff1 value: 11.932 - type: nauc_precision_at_100_max value: 42.377700000000004 - type: nauc_precision_at_100_std value: 55.2136 - type: nauc_precision_at_100_diff1 value: 3.1033999999999997 - type: nauc_precision_at_1000_max value: 19.053700000000003 - type: nauc_precision_at_1000_std value: 67.9828 - type: nauc_precision_at_1000_diff1 value: -17.644399999999997 - type: nauc_mrr_at_1_max value: -12.0053 - type: nauc_mrr_at_1_std value: -11.7296 - type: nauc_mrr_at_1_diff1 value: 15.7249 - type: nauc_mrr_at_3_max value: -12.965399999999999 - type: nauc_mrr_at_3_std value: -12.197099999999999 - type: nauc_mrr_at_3_diff1 value: 11.228200000000001 - type: nauc_mrr_at_5_max value: -12.3171 - type: nauc_mrr_at_5_std value: -11.3562 - type: nauc_mrr_at_5_diff1 value: 11.081900000000001 - type: nauc_mrr_at_10_max value: -11.9397 - type: nauc_mrr_at_10_std value: -11.3157 - type: nauc_mrr_at_10_diff1 value: 11.3887 - type: nauc_mrr_at_20_max value: -11.8344 - type: nauc_mrr_at_20_std value: -11.269 - type: nauc_mrr_at_20_diff1 value: 11.655600000000002 - type: nauc_mrr_at_100_max value: -11.9825 - type: nauc_mrr_at_100_std value: -11.3178 - type: nauc_mrr_at_100_diff1 value: 11.6519 - type: nauc_mrr_at_1000_max value: -11.9871 - type: nauc_mrr_at_1000_std value: -11.3205 - type: nauc_mrr_at_1000_diff1 value: 11.6499 - type: main_score value: 58.401 task: type: Retrieval - dataset: config: default name: MTEB ArxivClusteringP2P (default) revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d split: test type: mteb/arxiv-clustering-p2p metrics: - type: v_measure value: 48.3018 - type: v_measure_std value: 13.845199999999998 - type: main_score value: 48.3018 task: type: Clustering - dataset: config: default name: MTEB ArxivClusteringS2S (default) revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 split: test type: mteb/arxiv-clustering-s2s metrics: - type: v_measure value: 44.837900000000005 - type: v_measure_std value: 14.089599999999999 - type: main_score value: 44.837900000000005 task: type: Clustering - dataset: config: default name: MTEB AskUbuntuDupQuestions (default) revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 split: test type: mteb/askubuntudupquestions-reranking metrics: - type: map value: 66.4838 - type: mrr value: 79.3195 - type: nAUC_map_max value: 23.2658 - type: nAUC_map_std value: 17.5795 - type: nAUC_map_diff1 value: 11.5539 - type: nAUC_mrr_max value: 35.565400000000004 - type: nAUC_mrr_std value: 23.7189 - type: nAUC_mrr_diff1 value: 15.962299999999999 - type: main_score value: 66.4838 task: type: Reranking - dataset: config: default name: MTEB BIOSSES (default) revision: d3fb88f8f02e40887cd149695127462bbcf29b4a split: test type: mteb/biosses-sts metrics: - type: pearson value: 90.1203 - type: spearman value: 87.8424 - type: cosine_pearson value: 90.1203 - type: cosine_spearman value: 87.8424 - type: manhattan_pearson value: 88.1164 - type: manhattan_spearman value: 87.752 - type: euclidean_pearson value: 88.3146 - type: euclidean_spearman value: 87.8424 - type: main_score value: 87.8424 task: type: STS - dataset: config: default name: MTEB Banking77Classification (default) revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 split: test type: mteb/banking77 metrics: - type: accuracy value: 77.9156 - type: f1 value: 76.9641 - type: f1_weighted value: 76.9641 - type: main_score value: 77.9156 task: type: Classification - dataset: config: default name: MTEB BiorxivClusteringP2P (default) revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 split: test type: mteb/biorxiv-clustering-p2p metrics: - type: v_measure value: 38.3582 - type: v_measure_std value: 1.1436 - type: main_score value: 38.3582 task: type: Clustering - dataset: config: default name: MTEB BiorxivClusteringS2S (default) revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 split: test type: mteb/biorxiv-clustering-s2s metrics: - type: v_measure value: 36.2911 - type: v_measure_std value: 0.44339999999999996 - type: main_score value: 36.2911 task: type: Clustering - dataset: config: python name: MTEB COIRCodeSearchNetRetrieval (python) revision: 4adc7bc41202b5c13543c9c886a25f340634dab3 split: test type: CoIR-Retrieval/CodeSearchNet metrics: - type: ndcg_at_1 value: 76.351 - type: ndcg_at_3 value: 82.116 - type: ndcg_at_5 value: 83.231 - type: ndcg_at_10 value: 84.301 - type: ndcg_at_20 value: 84.83800000000001 - type: ndcg_at_100 value: 85.462 - type: ndcg_at_1000 value: 85.706 - type: map_at_1 value: 76.351 - type: map_at_3 value: 80.744 - type: map_at_5 value: 81.365 - type: map_at_10 value: 81.812 - type: map_at_20 value: 81.96 - type: map_at_100 value: 82.05 - type: map_at_1000 value: 82.06 - type: recall_at_1 value: 76.351 - type: recall_at_3 value: 86.071 - type: recall_at_5 value: 88.765 - type: recall_at_10 value: 92.04299999999999 - type: recall_at_20 value: 94.16799999999999 - type: recall_at_100 value: 97.466 - type: recall_at_1000 value: 99.383 - type: precision_at_1 value: 76.351 - type: precision_at_3 value: 28.689999999999998 - type: precision_at_5 value: 17.753 - type: precision_at_10 value: 9.203999999999999 - type: precision_at_20 value: 4.707999999999999 - type: precision_at_100 value: 0.975 - type: precision_at_1000 value: 0.099 - type: mrr_at_1 value: 76.3507 - type: mrr_at_3 value: 80.7436 - type: mrr_at_5 value: 81.3647 - type: mrr_at_10 value: 81.8121 - type: mrr_at_20 value: 81.9598 - type: mrr_at_100 value: 82.0504 - type: mrr_at_1000 value: 82.0597 - type: nauc_ndcg_at_1_max value: 73.2541 - type: nauc_ndcg_at_1_std value: -0.8352 - type: nauc_ndcg_at_1_diff1 value: 85.1422 - type: nauc_ndcg_at_3_max value: 75.9862 - type: nauc_ndcg_at_3_std value: 0.14100000000000001 - type: nauc_ndcg_at_3_diff1 value: 82.4674 - type: nauc_ndcg_at_5_max value: 75.7513 - type: nauc_ndcg_at_5_std value: 0.614 - type: nauc_ndcg_at_5_diff1 value: 82.2885 - type: nauc_ndcg_at_10_max value: 75.6282 - type: nauc_ndcg_at_10_std value: 0.6251 - type: nauc_ndcg_at_10_diff1 value: 82.3616 - type: nauc_ndcg_at_20_max value: 75.7286 - type: nauc_ndcg_at_20_std value: 0.9792000000000001 - type: nauc_ndcg_at_20_diff1 value: 82.6106 - type: nauc_ndcg_at_100_max value: 75.58840000000001 - type: nauc_ndcg_at_100_std value: 1.0781 - type: nauc_ndcg_at_100_diff1 value: 82.82969999999999 - type: nauc_ndcg_at_1000_max value: 75.4705 - type: nauc_ndcg_at_1000_std value: 0.8326 - type: nauc_ndcg_at_1000_diff1 value: 82.889 - type: nauc_map_at_1_max value: 73.2541 - type: nauc_map_at_1_std value: -0.8352 - type: nauc_map_at_1_diff1 value: 85.1422 - type: nauc_map_at_3_max value: 75.2756 - type: nauc_map_at_3_std value: -0.145 - type: nauc_map_at_3_diff1 value: 83.15780000000001 - type: nauc_map_at_5_max value: 75.1281 - type: nauc_map_at_5_std value: 0.0837 - type: nauc_map_at_5_diff1 value: 83.08250000000001 - type: nauc_map_at_10_max value: 75.05579999999999 - type: nauc_map_at_10_std value: 0.068 - type: nauc_map_at_10_diff1 value: 83.1206 - type: nauc_map_at_20_max value: 75.0708 - type: nauc_map_at_20_std value: 0.13749999999999998 - type: nauc_map_at_20_diff1 value: 83.1861 - type: nauc_map_at_100_max value: 75.0491 - type: nauc_map_at_100_std value: 0.1411 - type: nauc_map_at_100_diff1 value: 83.21539999999999 - type: nauc_map_at_1000_max value: 75.04570000000001 - type: nauc_map_at_1000_std value: 0.1359 - type: nauc_map_at_1000_diff1 value: 83.2179 - type: nauc_recall_at_1_max value: 73.2541 - type: nauc_recall_at_1_std value: -0.8352 - type: nauc_recall_at_1_diff1 value: 85.1422 - type: nauc_recall_at_3_max value: 78.65990000000001 - type: nauc_recall_at_3_std value: 1.2368000000000001 - type: nauc_recall_at_3_diff1 value: 79.8732 - type: nauc_recall_at_5_max value: 78.46 - type: nauc_recall_at_5_std value: 3.1027 - type: nauc_recall_at_5_diff1 value: 78.7509 - type: nauc_recall_at_10_max value: 78.9542 - type: nauc_recall_at_10_std value: 4.2138 - type: nauc_recall_at_10_diff1 value: 77.8697 - type: nauc_recall_at_20_max value: 81.2016 - type: nauc_recall_at_20_std value: 9.092500000000001 - type: nauc_recall_at_20_diff1 value: 78.6045 - type: nauc_recall_at_100_max value: 84.5044 - type: nauc_recall_at_100_std value: 22.6368 - type: nauc_recall_at_100_diff1 value: 79.553 - type: nauc_recall_at_1000_max value: 91.4393 - type: nauc_recall_at_1000_std value: 44.0261 - type: nauc_recall_at_1000_diff1 value: 78.6859 - type: nauc_precision_at_1_max value: 73.2541 - type: nauc_precision_at_1_std value: -0.8352 - type: nauc_precision_at_1_diff1 value: 85.1422 - type: nauc_precision_at_3_max value: 78.65990000000001 - type: nauc_precision_at_3_std value: 1.2368000000000001 - type: nauc_precision_at_3_diff1 value: 79.8732 - type: nauc_precision_at_5_max value: 78.46 - type: nauc_precision_at_5_std value: 3.1027 - type: nauc_precision_at_5_diff1 value: 78.7509 - type: nauc_precision_at_10_max value: 78.9542 - type: nauc_precision_at_10_std value: 4.2138 - type: nauc_precision_at_10_diff1 value: 77.8697 - type: nauc_precision_at_20_max value: 81.2016 - type: nauc_precision_at_20_std value: 9.092500000000001 - type: nauc_precision_at_20_diff1 value: 78.6045 - type: nauc_precision_at_100_max value: 84.5044 - type: nauc_precision_at_100_std value: 22.6368 - type: nauc_precision_at_100_diff1 value: 79.553 - type: nauc_precision_at_1000_max value: 91.4393 - type: nauc_precision_at_1000_std value: 44.0261 - type: nauc_precision_at_1000_diff1 value: 78.6859 - type: nauc_mrr_at_1_max value: 73.2541 - type: nauc_mrr_at_1_std value: -0.8352 - type: nauc_mrr_at_1_diff1 value: 85.1422 - type: nauc_mrr_at_3_max value: 75.2756 - type: nauc_mrr_at_3_std value: -0.145 - type: nauc_mrr_at_3_diff1 value: 83.15780000000001 - type: nauc_mrr_at_5_max value: 75.1281 - type: nauc_mrr_at_5_std value: 0.0837 - type: nauc_mrr_at_5_diff1 value: 83.08250000000001 - type: nauc_mrr_at_10_max value: 75.05579999999999 - type: nauc_mrr_at_10_std value: 0.068 - type: nauc_mrr_at_10_diff1 value: 83.1206 - type: nauc_mrr_at_20_max value: 75.0708 - type: nauc_mrr_at_20_std value: 0.13749999999999998 - type: nauc_mrr_at_20_diff1 value: 83.1861 - type: nauc_mrr_at_100_max value: 75.0491 - type: nauc_mrr_at_100_std value: 0.1411 - type: nauc_mrr_at_100_diff1 value: 83.21539999999999 - type: nauc_mrr_at_1000_max value: 75.04570000000001 - type: nauc_mrr_at_1000_std value: 0.1359 - type: nauc_mrr_at_1000_diff1 value: 83.2179 - type: main_score value: 84.301 task: type: Retrieval - dataset: config: javascript name: MTEB COIRCodeSearchNetRetrieval (javascript) revision: 4adc7bc41202b5c13543c9c886a25f340634dab3 split: test type: CoIR-Retrieval/CodeSearchNet metrics: - type: ndcg_at_1 value: 34.154 - type: ndcg_at_3 value: 41.637 - type: ndcg_at_5 value: 43.775 - type: ndcg_at_10 value: 46.093 - type: ndcg_at_20 value: 47.659 - type: ndcg_at_100 value: 49.975 - type: ndcg_at_1000 value: 51.652 - type: map_at_1 value: 34.154 - type: map_at_3 value: 39.811 - type: map_at_5 value: 40.996 - type: map_at_10 value: 41.945 - type: map_at_20 value: 42.375 - type: map_at_100 value: 42.693999999999996 - type: map_at_1000 value: 42.752 - type: recall_at_1 value: 34.154 - type: recall_at_3 value: 46.916000000000004 - type: recall_at_5 value: 52.112 - type: recall_at_10 value: 59.313 - type: recall_at_20 value: 65.512 - type: recall_at_100 value: 78.001 - type: recall_at_1000 value: 91.49199999999999 - type: precision_at_1 value: 34.154 - type: precision_at_3 value: 15.639 - type: precision_at_5 value: 10.421999999999999 - type: precision_at_10 value: 5.931 - type: precision_at_20 value: 3.276 - type: precision_at_100 value: 0.7799999999999999 - type: precision_at_1000 value: 0.091 - type: mrr_at_1 value: 34.153800000000004 - type: mrr_at_3 value: 39.8106 - type: mrr_at_5 value: 40.995599999999996 - type: mrr_at_10 value: 41.9454 - type: mrr_at_20 value: 42.375099999999996 - type: mrr_at_100 value: 42.6943 - type: mrr_at_1000 value: 42.7521 - type: nauc_ndcg_at_1_max value: 43.9354 - type: nauc_ndcg_at_1_std value: -3.6563 - type: nauc_ndcg_at_1_diff1 value: 63.9034 - type: nauc_ndcg_at_3_max value: 45.9224 - type: nauc_ndcg_at_3_std value: -1.1915 - type: nauc_ndcg_at_3_diff1 value: 56.65599999999999 - type: nauc_ndcg_at_5_max value: 45.7943 - type: nauc_ndcg_at_5_std value: -0.7263000000000001 - type: nauc_ndcg_at_5_diff1 value: 55.4796 - type: nauc_ndcg_at_10_max value: 45.4291 - type: nauc_ndcg_at_10_std value: 0.12290000000000001 - type: nauc_ndcg_at_10_diff1 value: 54.7952 - type: nauc_ndcg_at_20_max value: 45.7072 - type: nauc_ndcg_at_20_std value: 1.3283 - type: nauc_ndcg_at_20_diff1 value: 54.8465 - type: nauc_ndcg_at_100_max value: 45.8073 - type: nauc_ndcg_at_100_std value: 1.8653 - type: nauc_ndcg_at_100_diff1 value: 54.9886 - type: nauc_ndcg_at_1000_max value: 45.5983 - type: nauc_ndcg_at_1000_std value: 1.2590999999999999 - type: nauc_ndcg_at_1000_diff1 value: 55.374500000000005 - type: nauc_map_at_1_max value: 43.9354 - type: nauc_map_at_1_std value: -3.6563 - type: nauc_map_at_1_diff1 value: 63.9034 - type: nauc_map_at_3_max value: 45.4465 - type: nauc_map_at_3_std value: -1.7909000000000002 - type: nauc_map_at_3_diff1 value: 58.3822 - type: nauc_map_at_5_max value: 45.3588 - type: nauc_map_at_5_std value: -1.5449 - type: nauc_map_at_5_diff1 value: 57.737 - type: nauc_map_at_10_max value: 45.2115 - type: nauc_map_at_10_std value: -1.2034 - type: nauc_map_at_10_diff1 value: 57.4859 - type: nauc_map_at_20_max value: 45.29 - type: nauc_map_at_20_std value: -0.8769000000000001 - type: nauc_map_at_20_diff1 value: 57.510099999999994 - type: nauc_map_at_100_max value: 45.2905 - type: nauc_map_at_100_std value: -0.8298 - type: nauc_map_at_100_diff1 value: 57.5373 - type: nauc_map_at_1000_max value: 45.2866 - type: nauc_map_at_1000_std value: -0.8453 - type: nauc_map_at_1000_diff1 value: 57.550000000000004 - type: nauc_recall_at_1_max value: 43.9354 - type: nauc_recall_at_1_std value: -3.6563 - type: nauc_recall_at_1_diff1 value: 63.9034 - type: nauc_recall_at_3_max value: 47.2962 - type: nauc_recall_at_3_std value: 0.542 - type: nauc_recall_at_3_diff1 value: 51.6782 - type: nauc_recall_at_5_max value: 47.0822 - type: nauc_recall_at_5_std value: 1.7794999999999999 - type: nauc_recall_at_5_diff1 value: 48.634100000000004 - type: nauc_recall_at_10_max value: 45.9453 - type: nauc_recall_at_10_std value: 4.7773 - type: nauc_recall_at_10_diff1 value: 45.778600000000004 - type: nauc_recall_at_20_max value: 47.232400000000005 - type: nauc_recall_at_20_std value: 10.7522 - type: nauc_recall_at_20_diff1 value: 45.029599999999995 - type: nauc_recall_at_100_max value: 48.937799999999996 - type: nauc_recall_at_100_std value: 19.4035 - type: nauc_recall_at_100_diff1 value: 42.388 - type: nauc_recall_at_1000_max value: 46.494099999999996 - type: nauc_recall_at_1000_std value: 24.532 - type: nauc_recall_at_1000_diff1 value: 36.9281 - type: nauc_precision_at_1_max value: 43.9354 - type: nauc_precision_at_1_std value: -3.6563 - type: nauc_precision_at_1_diff1 value: 63.9034 - type: nauc_precision_at_3_max value: 47.2962 - type: nauc_precision_at_3_std value: 0.542 - type: nauc_precision_at_3_diff1 value: 51.6782 - type: nauc_precision_at_5_max value: 47.0822 - type: nauc_precision_at_5_std value: 1.7794999999999999 - type: nauc_precision_at_5_diff1 value: 48.634100000000004 - type: nauc_precision_at_10_max value: 45.9453 - type: nauc_precision_at_10_std value: 4.7773 - type: nauc_precision_at_10_diff1 value: 45.778600000000004 - type: nauc_precision_at_20_max value: 47.232400000000005 - type: nauc_precision_at_20_std value: 10.7522 - type: nauc_precision_at_20_diff1 value: 45.029599999999995 - type: nauc_precision_at_100_max value: 48.937799999999996 - type: nauc_precision_at_100_std value: 19.4035 - type: nauc_precision_at_100_diff1 value: 42.388 - type: nauc_precision_at_1000_max value: 46.494099999999996 - type: nauc_precision_at_1000_std value: 24.532 - type: nauc_precision_at_1000_diff1 value: 36.9281 - type: nauc_mrr_at_1_max value: 43.9354 - type: nauc_mrr_at_1_std value: -3.6563 - type: nauc_mrr_at_1_diff1 value: 63.9034 - type: nauc_mrr_at_3_max value: 45.4465 - type: nauc_mrr_at_3_std value: -1.7909000000000002 - type: nauc_mrr_at_3_diff1 value: 58.3822 - type: nauc_mrr_at_5_max value: 45.3588 - type: nauc_mrr_at_5_std value: -1.5449 - type: nauc_mrr_at_5_diff1 value: 57.737 - type: nauc_mrr_at_10_max value: 45.2115 - type: nauc_mrr_at_10_std value: -1.2034 - type: nauc_mrr_at_10_diff1 value: 57.4859 - type: nauc_mrr_at_20_max value: 45.29 - type: nauc_mrr_at_20_std value: -0.8769000000000001 - type: nauc_mrr_at_20_diff1 value: 57.510099999999994 - type: nauc_mrr_at_100_max value: 45.2906 - type: nauc_mrr_at_100_std value: -0.8297000000000001 - type: nauc_mrr_at_100_diff1 value: 57.5373 - type: nauc_mrr_at_1000_max value: 45.2866 - type: nauc_mrr_at_1000_std value: -0.8452 - type: nauc_mrr_at_1000_diff1 value: 57.550000000000004 - type: main_score value: 46.093 task: type: Retrieval - dataset: config: go name: MTEB COIRCodeSearchNetRetrieval (go) revision: 4adc7bc41202b5c13543c9c886a25f340634dab3 split: test type: CoIR-Retrieval/CodeSearchNet metrics: - type: ndcg_at_1 value: 43.105 - type: ndcg_at_3 value: 52.758 - type: ndcg_at_5 value: 55.284 - type: ndcg_at_10 value: 57.557 - type: ndcg_at_20 value: 58.885 - type: ndcg_at_100 value: 60.803 - type: ndcg_at_1000 value: 61.855000000000004 - type: map_at_1 value: 43.105 - type: map_at_3 value: 50.38399999999999 - type: map_at_5 value: 51.783 - type: map_at_10 value: 52.727999999999994 - type: map_at_20 value: 53.095000000000006 - type: map_at_100 value: 53.361999999999995 - type: map_at_1000 value: 53.400000000000006 - type: recall_at_1 value: 43.105 - type: recall_at_3 value: 59.628 - type: recall_at_5 value: 65.77199999999999 - type: recall_at_10 value: 72.765 - type: recall_at_20 value: 77.998 - type: recall_at_100 value: 88.31599999999999 - type: recall_at_1000 value: 96.71300000000001 - type: precision_at_1 value: 43.105 - type: precision_at_3 value: 19.875999999999998 - type: precision_at_5 value: 13.154 - type: precision_at_10 value: 7.277 - type: precision_at_20 value: 3.9 - type: precision_at_100 value: 0.8829999999999999 - type: precision_at_1000 value: 0.097 - type: mrr_at_1 value: 43.1051 - type: mrr_at_3 value: 50.3837 - type: mrr_at_5 value: 51.783 - type: mrr_at_10 value: 52.727900000000005 - type: mrr_at_20 value: 53.0949 - type: mrr_at_100 value: 53.3622 - type: mrr_at_1000 value: 53.400000000000006 - type: nauc_ndcg_at_1_max value: 37.3169 - type: nauc_ndcg_at_1_std value: -2.3253 - type: nauc_ndcg_at_1_diff1 value: 60.0465 - type: nauc_ndcg_at_3_max value: 38.2665 - type: nauc_ndcg_at_3_std value: -2.7671 - type: nauc_ndcg_at_3_diff1 value: 54.8964 - type: nauc_ndcg_at_5_max value: 38.4714 - type: nauc_ndcg_at_5_std value: -2.7024 - type: nauc_ndcg_at_5_diff1 value: 54.207899999999995 - type: nauc_ndcg_at_10_max value: 38.4099 - type: nauc_ndcg_at_10_std value: -2.5911 - type: nauc_ndcg_at_10_diff1 value: 53.9601 - type: nauc_ndcg_at_20_max value: 38.406400000000005 - type: nauc_ndcg_at_20_std value: -2.3428 - type: nauc_ndcg_at_20_diff1 value: 54.008 - type: nauc_ndcg_at_100_max value: 38.485 - type: nauc_ndcg_at_100_std value: -2.0368 - type: nauc_ndcg_at_100_diff1 value: 54.238299999999995 - type: nauc_ndcg_at_1000_max value: 38.5112 - type: nauc_ndcg_at_1000_std value: -2.1126 - type: nauc_ndcg_at_1000_diff1 value: 54.6965 - type: nauc_map_at_1_max value: 37.3169 - type: nauc_map_at_1_std value: -2.3253 - type: nauc_map_at_1_diff1 value: 60.0465 - type: nauc_map_at_3_max value: 38.0384 - type: nauc_map_at_3_std value: -2.6754 - type: nauc_map_at_3_diff1 value: 56.137899999999995 - type: nauc_map_at_5_max value: 38.1522 - type: nauc_map_at_5_std value: -2.6406 - type: nauc_map_at_5_diff1 value: 55.80310000000001 - type: nauc_map_at_10_max value: 38.128299999999996 - type: nauc_map_at_10_std value: -2.5891 - type: nauc_map_at_10_diff1 value: 55.7289 - type: nauc_map_at_20_max value: 38.128 - type: nauc_map_at_20_std value: -2.5267 - type: nauc_map_at_20_diff1 value: 55.758700000000005 - type: nauc_map_at_100_max value: 38.1402 - type: nauc_map_at_100_std value: -2.4964 - type: nauc_map_at_100_diff1 value: 55.80159999999999 - type: nauc_map_at_1000_max value: 38.1428 - type: nauc_map_at_1000_std value: -2.4949 - type: nauc_map_at_1000_diff1 value: 55.8162 - type: nauc_recall_at_1_max value: 37.3169 - type: nauc_recall_at_1_std value: -2.3253 - type: nauc_recall_at_1_diff1 value: 60.0465 - type: nauc_recall_at_3_max value: 38.9708 - type: nauc_recall_at_3_std value: -3.0438 - type: nauc_recall_at_3_diff1 value: 51.0597 - type: nauc_recall_at_5_max value: 39.5722 - type: nauc_recall_at_5_std value: -2.8886 - type: nauc_recall_at_5_diff1 value: 48.6862 - type: nauc_recall_at_10_max value: 39.494 - type: nauc_recall_at_10_std value: -2.5299 - type: nauc_recall_at_10_diff1 value: 46.75 - type: nauc_recall_at_20_max value: 39.6388 - type: nauc_recall_at_20_std value: -1.0715999999999999 - type: nauc_recall_at_20_diff1 value: 45.6381 - type: nauc_recall_at_100_max value: 41.4357 - type: nauc_recall_at_100_std value: 4.1693 - type: nauc_recall_at_100_diff1 value: 42.2097 - type: nauc_recall_at_1000_max value: 49.2056 - type: nauc_recall_at_1000_std value: 12.2387 - type: nauc_recall_at_1000_diff1 value: 42.7371 - type: nauc_precision_at_1_max value: 37.3169 - type: nauc_precision_at_1_std value: -2.3253 - type: nauc_precision_at_1_diff1 value: 60.0465 - type: nauc_precision_at_3_max value: 38.9708 - type: nauc_precision_at_3_std value: -3.0438 - type: nauc_precision_at_3_diff1 value: 51.0597 - type: nauc_precision_at_5_max value: 39.5722 - type: nauc_precision_at_5_std value: -2.8886 - type: nauc_precision_at_5_diff1 value: 48.6862 - type: nauc_precision_at_10_max value: 39.494 - type: nauc_precision_at_10_std value: -2.5299 - type: nauc_precision_at_10_diff1 value: 46.75 - type: nauc_precision_at_20_max value: 39.6388 - type: nauc_precision_at_20_std value: -1.0715999999999999 - type: nauc_precision_at_20_diff1 value: 45.6381 - type: nauc_precision_at_100_max value: 41.4357 - type: nauc_precision_at_100_std value: 4.1693 - type: nauc_precision_at_100_diff1 value: 42.2097 - type: nauc_precision_at_1000_max value: 49.2056 - type: nauc_precision_at_1000_std value: 12.2387 - type: nauc_precision_at_1000_diff1 value: 42.7371 - type: nauc_mrr_at_1_max value: 37.3169 - type: nauc_mrr_at_1_std value: -2.3253 - type: nauc_mrr_at_1_diff1 value: 60.0465 - type: nauc_mrr_at_3_max value: 38.0384 - type: nauc_mrr_at_3_std value: -2.6754 - type: nauc_mrr_at_3_diff1 value: 56.137899999999995 - type: nauc_mrr_at_5_max value: 38.1522 - type: nauc_mrr_at_5_std value: -2.6406 - type: nauc_mrr_at_5_diff1 value: 55.80310000000001 - type: nauc_mrr_at_10_max value: 38.128299999999996 - type: nauc_mrr_at_10_std value: -2.5891 - type: nauc_mrr_at_10_diff1 value: 55.7289 - type: nauc_mrr_at_20_max value: 38.128 - type: nauc_mrr_at_20_std value: -2.5267 - type: nauc_mrr_at_20_diff1 value: 55.758700000000005 - type: nauc_mrr_at_100_max value: 38.1402 - type: nauc_mrr_at_100_std value: -2.4964 - type: nauc_mrr_at_100_diff1 value: 55.80159999999999 - type: nauc_mrr_at_1000_max value: 38.1428 - type: nauc_mrr_at_1000_std value: -2.4949 - type: nauc_mrr_at_1000_diff1 value: 55.8162 - type: main_score value: 57.557 task: type: Retrieval - dataset: config: ruby name: MTEB COIRCodeSearchNetRetrieval (ruby) revision: 4adc7bc41202b5c13543c9c886a25f340634dab3 split: test type: CoIR-Retrieval/CodeSearchNet metrics: - type: ndcg_at_1 value: 33.466 - type: ndcg_at_3 value: 41.611 - type: ndcg_at_5 value: 44.41 - type: ndcg_at_10 value: 46.878 - type: ndcg_at_20 value: 48.548 - type: ndcg_at_100 value: 51.004000000000005 - type: ndcg_at_1000 value: 52.564 - type: map_at_1 value: 33.466 - type: map_at_3 value: 39.650999999999996 - type: map_at_5 value: 41.217 - type: map_at_10 value: 42.225 - type: map_at_20 value: 42.687000000000005 - type: map_at_100 value: 43.025000000000006 - type: map_at_1000 value: 43.082 - type: recall_at_1 value: 33.466 - type: recall_at_3 value: 47.264 - type: recall_at_5 value: 54.005 - type: recall_at_10 value: 61.697 - type: recall_at_20 value: 68.279 - type: recall_at_100 value: 81.523 - type: recall_at_1000 value: 93.973 - type: precision_at_1 value: 33.466 - type: precision_at_3 value: 15.754999999999999 - type: precision_at_5 value: 10.801 - type: precision_at_10 value: 6.17 - type: precision_at_20 value: 3.4139999999999997 - type: precision_at_100 value: 0.815 - type: precision_at_1000 value: 0.094 - type: mrr_at_1 value: 33.4655 - type: mrr_at_3 value: 39.6511 - type: mrr_at_5 value: 41.2173 - type: mrr_at_10 value: 42.2253 - type: mrr_at_20 value: 42.686800000000005 - type: mrr_at_100 value: 43.025000000000006 - type: mrr_at_1000 value: 43.0818 - type: nauc_ndcg_at_1_max value: 45.789699999999996 - type: nauc_ndcg_at_1_std value: -4.9502999999999995 - type: nauc_ndcg_at_1_diff1 value: 54.9067 - type: nauc_ndcg_at_3_max value: 44.473800000000004 - type: nauc_ndcg_at_3_std value: -2.9877000000000002 - type: nauc_ndcg_at_3_diff1 value: 48.611599999999996 - type: nauc_ndcg_at_5_max value: 44.048300000000005 - type: nauc_ndcg_at_5_std value: -2.4233000000000002 - type: nauc_ndcg_at_5_diff1 value: 46.6638 - type: nauc_ndcg_at_10_max value: 42.9816 - type: nauc_ndcg_at_10_std value: -1.8901000000000001 - type: nauc_ndcg_at_10_diff1 value: 45.9046 - type: nauc_ndcg_at_20_max value: 42.7803 - type: nauc_ndcg_at_20_std value: -1.2547000000000001 - type: nauc_ndcg_at_20_diff1 value: 45.305 - type: nauc_ndcg_at_100_max value: 42.918 - type: nauc_ndcg_at_100_std value: -0.6534 - type: nauc_ndcg_at_100_diff1 value: 45.6519 - type: nauc_ndcg_at_1000_max value: 43.0112 - type: nauc_ndcg_at_1000_std value: -1.1447 - type: nauc_ndcg_at_1000_diff1 value: 46.1206 - type: nauc_map_at_1_max value: 45.789699999999996 - type: nauc_map_at_1_std value: -4.9502999999999995 - type: nauc_map_at_1_diff1 value: 54.9067 - type: nauc_map_at_3_max value: 44.6443 - type: nauc_map_at_3_std value: -3.4606 - type: nauc_map_at_3_diff1 value: 49.9067 - type: nauc_map_at_5_max value: 44.3838 - type: nauc_map_at_5_std value: -3.1638 - type: nauc_map_at_5_diff1 value: 48.829899999999995 - type: nauc_map_at_10_max value: 43.9426 - type: nauc_map_at_10_std value: -2.9687 - type: nauc_map_at_10_diff1 value: 48.497 - type: nauc_map_at_20_max value: 43.8915 - type: nauc_map_at_20_std value: -2.8005 - type: nauc_map_at_20_diff1 value: 48.3597 - type: nauc_map_at_100_max value: 43.8943 - type: nauc_map_at_100_std value: -2.7306 - type: nauc_map_at_100_diff1 value: 48.4227 - type: nauc_map_at_1000_max value: 43.8925 - type: nauc_map_at_1000_std value: -2.7446 - type: nauc_map_at_1000_diff1 value: 48.4369 - type: nauc_recall_at_1_max value: 45.789699999999996 - type: nauc_recall_at_1_std value: -4.9502999999999995 - type: nauc_recall_at_1_diff1 value: 54.9067 - type: nauc_recall_at_3_max value: 44.0419 - type: nauc_recall_at_3_std value: -1.6226 - type: nauc_recall_at_3_diff1 value: 44.9647 - type: nauc_recall_at_5_max value: 43.0769 - type: nauc_recall_at_5_std value: -0.1038 - type: nauc_recall_at_5_diff1 value: 39.9873 - type: nauc_recall_at_10_max value: 39.4409 - type: nauc_recall_at_10_std value: 2.0126999999999997 - type: nauc_recall_at_10_diff1 value: 37.0457 - type: nauc_recall_at_20_max value: 38.0436 - type: nauc_recall_at_20_std value: 5.5206 - type: nauc_recall_at_20_diff1 value: 32.9418 - type: nauc_recall_at_100_max value: 37.4262 - type: nauc_recall_at_100_std value: 14.9231 - type: nauc_recall_at_100_diff1 value: 29.651100000000003 - type: nauc_recall_at_1000_max value: 33.1185 - type: nauc_recall_at_1000_std value: 23.4133 - type: nauc_recall_at_1000_diff1 value: 19.6646 - type: nauc_precision_at_1_max value: 45.789699999999996 - type: nauc_precision_at_1_std value: -4.9502999999999995 - type: nauc_precision_at_1_diff1 value: 54.9067 - type: nauc_precision_at_3_max value: 44.0419 - type: nauc_precision_at_3_std value: -1.6226 - type: nauc_precision_at_3_diff1 value: 44.9647 - type: nauc_precision_at_5_max value: 43.0769 - type: nauc_precision_at_5_std value: -0.1038 - type: nauc_precision_at_5_diff1 value: 39.9873 - type: nauc_precision_at_10_max value: 39.4409 - type: nauc_precision_at_10_std value: 2.0126999999999997 - type: nauc_precision_at_10_diff1 value: 37.0457 - type: nauc_precision_at_20_max value: 38.0436 - type: nauc_precision_at_20_std value: 5.5206 - type: nauc_precision_at_20_diff1 value: 32.9418 - type: nauc_precision_at_100_max value: 37.4262 - type: nauc_precision_at_100_std value: 14.9231 - type: nauc_precision_at_100_diff1 value: 29.651100000000003 - type: nauc_precision_at_1000_max value: 33.1185 - type: nauc_precision_at_1000_std value: 23.4133 - type: nauc_precision_at_1000_diff1 value: 19.6646 - type: nauc_mrr_at_1_max value: 45.789699999999996 - type: nauc_mrr_at_1_std value: -4.9502999999999995 - type: nauc_mrr_at_1_diff1 value: 54.9067 - type: nauc_mrr_at_3_max value: 44.6443 - type: nauc_mrr_at_3_std value: -3.4606 - type: nauc_mrr_at_3_diff1 value: 49.9067 - type: nauc_mrr_at_5_max value: 44.3838 - type: nauc_mrr_at_5_std value: -3.1638 - type: nauc_mrr_at_5_diff1 value: 48.829899999999995 - type: nauc_mrr_at_10_max value: 43.9426 - type: nauc_mrr_at_10_std value: -2.9687 - type: nauc_mrr_at_10_diff1 value: 48.497 - type: nauc_mrr_at_20_max value: 43.8915 - type: nauc_mrr_at_20_std value: -2.8005 - type: nauc_mrr_at_20_diff1 value: 48.3597 - type: nauc_mrr_at_100_max value: 43.8943 - type: nauc_mrr_at_100_std value: -2.7306 - type: nauc_mrr_at_100_diff1 value: 48.4227 - type: nauc_mrr_at_1000_max value: 43.8925 - type: nauc_mrr_at_1000_std value: -2.7446 - type: nauc_mrr_at_1000_diff1 value: 48.4369 - type: main_score value: 46.878 task: type: Retrieval - dataset: config: java name: MTEB COIRCodeSearchNetRetrieval (java) revision: 4adc7bc41202b5c13543c9c886a25f340634dab3 split: test type: CoIR-Retrieval/CodeSearchNet metrics: - type: ndcg_at_1 value: 37.91 - type: ndcg_at_3 value: 46.022999999999996 - type: ndcg_at_5 value: 48.345 - type: ndcg_at_10 value: 50.477000000000004 - type: ndcg_at_20 value: 51.900999999999996 - type: ndcg_at_100 value: 54.01899999999999 - type: ndcg_at_1000 value: 55.383 - type: map_at_1 value: 37.91 - type: map_at_3 value: 44.051 - type: map_at_5 value: 45.341 - type: map_at_10 value: 46.221000000000004 - type: map_at_20 value: 46.613 - type: map_at_100 value: 46.902 - type: map_at_1000 value: 46.949999999999996 - type: recall_at_1 value: 37.91 - type: recall_at_3 value: 51.721 - type: recall_at_5 value: 57.353 - type: recall_at_10 value: 63.943000000000005 - type: recall_at_20 value: 69.56599999999999 - type: recall_at_100 value: 81.041 - type: recall_at_1000 value: 91.995 - type: precision_at_1 value: 37.91 - type: precision_at_3 value: 17.24 - type: precision_at_5 value: 11.471 - type: precision_at_10 value: 6.394 - type: precision_at_20 value: 3.4779999999999998 - type: precision_at_100 value: 0.8099999999999999 - type: precision_at_1000 value: 0.092 - type: mrr_at_1 value: 37.9096 - type: mrr_at_3 value: 44.0514 - type: mrr_at_5 value: 45.340799999999994 - type: mrr_at_10 value: 46.221000000000004 - type: mrr_at_20 value: 46.613 - type: mrr_at_100 value: 46.9024 - type: mrr_at_1000 value: 46.9499 - type: nauc_ndcg_at_1_max value: 32.0711 - type: nauc_ndcg_at_1_std value: -6.4620999999999995 - type: nauc_ndcg_at_1_diff1 value: 57.851200000000006 - type: nauc_ndcg_at_3_max value: 33.6415 - type: nauc_ndcg_at_3_std value: -5.2595 - type: nauc_ndcg_at_3_diff1 value: 53.340900000000005 - type: nauc_ndcg_at_5_max value: 33.6962 - type: nauc_ndcg_at_5_std value: -4.3041 - type: nauc_ndcg_at_5_diff1 value: 52.137299999999996 - type: nauc_ndcg_at_10_max value: 33.8843 - type: nauc_ndcg_at_10_std value: -3.2363000000000004 - type: nauc_ndcg_at_10_diff1 value: 51.5065 - type: nauc_ndcg_at_20_max value: 33.8675 - type: nauc_ndcg_at_20_std value: -2.4443 - type: nauc_ndcg_at_20_diff1 value: 51.31790000000001 - type: nauc_ndcg_at_100_max value: 34.2671 - type: nauc_ndcg_at_100_std value: -1.706 - type: nauc_ndcg_at_100_diff1 value: 51.3801 - type: nauc_ndcg_at_1000_max value: 34.237 - type: nauc_ndcg_at_1000_std value: -2.0292999999999997 - type: nauc_ndcg_at_1000_diff1 value: 51.8196 - type: nauc_map_at_1_max value: 32.0711 - type: nauc_map_at_1_std value: -6.4620999999999995 - type: nauc_map_at_1_diff1 value: 57.851200000000006 - type: nauc_map_at_3_max value: 33.271699999999996 - type: nauc_map_at_3_std value: -5.578799999999999 - type: nauc_map_at_3_diff1 value: 54.427800000000005 - type: nauc_map_at_5_max value: 33.2962 - type: nauc_map_at_5_std value: -5.063 - type: nauc_map_at_5_diff1 value: 53.784 - type: nauc_map_at_10_max value: 33.3553 - type: nauc_map_at_10_std value: -4.6524 - type: nauc_map_at_10_diff1 value: 53.5366 - type: nauc_map_at_20_max value: 33.3544 - type: nauc_map_at_20_std value: -4.4497 - type: nauc_map_at_20_diff1 value: 53.4978 - type: nauc_map_at_100_max value: 33.4027 - type: nauc_map_at_100_std value: -4.3659 - type: nauc_map_at_100_diff1 value: 53.514300000000006 - type: nauc_map_at_1000_max value: 33.4037 - type: nauc_map_at_1000_std value: -4.3740000000000006 - type: nauc_map_at_1000_diff1 value: 53.5313 - type: nauc_recall_at_1_max value: 32.0711 - type: nauc_recall_at_1_std value: -6.4620999999999995 - type: nauc_recall_at_1_diff1 value: 57.851200000000006 - type: nauc_recall_at_3_max value: 34.7301 - type: nauc_recall_at_3_std value: -4.3033 - type: nauc_recall_at_3_diff1 value: 50.129999999999995 - type: nauc_recall_at_5_max value: 34.940599999999996 - type: nauc_recall_at_5_std value: -1.7868 - type: nauc_recall_at_5_diff1 value: 46.848 - type: nauc_recall_at_10_max value: 35.8024 - type: nauc_recall_at_10_std value: 2.271 - type: nauc_recall_at_10_diff1 value: 44.1597 - type: nauc_recall_at_20_max value: 35.881800000000005 - type: nauc_recall_at_20_std value: 6.7608 - type: nauc_recall_at_20_diff1 value: 42.3843 - type: nauc_recall_at_100_max value: 40.5398 - type: nauc_recall_at_100_std value: 17.9288 - type: nauc_recall_at_100_diff1 value: 38.9048 - type: nauc_recall_at_1000_max value: 46.6349 - type: nauc_recall_at_1000_std value: 31.1156 - type: nauc_recall_at_1000_diff1 value: 36.5951 - type: nauc_precision_at_1_max value: 32.0711 - type: nauc_precision_at_1_std value: -6.4620999999999995 - type: nauc_precision_at_1_diff1 value: 57.851200000000006 - type: nauc_precision_at_3_max value: 34.7301 - type: nauc_precision_at_3_std value: -4.3033 - type: nauc_precision_at_3_diff1 value: 50.129999999999995 - type: nauc_precision_at_5_max value: 34.940599999999996 - type: nauc_precision_at_5_std value: -1.7868 - type: nauc_precision_at_5_diff1 value: 46.848 - type: nauc_precision_at_10_max value: 35.8024 - type: nauc_precision_at_10_std value: 2.271 - type: nauc_precision_at_10_diff1 value: 44.1597 - type: nauc_precision_at_20_max value: 35.881800000000005 - type: nauc_precision_at_20_std value: 6.7608 - type: nauc_precision_at_20_diff1 value: 42.3843 - type: nauc_precision_at_100_max value: 40.5398 - type: nauc_precision_at_100_std value: 17.9288 - type: nauc_precision_at_100_diff1 value: 38.9048 - type: nauc_precision_at_1000_max value: 46.6349 - type: nauc_precision_at_1000_std value: 31.1156 - type: nauc_precision_at_1000_diff1 value: 36.5951 - type: nauc_mrr_at_1_max value: 32.0711 - type: nauc_mrr_at_1_std value: -6.4620999999999995 - type: nauc_mrr_at_1_diff1 value: 57.851200000000006 - type: nauc_mrr_at_3_max value: 33.271699999999996 - type: nauc_mrr_at_3_std value: -5.578799999999999 - type: nauc_mrr_at_3_diff1 value: 54.427800000000005 - type: nauc_mrr_at_5_max value: 33.2962 - type: nauc_mrr_at_5_std value: -5.063 - type: nauc_mrr_at_5_diff1 value: 53.784 - type: nauc_mrr_at_10_max value: 33.3553 - type: nauc_mrr_at_10_std value: -4.6524 - type: nauc_mrr_at_10_diff1 value: 53.5366 - type: nauc_mrr_at_20_max value: 33.3544 - type: nauc_mrr_at_20_std value: -4.4497 - type: nauc_mrr_at_20_diff1 value: 53.4978 - type: nauc_mrr_at_100_max value: 33.4027 - type: nauc_mrr_at_100_std value: -4.3659 - type: nauc_mrr_at_100_diff1 value: 53.514300000000006 - type: nauc_mrr_at_1000_max value: 33.4037 - type: nauc_mrr_at_1000_std value: -4.3740000000000006 - type: nauc_mrr_at_1000_diff1 value: 53.5313 - type: main_score value: 50.477000000000004 task: type: Retrieval - dataset: config: php name: MTEB COIRCodeSearchNetRetrieval (php) revision: 4adc7bc41202b5c13543c9c886a25f340634dab3 split: test type: CoIR-Retrieval/CodeSearchNet metrics: - type: ndcg_at_1 value: 32.253 - type: ndcg_at_3 value: 40.355999999999995 - type: ndcg_at_5 value: 42.85 - type: ndcg_at_10 value: 45.217 - type: ndcg_at_20 value: 47.13 - type: ndcg_at_100 value: 49.683 - type: ndcg_at_1000 value: 51.248000000000005 - type: map_at_1 value: 32.253 - type: map_at_3 value: 38.374 - type: map_at_5 value: 39.757999999999996 - type: map_at_10 value: 40.731 - type: map_at_20 value: 41.254999999999995 - type: map_at_100 value: 41.6 - type: map_at_1000 value: 41.654 - type: recall_at_1 value: 32.253 - type: recall_at_3 value: 46.089999999999996 - type: recall_at_5 value: 52.141000000000005 - type: recall_at_10 value: 59.483 - type: recall_at_20 value: 67.054 - type: recall_at_100 value: 80.93299999999999 - type: recall_at_1000 value: 93.499 - type: precision_at_1 value: 32.253 - type: precision_at_3 value: 15.363 - type: precision_at_5 value: 10.427999999999999 - type: precision_at_10 value: 5.9479999999999995 - type: precision_at_20 value: 3.3529999999999998 - type: precision_at_100 value: 0.8089999999999999 - type: precision_at_1000 value: 0.093 - type: mrr_at_1 value: 32.2535 - type: mrr_at_3 value: 38.3735 - type: mrr_at_5 value: 39.7582 - type: mrr_at_10 value: 40.7309 - type: mrr_at_20 value: 41.254999999999995 - type: mrr_at_100 value: 41.6001 - type: mrr_at_1000 value: 41.6545 - type: nauc_ndcg_at_1_max value: 29.5043 - type: nauc_ndcg_at_1_std value: -3.8282999999999996 - type: nauc_ndcg_at_1_diff1 value: 55.538399999999996 - type: nauc_ndcg_at_3_max value: 30.1745 - type: nauc_ndcg_at_3_std value: -2.6322 - type: nauc_ndcg_at_3_diff1 value: 49.4579 - type: nauc_ndcg_at_5_max value: 29.990699999999997 - type: nauc_ndcg_at_5_std value: -2.2249000000000003 - type: nauc_ndcg_at_5_diff1 value: 48.5017 - type: nauc_ndcg_at_10_max value: 29.8609 - type: nauc_ndcg_at_10_std value: -1.6362999999999999 - type: nauc_ndcg_at_10_diff1 value: 47.7191 - type: nauc_ndcg_at_20_max value: 30.1378 - type: nauc_ndcg_at_20_std value: -0.6985 - type: nauc_ndcg_at_20_diff1 value: 47.5359 - type: nauc_ndcg_at_100_max value: 30.5901 - type: nauc_ndcg_at_100_std value: 0.1903 - type: nauc_ndcg_at_100_diff1 value: 47.765299999999996 - type: nauc_ndcg_at_1000_max value: 30.607200000000002 - type: nauc_ndcg_at_1000_std value: -0.1485 - type: nauc_ndcg_at_1000_diff1 value: 48.3165 - type: nauc_map_at_1_max value: 29.5043 - type: nauc_map_at_1_std value: -3.8282999999999996 - type: nauc_map_at_1_diff1 value: 55.538399999999996 - type: nauc_map_at_3_max value: 30.0348 - type: nauc_map_at_3_std value: -2.9402 - type: nauc_map_at_3_diff1 value: 50.8128 - type: nauc_map_at_5_max value: 29.9447 - type: nauc_map_at_5_std value: -2.7157 - type: nauc_map_at_5_diff1 value: 50.2953 - type: nauc_map_at_10_max value: 29.8929 - type: nauc_map_at_10_std value: -2.4865000000000004 - type: nauc_map_at_10_diff1 value: 49.9942 - type: nauc_map_at_20_max value: 29.9564 - type: nauc_map_at_20_std value: -2.2576 - type: nauc_map_at_20_diff1 value: 49.961800000000004 - type: nauc_map_at_100_max value: 30.0155 - type: nauc_map_at_100_std value: -2.1527000000000003 - type: nauc_map_at_100_diff1 value: 50.00320000000001 - type: nauc_map_at_1000_max value: 30.0156 - type: nauc_map_at_1000_std value: -2.1597999999999997 - type: nauc_map_at_1000_diff1 value: 50.019000000000005 - type: nauc_recall_at_1_max value: 29.5043 - type: nauc_recall_at_1_std value: -3.8282999999999996 - type: nauc_recall_at_1_diff1 value: 55.538399999999996 - type: nauc_recall_at_3_max value: 30.567 - type: nauc_recall_at_3_std value: -1.7389999999999999 - type: nauc_recall_at_3_diff1 value: 45.6079 - type: nauc_recall_at_5_max value: 30.074499999999997 - type: nauc_recall_at_5_std value: -0.7081 - type: nauc_recall_at_5_diff1 value: 43.1053 - type: nauc_recall_at_10_max value: 29.644 - type: nauc_recall_at_10_std value: 1.4013 - type: nauc_recall_at_10_diff1 value: 40.0676 - type: nauc_recall_at_20_max value: 31.0116 - type: nauc_recall_at_20_std value: 6.3982 - type: nauc_recall_at_20_diff1 value: 38.085 - type: nauc_recall_at_100_max value: 35.6387 - type: nauc_recall_at_100_std value: 18.4894 - type: nauc_recall_at_100_diff1 value: 35.2692 - type: nauc_recall_at_1000_max value: 44.9874 - type: nauc_recall_at_1000_std value: 36.0452 - type: nauc_recall_at_1000_diff1 value: 34.8612 - type: nauc_precision_at_1_max value: 29.5043 - type: nauc_precision_at_1_std value: -3.8282999999999996 - type: nauc_precision_at_1_diff1 value: 55.538399999999996 - type: nauc_precision_at_3_max value: 30.567 - type: nauc_precision_at_3_std value: -1.7389999999999999 - type: nauc_precision_at_3_diff1 value: 45.6079 - type: nauc_precision_at_5_max value: 30.074499999999997 - type: nauc_precision_at_5_std value: -0.7081 - type: nauc_precision_at_5_diff1 value: 43.1053 - type: nauc_precision_at_10_max value: 29.644 - type: nauc_precision_at_10_std value: 1.4013 - type: nauc_precision_at_10_diff1 value: 40.0676 - type: nauc_precision_at_20_max value: 31.0116 - type: nauc_precision_at_20_std value: 6.3982 - type: nauc_precision_at_20_diff1 value: 38.085 - type: nauc_precision_at_100_max value: 35.6387 - type: nauc_precision_at_100_std value: 18.4894 - type: nauc_precision_at_100_diff1 value: 35.2692 - type: nauc_precision_at_1000_max value: 44.9874 - type: nauc_precision_at_1000_std value: 36.0452 - type: nauc_precision_at_1000_diff1 value: 34.8612 - type: nauc_mrr_at_1_max value: 29.5043 - type: nauc_mrr_at_1_std value: -3.8282999999999996 - type: nauc_mrr_at_1_diff1 value: 55.538399999999996 - type: nauc_mrr_at_3_max value: 30.0348 - type: nauc_mrr_at_3_std value: -2.9402 - type: nauc_mrr_at_3_diff1 value: 50.8128 - type: nauc_mrr_at_5_max value: 29.9447 - type: nauc_mrr_at_5_std value: -2.7157 - type: nauc_mrr_at_5_diff1 value: 50.2953 - type: nauc_mrr_at_10_max value: 29.8929 - type: nauc_mrr_at_10_std value: -2.4865000000000004 - type: nauc_mrr_at_10_diff1 value: 49.9942 - type: nauc_mrr_at_20_max value: 29.9564 - type: nauc_mrr_at_20_std value: -2.2576 - type: nauc_mrr_at_20_diff1 value: 49.961800000000004 - type: nauc_mrr_at_100_max value: 30.0155 - type: nauc_mrr_at_100_std value: -2.1527000000000003 - type: nauc_mrr_at_100_diff1 value: 50.00320000000001 - type: nauc_mrr_at_1000_max value: 30.0156 - type: nauc_mrr_at_1000_std value: -2.1597999999999997 - type: nauc_mrr_at_1000_diff1 value: 50.019000000000005 - type: main_score value: 45.217 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackAndroidRetrieval (default) revision: f46a197baaae43b4f621051089b82a364682dfeb split: test type: mteb/cqadupstack-android metrics: - type: ndcg_at_1 value: 45.923 - type: ndcg_at_3 value: 51.842999999999996 - type: ndcg_at_5 value: 54.257 - type: ndcg_at_10 value: 57.667 - type: ndcg_at_20 value: 59.516000000000005 - type: ndcg_at_100 value: 62.373 - type: ndcg_at_1000 value: 63.68000000000001 - type: map_at_1 value: 36.964000000000006 - type: map_at_3 value: 46.001 - type: map_at_5 value: 48.312 - type: map_at_10 value: 50.43 - type: map_at_20 value: 51.371 - type: map_at_100 value: 52.066 - type: map_at_1000 value: 52.175000000000004 - type: recall_at_1 value: 36.964000000000006 - type: recall_at_3 value: 53.654999999999994 - type: recall_at_5 value: 60.995999999999995 - type: recall_at_10 value: 71.234 - type: recall_at_20 value: 77.596 - type: recall_at_100 value: 90.42099999999999 - type: recall_at_1000 value: 98.29599999999999 - type: precision_at_1 value: 45.923 - type: precision_at_3 value: 25.369999999999997 - type: precision_at_5 value: 18.14 - type: precision_at_10 value: 11.315999999999999 - type: precision_at_20 value: 6.651999999999999 - type: precision_at_100 value: 1.7049999999999998 - type: precision_at_1000 value: 0.216 - type: mrr_at_1 value: 45.9227 - type: mrr_at_3 value: 54.053399999999996 - type: mrr_at_5 value: 55.555600000000005 - type: mrr_at_10 value: 56.7326 - type: mrr_at_20 value: 57.0026 - type: mrr_at_100 value: 57.2924 - type: mrr_at_1000 value: 57.321299999999994 - type: nauc_ndcg_at_1_max value: 40.8301 - type: nauc_ndcg_at_1_std value: -4.7965 - type: nauc_ndcg_at_1_diff1 value: 47.0363 - type: nauc_ndcg_at_3_max value: 38.1658 - type: nauc_ndcg_at_3_std value: -5.5431 - type: nauc_ndcg_at_3_diff1 value: 43.236200000000004 - type: nauc_ndcg_at_5_max value: 38.3776 - type: nauc_ndcg_at_5_std value: -6.4315 - type: nauc_ndcg_at_5_diff1 value: 41.906 - type: nauc_ndcg_at_10_max value: 38.246900000000004 - type: nauc_ndcg_at_10_std value: -5.9109 - type: nauc_ndcg_at_10_diff1 value: 42.2073 - type: nauc_ndcg_at_20_max value: 39.1442 - type: nauc_ndcg_at_20_std value: -4.2145 - type: nauc_ndcg_at_20_diff1 value: 42.1173 - type: nauc_ndcg_at_100_max value: 40.2409 - type: nauc_ndcg_at_100_std value: -2.3533999999999997 - type: nauc_ndcg_at_100_diff1 value: 43.08 - type: nauc_ndcg_at_1000_max value: 39.7135 - type: nauc_ndcg_at_1000_std value: -3.2211999999999996 - type: nauc_ndcg_at_1000_diff1 value: 42.9532 - type: nauc_map_at_1_max value: 34.8396 - type: nauc_map_at_1_std value: -7.427200000000001 - type: nauc_map_at_1_diff1 value: 52.3057 - type: nauc_map_at_3_max value: 36.869 - type: nauc_map_at_3_std value: -7.482800000000001 - type: nauc_map_at_3_diff1 value: 46.7357 - type: nauc_map_at_5_max value: 37.7915 - type: nauc_map_at_5_std value: -7.4328 - type: nauc_map_at_5_diff1 value: 45.5111 - type: nauc_map_at_10_max value: 38.1613 - type: nauc_map_at_10_std value: -6.8068 - type: nauc_map_at_10_diff1 value: 45.359899999999996 - type: nauc_map_at_20_max value: 38.5576 - type: nauc_map_at_20_std value: -6.051200000000001 - type: nauc_map_at_20_diff1 value: 45.1212 - type: nauc_map_at_100_max value: 38.8156 - type: nauc_map_at_100_std value: -5.5418 - type: nauc_map_at_100_diff1 value: 45.1108 - type: nauc_map_at_1000_max value: 38.746199999999995 - type: nauc_map_at_1000_std value: -5.6205 - type: nauc_map_at_1000_diff1 value: 45.053399999999996 - type: nauc_recall_at_1_max value: 34.8396 - type: nauc_recall_at_1_std value: -7.427200000000001 - type: nauc_recall_at_1_diff1 value: 52.3057 - type: nauc_recall_at_3_max value: 34.3365 - type: nauc_recall_at_3_std value: -6.8784 - type: nauc_recall_at_3_diff1 value: 40.2233 - type: nauc_recall_at_5_max value: 34.4245 - type: nauc_recall_at_5_std value: -8.426300000000001 - type: nauc_recall_at_5_diff1 value: 35.4121 - type: nauc_recall_at_10_max value: 32.2333 - type: nauc_recall_at_10_std value: -5.8829 - type: nauc_recall_at_10_diff1 value: 34.0262 - type: nauc_recall_at_20_max value: 36.256 - type: nauc_recall_at_20_std value: 1.9085999999999999 - type: nauc_recall_at_20_diff1 value: 32.2877 - type: nauc_recall_at_100_max value: 47.3573 - type: nauc_recall_at_100_std value: 24.4303 - type: nauc_recall_at_100_diff1 value: 38.3181 - type: nauc_recall_at_1000_max value: 63.5826 - type: nauc_recall_at_1000_std value: 71.3349 - type: nauc_recall_at_1000_diff1 value: 40.771 - type: nauc_precision_at_1_max value: 40.8301 - type: nauc_precision_at_1_std value: -4.7965 - type: nauc_precision_at_1_diff1 value: 47.0363 - type: nauc_precision_at_3_max value: 30.7605 - type: nauc_precision_at_3_std value: -0.4 - type: nauc_precision_at_3_diff1 value: 17.099800000000002 - type: nauc_precision_at_5_max value: 26.3274 - type: nauc_precision_at_5_std value: 3.1927 - type: nauc_precision_at_5_diff1 value: 5.6719 - type: nauc_precision_at_10_max value: 16.8618 - type: nauc_precision_at_10_std value: 7.0584 - type: nauc_precision_at_10_diff1 value: -4.7258000000000004 - type: nauc_precision_at_20_max value: 10.8993 - type: nauc_precision_at_20_std value: 10.215499999999999 - type: nauc_precision_at_20_diff1 value: -10.8149 - type: nauc_precision_at_100_max value: -0.0973 - type: nauc_precision_at_100_std value: 9.3108 - type: nauc_precision_at_100_diff1 value: -19.0862 - type: nauc_precision_at_1000_max value: -16.488 - type: nauc_precision_at_1000_std value: -6.325 - type: nauc_precision_at_1000_diff1 value: -28.7621 - type: nauc_mrr_at_1_max value: 40.8301 - type: nauc_mrr_at_1_std value: -4.7965 - type: nauc_mrr_at_1_diff1 value: 47.0363 - type: nauc_mrr_at_3_max value: 40.3492 - type: nauc_mrr_at_3_std value: -4.0226 - type: nauc_mrr_at_3_diff1 value: 43.358799999999995 - type: nauc_mrr_at_5_max value: 40.4342 - type: nauc_mrr_at_5_std value: -4.5294 - type: nauc_mrr_at_5_diff1 value: 42.6362 - type: nauc_mrr_at_10_max value: 40.2882 - type: nauc_mrr_at_10_std value: -4.1685 - type: nauc_mrr_at_10_diff1 value: 42.5151 - type: nauc_mrr_at_20_max value: 40.3939 - type: nauc_mrr_at_20_std value: -4.1178 - type: nauc_mrr_at_20_diff1 value: 42.586400000000005 - type: nauc_mrr_at_100_max value: 40.5002 - type: nauc_mrr_at_100_std value: -4.0205 - type: nauc_mrr_at_100_diff1 value: 42.7299 - type: nauc_mrr_at_1000_max value: 40.5002 - type: nauc_mrr_at_1000_std value: -4.0168 - type: nauc_mrr_at_1000_diff1 value: 42.7356 - type: main_score value: 57.667 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackEnglishRetrieval (default) revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 split: test type: mteb/cqadupstack-english metrics: - type: ndcg_at_1 value: 45.478 - type: ndcg_at_3 value: 51.124 - type: ndcg_at_5 value: 53.166000000000004 - type: ndcg_at_10 value: 55.505 - type: ndcg_at_20 value: 57.154 - type: ndcg_at_100 value: 59.606 - type: ndcg_at_1000 value: 61.255 - type: map_at_1 value: 36.198 - type: map_at_3 value: 45.678000000000004 - type: map_at_5 value: 47.605 - type: map_at_10 value: 49.199 - type: map_at_20 value: 49.957 - type: map_at_100 value: 50.602000000000004 - type: map_at_1000 value: 50.736000000000004 - type: recall_at_1 value: 36.198 - type: recall_at_3 value: 53.20700000000001 - type: recall_at_5 value: 59.169000000000004 - type: recall_at_10 value: 66.465 - type: recall_at_20 value: 72.60799999999999 - type: recall_at_100 value: 83.63199999999999 - type: recall_at_1000 value: 93.27600000000001 - type: precision_at_1 value: 45.478 - type: precision_at_3 value: 25.052999999999997 - type: precision_at_5 value: 17.694 - type: precision_at_10 value: 10.752 - type: precision_at_20 value: 6.239 - type: precision_at_100 value: 1.6660000000000001 - type: precision_at_1000 value: 0.211 - type: mrr_at_1 value: 45.4777 - type: mrr_at_3 value: 52.887499999999996 - type: mrr_at_5 value: 54.282399999999996 - type: mrr_at_10 value: 55.0745 - type: mrr_at_20 value: 55.43090000000001 - type: mrr_at_100 value: 55.656000000000006 - type: mrr_at_1000 value: 55.688 - type: nauc_ndcg_at_1_max value: 46.8217 - type: nauc_ndcg_at_1_std value: -2.7794 - type: nauc_ndcg_at_1_diff1 value: 57.0574 - type: nauc_ndcg_at_3_max value: 47.7532 - type: nauc_ndcg_at_3_std value: -1.4668 - type: nauc_ndcg_at_3_diff1 value: 52.8335 - type: nauc_ndcg_at_5_max value: 48.7828 - type: nauc_ndcg_at_5_std value: -1.015 - type: nauc_ndcg_at_5_diff1 value: 51.991699999999994 - type: nauc_ndcg_at_10_max value: 50.114999999999995 - type: nauc_ndcg_at_10_std value: 1.1684 - type: nauc_ndcg_at_10_diff1 value: 51.9116 - type: nauc_ndcg_at_20_max value: 50.006099999999996 - type: nauc_ndcg_at_20_std value: 2.0345 - type: nauc_ndcg_at_20_diff1 value: 51.63870000000001 - type: nauc_ndcg_at_100_max value: 50.478 - type: nauc_ndcg_at_100_std value: 3.8077 - type: nauc_ndcg_at_100_diff1 value: 51.3939 - type: nauc_ndcg_at_1000_max value: 50.0328 - type: nauc_ndcg_at_1000_std value: 3.2628 - type: nauc_ndcg_at_1000_diff1 value: 51.5116 - type: nauc_map_at_1_max value: 35.4528 - type: nauc_map_at_1_std value: -12.8546 - type: nauc_map_at_1_diff1 value: 59.2294 - type: nauc_map_at_3_max value: 42.8209 - type: nauc_map_at_3_std value: -8.1284 - type: nauc_map_at_3_diff1 value: 55.5925 - type: nauc_map_at_5_max value: 44.7278 - type: nauc_map_at_5_std value: -6.311400000000001 - type: nauc_map_at_5_diff1 value: 54.6249 - type: nauc_map_at_10_max value: 46.3085 - type: nauc_map_at_10_std value: -4.2609 - type: nauc_map_at_10_diff1 value: 54.4523 - type: nauc_map_at_20_max value: 46.8259 - type: nauc_map_at_20_std value: -3.3686000000000003 - type: nauc_map_at_20_diff1 value: 54.225100000000005 - type: nauc_map_at_100_max value: 47.4262 - type: nauc_map_at_100_std value: -2.3889 - type: nauc_map_at_100_diff1 value: 54.01669999999999 - type: nauc_map_at_1000_max value: 47.453 - type: nauc_map_at_1000_std value: -2.3062 - type: nauc_map_at_1000_diff1 value: 53.9968 - type: nauc_recall_at_1_max value: 35.4528 - type: nauc_recall_at_1_std value: -12.8546 - type: nauc_recall_at_1_diff1 value: 59.2294 - type: nauc_recall_at_3_max value: 42.7793 - type: nauc_recall_at_3_std value: -4.7798 - type: nauc_recall_at_3_diff1 value: 49.741 - type: nauc_recall_at_5_max value: 45.6544 - type: nauc_recall_at_5_std value: -1.6133000000000002 - type: nauc_recall_at_5_diff1 value: 45.7699 - type: nauc_recall_at_10_max value: 50.769 - type: nauc_recall_at_10_std value: 7.4262 - type: nauc_recall_at_10_diff1 value: 43.3808 - type: nauc_recall_at_20_max value: 51.0312 - type: nauc_recall_at_20_std value: 12.7246 - type: nauc_recall_at_20_diff1 value: 40.5477 - type: nauc_recall_at_100_max value: 56.3878 - type: nauc_recall_at_100_std value: 31.893300000000004 - type: nauc_recall_at_100_diff1 value: 34.902699999999996 - type: nauc_recall_at_1000_max value: 55.4185 - type: nauc_recall_at_1000_std value: 48.0244 - type: nauc_recall_at_1000_diff1 value: 27.980300000000003 - type: nauc_precision_at_1_max value: 46.8217 - type: nauc_precision_at_1_std value: -2.7794 - type: nauc_precision_at_1_diff1 value: 57.0574 - type: nauc_precision_at_3_max value: 45.9159 - type: nauc_precision_at_3_std value: 14.8948 - type: nauc_precision_at_3_diff1 value: 25.3519 - type: nauc_precision_at_5_max value: 44.908500000000004 - type: nauc_precision_at_5_std value: 22.3321 - type: nauc_precision_at_5_diff1 value: 14.696600000000002 - type: nauc_precision_at_10_max value: 40.1 - type: nauc_precision_at_10_std value: 29.6731 - type: nauc_precision_at_10_diff1 value: 4.2817 - type: nauc_precision_at_20_max value: 35.2526 - type: nauc_precision_at_20_std value: 34.4698 - type: nauc_precision_at_20_diff1 value: -3.8809000000000005 - type: nauc_precision_at_100_max value: 25.186500000000002 - type: nauc_precision_at_100_std value: 38.684400000000004 - type: nauc_precision_at_100_diff1 value: -15.160599999999999 - type: nauc_precision_at_1000_max value: 11.5275 - type: nauc_precision_at_1000_std value: 29.2055 - type: nauc_precision_at_1000_diff1 value: -19.7629 - type: nauc_mrr_at_1_max value: 46.8217 - type: nauc_mrr_at_1_std value: -2.7794 - type: nauc_mrr_at_1_diff1 value: 57.0574 - type: nauc_mrr_at_3_max value: 49.7145 - type: nauc_mrr_at_3_std value: 0.7482 - type: nauc_mrr_at_3_diff1 value: 54.0562 - type: nauc_mrr_at_5_max value: 50.0393 - type: nauc_mrr_at_5_std value: 0.9629000000000001 - type: nauc_mrr_at_5_diff1 value: 53.41780000000001 - type: nauc_mrr_at_10_max value: 50.325900000000004 - type: nauc_mrr_at_10_std value: 1.6938000000000002 - type: nauc_mrr_at_10_diff1 value: 53.0736 - type: nauc_mrr_at_20_max value: 50.1989 - type: nauc_mrr_at_20_std value: 1.7967 - type: nauc_mrr_at_20_diff1 value: 52.9982 - type: nauc_mrr_at_100_max value: 50.184799999999996 - type: nauc_mrr_at_100_std value: 1.8381999999999998 - type: nauc_mrr_at_100_diff1 value: 53.034099999999995 - type: nauc_mrr_at_1000_max value: 50.1706 - type: nauc_mrr_at_1000_std value: 1.8124999999999998 - type: nauc_mrr_at_1000_diff1 value: 53.0505 - type: main_score value: 55.505 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackGamingRetrieval (default) revision: 4885aa143210c98657558c04aaf3dc47cfb54340 split: test type: mteb/cqadupstack-gaming metrics: - type: ndcg_at_1 value: 50.09400000000001 - type: ndcg_at_3 value: 58.022 - type: ndcg_at_5 value: 60.97 - type: ndcg_at_10 value: 63.641000000000005 - type: ndcg_at_20 value: 65.273 - type: ndcg_at_100 value: 67.05499999999999 - type: ndcg_at_1000 value: 67.855 - type: map_at_1 value: 44.157000000000004 - type: map_at_3 value: 54.223 - type: map_at_5 value: 56.306999999999995 - type: map_at_10 value: 57.753 - type: map_at_20 value: 58.36900000000001 - type: map_at_100 value: 58.69799999999999 - type: map_at_1000 value: 58.74 - type: recall_at_1 value: 44.157000000000004 - type: recall_at_3 value: 63.087 - type: recall_at_5 value: 70.172 - type: recall_at_10 value: 77.78 - type: recall_at_20 value: 83.699 - type: recall_at_100 value: 92.244 - type: recall_at_1000 value: 97.81 - type: precision_at_1 value: 50.09400000000001 - type: precision_at_3 value: 25.81 - type: precision_at_5 value: 17.755000000000003 - type: precision_at_10 value: 10.181999999999999 - type: precision_at_20 value: 5.627 - type: precision_at_100 value: 1.278 - type: precision_at_1000 value: 0.13799999999999998 - type: mrr_at_1 value: 50.09400000000001 - type: mrr_at_3 value: 58.2654 - type: mrr_at_5 value: 59.8171 - type: mrr_at_10 value: 60.6998 - type: mrr_at_20 value: 61.077000000000005 - type: mrr_at_100 value: 61.2602 - type: mrr_at_1000 value: 61.2803 - type: nauc_ndcg_at_1_max value: 42.0223 - type: nauc_ndcg_at_1_std value: -7.5249999999999995 - type: nauc_ndcg_at_1_diff1 value: 57.545 - type: nauc_ndcg_at_3_max value: 41.4981 - type: nauc_ndcg_at_3_std value: -7.3598 - type: nauc_ndcg_at_3_diff1 value: 53.404399999999995 - type: nauc_ndcg_at_5_max value: 43.1299 - type: nauc_ndcg_at_5_std value: -5.4483999999999995 - type: nauc_ndcg_at_5_diff1 value: 52.86149999999999 - type: nauc_ndcg_at_10_max value: 44.460899999999995 - type: nauc_ndcg_at_10_std value: -3.5878 - type: nauc_ndcg_at_10_diff1 value: 53.24529999999999 - type: nauc_ndcg_at_20_max value: 45.057199999999995 - type: nauc_ndcg_at_20_std value: -2.5892999999999997 - type: nauc_ndcg_at_20_diff1 value: 53.14919999999999 - type: nauc_ndcg_at_100_max value: 45.202 - type: nauc_ndcg_at_100_std value: -1.6291 - type: nauc_ndcg_at_100_diff1 value: 53.226099999999995 - type: nauc_ndcg_at_1000_max value: 44.9773 - type: nauc_ndcg_at_1000_std value: -2.2944 - type: nauc_ndcg_at_1000_diff1 value: 53.5531 - type: nauc_map_at_1_max value: 34.3597 - type: nauc_map_at_1_std value: -8.7494 - type: nauc_map_at_1_diff1 value: 57.288399999999996 - type: nauc_map_at_3_max value: 39.723000000000006 - type: nauc_map_at_3_std value: -8.9697 - type: nauc_map_at_3_diff1 value: 55.0296 - type: nauc_map_at_5_max value: 41.2509 - type: nauc_map_at_5_std value: -7.561 - type: nauc_map_at_5_diff1 value: 54.641799999999996 - type: nauc_map_at_10_max value: 42.2464 - type: nauc_map_at_10_std value: -6.442699999999999 - type: nauc_map_at_10_diff1 value: 54.6922 - type: nauc_map_at_20_max value: 42.6447 - type: nauc_map_at_20_std value: -5.8575 - type: nauc_map_at_20_diff1 value: 54.607099999999996 - type: nauc_map_at_100_max value: 42.801899999999996 - type: nauc_map_at_100_std value: -5.5908 - type: nauc_map_at_100_diff1 value: 54.64 - type: nauc_map_at_1000_max value: 42.8163 - type: nauc_map_at_1000_std value: -5.5892 - type: nauc_map_at_1000_diff1 value: 54.657999999999994 - type: nauc_recall_at_1_max value: 34.3597 - type: nauc_recall_at_1_std value: -8.7494 - type: nauc_recall_at_1_diff1 value: 57.288399999999996 - type: nauc_recall_at_3_max value: 38.2143 - type: nauc_recall_at_3_std value: -8.5053 - type: nauc_recall_at_3_diff1 value: 48.5674 - type: nauc_recall_at_5_max value: 42.4963 - type: nauc_recall_at_5_std value: -3.1975000000000002 - type: nauc_recall_at_5_diff1 value: 46.1409 - type: nauc_recall_at_10_max value: 47.5304 - type: nauc_recall_at_10_std value: 4.2543 - type: nauc_recall_at_10_diff1 value: 46.187400000000004 - type: nauc_recall_at_20_max value: 52.5031 - type: nauc_recall_at_20_std value: 12.215 - type: nauc_recall_at_20_diff1 value: 43.959199999999996 - type: nauc_recall_at_100_max value: 59.519800000000004 - type: nauc_recall_at_100_std value: 36.355399999999996 - type: nauc_recall_at_100_diff1 value: 38.1615 - type: nauc_recall_at_1000_max value: 75.7293 - type: nauc_recall_at_1000_std value: 68.0791 - type: nauc_recall_at_1000_diff1 value: 33.4758 - type: nauc_precision_at_1_max value: 42.0223 - type: nauc_precision_at_1_std value: -7.5249999999999995 - type: nauc_precision_at_1_diff1 value: 57.545 - type: nauc_precision_at_3_max value: 40.269800000000004 - type: nauc_precision_at_3_std value: -0.1042 - type: nauc_precision_at_3_diff1 value: 28.7982 - type: nauc_precision_at_5_max value: 37.8177 - type: nauc_precision_at_5_std value: 6.5974 - type: nauc_precision_at_5_diff1 value: 17.729 - type: nauc_precision_at_10_max value: 34.4199 - type: nauc_precision_at_10_std value: 14.8032 - type: nauc_precision_at_10_diff1 value: 7.8933 - type: nauc_precision_at_20_max value: 31.5289 - type: nauc_precision_at_20_std value: 22.1412 - type: nauc_precision_at_20_diff1 value: -0.993 - type: nauc_precision_at_100_max value: 24.3425 - type: nauc_precision_at_100_std value: 27.3469 - type: nauc_precision_at_100_diff1 value: -9.3572 - type: nauc_precision_at_1000_max value: 18.453500000000002 - type: nauc_precision_at_1000_std value: 24.925800000000002 - type: nauc_precision_at_1000_diff1 value: -12.5892 - type: nauc_mrr_at_1_max value: 42.0223 - type: nauc_mrr_at_1_std value: -7.5249999999999995 - type: nauc_mrr_at_1_diff1 value: 57.545 - type: nauc_mrr_at_3_max value: 43.4966 - type: nauc_mrr_at_3_std value: -5.9497 - type: nauc_mrr_at_3_diff1 value: 54.3814 - type: nauc_mrr_at_5_max value: 43.918 - type: nauc_mrr_at_5_std value: -5.048 - type: nauc_mrr_at_5_diff1 value: 53.9473 - type: nauc_mrr_at_10_max value: 43.9711 - type: nauc_mrr_at_10_std value: -4.6621999999999995 - type: nauc_mrr_at_10_diff1 value: 54.231399999999994 - type: nauc_mrr_at_20_max value: 44.0448 - type: nauc_mrr_at_20_std value: -4.564900000000001 - type: nauc_mrr_at_20_diff1 value: 54.2486 - type: nauc_mrr_at_100_max value: 44.0305 - type: nauc_mrr_at_100_std value: -4.5347 - type: nauc_mrr_at_100_diff1 value: 54.2802 - type: nauc_mrr_at_1000_max value: 44.0239 - type: nauc_mrr_at_1000_std value: -4.5523 - type: nauc_mrr_at_1000_diff1 value: 54.2908 - type: main_score value: 63.641000000000005 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackGisRetrieval (default) revision: 5003b3064772da1887988e05400cf3806fe491f2 split: test type: mteb/cqadupstack-gis metrics: - type: ndcg_at_1 value: 32.09 - type: ndcg_at_3 value: 40.149 - type: ndcg_at_5 value: 43.111 - type: ndcg_at_10 value: 46.075 - type: ndcg_at_20 value: 48.17 - type: ndcg_at_100 value: 51.03 - type: ndcg_at_1000 value: 52.668000000000006 - type: map_at_1 value: 29.532000000000004 - type: map_at_3 value: 37.086000000000006 - type: map_at_5 value: 38.889 - type: map_at_10 value: 40.214 - type: map_at_20 value: 40.831 - type: map_at_100 value: 41.289 - type: map_at_1000 value: 41.359 - type: recall_at_1 value: 29.532000000000004 - type: recall_at_3 value: 46.03 - type: recall_at_5 value: 53.089 - type: recall_at_10 value: 62.025 - type: recall_at_20 value: 69.762 - type: recall_at_100 value: 83.829 - type: recall_at_1000 value: 95.99499999999999 - type: precision_at_1 value: 32.09 - type: precision_at_3 value: 17.175 - type: precision_at_5 value: 12.068 - type: precision_at_10 value: 7.141 - type: precision_at_20 value: 4.079 - type: precision_at_100 value: 1.018 - type: precision_at_1000 value: 0.11800000000000001 - type: mrr_at_1 value: 32.0904 - type: mrr_at_3 value: 39.7363 - type: mrr_at_5 value: 41.307 - type: mrr_at_10 value: 42.4232 - type: mrr_at_20 value: 42.9925 - type: mrr_at_100 value: 43.342000000000006 - type: mrr_at_1000 value: 43.3947 - type: nauc_ndcg_at_1_max value: 28.6057 - type: nauc_ndcg_at_1_std value: -9.5015 - type: nauc_ndcg_at_1_diff1 value: 45.895599999999995 - type: nauc_ndcg_at_3_max value: 27.4486 - type: nauc_ndcg_at_3_std value: -8.3694 - type: nauc_ndcg_at_3_diff1 value: 40.1689 - type: nauc_ndcg_at_5_max value: 29.481299999999997 - type: nauc_ndcg_at_5_std value: -5.382 - type: nauc_ndcg_at_5_diff1 value: 39.5505 - type: nauc_ndcg_at_10_max value: 29.629299999999997 - type: nauc_ndcg_at_10_std value: -3.1249 - type: nauc_ndcg_at_10_diff1 value: 37.953199999999995 - type: nauc_ndcg_at_20_max value: 29.5532 - type: nauc_ndcg_at_20_std value: -2.7831 - type: nauc_ndcg_at_20_diff1 value: 37.2522 - type: nauc_ndcg_at_100_max value: 29.741600000000002 - type: nauc_ndcg_at_100_std value: -3.2703999999999995 - type: nauc_ndcg_at_100_diff1 value: 37.7396 - type: nauc_ndcg_at_1000_max value: 29.9018 - type: nauc_ndcg_at_1000_std value: -3.6946 - type: nauc_ndcg_at_1000_diff1 value: 38.5323 - type: nauc_map_at_1_max value: 25.423299999999998 - type: nauc_map_at_1_std value: -12.3377 - type: nauc_map_at_1_diff1 value: 46.8633 - type: nauc_map_at_3_max value: 26.4335 - type: nauc_map_at_3_std value: -9.871 - type: nauc_map_at_3_diff1 value: 41.9019 - type: nauc_map_at_5_max value: 27.852 - type: nauc_map_at_5_std value: -8.0967 - type: nauc_map_at_5_diff1 value: 41.4142 - type: nauc_map_at_10_max value: 28.163700000000002 - type: nauc_map_at_10_std value: -6.9023 - type: nauc_map_at_10_diff1 value: 40.779399999999995 - type: nauc_map_at_20_max value: 28.1646 - type: nauc_map_at_20_std value: -6.7966999999999995 - type: nauc_map_at_20_diff1 value: 40.625299999999996 - type: nauc_map_at_100_max value: 28.2439 - type: nauc_map_at_100_std value: -6.7998 - type: nauc_map_at_100_diff1 value: 40.7153 - type: nauc_map_at_1000_max value: 28.2633 - type: nauc_map_at_1000_std value: -6.802 - type: nauc_map_at_1000_diff1 value: 40.748 - type: nauc_recall_at_1_max value: 25.423299999999998 - type: nauc_recall_at_1_std value: -12.3377 - type: nauc_recall_at_1_diff1 value: 46.8633 - type: nauc_recall_at_3_max value: 26.378800000000002 - type: nauc_recall_at_3_std value: -6.6701 - type: nauc_recall_at_3_diff1 value: 35.8097 - type: nauc_recall_at_5_max value: 30.9445 - type: nauc_recall_at_5_std value: 0.1917 - type: nauc_recall_at_5_diff1 value: 33.5229 - type: nauc_recall_at_10_max value: 30.995099999999997 - type: nauc_recall_at_10_std value: 7.613200000000001 - type: nauc_recall_at_10_diff1 value: 27.2905 - type: nauc_recall_at_20_max value: 31.244 - type: nauc_recall_at_20_std value: 11.0527 - type: nauc_recall_at_20_diff1 value: 22.5701 - type: nauc_recall_at_100_max value: 33.293 - type: nauc_recall_at_100_std value: 12.4908 - type: nauc_recall_at_100_diff1 value: 19.2291 - type: nauc_recall_at_1000_max value: 52.0915 - type: nauc_recall_at_1000_std value: 32.1464 - type: nauc_recall_at_1000_diff1 value: 14.0362 - type: nauc_precision_at_1_max value: 28.6057 - type: nauc_precision_at_1_std value: -9.5015 - type: nauc_precision_at_1_diff1 value: 45.895599999999995 - type: nauc_precision_at_3_max value: 31.391599999999997 - type: nauc_precision_at_3_std value: -2.6111 - type: nauc_precision_at_3_diff1 value: 31.983800000000002 - type: nauc_precision_at_5_max value: 35.9814 - type: nauc_precision_at_5_std value: 6.062 - type: nauc_precision_at_5_diff1 value: 27.8588 - type: nauc_precision_at_10_max value: 34.5678 - type: nauc_precision_at_10_std value: 14.2625 - type: nauc_precision_at_10_diff1 value: 19.7208 - type: nauc_precision_at_20_max value: 31.451600000000003 - type: nauc_precision_at_20_std value: 16.6162 - type: nauc_precision_at_20_diff1 value: 12.421100000000001 - type: nauc_precision_at_100_max value: 22.1049 - type: nauc_precision_at_100_std value: 16.4354 - type: nauc_precision_at_100_diff1 value: 0.5193 - type: nauc_precision_at_1000_max value: 14.682899999999998 - type: nauc_precision_at_1000_std value: 15.5581 - type: nauc_precision_at_1000_diff1 value: -9.7103 - type: nauc_mrr_at_1_max value: 28.6057 - type: nauc_mrr_at_1_std value: -9.5015 - type: nauc_mrr_at_1_diff1 value: 45.895599999999995 - type: nauc_mrr_at_3_max value: 29.082400000000003 - type: nauc_mrr_at_3_std value: -6.9314 - type: nauc_mrr_at_3_diff1 value: 40.9506 - type: nauc_mrr_at_5_max value: 30.152600000000003 - type: nauc_mrr_at_5_std value: -5.455900000000001 - type: nauc_mrr_at_5_diff1 value: 40.7747 - type: nauc_mrr_at_10_max value: 29.9987 - type: nauc_mrr_at_10_std value: -4.839799999999999 - type: nauc_mrr_at_10_diff1 value: 40.2137 - type: nauc_mrr_at_20_max value: 29.842200000000002 - type: nauc_mrr_at_20_std value: -4.864 - type: nauc_mrr_at_20_diff1 value: 39.970800000000004 - type: nauc_mrr_at_100_max value: 29.8359 - type: nauc_mrr_at_100_std value: -4.9491 - type: nauc_mrr_at_100_diff1 value: 40.0495 - type: nauc_mrr_at_1000_max value: 29.837799999999998 - type: nauc_mrr_at_1000_std value: -4.968 - type: nauc_mrr_at_1000_diff1 value: 40.0797 - type: main_score value: 46.075 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackMathematicaRetrieval (default) revision: 90fceea13679c63fe563ded68f3b6f06e50061de split: test type: mteb/cqadupstack-mathematica metrics: - type: ndcg_at_1 value: 23.756 - type: ndcg_at_3 value: 29.725 - type: ndcg_at_5 value: 32.879000000000005 - type: ndcg_at_10 value: 36.015 - type: ndcg_at_20 value: 38.753 - type: ndcg_at_100 value: 42.175000000000004 - type: ndcg_at_1000 value: 44.607 - type: map_at_1 value: 18.944 - type: map_at_3 value: 26.098 - type: map_at_5 value: 28.151 - type: map_at_10 value: 29.610999999999997 - type: map_at_20 value: 30.481 - type: map_at_100 value: 31.063000000000002 - type: map_at_1000 value: 31.174000000000003 - type: recall_at_1 value: 18.944 - type: recall_at_3 value: 33.611000000000004 - type: recall_at_5 value: 41.427 - type: recall_at_10 value: 50.690999999999995 - type: recall_at_20 value: 60.437 - type: recall_at_100 value: 76.503 - type: recall_at_1000 value: 93.624 - type: precision_at_1 value: 23.756 - type: precision_at_3 value: 14.635000000000002 - type: precision_at_5 value: 11.07 - type: precision_at_10 value: 6.927999999999999 - type: precision_at_20 value: 4.266 - type: precision_at_100 value: 1.153 - type: precision_at_1000 value: 0.149 - type: mrr_at_1 value: 23.7562 - type: mrr_at_3 value: 31.2604 - type: mrr_at_5 value: 33.1696 - type: mrr_at_10 value: 34.4913 - type: mrr_at_20 value: 35.111399999999996 - type: mrr_at_100 value: 35.457499999999996 - type: mrr_at_1000 value: 35.5125 - type: nauc_ndcg_at_1_max value: 16.369 - type: nauc_ndcg_at_1_std value: -0.2643 - type: nauc_ndcg_at_1_diff1 value: 36.3924 - type: nauc_ndcg_at_3_max value: 16.8313 - type: nauc_ndcg_at_3_std value: -2.5591 - type: nauc_ndcg_at_3_diff1 value: 31.2622 - type: nauc_ndcg_at_5_max value: 16.575899999999997 - type: nauc_ndcg_at_5_std value: -1.2212 - type: nauc_ndcg_at_5_diff1 value: 30.4259 - type: nauc_ndcg_at_10_max value: 16.7024 - type: nauc_ndcg_at_10_std value: -0.5341 - type: nauc_ndcg_at_10_diff1 value: 30.1232 - type: nauc_ndcg_at_20_max value: 16.5942 - type: nauc_ndcg_at_20_std value: -0.3493 - type: nauc_ndcg_at_20_diff1 value: 29.1065 - type: nauc_ndcg_at_100_max value: 17.6591 - type: nauc_ndcg_at_100_std value: 1.9944 - type: nauc_ndcg_at_100_diff1 value: 29.332399999999996 - type: nauc_ndcg_at_1000_max value: 17.7443 - type: nauc_ndcg_at_1000_std value: 1.6357 - type: nauc_ndcg_at_1000_diff1 value: 30.1231 - type: nauc_map_at_1_max value: 13.264400000000002 - type: nauc_map_at_1_std value: -2.1641 - type: nauc_map_at_1_diff1 value: 37.446200000000005 - type: nauc_map_at_3_max value: 14.9032 - type: nauc_map_at_3_std value: -2.714 - type: nauc_map_at_3_diff1 value: 32.5923 - type: nauc_map_at_5_max value: 14.932500000000001 - type: nauc_map_at_5_std value: -1.9889000000000001 - type: nauc_map_at_5_diff1 value: 31.879600000000003 - type: nauc_map_at_10_max value: 15.309500000000002 - type: nauc_map_at_10_std value: -1.5512 - type: nauc_map_at_10_diff1 value: 31.694899999999997 - type: nauc_map_at_20_max value: 15.3357 - type: nauc_map_at_20_std value: -1.4588999999999999 - type: nauc_map_at_20_diff1 value: 31.323800000000002 - type: nauc_map_at_100_max value: 15.598 - type: nauc_map_at_100_std value: -0.9811000000000001 - type: nauc_map_at_100_diff1 value: 31.434600000000003 - type: nauc_map_at_1000_max value: 15.6096 - type: nauc_map_at_1000_std value: -0.9884999999999999 - type: nauc_map_at_1000_diff1 value: 31.4697 - type: nauc_recall_at_1_max value: 13.264400000000002 - type: nauc_recall_at_1_std value: -2.1641 - type: nauc_recall_at_1_diff1 value: 37.446200000000005 - type: nauc_recall_at_3_max value: 15.945500000000001 - type: nauc_recall_at_3_std value: -3.4730999999999996 - type: nauc_recall_at_3_diff1 value: 27.0913 - type: nauc_recall_at_5_max value: 15.237800000000002 - type: nauc_recall_at_5_std value: -1.0399 - type: nauc_recall_at_5_diff1 value: 25.2793 - type: nauc_recall_at_10_max value: 15.1746 - type: nauc_recall_at_10_std value: 0.5708000000000001 - type: nauc_recall_at_10_diff1 value: 24.2515 - type: nauc_recall_at_20_max value: 14.3294 - type: nauc_recall_at_20_std value: 0.8943 - type: nauc_recall_at_20_diff1 value: 20.1567 - type: nauc_recall_at_100_max value: 19.405 - type: nauc_recall_at_100_std value: 15.5971 - type: nauc_recall_at_100_diff1 value: 16.8 - type: nauc_recall_at_1000_max value: 27.3117 - type: nauc_recall_at_1000_std value: 36.0277 - type: nauc_recall_at_1000_diff1 value: 15.1497 - type: nauc_precision_at_1_max value: 16.369 - type: nauc_precision_at_1_std value: -0.2643 - type: nauc_precision_at_1_diff1 value: 36.3924 - type: nauc_precision_at_3_max value: 19.78 - type: nauc_precision_at_3_std value: -2.0522 - type: nauc_precision_at_3_diff1 value: 24.3712 - type: nauc_precision_at_5_max value: 19.4882 - type: nauc_precision_at_5_std value: 0.7147 - type: nauc_precision_at_5_diff1 value: 20.2841 - type: nauc_precision_at_10_max value: 20.0931 - type: nauc_precision_at_10_std value: 3.0831 - type: nauc_precision_at_10_diff1 value: 15.928899999999999 - type: nauc_precision_at_20_max value: 17.5823 - type: nauc_precision_at_20_std value: 4.1056 - type: nauc_precision_at_20_diff1 value: 9.211500000000001 - type: nauc_precision_at_100_max value: 14.447399999999998 - type: nauc_precision_at_100_std value: 10.1543 - type: nauc_precision_at_100_diff1 value: 3.5811999999999995 - type: nauc_precision_at_1000_max value: 7.829899999999999 - type: nauc_precision_at_1000_std value: 3.4869999999999997 - type: nauc_precision_at_1000_diff1 value: -0.5313 - type: nauc_mrr_at_1_max value: 16.369 - type: nauc_mrr_at_1_std value: -0.2643 - type: nauc_mrr_at_1_diff1 value: 36.3924 - type: nauc_mrr_at_3_max value: 18.8798 - type: nauc_mrr_at_3_std value: -0.7811 - type: nauc_mrr_at_3_diff1 value: 31.7255 - type: nauc_mrr_at_5_max value: 18.840799999999998 - type: nauc_mrr_at_5_std value: -0.0676 - type: nauc_mrr_at_5_diff1 value: 31.6753 - type: nauc_mrr_at_10_max value: 18.8049 - type: nauc_mrr_at_10_std value: 0.2359 - type: nauc_mrr_at_10_diff1 value: 31.729200000000002 - type: nauc_mrr_at_20_max value: 18.709999999999997 - type: nauc_mrr_at_20_std value: 0.2533 - type: nauc_mrr_at_20_diff1 value: 31.556099999999997 - type: nauc_mrr_at_100_max value: 18.7625 - type: nauc_mrr_at_100_std value: 0.411 - type: nauc_mrr_at_100_diff1 value: 31.575599999999998 - type: nauc_mrr_at_1000_max value: 18.7525 - type: nauc_mrr_at_1000_std value: 0.4194 - type: nauc_mrr_at_1000_diff1 value: 31.6052 - type: main_score value: 36.015 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackPhysicsRetrieval (default) revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 split: test type: mteb/cqadupstack-physics metrics: - type: ndcg_at_1 value: 42.348 - type: ndcg_at_3 value: 48.478 - type: ndcg_at_5 value: 50.79 - type: ndcg_at_10 value: 53.504 - type: ndcg_at_20 value: 55.753 - type: ndcg_at_100 value: 58.899 - type: ndcg_at_1000 value: 60.32300000000001 - type: map_at_1 value: 33.824 - type: map_at_3 value: 43.335 - type: map_at_5 value: 45.279 - type: map_at_10 value: 46.867999999999995 - type: map_at_20 value: 47.714 - type: map_at_100 value: 48.306 - type: map_at_1000 value: 48.406 - type: recall_at_1 value: 33.824 - type: recall_at_3 value: 52.305 - type: recall_at_5 value: 58.804 - type: recall_at_10 value: 67.142 - type: recall_at_20 value: 74.694 - type: recall_at_100 value: 89.134 - type: recall_at_1000 value: 97.816 - type: precision_at_1 value: 42.348 - type: precision_at_3 value: 23.741 - type: precision_at_5 value: 16.439 - type: precision_at_10 value: 9.75 - type: precision_at_20 value: 5.702999999999999 - type: precision_at_100 value: 1.466 - type: precision_at_1000 value: 0.17700000000000002 - type: mrr_at_1 value: 42.348400000000005 - type: mrr_at_3 value: 50.721799999999995 - type: mrr_at_5 value: 52.0115 - type: mrr_at_10 value: 52.9721 - type: mrr_at_20 value: 53.3914 - type: mrr_at_100 value: 53.7068 - type: mrr_at_1000 value: 53.734300000000005 - type: nauc_ndcg_at_1_max value: 36.8685 - type: nauc_ndcg_at_1_std value: -1.9057000000000002 - type: nauc_ndcg_at_1_diff1 value: 54.151700000000005 - type: nauc_ndcg_at_3_max value: 36.8356 - type: nauc_ndcg_at_3_std value: -3.5336 - type: nauc_ndcg_at_3_diff1 value: 48.3439 - type: nauc_ndcg_at_5_max value: 35.705999999999996 - type: nauc_ndcg_at_5_std value: -4.5076 - type: nauc_ndcg_at_5_diff1 value: 47.5611 - type: nauc_ndcg_at_10_max value: 36.7768 - type: nauc_ndcg_at_10_std value: -2.459 - type: nauc_ndcg_at_10_diff1 value: 47.254400000000004 - type: nauc_ndcg_at_20_max value: 37.390499999999996 - type: nauc_ndcg_at_20_std value: -2.2398000000000002 - type: nauc_ndcg_at_20_diff1 value: 47.8108 - type: nauc_ndcg_at_100_max value: 38.3272 - type: nauc_ndcg_at_100_std value: -0.3307 - type: nauc_ndcg_at_100_diff1 value: 48.4739 - type: nauc_ndcg_at_1000_max value: 38.0766 - type: nauc_ndcg_at_1000_std value: -0.6526 - type: nauc_ndcg_at_1000_diff1 value: 48.6232 - type: nauc_map_at_1_max value: 29.901600000000002 - type: nauc_map_at_1_std value: -7.186299999999999 - type: nauc_map_at_1_diff1 value: 54.2246 - type: nauc_map_at_3_max value: 34.083200000000005 - type: nauc_map_at_3_std value: -5.532 - type: nauc_map_at_3_diff1 value: 49.6089 - type: nauc_map_at_5_max value: 34.2724 - type: nauc_map_at_5_std value: -5.4413 - type: nauc_map_at_5_diff1 value: 49.045 - type: nauc_map_at_10_max value: 35.3456 - type: nauc_map_at_10_std value: -4.0495 - type: nauc_map_at_10_diff1 value: 48.9439 - type: nauc_map_at_20_max value: 35.7489 - type: nauc_map_at_20_std value: -3.769 - type: nauc_map_at_20_diff1 value: 49.205799999999996 - type: nauc_map_at_100_max value: 35.9745 - type: nauc_map_at_100_std value: -3.4292000000000002 - type: nauc_map_at_100_diff1 value: 49.2921 - type: nauc_map_at_1000_max value: 35.9764 - type: nauc_map_at_1000_std value: -3.4297 - type: nauc_map_at_1000_diff1 value: 49.3113 - type: nauc_recall_at_1_max value: 29.901600000000002 - type: nauc_recall_at_1_std value: -7.186299999999999 - type: nauc_recall_at_1_diff1 value: 54.2246 - type: nauc_recall_at_3_max value: 32.3363 - type: nauc_recall_at_3_std value: -6.5791 - type: nauc_recall_at_3_diff1 value: 41.86 - type: nauc_recall_at_5_max value: 30.5954 - type: nauc_recall_at_5_std value: -7.989599999999999 - type: nauc_recall_at_5_diff1 value: 38.5503 - type: nauc_recall_at_10_max value: 34.238800000000005 - type: nauc_recall_at_10_std value: -0.756 - type: nauc_recall_at_10_diff1 value: 36.8704 - type: nauc_recall_at_20_max value: 35.7313 - type: nauc_recall_at_20_std value: -0.7048 - type: nauc_recall_at_20_diff1 value: 37.7093 - type: nauc_recall_at_100_max value: 44.4053 - type: nauc_recall_at_100_std value: 20.2029 - type: nauc_recall_at_100_diff1 value: 38.6378 - type: nauc_recall_at_1000_max value: 49.026399999999995 - type: nauc_recall_at_1000_std value: 52.3613 - type: nauc_recall_at_1000_diff1 value: 27.487299999999998 - type: nauc_precision_at_1_max value: 36.8685 - type: nauc_precision_at_1_std value: -1.9057000000000002 - type: nauc_precision_at_1_diff1 value: 54.151700000000005 - type: nauc_precision_at_3_max value: 36.608000000000004 - type: nauc_precision_at_3_std value: 6.3276 - type: nauc_precision_at_3_diff1 value: 28.842499999999998 - type: nauc_precision_at_5_max value: 32.2883 - type: nauc_precision_at_5_std value: 8.0263 - type: nauc_precision_at_5_diff1 value: 21.2274 - type: nauc_precision_at_10_max value: 30.814700000000002 - type: nauc_precision_at_10_std value: 15.4999 - type: nauc_precision_at_10_diff1 value: 12.3553 - type: nauc_precision_at_20_max value: 25.9789 - type: nauc_precision_at_20_std value: 17.128 - type: nauc_precision_at_20_diff1 value: 7.342 - type: nauc_precision_at_100_max value: 15.9879 - type: nauc_precision_at_100_std value: 21.1499 - type: nauc_precision_at_100_diff1 value: -3.0609 - type: nauc_precision_at_1000_max value: 4.850899999999999 - type: nauc_precision_at_1000_std value: 15.750800000000002 - type: nauc_precision_at_1000_diff1 value: -9.2357 - type: nauc_mrr_at_1_max value: 36.8685 - type: nauc_mrr_at_1_std value: -1.9057000000000002 - type: nauc_mrr_at_1_diff1 value: 54.151700000000005 - type: nauc_mrr_at_3_max value: 38.8422 - type: nauc_mrr_at_3_std value: -1.3892 - type: nauc_mrr_at_3_diff1 value: 50.258100000000006 - type: nauc_mrr_at_5_max value: 38.404500000000006 - type: nauc_mrr_at_5_std value: -1.7023 - type: nauc_mrr_at_5_diff1 value: 49.7593 - type: nauc_mrr_at_10_max value: 38.8727 - type: nauc_mrr_at_10_std value: -1.0441 - type: nauc_mrr_at_10_diff1 value: 49.9366 - type: nauc_mrr_at_20_max value: 38.8639 - type: nauc_mrr_at_20_std value: -1.1834 - type: nauc_mrr_at_20_diff1 value: 50.004400000000004 - type: nauc_mrr_at_100_max value: 38.8551 - type: nauc_mrr_at_100_std value: -1.098 - type: nauc_mrr_at_100_diff1 value: 50.0522 - type: nauc_mrr_at_1000_max value: 38.844699999999996 - type: nauc_mrr_at_1000_std value: -1.117 - type: nauc_mrr_at_1000_diff1 value: 50.055099999999996 - type: main_score value: 53.504 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackProgrammersRetrieval (default) revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 split: test type: mteb/cqadupstack-programmers metrics: - type: ndcg_at_1 value: 37.557 - type: ndcg_at_3 value: 42.573 - type: ndcg_at_5 value: 45.528 - type: ndcg_at_10 value: 48.742999999999995 - type: ndcg_at_20 value: 51.160000000000004 - type: ndcg_at_100 value: 54.458 - type: ndcg_at_1000 value: 56.076 - type: map_at_1 value: 30.125 - type: map_at_3 value: 38.018 - type: map_at_5 value: 40.367999999999995 - type: map_at_10 value: 42.119 - type: map_at_20 value: 42.970000000000006 - type: map_at_100 value: 43.599 - type: map_at_1000 value: 43.69 - type: recall_at_1 value: 30.125 - type: recall_at_3 value: 45.437 - type: recall_at_5 value: 53.197 - type: recall_at_10 value: 62.619 - type: recall_at_20 value: 71.187 - type: recall_at_100 value: 86.574 - type: recall_at_1000 value: 97.102 - type: precision_at_1 value: 37.557 - type: precision_at_3 value: 20.624000000000002 - type: precision_at_5 value: 15.068000000000001 - type: precision_at_10 value: 9.269 - type: precision_at_20 value: 5.428 - type: precision_at_100 value: 1.401 - type: precision_at_1000 value: 0.16999999999999998 - type: mrr_at_1 value: 37.5571 - type: mrr_at_3 value: 44.6537 - type: mrr_at_5 value: 46.4403 - type: mrr_at_10 value: 47.5732 - type: mrr_at_20 value: 48.126000000000005 - type: mrr_at_100 value: 48.460300000000004 - type: mrr_at_1000 value: 48.4993 - type: nauc_ndcg_at_1_max value: 44.5645 - type: nauc_ndcg_at_1_std value: 4.542800000000001 - type: nauc_ndcg_at_1_diff1 value: 50.2359 - type: nauc_ndcg_at_3_max value: 43.0652 - type: nauc_ndcg_at_3_std value: 4.3627 - type: nauc_ndcg_at_3_diff1 value: 43.4871 - type: nauc_ndcg_at_5_max value: 43.419999999999995 - type: nauc_ndcg_at_5_std value: 6.1539 - type: nauc_ndcg_at_5_diff1 value: 43.6875 - type: nauc_ndcg_at_10_max value: 43.5052 - type: nauc_ndcg_at_10_std value: 8.0707 - type: nauc_ndcg_at_10_diff1 value: 43.7523 - type: nauc_ndcg_at_20_max value: 44.0535 - type: nauc_ndcg_at_20_std value: 8.9662 - type: nauc_ndcg_at_20_diff1 value: 42.869299999999996 - type: nauc_ndcg_at_100_max value: 45.4324 - type: nauc_ndcg_at_100_std value: 10.663400000000001 - type: nauc_ndcg_at_100_diff1 value: 44.3052 - type: nauc_ndcg_at_1000_max value: 44.9238 - type: nauc_ndcg_at_1000_std value: 9.0618 - type: nauc_ndcg_at_1000_diff1 value: 44.472699999999996 - type: nauc_map_at_1_max value: 37.0128 - type: nauc_map_at_1_std value: -1.8889 - type: nauc_map_at_1_diff1 value: 50.125299999999996 - type: nauc_map_at_3_max value: 40.4277 - type: nauc_map_at_3_std value: 1.5571 - type: nauc_map_at_3_diff1 value: 45.5239 - type: nauc_map_at_5_max value: 41.6298 - type: nauc_map_at_5_std value: 3.4013 - type: nauc_map_at_5_diff1 value: 45.3778 - type: nauc_map_at_10_max value: 42.289300000000004 - type: nauc_map_at_10_std value: 4.6503000000000005 - type: nauc_map_at_10_diff1 value: 45.5387 - type: nauc_map_at_20_max value: 42.642 - type: nauc_map_at_20_std value: 5.0203 - type: nauc_map_at_20_diff1 value: 45.1577 - type: nauc_map_at_100_max value: 42.965199999999996 - type: nauc_map_at_100_std value: 5.335 - type: nauc_map_at_100_diff1 value: 45.406800000000004 - type: nauc_map_at_1000_max value: 42.9348 - type: nauc_map_at_1000_std value: 5.2551 - type: nauc_map_at_1000_diff1 value: 45.408100000000005 - type: nauc_recall_at_1_max value: 37.0128 - type: nauc_recall_at_1_std value: -1.8889 - type: nauc_recall_at_1_diff1 value: 50.125299999999996 - type: nauc_recall_at_3_max value: 38.929 - type: nauc_recall_at_3_std value: 4.077 - type: nauc_recall_at_3_diff1 value: 38.7002 - type: nauc_recall_at_5_max value: 39.6139 - type: nauc_recall_at_5_std value: 8.362 - type: nauc_recall_at_5_diff1 value: 37.585 - type: nauc_recall_at_10_max value: 39.2011 - type: nauc_recall_at_10_std value: 15.155899999999999 - type: nauc_recall_at_10_diff1 value: 36.005199999999995 - type: nauc_recall_at_20_max value: 40.221000000000004 - type: nauc_recall_at_20_std value: 20.6873 - type: nauc_recall_at_20_diff1 value: 30.7941 - type: nauc_recall_at_100_max value: 51.409800000000004 - type: nauc_recall_at_100_std value: 46.4559 - type: nauc_recall_at_100_diff1 value: 35.7367 - type: nauc_recall_at_1000_max value: 58.719500000000004 - type: nauc_recall_at_1000_std value: 72.0053 - type: nauc_recall_at_1000_diff1 value: 36.0514 - type: nauc_precision_at_1_max value: 44.5645 - type: nauc_precision_at_1_std value: 4.542800000000001 - type: nauc_precision_at_1_diff1 value: 50.2359 - type: nauc_precision_at_3_max value: 42.7363 - type: nauc_precision_at_3_std value: 11.9582 - type: nauc_precision_at_3_diff1 value: 28.242800000000003 - type: nauc_precision_at_5_max value: 39.7422 - type: nauc_precision_at_5_std value: 16.2831 - type: nauc_precision_at_5_diff1 value: 21.6264 - type: nauc_precision_at_10_max value: 33.4757 - type: nauc_precision_at_10_std value: 18.8123 - type: nauc_precision_at_10_diff1 value: 14.122000000000002 - type: nauc_precision_at_20_max value: 27.897 - type: nauc_precision_at_20_std value: 17.7175 - type: nauc_precision_at_20_diff1 value: 4.8417 - type: nauc_precision_at_100_max value: 16.4521 - type: nauc_precision_at_100_std value: 15.6333 - type: nauc_precision_at_100_diff1 value: -3.7706999999999997 - type: nauc_precision_at_1000_max value: 1.0215999999999998 - type: nauc_precision_at_1000_std value: 1.7413 - type: nauc_precision_at_1000_diff1 value: -13.7539 - type: nauc_mrr_at_1_max value: 44.5645 - type: nauc_mrr_at_1_std value: 4.542800000000001 - type: nauc_mrr_at_1_diff1 value: 50.2359 - type: nauc_mrr_at_3_max value: 46.611999999999995 - type: nauc_mrr_at_3_std value: 7.647900000000001 - type: nauc_mrr_at_3_diff1 value: 45.3343 - type: nauc_mrr_at_5_max value: 46.3141 - type: nauc_mrr_at_5_std value: 7.9993 - type: nauc_mrr_at_5_diff1 value: 45.252900000000004 - type: nauc_mrr_at_10_max value: 46.1605 - type: nauc_mrr_at_10_std value: 8.6568 - type: nauc_mrr_at_10_diff1 value: 45.1293 - type: nauc_mrr_at_20_max value: 46.1626 - type: nauc_mrr_at_20_std value: 8.6536 - type: nauc_mrr_at_20_diff1 value: 45.0837 - type: nauc_mrr_at_100_max value: 46.2514 - type: nauc_mrr_at_100_std value: 8.731300000000001 - type: nauc_mrr_at_100_diff1 value: 45.2734 - type: nauc_mrr_at_1000_max value: 46.2511 - type: nauc_mrr_at_1000_std value: 8.6858 - type: nauc_mrr_at_1000_diff1 value: 45.29 - type: main_score value: 48.742999999999995 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackRetrieval (default) revision: 160c094312a0e1facb97e55eeddb698c0abe3571 split: test type: CQADupstackRetrieval_is_a_combined_dataset metrics: - type: ndcg_at_1 value: 36.5025 - type: ndcg_at_3 value: 42.563833333333335 - type: ndcg_at_5 value: 45.190500000000014 - type: ndcg_at_10 value: 48.15416666666666 - type: ndcg_at_20 value: 50.29141666666666 - type: ndcg_at_100 value: 53.34008333333333 - type: ndcg_at_1000 value: 55.072416666666676 - type: map_at_1 value: 30.718333333333337 - type: map_at_3 value: 38.537166666666664 - type: map_at_5 value: 40.46825 - type: map_at_10 value: 42.020250000000004 - type: map_at_20 value: 42.783 - type: map_at_100 value: 43.36233333333334 - type: map_at_1000 value: 43.46825 - type: recall_at_1 value: 30.718333333333337 - type: recall_at_3 value: 46.2075 - type: recall_at_5 value: 52.98616666666667 - type: recall_at_10 value: 61.78366666666667 - type: recall_at_20 value: 69.50683333333333 - type: recall_at_100 value: 84.0005 - type: recall_at_1000 value: 95.623 - type: precision_at_1 value: 36.5025 - type: precision_at_3 value: 19.820999999999998 - type: precision_at_5 value: 14.119666666666669 - type: precision_at_10 value: 8.606083333333334 - type: precision_at_20 value: 5.0425 - type: precision_at_100 value: 1.3245 - type: precision_at_1000 value: 0.16624999999999998 - type: mrr_at_1 value: 36.50251666666667 - type: mrr_at_3 value: 43.639925000000005 - type: mrr_at_5 value: 45.17450833333333 - type: mrr_at_10 value: 46.29196666666667 - type: mrr_at_20 value: 46.787433333333325 - type: mrr_at_100 value: 47.11775833333334 - type: mrr_at_1000 value: 47.160025 - type: nauc_ndcg_at_1_max value: 35.63543333333333 - type: nauc_ndcg_at_1_std value: -2.5082500000000003 - type: nauc_ndcg_at_1_diff1 value: 49.697575 - type: nauc_ndcg_at_3_max value: 34.4362 - type: nauc_ndcg_at_3_std value: -1.8411749999999998 - type: nauc_ndcg_at_3_diff1 value: 43.73903333333333 - type: nauc_ndcg_at_5_max value: 34.93775 - type: nauc_ndcg_at_5_std value: -0.8254249999999997 - type: nauc_ndcg_at_5_diff1 value: 43.07621666666667 - type: nauc_ndcg_at_10_max value: 35.32053333333333 - type: nauc_ndcg_at_10_std value: 0.5296166666666667 - type: nauc_ndcg_at_10_diff1 value: 42.7897 - type: nauc_ndcg_at_20_max value: 35.781600000000005 - type: nauc_ndcg_at_20_std value: 1.3973583333333335 - type: nauc_ndcg_at_20_diff1 value: 42.563583333333334 - type: nauc_ndcg_at_100_max value: 36.46264166666666 - type: nauc_ndcg_at_100_std value: 2.793141666666667 - type: nauc_ndcg_at_100_diff1 value: 42.913475 - type: nauc_ndcg_at_1000_max value: 36.389716666666665 - type: nauc_ndcg_at_1000_std value: 2.1062499999999997 - type: nauc_ndcg_at_1000_diff1 value: 43.32690000000001 - type: nauc_map_at_1_max value: 30.19065 - type: nauc_map_at_1_std value: -6.136941666666667 - type: nauc_map_at_1_diff1 value: 50.95858333333334 - type: nauc_map_at_3_max value: 32.65271666666666 - type: nauc_map_at_3_std value: -3.927191666666667 - type: nauc_map_at_3_diff1 value: 45.89055 - type: nauc_map_at_5_max value: 33.56583333333334 - type: nauc_map_at_5_std value: -2.8991750000000005 - type: nauc_map_at_5_diff1 value: 45.29093333333334 - type: nauc_map_at_10_max value: 34.177641666666666 - type: nauc_map_at_10_std value: -1.9589083333333333 - type: nauc_map_at_10_diff1 value: 45.126108333333335 - type: nauc_map_at_20_max value: 34.461074999999994 - type: nauc_map_at_20_std value: -1.550616666666666 - type: nauc_map_at_20_diff1 value: 45.00503333333333 - type: nauc_map_at_100_max value: 34.69629166666666 - type: nauc_map_at_100_std value: -1.1661166666666671 - type: nauc_map_at_100_diff1 value: 45.009175 - type: nauc_map_at_1000_max value: 34.688108333333325 - type: nauc_map_at_1000_std value: -1.1726583333333331 - type: nauc_map_at_1000_diff1 value: 45.010266666666666 - type: nauc_recall_at_1_max value: 30.19065 - type: nauc_recall_at_1_std value: -6.136941666666667 - type: nauc_recall_at_1_diff1 value: 50.95858333333334 - type: nauc_recall_at_3_max value: 31.18069166666666 - type: nauc_recall_at_3_std value: -2.425375 - type: nauc_recall_at_3_diff1 value: 39.215491666666665 - type: nauc_recall_at_5_max value: 32.40545833333333 - type: nauc_recall_at_5_std value: 0.30784166666666674 - type: nauc_recall_at_5_diff1 value: 36.58546666666667 - type: nauc_recall_at_10_max value: 33.11824166666668 - type: nauc_recall_at_10_std value: 5.099150000000001 - type: nauc_recall_at_10_diff1 value: 34.32635833333333 - type: nauc_recall_at_20_max value: 34.84125 - type: nauc_recall_at_20_std value: 9.744425 - type: nauc_recall_at_20_diff1 value: 32.073550000000004 - type: nauc_recall_at_100_max value: 40.07125 - type: nauc_recall_at_100_std value: 26.520391666666672 - type: nauc_recall_at_100_diff1 value: 29.73679166666667 - type: nauc_recall_at_1000_max value: 52.596025000000004 - type: nauc_recall_at_1000_std value: 53.16131666666667 - type: nauc_recall_at_1000_diff1 value: 27.2596 - type: nauc_precision_at_1_max value: 35.63543333333333 - type: nauc_precision_at_1_std value: -2.5082500000000003 - type: nauc_precision_at_1_diff1 value: 49.697575 - type: nauc_precision_at_3_max value: 34.383424999999995 - type: nauc_precision_at_3_std value: 4.906383333333332 - type: nauc_precision_at_3_diff1 value: 27.956991666666664 - type: nauc_precision_at_5_max value: 33.50664166666667 - type: nauc_precision_at_5_std value: 9.5448 - type: nauc_precision_at_5_diff1 value: 20.584491666666665 - type: nauc_precision_at_10_max value: 30.116449999999993 - type: nauc_precision_at_10_std value: 14.272133333333334 - type: nauc_precision_at_10_diff1 value: 12.496183333333333 - type: nauc_precision_at_20_max value: 26.383483333333334 - type: nauc_precision_at_20_std value: 16.945558333333334 - type: nauc_precision_at_20_diff1 value: 5.616483333333333 - type: nauc_precision_at_100_max value: 17.88254166666667 - type: nauc_precision_at_100_std value: 19.543916666666668 - type: nauc_precision_at_100_diff1 value: -4.408391666666666 - type: nauc_precision_at_1000_max value: 6.492849999999999 - type: nauc_precision_at_1000_std value: 11.98045 - type: nauc_precision_at_1000_diff1 value: -12.374983333333333 - type: nauc_mrr_at_1_max value: 35.63543333333333 - type: nauc_mrr_at_1_std value: -2.5082500000000003 - type: nauc_mrr_at_1_diff1 value: 49.697575 - type: nauc_mrr_at_3_max value: 36.531841666666665 - type: nauc_mrr_at_3_std value: -0.49094999999999983 - type: nauc_mrr_at_3_diff1 value: 45.05095 - type: nauc_mrr_at_5_max value: 36.68914166666667 - type: nauc_mrr_at_5_std value: -0.020883333333333517 - type: nauc_mrr_at_5_diff1 value: 44.59794166666667 - type: nauc_mrr_at_10_max value: 36.71131666666667 - type: nauc_mrr_at_10_std value: 0.42916666666666675 - type: nauc_mrr_at_10_diff1 value: 44.502241666666656 - type: nauc_mrr_at_20_max value: 36.73486666666667 - type: nauc_mrr_at_20_std value: 0.5398083333333334 - type: nauc_mrr_at_20_diff1 value: 44.48308333333335 - type: nauc_mrr_at_100_max value: 36.76240833333333 - type: nauc_mrr_at_100_std value: 0.6035583333333332 - type: nauc_mrr_at_100_diff1 value: 44.55041666666667 - type: nauc_mrr_at_1000_max value: 36.76164166666667 - type: nauc_mrr_at_1000_std value: 0.5883499999999998 - type: nauc_mrr_at_1000_diff1 value: 44.56814166666667 - type: main_score value: 48.15416666666666 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackRetrieval (default) revision: CQADupstackRetrieval_is_a_combined_dataset split: test type: CQADupstackRetrieval_is_a_combined_dataset metrics: - type: main_score value: 48.15416666666667 - type: ndcg_at_10 value: 48.15416666666667 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackStatsRetrieval (default) revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a split: test type: mteb/cqadupstack-stats metrics: - type: ndcg_at_1 value: 32.669 - type: ndcg_at_3 value: 37.604 - type: ndcg_at_5 value: 39.682 - type: ndcg_at_10 value: 42.353 - type: ndcg_at_20 value: 44.374 - type: ndcg_at_100 value: 47.424 - type: ndcg_at_1000 value: 49.589 - type: map_at_1 value: 29.193 - type: map_at_3 value: 34.897 - type: map_at_5 value: 36.272999999999996 - type: map_at_10 value: 37.529 - type: map_at_20 value: 38.156 - type: map_at_100 value: 38.614 - type: map_at_1000 value: 38.712999999999994 - type: recall_at_1 value: 29.193 - type: recall_at_3 value: 41.014 - type: recall_at_5 value: 46.248 - type: recall_at_10 value: 54.159 - type: recall_at_20 value: 61.818 - type: recall_at_100 value: 77.267 - type: recall_at_1000 value: 92.805 - type: precision_at_1 value: 32.669 - type: precision_at_3 value: 16.309 - type: precision_at_5 value: 11.288 - type: precision_at_10 value: 6.8709999999999996 - type: precision_at_20 value: 3.9419999999999997 - type: precision_at_100 value: 1.008 - type: precision_at_1000 value: 0.126 - type: mrr_at_1 value: 32.6687 - type: mrr_at_3 value: 38.0368 - type: mrr_at_5 value: 39.1948 - type: mrr_at_10 value: 40.2884 - type: mrr_at_20 value: 40.7986 - type: mrr_at_100 value: 41.1771 - type: mrr_at_1000 value: 41.240700000000004 - type: nauc_ndcg_at_1_max value: 38.765699999999995 - type: nauc_ndcg_at_1_std value: 3.3594 - type: nauc_ndcg_at_1_diff1 value: 54.1068 - type: nauc_ndcg_at_3_max value: 35.987700000000004 - type: nauc_ndcg_at_3_std value: 2.8396999999999997 - type: nauc_ndcg_at_3_diff1 value: 47.2858 - type: nauc_ndcg_at_5_max value: 36.628699999999995 - type: nauc_ndcg_at_5_std value: 3.6117000000000004 - type: nauc_ndcg_at_5_diff1 value: 46.9776 - type: nauc_ndcg_at_10_max value: 36.763200000000005 - type: nauc_ndcg_at_10_std value: 4.7951 - type: nauc_ndcg_at_10_diff1 value: 46.5066 - type: nauc_ndcg_at_20_max value: 36.6793 - type: nauc_ndcg_at_20_std value: 5.6449 - type: nauc_ndcg_at_20_diff1 value: 45.835100000000004 - type: nauc_ndcg_at_100_max value: 37.0064 - type: nauc_ndcg_at_100_std value: 6.6625000000000005 - type: nauc_ndcg_at_100_diff1 value: 45.4937 - type: nauc_ndcg_at_1000_max value: 37.5693 - type: nauc_ndcg_at_1000_std value: 6.5411 - type: nauc_ndcg_at_1000_diff1 value: 46.671800000000005 - type: nauc_map_at_1_max value: 32.7625 - type: nauc_map_at_1_std value: -1.8726 - type: nauc_map_at_1_diff1 value: 53.1931 - type: nauc_map_at_3_max value: 34.7221 - type: nauc_map_at_3_std value: 1.141 - type: nauc_map_at_3_diff1 value: 49.0672 - type: nauc_map_at_5_max value: 35.5173 - type: nauc_map_at_5_std value: 2.2872 - type: nauc_map_at_5_diff1 value: 48.5047 - type: nauc_map_at_10_max value: 35.7686 - type: nauc_map_at_10_std value: 2.9238 - type: nauc_map_at_10_diff1 value: 48.3548 - type: nauc_map_at_20_max value: 35.7707 - type: nauc_map_at_20_std value: 3.0683 - type: nauc_map_at_20_diff1 value: 48.1708 - type: nauc_map_at_100_max value: 35.8572 - type: nauc_map_at_100_std value: 3.2108999999999996 - type: nauc_map_at_100_diff1 value: 48.0681 - type: nauc_map_at_1000_max value: 35.885600000000004 - type: nauc_map_at_1000_std value: 3.2162 - type: nauc_map_at_1000_diff1 value: 48.1239 - type: nauc_recall_at_1_max value: 32.7625 - type: nauc_recall_at_1_std value: -1.8726 - type: nauc_recall_at_1_diff1 value: 53.1931 - type: nauc_recall_at_3_max value: 32.5847 - type: nauc_recall_at_3_std value: 1.4236 - type: nauc_recall_at_3_diff1 value: 42.8899 - type: nauc_recall_at_5_max value: 35.0441 - type: nauc_recall_at_5_std value: 4.1737 - type: nauc_recall_at_5_diff1 value: 41.8313 - type: nauc_recall_at_10_max value: 35.063100000000006 - type: nauc_recall_at_10_std value: 7.8740000000000006 - type: nauc_recall_at_10_diff1 value: 38.9244 - type: nauc_recall_at_20_max value: 33.6964 - type: nauc_recall_at_20_std value: 12.0632 - type: nauc_recall_at_20_diff1 value: 34.7941 - type: nauc_recall_at_100_max value: 33.928399999999996 - type: nauc_recall_at_100_std value: 23.1451 - type: nauc_recall_at_100_diff1 value: 28.170499999999997 - type: nauc_recall_at_1000_max value: 45.6188 - type: nauc_recall_at_1000_std value: 44.1766 - type: nauc_recall_at_1000_diff1 value: 34.1945 - type: nauc_precision_at_1_max value: 38.765699999999995 - type: nauc_precision_at_1_std value: 3.3594 - type: nauc_precision_at_1_diff1 value: 54.1068 - type: nauc_precision_at_3_max value: 39.3932 - type: nauc_precision_at_3_std value: 11.258600000000001 - type: nauc_precision_at_3_diff1 value: 36.9186 - type: nauc_precision_at_5_max value: 39.0844 - type: nauc_precision_at_5_std value: 14.7369 - type: nauc_precision_at_5_diff1 value: 31.3071 - type: nauc_precision_at_10_max value: 36.3678 - type: nauc_precision_at_10_std value: 17.292099999999998 - type: nauc_precision_at_10_diff1 value: 24.0674 - type: nauc_precision_at_20_max value: 32.5422 - type: nauc_precision_at_20_std value: 17.3521 - type: nauc_precision_at_20_diff1 value: 17.8472 - type: nauc_precision_at_100_max value: 28.439700000000002 - type: nauc_precision_at_100_std value: 21.7441 - type: nauc_precision_at_100_diff1 value: 7.6072 - type: nauc_precision_at_1000_max value: 18.9222 - type: nauc_precision_at_1000_std value: 17.1045 - type: nauc_precision_at_1000_diff1 value: 0.9424 - type: nauc_mrr_at_1_max value: 38.765699999999995 - type: nauc_mrr_at_1_std value: 3.3594 - type: nauc_mrr_at_1_diff1 value: 54.1068 - type: nauc_mrr_at_3_max value: 38.4312 - type: nauc_mrr_at_3_std value: 4.4437999999999995 - type: nauc_mrr_at_3_diff1 value: 49.0981 - type: nauc_mrr_at_5_max value: 38.8429 - type: nauc_mrr_at_5_std value: 4.7834 - type: nauc_mrr_at_5_diff1 value: 49.1564 - type: nauc_mrr_at_10_max value: 39.1657 - type: nauc_mrr_at_10_std value: 5.3785 - type: nauc_mrr_at_10_diff1 value: 49.0301 - type: nauc_mrr_at_20_max value: 39.1254 - type: nauc_mrr_at_20_std value: 5.6123 - type: nauc_mrr_at_20_diff1 value: 48.8663 - type: nauc_mrr_at_100_max value: 39.097 - type: nauc_mrr_at_100_std value: 5.6065 - type: nauc_mrr_at_100_diff1 value: 48.827799999999996 - type: nauc_mrr_at_1000_max value: 39.1157 - type: nauc_mrr_at_1000_std value: 5.6175999999999995 - type: nauc_mrr_at_1000_diff1 value: 48.8575 - type: main_score value: 42.353 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackTexRetrieval (default) revision: 46989137a86843e03a6195de44b09deda022eec7 split: test type: mteb/cqadupstack-tex metrics: - type: ndcg_at_1 value: 25.946 - type: ndcg_at_3 value: 31.463 - type: ndcg_at_5 value: 33.803 - type: ndcg_at_10 value: 36.55 - type: ndcg_at_20 value: 38.794000000000004 - type: ndcg_at_100 value: 42.327999999999996 - type: ndcg_at_1000 value: 44.783 - type: map_at_1 value: 21.217 - type: map_at_3 value: 27.882 - type: map_at_5 value: 29.537000000000003 - type: map_at_10 value: 30.848 - type: map_at_20 value: 31.574999999999996 - type: map_at_100 value: 32.173 - type: map_at_1000 value: 32.296 - type: recall_at_1 value: 21.217 - type: recall_at_3 value: 34.993 - type: recall_at_5 value: 41.028999999999996 - type: recall_at_10 value: 49.327 - type: recall_at_20 value: 57.50300000000001 - type: recall_at_100 value: 74.72 - type: recall_at_1000 value: 91.637 - type: precision_at_1 value: 25.946 - type: precision_at_3 value: 15.129999999999999 - type: precision_at_5 value: 10.991 - type: precision_at_10 value: 6.793 - type: precision_at_20 value: 4.076 - type: precision_at_100 value: 1.138 - type: precision_at_1000 value: 0.155 - type: mrr_at_1 value: 25.9463 - type: mrr_at_3 value: 32.4845 - type: mrr_at_5 value: 33.9642 - type: mrr_at_10 value: 35.0906 - type: mrr_at_20 value: 35.6346 - type: mrr_at_100 value: 36.0474 - type: mrr_at_1000 value: 36.1106 - type: nauc_ndcg_at_1_max value: 29.3294 - type: nauc_ndcg_at_1_std value: 1.9199000000000002 - type: nauc_ndcg_at_1_diff1 value: 43.9951 - type: nauc_ndcg_at_3_max value: 28.4154 - type: nauc_ndcg_at_3_std value: 2.262 - type: nauc_ndcg_at_3_diff1 value: 37.0416 - type: nauc_ndcg_at_5_max value: 29.0647 - type: nauc_ndcg_at_5_std value: 3.6863 - type: nauc_ndcg_at_5_diff1 value: 36.3715 - type: nauc_ndcg_at_10_max value: 29.0041 - type: nauc_ndcg_at_10_std value: 4.605 - type: nauc_ndcg_at_10_diff1 value: 36.1295 - type: nauc_ndcg_at_20_max value: 29.5425 - type: nauc_ndcg_at_20_std value: 5.5535 - type: nauc_ndcg_at_20_diff1 value: 35.74 - type: nauc_ndcg_at_100_max value: 30.1166 - type: nauc_ndcg_at_100_std value: 7.4285000000000005 - type: nauc_ndcg_at_100_diff1 value: 35.4871 - type: nauc_ndcg_at_1000_max value: 30.198900000000002 - type: nauc_ndcg_at_1000_std value: 6.6549 - type: nauc_ndcg_at_1000_diff1 value: 36.3901 - type: nauc_map_at_1_max value: 26.6761 - type: nauc_map_at_1_std value: -0.4332 - type: nauc_map_at_1_diff1 value: 46.015299999999996 - type: nauc_map_at_3_max value: 27.221 - type: nauc_map_at_3_std value: 1.3299999999999998 - type: nauc_map_at_3_diff1 value: 38.9882 - type: nauc_map_at_5_max value: 27.929900000000004 - type: nauc_map_at_5_std value: 2.1886 - type: nauc_map_at_5_diff1 value: 38.5184 - type: nauc_map_at_10_max value: 28.105599999999995 - type: nauc_map_at_10_std value: 2.6707 - type: nauc_map_at_10_diff1 value: 38.419599999999996 - type: nauc_map_at_20_max value: 28.359499999999997 - type: nauc_map_at_20_std value: 2.9859 - type: nauc_map_at_20_diff1 value: 38.2748 - type: nauc_map_at_100_max value: 28.5493 - type: nauc_map_at_100_std value: 3.3446999999999996 - type: nauc_map_at_100_diff1 value: 38.1789 - type: nauc_map_at_1000_max value: 28.5931 - type: nauc_map_at_1000_std value: 3.3341999999999996 - type: nauc_map_at_1000_diff1 value: 38.2276 - type: nauc_recall_at_1_max value: 26.6761 - type: nauc_recall_at_1_std value: -0.4332 - type: nauc_recall_at_1_diff1 value: 46.015299999999996 - type: nauc_recall_at_3_max value: 26.0116 - type: nauc_recall_at_3_std value: 2.6044 - type: nauc_recall_at_3_diff1 value: 32.1201 - type: nauc_recall_at_5_max value: 27.361 - type: nauc_recall_at_5_std value: 5.6135 - type: nauc_recall_at_5_diff1 value: 29.807699999999997 - type: nauc_recall_at_10_max value: 26.885399999999997 - type: nauc_recall_at_10_std value: 8.1679 - type: nauc_recall_at_10_diff1 value: 28.283599999999996 - type: nauc_recall_at_20_max value: 28.5827 - type: nauc_recall_at_20_std value: 11.7346 - type: nauc_recall_at_20_diff1 value: 25.965 - type: nauc_recall_at_100_max value: 31.488100000000003 - type: nauc_recall_at_100_std value: 25.9126 - type: nauc_recall_at_100_diff1 value: 20.9561 - type: nauc_recall_at_1000_max value: 37.424 - type: nauc_recall_at_1000_std value: 35.7201 - type: nauc_recall_at_1000_diff1 value: 22.156100000000002 - type: nauc_precision_at_1_max value: 29.3294 - type: nauc_precision_at_1_std value: 1.9199000000000002 - type: nauc_precision_at_1_diff1 value: 43.9951 - type: nauc_precision_at_3_max value: 29.893700000000003 - type: nauc_precision_at_3_std value: 5.0083 - type: nauc_precision_at_3_diff1 value: 28.530499999999996 - type: nauc_precision_at_5_max value: 30.6624 - type: nauc_precision_at_5_std value: 8.098600000000001 - type: nauc_precision_at_5_diff1 value: 23.8478 - type: nauc_precision_at_10_max value: 28.407100000000003 - type: nauc_precision_at_10_std value: 10.852599999999999 - type: nauc_precision_at_10_diff1 value: 19.1175 - type: nauc_precision_at_20_max value: 26.045299999999997 - type: nauc_precision_at_20_std value: 12.898399999999999 - type: nauc_precision_at_20_diff1 value: 13.586599999999999 - type: nauc_precision_at_100_max value: 23.8686 - type: nauc_precision_at_100_std value: 16.558500000000002 - type: nauc_precision_at_100_diff1 value: 4.8838 - type: nauc_precision_at_1000_max value: 18.803900000000002 - type: nauc_precision_at_1000_std value: 8.252600000000001 - type: nauc_precision_at_1000_diff1 value: 3.4761 - type: nauc_mrr_at_1_max value: 29.3294 - type: nauc_mrr_at_1_std value: 1.9199000000000002 - type: nauc_mrr_at_1_diff1 value: 43.9951 - type: nauc_mrr_at_3_max value: 29.7689 - type: nauc_mrr_at_3_std value: 2.9381 - type: nauc_mrr_at_3_diff1 value: 39.0616 - type: nauc_mrr_at_5_max value: 30.0871 - type: nauc_mrr_at_5_std value: 3.7067 - type: nauc_mrr_at_5_diff1 value: 38.2429 - type: nauc_mrr_at_10_max value: 30.0444 - type: nauc_mrr_at_10_std value: 4.086399999999999 - type: nauc_mrr_at_10_diff1 value: 38.0941 - type: nauc_mrr_at_20_max value: 30.134499999999996 - type: nauc_mrr_at_20_std value: 4.288200000000001 - type: nauc_mrr_at_20_diff1 value: 38.048300000000005 - type: nauc_mrr_at_100_max value: 30.1624 - type: nauc_mrr_at_100_std value: 4.4486 - type: nauc_mrr_at_100_diff1 value: 38.067499999999995 - type: nauc_mrr_at_1000_max value: 30.168899999999997 - type: nauc_mrr_at_1000_std value: 4.4265 - type: nauc_mrr_at_1000_diff1 value: 38.0978 - type: main_score value: 36.55 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackUnixRetrieval (default) revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 split: test type: mteb/cqadupstack-unix metrics: - type: ndcg_at_1 value: 40.111999999999995 - type: ndcg_at_3 value: 44.91 - type: ndcg_at_5 value: 48.048 - type: ndcg_at_10 value: 51.300000000000004 - type: ndcg_at_20 value: 53.537 - type: ndcg_at_100 value: 56.53399999999999 - type: ndcg_at_1000 value: 58.048 - type: map_at_1 value: 34.303 - type: map_at_3 value: 41.43 - type: map_at_5 value: 43.633 - type: map_at_10 value: 45.312000000000005 - type: map_at_20 value: 46.04 - type: map_at_100 value: 46.563 - type: map_at_1000 value: 46.64 - type: recall_at_1 value: 34.303 - type: recall_at_3 value: 48.465 - type: recall_at_5 value: 56.374 - type: recall_at_10 value: 65.508 - type: recall_at_20 value: 73.457 - type: recall_at_100 value: 87.53 - type: recall_at_1000 value: 97.42 - type: precision_at_1 value: 40.111999999999995 - type: precision_at_3 value: 20.211000000000002 - type: precision_at_5 value: 14.496 - type: precision_at_10 value: 8.806 - type: precision_at_20 value: 5.047 - type: precision_at_100 value: 1.266 - type: precision_at_1000 value: 0.149 - type: mrr_at_1 value: 40.1119 - type: mrr_at_3 value: 46.1287 - type: mrr_at_5 value: 47.9011 - type: mrr_at_10 value: 49.0974 - type: mrr_at_20 value: 49.6541 - type: mrr_at_100 value: 49.9655 - type: mrr_at_1000 value: 50.0063 - type: nauc_ndcg_at_1_max value: 40.5521 - type: nauc_ndcg_at_1_std value: -7.457700000000001 - type: nauc_ndcg_at_1_diff1 value: 50.6505 - type: nauc_ndcg_at_3_max value: 38.696999999999996 - type: nauc_ndcg_at_3_std value: -4.2286 - type: nauc_ndcg_at_3_diff1 value: 44.289699999999996 - type: nauc_ndcg_at_5_max value: 39.6798 - type: nauc_ndcg_at_5_std value: -2.8316 - type: nauc_ndcg_at_5_diff1 value: 44.0944 - type: nauc_ndcg_at_10_max value: 40.5534 - type: nauc_ndcg_at_10_std value: -2.2217000000000002 - type: nauc_ndcg_at_10_diff1 value: 43.811299999999996 - type: nauc_ndcg_at_20_max value: 41.1096 - type: nauc_ndcg_at_20_std value: -1.5137 - type: nauc_ndcg_at_20_diff1 value: 43.7406 - type: nauc_ndcg_at_100_max value: 40.588 - type: nauc_ndcg_at_100_std value: -1.2616 - type: nauc_ndcg_at_100_diff1 value: 43.553 - type: nauc_ndcg_at_1000_max value: 40.86 - type: nauc_ndcg_at_1000_std value: -1.6507999999999998 - type: nauc_ndcg_at_1000_diff1 value: 44.1305 - type: nauc_map_at_1_max value: 36.9173 - type: nauc_map_at_1_std value: -8.2788 - type: nauc_map_at_1_diff1 value: 52.4203 - type: nauc_map_at_3_max value: 38.006499999999996 - type: nauc_map_at_3_std value: -5.5607 - type: nauc_map_at_3_diff1 value: 46.847 - type: nauc_map_at_5_max value: 39.1588 - type: nauc_map_at_5_std value: -4.6744 - type: nauc_map_at_5_diff1 value: 46.3773 - type: nauc_map_at_10_max value: 39.8953 - type: nauc_map_at_10_std value: -4.3361 - type: nauc_map_at_10_diff1 value: 46.1408 - type: nauc_map_at_20_max value: 40.1053 - type: nauc_map_at_20_std value: -4.1688 - type: nauc_map_at_20_diff1 value: 46.0601 - type: nauc_map_at_100_max value: 40.0756 - type: nauc_map_at_100_std value: -4.0973999999999995 - type: nauc_map_at_100_diff1 value: 46.0325 - type: nauc_map_at_1000_max value: 40.0894 - type: nauc_map_at_1000_std value: -4.0949 - type: nauc_map_at_1000_diff1 value: 46.048899999999996 - type: nauc_recall_at_1_max value: 36.9173 - type: nauc_recall_at_1_std value: -8.2788 - type: nauc_recall_at_1_diff1 value: 52.4203 - type: nauc_recall_at_3_max value: 35.2291 - type: nauc_recall_at_3_std value: -2.4944 - type: nauc_recall_at_3_diff1 value: 39.3066 - type: nauc_recall_at_5_max value: 37.2859 - type: nauc_recall_at_5_std value: 1.2917 - type: nauc_recall_at_5_diff1 value: 37.2158 - type: nauc_recall_at_10_max value: 38.9748 - type: nauc_recall_at_10_std value: 3.8526 - type: nauc_recall_at_10_diff1 value: 35.188 - type: nauc_recall_at_20_max value: 41.1368 - type: nauc_recall_at_20_std value: 8.1788 - type: nauc_recall_at_20_diff1 value: 33.8061 - type: nauc_recall_at_100_max value: 36.280499999999996 - type: nauc_recall_at_100_std value: 16.6693 - type: nauc_recall_at_100_diff1 value: 26.466 - type: nauc_recall_at_1000_max value: 57.084999999999994 - type: nauc_recall_at_1000_std value: 56.954499999999996 - type: nauc_recall_at_1000_diff1 value: 25.915300000000002 - type: nauc_precision_at_1_max value: 40.5521 - type: nauc_precision_at_1_std value: -7.457700000000001 - type: nauc_precision_at_1_diff1 value: 50.6505 - type: nauc_precision_at_3_max value: 36.2259 - type: nauc_precision_at_3_std value: 0.8514 - type: nauc_precision_at_3_diff1 value: 27.168300000000002 - type: nauc_precision_at_5_max value: 35.6781 - type: nauc_precision_at_5_std value: 5.119400000000001 - type: nauc_precision_at_5_diff1 value: 19.7828 - type: nauc_precision_at_10_max value: 29.9623 - type: nauc_precision_at_10_std value: 6.7059 - type: nauc_precision_at_10_diff1 value: 9.7104 - type: nauc_precision_at_20_max value: 26.2428 - type: nauc_precision_at_20_std value: 9.854000000000001 - type: nauc_precision_at_20_diff1 value: 2.6679999999999997 - type: nauc_precision_at_100_max value: 9.9456 - type: nauc_precision_at_100_std value: 12.465 - type: nauc_precision_at_100_diff1 value: -11.0348 - type: nauc_precision_at_1000_max value: -3.3062 - type: nauc_precision_at_1000_std value: 5.3786000000000005 - type: nauc_precision_at_1000_diff1 value: -18.712999999999997 - type: nauc_mrr_at_1_max value: 40.5521 - type: nauc_mrr_at_1_std value: -7.457700000000001 - type: nauc_mrr_at_1_diff1 value: 50.6505 - type: nauc_mrr_at_3_max value: 39.994 - type: nauc_mrr_at_3_std value: -4.4112 - type: nauc_mrr_at_3_diff1 value: 45.0963 - type: nauc_mrr_at_5_max value: 40.3926 - type: nauc_mrr_at_5_std value: -3.611 - type: nauc_mrr_at_5_diff1 value: 44.9505 - type: nauc_mrr_at_10_max value: 40.597 - type: nauc_mrr_at_10_std value: -3.5407 - type: nauc_mrr_at_10_diff1 value: 45.0605 - type: nauc_mrr_at_20_max value: 40.6821 - type: nauc_mrr_at_20_std value: -3.4132000000000002 - type: nauc_mrr_at_20_diff1 value: 45.1507 - type: nauc_mrr_at_100_max value: 40.6279 - type: nauc_mrr_at_100_std value: -3.4576000000000002 - type: nauc_mrr_at_100_diff1 value: 45.183299999999996 - type: nauc_mrr_at_1000_max value: 40.6436 - type: nauc_mrr_at_1000_std value: -3.4639 - type: nauc_mrr_at_1000_diff1 value: 45.2065 - type: main_score value: 51.300000000000004 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackWebmastersRetrieval (default) revision: 160c094312a0e1facb97e55eeddb698c0abe3571 split: test type: mteb/cqadupstack-webmasters metrics: - type: ndcg_at_1 value: 36.364000000000004 - type: ndcg_at_3 value: 41.875 - type: ndcg_at_5 value: 44.316 - type: ndcg_at_10 value: 47.301 - type: ndcg_at_20 value: 50.059 - type: ndcg_at_100 value: 53.698 - type: ndcg_at_1000 value: 55.503 - type: map_at_1 value: 30.312 - type: map_at_3 value: 37.527 - type: map_at_5 value: 39.36 - type: map_at_10 value: 40.931 - type: map_at_20 value: 41.978 - type: map_at_100 value: 42.893 - type: map_at_1000 value: 43.120000000000005 - type: recall_at_1 value: 30.312 - type: recall_at_3 value: 44.251000000000005 - type: recall_at_5 value: 50.456999999999994 - type: recall_at_10 value: 59.418000000000006 - type: recall_at_20 value: 69.791 - type: recall_at_100 value: 86.56 - type: recall_at_1000 value: 97.41199999999999 - type: precision_at_1 value: 36.364000000000004 - type: precision_at_3 value: 19.499 - type: precision_at_5 value: 14.149999999999999 - type: precision_at_10 value: 9.032 - type: precision_at_20 value: 5.800000000000001 - type: precision_at_100 value: 1.806 - type: precision_at_1000 value: 0.258 - type: mrr_at_1 value: 36.3636 - type: mrr_at_3 value: 42.918299999999995 - type: mrr_at_5 value: 44.4302 - type: mrr_at_10 value: 45.677299999999995 - type: mrr_at_20 value: 46.372600000000006 - type: mrr_at_100 value: 46.7532 - type: mrr_at_1000 value: 46.786699999999996 - type: nauc_ndcg_at_1_max value: 36.5416 - type: nauc_ndcg_at_1_std value: 1.7398 - type: nauc_ndcg_at_1_diff1 value: 48.6149 - type: nauc_ndcg_at_3_max value: 35.9768 - type: nauc_ndcg_at_3_std value: 4.3271999999999995 - type: nauc_ndcg_at_3_diff1 value: 43.4812 - type: nauc_ndcg_at_5_max value: 34.9136 - type: nauc_ndcg_at_5_std value: 5.291300000000001 - type: nauc_ndcg_at_5_diff1 value: 42.4122 - type: nauc_ndcg_at_10_max value: 35.3659 - type: nauc_ndcg_at_10_std value: 6.8223 - type: nauc_ndcg_at_10_diff1 value: 42.123 - type: nauc_ndcg_at_20_max value: 37.302400000000006 - type: nauc_ndcg_at_20_std value: 7.836600000000001 - type: nauc_ndcg_at_20_diff1 value: 42.9609 - type: nauc_ndcg_at_100_max value: 38.028800000000004 - type: nauc_ndcg_at_100_std value: 9.065900000000001 - type: nauc_ndcg_at_100_diff1 value: 42.8557 - type: nauc_ndcg_at_1000_max value: 37.8805 - type: nauc_ndcg_at_1000_std value: 7.965800000000001 - type: nauc_ndcg_at_1000_diff1 value: 43.331399999999995 - type: nauc_map_at_1_max value: 32.5587 - type: nauc_map_at_1_std value: -2.3119 - type: nauc_map_at_1_diff1 value: 52.2244 - type: nauc_map_at_3_max value: 34.6582 - type: nauc_map_at_3_std value: 1.3005 - type: nauc_map_at_3_diff1 value: 46.774100000000004 - type: nauc_map_at_5_max value: 34.6492 - type: nauc_map_at_5_std value: 2.2614 - type: nauc_map_at_5_diff1 value: 45.9467 - type: nauc_map_at_10_max value: 35.4443 - type: nauc_map_at_10_std value: 3.7047999999999996 - type: nauc_map_at_10_diff1 value: 45.6336 - type: nauc_map_at_20_max value: 36.1327 - type: nauc_map_at_20_std value: 4.3156 - type: nauc_map_at_20_diff1 value: 45.7802 - type: nauc_map_at_100_max value: 36.4952 - type: nauc_map_at_100_std value: 4.9964 - type: nauc_map_at_100_diff1 value: 45.5278 - type: nauc_map_at_1000_max value: 36.3394 - type: nauc_map_at_1000_std value: 5.0168 - type: nauc_map_at_1000_diff1 value: 45.4435 - type: nauc_recall_at_1_max value: 32.5587 - type: nauc_recall_at_1_std value: -2.3119 - type: nauc_recall_at_1_diff1 value: 52.2244 - type: nauc_recall_at_3_max value: 32.2945 - type: nauc_recall_at_3_std value: 3.4591 - type: nauc_recall_at_3_diff1 value: 41.0871 - type: nauc_recall_at_5_max value: 29.422500000000003 - type: nauc_recall_at_5_std value: 5.3527 - type: nauc_recall_at_5_diff1 value: 36.7172 - type: nauc_recall_at_10_max value: 28.7964 - type: nauc_recall_at_10_std value: 10.3203 - type: nauc_recall_at_10_diff1 value: 32.9891 - type: nauc_recall_at_20_max value: 35.9088 - type: nauc_recall_at_20_std value: 17.483999999999998 - type: nauc_recall_at_20_diff1 value: 34.1214 - type: nauc_recall_at_100_max value: 40.5066 - type: nauc_recall_at_100_std value: 36.0042 - type: nauc_recall_at_100_diff1 value: 25.258999999999997 - type: nauc_recall_at_1000_max value: 68.16980000000001 - type: nauc_recall_at_1000_std value: 78.27300000000001 - type: nauc_recall_at_1000_diff1 value: 29.831200000000003 - type: nauc_precision_at_1_max value: 36.5416 - type: nauc_precision_at_1_std value: 1.7398 - type: nauc_precision_at_1_diff1 value: 48.6149 - type: nauc_precision_at_3_max value: 34.5475 - type: nauc_precision_at_3_std value: 10.731300000000001 - type: nauc_precision_at_3_diff1 value: 26.6094 - type: nauc_precision_at_5_max value: 30.966300000000004 - type: nauc_precision_at_5_std value: 15.614700000000001 - type: nauc_precision_at_5_diff1 value: 16.3821 - type: nauc_precision_at_10_max value: 29.3082 - type: nauc_precision_at_10_std value: 22.2006 - type: nauc_precision_at_10_diff1 value: 6.5281 - type: nauc_precision_at_20_max value: 23.1867 - type: nauc_precision_at_20_std value: 21.5112 - type: nauc_precision_at_20_diff1 value: -2.1949 - type: nauc_precision_at_100_max value: 6.6039 - type: nauc_precision_at_100_std value: 14.7147 - type: nauc_precision_at_100_diff1 value: -14.2814 - type: nauc_precision_at_1000_max value: -7.7318 - type: nauc_precision_at_1000_std value: 8.0856 - type: nauc_precision_at_1000_diff1 value: -18.8738 - type: nauc_mrr_at_1_max value: 36.5416 - type: nauc_mrr_at_1_std value: 1.7398 - type: nauc_mrr_at_1_diff1 value: 48.6149 - type: nauc_mrr_at_3_max value: 37.4645 - type: nauc_mrr_at_3_std value: 4.7265 - type: nauc_mrr_at_3_diff1 value: 44.2832 - type: nauc_mrr_at_5_max value: 36.8872 - type: nauc_mrr_at_5_std value: 5.0895 - type: nauc_mrr_at_5_diff1 value: 43.1113 - type: nauc_mrr_at_10_max value: 37.1021 - type: nauc_mrr_at_10_std value: 5.7218 - type: nauc_mrr_at_10_diff1 value: 43.1786 - type: nauc_mrr_at_20_max value: 37.4827 - type: nauc_mrr_at_20_std value: 5.9467 - type: nauc_mrr_at_20_diff1 value: 43.4032 - type: nauc_mrr_at_100_max value: 37.3957 - type: nauc_mrr_at_100_std value: 5.9523 - type: nauc_mrr_at_100_diff1 value: 43.3725 - type: nauc_mrr_at_1000_max value: 37.3968 - type: nauc_mrr_at_1000_std value: 5.9475 - type: nauc_mrr_at_1000_diff1 value: 43.39 - type: main_score value: 47.301 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackWordpressRetrieval (default) revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 split: test type: mteb/cqadupstack-wordpress metrics: - type: ndcg_at_1 value: 25.692999999999998 - type: ndcg_at_3 value: 33.0 - type: ndcg_at_5 value: 35.736000000000004 - type: ndcg_at_10 value: 39.196 - type: ndcg_at_20 value: 40.954 - type: ndcg_at_100 value: 44.501000000000005 - type: ndcg_at_1000 value: 46.482 - type: map_at_1 value: 23.851 - type: map_at_3 value: 30.270999999999997 - type: map_at_5 value: 31.905 - type: map_at_10 value: 33.428999999999995 - type: map_at_20 value: 33.954 - type: map_at_100 value: 34.482 - type: map_at_1000 value: 34.57 - type: recall_at_1 value: 23.851 - type: recall_at_3 value: 38.435 - type: recall_at_5 value: 44.872 - type: recall_at_10 value: 55.035999999999994 - type: recall_at_20 value: 61.529999999999994 - type: recall_at_100 value: 79.592 - type: recall_at_1000 value: 94.283 - type: precision_at_1 value: 25.692999999999998 - type: precision_at_3 value: 14.295 - type: precision_at_5 value: 10.277 - type: precision_at_10 value: 6.433 - type: precision_at_20 value: 3.6510000000000002 - type: precision_at_100 value: 0.989 - type: precision_at_1000 value: 0.128 - type: mrr_at_1 value: 25.6932 - type: mrr_at_3 value: 32.5323 - type: mrr_at_5 value: 34.0203 - type: mrr_at_10 value: 35.383199999999995 - type: mrr_at_20 value: 35.857499999999995 - type: mrr_at_100 value: 36.2947 - type: mrr_at_1000 value: 36.3456 - type: nauc_ndcg_at_1_max value: 26.3546 - type: nauc_ndcg_at_1_std value: -7.4308 - type: nauc_ndcg_at_1_diff1 value: 50.6893 - type: nauc_ndcg_at_3_max value: 22.5597 - type: nauc_ndcg_at_3_std value: -2.8253 - type: nauc_ndcg_at_3_diff1 value: 40.0339 - type: nauc_ndcg_at_5_max value: 23.4927 - type: nauc_ndcg_at_5_std value: -1.8110000000000002 - type: nauc_ndcg_at_5_diff1 value: 39.0747 - type: nauc_ndcg_at_10_max value: 22.7233 - type: nauc_ndcg_at_10_std value: -1.2677 - type: nauc_ndcg_at_10_diff1 value: 38.4587 - type: nauc_ndcg_at_20_max value: 22.9465 - type: nauc_ndcg_at_20_std value: 0.4223 - type: nauc_ndcg_at_20_diff1 value: 38.5424 - type: nauc_ndcg_at_100_max value: 24.7307 - type: nauc_ndcg_at_100_std value: 2.7405 - type: nauc_ndcg_at_100_diff1 value: 40.0211 - type: nauc_ndcg_at_1000_max value: 24.7978 - type: nauc_ndcg_at_1000_std value: 1.6664999999999999 - type: nauc_ndcg_at_1000_diff1 value: 39.629799999999996 - type: nauc_map_at_1_max value: 23.119 - type: nauc_map_at_1_std value: -8.1386 - type: nauc_map_at_1_diff1 value: 50.166999999999994 - type: nauc_map_at_3_max value: 21.9643 - type: nauc_map_at_3_std value: -4.1963 - type: nauc_map_at_3_diff1 value: 42.0253 - type: nauc_map_at_5_max value: 23.0779 - type: nauc_map_at_5_std value: -3.4221000000000004 - type: nauc_map_at_5_diff1 value: 41.6497 - type: nauc_map_at_10_max value: 23.0936 - type: nauc_map_at_10_std value: -3.107 - type: nauc_map_at_10_diff1 value: 41.5032 - type: nauc_map_at_20_max value: 23.2453 - type: nauc_map_at_20_std value: -2.5267999999999997 - type: nauc_map_at_20_diff1 value: 41.5085 - type: nauc_map_at_100_max value: 23.552899999999998 - type: nauc_map_at_100_std value: -2.0514 - type: nauc_map_at_100_diff1 value: 41.686499999999995 - type: nauc_map_at_1000_max value: 23.5502 - type: nauc_map_at_1000_std value: -2.0632 - type: nauc_map_at_1000_diff1 value: 41.634 - type: nauc_recall_at_1_max value: 23.119 - type: nauc_recall_at_1_std value: -8.1386 - type: nauc_recall_at_1_diff1 value: 50.166999999999994 - type: nauc_recall_at_3_max value: 19.128700000000002 - type: nauc_recall_at_3_std value: -1.2884 - type: nauc_recall_at_3_diff1 value: 33.1893 - type: nauc_recall_at_5_max value: 20.7852 - type: nauc_recall_at_5_std value: 0.9754 - type: nauc_recall_at_5_diff1 value: 31.193199999999997 - type: nauc_recall_at_10_max value: 17.5569 - type: nauc_recall_at_10_std value: 2.5935 - type: nauc_recall_at_10_diff1 value: 28.5192 - type: nauc_recall_at_20_max value: 17.4543 - type: nauc_recall_at_20_std value: 8.694799999999999 - type: nauc_recall_at_20_diff1 value: 28.171200000000002 - type: nauc_recall_at_100_max value: 26.873399999999997 - type: nauc_recall_at_100_std value: 29.0878 - type: nauc_recall_at_100_diff1 value: 34.204 - type: nauc_recall_at_1000_max value: 40.9752 - type: nauc_recall_at_1000_std value: 42.8325 - type: nauc_recall_at_1000_diff1 value: 20.0664 - type: nauc_precision_at_1_max value: 26.3546 - type: nauc_precision_at_1_std value: -7.4308 - type: nauc_precision_at_1_diff1 value: 50.6893 - type: nauc_precision_at_3_max value: 25.078699999999998 - type: nauc_precision_at_3_std value: 3.0139 - type: nauc_precision_at_3_diff1 value: 31.566899999999997 - type: nauc_precision_at_5_max value: 29.1348 - type: nauc_precision_at_5_std value: 7.7597 - type: nauc_precision_at_5_diff1 value: 26.599899999999998 - type: nauc_precision_at_10_max value: 27.019 - type: nauc_precision_at_10_std value: 11.0219 - type: nauc_precision_at_10_diff1 value: 20.9546 - type: nauc_precision_at_20_max value: 27.994200000000003 - type: nauc_precision_at_20_std value: 19.3372 - type: nauc_precision_at_20_diff1 value: 17.363400000000002 - type: nauc_precision_at_100_max value: 27.3087 - type: nauc_precision_at_100_std value: 30.3297 - type: nauc_precision_at_100_diff1 value: 6.2596 - type: nauc_precision_at_1000_max value: 9.347800000000001 - type: nauc_precision_at_1000_std value: 20.6006 - type: nauc_precision_at_1000_diff1 value: -20.9861 - type: nauc_mrr_at_1_max value: 26.3546 - type: nauc_mrr_at_1_std value: -7.4308 - type: nauc_mrr_at_1_diff1 value: 50.6893 - type: nauc_mrr_at_3_max value: 25.746799999999997 - type: nauc_mrr_at_3_std value: -2.9107000000000003 - type: nauc_mrr_at_3_diff1 value: 43.0073 - type: nauc_mrr_at_5_max value: 25.956400000000002 - type: nauc_mrr_at_5_std value: -2.3782 - type: nauc_mrr_at_5_diff1 value: 42.2507 - type: nauc_mrr_at_10_max value: 25.2046 - type: nauc_mrr_at_10_std value: -2.3678999999999997 - type: nauc_mrr_at_10_diff1 value: 41.834700000000005 - type: nauc_mrr_at_20_max value: 25.1774 - type: nauc_mrr_at_20_std value: -1.9298 - type: nauc_mrr_at_20_diff1 value: 41.8803 - type: nauc_mrr_at_100_max value: 25.4455 - type: nauc_mrr_at_100_std value: -1.6853 - type: nauc_mrr_at_100_diff1 value: 42.159 - type: nauc_mrr_at_1000_max value: 25.433899999999998 - type: nauc_mrr_at_1000_std value: -1.7311 - type: nauc_mrr_at_1000_diff1 value: 42.159 - type: main_score value: 39.196 task: type: Retrieval - dataset: config: default name: MTEB ClimateFEVER (default) revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 split: test type: mteb/climate-fever metrics: - type: ndcg_at_1 value: 32.573 - type: ndcg_at_3 value: 27.683000000000003 - type: ndcg_at_5 value: 29.537999999999997 - type: ndcg_at_10 value: 33.15 - type: ndcg_at_20 value: 35.564 - type: ndcg_at_100 value: 39.898 - type: ndcg_at_1000 value: 43.151 - type: map_at_1 value: 14.57 - type: map_at_3 value: 20.346 - type: map_at_5 value: 22.228 - type: map_at_10 value: 24.102 - type: map_at_20 value: 24.992 - type: map_at_100 value: 25.826 - type: map_at_1000 value: 26.021 - type: recall_at_1 value: 14.57 - type: recall_at_3 value: 25.245 - type: recall_at_5 value: 30.820999999999998 - type: recall_at_10 value: 38.824999999999996 - type: recall_at_20 value: 45.553 - type: recall_at_100 value: 62.236999999999995 - type: recall_at_1000 value: 80.22 - type: precision_at_1 value: 32.573 - type: precision_at_3 value: 20.347 - type: precision_at_5 value: 15.504999999999999 - type: precision_at_10 value: 10.176 - type: precision_at_20 value: 6.1339999999999995 - type: precision_at_100 value: 1.754 - type: precision_at_1000 value: 0.23600000000000002 - type: mrr_at_1 value: 32.573299999999996 - type: mrr_at_3 value: 41.259499999999996 - type: mrr_at_5 value: 43.3116 - type: mrr_at_10 value: 44.4113 - type: mrr_at_20 value: 44.8728 - type: mrr_at_100 value: 45.1757 - type: mrr_at_1000 value: 45.2086 - type: nauc_ndcg_at_1_max value: 36.065799999999996 - type: nauc_ndcg_at_1_std value: 17.1124 - type: nauc_ndcg_at_1_diff1 value: 27.985 - type: nauc_ndcg_at_3_max value: 36.5467 - type: nauc_ndcg_at_3_std value: 16.403100000000002 - type: nauc_ndcg_at_3_diff1 value: 22.1601 - type: nauc_ndcg_at_5_max value: 37.223099999999995 - type: nauc_ndcg_at_5_std value: 18.767300000000002 - type: nauc_ndcg_at_5_diff1 value: 20.6143 - type: nauc_ndcg_at_10_max value: 36.8331 - type: nauc_ndcg_at_10_std value: 20.8315 - type: nauc_ndcg_at_10_diff1 value: 19.5716 - type: nauc_ndcg_at_20_max value: 36.5592 - type: nauc_ndcg_at_20_std value: 21.4874 - type: nauc_ndcg_at_20_diff1 value: 18.4099 - type: nauc_ndcg_at_100_max value: 35.6711 - type: nauc_ndcg_at_100_std value: 22.4637 - type: nauc_ndcg_at_100_diff1 value: 18.218500000000002 - type: nauc_ndcg_at_1000_max value: 36.209599999999995 - type: nauc_ndcg_at_1000_std value: 23.3913 - type: nauc_ndcg_at_1000_diff1 value: 19.055 - type: nauc_map_at_1_max value: 40.6157 - type: nauc_map_at_1_std value: 13.0776 - type: nauc_map_at_1_diff1 value: 30.4958 - type: nauc_map_at_3_max value: 38.3227 - type: nauc_map_at_3_std value: 14.2807 - type: nauc_map_at_3_diff1 value: 23.7558 - type: nauc_map_at_5_max value: 37.9312 - type: nauc_map_at_5_std value: 16.206899999999997 - type: nauc_map_at_5_diff1 value: 22.4312 - type: nauc_map_at_10_max value: 37.7457 - type: nauc_map_at_10_std value: 17.7945 - type: nauc_map_at_10_diff1 value: 21.607000000000003 - type: nauc_map_at_20_max value: 37.727199999999996 - type: nauc_map_at_20_std value: 18.168100000000003 - type: nauc_map_at_20_diff1 value: 21.1277 - type: nauc_map_at_100_max value: 37.5139 - type: nauc_map_at_100_std value: 18.4244 - type: nauc_map_at_100_diff1 value: 21.082600000000003 - type: nauc_map_at_1000_max value: 37.5088 - type: nauc_map_at_1000_std value: 18.4879 - type: nauc_map_at_1000_diff1 value: 21.1075 - type: nauc_recall_at_1_max value: 40.6157 - type: nauc_recall_at_1_std value: 13.0776 - type: nauc_recall_at_1_diff1 value: 30.4958 - type: nauc_recall_at_3_max value: 34.0823 - type: nauc_recall_at_3_std value: 14.2898 - type: nauc_recall_at_3_diff1 value: 17.8174 - type: nauc_recall_at_5_max value: 33.244099999999996 - type: nauc_recall_at_5_std value: 18.2196 - type: nauc_recall_at_5_diff1 value: 14.2718 - type: nauc_recall_at_10_max value: 30.6448 - type: nauc_recall_at_10_std value: 21.323700000000002 - type: nauc_recall_at_10_diff1 value: 11.6099 - type: nauc_recall_at_20_max value: 28.523 - type: nauc_recall_at_20_std value: 21.9056 - type: nauc_recall_at_20_diff1 value: 8.0707 - type: nauc_recall_at_100_max value: 22.836000000000002 - type: nauc_recall_at_100_std value: 24.8746 - type: nauc_recall_at_100_diff1 value: 5.333600000000001 - type: nauc_recall_at_1000_max value: 26.124000000000002 - type: nauc_recall_at_1000_std value: 35.6489 - type: nauc_recall_at_1000_diff1 value: 8.5269 - type: nauc_precision_at_1_max value: 36.065799999999996 - type: nauc_precision_at_1_std value: 17.1124 - type: nauc_precision_at_1_diff1 value: 27.985 - type: nauc_precision_at_3_max value: 29.9743 - type: nauc_precision_at_3_std value: 19.4935 - type: nauc_precision_at_3_diff1 value: 13.7319 - type: nauc_precision_at_5_max value: 26.3111 - type: nauc_precision_at_5_std value: 23.7512 - type: nauc_precision_at_5_diff1 value: 8.945699999999999 - type: nauc_precision_at_10_max value: 20.5867 - type: nauc_precision_at_10_std value: 24.1781 - type: nauc_precision_at_10_diff1 value: 4.716200000000001 - type: nauc_precision_at_20_max value: 16.9009 - type: nauc_precision_at_20_std value: 23.561799999999998 - type: nauc_precision_at_20_diff1 value: 0.26 - type: nauc_precision_at_100_max value: 5.6875 - type: nauc_precision_at_100_std value: 20.5293 - type: nauc_precision_at_100_diff1 value: -3.4817 - type: nauc_precision_at_1000_max value: -2.25 - type: nauc_precision_at_1000_std value: 17.2366 - type: nauc_precision_at_1000_diff1 value: -4.9703 - type: nauc_mrr_at_1_max value: 36.065799999999996 - type: nauc_mrr_at_1_std value: 17.1124 - type: nauc_mrr_at_1_diff1 value: 27.985 - type: nauc_mrr_at_3_max value: 35.9316 - type: nauc_mrr_at_3_std value: 19.3246 - type: nauc_mrr_at_3_diff1 value: 23.6033 - type: nauc_mrr_at_5_max value: 36.581 - type: nauc_mrr_at_5_std value: 20.3626 - type: nauc_mrr_at_5_diff1 value: 23.1952 - type: nauc_mrr_at_10_max value: 36.5789 - type: nauc_mrr_at_10_std value: 20.6594 - type: nauc_mrr_at_10_diff1 value: 23.3078 - type: nauc_mrr_at_20_max value: 36.4621 - type: nauc_mrr_at_20_std value: 20.5731 - type: nauc_mrr_at_20_diff1 value: 23.253899999999998 - type: nauc_mrr_at_100_max value: 36.3788 - type: nauc_mrr_at_100_std value: 20.5076 - type: nauc_mrr_at_100_diff1 value: 23.1904 - type: nauc_mrr_at_1000_max value: 36.383500000000005 - type: nauc_mrr_at_1000_std value: 20.505399999999998 - type: nauc_mrr_at_1000_diff1 value: 23.2106 - type: main_score value: 33.15 task: type: Retrieval - dataset: config: default name: MTEB CodeFeedbackMT (default) revision: b0f12fa0c0dd67f59c95a5c33d02aeeb4c398c5f split: test type: CoIR-Retrieval/codefeedback-mt metrics: - type: ndcg_at_1 value: 30.270000000000003 - type: ndcg_at_3 value: 37.797 - type: ndcg_at_5 value: 40.147 - type: ndcg_at_10 value: 42.136 - type: ndcg_at_20 value: 43.655 - type: ndcg_at_100 value: 45.95 - type: ndcg_at_1000 value: 47.510999999999996 - type: map_at_1 value: 30.270000000000003 - type: map_at_3 value: 35.949 - type: map_at_5 value: 37.254 - type: map_at_10 value: 38.076 - type: map_at_20 value: 38.492 - type: map_at_100 value: 38.805 - type: map_at_1000 value: 38.858 - type: recall_at_1 value: 30.270000000000003 - type: recall_at_3 value: 43.142 - type: recall_at_5 value: 48.844 - type: recall_at_10 value: 54.99000000000001 - type: recall_at_20 value: 61.007999999999996 - type: recall_at_100 value: 73.443 - type: recall_at_1000 value: 86.066 - type: precision_at_1 value: 30.270000000000003 - type: precision_at_3 value: 14.381 - type: precision_at_5 value: 9.769 - type: precision_at_10 value: 5.499 - type: precision_at_20 value: 3.05 - type: precision_at_100 value: 0.734 - type: precision_at_1000 value: 0.086 - type: mrr_at_1 value: 30.2704 - type: mrr_at_3 value: 35.9494 - type: mrr_at_5 value: 37.2539 - type: mrr_at_10 value: 38.0763 - type: mrr_at_20 value: 38.4916 - type: mrr_at_100 value: 38.8047 - type: mrr_at_1000 value: 38.8578 - type: nauc_ndcg_at_1_max value: 13.1327 - type: nauc_ndcg_at_1_std value: -20.450599999999998 - type: nauc_ndcg_at_1_diff1 value: 53.905800000000006 - type: nauc_ndcg_at_3_max value: 15.181000000000001 - type: nauc_ndcg_at_3_std value: -20.877399999999998 - type: nauc_ndcg_at_3_diff1 value: 49.1269 - type: nauc_ndcg_at_5_max value: 15.7972 - type: nauc_ndcg_at_5_std value: -20.6361 - type: nauc_ndcg_at_5_diff1 value: 47.826800000000006 - type: nauc_ndcg_at_10_max value: 16.4268 - type: nauc_ndcg_at_10_std value: -20.0384 - type: nauc_ndcg_at_10_diff1 value: 47.0914 - type: nauc_ndcg_at_20_max value: 17.1004 - type: nauc_ndcg_at_20_std value: -18.9344 - type: nauc_ndcg_at_20_diff1 value: 46.6149 - type: nauc_ndcg_at_100_max value: 17.6904 - type: nauc_ndcg_at_100_std value: -17.1856 - type: nauc_ndcg_at_100_diff1 value: 46.3637 - type: nauc_ndcg_at_1000_max value: 17.5049 - type: nauc_ndcg_at_1000_std value: -16.7834 - type: nauc_ndcg_at_1000_diff1 value: 46.5672 - type: nauc_map_at_1_max value: 13.1327 - type: nauc_map_at_1_std value: -20.450599999999998 - type: nauc_map_at_1_diff1 value: 53.905800000000006 - type: nauc_map_at_3_max value: 14.723500000000001 - type: nauc_map_at_3_std value: -20.7922 - type: nauc_map_at_3_diff1 value: 50.275000000000006 - type: nauc_map_at_5_max value: 15.061399999999999 - type: nauc_map_at_5_std value: -20.6704 - type: nauc_map_at_5_diff1 value: 49.5612 - type: nauc_map_at_10_max value: 15.292900000000001 - type: nauc_map_at_10_std value: -20.4431 - type: nauc_map_at_10_diff1 value: 49.2676 - type: nauc_map_at_20_max value: 15.4694 - type: nauc_map_at_20_std value: -20.1497 - type: nauc_map_at_20_diff1 value: 49.1538 - type: nauc_map_at_100_max value: 15.5383 - type: nauc_map_at_100_std value: -19.9266 - type: nauc_map_at_100_diff1 value: 49.1303 - type: nauc_map_at_1000_max value: 15.5348 - type: nauc_map_at_1000_std value: -19.9076 - type: nauc_map_at_1000_diff1 value: 49.138799999999996 - type: nauc_recall_at_1_max value: 13.1327 - type: nauc_recall_at_1_std value: -20.450599999999998 - type: nauc_recall_at_1_diff1 value: 53.905800000000006 - type: nauc_recall_at_3_max value: 16.467599999999997 - type: nauc_recall_at_3_std value: -21.1125 - type: nauc_recall_at_3_diff1 value: 45.8636 - type: nauc_recall_at_5_max value: 17.996699999999997 - type: nauc_recall_at_5_std value: -20.4801 - type: nauc_recall_at_5_diff1 value: 42.6329 - type: nauc_recall_at_10_max value: 20.258100000000002 - type: nauc_recall_at_10_std value: -18.4556 - type: nauc_recall_at_10_diff1 value: 39.9989 - type: nauc_recall_at_20_max value: 23.4684 - type: nauc_recall_at_20_std value: -13.5326 - type: nauc_recall_at_20_diff1 value: 37.3551 - type: nauc_recall_at_100_max value: 29.868499999999997 - type: nauc_recall_at_100_std value: 1.2361 - type: nauc_recall_at_100_diff1 value: 32.6178 - type: nauc_recall_at_1000_max value: 34.7721 - type: nauc_recall_at_1000_std value: 21.076700000000002 - type: nauc_recall_at_1000_diff1 value: 26.4002 - type: nauc_precision_at_1_max value: 13.1327 - type: nauc_precision_at_1_std value: -20.450599999999998 - type: nauc_precision_at_1_diff1 value: 53.905800000000006 - type: nauc_precision_at_3_max value: 16.467599999999997 - type: nauc_precision_at_3_std value: -21.1125 - type: nauc_precision_at_3_diff1 value: 45.8636 - type: nauc_precision_at_5_max value: 17.996699999999997 - type: nauc_precision_at_5_std value: -20.4801 - type: nauc_precision_at_5_diff1 value: 42.6329 - type: nauc_precision_at_10_max value: 20.258100000000002 - type: nauc_precision_at_10_std value: -18.4556 - type: nauc_precision_at_10_diff1 value: 39.9989 - type: nauc_precision_at_20_max value: 23.4684 - type: nauc_precision_at_20_std value: -13.5326 - type: nauc_precision_at_20_diff1 value: 37.3551 - type: nauc_precision_at_100_max value: 29.868499999999997 - type: nauc_precision_at_100_std value: 1.2361 - type: nauc_precision_at_100_diff1 value: 32.6178 - type: nauc_precision_at_1000_max value: 34.7721 - type: nauc_precision_at_1000_std value: 21.076700000000002 - type: nauc_precision_at_1000_diff1 value: 26.4002 - type: nauc_mrr_at_1_max value: 13.1327 - type: nauc_mrr_at_1_std value: -20.450599999999998 - type: nauc_mrr_at_1_diff1 value: 53.905800000000006 - type: nauc_mrr_at_3_max value: 14.723500000000001 - type: nauc_mrr_at_3_std value: -20.7922 - type: nauc_mrr_at_3_diff1 value: 50.275000000000006 - type: nauc_mrr_at_5_max value: 15.061399999999999 - type: nauc_mrr_at_5_std value: -20.6704 - type: nauc_mrr_at_5_diff1 value: 49.5612 - type: nauc_mrr_at_10_max value: 15.292900000000001 - type: nauc_mrr_at_10_std value: -20.4431 - type: nauc_mrr_at_10_diff1 value: 49.2676 - type: nauc_mrr_at_20_max value: 15.4694 - type: nauc_mrr_at_20_std value: -20.1497 - type: nauc_mrr_at_20_diff1 value: 49.1538 - type: nauc_mrr_at_100_max value: 15.5383 - type: nauc_mrr_at_100_std value: -19.9266 - type: nauc_mrr_at_100_diff1 value: 49.1303 - type: nauc_mrr_at_1000_max value: 15.5348 - type: nauc_mrr_at_1000_std value: -19.9076 - type: nauc_mrr_at_1000_diff1 value: 49.138799999999996 - type: main_score value: 42.136 task: type: Retrieval - dataset: config: default name: MTEB CodeFeedbackST (default) revision: d213819e87aab9010628da8b73ab4eb337c89340 split: test type: CoIR-Retrieval/codefeedback-st metrics: - type: ndcg_at_1 value: 59.621 - type: ndcg_at_3 value: 71.255 - type: ndcg_at_5 value: 73.71 - type: ndcg_at_10 value: 75.276 - type: ndcg_at_20 value: 76.115 - type: ndcg_at_100 value: 76.91900000000001 - type: ndcg_at_1000 value: 77.172 - type: map_at_1 value: 59.621 - type: map_at_3 value: 68.449 - type: map_at_5 value: 69.817 - type: map_at_10 value: 70.474 - type: map_at_20 value: 70.707 - type: map_at_100 value: 70.82300000000001 - type: map_at_1000 value: 70.833 - type: recall_at_1 value: 59.621 - type: recall_at_3 value: 79.352 - type: recall_at_5 value: 85.28999999999999 - type: recall_at_10 value: 90.079 - type: recall_at_20 value: 93.372 - type: recall_at_100 value: 97.649 - type: recall_at_1000 value: 99.604 - type: precision_at_1 value: 59.621 - type: precision_at_3 value: 26.451 - type: precision_at_5 value: 17.058 - type: precision_at_10 value: 9.008 - type: precision_at_20 value: 4.6690000000000005 - type: precision_at_100 value: 0.976 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 59.5796 - type: mrr_at_3 value: 68.42190000000001 - type: mrr_at_5 value: 69.8065 - type: mrr_at_10 value: 70.4563 - type: mrr_at_20 value: 70.69 - type: mrr_at_100 value: 70.80539999999999 - type: mrr_at_1000 value: 70.8155 - type: nauc_ndcg_at_1_max value: 1.0058 - type: nauc_ndcg_at_1_std value: -28.633999999999997 - type: nauc_ndcg_at_1_diff1 value: 74.2731 - type: nauc_ndcg_at_3_max value: 5.9328 - type: nauc_ndcg_at_3_std value: -33.4034 - type: nauc_ndcg_at_3_diff1 value: 69.0612 - type: nauc_ndcg_at_5_max value: 6.3485 - type: nauc_ndcg_at_5_std value: -33.4167 - type: nauc_ndcg_at_5_diff1 value: 68.9449 - type: nauc_ndcg_at_10_max value: 6.0459 - type: nauc_ndcg_at_10_std value: -32.6233 - type: nauc_ndcg_at_10_diff1 value: 69.0512 - type: nauc_ndcg_at_20_max value: 5.8008 - type: nauc_ndcg_at_20_std value: -32.0714 - type: nauc_ndcg_at_20_diff1 value: 69.5449 - type: nauc_ndcg_at_100_max value: 5.5014 - type: nauc_ndcg_at_100_std value: -31.5492 - type: nauc_ndcg_at_100_diff1 value: 69.9543 - type: nauc_ndcg_at_1000_max value: 5.2358 - type: nauc_ndcg_at_1000_std value: -31.638899999999996 - type: nauc_ndcg_at_1000_diff1 value: 70.0955 - type: nauc_map_at_1_max value: 1.0058 - type: nauc_map_at_1_std value: -28.633999999999997 - type: nauc_map_at_1_diff1 value: 74.2731 - type: nauc_map_at_3_max value: 4.5532 - type: nauc_map_at_3_std value: -32.0989 - type: nauc_map_at_3_diff1 value: 70.47879999999999 - type: nauc_map_at_5_max value: 4.7025 - type: nauc_map_at_5_std value: -32.0494 - type: nauc_map_at_5_diff1 value: 70.4832 - type: nauc_map_at_10_max value: 4.5632 - type: nauc_map_at_10_std value: -31.750899999999998 - type: nauc_map_at_10_diff1 value: 70.556 - type: nauc_map_at_20_max value: 4.4907 - type: nauc_map_at_20_std value: -31.6179 - type: nauc_map_at_20_diff1 value: 70.6865 - type: nauc_map_at_100_max value: 4.4536 - type: nauc_map_at_100_std value: -31.5575 - type: nauc_map_at_100_diff1 value: 70.7379 - type: nauc_map_at_1000_max value: 4.4467 - type: nauc_map_at_1000_std value: -31.557000000000002 - type: nauc_map_at_1000_diff1 value: 70.7424 - type: nauc_recall_at_1_max value: 1.0058 - type: nauc_recall_at_1_std value: -28.633999999999997 - type: nauc_recall_at_1_diff1 value: 74.2731 - type: nauc_recall_at_3_max value: 11.3291 - type: nauc_recall_at_3_std value: -38.4878 - type: nauc_recall_at_3_diff1 value: 63.5405 - type: nauc_recall_at_5_max value: 14.802499999999998 - type: nauc_recall_at_5_std value: -40.3304 - type: nauc_recall_at_5_diff1 value: 61.142300000000006 - type: nauc_recall_at_10_max value: 16.3095 - type: nauc_recall_at_10_std value: -37.9007 - type: nauc_recall_at_10_diff1 value: 58.5604 - type: nauc_recall_at_20_max value: 18.5464 - type: nauc_recall_at_20_std value: -33.8926 - type: nauc_recall_at_20_diff1 value: 59.15709999999999 - type: nauc_recall_at_100_max value: 28.231499999999997 - type: nauc_recall_at_100_std value: -14.0739 - type: nauc_recall_at_100_diff1 value: 58.1862 - type: nauc_recall_at_1000_max value: 35.3579 - type: nauc_recall_at_1000_std value: 27.673 - type: nauc_recall_at_1000_diff1 value: 53.6523 - type: nauc_precision_at_1_max value: 1.0058 - type: nauc_precision_at_1_std value: -28.633999999999997 - type: nauc_precision_at_1_diff1 value: 74.2731 - type: nauc_precision_at_3_max value: 11.3291 - type: nauc_precision_at_3_std value: -38.4878 - type: nauc_precision_at_3_diff1 value: 63.5405 - type: nauc_precision_at_5_max value: 14.802499999999998 - type: nauc_precision_at_5_std value: -40.3304 - type: nauc_precision_at_5_diff1 value: 61.142300000000006 - type: nauc_precision_at_10_max value: 16.3095 - type: nauc_precision_at_10_std value: -37.9007 - type: nauc_precision_at_10_diff1 value: 58.5604 - type: nauc_precision_at_20_max value: 18.5464 - type: nauc_precision_at_20_std value: -33.8926 - type: nauc_precision_at_20_diff1 value: 59.15709999999999 - type: nauc_precision_at_100_max value: 28.231499999999997 - type: nauc_precision_at_100_std value: -14.0739 - type: nauc_precision_at_100_diff1 value: 58.1862 - type: nauc_precision_at_1000_max value: 35.3579 - type: nauc_precision_at_1000_std value: 27.673 - type: nauc_precision_at_1000_diff1 value: 53.6523 - type: nauc_mrr_at_1_max value: 0.4596 - type: nauc_mrr_at_1_std value: -28.4399 - type: nauc_mrr_at_1_diff1 value: 74.32849999999999 - type: nauc_mrr_at_3_max value: 4.2199 - type: nauc_mrr_at_3_std value: -31.9909 - type: nauc_mrr_at_3_diff1 value: 70.5363 - type: nauc_mrr_at_5_max value: 4.3676 - type: nauc_mrr_at_5_std value: -31.947599999999998 - type: nauc_mrr_at_5_diff1 value: 70.5144 - type: nauc_mrr_at_10_max value: 4.2149 - type: nauc_mrr_at_10_std value: -31.647 - type: nauc_mrr_at_10_diff1 value: 70.598 - type: nauc_mrr_at_20_max value: 4.1426 - type: nauc_mrr_at_20_std value: -31.513799999999996 - type: nauc_mrr_at_20_diff1 value: 70.729 - type: nauc_mrr_at_100_max value: 4.104 - type: nauc_mrr_at_100_std value: -31.451800000000002 - type: nauc_mrr_at_100_diff1 value: 70.7809 - type: nauc_mrr_at_1000_max value: 4.0969999999999995 - type: nauc_mrr_at_1000_std value: -31.4513 - type: nauc_mrr_at_1000_diff1 value: 70.78529999999999 - type: main_score value: 75.276 task: type: Retrieval - dataset: config: python name: MTEB CodeSearchNetCCRetrieval (python) revision: 6e1effa2c03723c5fde48ee912b5ee08d4f211e8 split: test type: CoIR-Retrieval/CodeSearchNet-ccr metrics: - type: ndcg_at_1 value: 36.955 - type: ndcg_at_3 value: 46.436 - type: ndcg_at_5 value: 49.055 - type: ndcg_at_10 value: 51.408 - type: ndcg_at_20 value: 52.93600000000001 - type: ndcg_at_100 value: 55.089999999999996 - type: ndcg_at_1000 value: 56.406 - type: map_at_1 value: 36.955 - type: map_at_3 value: 44.112 - type: map_at_5 value: 45.565 - type: map_at_10 value: 46.538000000000004 - type: map_at_20 value: 46.958 - type: map_at_100 value: 47.253 - type: map_at_1000 value: 47.298 - type: recall_at_1 value: 36.955 - type: recall_at_3 value: 53.157 - type: recall_at_5 value: 59.519 - type: recall_at_10 value: 66.78500000000001 - type: recall_at_20 value: 72.82499999999999 - type: recall_at_100 value: 84.482 - type: recall_at_1000 value: 95.06599999999999 - type: precision_at_1 value: 36.955 - type: precision_at_3 value: 17.718999999999998 - type: precision_at_5 value: 11.904 - type: precision_at_10 value: 6.679 - type: precision_at_20 value: 3.641 - type: precision_at_100 value: 0.845 - type: precision_at_1000 value: 0.095 - type: mrr_at_1 value: 36.9487 - type: mrr_at_3 value: 44.1044 - type: mrr_at_5 value: 45.556999999999995 - type: mrr_at_10 value: 46.531 - type: mrr_at_20 value: 46.9517 - type: mrr_at_100 value: 47.246300000000005 - type: mrr_at_1000 value: 47.2918 - type: nauc_ndcg_at_1_max value: 30.887500000000003 - type: nauc_ndcg_at_1_std value: -5.4391 - type: nauc_ndcg_at_1_diff1 value: 53.215199999999996 - type: nauc_ndcg_at_3_max value: 31.4697 - type: nauc_ndcg_at_3_std value: -5.3775 - type: nauc_ndcg_at_3_diff1 value: 48.6991 - type: nauc_ndcg_at_5_max value: 31.4647 - type: nauc_ndcg_at_5_std value: -5.022 - type: nauc_ndcg_at_5_diff1 value: 48.0297 - type: nauc_ndcg_at_10_max value: 31.5139 - type: nauc_ndcg_at_10_std value: -4.3081000000000005 - type: nauc_ndcg_at_10_diff1 value: 47.6012 - type: nauc_ndcg_at_20_max value: 31.4083 - type: nauc_ndcg_at_20_std value: -3.7769999999999997 - type: nauc_ndcg_at_20_diff1 value: 47.4673 - type: nauc_ndcg_at_100_max value: 31.432100000000002 - type: nauc_ndcg_at_100_std value: -3.3629 - type: nauc_ndcg_at_100_diff1 value: 47.5608 - type: nauc_ndcg_at_1000_max value: 31.521500000000003 - type: nauc_ndcg_at_1000_std value: -3.4922 - type: nauc_ndcg_at_1000_diff1 value: 47.997299999999996 - type: nauc_map_at_1_max value: 30.887500000000003 - type: nauc_map_at_1_std value: -5.4391 - type: nauc_map_at_1_diff1 value: 53.215199999999996 - type: nauc_map_at_3_max value: 31.3321 - type: nauc_map_at_3_std value: -5.3912 - type: nauc_map_at_3_diff1 value: 49.7525 - type: nauc_map_at_5_max value: 31.324600000000004 - type: nauc_map_at_5_std value: -5.197100000000001 - type: nauc_map_at_5_diff1 value: 49.4028 - type: nauc_map_at_10_max value: 31.3398 - type: nauc_map_at_10_std value: -4.9248 - type: nauc_map_at_10_diff1 value: 49.2583 - type: nauc_map_at_20_max value: 31.309199999999997 - type: nauc_map_at_20_std value: -4.7903 - type: nauc_map_at_20_diff1 value: 49.2312 - type: nauc_map_at_100_max value: 31.305 - type: nauc_map_at_100_std value: -4.7492 - type: nauc_map_at_100_diff1 value: 49.2452 - type: nauc_map_at_1000_max value: 31.3077 - type: nauc_map_at_1000_std value: -4.7505 - type: nauc_map_at_1000_diff1 value: 49.2596 - type: nauc_recall_at_1_max value: 30.887500000000003 - type: nauc_recall_at_1_std value: -5.4391 - type: nauc_recall_at_1_diff1 value: 53.215199999999996 - type: nauc_recall_at_3_max value: 31.877899999999997 - type: nauc_recall_at_3_std value: -5.3372 - type: nauc_recall_at_3_diff1 value: 45.5796 - type: nauc_recall_at_5_max value: 31.9064 - type: nauc_recall_at_5_std value: -4.4158 - type: nauc_recall_at_5_diff1 value: 43.6238 - type: nauc_recall_at_10_max value: 32.1625 - type: nauc_recall_at_10_std value: -1.6879000000000002 - type: nauc_recall_at_10_diff1 value: 41.4155 - type: nauc_recall_at_20_max value: 31.7318 - type: nauc_recall_at_20_std value: 1.4794 - type: nauc_recall_at_20_diff1 value: 39.7822 - type: nauc_recall_at_100_max value: 32.399899999999995 - type: nauc_recall_at_100_std value: 9.331299999999999 - type: nauc_recall_at_100_diff1 value: 36.4089 - type: nauc_recall_at_1000_max value: 38.488299999999995 - type: nauc_recall_at_1000_std value: 26.7544 - type: nauc_recall_at_1000_diff1 value: 34.8223 - type: nauc_precision_at_1_max value: 30.887500000000003 - type: nauc_precision_at_1_std value: -5.4391 - type: nauc_precision_at_1_diff1 value: 53.215199999999996 - type: nauc_precision_at_3_max value: 31.877899999999997 - type: nauc_precision_at_3_std value: -5.3372 - type: nauc_precision_at_3_diff1 value: 45.5796 - type: nauc_precision_at_5_max value: 31.9064 - type: nauc_precision_at_5_std value: -4.4158 - type: nauc_precision_at_5_diff1 value: 43.6238 - type: nauc_precision_at_10_max value: 32.1625 - type: nauc_precision_at_10_std value: -1.6879000000000002 - type: nauc_precision_at_10_diff1 value: 41.4155 - type: nauc_precision_at_20_max value: 31.7318 - type: nauc_precision_at_20_std value: 1.4794 - type: nauc_precision_at_20_diff1 value: 39.7822 - type: nauc_precision_at_100_max value: 32.399899999999995 - type: nauc_precision_at_100_std value: 9.331299999999999 - type: nauc_precision_at_100_diff1 value: 36.4089 - type: nauc_precision_at_1000_max value: 38.488299999999995 - type: nauc_precision_at_1000_std value: 26.7544 - type: nauc_precision_at_1000_diff1 value: 34.8223 - type: nauc_mrr_at_1_max value: 30.950899999999997 - type: nauc_mrr_at_1_std value: -5.4719 - type: nauc_mrr_at_1_diff1 value: 53.235699999999994 - type: nauc_mrr_at_3_max value: 31.374000000000002 - type: nauc_mrr_at_3_std value: -5.4241 - type: nauc_mrr_at_3_diff1 value: 49.7741 - type: nauc_mrr_at_5_max value: 31.3677 - type: nauc_mrr_at_5_std value: -5.2233 - type: nauc_mrr_at_5_diff1 value: 49.4223 - type: nauc_mrr_at_10_max value: 31.3811 - type: nauc_mrr_at_10_std value: -4.952100000000001 - type: nauc_mrr_at_10_diff1 value: 49.2782 - type: nauc_mrr_at_20_max value: 31.3498 - type: nauc_mrr_at_20_std value: -4.8186 - type: nauc_mrr_at_20_diff1 value: 49.2501 - type: nauc_mrr_at_100_max value: 31.3459 - type: nauc_mrr_at_100_std value: -4.7777 - type: nauc_mrr_at_100_diff1 value: 49.2643 - type: nauc_mrr_at_1000_max value: 31.3487 - type: nauc_mrr_at_1000_std value: -4.779 - type: nauc_mrr_at_1000_diff1 value: 49.2787 - type: main_score value: 51.408 task: type: Retrieval - dataset: config: javascript name: MTEB CodeSearchNetCCRetrieval (javascript) revision: 6e1effa2c03723c5fde48ee912b5ee08d4f211e8 split: test type: CoIR-Retrieval/CodeSearchNet-ccr metrics: - type: ndcg_at_1 value: 38.833 - type: ndcg_at_3 value: 47.698 - type: ndcg_at_5 value: 49.964999999999996 - type: ndcg_at_10 value: 52.035 - type: ndcg_at_20 value: 53.49 - type: ndcg_at_100 value: 55.696999999999996 - type: ndcg_at_1000 value: 57.037000000000006 - type: map_at_1 value: 38.833 - type: map_at_3 value: 45.559 - type: map_at_5 value: 46.817 - type: map_at_10 value: 47.675 - type: map_at_20 value: 48.079 - type: map_at_100 value: 48.375 - type: map_at_1000 value: 48.42 - type: recall_at_1 value: 38.833 - type: recall_at_3 value: 53.874 - type: recall_at_5 value: 59.374 - type: recall_at_10 value: 65.755 - type: recall_at_20 value: 71.468 - type: recall_at_100 value: 83.5 - type: recall_at_1000 value: 94.348 - type: precision_at_1 value: 38.833 - type: precision_at_3 value: 17.958 - type: precision_at_5 value: 11.875 - type: precision_at_10 value: 6.576 - type: precision_at_20 value: 3.573 - type: precision_at_100 value: 0.835 - type: precision_at_1000 value: 0.094 - type: mrr_at_1 value: 38.8332 - type: mrr_at_3 value: 45.5485 - type: mrr_at_5 value: 46.814 - type: mrr_at_10 value: 47.6716 - type: mrr_at_20 value: 48.0761 - type: mrr_at_100 value: 48.3716 - type: mrr_at_1000 value: 48.4167 - type: nauc_ndcg_at_1_max value: 26.1449 - type: nauc_ndcg_at_1_std value: -10.991299999999999 - type: nauc_ndcg_at_1_diff1 value: 55.970299999999995 - type: nauc_ndcg_at_3_max value: 29.7447 - type: nauc_ndcg_at_3_std value: -9.610299999999999 - type: nauc_ndcg_at_3_diff1 value: 52.031499999999994 - type: nauc_ndcg_at_5_max value: 29.1562 - type: nauc_ndcg_at_5_std value: -9.288499999999999 - type: nauc_ndcg_at_5_diff1 value: 50.8454 - type: nauc_ndcg_at_10_max value: 28.1795 - type: nauc_ndcg_at_10_std value: -9.5992 - type: nauc_ndcg_at_10_diff1 value: 50.6937 - type: nauc_ndcg_at_20_max value: 27.8613 - type: nauc_ndcg_at_20_std value: -9.425500000000001 - type: nauc_ndcg_at_20_diff1 value: 50.5688 - type: nauc_ndcg_at_100_max value: 27.9792 - type: nauc_ndcg_at_100_std value: -8.792300000000001 - type: nauc_ndcg_at_100_diff1 value: 50.868500000000004 - type: nauc_ndcg_at_1000_max value: 28.0666 - type: nauc_ndcg_at_1000_std value: -8.928899999999999 - type: nauc_ndcg_at_1000_diff1 value: 51.1663 - type: nauc_map_at_1_max value: 26.1449 - type: nauc_map_at_1_std value: -10.991299999999999 - type: nauc_map_at_1_diff1 value: 55.970299999999995 - type: nauc_map_at_3_max value: 28.921799999999998 - type: nauc_map_at_3_std value: -9.9782 - type: nauc_map_at_3_diff1 value: 52.965700000000005 - type: nauc_map_at_5_max value: 28.575899999999997 - type: nauc_map_at_5_std value: -9.822799999999999 - type: nauc_map_at_5_diff1 value: 52.32790000000001 - type: nauc_map_at_10_max value: 28.1738 - type: nauc_map_at_10_std value: -9.933300000000001 - type: nauc_map_at_10_diff1 value: 52.26690000000001 - type: nauc_map_at_20_max value: 28.0844 - type: nauc_map_at_20_std value: -9.8925 - type: nauc_map_at_20_diff1 value: 52.2407 - type: nauc_map_at_100_max value: 28.0938 - type: nauc_map_at_100_std value: -9.8258 - type: nauc_map_at_100_diff1 value: 52.2776 - type: nauc_map_at_1000_max value: 28.092299999999998 - type: nauc_map_at_1000_std value: -9.832 - type: nauc_map_at_1000_diff1 value: 52.2874 - type: nauc_recall_at_1_max value: 26.1449 - type: nauc_recall_at_1_std value: -10.991299999999999 - type: nauc_recall_at_1_diff1 value: 55.970299999999995 - type: nauc_recall_at_3_max value: 32.1929 - type: nauc_recall_at_3_std value: -8.491200000000001 - type: nauc_recall_at_3_diff1 value: 49.2364 - type: nauc_recall_at_5_max value: 30.8852 - type: nauc_recall_at_5_std value: -7.518700000000001 - type: nauc_recall_at_5_diff1 value: 46.004400000000004 - type: nauc_recall_at_10_max value: 27.6397 - type: nauc_recall_at_10_std value: -8.5506 - type: nauc_recall_at_10_diff1 value: 45.012299999999996 - type: nauc_recall_at_20_max value: 26.026300000000003 - type: nauc_recall_at_20_std value: -7.5049 - type: nauc_recall_at_20_diff1 value: 43.6556 - type: nauc_recall_at_100_max value: 26.3742 - type: nauc_recall_at_100_std value: 0.46940000000000004 - type: nauc_recall_at_100_diff1 value: 43.1361 - type: nauc_recall_at_1000_max value: 28.3536 - type: nauc_recall_at_1000_std value: 11.2799 - type: nauc_recall_at_1000_diff1 value: 41.8369 - type: nauc_precision_at_1_max value: 26.1449 - type: nauc_precision_at_1_std value: -10.991299999999999 - type: nauc_precision_at_1_diff1 value: 55.970299999999995 - type: nauc_precision_at_3_max value: 32.1929 - type: nauc_precision_at_3_std value: -8.491200000000001 - type: nauc_precision_at_3_diff1 value: 49.2364 - type: nauc_precision_at_5_max value: 30.8852 - type: nauc_precision_at_5_std value: -7.518700000000001 - type: nauc_precision_at_5_diff1 value: 46.004400000000004 - type: nauc_precision_at_10_max value: 27.6397 - type: nauc_precision_at_10_std value: -8.5506 - type: nauc_precision_at_10_diff1 value: 45.012299999999996 - type: nauc_precision_at_20_max value: 26.026300000000003 - type: nauc_precision_at_20_std value: -7.5049 - type: nauc_precision_at_20_diff1 value: 43.6556 - type: nauc_precision_at_100_max value: 26.3742 - type: nauc_precision_at_100_std value: 0.46940000000000004 - type: nauc_precision_at_100_diff1 value: 43.1361 - type: nauc_precision_at_1000_max value: 28.3536 - type: nauc_precision_at_1000_std value: 11.2799 - type: nauc_precision_at_1000_diff1 value: 41.8369 - type: nauc_mrr_at_1_max value: 26.1449 - type: nauc_mrr_at_1_std value: -10.991299999999999 - type: nauc_mrr_at_1_diff1 value: 55.970299999999995 - type: nauc_mrr_at_3_max value: 28.9026 - type: nauc_mrr_at_3_std value: -10.0274 - type: nauc_mrr_at_3_diff1 value: 52.9705 - type: nauc_mrr_at_5_max value: 28.571 - type: nauc_mrr_at_5_std value: -9.8353 - type: nauc_mrr_at_5_diff1 value: 52.3292 - type: nauc_mrr_at_10_max value: 28.169300000000003 - type: nauc_mrr_at_10_std value: -9.945500000000001 - type: nauc_mrr_at_10_diff1 value: 52.2672 - type: nauc_mrr_at_20_max value: 28.079900000000002 - type: nauc_mrr_at_20_std value: -9.9048 - type: nauc_mrr_at_20_diff1 value: 52.24100000000001 - type: nauc_mrr_at_100_max value: 28.0893 - type: nauc_mrr_at_100_std value: -9.8382 - type: nauc_mrr_at_100_diff1 value: 52.2779 - type: nauc_mrr_at_1000_max value: 28.0878 - type: nauc_mrr_at_1000_std value: -9.8445 - type: nauc_mrr_at_1000_diff1 value: 52.2877 - type: main_score value: 52.035 task: type: Retrieval - dataset: config: go name: MTEB CodeSearchNetCCRetrieval (go) revision: 6e1effa2c03723c5fde48ee912b5ee08d4f211e8 split: test type: CoIR-Retrieval/CodeSearchNet-ccr metrics: - type: ndcg_at_1 value: 27.259 - type: ndcg_at_3 value: 34.537 - type: ndcg_at_5 value: 36.658 - type: ndcg_at_10 value: 38.749 - type: ndcg_at_20 value: 40.439 - type: ndcg_at_100 value: 43.021 - type: ndcg_at_1000 value: 44.909 - type: map_at_1 value: 27.259 - type: map_at_3 value: 32.738 - type: map_at_5 value: 33.916000000000004 - type: map_at_10 value: 34.787 - type: map_at_20 value: 35.253 - type: map_at_100 value: 35.597 - type: map_at_1000 value: 35.66 - type: recall_at_1 value: 27.259 - type: recall_at_3 value: 39.744 - type: recall_at_5 value: 44.89 - type: recall_at_10 value: 51.317 - type: recall_at_20 value: 57.99100000000001 - type: recall_at_100 value: 72.088 - type: recall_at_1000 value: 87.368 - type: precision_at_1 value: 27.259 - type: precision_at_3 value: 13.248 - type: precision_at_5 value: 8.978 - type: precision_at_10 value: 5.132 - type: precision_at_20 value: 2.9000000000000004 - type: precision_at_100 value: 0.721 - type: precision_at_1000 value: 0.087 - type: mrr_at_1 value: 27.247 - type: mrr_at_3 value: 32.73 - type: mrr_at_5 value: 33.9188 - type: mrr_at_10 value: 34.7795 - type: mrr_at_20 value: 35.2462 - type: mrr_at_100 value: 35.5904 - type: mrr_at_1000 value: 35.654 - type: nauc_ndcg_at_1_max value: 26.4086 - type: nauc_ndcg_at_1_std value: -2.9711000000000003 - type: nauc_ndcg_at_1_diff1 value: 51.946099999999994 - type: nauc_ndcg_at_3_max value: 25.4155 - type: nauc_ndcg_at_3_std value: -2.8535999999999997 - type: nauc_ndcg_at_3_diff1 value: 46.7669 - type: nauc_ndcg_at_5_max value: 25.0238 - type: nauc_ndcg_at_5_std value: -2.5973 - type: nauc_ndcg_at_5_diff1 value: 46.2719 - type: nauc_ndcg_at_10_max value: 24.3719 - type: nauc_ndcg_at_10_std value: -2.4239 - type: nauc_ndcg_at_10_diff1 value: 45.5531 - type: nauc_ndcg_at_20_max value: 24.2915 - type: nauc_ndcg_at_20_std value: -2.0365 - type: nauc_ndcg_at_20_diff1 value: 45.290200000000006 - type: nauc_ndcg_at_100_max value: 23.9849 - type: nauc_ndcg_at_100_std value: -1.1925 - type: nauc_ndcg_at_100_diff1 value: 45.1382 - type: nauc_ndcg_at_1000_max value: 24.3502 - type: nauc_ndcg_at_1000_std value: -0.7086 - type: nauc_ndcg_at_1000_diff1 value: 45.550200000000004 - type: nauc_map_at_1_max value: 26.4086 - type: nauc_map_at_1_std value: -2.9711000000000003 - type: nauc_map_at_1_diff1 value: 51.946099999999994 - type: nauc_map_at_3_max value: 25.6581 - type: nauc_map_at_3_std value: -2.8928 - type: nauc_map_at_3_diff1 value: 47.9103 - type: nauc_map_at_5_max value: 25.438699999999997 - type: nauc_map_at_5_std value: -2.759 - type: nauc_map_at_5_diff1 value: 47.6395 - type: nauc_map_at_10_max value: 25.167299999999997 - type: nauc_map_at_10_std value: -2.6864 - type: nauc_map_at_10_diff1 value: 47.335100000000004 - type: nauc_map_at_20_max value: 25.1492 - type: nauc_map_at_20_std value: -2.5978000000000003 - type: nauc_map_at_20_diff1 value: 47.2833 - type: nauc_map_at_100_max value: 25.094499999999996 - type: nauc_map_at_100_std value: -2.5058000000000002 - type: nauc_map_at_100_diff1 value: 47.2631 - type: nauc_map_at_1000_max value: 25.105100000000004 - type: nauc_map_at_1000_std value: -2.4873 - type: nauc_map_at_1000_diff1 value: 47.279900000000005 - type: nauc_recall_at_1_max value: 26.4086 - type: nauc_recall_at_1_std value: -2.9711000000000003 - type: nauc_recall_at_1_diff1 value: 51.946099999999994 - type: nauc_recall_at_3_max value: 24.743499999999997 - type: nauc_recall_at_3_std value: -2.7411000000000003 - type: nauc_recall_at_3_diff1 value: 43.6461 - type: nauc_recall_at_5_max value: 23.8105 - type: nauc_recall_at_5_std value: -2.0951 - type: nauc_recall_at_5_diff1 value: 42.4182 - type: nauc_recall_at_10_max value: 21.7867 - type: nauc_recall_at_10_std value: -1.5507 - type: nauc_recall_at_10_diff1 value: 40.1507 - type: nauc_recall_at_20_max value: 21.264 - type: nauc_recall_at_20_std value: 0.2463 - type: nauc_recall_at_20_diff1 value: 38.5714 - type: nauc_recall_at_100_max value: 18.4525 - type: nauc_recall_at_100_std value: 7.3066 - type: nauc_recall_at_100_diff1 value: 35.585 - type: nauc_recall_at_1000_max value: 20.769299999999998 - type: nauc_recall_at_1000_std value: 24.6752 - type: nauc_recall_at_1000_diff1 value: 34.4382 - type: nauc_precision_at_1_max value: 26.4086 - type: nauc_precision_at_1_std value: -2.9711000000000003 - type: nauc_precision_at_1_diff1 value: 51.946099999999994 - type: nauc_precision_at_3_max value: 24.743499999999997 - type: nauc_precision_at_3_std value: -2.7411000000000003 - type: nauc_precision_at_3_diff1 value: 43.6461 - type: nauc_precision_at_5_max value: 23.8105 - type: nauc_precision_at_5_std value: -2.0951 - type: nauc_precision_at_5_diff1 value: 42.4182 - type: nauc_precision_at_10_max value: 21.7867 - type: nauc_precision_at_10_std value: -1.5507 - type: nauc_precision_at_10_diff1 value: 40.1507 - type: nauc_precision_at_20_max value: 21.264 - type: nauc_precision_at_20_std value: 0.2463 - type: nauc_precision_at_20_diff1 value: 38.5714 - type: nauc_precision_at_100_max value: 18.4525 - type: nauc_precision_at_100_std value: 7.3066 - type: nauc_precision_at_100_diff1 value: 35.585 - type: nauc_precision_at_1000_max value: 20.769299999999998 - type: nauc_precision_at_1000_std value: 24.6752 - type: nauc_precision_at_1000_diff1 value: 34.4382 - type: nauc_mrr_at_1_max value: 26.4631 - type: nauc_mrr_at_1_std value: -2.9343999999999997 - type: nauc_mrr_at_1_diff1 value: 51.9943 - type: nauc_mrr_at_3_max value: 25.695 - type: nauc_mrr_at_3_std value: -2.8865 - type: nauc_mrr_at_3_diff1 value: 47.948299999999996 - type: nauc_mrr_at_5_max value: 25.461 - type: nauc_mrr_at_5_std value: -2.7289999999999996 - type: nauc_mrr_at_5_diff1 value: 47.6623 - type: nauc_mrr_at_10_max value: 25.1963 - type: nauc_mrr_at_10_std value: -2.6818999999999997 - type: nauc_mrr_at_10_diff1 value: 47.374500000000005 - type: nauc_mrr_at_20_max value: 25.178800000000003 - type: nauc_mrr_at_20_std value: -2.5887000000000002 - type: nauc_mrr_at_20_diff1 value: 47.3199 - type: nauc_mrr_at_100_max value: 25.1241 - type: nauc_mrr_at_100_std value: -2.4967 - type: nauc_mrr_at_100_diff1 value: 47.2999 - type: nauc_mrr_at_1000_max value: 25.134800000000002 - type: nauc_mrr_at_1000_std value: -2.4783 - type: nauc_mrr_at_1000_diff1 value: 47.3167 - type: main_score value: 38.749 task: type: Retrieval - dataset: config: ruby name: MTEB CodeSearchNetCCRetrieval (ruby) revision: 6e1effa2c03723c5fde48ee912b5ee08d4f211e8 split: test type: CoIR-Retrieval/CodeSearchNet-ccr metrics: - type: ndcg_at_1 value: 40.92 - type: ndcg_at_3 value: 49.364999999999995 - type: ndcg_at_5 value: 51.654999999999994 - type: ndcg_at_10 value: 53.169999999999995 - type: ndcg_at_20 value: 54.64 - type: ndcg_at_100 value: 56.974000000000004 - type: ndcg_at_1000 value: 58.306999999999995 - type: map_at_1 value: 40.92 - type: map_at_3 value: 47.343 - type: map_at_5 value: 48.616 - type: map_at_10 value: 49.242000000000004 - type: map_at_20 value: 49.647999999999996 - type: map_at_100 value: 49.97 - type: map_at_1000 value: 50.017999999999994 - type: recall_at_1 value: 40.92 - type: recall_at_3 value: 55.193999999999996 - type: recall_at_5 value: 60.745000000000005 - type: recall_at_10 value: 65.424 - type: recall_at_20 value: 71.21300000000001 - type: recall_at_100 value: 83.822 - type: recall_at_1000 value: 94.44900000000001 - type: precision_at_1 value: 40.92 - type: precision_at_3 value: 18.398 - type: precision_at_5 value: 12.149000000000001 - type: precision_at_10 value: 6.542000000000001 - type: precision_at_20 value: 3.5610000000000004 - type: precision_at_100 value: 0.8380000000000001 - type: precision_at_1000 value: 0.094 - type: mrr_at_1 value: 40.9199 - type: mrr_at_3 value: 47.3434 - type: mrr_at_5 value: 48.6162 - type: mrr_at_10 value: 49.2421 - type: mrr_at_20 value: 49.6524 - type: mrr_at_100 value: 49.9694 - type: mrr_at_1000 value: 50.017999999999994 - type: nauc_ndcg_at_1_max value: 28.5367 - type: nauc_ndcg_at_1_std value: -8.2024 - type: nauc_ndcg_at_1_diff1 value: 59.920399999999994 - type: nauc_ndcg_at_3_max value: 29.583399999999997 - type: nauc_ndcg_at_3_std value: -10.276499999999999 - type: nauc_ndcg_at_3_diff1 value: 53.3108 - type: nauc_ndcg_at_5_max value: 29.124299999999998 - type: nauc_ndcg_at_5_std value: -9.9282 - type: nauc_ndcg_at_5_diff1 value: 53.1591 - type: nauc_ndcg_at_10_max value: 28.778599999999997 - type: nauc_ndcg_at_10_std value: -10.319799999999999 - type: nauc_ndcg_at_10_diff1 value: 53.244499999999995 - type: nauc_ndcg_at_20_max value: 28.8719 - type: nauc_ndcg_at_20_std value: -9.7272 - type: nauc_ndcg_at_20_diff1 value: 53.3575 - type: nauc_ndcg_at_100_max value: 28.8624 - type: nauc_ndcg_at_100_std value: -9.3621 - type: nauc_ndcg_at_100_diff1 value: 53.322599999999994 - type: nauc_ndcg_at_1000_max value: 28.876400000000004 - type: nauc_ndcg_at_1000_std value: -9.3757 - type: nauc_ndcg_at_1000_diff1 value: 53.5029 - type: nauc_map_at_1_max value: 28.5367 - type: nauc_map_at_1_std value: -8.2024 - type: nauc_map_at_1_diff1 value: 59.920399999999994 - type: nauc_map_at_3_max value: 29.373500000000003 - type: nauc_map_at_3_std value: -9.7647 - type: nauc_map_at_3_diff1 value: 54.8768 - type: nauc_map_at_5_max value: 29.1429 - type: nauc_map_at_5_std value: -9.5913 - type: nauc_map_at_5_diff1 value: 54.8183 - type: nauc_map_at_10_max value: 29.0079 - type: nauc_map_at_10_std value: -9.7633 - type: nauc_map_at_10_diff1 value: 54.87180000000001 - type: nauc_map_at_20_max value: 29.004 - type: nauc_map_at_20_std value: -9.609399999999999 - type: nauc_map_at_20_diff1 value: 54.8733 - type: nauc_map_at_100_max value: 28.961100000000002 - type: nauc_map_at_100_std value: -9.586500000000001 - type: nauc_map_at_100_diff1 value: 54.85719999999999 - type: nauc_map_at_1000_max value: 28.957 - type: nauc_map_at_1000_std value: -9.5861 - type: nauc_map_at_1000_diff1 value: 54.8685 - type: nauc_recall_at_1_max value: 28.5367 - type: nauc_recall_at_1_std value: -8.2024 - type: nauc_recall_at_1_diff1 value: 59.920399999999994 - type: nauc_recall_at_3_max value: 30.198900000000002 - type: nauc_recall_at_3_std value: -11.8281 - type: nauc_recall_at_3_diff1 value: 48.5911 - type: nauc_recall_at_5_max value: 28.938000000000002 - type: nauc_recall_at_5_std value: -10.9165 - type: nauc_recall_at_5_diff1 value: 47.8612 - type: nauc_recall_at_10_max value: 27.6793 - type: nauc_recall_at_10_std value: -12.281400000000001 - type: nauc_recall_at_10_diff1 value: 47.665400000000005 - type: nauc_recall_at_20_max value: 28.2941 - type: nauc_recall_at_20_std value: -9.5387 - type: nauc_recall_at_20_diff1 value: 47.875 - type: nauc_recall_at_100_max value: 29.1692 - type: nauc_recall_at_100_std value: -4.8877999999999995 - type: nauc_recall_at_100_diff1 value: 44.8146 - type: nauc_recall_at_1000_max value: 32.1351 - type: nauc_recall_at_1000_std value: 2.178 - type: nauc_recall_at_1000_diff1 value: 35.842600000000004 - type: nauc_precision_at_1_max value: 28.5367 - type: nauc_precision_at_1_std value: -8.2024 - type: nauc_precision_at_1_diff1 value: 59.920399999999994 - type: nauc_precision_at_3_max value: 30.198900000000002 - type: nauc_precision_at_3_std value: -11.8281 - type: nauc_precision_at_3_diff1 value: 48.5911 - type: nauc_precision_at_5_max value: 28.938000000000002 - type: nauc_precision_at_5_std value: -10.9165 - type: nauc_precision_at_5_diff1 value: 47.8612 - type: nauc_precision_at_10_max value: 27.6793 - type: nauc_precision_at_10_std value: -12.281400000000001 - type: nauc_precision_at_10_diff1 value: 47.665400000000005 - type: nauc_precision_at_20_max value: 28.2941 - type: nauc_precision_at_20_std value: -9.5387 - type: nauc_precision_at_20_diff1 value: 47.875 - type: nauc_precision_at_100_max value: 29.1692 - type: nauc_precision_at_100_std value: -4.8877999999999995 - type: nauc_precision_at_100_diff1 value: 44.8146 - type: nauc_precision_at_1000_max value: 32.1351 - type: nauc_precision_at_1000_std value: 2.178 - type: nauc_precision_at_1000_diff1 value: 35.842600000000004 - type: nauc_mrr_at_1_max value: 28.6205 - type: nauc_mrr_at_1_std value: -8.180900000000001 - type: nauc_mrr_at_1_diff1 value: 59.920399999999994 - type: nauc_mrr_at_3_max value: 29.416900000000002 - type: nauc_mrr_at_3_std value: -9.7536 - type: nauc_mrr_at_3_diff1 value: 54.8768 - type: nauc_mrr_at_5_max value: 29.187 - type: nauc_mrr_at_5_std value: -9.58 - type: nauc_mrr_at_5_diff1 value: 54.8183 - type: nauc_mrr_at_10_max value: 29.0523 - type: nauc_mrr_at_10_std value: -9.7519 - type: nauc_mrr_at_10_diff1 value: 54.87180000000001 - type: nauc_mrr_at_20_max value: 29.0395 - type: nauc_mrr_at_20_std value: -9.5921 - type: nauc_mrr_at_20_diff1 value: 54.8737 - type: nauc_mrr_at_100_max value: 29.0069 - type: nauc_mrr_at_100_std value: -9.5772 - type: nauc_mrr_at_100_diff1 value: 54.8585 - type: nauc_mrr_at_1000_max value: 29.0016 - type: nauc_mrr_at_1000_std value: -9.574399999999999 - type: nauc_mrr_at_1000_diff1 value: 54.8686 - type: main_score value: 53.169999999999995 task: type: Retrieval - dataset: config: java name: MTEB CodeSearchNetCCRetrieval (java) revision: 6e1effa2c03723c5fde48ee912b5ee08d4f211e8 split: test type: CoIR-Retrieval/CodeSearchNet-ccr metrics: - type: ndcg_at_1 value: 38.01 - type: ndcg_at_3 value: 46.611999999999995 - type: ndcg_at_5 value: 48.644999999999996 - type: ndcg_at_10 value: 50.722 - type: ndcg_at_20 value: 52.168000000000006 - type: ndcg_at_100 value: 54.284 - type: ndcg_at_1000 value: 55.64 - type: map_at_1 value: 38.01 - type: map_at_3 value: 44.529 - type: map_at_5 value: 45.657 - type: map_at_10 value: 46.522999999999996 - type: map_at_20 value: 46.921 - type: map_at_100 value: 47.21 - type: map_at_1000 value: 47.257 - type: recall_at_1 value: 38.01 - type: recall_at_3 value: 52.624 - type: recall_at_5 value: 57.562999999999995 - type: recall_at_10 value: 63.943000000000005 - type: recall_at_20 value: 69.649 - type: recall_at_100 value: 81.114 - type: recall_at_1000 value: 92.03099999999999 - type: precision_at_1 value: 38.01 - type: precision_at_3 value: 17.541 - type: precision_at_5 value: 11.513 - type: precision_at_10 value: 6.394 - type: precision_at_20 value: 3.4819999999999998 - type: precision_at_100 value: 0.8109999999999999 - type: precision_at_1000 value: 0.092 - type: mrr_at_1 value: 38.0739 - type: mrr_at_3 value: 44.5626 - type: mrr_at_5 value: 45.6863 - type: mrr_at_10 value: 46.5541 - type: mrr_at_20 value: 46.9528 - type: mrr_at_100 value: 47.2419 - type: mrr_at_1000 value: 47.2883 - type: nauc_ndcg_at_1_max value: 29.1715 - type: nauc_ndcg_at_1_std value: -8.383799999999999 - type: nauc_ndcg_at_1_diff1 value: 56.6392 - type: nauc_ndcg_at_3_max value: 31.600499999999997 - type: nauc_ndcg_at_3_std value: -6.8286 - type: nauc_ndcg_at_3_diff1 value: 51.9436 - type: nauc_ndcg_at_5_max value: 31.446099999999998 - type: nauc_ndcg_at_5_std value: -6.3155 - type: nauc_ndcg_at_5_diff1 value: 51.4265 - type: nauc_ndcg_at_10_max value: 31.484 - type: nauc_ndcg_at_10_std value: -5.7347 - type: nauc_ndcg_at_10_diff1 value: 51.254 - type: nauc_ndcg_at_20_max value: 31.5004 - type: nauc_ndcg_at_20_std value: -5.141 - type: nauc_ndcg_at_20_diff1 value: 50.8621 - type: nauc_ndcg_at_100_max value: 31.4661 - type: nauc_ndcg_at_100_std value: -4.9658 - type: nauc_ndcg_at_100_diff1 value: 50.9602 - type: nauc_ndcg_at_1000_max value: 31.544299999999996 - type: nauc_ndcg_at_1000_std value: -5.0944 - type: nauc_ndcg_at_1000_diff1 value: 51.29559999999999 - type: nauc_map_at_1_max value: 29.1715 - type: nauc_map_at_1_std value: -8.383799999999999 - type: nauc_map_at_1_diff1 value: 56.6392 - type: nauc_map_at_3_max value: 31.0216 - type: nauc_map_at_3_std value: -7.2461 - type: nauc_map_at_3_diff1 value: 53.0413 - type: nauc_map_at_5_max value: 30.944300000000002 - type: nauc_map_at_5_std value: -6.9658999999999995 - type: nauc_map_at_5_diff1 value: 52.7782 - type: nauc_map_at_10_max value: 30.9525 - type: nauc_map_at_10_std value: -6.7453 - type: nauc_map_at_10_diff1 value: 52.7226 - type: nauc_map_at_20_max value: 30.9542 - type: nauc_map_at_20_std value: -6.5941 - type: nauc_map_at_20_diff1 value: 52.6293 - type: nauc_map_at_100_max value: 30.9493 - type: nauc_map_at_100_std value: -6.5776 - type: nauc_map_at_100_diff1 value: 52.65069999999999 - type: nauc_map_at_1000_max value: 30.9515 - type: nauc_map_at_1000_std value: -6.5804 - type: nauc_map_at_1000_diff1 value: 52.662299999999995 - type: nauc_recall_at_1_max value: 29.1715 - type: nauc_recall_at_1_std value: -8.383799999999999 - type: nauc_recall_at_1_diff1 value: 56.6392 - type: nauc_recall_at_3_max value: 33.317600000000006 - type: nauc_recall_at_3_std value: -5.569500000000001 - type: nauc_recall_at_3_diff1 value: 48.6968 - type: nauc_recall_at_5_max value: 32.9542 - type: nauc_recall_at_5_std value: -4.2065 - type: nauc_recall_at_5_diff1 value: 47.1643 - type: nauc_recall_at_10_max value: 33.253 - type: nauc_recall_at_10_std value: -1.9276000000000002 - type: nauc_recall_at_10_diff1 value: 46.1287 - type: nauc_recall_at_20_max value: 33.5398 - type: nauc_recall_at_20_std value: 1.4168 - type: nauc_recall_at_20_diff1 value: 43.5924 - type: nauc_recall_at_100_max value: 34.0873 - type: nauc_recall_at_100_std value: 6.0484 - type: nauc_recall_at_100_diff1 value: 41.1325 - type: nauc_recall_at_1000_max value: 39.7041 - type: nauc_recall_at_1000_std value: 15.0263 - type: nauc_recall_at_1000_diff1 value: 39.2976 - type: nauc_precision_at_1_max value: 29.1715 - type: nauc_precision_at_1_std value: -8.383799999999999 - type: nauc_precision_at_1_diff1 value: 56.6392 - type: nauc_precision_at_3_max value: 33.317600000000006 - type: nauc_precision_at_3_std value: -5.569500000000001 - type: nauc_precision_at_3_diff1 value: 48.6968 - type: nauc_precision_at_5_max value: 32.9542 - type: nauc_precision_at_5_std value: -4.2065 - type: nauc_precision_at_5_diff1 value: 47.1643 - type: nauc_precision_at_10_max value: 33.253 - type: nauc_precision_at_10_std value: -1.9276000000000002 - type: nauc_precision_at_10_diff1 value: 46.1287 - type: nauc_precision_at_20_max value: 33.5398 - type: nauc_precision_at_20_std value: 1.4168 - type: nauc_precision_at_20_diff1 value: 43.5924 - type: nauc_precision_at_100_max value: 34.0873 - type: nauc_precision_at_100_std value: 6.0484 - type: nauc_precision_at_100_diff1 value: 41.1325 - type: nauc_precision_at_1000_max value: 39.7041 - type: nauc_precision_at_1000_std value: 15.0263 - type: nauc_precision_at_1000_diff1 value: 39.2976 - type: nauc_mrr_at_1_max value: 29.1889 - type: nauc_mrr_at_1_std value: -8.3731 - type: nauc_mrr_at_1_diff1 value: 56.4441 - type: nauc_mrr_at_3_max value: 31.034 - type: nauc_mrr_at_3_std value: -7.2402 - type: nauc_mrr_at_3_diff1 value: 52.9257 - type: nauc_mrr_at_5_max value: 30.9601 - type: nauc_mrr_at_5_std value: -6.969799999999999 - type: nauc_mrr_at_5_diff1 value: 52.6602 - type: nauc_mrr_at_10_max value: 30.965300000000003 - type: nauc_mrr_at_10_std value: -6.741700000000001 - type: nauc_mrr_at_10_diff1 value: 52.6096 - type: nauc_mrr_at_20_max value: 30.9681 - type: nauc_mrr_at_20_std value: -6.5917 - type: nauc_mrr_at_20_diff1 value: 52.518299999999996 - type: nauc_mrr_at_100_max value: 30.9633 - type: nauc_mrr_at_100_std value: -6.575200000000001 - type: nauc_mrr_at_100_diff1 value: 52.539 - type: nauc_mrr_at_1000_max value: 30.965500000000002 - type: nauc_mrr_at_1000_std value: -6.578 - type: nauc_mrr_at_1000_diff1 value: 52.550399999999996 - type: main_score value: 50.722 task: type: Retrieval - dataset: config: php name: MTEB CodeSearchNetCCRetrieval (php) revision: 6e1effa2c03723c5fde48ee912b5ee08d4f211e8 split: test type: CoIR-Retrieval/CodeSearchNet-ccr metrics: - type: ndcg_at_1 value: 27.915 - type: ndcg_at_3 value: 35.388 - type: ndcg_at_5 value: 37.406 - type: ndcg_at_10 value: 39.660000000000004 - type: ndcg_at_20 value: 41.202 - type: ndcg_at_100 value: 43.916 - type: ndcg_at_1000 value: 45.867000000000004 - type: map_at_1 value: 27.915 - type: map_at_3 value: 33.545 - type: map_at_5 value: 34.666999999999994 - type: map_at_10 value: 35.606 - type: map_at_20 value: 36.032 - type: map_at_100 value: 36.399 - type: map_at_1000 value: 36.464999999999996 - type: recall_at_1 value: 27.915 - type: recall_at_3 value: 40.724 - type: recall_at_5 value: 45.612 - type: recall_at_10 value: 52.54 - type: recall_at_20 value: 58.61300000000001 - type: recall_at_100 value: 73.369 - type: recall_at_1000 value: 89.14699999999999 - type: precision_at_1 value: 27.915 - type: precision_at_3 value: 13.575000000000001 - type: precision_at_5 value: 9.122 - type: precision_at_10 value: 5.2540000000000004 - type: precision_at_20 value: 2.931 - type: precision_at_100 value: 0.734 - type: precision_at_1000 value: 0.089 - type: mrr_at_1 value: 27.8935 - type: mrr_at_3 value: 33.529599999999995 - type: mrr_at_5 value: 34.6563 - type: mrr_at_10 value: 35.596 - type: mrr_at_20 value: 36.0216 - type: mrr_at_100 value: 36.3884 - type: mrr_at_1000 value: 36.4547 - type: nauc_ndcg_at_1_max value: 23.1709 - type: nauc_ndcg_at_1_std value: -5.9072 - type: nauc_ndcg_at_1_diff1 value: 49.3299 - type: nauc_ndcg_at_3_max value: 22.8661 - type: nauc_ndcg_at_3_std value: -5.095899999999999 - type: nauc_ndcg_at_3_diff1 value: 43.9897 - type: nauc_ndcg_at_5_max value: 22.5328 - type: nauc_ndcg_at_5_std value: -4.7091 - type: nauc_ndcg_at_5_diff1 value: 43.3944 - type: nauc_ndcg_at_10_max value: 21.9501 - type: nauc_ndcg_at_10_std value: -4.162 - type: nauc_ndcg_at_10_diff1 value: 42.3066 - type: nauc_ndcg_at_20_max value: 21.9053 - type: nauc_ndcg_at_20_std value: -3.5355999999999996 - type: nauc_ndcg_at_20_diff1 value: 42.1593 - type: nauc_ndcg_at_100_max value: 21.7083 - type: nauc_ndcg_at_100_std value: -2.9722999999999997 - type: nauc_ndcg_at_100_diff1 value: 41.9229 - type: nauc_ndcg_at_1000_max value: 21.9067 - type: nauc_ndcg_at_1000_std value: -2.984 - type: nauc_ndcg_at_1000_diff1 value: 42.4281 - type: nauc_map_at_1_max value: 23.1709 - type: nauc_map_at_1_std value: -5.9072 - type: nauc_map_at_1_diff1 value: 49.3299 - type: nauc_map_at_3_max value: 22.9725 - type: nauc_map_at_3_std value: -5.292199999999999 - type: nauc_map_at_3_diff1 value: 45.2572 - type: nauc_map_at_5_max value: 22.7878 - type: nauc_map_at_5_std value: -5.0855999999999995 - type: nauc_map_at_5_diff1 value: 44.9362 - type: nauc_map_at_10_max value: 22.554299999999998 - type: nauc_map_at_10_std value: -4.855700000000001 - type: nauc_map_at_10_diff1 value: 44.472899999999996 - type: nauc_map_at_20_max value: 22.5365 - type: nauc_map_at_20_std value: -4.7015 - type: nauc_map_at_20_diff1 value: 44.441900000000004 - type: nauc_map_at_100_max value: 22.5246 - type: nauc_map_at_100_std value: -4.6318 - type: nauc_map_at_100_diff1 value: 44.4182 - type: nauc_map_at_1000_max value: 22.531200000000002 - type: nauc_map_at_1000_std value: -4.6294 - type: nauc_map_at_1000_diff1 value: 44.4336 - type: nauc_recall_at_1_max value: 23.1709 - type: nauc_recall_at_1_std value: -5.9072 - type: nauc_recall_at_1_diff1 value: 49.3299 - type: nauc_recall_at_3_max value: 22.5576 - type: nauc_recall_at_3_std value: -4.5496 - type: nauc_recall_at_3_diff1 value: 40.4722 - type: nauc_recall_at_5_max value: 21.755 - type: nauc_recall_at_5_std value: -3.5854 - type: nauc_recall_at_5_diff1 value: 38.9703 - type: nauc_recall_at_10_max value: 19.8814 - type: nauc_recall_at_10_std value: -1.8668 - type: nauc_recall_at_10_diff1 value: 35.5164 - type: nauc_recall_at_20_max value: 19.6191 - type: nauc_recall_at_20_std value: 1.0138 - type: nauc_recall_at_20_diff1 value: 34.443 - type: nauc_recall_at_100_max value: 17.1186 - type: nauc_recall_at_100_std value: 6.7912 - type: nauc_recall_at_100_diff1 value: 30.006100000000004 - type: nauc_recall_at_1000_max value: 16.4494 - type: nauc_recall_at_1000_std value: 17.0286 - type: nauc_recall_at_1000_diff1 value: 28.3205 - type: nauc_precision_at_1_max value: 23.1709 - type: nauc_precision_at_1_std value: -5.9072 - type: nauc_precision_at_1_diff1 value: 49.3299 - type: nauc_precision_at_3_max value: 22.5576 - type: nauc_precision_at_3_std value: -4.5496 - type: nauc_precision_at_3_diff1 value: 40.4722 - type: nauc_precision_at_5_max value: 21.755 - type: nauc_precision_at_5_std value: -3.5854 - type: nauc_precision_at_5_diff1 value: 38.9703 - type: nauc_precision_at_10_max value: 19.8814 - type: nauc_precision_at_10_std value: -1.8668 - type: nauc_precision_at_10_diff1 value: 35.5164 - type: nauc_precision_at_20_max value: 19.6191 - type: nauc_precision_at_20_std value: 1.0138 - type: nauc_precision_at_20_diff1 value: 34.443 - type: nauc_precision_at_100_max value: 17.1186 - type: nauc_precision_at_100_std value: 6.7912 - type: nauc_precision_at_100_diff1 value: 30.006100000000004 - type: nauc_precision_at_1000_max value: 16.4494 - type: nauc_precision_at_1000_std value: 17.0286 - type: nauc_precision_at_1000_diff1 value: 28.3205 - type: nauc_mrr_at_1_max value: 23.1792 - type: nauc_mrr_at_1_std value: -5.8884 - type: nauc_mrr_at_1_diff1 value: 49.411899999999996 - type: nauc_mrr_at_3_max value: 22.9617 - type: nauc_mrr_at_3_std value: -5.2925 - type: nauc_mrr_at_3_diff1 value: 45.2913 - type: nauc_mrr_at_5_max value: 22.7693 - type: nauc_mrr_at_5_std value: -5.0912 - type: nauc_mrr_at_5_diff1 value: 44.966699999999996 - type: nauc_mrr_at_10_max value: 22.5429 - type: nauc_mrr_at_10_std value: -4.8534 - type: nauc_mrr_at_10_diff1 value: 44.5081 - type: nauc_mrr_at_20_max value: 22.5247 - type: nauc_mrr_at_20_std value: -4.7001 - type: nauc_mrr_at_20_diff1 value: 44.4776 - type: nauc_mrr_at_100_max value: 22.5126 - type: nauc_mrr_at_100_std value: -4.6305 - type: nauc_mrr_at_100_diff1 value: 44.453900000000004 - type: nauc_mrr_at_1000_max value: 22.5191 - type: nauc_mrr_at_1000_std value: -4.6281 - type: nauc_mrr_at_1000_diff1 value: 44.469300000000004 - type: main_score value: 39.660000000000004 task: type: Retrieval - dataset: config: python name: MTEB CodeSearchNetRetrieval (python) revision: fdc6a9e39575768c27eb8a2a5f702bf846eb4759 split: test type: code-search-net/code_search_net metrics: - type: ndcg_at_1 value: 71.3 - type: ndcg_at_3 value: 80.46600000000001 - type: ndcg_at_5 value: 82.657 - type: ndcg_at_10 value: 83.633 - type: ndcg_at_20 value: 84.108 - type: ndcg_at_100 value: 84.532 - type: ndcg_at_1000 value: 84.651 - type: map_at_1 value: 71.3 - type: map_at_3 value: 78.3 - type: map_at_5 value: 79.52 - type: map_at_10 value: 79.926 - type: map_at_20 value: 80.054 - type: map_at_100 value: 80.119 - type: map_at_1000 value: 80.124 - type: recall_at_1 value: 71.3 - type: recall_at_3 value: 86.7 - type: recall_at_5 value: 92.0 - type: recall_at_10 value: 95.0 - type: recall_at_20 value: 96.89999999999999 - type: recall_at_100 value: 99.1 - type: recall_at_1000 value: 100.0 - type: precision_at_1 value: 71.3 - type: precision_at_3 value: 28.9 - type: precision_at_5 value: 18.4 - type: precision_at_10 value: 9.5 - type: precision_at_20 value: 4.845 - type: precision_at_100 value: 0.991 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 71.3 - type: mrr_at_3 value: 78.3 - type: mrr_at_5 value: 79.52 - type: mrr_at_10 value: 79.9264 - type: mrr_at_20 value: 80.0537 - type: mrr_at_100 value: 80.119 - type: mrr_at_1000 value: 80.1241 - type: nauc_ndcg_at_1_max value: 42.5887 - type: nauc_ndcg_at_1_std value: -4.7713 - type: nauc_ndcg_at_1_diff1 value: 71.5211 - type: nauc_ndcg_at_3_max value: 42.682500000000005 - type: nauc_ndcg_at_3_std value: -9.7713 - type: nauc_ndcg_at_3_diff1 value: 70.09450000000001 - type: nauc_ndcg_at_5_max value: 42.8369 - type: nauc_ndcg_at_5_std value: -8.636000000000001 - type: nauc_ndcg_at_5_diff1 value: 70.06569999999999 - type: nauc_ndcg_at_10_max value: 42.0272 - type: nauc_ndcg_at_10_std value: -7.7864 - type: nauc_ndcg_at_10_diff1 value: 69.647 - type: nauc_ndcg_at_20_max value: 42.7338 - type: nauc_ndcg_at_20_std value: -7.842300000000001 - type: nauc_ndcg_at_20_diff1 value: 69.8122 - type: nauc_ndcg_at_100_max value: 42.7575 - type: nauc_ndcg_at_100_std value: -7.330299999999999 - type: nauc_ndcg_at_100_diff1 value: 69.9872 - type: nauc_ndcg_at_1000_max value: 42.6322 - type: nauc_ndcg_at_1000_std value: -7.4643 - type: nauc_ndcg_at_1000_diff1 value: 70.0635 - type: nauc_map_at_1_max value: 42.5887 - type: nauc_map_at_1_std value: -4.7713 - type: nauc_map_at_1_diff1 value: 71.5211 - type: nauc_map_at_3_max value: 42.5893 - type: nauc_map_at_3_std value: -8.2772 - type: nauc_map_at_3_diff1 value: 70.3236 - type: nauc_map_at_5_max value: 42.686099999999996 - type: nauc_map_at_5_std value: -7.6014 - type: nauc_map_at_5_diff1 value: 70.284 - type: nauc_map_at_10_max value: 42.4008 - type: nauc_map_at_10_std value: -7.2528 - type: nauc_map_at_10_diff1 value: 70.1571 - type: nauc_map_at_20_max value: 42.5568 - type: nauc_map_at_20_std value: -7.264900000000001 - type: nauc_map_at_20_diff1 value: 70.2095 - type: nauc_map_at_100_max value: 42.5674 - type: nauc_map_at_100_std value: -7.2189000000000005 - type: nauc_map_at_100_diff1 value: 70.238 - type: nauc_map_at_1000_max value: 42.564600000000006 - type: nauc_map_at_1000_std value: -7.217899999999999 - type: nauc_map_at_1000_diff1 value: 70.2391 - type: nauc_recall_at_1_max value: 42.5887 - type: nauc_recall_at_1_std value: -4.7713 - type: nauc_recall_at_1_diff1 value: 71.5211 - type: nauc_recall_at_3_max value: 43.1314 - type: nauc_recall_at_3_std value: -16.2854 - type: nauc_recall_at_3_diff1 value: 69.22319999999999 - type: nauc_recall_at_5_max value: 43.869 - type: nauc_recall_at_5_std value: -15.228800000000001 - type: nauc_recall_at_5_diff1 value: 68.9332 - type: nauc_recall_at_10_max value: 37.211 - type: nauc_recall_at_10_std value: -12.085899999999999 - type: nauc_recall_at_10_diff1 value: 64.212 - type: nauc_recall_at_20_max value: 47.346500000000006 - type: nauc_recall_at_20_std value: -15.5748 - type: nauc_recall_at_20_diff1 value: 63.3866 - type: nauc_recall_at_100_max value: 58.667899999999996 - type: nauc_recall_at_100_std value: 12.8333 - type: nauc_recall_at_100_diff1 value: 60.0633 - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_precision_at_1_max value: 42.5887 - type: nauc_precision_at_1_std value: -4.7713 - type: nauc_precision_at_1_diff1 value: 71.5211 - type: nauc_precision_at_3_max value: 43.1314 - type: nauc_precision_at_3_std value: -16.2854 - type: nauc_precision_at_3_diff1 value: 69.22319999999999 - type: nauc_precision_at_5_max value: 43.869 - type: nauc_precision_at_5_std value: -15.228800000000001 - type: nauc_precision_at_5_diff1 value: 68.9332 - type: nauc_precision_at_10_max value: 37.211 - type: nauc_precision_at_10_std value: -12.085899999999999 - type: nauc_precision_at_10_diff1 value: 64.212 - type: nauc_precision_at_20_max value: 47.346500000000006 - type: nauc_precision_at_20_std value: -15.5748 - type: nauc_precision_at_20_diff1 value: 63.3866 - type: nauc_precision_at_100_max value: 58.667899999999996 - type: nauc_precision_at_100_std value: 12.8333 - type: nauc_precision_at_100_diff1 value: 60.0633 - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_mrr_at_1_max value: 42.5887 - type: nauc_mrr_at_1_std value: -4.7713 - type: nauc_mrr_at_1_diff1 value: 71.5211 - type: nauc_mrr_at_3_max value: 42.5893 - type: nauc_mrr_at_3_std value: -8.2772 - type: nauc_mrr_at_3_diff1 value: 70.3236 - type: nauc_mrr_at_5_max value: 42.686099999999996 - type: nauc_mrr_at_5_std value: -7.6014 - type: nauc_mrr_at_5_diff1 value: 70.284 - type: nauc_mrr_at_10_max value: 42.4008 - type: nauc_mrr_at_10_std value: -7.2528 - type: nauc_mrr_at_10_diff1 value: 70.1571 - type: nauc_mrr_at_20_max value: 42.5568 - type: nauc_mrr_at_20_std value: -7.264900000000001 - type: nauc_mrr_at_20_diff1 value: 70.2095 - type: nauc_mrr_at_100_max value: 42.5674 - type: nauc_mrr_at_100_std value: -7.2189000000000005 - type: nauc_mrr_at_100_diff1 value: 70.238 - type: nauc_mrr_at_1000_max value: 42.564600000000006 - type: nauc_mrr_at_1000_std value: -7.217899999999999 - type: nauc_mrr_at_1000_diff1 value: 70.2391 - type: main_score value: 83.633 task: type: Retrieval - dataset: config: javascript name: MTEB CodeSearchNetRetrieval (javascript) revision: fdc6a9e39575768c27eb8a2a5f702bf846eb4759 split: test type: code-search-net/code_search_net metrics: - type: ndcg_at_1 value: 61.4 - type: ndcg_at_3 value: 69.833 - type: ndcg_at_5 value: 71.675 - type: ndcg_at_10 value: 72.83699999999999 - type: ndcg_at_20 value: 73.56899999999999 - type: ndcg_at_100 value: 74.50099999999999 - type: ndcg_at_1000 value: 75.473 - type: map_at_1 value: 61.4 - type: map_at_3 value: 67.80000000000001 - type: map_at_5 value: 68.815 - type: map_at_10 value: 69.294 - type: map_at_20 value: 69.49499999999999 - type: map_at_100 value: 69.618 - type: map_at_1000 value: 69.645 - type: recall_at_1 value: 61.4 - type: recall_at_3 value: 75.7 - type: recall_at_5 value: 80.2 - type: recall_at_10 value: 83.8 - type: recall_at_20 value: 86.7 - type: recall_at_100 value: 91.8 - type: recall_at_1000 value: 100.0 - type: precision_at_1 value: 61.4 - type: precision_at_3 value: 25.233 - type: precision_at_5 value: 16.04 - type: precision_at_10 value: 8.38 - type: precision_at_20 value: 4.335 - type: precision_at_100 value: 0.918 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 61.4 - type: mrr_at_3 value: 67.80000000000001 - type: mrr_at_5 value: 68.815 - type: mrr_at_10 value: 69.294 - type: mrr_at_20 value: 69.4947 - type: mrr_at_100 value: 69.6181 - type: mrr_at_1000 value: 69.645 - type: nauc_ndcg_at_1_max value: 56.7217 - type: nauc_ndcg_at_1_std value: 24.8593 - type: nauc_ndcg_at_1_diff1 value: 71.9101 - type: nauc_ndcg_at_3_max value: 65.2032 - type: nauc_ndcg_at_3_std value: 32.0444 - type: nauc_ndcg_at_3_diff1 value: 70.0416 - type: nauc_ndcg_at_5_max value: 66.5758 - type: nauc_ndcg_at_5_std value: 36.1929 - type: nauc_ndcg_at_5_diff1 value: 70.3931 - type: nauc_ndcg_at_10_max value: 66.5108 - type: nauc_ndcg_at_10_std value: 36.121199999999995 - type: nauc_ndcg_at_10_diff1 value: 70.6475 - type: nauc_ndcg_at_20_max value: 66.7371 - type: nauc_ndcg_at_20_std value: 36.5925 - type: nauc_ndcg_at_20_diff1 value: 70.8488 - type: nauc_ndcg_at_100_max value: 66.2407 - type: nauc_ndcg_at_100_std value: 37.0769 - type: nauc_ndcg_at_100_diff1 value: 70.5349 - type: nauc_ndcg_at_1000_max value: 65.2728 - type: nauc_ndcg_at_1000_std value: 34.956199999999995 - type: nauc_ndcg_at_1000_diff1 value: 70.6395 - type: nauc_map_at_1_max value: 56.7217 - type: nauc_map_at_1_std value: 24.8593 - type: nauc_map_at_1_diff1 value: 71.9101 - type: nauc_map_at_3_max value: 63.0821 - type: nauc_map_at_3_std value: 30.2166 - type: nauc_map_at_3_diff1 value: 70.4667 - type: nauc_map_at_5_max value: 63.7133 - type: nauc_map_at_5_std value: 32.2817 - type: nauc_map_at_5_diff1 value: 70.6826 - type: nauc_map_at_10_max value: 63.6566 - type: nauc_map_at_10_std value: 32.2283 - type: nauc_map_at_10_diff1 value: 70.8001 - type: nauc_map_at_20_max value: 63.7023 - type: nauc_map_at_20_std value: 32.3021 - type: nauc_map_at_20_diff1 value: 70.8584 - type: nauc_map_at_100_max value: 63.645799999999994 - type: nauc_map_at_100_std value: 32.3835 - type: nauc_map_at_100_diff1 value: 70.8164 - type: nauc_map_at_1000_max value: 63.6211 - type: nauc_map_at_1000_std value: 32.334 - type: nauc_map_at_1000_diff1 value: 70.8146 - type: nauc_recall_at_1_max value: 56.7217 - type: nauc_recall_at_1_std value: 24.8593 - type: nauc_recall_at_1_diff1 value: 71.9101 - type: nauc_recall_at_3_max value: 72.6106 - type: nauc_recall_at_3_std value: 38.4448 - type: nauc_recall_at_3_diff1 value: 68.58030000000001 - type: nauc_recall_at_5_max value: 78.35889999999999 - type: nauc_recall_at_5_std value: 52.82829999999999 - type: nauc_recall_at_5_diff1 value: 69.30239999999999 - type: nauc_recall_at_10_max value: 80.32730000000001 - type: nauc_recall_at_10_std value: 55.5612 - type: nauc_recall_at_10_diff1 value: 70.1068 - type: nauc_recall_at_20_max value: 84.4507 - type: nauc_recall_at_20_std value: 62.841100000000004 - type: nauc_recall_at_20_diff1 value: 71.2689 - type: nauc_recall_at_100_max value: 86.8251 - type: nauc_recall_at_100_std value: 82.8944 - type: nauc_recall_at_100_diff1 value: 67.35950000000001 - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_precision_at_1_max value: 56.7217 - type: nauc_precision_at_1_std value: 24.8593 - type: nauc_precision_at_1_diff1 value: 71.9101 - type: nauc_precision_at_3_max value: 72.6106 - type: nauc_precision_at_3_std value: 38.4448 - type: nauc_precision_at_3_diff1 value: 68.58030000000001 - type: nauc_precision_at_5_max value: 78.35889999999999 - type: nauc_precision_at_5_std value: 52.82829999999999 - type: nauc_precision_at_5_diff1 value: 69.30239999999999 - type: nauc_precision_at_10_max value: 80.32730000000001 - type: nauc_precision_at_10_std value: 55.5612 - type: nauc_precision_at_10_diff1 value: 70.1068 - type: nauc_precision_at_20_max value: 84.4507 - type: nauc_precision_at_20_std value: 62.841100000000004 - type: nauc_precision_at_20_diff1 value: 71.2689 - type: nauc_precision_at_100_max value: 86.8251 - type: nauc_precision_at_100_std value: 82.8944 - type: nauc_precision_at_100_diff1 value: 67.35950000000001 - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_mrr_at_1_max value: 56.7217 - type: nauc_mrr_at_1_std value: 24.8593 - type: nauc_mrr_at_1_diff1 value: 71.9101 - type: nauc_mrr_at_3_max value: 63.0821 - type: nauc_mrr_at_3_std value: 30.2166 - type: nauc_mrr_at_3_diff1 value: 70.4667 - type: nauc_mrr_at_5_max value: 63.7133 - type: nauc_mrr_at_5_std value: 32.2817 - type: nauc_mrr_at_5_diff1 value: 70.6826 - type: nauc_mrr_at_10_max value: 63.6566 - type: nauc_mrr_at_10_std value: 32.2283 - type: nauc_mrr_at_10_diff1 value: 70.8001 - type: nauc_mrr_at_20_max value: 63.7023 - type: nauc_mrr_at_20_std value: 32.3021 - type: nauc_mrr_at_20_diff1 value: 70.8584 - type: nauc_mrr_at_100_max value: 63.645799999999994 - type: nauc_mrr_at_100_std value: 32.3835 - type: nauc_mrr_at_100_diff1 value: 70.8164 - type: nauc_mrr_at_1000_max value: 63.6211 - type: nauc_mrr_at_1000_std value: 32.334 - type: nauc_mrr_at_1000_diff1 value: 70.8146 - type: main_score value: 72.83699999999999 task: type: Retrieval - dataset: config: go name: MTEB CodeSearchNetRetrieval (go) revision: fdc6a9e39575768c27eb8a2a5f702bf846eb4759 split: test type: code-search-net/code_search_net metrics: - type: ndcg_at_1 value: 71.5 - type: ndcg_at_3 value: 80.566 - type: ndcg_at_5 value: 82.623 - type: ndcg_at_10 value: 83.694 - type: ndcg_at_20 value: 84.153 - type: ndcg_at_100 value: 84.597 - type: ndcg_at_1000 value: 84.73 - type: map_at_1 value: 71.5 - type: map_at_3 value: 78.43299999999999 - type: map_at_5 value: 79.57300000000001 - type: map_at_10 value: 80.037 - type: map_at_20 value: 80.164 - type: map_at_100 value: 80.231 - type: map_at_1000 value: 80.238 - type: recall_at_1 value: 71.5 - type: recall_at_3 value: 86.7 - type: recall_at_5 value: 91.7 - type: recall_at_10 value: 94.89999999999999 - type: recall_at_20 value: 96.7 - type: recall_at_100 value: 99.0 - type: recall_at_1000 value: 100.0 - type: precision_at_1 value: 71.5 - type: precision_at_3 value: 28.9 - type: precision_at_5 value: 18.34 - type: precision_at_10 value: 9.49 - type: precision_at_20 value: 4.835 - type: precision_at_100 value: 0.9900000000000001 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 71.5 - type: mrr_at_3 value: 78.43329999999999 - type: mrr_at_5 value: 79.5733 - type: mrr_at_10 value: 80.0366 - type: mrr_at_20 value: 80.164 - type: mrr_at_100 value: 80.2314 - type: mrr_at_1000 value: 80.2376 - type: nauc_ndcg_at_1_max value: 46.1044 - type: nauc_ndcg_at_1_std value: -4.7079 - type: nauc_ndcg_at_1_diff1 value: 75.426 - type: nauc_ndcg_at_3_max value: 52.6854 - type: nauc_ndcg_at_3_std value: -5.7088 - type: nauc_ndcg_at_3_diff1 value: 72.5517 - type: nauc_ndcg_at_5_max value: 51.839400000000005 - type: nauc_ndcg_at_5_std value: -6.802700000000001 - type: nauc_ndcg_at_5_diff1 value: 72.17710000000001 - type: nauc_ndcg_at_10_max value: 51.4024 - type: nauc_ndcg_at_10_std value: -7.0518 - type: nauc_ndcg_at_10_diff1 value: 73.0671 - type: nauc_ndcg_at_20_max value: 51.029 - type: nauc_ndcg_at_20_std value: -6.6751000000000005 - type: nauc_ndcg_at_20_diff1 value: 73.4538 - type: nauc_ndcg_at_100_max value: 50.8548 - type: nauc_ndcg_at_100_std value: -5.9427 - type: nauc_ndcg_at_100_diff1 value: 73.51950000000001 - type: nauc_ndcg_at_1000_max value: 50.672 - type: nauc_ndcg_at_1000_std value: -6.0391 - type: nauc_ndcg_at_1000_diff1 value: 73.5247 - type: nauc_map_at_1_max value: 46.1044 - type: nauc_map_at_1_std value: -4.7079 - type: nauc_map_at_1_diff1 value: 75.426 - type: nauc_map_at_3_max value: 50.939299999999996 - type: nauc_map_at_3_std value: -5.3396 - type: nauc_map_at_3_diff1 value: 73.42490000000001 - type: nauc_map_at_5_max value: 50.4396 - type: nauc_map_at_5_std value: -5.8186 - type: nauc_map_at_5_diff1 value: 73.2819 - type: nauc_map_at_10_max value: 50.27890000000001 - type: nauc_map_at_10_std value: -5.8548 - type: nauc_map_at_10_diff1 value: 73.6528 - type: nauc_map_at_20_max value: 50.2054 - type: nauc_map_at_20_std value: -5.7458 - type: nauc_map_at_20_diff1 value: 73.7524 - type: nauc_map_at_100_max value: 50.1773 - type: nauc_map_at_100_std value: -5.6738 - type: nauc_map_at_100_diff1 value: 73.75460000000001 - type: nauc_map_at_1000_max value: 50.166999999999994 - type: nauc_map_at_1000_std value: -5.6814 - type: nauc_map_at_1000_diff1 value: 73.7542 - type: nauc_recall_at_1_max value: 46.1044 - type: nauc_recall_at_1_std value: -4.7079 - type: nauc_recall_at_1_diff1 value: 75.426 - type: nauc_recall_at_3_max value: 60.1177 - type: nauc_recall_at_3_std value: -7.3551 - type: nauc_recall_at_3_diff1 value: 68.7552 - type: nauc_recall_at_5_max value: 60.249399999999994 - type: nauc_recall_at_5_std value: -13.555600000000002 - type: nauc_recall_at_5_diff1 value: 65.0445 - type: nauc_recall_at_10_max value: 61.167 - type: nauc_recall_at_10_std value: -20.4198 - type: nauc_recall_at_10_diff1 value: 67.8246 - type: nauc_recall_at_20_max value: 59.404999999999994 - type: nauc_recall_at_20_std value: -21.929399999999998 - type: nauc_recall_at_20_diff1 value: 71.1994 - type: nauc_recall_at_100_max value: 66.6713 - type: nauc_recall_at_100_std value: -0.4949 - type: nauc_recall_at_100_diff1 value: 72.409 - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_precision_at_1_max value: 46.1044 - type: nauc_precision_at_1_std value: -4.7079 - type: nauc_precision_at_1_diff1 value: 75.426 - type: nauc_precision_at_3_max value: 60.1177 - type: nauc_precision_at_3_std value: -7.3551 - type: nauc_precision_at_3_diff1 value: 68.7552 - type: nauc_precision_at_5_max value: 60.249399999999994 - type: nauc_precision_at_5_std value: -13.555600000000002 - type: nauc_precision_at_5_diff1 value: 65.0445 - type: nauc_precision_at_10_max value: 61.167 - type: nauc_precision_at_10_std value: -20.4198 - type: nauc_precision_at_10_diff1 value: 67.8246 - type: nauc_precision_at_20_max value: 59.404999999999994 - type: nauc_precision_at_20_std value: -21.929399999999998 - type: nauc_precision_at_20_diff1 value: 71.1994 - type: nauc_precision_at_100_max value: 66.6713 - type: nauc_precision_at_100_std value: -0.4949 - type: nauc_precision_at_100_diff1 value: 72.409 - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_mrr_at_1_max value: 46.1044 - type: nauc_mrr_at_1_std value: -4.7079 - type: nauc_mrr_at_1_diff1 value: 75.426 - type: nauc_mrr_at_3_max value: 50.939299999999996 - type: nauc_mrr_at_3_std value: -5.3396 - type: nauc_mrr_at_3_diff1 value: 73.42490000000001 - type: nauc_mrr_at_5_max value: 50.4396 - type: nauc_mrr_at_5_std value: -5.8186 - type: nauc_mrr_at_5_diff1 value: 73.2819 - type: nauc_mrr_at_10_max value: 50.27890000000001 - type: nauc_mrr_at_10_std value: -5.8548 - type: nauc_mrr_at_10_diff1 value: 73.6528 - type: nauc_mrr_at_20_max value: 50.2054 - type: nauc_mrr_at_20_std value: -5.7458 - type: nauc_mrr_at_20_diff1 value: 73.7524 - type: nauc_mrr_at_100_max value: 50.1773 - type: nauc_mrr_at_100_std value: -5.6738 - type: nauc_mrr_at_100_diff1 value: 73.75460000000001 - type: nauc_mrr_at_1000_max value: 50.166999999999994 - type: nauc_mrr_at_1000_std value: -5.6814 - type: nauc_mrr_at_1000_diff1 value: 73.7542 - type: main_score value: 83.694 task: type: Retrieval - dataset: config: ruby name: MTEB CodeSearchNetRetrieval (ruby) revision: fdc6a9e39575768c27eb8a2a5f702bf846eb4759 split: test type: code-search-net/code_search_net metrics: - type: ndcg_at_1 value: 63.1 - type: ndcg_at_3 value: 73.48400000000001 - type: ndcg_at_5 value: 75.907 - type: ndcg_at_10 value: 76.81400000000001 - type: ndcg_at_20 value: 77.532 - type: ndcg_at_100 value: 78.25800000000001 - type: ndcg_at_1000 value: 78.739 - type: map_at_1 value: 63.1 - type: map_at_3 value: 70.98299999999999 - type: map_at_5 value: 72.32300000000001 - type: map_at_10 value: 72.7 - type: map_at_20 value: 72.902 - type: map_at_100 value: 73.00999999999999 - type: map_at_1000 value: 73.02499999999999 - type: recall_at_1 value: 63.1 - type: recall_at_3 value: 80.7 - type: recall_at_5 value: 86.6 - type: recall_at_10 value: 89.4 - type: recall_at_20 value: 92.2 - type: recall_at_100 value: 96.0 - type: recall_at_1000 value: 100.0 - type: precision_at_1 value: 63.1 - type: precision_at_3 value: 26.900000000000002 - type: precision_at_5 value: 17.32 - type: precision_at_10 value: 8.94 - type: precision_at_20 value: 4.61 - type: precision_at_100 value: 0.96 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 63.1 - type: mrr_at_3 value: 70.9833 - type: mrr_at_5 value: 72.3233 - type: mrr_at_10 value: 72.6995 - type: mrr_at_20 value: 72.9017 - type: mrr_at_100 value: 73.0097 - type: mrr_at_1000 value: 73.0247 - type: nauc_ndcg_at_1_max value: 51.397099999999995 - type: nauc_ndcg_at_1_std value: 5.5686 - type: nauc_ndcg_at_1_diff1 value: 67.8159 - type: nauc_ndcg_at_3_max value: 51.7661 - type: nauc_ndcg_at_3_std value: 5.247199999999999 - type: nauc_ndcg_at_3_diff1 value: 62.2276 - type: nauc_ndcg_at_5_max value: 52.45649999999999 - type: nauc_ndcg_at_5_std value: 8.3289 - type: nauc_ndcg_at_5_diff1 value: 61.5048 - type: nauc_ndcg_at_10_max value: 53.376599999999996 - type: nauc_ndcg_at_10_std value: 10.0975 - type: nauc_ndcg_at_10_diff1 value: 61.206 - type: nauc_ndcg_at_20_max value: 53.4219 - type: nauc_ndcg_at_20_std value: 11.3499 - type: nauc_ndcg_at_20_diff1 value: 60.670199999999994 - type: nauc_ndcg_at_100_max value: 53.728699999999996 - type: nauc_ndcg_at_100_std value: 11.754299999999999 - type: nauc_ndcg_at_100_diff1 value: 61.2795 - type: nauc_ndcg_at_1000_max value: 53.1018 - type: nauc_ndcg_at_1000_std value: 9.7542 - type: nauc_ndcg_at_1000_diff1 value: 62.16779999999999 - type: nauc_map_at_1_max value: 51.397099999999995 - type: nauc_map_at_1_std value: 5.5686 - type: nauc_map_at_1_diff1 value: 67.8159 - type: nauc_map_at_3_max value: 51.701600000000006 - type: nauc_map_at_3_std value: 5.346900000000001 - type: nauc_map_at_3_diff1 value: 63.7526 - type: nauc_map_at_5_max value: 52.05030000000001 - type: nauc_map_at_5_std value: 6.901 - type: nauc_map_at_5_diff1 value: 63.4742 - type: nauc_map_at_10_max value: 52.3881 - type: nauc_map_at_10_std value: 7.557899999999999 - type: nauc_map_at_10_diff1 value: 63.385000000000005 - type: nauc_map_at_20_max value: 52.3801 - type: nauc_map_at_20_std value: 7.8098 - type: nauc_map_at_20_diff1 value: 63.2662 - type: nauc_map_at_100_max value: 52.440799999999996 - type: nauc_map_at_100_std value: 7.8723 - type: nauc_map_at_100_diff1 value: 63.362399999999994 - type: nauc_map_at_1000_max value: 52.4276 - type: nauc_map_at_1000_std value: 7.8245 - type: nauc_map_at_1000_diff1 value: 63.3886 - type: nauc_recall_at_1_max value: 51.397099999999995 - type: nauc_recall_at_1_std value: 5.5686 - type: nauc_recall_at_1_diff1 value: 67.8159 - type: nauc_recall_at_3_max value: 51.995000000000005 - type: nauc_recall_at_3_std value: 4.853 - type: nauc_recall_at_3_diff1 value: 56.3023 - type: nauc_recall_at_5_max value: 54.692099999999996 - type: nauc_recall_at_5_std value: 16.4925 - type: nauc_recall_at_5_diff1 value: 51.12179999999999 - type: nauc_recall_at_10_max value: 60.454699999999995 - type: nauc_recall_at_10_std value: 28.295900000000003 - type: nauc_recall_at_10_diff1 value: 47.063100000000006 - type: nauc_recall_at_20_max value: 63.59740000000001 - type: nauc_recall_at_20_std value: 47.2928 - type: nauc_recall_at_20_diff1 value: 37.1627 - type: nauc_recall_at_100_max value: 78.4162 - type: nauc_recall_at_100_std value: 88.6099 - type: nauc_recall_at_100_diff1 value: 28.975299999999997 - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_precision_at_1_max value: 51.397099999999995 - type: nauc_precision_at_1_std value: 5.5686 - type: nauc_precision_at_1_diff1 value: 67.8159 - type: nauc_precision_at_3_max value: 51.995000000000005 - type: nauc_precision_at_3_std value: 4.853 - type: nauc_precision_at_3_diff1 value: 56.3023 - type: nauc_precision_at_5_max value: 54.692099999999996 - type: nauc_precision_at_5_std value: 16.4925 - type: nauc_precision_at_5_diff1 value: 51.12179999999999 - type: nauc_precision_at_10_max value: 60.454699999999995 - type: nauc_precision_at_10_std value: 28.295900000000003 - type: nauc_precision_at_10_diff1 value: 47.063100000000006 - type: nauc_precision_at_20_max value: 63.59740000000001 - type: nauc_precision_at_20_std value: 47.2928 - type: nauc_precision_at_20_diff1 value: 37.1627 - type: nauc_precision_at_100_max value: 78.4162 - type: nauc_precision_at_100_std value: 88.6099 - type: nauc_precision_at_100_diff1 value: 28.975299999999997 - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_mrr_at_1_max value: 51.397099999999995 - type: nauc_mrr_at_1_std value: 5.5686 - type: nauc_mrr_at_1_diff1 value: 67.8159 - type: nauc_mrr_at_3_max value: 51.701600000000006 - type: nauc_mrr_at_3_std value: 5.346900000000001 - type: nauc_mrr_at_3_diff1 value: 63.7526 - type: nauc_mrr_at_5_max value: 52.05030000000001 - type: nauc_mrr_at_5_std value: 6.901 - type: nauc_mrr_at_5_diff1 value: 63.4742 - type: nauc_mrr_at_10_max value: 52.3881 - type: nauc_mrr_at_10_std value: 7.557899999999999 - type: nauc_mrr_at_10_diff1 value: 63.385000000000005 - type: nauc_mrr_at_20_max value: 52.3801 - type: nauc_mrr_at_20_std value: 7.8098 - type: nauc_mrr_at_20_diff1 value: 63.2662 - type: nauc_mrr_at_100_max value: 52.440799999999996 - type: nauc_mrr_at_100_std value: 7.8723 - type: nauc_mrr_at_100_diff1 value: 63.362399999999994 - type: nauc_mrr_at_1000_max value: 52.4276 - type: nauc_mrr_at_1000_std value: 7.8245 - type: nauc_mrr_at_1000_diff1 value: 63.3886 - type: main_score value: 76.81400000000001 task: type: Retrieval - dataset: config: java name: MTEB CodeSearchNetRetrieval (java) revision: fdc6a9e39575768c27eb8a2a5f702bf846eb4759 split: test type: code-search-net/code_search_net metrics: - type: ndcg_at_1 value: 52.1 - type: ndcg_at_3 value: 64.248 - type: ndcg_at_5 value: 67.213 - type: ndcg_at_10 value: 69.41199999999999 - type: ndcg_at_20 value: 70.43700000000001 - type: ndcg_at_100 value: 71.33800000000001 - type: ndcg_at_1000 value: 71.887 - type: map_at_1 value: 52.1 - type: map_at_3 value: 61.35 - type: map_at_5 value: 62.995000000000005 - type: map_at_10 value: 63.92 - type: map_at_20 value: 64.209 - type: map_at_100 value: 64.338 - type: map_at_1000 value: 64.352 - type: recall_at_1 value: 52.1 - type: recall_at_3 value: 72.6 - type: recall_at_5 value: 79.80000000000001 - type: recall_at_10 value: 86.5 - type: recall_at_20 value: 90.5 - type: recall_at_100 value: 95.3 - type: recall_at_1000 value: 100.0 - type: precision_at_1 value: 52.1 - type: precision_at_3 value: 24.2 - type: precision_at_5 value: 15.959999999999999 - type: precision_at_10 value: 8.649999999999999 - type: precision_at_20 value: 4.5249999999999995 - type: precision_at_100 value: 0.9530000000000001 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 52.1 - type: mrr_at_3 value: 61.35 - type: mrr_at_5 value: 62.995000000000005 - type: mrr_at_10 value: 63.9199 - type: mrr_at_20 value: 64.209 - type: mrr_at_100 value: 64.338 - type: mrr_at_1000 value: 64.352 - type: nauc_ndcg_at_1_max value: 35.1263 - type: nauc_ndcg_at_1_std value: -12.454600000000001 - type: nauc_ndcg_at_1_diff1 value: 58.824 - type: nauc_ndcg_at_3_max value: 40.6703 - type: nauc_ndcg_at_3_std value: -9.0987 - type: nauc_ndcg_at_3_diff1 value: 52.3502 - type: nauc_ndcg_at_5_max value: 41.3895 - type: nauc_ndcg_at_5_std value: -7.630199999999999 - type: nauc_ndcg_at_5_diff1 value: 51.614599999999996 - type: nauc_ndcg_at_10_max value: 42.345699999999994 - type: nauc_ndcg_at_10_std value: -5.084700000000001 - type: nauc_ndcg_at_10_diff1 value: 53.396 - type: nauc_ndcg_at_20_max value: 42.215399999999995 - type: nauc_ndcg_at_20_std value: -4.825 - type: nauc_ndcg_at_20_diff1 value: 53.296699999999994 - type: nauc_ndcg_at_100_max value: 42.0653 - type: nauc_ndcg_at_100_std value: -4.356 - type: nauc_ndcg_at_100_diff1 value: 53.595099999999995 - type: nauc_ndcg_at_1000_max value: 41.016200000000005 - type: nauc_ndcg_at_1000_std value: -6.2975 - type: nauc_ndcg_at_1000_diff1 value: 53.7728 - type: nauc_map_at_1_max value: 35.1263 - type: nauc_map_at_1_std value: -12.454600000000001 - type: nauc_map_at_1_diff1 value: 58.824 - type: nauc_map_at_3_max value: 38.9371 - type: nauc_map_at_3_std value: -10.1381 - type: nauc_map_at_3_diff1 value: 54.008500000000005 - type: nauc_map_at_5_max value: 39.1816 - type: nauc_map_at_5_std value: -9.4667 - type: nauc_map_at_5_diff1 value: 53.748 - type: nauc_map_at_10_max value: 39.5398 - type: nauc_map_at_10_std value: -8.5131 - type: nauc_map_at_10_diff1 value: 54.433699999999995 - type: nauc_map_at_20_max value: 39.4926 - type: nauc_map_at_20_std value: -8.4859 - type: nauc_map_at_20_diff1 value: 54.4071 - type: nauc_map_at_100_max value: 39.4716 - type: nauc_map_at_100_std value: -8.4321 - type: nauc_map_at_100_diff1 value: 54.4382 - type: nauc_map_at_1000_max value: 39.4529 - type: nauc_map_at_1000_std value: -8.468499999999999 - type: nauc_map_at_1000_diff1 value: 54.4425 - type: nauc_recall_at_1_max value: 35.1263 - type: nauc_recall_at_1_std value: -12.454600000000001 - type: nauc_recall_at_1_diff1 value: 58.824 - type: nauc_recall_at_3_max value: 46.9678 - type: nauc_recall_at_3_std value: -5.3263 - type: nauc_recall_at_3_diff1 value: 46.4906 - type: nauc_recall_at_5_max value: 51.4392 - type: nauc_recall_at_5_std value: 0.864 - type: nauc_recall_at_5_diff1 value: 42.1144 - type: nauc_recall_at_10_max value: 60.5469 - type: nauc_recall_at_10_std value: 18.2879 - type: nauc_recall_at_10_diff1 value: 48.3112 - type: nauc_recall_at_20_max value: 65.8794 - type: nauc_recall_at_20_std value: 29.569499999999998 - type: nauc_recall_at_20_diff1 value: 45.7507 - type: nauc_recall_at_100_max value: 85.5603 - type: nauc_recall_at_100_std value: 75.366 - type: nauc_recall_at_100_diff1 value: 46.4102 - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_precision_at_1_max value: 35.1263 - type: nauc_precision_at_1_std value: -12.454600000000001 - type: nauc_precision_at_1_diff1 value: 58.824 - type: nauc_precision_at_3_max value: 46.9678 - type: nauc_precision_at_3_std value: -5.3263 - type: nauc_precision_at_3_diff1 value: 46.4906 - type: nauc_precision_at_5_max value: 51.4392 - type: nauc_precision_at_5_std value: 0.864 - type: nauc_precision_at_5_diff1 value: 42.1144 - type: nauc_precision_at_10_max value: 60.5469 - type: nauc_precision_at_10_std value: 18.2879 - type: nauc_precision_at_10_diff1 value: 48.3112 - type: nauc_precision_at_20_max value: 65.8794 - type: nauc_precision_at_20_std value: 29.569499999999998 - type: nauc_precision_at_20_diff1 value: 45.7507 - type: nauc_precision_at_100_max value: 85.5603 - type: nauc_precision_at_100_std value: 75.366 - type: nauc_precision_at_100_diff1 value: 46.4102 - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_mrr_at_1_max value: 35.1263 - type: nauc_mrr_at_1_std value: -12.454600000000001 - type: nauc_mrr_at_1_diff1 value: 58.824 - type: nauc_mrr_at_3_max value: 38.9371 - type: nauc_mrr_at_3_std value: -10.1381 - type: nauc_mrr_at_3_diff1 value: 54.008500000000005 - type: nauc_mrr_at_5_max value: 39.1816 - type: nauc_mrr_at_5_std value: -9.4667 - type: nauc_mrr_at_5_diff1 value: 53.748 - type: nauc_mrr_at_10_max value: 39.5398 - type: nauc_mrr_at_10_std value: -8.5131 - type: nauc_mrr_at_10_diff1 value: 54.433699999999995 - type: nauc_mrr_at_20_max value: 39.4926 - type: nauc_mrr_at_20_std value: -8.4859 - type: nauc_mrr_at_20_diff1 value: 54.4071 - type: nauc_mrr_at_100_max value: 39.4716 - type: nauc_mrr_at_100_std value: -8.4321 - type: nauc_mrr_at_100_diff1 value: 54.4382 - type: nauc_mrr_at_1000_max value: 39.4529 - type: nauc_mrr_at_1000_std value: -8.468499999999999 - type: nauc_mrr_at_1000_diff1 value: 54.4425 - type: main_score value: 69.41199999999999 task: type: Retrieval - dataset: config: php name: MTEB CodeSearchNetRetrieval (php) revision: fdc6a9e39575768c27eb8a2a5f702bf846eb4759 split: test type: code-search-net/code_search_net metrics: - type: ndcg_at_1 value: 60.3 - type: ndcg_at_3 value: 71.487 - type: ndcg_at_5 value: 73.359 - type: ndcg_at_10 value: 75.13 - type: ndcg_at_20 value: 75.768 - type: ndcg_at_100 value: 76.652 - type: ndcg_at_1000 value: 77.061 - type: map_at_1 value: 60.3 - type: map_at_3 value: 68.75 - type: map_at_5 value: 69.8 - type: map_at_10 value: 70.526 - type: map_at_20 value: 70.705 - type: map_at_100 value: 70.838 - type: map_at_1000 value: 70.84899999999999 - type: recall_at_1 value: 60.3 - type: recall_at_3 value: 79.4 - type: recall_at_5 value: 83.89999999999999 - type: recall_at_10 value: 89.4 - type: recall_at_20 value: 91.9 - type: recall_at_100 value: 96.5 - type: recall_at_1000 value: 100.0 - type: precision_at_1 value: 60.3 - type: precision_at_3 value: 26.467000000000002 - type: precision_at_5 value: 16.78 - type: precision_at_10 value: 8.94 - type: precision_at_20 value: 4.595 - type: precision_at_100 value: 0.9650000000000001 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 60.3 - type: mrr_at_3 value: 68.75 - type: mrr_at_5 value: 69.8 - type: mrr_at_10 value: 70.52619999999999 - type: mrr_at_20 value: 70.7048 - type: mrr_at_100 value: 70.838 - type: mrr_at_1000 value: 70.8488 - type: nauc_ndcg_at_1_max value: 45.8593 - type: nauc_ndcg_at_1_std value: 13.2893 - type: nauc_ndcg_at_1_diff1 value: 66.718 - type: nauc_ndcg_at_3_max value: 55.4137 - type: nauc_ndcg_at_3_std value: 23.0079 - type: nauc_ndcg_at_3_diff1 value: 63.693200000000004 - type: nauc_ndcg_at_5_max value: 56.2033 - type: nauc_ndcg_at_5_std value: 25.2245 - type: nauc_ndcg_at_5_diff1 value: 65.0071 - type: nauc_ndcg_at_10_max value: 56.540400000000005 - type: nauc_ndcg_at_10_std value: 26.323400000000003 - type: nauc_ndcg_at_10_diff1 value: 65.8486 - type: nauc_ndcg_at_20_max value: 56.2864 - type: nauc_ndcg_at_20_std value: 26.6575 - type: nauc_ndcg_at_20_diff1 value: 65.6045 - type: nauc_ndcg_at_100_max value: 55.2604 - type: nauc_ndcg_at_100_std value: 24.9411 - type: nauc_ndcg_at_100_diff1 value: 65.9764 - type: nauc_ndcg_at_1000_max value: 54.514799999999994 - type: nauc_ndcg_at_1000_std value: 23.7436 - type: nauc_ndcg_at_1000_diff1 value: 65.6415 - type: nauc_map_at_1_max value: 45.8593 - type: nauc_map_at_1_std value: 13.2893 - type: nauc_map_at_1_diff1 value: 66.718 - type: nauc_map_at_3_max value: 52.809799999999996 - type: nauc_map_at_3_std value: 20.2338 - type: nauc_map_at_3_diff1 value: 64.4615 - type: nauc_map_at_5_max value: 53.10080000000001 - type: nauc_map_at_5_std value: 21.2375 - type: nauc_map_at_5_diff1 value: 65.1416 - type: nauc_map_at_10_max value: 53.117000000000004 - type: nauc_map_at_10_std value: 21.512999999999998 - type: nauc_map_at_10_diff1 value: 65.4616 - type: nauc_map_at_20_max value: 53.0434 - type: nauc_map_at_20_std value: 21.5865 - type: nauc_map_at_20_diff1 value: 65.4014 - type: nauc_map_at_100_max value: 52.898199999999996 - type: nauc_map_at_100_std value: 21.357 - type: nauc_map_at_100_diff1 value: 65.4438 - type: nauc_map_at_1000_max value: 52.8844 - type: nauc_map_at_1000_std value: 21.3357 - type: nauc_map_at_1000_diff1 value: 65.4388 - type: nauc_recall_at_1_max value: 45.8593 - type: nauc_recall_at_1_std value: 13.2893 - type: nauc_recall_at_1_diff1 value: 66.718 - type: nauc_recall_at_3_max value: 65.5352 - type: nauc_recall_at_3_std value: 33.8655 - type: nauc_recall_at_3_diff1 value: 60.740300000000005 - type: nauc_recall_at_5_max value: 70.9819 - type: nauc_recall_at_5_std value: 44.5937 - type: nauc_recall_at_5_diff1 value: 64.7568 - type: nauc_recall_at_10_max value: 80.07469999999999 - type: nauc_recall_at_10_std value: 60.3717 - type: nauc_recall_at_10_diff1 value: 69.6608 - type: nauc_recall_at_20_max value: 84.3633 - type: nauc_recall_at_20_std value: 73.2136 - type: nauc_recall_at_20_diff1 value: 68.3675 - type: nauc_recall_at_100_max value: 91.4499 - type: nauc_recall_at_100_std value: 83.50410000000001 - type: nauc_recall_at_100_diff1 value: 82.91579999999999 - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_precision_at_1_max value: 45.8593 - type: nauc_precision_at_1_std value: 13.2893 - type: nauc_precision_at_1_diff1 value: 66.718 - type: nauc_precision_at_3_max value: 65.5352 - type: nauc_precision_at_3_std value: 33.8655 - type: nauc_precision_at_3_diff1 value: 60.740300000000005 - type: nauc_precision_at_5_max value: 70.9819 - type: nauc_precision_at_5_std value: 44.5937 - type: nauc_precision_at_5_diff1 value: 64.7568 - type: nauc_precision_at_10_max value: 80.07469999999999 - type: nauc_precision_at_10_std value: 60.3717 - type: nauc_precision_at_10_diff1 value: 69.6608 - type: nauc_precision_at_20_max value: 84.3633 - type: nauc_precision_at_20_std value: 73.2136 - type: nauc_precision_at_20_diff1 value: 68.3675 - type: nauc_precision_at_100_max value: 91.4499 - type: nauc_precision_at_100_std value: 83.50410000000001 - type: nauc_precision_at_100_diff1 value: 82.91579999999999 - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_mrr_at_1_max value: 45.8593 - type: nauc_mrr_at_1_std value: 13.2893 - type: nauc_mrr_at_1_diff1 value: 66.718 - type: nauc_mrr_at_3_max value: 52.809799999999996 - type: nauc_mrr_at_3_std value: 20.2338 - type: nauc_mrr_at_3_diff1 value: 64.4615 - type: nauc_mrr_at_5_max value: 53.10080000000001 - type: nauc_mrr_at_5_std value: 21.2375 - type: nauc_mrr_at_5_diff1 value: 65.1416 - type: nauc_mrr_at_10_max value: 53.117000000000004 - type: nauc_mrr_at_10_std value: 21.512999999999998 - type: nauc_mrr_at_10_diff1 value: 65.4616 - type: nauc_mrr_at_20_max value: 53.0434 - type: nauc_mrr_at_20_std value: 21.5865 - type: nauc_mrr_at_20_diff1 value: 65.4014 - type: nauc_mrr_at_100_max value: 52.898199999999996 - type: nauc_mrr_at_100_std value: 21.357 - type: nauc_mrr_at_100_diff1 value: 65.4438 - type: nauc_mrr_at_1000_max value: 52.8844 - type: nauc_mrr_at_1000_std value: 21.3357 - type: nauc_mrr_at_1000_diff1 value: 65.4388 - type: main_score value: 75.13 task: type: Retrieval - dataset: config: default name: MTEB CodeTransOceanContest (default) revision: 20da4eb20a4b17300c0986ee148c90867a7f2a4d split: test type: CoIR-Retrieval/codetrans-contest metrics: - type: ndcg_at_1 value: 55.656000000000006 - type: ndcg_at_3 value: 62.497 - type: ndcg_at_5 value: 64.95100000000001 - type: ndcg_at_10 value: 66.733 - type: ndcg_at_20 value: 67.778 - type: ndcg_at_100 value: 69.962 - type: ndcg_at_1000 value: 70.736 - type: map_at_1 value: 55.656000000000006 - type: map_at_3 value: 60.934999999999995 - type: map_at_5 value: 62.315 - type: map_at_10 value: 63.065000000000005 - type: map_at_20 value: 63.36000000000001 - type: map_at_100 value: 63.663000000000004 - type: map_at_1000 value: 63.696 - type: recall_at_1 value: 55.656000000000006 - type: recall_at_3 value: 66.968 - type: recall_at_5 value: 72.851 - type: recall_at_10 value: 78.281 - type: recall_at_20 value: 82.353 - type: recall_at_100 value: 94.118 - type: recall_at_1000 value: 100.0 - type: precision_at_1 value: 55.656000000000006 - type: precision_at_3 value: 22.323 - type: precision_at_5 value: 14.57 - type: precision_at_10 value: 7.828 - type: precision_at_20 value: 4.118 - type: precision_at_100 value: 0.941 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 55.656099999999995 - type: mrr_at_3 value: 60.9351 - type: mrr_at_5 value: 62.315200000000004 - type: mrr_at_10 value: 63.0653 - type: mrr_at_20 value: 63.360099999999996 - type: mrr_at_100 value: 63.6629 - type: mrr_at_1000 value: 63.695800000000006 - type: nauc_ndcg_at_1_max value: 51.957600000000006 - type: nauc_ndcg_at_1_std value: -1.4414 - type: nauc_ndcg_at_1_diff1 value: 73.7269 - type: nauc_ndcg_at_3_max value: 56.2033 - type: nauc_ndcg_at_3_std value: -0.5342 - type: nauc_ndcg_at_3_diff1 value: 71.29339999999999 - type: nauc_ndcg_at_5_max value: 53.2043 - type: nauc_ndcg_at_5_std value: -4.2406 - type: nauc_ndcg_at_5_diff1 value: 71.288 - type: nauc_ndcg_at_10_max value: 53.864999999999995 - type: nauc_ndcg_at_10_std value: -1.7964 - type: nauc_ndcg_at_10_diff1 value: 71.3515 - type: nauc_ndcg_at_20_max value: 53.8995 - type: nauc_ndcg_at_20_std value: -2.3122 - type: nauc_ndcg_at_20_diff1 value: 71.5024 - type: nauc_ndcg_at_100_max value: 53.7574 - type: nauc_ndcg_at_100_std value: -2.1357 - type: nauc_ndcg_at_100_diff1 value: 71.57249999999999 - type: nauc_ndcg_at_1000_max value: 53.7629 - type: nauc_ndcg_at_1000_std value: -2.2336 - type: nauc_ndcg_at_1000_diff1 value: 71.6512 - type: nauc_map_at_1_max value: 51.957600000000006 - type: nauc_map_at_1_std value: -1.4414 - type: nauc_map_at_1_diff1 value: 73.7269 - type: nauc_map_at_3_max value: 55.3725 - type: nauc_map_at_3_std value: -0.7385 - type: nauc_map_at_3_diff1 value: 71.94669999999999 - type: nauc_map_at_5_max value: 53.759100000000004 - type: nauc_map_at_5_std value: -2.6806 - type: nauc_map_at_5_diff1 value: 71.97 - type: nauc_map_at_10_max value: 53.9832 - type: nauc_map_at_10_std value: -1.8215 - type: nauc_map_at_10_diff1 value: 72.0873 - type: nauc_map_at_20_max value: 53.9655 - type: nauc_map_at_20_std value: -1.9612 - type: nauc_map_at_20_diff1 value: 72.1207 - type: nauc_map_at_100_max value: 53.8791 - type: nauc_map_at_100_std value: -1.9848000000000001 - type: nauc_map_at_100_diff1 value: 72.0929 - type: nauc_map_at_1000_max value: 53.8818 - type: nauc_map_at_1000_std value: -1.9868000000000001 - type: nauc_map_at_1000_diff1 value: 72.0883 - type: nauc_recall_at_1_max value: 51.957600000000006 - type: nauc_recall_at_1_std value: -1.4414 - type: nauc_recall_at_1_diff1 value: 73.7269 - type: nauc_recall_at_3_max value: 58.7272 - type: nauc_recall_at_3_std value: 0.10269999999999999 - type: nauc_recall_at_3_diff1 value: 69.2012 - type: nauc_recall_at_5_max value: 50.545700000000004 - type: nauc_recall_at_5_std value: -10.5393 - type: nauc_recall_at_5_diff1 value: 68.8226 - type: nauc_recall_at_10_max value: 53.0698 - type: nauc_recall_at_10_std value: -0.7827000000000001 - type: nauc_recall_at_10_diff1 value: 68.00110000000001 - type: nauc_recall_at_20_max value: 53.4631 - type: nauc_recall_at_20_std value: -3.6452 - type: nauc_recall_at_20_diff1 value: 68.3947 - type: nauc_recall_at_100_max value: 54.212700000000005 - type: nauc_recall_at_100_std value: 1.2398 - type: nauc_recall_at_100_diff1 value: 67.33590000000001 - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_precision_at_1_max value: 51.957600000000006 - type: nauc_precision_at_1_std value: -1.4414 - type: nauc_precision_at_1_diff1 value: 73.7269 - type: nauc_precision_at_3_max value: 58.7272 - type: nauc_precision_at_3_std value: 0.10269999999999999 - type: nauc_precision_at_3_diff1 value: 69.2012 - type: nauc_precision_at_5_max value: 50.545700000000004 - type: nauc_precision_at_5_std value: -10.5393 - type: nauc_precision_at_5_diff1 value: 68.8226 - type: nauc_precision_at_10_max value: 53.0698 - type: nauc_precision_at_10_std value: -0.7827000000000001 - type: nauc_precision_at_10_diff1 value: 68.00110000000001 - type: nauc_precision_at_20_max value: 53.4631 - type: nauc_precision_at_20_std value: -3.6452 - type: nauc_precision_at_20_diff1 value: 68.3947 - type: nauc_precision_at_100_max value: 54.212700000000005 - type: nauc_precision_at_100_std value: 1.2398 - type: nauc_precision_at_100_diff1 value: 67.33590000000001 - type: nauc_precision_at_1000_max value: 100.0 - type: nauc_precision_at_1000_std value: 100.0 - type: nauc_precision_at_1000_diff1 value: 100.0 - type: nauc_mrr_at_1_max value: 51.957600000000006 - type: nauc_mrr_at_1_std value: -1.4414 - type: nauc_mrr_at_1_diff1 value: 73.7269 - type: nauc_mrr_at_3_max value: 55.3725 - type: nauc_mrr_at_3_std value: -0.7385 - type: nauc_mrr_at_3_diff1 value: 71.94669999999999 - type: nauc_mrr_at_5_max value: 53.759100000000004 - type: nauc_mrr_at_5_std value: -2.6806 - type: nauc_mrr_at_5_diff1 value: 71.97 - type: nauc_mrr_at_10_max value: 53.9832 - type: nauc_mrr_at_10_std value: -1.8215 - type: nauc_mrr_at_10_diff1 value: 72.0873 - type: nauc_mrr_at_20_max value: 53.9655 - type: nauc_mrr_at_20_std value: -1.9612 - type: nauc_mrr_at_20_diff1 value: 72.1207 - type: nauc_mrr_at_100_max value: 53.8791 - type: nauc_mrr_at_100_std value: -1.9848000000000001 - type: nauc_mrr_at_100_diff1 value: 72.0929 - type: nauc_mrr_at_1000_max value: 53.8818 - type: nauc_mrr_at_1000_std value: -1.9868000000000001 - type: nauc_mrr_at_1000_diff1 value: 72.0883 - type: main_score value: 66.733 task: type: Retrieval - dataset: config: default name: MTEB CodeTransOceanDL (default) revision: 281562cb8a1265ab5c0824bfa6ddcd9b0a15618f split: test type: CoIR-Retrieval/codetrans-dl metrics: - type: ndcg_at_1 value: 8.889 - type: ndcg_at_3 value: 9.868 - type: ndcg_at_5 value: 16.543 - type: ndcg_at_10 value: 29.599999999999998 - type: ndcg_at_20 value: 36.004999999999995 - type: ndcg_at_100 value: 37.442 - type: ndcg_at_1000 value: 37.601 - type: map_at_1 value: 8.889 - type: map_at_3 value: 9.629999999999999 - type: map_at_5 value: 13.491 - type: map_at_10 value: 18.733 - type: map_at_20 value: 20.687 - type: map_at_100 value: 20.886 - type: map_at_1000 value: 20.895 - type: recall_at_1 value: 8.889 - type: recall_at_3 value: 10.556000000000001 - type: recall_at_5 value: 26.111 - type: recall_at_10 value: 67.22200000000001 - type: recall_at_20 value: 91.111 - type: recall_at_100 value: 98.88900000000001 - type: recall_at_1000 value: 100.0 - type: precision_at_1 value: 8.889 - type: precision_at_3 value: 3.519 - type: precision_at_5 value: 5.222 - type: precision_at_10 value: 6.722 - type: precision_at_20 value: 4.556 - type: precision_at_100 value: 0.989 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 1.6667 - type: mrr_at_3 value: 7.963000000000001 - type: mrr_at_5 value: 9.6296 - type: mrr_at_10 value: 15.607099999999999 - type: mrr_at_20 value: 17.2877 - type: mrr_at_100 value: 17.5377 - type: mrr_at_1000 value: 17.5465 - type: nauc_ndcg_at_1_max value: -41.348600000000005 - type: nauc_ndcg_at_1_std value: -29.3584 - type: nauc_ndcg_at_1_diff1 value: -31.9493 - type: nauc_ndcg_at_3_max value: -42.877700000000004 - type: nauc_ndcg_at_3_std value: -31.703599999999998 - type: nauc_ndcg_at_3_diff1 value: -26.914500000000004 - type: nauc_ndcg_at_5_max value: -33.1784 - type: nauc_ndcg_at_5_std value: -24.2625 - type: nauc_ndcg_at_5_diff1 value: -11.164399999999999 - type: nauc_ndcg_at_10_max value: -34.5597 - type: nauc_ndcg_at_10_std value: -28.0239 - type: nauc_ndcg_at_10_diff1 value: -8.6589 - type: nauc_ndcg_at_20_max value: -41.0648 - type: nauc_ndcg_at_20_std value: -28.6854 - type: nauc_ndcg_at_20_diff1 value: -12.1999 - type: nauc_ndcg_at_100_max value: -38.2277 - type: nauc_ndcg_at_100_std value: -30.397999999999996 - type: nauc_ndcg_at_100_diff1 value: -14.3859 - type: nauc_ndcg_at_1000_max value: -38.6002 - type: nauc_ndcg_at_1000_std value: -28.9056 - type: nauc_ndcg_at_1000_diff1 value: -14.619499999999999 - type: nauc_map_at_1_max value: -41.348600000000005 - type: nauc_map_at_1_std value: -29.3584 - type: nauc_map_at_1_diff1 value: -31.9493 - type: nauc_map_at_3_max value: -42.5041 - type: nauc_map_at_3_std value: -31.1456 - type: nauc_map_at_3_diff1 value: -27.8752 - type: nauc_map_at_5_max value: -36.146 - type: nauc_map_at_5_std value: -26.268900000000002 - type: nauc_map_at_5_diff1 value: -17.1717 - type: nauc_map_at_10_max value: -36.594300000000004 - type: nauc_map_at_10_std value: -27.884199999999996 - type: nauc_map_at_10_diff1 value: -15.7719 - type: nauc_map_at_20_max value: -38.9209 - type: nauc_map_at_20_std value: -28.2712 - type: nauc_map_at_20_diff1 value: -17.167199999999998 - type: nauc_map_at_100_max value: -38.5835 - type: nauc_map_at_100_std value: -28.5457 - type: nauc_map_at_100_diff1 value: -17.4205 - type: nauc_map_at_1000_max value: -38.6011 - type: nauc_map_at_1000_std value: -28.4752 - type: nauc_map_at_1000_diff1 value: -17.4332 - type: nauc_recall_at_1_max value: -41.348600000000005 - type: nauc_recall_at_1_std value: -29.3584 - type: nauc_recall_at_1_diff1 value: -31.9493 - type: nauc_recall_at_3_max value: -43.884499999999996 - type: nauc_recall_at_3_std value: -33.202 - type: nauc_recall_at_3_diff1 value: -24.4202 - type: nauc_recall_at_5_max value: -27.2488 - type: nauc_recall_at_5_std value: -20.238999999999997 - type: nauc_recall_at_5_diff1 value: 0.5009 - type: nauc_recall_at_10_max value: -30.416700000000002 - type: nauc_recall_at_10_std value: -29.2207 - type: nauc_recall_at_10_diff1 value: 7.2459 - type: nauc_recall_at_20_max value: -63.0894 - type: nauc_recall_at_20_std value: -33.3975 - type: nauc_recall_at_20_diff1 value: 12.6371 - type: nauc_recall_at_100_max value: -2.4276 - type: nauc_recall_at_100_std value: -173.9963 - type: nauc_recall_at_100_diff1 value: 7.9365000000000006 - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_precision_at_1_max value: -41.348600000000005 - type: nauc_precision_at_1_std value: -29.3584 - type: nauc_precision_at_1_diff1 value: -31.9493 - type: nauc_precision_at_3_max value: -43.884499999999996 - type: nauc_precision_at_3_std value: -33.202 - type: nauc_precision_at_3_diff1 value: -24.4202 - type: nauc_precision_at_5_max value: -27.2488 - type: nauc_precision_at_5_std value: -20.238999999999997 - type: nauc_precision_at_5_diff1 value: 0.5009 - type: nauc_precision_at_10_max value: -30.416700000000002 - type: nauc_precision_at_10_std value: -29.2207 - type: nauc_precision_at_10_diff1 value: 7.2459 - type: nauc_precision_at_20_max value: -63.0894 - type: nauc_precision_at_20_std value: -33.3975 - type: nauc_precision_at_20_diff1 value: 12.6371 - type: nauc_precision_at_100_max value: -2.4276 - type: nauc_precision_at_100_std value: -173.9963 - type: nauc_precision_at_100_diff1 value: 7.9365000000000006 - type: nauc_precision_at_1000_max value: 100.0 - type: nauc_precision_at_1000_std value: 100.0 - type: nauc_precision_at_1000_diff1 value: 100.0 - type: nauc_mrr_at_1_max value: -54.9682 - type: nauc_mrr_at_1_std value: -52.464 - type: nauc_mrr_at_1_diff1 value: -14.193700000000002 - type: nauc_mrr_at_3_max value: -26.9762 - type: nauc_mrr_at_3_std value: -21.9893 - type: nauc_mrr_at_3_diff1 value: 22.9584 - type: nauc_mrr_at_5_max value: -26.8118 - type: nauc_mrr_at_5_std value: -25.476300000000002 - type: nauc_mrr_at_5_diff1 value: 16.8933 - type: nauc_mrr_at_10_max value: -32.9675 - type: nauc_mrr_at_10_std value: -29.8253 - type: nauc_mrr_at_10_diff1 value: 23.7632 - type: nauc_mrr_at_20_max value: -32.831700000000005 - type: nauc_mrr_at_20_std value: -27.0541 - type: nauc_mrr_at_20_diff1 value: 21.238599999999998 - type: nauc_mrr_at_100_max value: -32.2085 - type: nauc_mrr_at_100_std value: -27.3913 - type: nauc_mrr_at_100_diff1 value: 21.2347 - type: nauc_mrr_at_1000_max value: -32.230399999999996 - type: nauc_mrr_at_1000_std value: -27.2842 - type: nauc_mrr_at_1000_diff1 value: 21.2439 - type: main_score value: 29.599999999999998 task: type: Retrieval - dataset: config: default name: MTEB CosQA (default) revision: bc5efb7e9d437246ce393ed19d772e08e4a79535 split: test type: CoIR-Retrieval/cosqa metrics: - type: ndcg_at_1 value: 16.0 - type: ndcg_at_3 value: 25.474000000000004 - type: ndcg_at_5 value: 31.291000000000004 - type: ndcg_at_10 value: 36.619 - type: ndcg_at_20 value: 39.513999999999996 - type: ndcg_at_100 value: 43.002 - type: ndcg_at_1000 value: 43.846000000000004 - type: map_at_1 value: 16.0 - type: map_at_3 value: 22.967000000000002 - type: map_at_5 value: 26.177 - type: map_at_10 value: 28.427999999999997 - type: map_at_20 value: 29.229 - type: map_at_100 value: 29.725 - type: map_at_1000 value: 29.761 - type: recall_at_1 value: 16.0 - type: recall_at_3 value: 32.800000000000004 - type: recall_at_5 value: 47.0 - type: recall_at_10 value: 63.2 - type: recall_at_20 value: 74.6 - type: recall_at_100 value: 93.2 - type: recall_at_1000 value: 99.6 - type: precision_at_1 value: 16.0 - type: precision_at_3 value: 10.933 - type: precision_at_5 value: 9.4 - type: precision_at_10 value: 6.32 - type: precision_at_20 value: 3.73 - type: precision_at_100 value: 0.932 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 16.400000000000002 - type: mrr_at_3 value: 24.1333 - type: mrr_at_5 value: 26.043300000000002 - type: mrr_at_10 value: 28.3194 - type: mrr_at_20 value: 29.2356 - type: mrr_at_100 value: 29.7487 - type: mrr_at_1000 value: 29.786600000000004 - type: nauc_ndcg_at_1_max value: 3.254 - type: nauc_ndcg_at_1_std value: -14.7227 - type: nauc_ndcg_at_1_diff1 value: 37.6337 - type: nauc_ndcg_at_3_max value: 7.615600000000001 - type: nauc_ndcg_at_3_std value: -13.242799999999999 - type: nauc_ndcg_at_3_diff1 value: 22.9354 - type: nauc_ndcg_at_5_max value: 11.186599999999999 - type: nauc_ndcg_at_5_std value: -10.3925 - type: nauc_ndcg_at_5_diff1 value: 17.779600000000002 - type: nauc_ndcg_at_10_max value: 9.4009 - type: nauc_ndcg_at_10_std value: -10.864 - type: nauc_ndcg_at_10_diff1 value: 18.1759 - type: nauc_ndcg_at_20_max value: 9.9435 - type: nauc_ndcg_at_20_std value: -10.5532 - type: nauc_ndcg_at_20_diff1 value: 18.0746 - type: nauc_ndcg_at_100_max value: 9.6817 - type: nauc_ndcg_at_100_std value: -9.0056 - type: nauc_ndcg_at_100_diff1 value: 20.5883 - type: nauc_ndcg_at_1000_max value: 9.1859 - type: nauc_ndcg_at_1000_std value: -10.2839 - type: nauc_ndcg_at_1000_diff1 value: 21.3418 - type: nauc_map_at_1_max value: 3.254 - type: nauc_map_at_1_std value: -14.7227 - type: nauc_map_at_1_diff1 value: 37.6337 - type: nauc_map_at_3_max value: 6.641800000000001 - type: nauc_map_at_3_std value: -13.4988 - type: nauc_map_at_3_diff1 value: 26.174999999999997 - type: nauc_map_at_5_max value: 8.6381 - type: nauc_map_at_5_std value: -11.8414 - type: nauc_map_at_5_diff1 value: 23.1285 - type: nauc_map_at_10_max value: 7.8475 - type: nauc_map_at_10_std value: -12.021999999999998 - type: nauc_map_at_10_diff1 value: 23.3678 - type: nauc_map_at_20_max value: 8.0317 - type: nauc_map_at_20_std value: -11.8687 - type: nauc_map_at_20_diff1 value: 23.4456 - type: nauc_map_at_100_max value: 7.9571000000000005 - type: nauc_map_at_100_std value: -11.6699 - type: nauc_map_at_100_diff1 value: 23.7984 - type: nauc_map_at_1000_max value: 7.943 - type: nauc_map_at_1000_std value: -11.7087 - type: nauc_map_at_1000_diff1 value: 23.8186 - type: nauc_recall_at_1_max value: 3.254 - type: nauc_recall_at_1_std value: -14.7227 - type: nauc_recall_at_1_diff1 value: 37.6337 - type: nauc_recall_at_3_max value: 9.9777 - type: nauc_recall_at_3_std value: -12.645100000000001 - type: nauc_recall_at_3_diff1 value: 15.090600000000002 - type: nauc_recall_at_5_max value: 17.8264 - type: nauc_recall_at_5_std value: -6.5932 - type: nauc_recall_at_5_diff1 value: 4.3373 - type: nauc_recall_at_10_max value: 13.5901 - type: nauc_recall_at_10_std value: -7.5634999999999994 - type: nauc_recall_at_10_diff1 value: 3.2628999999999997 - type: nauc_recall_at_20_max value: 16.8637 - type: nauc_recall_at_20_std value: -5.876399999999999 - type: nauc_recall_at_20_diff1 value: -2.0105999999999997 - type: nauc_recall_at_100_max value: 28.4163 - type: nauc_recall_at_100_std value: 32.5479 - type: nauc_recall_at_100_diff1 value: 1.6202999999999999 - type: nauc_recall_at_1000_max value: 86.1111 - type: nauc_recall_at_1000_std value: 93.4641 - type: nauc_recall_at_1000_diff1 value: 63.8189 - type: nauc_precision_at_1_max value: 3.254 - type: nauc_precision_at_1_std value: -14.7227 - type: nauc_precision_at_1_diff1 value: 37.6337 - type: nauc_precision_at_3_max value: 9.9777 - type: nauc_precision_at_3_std value: -12.645100000000001 - type: nauc_precision_at_3_diff1 value: 15.090600000000002 - type: nauc_precision_at_5_max value: 17.8264 - type: nauc_precision_at_5_std value: -6.5932 - type: nauc_precision_at_5_diff1 value: 4.3373 - type: nauc_precision_at_10_max value: 13.5901 - type: nauc_precision_at_10_std value: -7.5634999999999994 - type: nauc_precision_at_10_diff1 value: 3.2628999999999997 - type: nauc_precision_at_20_max value: 16.8637 - type: nauc_precision_at_20_std value: -5.876399999999999 - type: nauc_precision_at_20_diff1 value: -2.0105999999999997 - type: nauc_precision_at_100_max value: 28.4163 - type: nauc_precision_at_100_std value: 32.5479 - type: nauc_precision_at_100_diff1 value: 1.6202999999999999 - type: nauc_precision_at_1000_max value: 86.1111 - type: nauc_precision_at_1000_std value: 93.4641 - type: nauc_precision_at_1000_diff1 value: 63.8189 - type: nauc_mrr_at_1_max value: 7.7073 - type: nauc_mrr_at_1_std value: -15.7727 - type: nauc_mrr_at_1_diff1 value: 36.2605 - type: nauc_mrr_at_3_max value: 7.0968 - type: nauc_mrr_at_3_std value: -13.9735 - type: nauc_mrr_at_3_diff1 value: 25.1765 - type: nauc_mrr_at_5_max value: 7.2429 - type: nauc_mrr_at_5_std value: -14.223099999999999 - type: nauc_mrr_at_5_diff1 value: 23.2141 - type: nauc_mrr_at_10_max value: 8.1606 - type: nauc_mrr_at_10_std value: -13.4187 - type: nauc_mrr_at_10_diff1 value: 22.9983 - type: nauc_mrr_at_20_max value: 8.39 - type: nauc_mrr_at_20_std value: -13.28 - type: nauc_mrr_at_20_diff1 value: 22.830000000000002 - type: nauc_mrr_at_100_max value: 8.3666 - type: nauc_mrr_at_100_std value: -13.112599999999999 - type: nauc_mrr_at_100_diff1 value: 23.1988 - type: nauc_mrr_at_1000_max value: 8.3461 - type: nauc_mrr_at_1000_std value: -13.159799999999999 - type: nauc_mrr_at_1000_diff1 value: 23.217499999999998 - type: main_score value: 36.619 task: type: Retrieval - dataset: config: default name: MTEB DBPedia (default) revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 split: test type: mteb/dbpedia metrics: - type: ndcg_at_1 value: 54.37499999999999 - type: ndcg_at_3 value: 44.463 - type: ndcg_at_5 value: 41.276 - type: ndcg_at_10 value: 39.409 - type: ndcg_at_20 value: 38.884 - type: ndcg_at_100 value: 44.382 - type: ndcg_at_1000 value: 52.48500000000001 - type: map_at_1 value: 8.709999999999999 - type: map_at_3 value: 13.974 - type: map_at_5 value: 16.104 - type: map_at_10 value: 19.218 - type: map_at_20 value: 21.966 - type: map_at_100 value: 26.290999999999997 - type: map_at_1000 value: 27.985 - type: recall_at_1 value: 8.709999999999999 - type: recall_at_3 value: 15.516 - type: recall_at_5 value: 18.907 - type: recall_at_10 value: 25.27 - type: recall_at_20 value: 31.968000000000004 - type: recall_at_100 value: 51.849999999999994 - type: recall_at_1000 value: 76.491 - type: precision_at_1 value: 67.25 - type: precision_at_3 value: 48.167 - type: precision_at_5 value: 39.4 - type: precision_at_10 value: 30.55 - type: precision_at_20 value: 22.75 - type: precision_at_100 value: 9.588000000000001 - type: precision_at_1000 value: 2.118 - type: mrr_at_1 value: 67.25 - type: mrr_at_3 value: 73.83330000000001 - type: mrr_at_5 value: 74.3083 - type: mrr_at_10 value: 75.03699999999999 - type: mrr_at_20 value: 75.1468 - type: mrr_at_100 value: 75.3182 - type: mrr_at_1000 value: 75.3253 - type: nauc_ndcg_at_1_max value: 30.7815 - type: nauc_ndcg_at_1_std value: 18.9823 - type: nauc_ndcg_at_1_diff1 value: 38.7185 - type: nauc_ndcg_at_3_max value: 27.3482 - type: nauc_ndcg_at_3_std value: 20.1357 - type: nauc_ndcg_at_3_diff1 value: 24.9478 - type: nauc_ndcg_at_5_max value: 23.8231 - type: nauc_ndcg_at_5_std value: 19.8595 - type: nauc_ndcg_at_5_diff1 value: 20.5147 - type: nauc_ndcg_at_10_max value: 19.8984 - type: nauc_ndcg_at_10_std value: 16.6632 - type: nauc_ndcg_at_10_diff1 value: 18.5195 - type: nauc_ndcg_at_20_max value: 15.437000000000001 - type: nauc_ndcg_at_20_std value: 13.8071 - type: nauc_ndcg_at_20_diff1 value: 18.0289 - type: nauc_ndcg_at_100_max value: 15.042900000000001 - type: nauc_ndcg_at_100_std value: 18.1034 - type: nauc_ndcg_at_100_diff1 value: 16.5884 - type: nauc_ndcg_at_1000_max value: 24.6937 - type: nauc_ndcg_at_1000_std value: 28.625 - type: nauc_ndcg_at_1000_diff1 value: 16.9271 - type: nauc_map_at_1_max value: -7.1981 - type: nauc_map_at_1_std value: -20.8768 - type: nauc_map_at_1_diff1 value: 24.6797 - type: nauc_map_at_3_max value: -4.8358 - type: nauc_map_at_3_std value: -16.6611 - type: nauc_map_at_3_diff1 value: 18.9037 - type: nauc_map_at_5_max value: -3.4354999999999998 - type: nauc_map_at_5_std value: -14.018600000000001 - type: nauc_map_at_5_diff1 value: 17.516499999999997 - type: nauc_map_at_10_max value: -0.9939999999999999 - type: nauc_map_at_10_std value: -8.484 - type: nauc_map_at_10_diff1 value: 15.8007 - type: nauc_map_at_20_max value: 3.2260999999999997 - type: nauc_map_at_20_std value: -0.8369 - type: nauc_map_at_20_diff1 value: 15.8524 - type: nauc_map_at_100_max value: 9.8084 - type: nauc_map_at_100_std value: 11.7005 - type: nauc_map_at_100_diff1 value: 16.5458 - type: nauc_map_at_1000_max value: 12.7583 - type: nauc_map_at_1000_std value: 15.331 - type: nauc_map_at_1000_diff1 value: 16.7243 - type: nauc_recall_at_1_max value: -7.1981 - type: nauc_recall_at_1_std value: -20.8768 - type: nauc_recall_at_1_diff1 value: 24.6797 - type: nauc_recall_at_3_max value: -8.7416 - type: nauc_recall_at_3_std value: -18.1497 - type: nauc_recall_at_3_diff1 value: 13.2151 - type: nauc_recall_at_5_max value: -7.7954 - type: nauc_recall_at_5_std value: -16.4247 - type: nauc_recall_at_5_diff1 value: 11.3209 - type: nauc_recall_at_10_max value: -6.8051 - type: nauc_recall_at_10_std value: -11.8753 - type: nauc_recall_at_10_diff1 value: 9.1489 - type: nauc_recall_at_20_max value: -3.7832999999999997 - type: nauc_recall_at_20_std value: -4.0681 - type: nauc_recall_at_20_diff1 value: 7.769299999999999 - type: nauc_recall_at_100_max value: 2.4143000000000003 - type: nauc_recall_at_100_std value: 13.5572 - type: nauc_recall_at_100_diff1 value: 6.3968 - type: nauc_recall_at_1000_max value: 14.8639 - type: nauc_recall_at_1000_std value: 34.389900000000004 - type: nauc_recall_at_1000_diff1 value: 2.3819 - type: nauc_precision_at_1_max value: 39.8074 - type: nauc_precision_at_1_std value: 29.7269 - type: nauc_precision_at_1_diff1 value: 46.7701 - type: nauc_precision_at_3_max value: 32.2757 - type: nauc_precision_at_3_std value: 30.7486 - type: nauc_precision_at_3_diff1 value: 13.880400000000002 - type: nauc_precision_at_5_max value: 31.016 - type: nauc_precision_at_5_std value: 37.9799 - type: nauc_precision_at_5_diff1 value: 7.4082 - type: nauc_precision_at_10_max value: 32.268 - type: nauc_precision_at_10_std value: 43.9588 - type: nauc_precision_at_10_diff1 value: 4.3159 - type: nauc_precision_at_20_max value: 32.264199999999995 - type: nauc_precision_at_20_std value: 48.2933 - type: nauc_precision_at_20_diff1 value: 3.8432 - type: nauc_precision_at_100_max value: 30.725799999999996 - type: nauc_precision_at_100_std value: 49.6683 - type: nauc_precision_at_100_diff1 value: 0.0351 - type: nauc_precision_at_1000_max value: 28.237299999999998 - type: nauc_precision_at_1000_std value: 24.8433 - type: nauc_precision_at_1000_diff1 value: 3.6408000000000005 - type: nauc_mrr_at_1_max value: 39.8074 - type: nauc_mrr_at_1_std value: 29.7269 - type: nauc_mrr_at_1_diff1 value: 46.7701 - type: nauc_mrr_at_3_max value: 42.7825 - type: nauc_mrr_at_3_std value: 32.467800000000004 - type: nauc_mrr_at_3_diff1 value: 43.7056 - type: nauc_mrr_at_5_max value: 43.0631 - type: nauc_mrr_at_5_std value: 32.859 - type: nauc_mrr_at_5_diff1 value: 43.646 - type: nauc_mrr_at_10_max value: 42.8307 - type: nauc_mrr_at_10_std value: 32.8042 - type: nauc_mrr_at_10_diff1 value: 43.3566 - type: nauc_mrr_at_20_max value: 42.9185 - type: nauc_mrr_at_20_std value: 32.723600000000005 - type: nauc_mrr_at_20_diff1 value: 43.6419 - type: nauc_mrr_at_100_max value: 43.006699999999995 - type: nauc_mrr_at_100_std value: 32.628800000000005 - type: nauc_mrr_at_100_diff1 value: 43.935 - type: nauc_mrr_at_1000_max value: 42.9879 - type: nauc_mrr_at_1000_std value: 32.6121 - type: nauc_mrr_at_1000_diff1 value: 43.9284 - type: main_score value: 39.409 task: type: Retrieval - dataset: config: default name: MTEB EmotionClassification (default) revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 split: test type: mteb/emotion metrics: - type: accuracy value: 40.949999999999996 - type: f1 value: 37.1674 - type: f1_weighted value: 43.1842 - type: main_score value: 40.949999999999996 task: type: Classification - dataset: config: default name: MTEB FEVER (default) revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 split: test type: mteb/fever metrics: - type: ndcg_at_1 value: 85.179 - type: ndcg_at_3 value: 87.304 - type: ndcg_at_5 value: 87.862 - type: ndcg_at_10 value: 88.229 - type: ndcg_at_20 value: 88.49000000000001 - type: ndcg_at_100 value: 88.84 - type: ndcg_at_1000 value: 89.116 - type: map_at_1 value: 78.993 - type: map_at_3 value: 84.37 - type: map_at_5 value: 84.812 - type: map_at_10 value: 85.02 - type: map_at_20 value: 85.114 - type: map_at_100 value: 85.18599999999999 - type: map_at_1000 value: 85.2 - type: recall_at_1 value: 78.993 - type: recall_at_3 value: 89.96499999999999 - type: recall_at_5 value: 91.562 - type: recall_at_10 value: 92.685 - type: recall_at_20 value: 93.595 - type: recall_at_100 value: 95.16 - type: recall_at_1000 value: 96.943 - type: precision_at_1 value: 85.179 - type: precision_at_3 value: 32.543 - type: precision_at_5 value: 19.930999999999997 - type: precision_at_10 value: 10.129000000000001 - type: precision_at_20 value: 5.140000000000001 - type: precision_at_100 value: 1.06 - type: precision_at_1000 value: 0.11 - type: mrr_at_1 value: 85.1785 - type: mrr_at_3 value: 90.3215 - type: mrr_at_5 value: 90.6223 - type: mrr_at_10 value: 90.74449999999999 - type: mrr_at_20 value: 90.78389999999999 - type: mrr_at_100 value: 90.79899999999999 - type: mrr_at_1000 value: 90.80080000000001 - type: nauc_ndcg_at_1_max value: 42.509 - type: nauc_ndcg_at_1_std value: -14.4135 - type: nauc_ndcg_at_1_diff1 value: 69.351 - type: nauc_ndcg_at_3_max value: 31.848599999999998 - type: nauc_ndcg_at_3_std value: -8.8348 - type: nauc_ndcg_at_3_diff1 value: 43.6934 - type: nauc_ndcg_at_5_max value: 30.5029 - type: nauc_ndcg_at_5_std value: -7.1606000000000005 - type: nauc_ndcg_at_5_diff1 value: 43.1125 - type: nauc_ndcg_at_10_max value: 30.383900000000004 - type: nauc_ndcg_at_10_std value: -6.112299999999999 - type: nauc_ndcg_at_10_diff1 value: 42.9948 - type: nauc_ndcg_at_20_max value: 30.6167 - type: nauc_ndcg_at_20_std value: -5.6432 - type: nauc_ndcg_at_20_diff1 value: 43.247600000000006 - type: nauc_ndcg_at_100_max value: 31.2245 - type: nauc_ndcg_at_100_std value: -5.3287 - type: nauc_ndcg_at_100_diff1 value: 43.5092 - type: nauc_ndcg_at_1000_max value: 31.724999999999998 - type: nauc_ndcg_at_1000_std value: -5.5252 - type: nauc_ndcg_at_1000_diff1 value: 44.1117 - type: nauc_map_at_1_max value: 33.535900000000005 - type: nauc_map_at_1_std value: -7.5043 - type: nauc_map_at_1_diff1 value: 51.1658 - type: nauc_map_at_3_max value: 30.357499999999998 - type: nauc_map_at_3_std value: -7.0673 - type: nauc_map_at_3_diff1 value: 43.169000000000004 - type: nauc_map_at_5_max value: 30.1609 - type: nauc_map_at_5_std value: -6.2828 - type: nauc_map_at_5_diff1 value: 43.22 - type: nauc_map_at_10_max value: 30.2687 - type: nauc_map_at_10_std value: -5.931299999999999 - type: nauc_map_at_10_diff1 value: 43.3113 - type: nauc_map_at_20_max value: 30.3425 - type: nauc_map_at_20_std value: -5.827999999999999 - type: nauc_map_at_20_diff1 value: 43.378 - type: nauc_map_at_100_max value: 30.4597 - type: nauc_map_at_100_std value: -5.781 - type: nauc_map_at_100_diff1 value: 43.4338 - type: nauc_map_at_1000_max value: 30.4815 - type: nauc_map_at_1000_std value: -5.7874 - type: nauc_map_at_1000_diff1 value: 43.4604 - type: nauc_recall_at_1_max value: 33.535900000000005 - type: nauc_recall_at_1_std value: -7.5043 - type: nauc_recall_at_1_diff1 value: 51.1658 - type: nauc_recall_at_3_max value: 21.5412 - type: nauc_recall_at_3_std value: -5.3411 - type: nauc_recall_at_3_diff1 value: 22.9753 - type: nauc_recall_at_5_max value: 18.2607 - type: nauc_recall_at_5_std value: 0.4319 - type: nauc_recall_at_5_diff1 value: 18.4494 - type: nauc_recall_at_10_max value: 16.9918 - type: nauc_recall_at_10_std value: 5.6791 - type: nauc_recall_at_10_diff1 value: 14.8096 - type: nauc_recall_at_20_max value: 16.2394 - type: nauc_recall_at_20_std value: 10.014000000000001 - type: nauc_recall_at_20_diff1 value: 12.6674 - type: nauc_recall_at_100_max value: 17.160700000000002 - type: nauc_recall_at_100_std value: 17.7282 - type: nauc_recall_at_100_diff1 value: 6.4750000000000005 - type: nauc_recall_at_1000_max value: 18.7047 - type: nauc_recall_at_1000_std value: 26.4285 - type: nauc_recall_at_1000_diff1 value: -0.4528 - type: nauc_precision_at_1_max value: 42.509 - type: nauc_precision_at_1_std value: -14.4135 - type: nauc_precision_at_1_diff1 value: 69.351 - type: nauc_precision_at_3_max value: 21.5337 - type: nauc_precision_at_3_std value: -18.1489 - type: nauc_precision_at_3_diff1 value: 23.7103 - type: nauc_precision_at_5_max value: 10.8839 - type: nauc_precision_at_5_std value: -8.7334 - type: nauc_precision_at_5_diff1 value: 12.0412 - type: nauc_precision_at_10_max value: 5.632000000000001 - type: nauc_precision_at_10_std value: -1.2274 - type: nauc_precision_at_10_diff1 value: 3.2148000000000003 - type: nauc_precision_at_20_max value: 3.6290999999999998 - type: nauc_precision_at_20_std value: 3.1643 - type: nauc_precision_at_20_diff1 value: -2.106 - type: nauc_precision_at_100_max value: 3.749 - type: nauc_precision_at_100_std value: 5.944599999999999 - type: nauc_precision_at_100_diff1 value: -8.2121 - type: nauc_precision_at_1000_max value: 3.9972 - type: nauc_precision_at_1000_std value: 3.2577000000000003 - type: nauc_precision_at_1000_diff1 value: -8.6116 - type: nauc_mrr_at_1_max value: 42.509 - type: nauc_mrr_at_1_std value: -14.4135 - type: nauc_mrr_at_1_diff1 value: 69.351 - type: nauc_mrr_at_3_max value: 41.805 - type: nauc_mrr_at_3_std value: -17.8756 - type: nauc_mrr_at_3_diff1 value: 65.21050000000001 - type: nauc_mrr_at_5_max value: 41.9114 - type: nauc_mrr_at_5_std value: -17.1294 - type: nauc_mrr_at_5_diff1 value: 65.5444 - type: nauc_mrr_at_10_max value: 42.1507 - type: nauc_mrr_at_10_std value: -16.7196 - type: nauc_mrr_at_10_diff1 value: 65.76480000000001 - type: nauc_mrr_at_20_max value: 42.1918 - type: nauc_mrr_at_20_std value: -16.6012 - type: nauc_mrr_at_20_diff1 value: 65.9105 - type: nauc_mrr_at_100_max value: 42.1853 - type: nauc_mrr_at_100_std value: -16.578799999999998 - type: nauc_mrr_at_100_diff1 value: 65.9277 - type: nauc_mrr_at_1000_max value: 42.1787 - type: nauc_mrr_at_1000_std value: -16.5811 - type: nauc_mrr_at_1000_diff1 value: 65.9297 - type: main_score value: 88.229 task: type: Retrieval - dataset: config: default name: MTEB FiQA2018 (default) revision: 27a168819829fe9bcd655c2df245fb19452e8e06 split: test type: mteb/fiqa metrics: - type: ndcg_at_1 value: 44.599 - type: ndcg_at_3 value: 41.597 - type: ndcg_at_5 value: 42.611 - type: ndcg_at_10 value: 44.931 - type: ndcg_at_20 value: 47.727000000000004 - type: ndcg_at_100 value: 51.914 - type: ndcg_at_1000 value: 54.674 - type: map_at_1 value: 22.586000000000002 - type: map_at_3 value: 32.445 - type: map_at_5 value: 34.951 - type: map_at_10 value: 36.836 - type: map_at_20 value: 37.958 - type: map_at_100 value: 38.863 - type: map_at_1000 value: 39.041 - type: recall_at_1 value: 22.586000000000002 - type: recall_at_3 value: 37.802 - type: recall_at_5 value: 43.86 - type: recall_at_10 value: 51.519999999999996 - type: recall_at_20 value: 60.22 - type: recall_at_100 value: 77.251 - type: recall_at_1000 value: 93.503 - type: precision_at_1 value: 44.599 - type: precision_at_3 value: 27.622999999999998 - type: precision_at_5 value: 20.093 - type: precision_at_10 value: 12.346 - type: precision_at_20 value: 7.353 - type: precision_at_100 value: 1.951 - type: precision_at_1000 value: 0.244 - type: mrr_at_1 value: 44.5988 - type: mrr_at_3 value: 51.157399999999996 - type: mrr_at_5 value: 52.4228 - type: mrr_at_10 value: 53.4708 - type: mrr_at_20 value: 53.898500000000006 - type: mrr_at_100 value: 54.18619999999999 - type: mrr_at_1000 value: 54.2227 - type: nauc_ndcg_at_1_max value: 41.8311 - type: nauc_ndcg_at_1_std value: -1.4024999999999999 - type: nauc_ndcg_at_1_diff1 value: 51.9037 - type: nauc_ndcg_at_3_max value: 35.448299999999996 - type: nauc_ndcg_at_3_std value: -0.3253 - type: nauc_ndcg_at_3_diff1 value: 40.5332 - type: nauc_ndcg_at_5_max value: 34.3939 - type: nauc_ndcg_at_5_std value: 0.5177 - type: nauc_ndcg_at_5_diff1 value: 39.729 - type: nauc_ndcg_at_10_max value: 32.8185 - type: nauc_ndcg_at_10_std value: 1.2571 - type: nauc_ndcg_at_10_diff1 value: 39.358 - type: nauc_ndcg_at_20_max value: 34.4751 - type: nauc_ndcg_at_20_std value: 3.0460000000000003 - type: nauc_ndcg_at_20_diff1 value: 40.474700000000006 - type: nauc_ndcg_at_100_max value: 37.079699999999995 - type: nauc_ndcg_at_100_std value: 6.704400000000001 - type: nauc_ndcg_at_100_diff1 value: 41.145199999999996 - type: nauc_ndcg_at_1000_max value: 37.5561 - type: nauc_ndcg_at_1000_std value: 5.4764 - type: nauc_ndcg_at_1000_diff1 value: 41.104400000000005 - type: nauc_map_at_1_max value: 22.570899999999998 - type: nauc_map_at_1_std value: -4.3153 - type: nauc_map_at_1_diff1 value: 45.949400000000004 - type: nauc_map_at_3_max value: 27.0957 - type: nauc_map_at_3_std value: -2.0714 - type: nauc_map_at_3_diff1 value: 40.2278 - type: nauc_map_at_5_max value: 29.744500000000002 - type: nauc_map_at_5_std value: -0.6752 - type: nauc_map_at_5_diff1 value: 39.44 - type: nauc_map_at_10_max value: 30.2678 - type: nauc_map_at_10_std value: -0.0069 - type: nauc_map_at_10_diff1 value: 38.9648 - type: nauc_map_at_20_max value: 31.381700000000002 - type: nauc_map_at_20_std value: 0.765 - type: nauc_map_at_20_diff1 value: 39.3088 - type: nauc_map_at_100_max value: 32.1076 - type: nauc_map_at_100_std value: 1.4984000000000002 - type: nauc_map_at_100_diff1 value: 39.4675 - type: nauc_map_at_1000_max value: 32.1799 - type: nauc_map_at_1000_std value: 1.4738 - type: nauc_map_at_1000_diff1 value: 39.4786 - type: nauc_recall_at_1_max value: 22.570899999999998 - type: nauc_recall_at_1_std value: -4.3153 - type: nauc_recall_at_1_diff1 value: 45.949400000000004 - type: nauc_recall_at_3_max value: 22.0782 - type: nauc_recall_at_3_std value: -1.7135999999999998 - type: nauc_recall_at_3_diff1 value: 33.5696 - type: nauc_recall_at_5_max value: 24.9421 - type: nauc_recall_at_5_std value: 0.47019999999999995 - type: nauc_recall_at_5_diff1 value: 31.660899999999998 - type: nauc_recall_at_10_max value: 22.847 - type: nauc_recall_at_10_std value: 2.1398 - type: nauc_recall_at_10_diff1 value: 27.879199999999997 - type: nauc_recall_at_20_max value: 24.476 - type: nauc_recall_at_20_std value: 7.3819 - type: nauc_recall_at_20_diff1 value: 29.717100000000002 - type: nauc_recall_at_100_max value: 33.1008 - type: nauc_recall_at_100_std value: 32.008900000000004 - type: nauc_recall_at_100_diff1 value: 29.1164 - type: nauc_recall_at_1000_max value: 39.5742 - type: nauc_recall_at_1000_std value: 51.944199999999995 - type: nauc_recall_at_1000_diff1 value: 17.8932 - type: nauc_precision_at_1_max value: 41.8311 - type: nauc_precision_at_1_std value: -1.4024999999999999 - type: nauc_precision_at_1_diff1 value: 51.9037 - type: nauc_precision_at_3_max value: 38.707300000000004 - type: nauc_precision_at_3_std value: 3.3242000000000003 - type: nauc_precision_at_3_diff1 value: 26.32 - type: nauc_precision_at_5_max value: 40.4051 - type: nauc_precision_at_5_std value: 7.2255 - type: nauc_precision_at_5_diff1 value: 20.524 - type: nauc_precision_at_10_max value: 37.024 - type: nauc_precision_at_10_std value: 8.871 - type: nauc_precision_at_10_diff1 value: 14.985100000000001 - type: nauc_precision_at_20_max value: 39.8142 - type: nauc_precision_at_20_std value: 12.9133 - type: nauc_precision_at_20_diff1 value: 13.5855 - type: nauc_precision_at_100_max value: 36.8128 - type: nauc_precision_at_100_std value: 17.273 - type: nauc_precision_at_100_diff1 value: 7.706799999999999 - type: nauc_precision_at_1000_max value: 29.197699999999998 - type: nauc_precision_at_1000_std value: 10.452200000000001 - type: nauc_precision_at_1000_diff1 value: -0.43429999999999996 - type: nauc_mrr_at_1_max value: 41.8311 - type: nauc_mrr_at_1_std value: -1.4024999999999999 - type: nauc_mrr_at_1_diff1 value: 51.9037 - type: nauc_mrr_at_3_max value: 41.5348 - type: nauc_mrr_at_3_std value: 0.47200000000000003 - type: nauc_mrr_at_3_diff1 value: 48.2132 - type: nauc_mrr_at_5_max value: 41.4712 - type: nauc_mrr_at_5_std value: 0.9362 - type: nauc_mrr_at_5_diff1 value: 47.7862 - type: nauc_mrr_at_10_max value: 41.3833 - type: nauc_mrr_at_10_std value: 0.9305000000000001 - type: nauc_mrr_at_10_diff1 value: 47.8177 - type: nauc_mrr_at_20_max value: 41.5143 - type: nauc_mrr_at_20_std value: 1.2017 - type: nauc_mrr_at_20_diff1 value: 48.0106 - type: nauc_mrr_at_100_max value: 41.6027 - type: nauc_mrr_at_100_std value: 1.3906999999999998 - type: nauc_mrr_at_100_diff1 value: 48.0719 - type: nauc_mrr_at_1000_max value: 41.597 - type: nauc_mrr_at_1000_std value: 1.3443 - type: nauc_mrr_at_1000_diff1 value: 48.0767 - type: main_score value: 44.931 task: type: Retrieval - dataset: config: default name: MTEB HotpotQA (default) revision: ab518f4d6fcca38d87c25209f94beba119d02014 split: test type: mteb/hotpotqa metrics: - type: ndcg_at_1 value: 76.354 - type: ndcg_at_3 value: 62.900999999999996 - type: ndcg_at_5 value: 65.68 - type: ndcg_at_10 value: 67.776 - type: ndcg_at_20 value: 69.144 - type: ndcg_at_100 value: 70.85000000000001 - type: ndcg_at_1000 value: 72.151 - type: map_at_1 value: 38.177 - type: map_at_3 value: 55.554 - type: map_at_5 value: 57.774 - type: map_at_10 value: 59.022 - type: map_at_20 value: 59.574000000000005 - type: map_at_100 value: 59.925 - type: map_at_1000 value: 59.99 - type: recall_at_1 value: 38.177 - type: recall_at_3 value: 60.169 - type: recall_at_5 value: 65.63799999999999 - type: recall_at_10 value: 70.878 - type: recall_at_20 value: 75.267 - type: recall_at_100 value: 82.822 - type: recall_at_1000 value: 91.472 - type: precision_at_1 value: 76.354 - type: precision_at_3 value: 40.113 - type: precision_at_5 value: 26.255 - type: precision_at_10 value: 14.176 - type: precision_at_20 value: 7.527 - type: precision_at_100 value: 1.656 - type: precision_at_1000 value: 0.183 - type: mrr_at_1 value: 76.3538 - type: mrr_at_3 value: 81.7218 - type: mrr_at_5 value: 82.3403 - type: mrr_at_10 value: 82.7021 - type: mrr_at_20 value: 82.8339 - type: mrr_at_100 value: 82.88889999999999 - type: mrr_at_1000 value: 82.8978 - type: nauc_ndcg_at_1_max value: 45.4675 - type: nauc_ndcg_at_1_std value: -8.5846 - type: nauc_ndcg_at_1_diff1 value: 67.2619 - type: nauc_ndcg_at_3_max value: 29.083399999999997 - type: nauc_ndcg_at_3_std value: 0.9821 - type: nauc_ndcg_at_3_diff1 value: 22.708000000000002 - type: nauc_ndcg_at_5_max value: 29.0541 - type: nauc_ndcg_at_5_std value: 3.5778999999999996 - type: nauc_ndcg_at_5_diff1 value: 20.8512 - type: nauc_ndcg_at_10_max value: 28.6135 - type: nauc_ndcg_at_10_std value: 5.3694 - type: nauc_ndcg_at_10_diff1 value: 19.913700000000002 - type: nauc_ndcg_at_20_max value: 28.971000000000004 - type: nauc_ndcg_at_20_std value: 6.6706 - type: nauc_ndcg_at_20_diff1 value: 20.015900000000002 - type: nauc_ndcg_at_100_max value: 29.2235 - type: nauc_ndcg_at_100_std value: 7.5165 - type: nauc_ndcg_at_100_diff1 value: 20.703 - type: nauc_ndcg_at_1000_max value: 29.808 - type: nauc_ndcg_at_1000_std value: 7.0276000000000005 - type: nauc_ndcg_at_1000_diff1 value: 21.8394 - type: nauc_map_at_1_max value: 45.4675 - type: nauc_map_at_1_std value: -8.5846 - type: nauc_map_at_1_diff1 value: 67.2619 - type: nauc_map_at_3_max value: 25.374200000000002 - type: nauc_map_at_3_std value: 1.4205 - type: nauc_map_at_3_diff1 value: 16.7465 - type: nauc_map_at_5_max value: 25.5649 - type: nauc_map_at_5_std value: 3.2438000000000002 - type: nauc_map_at_5_diff1 value: 15.676200000000001 - type: nauc_map_at_10_max value: 25.4328 - type: nauc_map_at_10_std value: 4.198799999999999 - type: nauc_map_at_10_diff1 value: 15.3134 - type: nauc_map_at_20_max value: 25.583299999999998 - type: nauc_map_at_20_std value: 4.6277 - type: nauc_map_at_20_diff1 value: 15.4013 - type: nauc_map_at_100_max value: 25.647100000000002 - type: nauc_map_at_100_std value: 4.7775 - type: nauc_map_at_100_diff1 value: 15.543999999999999 - type: nauc_map_at_1000_max value: 25.672299999999996 - type: nauc_map_at_1000_std value: 4.7689 - type: nauc_map_at_1000_diff1 value: 15.5824 - type: nauc_recall_at_1_max value: 45.4675 - type: nauc_recall_at_1_std value: -8.5846 - type: nauc_recall_at_1_diff1 value: 67.2619 - type: nauc_recall_at_3_max value: 23.5896 - type: nauc_recall_at_3_std value: 4.3086 - type: nauc_recall_at_3_diff1 value: 8.8109 - type: nauc_recall_at_5_max value: 22.2473 - type: nauc_recall_at_5_std value: 9.2394 - type: nauc_recall_at_5_diff1 value: 4.0969 - type: nauc_recall_at_10_max value: 19.930600000000002 - type: nauc_recall_at_10_std value: 14.0805 - type: nauc_recall_at_10_diff1 value: -0.1729 - type: nauc_recall_at_20_max value: 19.938 - type: nauc_recall_at_20_std value: 19.3764 - type: nauc_recall_at_20_diff1 value: -2.1292999999999997 - type: nauc_recall_at_100_max value: 18.3819 - type: nauc_recall_at_100_std value: 27.5254 - type: nauc_recall_at_100_diff1 value: -4.7437 - type: nauc_recall_at_1000_max value: 20.441699999999997 - type: nauc_recall_at_1000_std value: 35.8119 - type: nauc_recall_at_1000_diff1 value: -6.1713 - type: nauc_precision_at_1_max value: 45.4675 - type: nauc_precision_at_1_std value: -8.5846 - type: nauc_precision_at_1_diff1 value: 67.2619 - type: nauc_precision_at_3_max value: 23.5896 - type: nauc_precision_at_3_std value: 4.3086 - type: nauc_precision_at_3_diff1 value: 8.8109 - type: nauc_precision_at_5_max value: 22.2473 - type: nauc_precision_at_5_std value: 9.2394 - type: nauc_precision_at_5_diff1 value: 4.0969 - type: nauc_precision_at_10_max value: 19.930600000000002 - type: nauc_precision_at_10_std value: 14.0805 - type: nauc_precision_at_10_diff1 value: -0.1729 - type: nauc_precision_at_20_max value: 19.938 - type: nauc_precision_at_20_std value: 19.3764 - type: nauc_precision_at_20_diff1 value: -2.1292999999999997 - type: nauc_precision_at_100_max value: 18.3819 - type: nauc_precision_at_100_std value: 27.5254 - type: nauc_precision_at_100_diff1 value: -4.7437 - type: nauc_precision_at_1000_max value: 20.441699999999997 - type: nauc_precision_at_1000_std value: 35.8119 - type: nauc_precision_at_1000_diff1 value: -6.1713 - type: nauc_mrr_at_1_max value: 45.4675 - type: nauc_mrr_at_1_std value: -8.5846 - type: nauc_mrr_at_1_diff1 value: 67.2619 - type: nauc_mrr_at_3_max value: 49.182700000000004 - type: nauc_mrr_at_3_std value: -6.6154 - type: nauc_mrr_at_3_diff1 value: 65.8318 - type: nauc_mrr_at_5_max value: 49.1926 - type: nauc_mrr_at_5_std value: -6.059699999999999 - type: nauc_mrr_at_5_diff1 value: 65.819 - type: nauc_mrr_at_10_max value: 49.0188 - type: nauc_mrr_at_10_std value: -5.976 - type: nauc_mrr_at_10_diff1 value: 65.962 - type: nauc_mrr_at_20_max value: 49.0418 - type: nauc_mrr_at_20_std value: -5.9215 - type: nauc_mrr_at_20_diff1 value: 66.0577 - type: nauc_mrr_at_100_max value: 48.9901 - type: nauc_mrr_at_100_std value: -5.9538 - type: nauc_mrr_at_100_diff1 value: 66.0463 - type: nauc_mrr_at_1000_max value: 48.9822 - type: nauc_mrr_at_1000_std value: -5.9649 - type: nauc_mrr_at_1000_diff1 value: 66.0457 - type: main_score value: 67.776 task: type: Retrieval - dataset: config: default name: MTEB ImdbClassification (default) revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 split: test type: mteb/imdb metrics: - type: accuracy value: 64.4052 - type: f1 value: 64.2124 - type: f1_weighted value: 64.2124 - type: ap value: 59.430899999999994 - type: ap_weighted value: 59.430899999999994 - type: main_score value: 64.4052 task: type: Classification - dataset: config: default name: MTEB MSMARCO (default) revision: c5a29a104738b98a9e76336939199e264163d4a0 split: dev type: mteb/msmarco metrics: - type: ndcg_at_1 value: 15.443999999999999 - type: ndcg_at_3 value: 24.745 - type: ndcg_at_5 value: 28.560000000000002 - type: ndcg_at_10 value: 32.495000000000005 - type: ndcg_at_20 value: 35.226 - type: ndcg_at_100 value: 38.957 - type: ndcg_at_1000 value: 40.684 - type: map_at_1 value: 15.062000000000001 - type: map_at_3 value: 22.236 - type: map_at_5 value: 24.362000000000002 - type: map_at_10 value: 26.008 - type: map_at_20 value: 26.77 - type: map_at_100 value: 27.305 - type: map_at_1000 value: 27.372999999999998 - type: recall_at_1 value: 15.062000000000001 - type: recall_at_3 value: 31.556 - type: recall_at_5 value: 40.705999999999996 - type: recall_at_10 value: 52.72 - type: recall_at_20 value: 63.336000000000006 - type: recall_at_100 value: 83.006 - type: recall_at_1000 value: 96.263 - type: precision_at_1 value: 15.443999999999999 - type: precision_at_3 value: 10.86 - type: precision_at_5 value: 8.441 - type: precision_at_10 value: 5.486 - type: precision_at_20 value: 3.308 - type: precision_at_100 value: 0.8750000000000001 - type: precision_at_1000 value: 0.10200000000000001 - type: mrr_at_1 value: 15.444099999999999 - type: mrr_at_3 value: 22.7006 - type: mrr_at_5 value: 24.843799999999998 - type: mrr_at_10 value: 26.458199999999998 - type: mrr_at_20 value: 27.2124 - type: mrr_at_100 value: 27.7184 - type: mrr_at_1000 value: 27.7802 - type: nauc_ndcg_at_1_max value: 1.9339 - type: nauc_ndcg_at_1_std value: -13.125200000000001 - type: nauc_ndcg_at_1_diff1 value: 30.440499999999997 - type: nauc_ndcg_at_3_max value: 2.0631 - type: nauc_ndcg_at_3_std value: -15.065600000000002 - type: nauc_ndcg_at_3_diff1 value: 25.459300000000002 - type: nauc_ndcg_at_5_max value: 2.7612 - type: nauc_ndcg_at_5_std value: -15.576400000000001 - type: nauc_ndcg_at_5_diff1 value: 24.861 - type: nauc_ndcg_at_10_max value: 3.5461 - type: nauc_ndcg_at_10_std value: -15.2368 - type: nauc_ndcg_at_10_diff1 value: 25.328699999999998 - type: nauc_ndcg_at_20_max value: 4.4956000000000005 - type: nauc_ndcg_at_20_std value: -13.415099999999999 - type: nauc_ndcg_at_20_diff1 value: 25.401200000000003 - type: nauc_ndcg_at_100_max value: 5.1996 - type: nauc_ndcg_at_100_std value: -10.7691 - type: nauc_ndcg_at_100_diff1 value: 25.4837 - type: nauc_ndcg_at_1000_max value: 4.8437 - type: nauc_ndcg_at_1000_std value: -11.6759 - type: nauc_ndcg_at_1000_diff1 value: 25.6542 - type: nauc_map_at_1_max value: 1.8748999999999998 - type: nauc_map_at_1_std value: -13.203000000000001 - type: nauc_map_at_1_diff1 value: 30.786599999999996 - type: nauc_map_at_3_max value: 1.9382 - type: nauc_map_at_3_std value: -14.772499999999999 - type: nauc_map_at_3_diff1 value: 26.579900000000002 - type: nauc_map_at_5_max value: 2.3708 - type: nauc_map_at_5_std value: -15.093300000000001 - type: nauc_map_at_5_diff1 value: 26.2289 - type: nauc_map_at_10_max value: 2.7201 - type: nauc_map_at_10_std value: -14.9842 - type: nauc_map_at_10_diff1 value: 26.431700000000003 - type: nauc_map_at_20_max value: 2.9757 - type: nauc_map_at_20_std value: -14.4729 - type: nauc_map_at_20_diff1 value: 26.4573 - type: nauc_map_at_100_max value: 3.0642 - type: nauc_map_at_100_std value: -14.1146 - type: nauc_map_at_100_diff1 value: 26.472 - type: nauc_map_at_1000_max value: 3.0554 - type: nauc_map_at_1000_std value: -14.1365 - type: nauc_map_at_1000_diff1 value: 26.477899999999998 - type: nauc_recall_at_1_max value: 1.8748999999999998 - type: nauc_recall_at_1_std value: -13.203000000000001 - type: nauc_recall_at_1_diff1 value: 30.786599999999996 - type: nauc_recall_at_3_max value: 2.2464999999999997 - type: nauc_recall_at_3_std value: -15.7745 - type: nauc_recall_at_3_diff1 value: 22.8494 - type: nauc_recall_at_5_max value: 3.5999999999999996 - type: nauc_recall_at_5_std value: -16.7106 - type: nauc_recall_at_5_diff1 value: 21.6902 - type: nauc_recall_at_10_max value: 5.6766 - type: nauc_recall_at_10_std value: -15.768699999999999 - type: nauc_recall_at_10_diff1 value: 22.658900000000003 - type: nauc_recall_at_20_max value: 9.5641 - type: nauc_recall_at_20_std value: -8.8567 - type: nauc_recall_at_20_diff1 value: 22.6219 - type: nauc_recall_at_100_max value: 19.2898 - type: nauc_recall_at_100_std value: 17.354400000000002 - type: nauc_recall_at_100_diff1 value: 21.6465 - type: nauc_recall_at_1000_max value: 43.4838 - type: nauc_recall_at_1000_std value: 57.456300000000006 - type: nauc_recall_at_1000_diff1 value: 19.6644 - type: nauc_precision_at_1_max value: 1.9339 - type: nauc_precision_at_1_std value: -13.125200000000001 - type: nauc_precision_at_1_diff1 value: 30.440499999999997 - type: nauc_precision_at_3_max value: 2.1921 - type: nauc_precision_at_3_std value: -15.8918 - type: nauc_precision_at_3_diff1 value: 22.609099999999998 - type: nauc_precision_at_5_max value: 3.8808000000000002 - type: nauc_precision_at_5_std value: -16.6817 - type: nauc_precision_at_5_diff1 value: 21.0081 - type: nauc_precision_at_10_max value: 6.2251 - type: nauc_precision_at_10_std value: -14.9695 - type: nauc_precision_at_10_diff1 value: 21.3706 - type: nauc_precision_at_20_max value: 10.3311 - type: nauc_precision_at_20_std value: -7.5957 - type: nauc_precision_at_20_diff1 value: 20.4241 - type: nauc_precision_at_100_max value: 18.7934 - type: nauc_precision_at_100_std value: 16.6688 - type: nauc_precision_at_100_diff1 value: 13.4334 - type: nauc_precision_at_1000_max value: 22.3609 - type: nauc_precision_at_1000_std value: 22.090799999999998 - type: nauc_precision_at_1000_diff1 value: -1.5147000000000002 - type: nauc_mrr_at_1_max value: 1.9339 - type: nauc_mrr_at_1_std value: -13.125200000000001 - type: nauc_mrr_at_1_diff1 value: 30.440499999999997 - type: nauc_mrr_at_3_max value: 2.0884 - type: nauc_mrr_at_3_std value: -14.5665 - type: nauc_mrr_at_3_diff1 value: 26.270100000000003 - type: nauc_mrr_at_5_max value: 2.5026 - type: nauc_mrr_at_5_std value: -14.8794 - type: nauc_mrr_at_5_diff1 value: 25.8982 - type: nauc_mrr_at_10_max value: 2.8118 - type: nauc_mrr_at_10_std value: -14.7608 - type: nauc_mrr_at_10_diff1 value: 26.1961 - type: nauc_mrr_at_20_max value: 3.0701 - type: nauc_mrr_at_20_std value: -14.2605 - type: nauc_mrr_at_20_diff1 value: 26.206699999999998 - type: nauc_mrr_at_100_max value: 3.1292 - type: nauc_mrr_at_100_std value: -13.9589 - type: nauc_mrr_at_100_diff1 value: 26.227099999999997 - type: nauc_mrr_at_1000_max value: 3.1135 - type: nauc_mrr_at_1000_std value: -13.9831 - type: nauc_mrr_at_1000_diff1 value: 26.234099999999998 - type: main_score value: 32.495000000000005 task: type: Retrieval - dataset: config: en name: MTEB MTOPDomainClassification (en) revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf split: test type: mteb/mtop_domain metrics: - type: accuracy value: 91.31099999999999 - type: f1 value: 90.9331 - type: f1_weighted value: 91.2787 - type: main_score value: 91.31099999999999 task: type: Classification - dataset: config: en name: MTEB MTOPIntentClassification (en) revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba split: test type: mteb/mtop_intent metrics: - type: accuracy value: 54.9362 - type: f1 value: 38.364399999999996 - type: f1_weighted value: 57.1133 - type: main_score value: 54.9362 task: type: Classification - dataset: config: en name: MTEB MassiveIntentClassification (en) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 64.5461 - type: f1 value: 60.8751 - type: f1_weighted value: 63.248599999999996 - type: main_score value: 64.5461 task: type: Classification - dataset: config: en name: MTEB MassiveScenarioClassification (en) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 71.6476 - type: f1 value: 71.03110000000001 - type: f1_weighted value: 71.3832 - type: main_score value: 71.6476 task: type: Classification - dataset: config: default name: MTEB MedrxivClusteringP2P (default) revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 split: test type: mteb/medrxiv-clustering-p2p metrics: - type: v_measure value: 32.3037 - type: v_measure_std value: 1.4981 - type: main_score value: 32.3037 task: type: Clustering - dataset: config: default name: MTEB MedrxivClusteringS2S (default) revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 split: test type: mteb/medrxiv-clustering-s2s metrics: - type: v_measure value: 31.9128 - type: v_measure_std value: 1.4597 - type: main_score value: 31.9128 task: type: Clustering - dataset: config: default name: MTEB MindSmallReranking (default) revision: 59042f120c80e8afa9cdbb224f67076cec0fc9a7 split: test type: mteb/mind_small metrics: - type: map value: 32.2181 - type: mrr value: 33.4843 - type: nAUC_map_max value: -17.8061 - type: nAUC_map_std value: -1.1424 - type: nAUC_map_diff1 value: 14.106 - type: nAUC_mrr_max value: -12.6864 - type: nAUC_mrr_std value: 0.7633 - type: nAUC_mrr_diff1 value: 13.168099999999999 - type: main_score value: 32.2181 task: type: Reranking - dataset: config: default name: MTEB NFCorpus (default) revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 split: test type: mteb/nfcorpus metrics: - type: ndcg_at_1 value: 45.356 - type: ndcg_at_3 value: 42.643 - type: ndcg_at_5 value: 40.882000000000005 - type: ndcg_at_10 value: 37.25 - type: ndcg_at_20 value: 34.863 - type: ndcg_at_100 value: 34.496 - type: ndcg_at_1000 value: 43.374 - type: map_at_1 value: 6.126 - type: map_at_3 value: 10.301 - type: map_at_5 value: 12.084999999999999 - type: map_at_10 value: 14.152000000000001 - type: map_at_20 value: 15.796 - type: map_at_100 value: 18.27 - type: map_at_1000 value: 19.88 - type: recall_at_1 value: 6.126 - type: recall_at_3 value: 11.706 - type: recall_at_5 value: 14.419 - type: recall_at_10 value: 18.427 - type: recall_at_20 value: 22.7 - type: recall_at_100 value: 35.018 - type: recall_at_1000 value: 67.66 - type: precision_at_1 value: 47.368 - type: precision_at_3 value: 40.144000000000005 - type: precision_at_5 value: 35.913000000000004 - type: precision_at_10 value: 27.74 - type: precision_at_20 value: 20.619 - type: precision_at_100 value: 9.071 - type: precision_at_1000 value: 2.226 - type: mrr_at_1 value: 47.678 - type: mrr_at_3 value: 55.1084 - type: mrr_at_5 value: 56.145500000000006 - type: mrr_at_10 value: 56.7134 - type: mrr_at_20 value: 57.0095 - type: mrr_at_100 value: 57.2211 - type: mrr_at_1000 value: 57.2755 - type: nauc_ndcg_at_1_max value: 39.442899999999995 - type: nauc_ndcg_at_1_std value: 25.1396 - type: nauc_ndcg_at_1_diff1 value: 35.5228 - type: nauc_ndcg_at_3_max value: 42.536699999999996 - type: nauc_ndcg_at_3_std value: 30.7104 - type: nauc_ndcg_at_3_diff1 value: 26.383699999999997 - type: nauc_ndcg_at_5_max value: 44.2751 - type: nauc_ndcg_at_5_std value: 31.6998 - type: nauc_ndcg_at_5_diff1 value: 24.4678 - type: nauc_ndcg_at_10_max value: 41.806599999999996 - type: nauc_ndcg_at_10_std value: 32.7977 - type: nauc_ndcg_at_10_diff1 value: 20.0545 - type: nauc_ndcg_at_20_max value: 39.0588 - type: nauc_ndcg_at_20_std value: 31.5545 - type: nauc_ndcg_at_20_diff1 value: 18.075499999999998 - type: nauc_ndcg_at_100_max value: 40.562599999999996 - type: nauc_ndcg_at_100_std value: 34.0612 - type: nauc_ndcg_at_100_diff1 value: 21.0169 - type: nauc_ndcg_at_1000_max value: 46.1599 - type: nauc_ndcg_at_1000_std value: 38.1991 - type: nauc_ndcg_at_1000_diff1 value: 21.7529 - type: nauc_map_at_1_max value: 2.822 - type: nauc_map_at_1_std value: -13.824200000000001 - type: nauc_map_at_1_diff1 value: 43.4619 - type: nauc_map_at_3_max value: 10.7749 - type: nauc_map_at_3_std value: -7.7192 - type: nauc_map_at_3_diff1 value: 33.543099999999995 - type: nauc_map_at_5_max value: 15.534 - type: nauc_map_at_5_std value: -4.6368 - type: nauc_map_at_5_diff1 value: 31.472499999999997 - type: nauc_map_at_10_max value: 19.6203 - type: nauc_map_at_10_std value: 0.9646 - type: nauc_map_at_10_diff1 value: 26.763199999999998 - type: nauc_map_at_20_max value: 22.9019 - type: nauc_map_at_20_std value: 5.4963999999999995 - type: nauc_map_at_20_diff1 value: 23.5639 - type: nauc_map_at_100_max value: 26.9211 - type: nauc_map_at_100_std value: 13.7679 - type: nauc_map_at_100_diff1 value: 21.4205 - type: nauc_map_at_1000_max value: 27.795199999999998 - type: nauc_map_at_1000_std value: 17.5388 - type: nauc_map_at_1000_diff1 value: 20.6324 - type: nauc_recall_at_1_max value: 2.822 - type: nauc_recall_at_1_std value: -13.824200000000001 - type: nauc_recall_at_1_diff1 value: 43.4619 - type: nauc_recall_at_3_max value: 11.128499999999999 - type: nauc_recall_at_3_std value: -6.583500000000001 - type: nauc_recall_at_3_diff1 value: 31.2104 - type: nauc_recall_at_5_max value: 15.5377 - type: nauc_recall_at_5_std value: -4.0625 - type: nauc_recall_at_5_diff1 value: 28.746199999999998 - type: nauc_recall_at_10_max value: 17.7947 - type: nauc_recall_at_10_std value: 1.9115 - type: nauc_recall_at_10_diff1 value: 20.028000000000002 - type: nauc_recall_at_20_max value: 18.5316 - type: nauc_recall_at_20_std value: 4.5177000000000005 - type: nauc_recall_at_20_diff1 value: 14.4906 - type: nauc_recall_at_100_max value: 27.871299999999998 - type: nauc_recall_at_100_std value: 22.9259 - type: nauc_recall_at_100_diff1 value: 12.8091 - type: nauc_recall_at_1000_max value: 24.782899999999998 - type: nauc_recall_at_1000_std value: 23.6364 - type: nauc_recall_at_1000_diff1 value: 8.318100000000001 - type: nauc_precision_at_1_max value: 41.779500000000006 - type: nauc_precision_at_1_std value: 25.690600000000003 - type: nauc_precision_at_1_diff1 value: 35.6552 - type: nauc_precision_at_3_max value: 46.0167 - type: nauc_precision_at_3_std value: 37.0565 - type: nauc_precision_at_3_diff1 value: 16.6278 - type: nauc_precision_at_5_max value: 47.2631 - type: nauc_precision_at_5_std value: 39.6181 - type: nauc_precision_at_5_diff1 value: 9.3291 - type: nauc_precision_at_10_max value: 42.9477 - type: nauc_precision_at_10_std value: 44.7365 - type: nauc_precision_at_10_diff1 value: -0.2033 - type: nauc_precision_at_20_max value: 37.0473 - type: nauc_precision_at_20_std value: 46.609 - type: nauc_precision_at_20_diff1 value: -5.4761999999999995 - type: nauc_precision_at_100_max value: 24.1237 - type: nauc_precision_at_100_std value: 49.1772 - type: nauc_precision_at_100_diff1 value: -6.9049 - type: nauc_precision_at_1000_max value: 9.0734 - type: nauc_precision_at_1000_std value: 38.4405 - type: nauc_precision_at_1000_diff1 value: -4.3116 - type: nauc_mrr_at_1_max value: 41.5105 - type: nauc_mrr_at_1_std value: 25.404500000000002 - type: nauc_mrr_at_1_diff1 value: 34.8177 - type: nauc_mrr_at_3_max value: 47.332 - type: nauc_mrr_at_3_std value: 33.2771 - type: nauc_mrr_at_3_diff1 value: 34.5929 - type: nauc_mrr_at_5_max value: 48.044799999999995 - type: nauc_mrr_at_5_std value: 33.596 - type: nauc_mrr_at_5_diff1 value: 34.4048 - type: nauc_mrr_at_10_max value: 48.2427 - type: nauc_mrr_at_10_std value: 33.9279 - type: nauc_mrr_at_10_diff1 value: 33.974900000000005 - type: nauc_mrr_at_20_max value: 48.2093 - type: nauc_mrr_at_20_std value: 33.9138 - type: nauc_mrr_at_20_diff1 value: 34.0267 - type: nauc_mrr_at_100_max value: 48.322700000000005 - type: nauc_mrr_at_100_std value: 34.096 - type: nauc_mrr_at_100_diff1 value: 34.1172 - type: nauc_mrr_at_1000_max value: 48.2719 - type: nauc_mrr_at_1000_std value: 34.034 - type: nauc_mrr_at_1000_diff1 value: 34.0978 - type: main_score value: 37.25 task: type: Retrieval - dataset: config: default name: MTEB NQ (default) revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 split: test type: mteb/nq metrics: - type: ndcg_at_1 value: 37.254 - type: ndcg_at_3 value: 49.219 - type: ndcg_at_5 value: 54.037 - type: ndcg_at_10 value: 58.044 - type: ndcg_at_20 value: 59.946999999999996 - type: ndcg_at_100 value: 61.61299999999999 - type: ndcg_at_1000 value: 62.046 - type: map_at_1 value: 33.053 - type: map_at_3 value: 44.91 - type: map_at_5 value: 47.83 - type: map_at_10 value: 49.739 - type: map_at_20 value: 50.336999999999996 - type: map_at_100 value: 50.626000000000005 - type: map_at_1000 value: 50.647 - type: recall_at_1 value: 33.053 - type: recall_at_3 value: 58.157000000000004 - type: recall_at_5 value: 69.235 - type: recall_at_10 value: 80.76 - type: recall_at_20 value: 87.756 - type: recall_at_100 value: 95.86200000000001 - type: recall_at_1000 value: 99.044 - type: precision_at_1 value: 37.254 - type: precision_at_3 value: 22.538 - type: precision_at_5 value: 16.344 - type: precision_at_10 value: 9.655 - type: precision_at_20 value: 5.2909999999999995 - type: precision_at_100 value: 1.167 - type: precision_at_1000 value: 0.121 - type: mrr_at_1 value: 37.2538 - type: mrr_at_3 value: 48.4453 - type: mrr_at_5 value: 50.8338 - type: mrr_at_10 value: 52.221700000000006 - type: mrr_at_20 value: 52.660399999999996 - type: mrr_at_100 value: 52.85490000000001 - type: mrr_at_1000 value: 52.869299999999996 - type: nauc_ndcg_at_1_max value: 22.453400000000002 - type: nauc_ndcg_at_1_std value: 1.3625 - type: nauc_ndcg_at_1_diff1 value: 33.4465 - type: nauc_ndcg_at_3_max value: 29.2215 - type: nauc_ndcg_at_3_std value: 1.496 - type: nauc_ndcg_at_3_diff1 value: 28.881600000000002 - type: nauc_ndcg_at_5_max value: 30.8294 - type: nauc_ndcg_at_5_std value: 3.0327 - type: nauc_ndcg_at_5_diff1 value: 27.2679 - type: nauc_ndcg_at_10_max value: 32.5349 - type: nauc_ndcg_at_10_std value: 5.074 - type: nauc_ndcg_at_10_diff1 value: 26.9574 - type: nauc_ndcg_at_20_max value: 32.2817 - type: nauc_ndcg_at_20_std value: 5.8412 - type: nauc_ndcg_at_20_diff1 value: 27.62 - type: nauc_ndcg_at_100_max value: 31.084 - type: nauc_ndcg_at_100_std value: 5.8699 - type: nauc_ndcg_at_100_diff1 value: 28.0961 - type: nauc_ndcg_at_1000_max value: 30.3847 - type: nauc_ndcg_at_1000_std value: 4.9963 - type: nauc_ndcg_at_1000_diff1 value: 28.4336 - type: nauc_map_at_1_max value: 20.5816 - type: nauc_map_at_1_std value: -1.0661 - type: nauc_map_at_1_diff1 value: 33.6828 - type: nauc_map_at_3_max value: 27.4552 - type: nauc_map_at_3_std value: 0.769 - type: nauc_map_at_3_diff1 value: 30.0372 - type: nauc_map_at_5_max value: 28.315099999999997 - type: nauc_map_at_5_std value: 1.6410999999999998 - type: nauc_map_at_5_diff1 value: 29.2099 - type: nauc_map_at_10_max value: 28.969299999999997 - type: nauc_map_at_10_std value: 2.5593999999999997 - type: nauc_map_at_10_diff1 value: 29.0818 - type: nauc_map_at_20_max value: 28.902299999999997 - type: nauc_map_at_20_std value: 2.788 - type: nauc_map_at_20_diff1 value: 29.2439 - type: nauc_map_at_100_max value: 28.7275 - type: nauc_map_at_100_std value: 2.8171 - type: nauc_map_at_100_diff1 value: 29.313899999999997 - type: nauc_map_at_1000_max value: 28.701 - type: nauc_map_at_1000_std value: 2.7868 - type: nauc_map_at_1000_diff1 value: 29.3304 - type: nauc_recall_at_1_max value: 20.5816 - type: nauc_recall_at_1_std value: -1.0661 - type: nauc_recall_at_1_diff1 value: 33.6828 - type: nauc_recall_at_3_max value: 33.0999 - type: nauc_recall_at_3_std value: 1.5433000000000001 - type: nauc_recall_at_3_diff1 value: 24.7191 - type: nauc_recall_at_5_max value: 38.3028 - type: nauc_recall_at_5_std value: 5.4908 - type: nauc_recall_at_5_diff1 value: 19.3777 - type: nauc_recall_at_10_max value: 49.9754 - type: nauc_recall_at_10_std value: 15.2697 - type: nauc_recall_at_10_diff1 value: 15.338199999999999 - type: nauc_recall_at_20_max value: 57.0007 - type: nauc_recall_at_20_std value: 25.9537 - type: nauc_recall_at_20_diff1 value: 16.1382 - type: nauc_recall_at_100_max value: 70.0766 - type: nauc_recall_at_100_std value: 60.529599999999995 - type: nauc_recall_at_100_diff1 value: 12.1256 - type: nauc_recall_at_1000_max value: 70.6831 - type: nauc_recall_at_1000_std value: 73.87599999999999 - type: nauc_recall_at_1000_diff1 value: 18.0994 - type: nauc_precision_at_1_max value: 22.453400000000002 - type: nauc_precision_at_1_std value: 1.3625 - type: nauc_precision_at_1_diff1 value: 33.4465 - type: nauc_precision_at_3_max value: 32.461 - type: nauc_precision_at_3_std value: 6.0438 - type: nauc_precision_at_3_diff1 value: 19.4828 - type: nauc_precision_at_5_max value: 30.8773 - type: nauc_precision_at_5_std value: 9.5136 - type: nauc_precision_at_5_diff1 value: 10.8131 - type: nauc_precision_at_10_max value: 28.0383 - type: nauc_precision_at_10_std value: 15.0419 - type: nauc_precision_at_10_diff1 value: 2.5906 - type: nauc_precision_at_20_max value: 22.5558 - type: nauc_precision_at_20_std value: 18.2138 - type: nauc_precision_at_20_diff1 value: -0.5902000000000001 - type: nauc_precision_at_100_max value: 9.1213 - type: nauc_precision_at_100_std value: 18.0878 - type: nauc_precision_at_100_diff1 value: -6.768299999999999 - type: nauc_precision_at_1000_max value: 1.3558000000000001 - type: nauc_precision_at_1000_std value: 12.4464 - type: nauc_precision_at_1000_diff1 value: -7.8355999999999995 - type: nauc_mrr_at_1_max value: 22.453400000000002 - type: nauc_mrr_at_1_std value: 1.3625 - type: nauc_mrr_at_1_diff1 value: 33.4465 - type: nauc_mrr_at_3_max value: 27.747100000000003 - type: nauc_mrr_at_3_std value: 2.8298 - type: nauc_mrr_at_3_diff1 value: 29.8467 - type: nauc_mrr_at_5_max value: 28.3625 - type: nauc_mrr_at_5_std value: 3.5815 - type: nauc_mrr_at_5_diff1 value: 29.009 - type: nauc_mrr_at_10_max value: 28.769699999999997 - type: nauc_mrr_at_10_std value: 4.1444 - type: nauc_mrr_at_10_diff1 value: 29.0508 - type: nauc_mrr_at_20_max value: 28.6226 - type: nauc_mrr_at_20_std value: 4.2112 - type: nauc_mrr_at_20_diff1 value: 29.2674 - type: nauc_mrr_at_100_max value: 28.4889 - type: nauc_mrr_at_100_std value: 4.197900000000001 - type: nauc_mrr_at_100_diff1 value: 29.3558 - type: nauc_mrr_at_1000_max value: 28.4672 - type: nauc_mrr_at_1000_std value: 4.1723 - type: nauc_mrr_at_1000_diff1 value: 29.3661 - type: main_score value: 58.044 task: type: Retrieval - dataset: config: default name: MTEB QuoraRetrieval (default) revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 split: test type: mteb/quora metrics: - type: ndcg_at_1 value: 80.65 - type: ndcg_at_3 value: 84.897 - type: ndcg_at_5 value: 86.545 - type: ndcg_at_10 value: 87.822 - type: ndcg_at_20 value: 88.51299999999999 - type: ndcg_at_100 value: 89.091 - type: ndcg_at_1000 value: 89.203 - type: map_at_1 value: 70.05799999999999 - type: map_at_3 value: 81.03399999999999 - type: map_at_5 value: 82.922 - type: map_at_10 value: 84.009 - type: map_at_20 value: 84.442 - type: map_at_100 value: 84.661 - type: map_at_1000 value: 84.679 - type: recall_at_1 value: 70.05799999999999 - type: recall_at_3 value: 86.763 - type: recall_at_5 value: 91.396 - type: recall_at_10 value: 95.148 - type: recall_at_20 value: 97.34 - type: recall_at_100 value: 99.47399999999999 - type: recall_at_1000 value: 99.977 - type: precision_at_1 value: 80.65 - type: precision_at_3 value: 37.15 - type: precision_at_5 value: 24.48 - type: precision_at_10 value: 13.347000000000001 - type: precision_at_20 value: 7.095 - type: precision_at_100 value: 1.5270000000000001 - type: precision_at_1000 value: 0.157 - type: mrr_at_1 value: 80.64 - type: mrr_at_3 value: 85.9483 - type: mrr_at_5 value: 86.6738 - type: mrr_at_10 value: 86.9798 - type: mrr_at_20 value: 87.06009999999999 - type: mrr_at_100 value: 87.08829999999999 - type: mrr_at_1000 value: 87.08930000000001 - type: nauc_ndcg_at_1_max value: 37.1678 - type: nauc_ndcg_at_1_std value: -33.5588 - type: nauc_ndcg_at_1_diff1 value: 77.2101 - type: nauc_ndcg_at_3_max value: 35.085 - type: nauc_ndcg_at_3_std value: -39.8447 - type: nauc_ndcg_at_3_diff1 value: 75.7084 - type: nauc_ndcg_at_5_max value: 36.0947 - type: nauc_ndcg_at_5_std value: -40.3617 - type: nauc_ndcg_at_5_diff1 value: 76.5872 - type: nauc_ndcg_at_10_max value: 36.091899999999995 - type: nauc_ndcg_at_10_std value: -39.8878 - type: nauc_ndcg_at_10_diff1 value: 76.5282 - type: nauc_ndcg_at_20_max value: 36.6226 - type: nauc_ndcg_at_20_std value: -38.3337 - type: nauc_ndcg_at_20_diff1 value: 76.4084 - type: nauc_ndcg_at_100_max value: 36.9855 - type: nauc_ndcg_at_100_std value: -36.561 - type: nauc_ndcg_at_100_diff1 value: 76.21860000000001 - type: nauc_ndcg_at_1000_max value: 37.021300000000004 - type: nauc_ndcg_at_1000_std value: -36.494 - type: nauc_ndcg_at_1000_diff1 value: 76.18599999999999 - type: nauc_map_at_1_max value: 26.761000000000003 - type: nauc_map_at_1_std value: -36.3749 - type: nauc_map_at_1_diff1 value: 80.0977 - type: nauc_map_at_3_max value: 32.530300000000004 - type: nauc_map_at_3_std value: -42.3896 - type: nauc_map_at_3_diff1 value: 77.1352 - type: nauc_map_at_5_max value: 34.322599999999994 - type: nauc_map_at_5_std value: -41.9927 - type: nauc_map_at_5_diff1 value: 77.1848 - type: nauc_map_at_10_max value: 35.0744 - type: nauc_map_at_10_std value: -40.8511 - type: nauc_map_at_10_diff1 value: 76.86319999999999 - type: nauc_map_at_20_max value: 35.442299999999996 - type: nauc_map_at_20_std value: -39.7228 - type: nauc_map_at_20_diff1 value: 76.67150000000001 - type: nauc_map_at_100_max value: 35.5927 - type: nauc_map_at_100_std value: -38.9448 - type: nauc_map_at_100_diff1 value: 76.57169999999999 - type: nauc_map_at_1000_max value: 35.612100000000005 - type: nauc_map_at_1000_std value: -38.8973 - type: nauc_map_at_1000_diff1 value: 76.5656 - type: nauc_recall_at_1_max value: 26.761000000000003 - type: nauc_recall_at_1_std value: -36.3749 - type: nauc_recall_at_1_diff1 value: 80.0977 - type: nauc_recall_at_3_max value: 29.2557 - type: nauc_recall_at_3_std value: -48.3412 - type: nauc_recall_at_3_diff1 value: 73.5986 - type: nauc_recall_at_5_max value: 32.0708 - type: nauc_recall_at_5_std value: -51.9846 - type: nauc_recall_at_5_diff1 value: 74.0073 - type: nauc_recall_at_10_max value: 30.5549 - type: nauc_recall_at_10_std value: -56.8778 - type: nauc_recall_at_10_diff1 value: 73.5398 - type: nauc_recall_at_20_max value: 32.5741 - type: nauc_recall_at_20_std value: -50.3935 - type: nauc_recall_at_20_diff1 value: 73.6634 - type: nauc_recall_at_100_max value: 40.8872 - type: nauc_recall_at_100_std value: -18.2413 - type: nauc_recall_at_100_diff1 value: 72.1894 - type: nauc_recall_at_1000_max value: 31.5668 - type: nauc_recall_at_1000_std value: 51.0679 - type: nauc_recall_at_1000_diff1 value: 59.485299999999995 - type: nauc_precision_at_1_max value: 37.1678 - type: nauc_precision_at_1_std value: -33.5588 - type: nauc_precision_at_1_diff1 value: 77.2101 - type: nauc_precision_at_3_max value: 9.868 - type: nauc_precision_at_3_std value: 4.8771 - type: nauc_precision_at_3_diff1 value: -16.2165 - type: nauc_precision_at_5_max value: 5.169 - type: nauc_precision_at_5_std value: 15.223700000000001 - type: nauc_precision_at_5_diff1 value: -29.328300000000002 - type: nauc_precision_at_10_max value: 0.3411 - type: nauc_precision_at_10_std value: 24.0866 - type: nauc_precision_at_10_diff1 value: -37.514399999999995 - type: nauc_precision_at_20_max value: -1.981 - type: nauc_precision_at_20_std value: 30.408099999999997 - type: nauc_precision_at_20_diff1 value: -41.1355 - type: nauc_precision_at_100_max value: -4.2999 - type: nauc_precision_at_100_std value: 36.4541 - type: nauc_precision_at_100_diff1 value: -43.7797 - type: nauc_precision_at_1000_max value: -4.4928 - type: nauc_precision_at_1000_std value: 36.9861 - type: nauc_precision_at_1000_diff1 value: -44.182 - type: nauc_mrr_at_1_max value: 37.2354 - type: nauc_mrr_at_1_std value: -33.4342 - type: nauc_mrr_at_1_diff1 value: 77.2283 - type: nauc_mrr_at_3_max value: 38.000299999999996 - type: nauc_mrr_at_3_std value: -34.9304 - type: nauc_mrr_at_3_diff1 value: 76.20280000000001 - type: nauc_mrr_at_5_max value: 38.3135 - type: nauc_mrr_at_5_std value: -34.707 - type: nauc_mrr_at_5_diff1 value: 76.4365 - type: nauc_mrr_at_10_max value: 38.0013 - type: nauc_mrr_at_10_std value: -34.6562 - type: nauc_mrr_at_10_diff1 value: 76.44069999999999 - type: nauc_mrr_at_20_max value: 38.0368 - type: nauc_mrr_at_20_std value: -34.4726 - type: nauc_mrr_at_20_diff1 value: 76.4482 - type: nauc_mrr_at_100_max value: 38.0243 - type: nauc_mrr_at_100_std value: -34.4696 - type: nauc_mrr_at_100_diff1 value: 76.4569 - type: nauc_mrr_at_1000_max value: 38.0227 - type: nauc_mrr_at_1000_std value: -34.4733 - type: nauc_mrr_at_1000_diff1 value: 76.45739999999999 - type: main_score value: 87.822 task: type: Retrieval - dataset: config: default name: MTEB RedditClustering (default) revision: 24640382cdbf8abc73003fb0fa6d111a705499eb split: test type: mteb/reddit-clustering metrics: - type: v_measure value: 54.4296 - type: v_measure_std value: 5.026400000000001 - type: main_score value: 54.4296 task: type: Clustering - dataset: config: default name: MTEB RedditClusteringP2P (default) revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 split: test type: mteb/reddit-clustering-p2p metrics: - type: v_measure value: 58.1919 - type: v_measure_std value: 12.618199999999998 - type: main_score value: 58.1919 task: type: Clustering - dataset: config: default name: MTEB SCIDOCS (default) revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 split: test type: mteb/scidocs metrics: - type: ndcg_at_1 value: 28.1 - type: ndcg_at_3 value: 22.721 - type: ndcg_at_5 value: 20.015 - type: ndcg_at_10 value: 24.146 - type: ndcg_at_20 value: 27.74 - type: ndcg_at_100 value: 33.900000000000006 - type: ndcg_at_1000 value: 39.728 - type: map_at_1 value: 5.737 - type: map_at_3 value: 10.474 - type: map_at_5 value: 12.656 - type: map_at_10 value: 14.896 - type: map_at_20 value: 16.317999999999998 - type: map_at_100 value: 17.646 - type: map_at_1000 value: 18.029999999999998 - type: recall_at_1 value: 5.737 - type: recall_at_3 value: 12.897 - type: recall_at_5 value: 17.854999999999997 - type: recall_at_10 value: 25.4 - type: recall_at_20 value: 33.817 - type: recall_at_100 value: 53.772 - type: recall_at_1000 value: 82.013 - type: precision_at_1 value: 28.1 - type: precision_at_3 value: 21.2 - type: precision_at_5 value: 17.599999999999998 - type: precision_at_10 value: 12.540000000000001 - type: precision_at_20 value: 8.34 - type: precision_at_100 value: 2.651 - type: precision_at_1000 value: 0.404 - type: mrr_at_1 value: 28.1 - type: mrr_at_3 value: 35.9167 - type: mrr_at_5 value: 38.0967 - type: mrr_at_10 value: 39.578799999999994 - type: mrr_at_20 value: 40.2541 - type: mrr_at_100 value: 40.687 - type: mrr_at_1000 value: 40.722 - type: nauc_ndcg_at_1_max value: 21.2698 - type: nauc_ndcg_at_1_std value: 8.8522 - type: nauc_ndcg_at_1_diff1 value: 21.6443 - type: nauc_ndcg_at_3_max value: 28.6762 - type: nauc_ndcg_at_3_std value: 13.8129 - type: nauc_ndcg_at_3_diff1 value: 16.4517 - type: nauc_ndcg_at_5_max value: 31.252000000000002 - type: nauc_ndcg_at_5_std value: 17.3178 - type: nauc_ndcg_at_5_diff1 value: 16.8954 - type: nauc_ndcg_at_10_max value: 32.581700000000005 - type: nauc_ndcg_at_10_std value: 19.936300000000003 - type: nauc_ndcg_at_10_diff1 value: 17.086499999999997 - type: nauc_ndcg_at_20_max value: 32.3902 - type: nauc_ndcg_at_20_std value: 22.8215 - type: nauc_ndcg_at_20_diff1 value: 14.6836 - type: nauc_ndcg_at_100_max value: 33.2665 - type: nauc_ndcg_at_100_std value: 28.93 - type: nauc_ndcg_at_100_diff1 value: 14.8837 - type: nauc_ndcg_at_1000_max value: 32.9079 - type: nauc_ndcg_at_1000_std value: 28.228900000000003 - type: nauc_ndcg_at_1000_diff1 value: 15.9599 - type: nauc_map_at_1_max value: 20.3725 - type: nauc_map_at_1_std value: 8.7546 - type: nauc_map_at_1_diff1 value: 20.8754 - type: nauc_map_at_3_max value: 27.0845 - type: nauc_map_at_3_std value: 12.6727 - type: nauc_map_at_3_diff1 value: 15.6365 - type: nauc_map_at_5_max value: 29.2312 - type: nauc_map_at_5_std value: 15.8701 - type: nauc_map_at_5_diff1 value: 15.891 - type: nauc_map_at_10_max value: 30.3676 - type: nauc_map_at_10_std value: 18.5848 - type: nauc_map_at_10_diff1 value: 15.155299999999999 - type: nauc_map_at_20_max value: 30.6006 - type: nauc_map_at_20_std value: 20.4984 - type: nauc_map_at_20_diff1 value: 13.8149 - type: nauc_map_at_100_max value: 31.3216 - type: nauc_map_at_100_std value: 22.8546 - type: nauc_map_at_100_diff1 value: 13.9657 - type: nauc_map_at_1000_max value: 31.3095 - type: nauc_map_at_1000_std value: 22.991 - type: nauc_map_at_1000_diff1 value: 13.999500000000001 - type: nauc_recall_at_1_max value: 20.3725 - type: nauc_recall_at_1_std value: 8.7546 - type: nauc_recall_at_1_diff1 value: 20.8754 - type: nauc_recall_at_3_max value: 30.6276 - type: nauc_recall_at_3_std value: 15.5861 - type: nauc_recall_at_3_diff1 value: 13.9652 - type: nauc_recall_at_5_max value: 33.4455 - type: nauc_recall_at_5_std value: 20.4822 - type: nauc_recall_at_5_diff1 value: 14.566799999999999 - type: nauc_recall_at_10_max value: 33.9121 - type: nauc_recall_at_10_std value: 23.4277 - type: nauc_recall_at_10_diff1 value: 14.5769 - type: nauc_recall_at_20_max value: 30.939100000000003 - type: nauc_recall_at_20_std value: 27.683400000000002 - type: nauc_recall_at_20_diff1 value: 8.519300000000001 - type: nauc_recall_at_100_max value: 28.9221 - type: nauc_recall_at_100_std value: 41.281600000000005 - type: nauc_recall_at_100_diff1 value: 7.3066 - type: nauc_recall_at_1000_max value: 24.2406 - type: nauc_recall_at_1000_std value: 43.2715 - type: nauc_recall_at_1000_diff1 value: 10.2232 - type: nauc_precision_at_1_max value: 21.2698 - type: nauc_precision_at_1_std value: 8.8522 - type: nauc_precision_at_1_diff1 value: 21.6443 - type: nauc_precision_at_3_max value: 31.2776 - type: nauc_precision_at_3_std value: 15.8911 - type: nauc_precision_at_3_diff1 value: 14.357800000000001 - type: nauc_precision_at_5_max value: 34.034 - type: nauc_precision_at_5_std value: 20.6595 - type: nauc_precision_at_5_diff1 value: 15.1316 - type: nauc_precision_at_10_max value: 34.4474 - type: nauc_precision_at_10_std value: 23.5843 - type: nauc_precision_at_10_diff1 value: 14.9385 - type: nauc_precision_at_20_max value: 31.4376 - type: nauc_precision_at_20_std value: 27.7123 - type: nauc_precision_at_20_diff1 value: 8.6083 - type: nauc_precision_at_100_max value: 29.401300000000003 - type: nauc_precision_at_100_std value: 40.5942 - type: nauc_precision_at_100_diff1 value: 7.6172 - type: nauc_precision_at_1000_max value: 25.2832 - type: nauc_precision_at_1000_std value: 40.9653 - type: nauc_precision_at_1000_diff1 value: 10.3534 - type: nauc_mrr_at_1_max value: 21.2698 - type: nauc_mrr_at_1_std value: 8.8522 - type: nauc_mrr_at_1_diff1 value: 21.6443 - type: nauc_mrr_at_3_max value: 26.8557 - type: nauc_mrr_at_3_std value: 12.482600000000001 - type: nauc_mrr_at_3_diff1 value: 19.3542 - type: nauc_mrr_at_5_max value: 28.0333 - type: nauc_mrr_at_5_std value: 13.4664 - type: nauc_mrr_at_5_diff1 value: 20.0372 - type: nauc_mrr_at_10_max value: 28.0659 - type: nauc_mrr_at_10_std value: 13.791999999999998 - type: nauc_mrr_at_10_diff1 value: 20.7022 - type: nauc_mrr_at_20_max value: 27.886499999999998 - type: nauc_mrr_at_20_std value: 13.952700000000002 - type: nauc_mrr_at_20_diff1 value: 20.5573 - type: nauc_mrr_at_100_max value: 27.714299999999998 - type: nauc_mrr_at_100_std value: 13.863700000000001 - type: nauc_mrr_at_100_diff1 value: 20.5074 - type: nauc_mrr_at_1000_max value: 27.700599999999998 - type: nauc_mrr_at_1000_std value: 13.8399 - type: nauc_mrr_at_1000_diff1 value: 20.5031 - type: main_score value: 24.146 task: type: Retrieval - dataset: config: default name: MTEB SICK-R (default) revision: 20a6d6f312dd54037fe07a32d58e5e168867909d split: test type: mteb/sickr-sts metrics: - type: pearson value: 78.6926 - type: spearman value: 71.2001 - type: cosine_pearson value: 78.6926 - type: cosine_spearman value: 71.2001 - type: manhattan_pearson value: 75.264 - type: manhattan_spearman value: 71.1303 - type: euclidean_pearson value: 75.3261 - type: euclidean_spearman value: 71.2001 - type: main_score value: 71.2001 task: type: STS - dataset: config: default name: MTEB STS12 (default) revision: a0d554a64d88156834ff5ae9920b964011b16384 split: test type: mteb/sts12-sts metrics: - type: pearson value: 71.0057 - type: spearman value: 65.9247 - type: cosine_pearson value: 71.0057 - type: cosine_spearman value: 65.9247 - type: manhattan_pearson value: 67.392 - type: manhattan_spearman value: 65.8026 - type: euclidean_pearson value: 67.5888 - type: euclidean_spearman value: 65.92479999999999 - type: main_score value: 65.9247 task: type: STS - dataset: config: default name: MTEB STS13 (default) revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca split: test type: mteb/sts13-sts metrics: - type: pearson value: 81.67649999999999 - type: spearman value: 81.7525 - type: cosine_pearson value: 81.67649999999999 - type: cosine_spearman value: 81.7525 - type: manhattan_pearson value: 81.0327 - type: manhattan_spearman value: 81.6717 - type: euclidean_pearson value: 81.10000000000001 - type: euclidean_spearman value: 81.7526 - type: main_score value: 81.7525 task: type: STS - dataset: config: default name: MTEB STS14 (default) revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 split: test type: mteb/sts14-sts metrics: - type: pearson value: 79.47579999999999 - type: spearman value: 74.2305 - type: cosine_pearson value: 79.47579999999999 - type: cosine_spearman value: 74.2305 - type: manhattan_pearson value: 77.8846 - type: manhattan_spearman value: 74.1908 - type: euclidean_pearson value: 77.9333 - type: euclidean_spearman value: 74.2305 - type: main_score value: 74.2305 task: type: STS - dataset: config: default name: MTEB STS15 (default) revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 split: test type: mteb/sts15-sts metrics: - type: pearson value: 82.90180000000001 - type: spearman value: 84.1271 - type: cosine_pearson value: 82.90180000000001 - type: cosine_spearman value: 84.1271 - type: manhattan_pearson value: 83.6431 - type: manhattan_spearman value: 84.1091 - type: euclidean_pearson value: 83.6388 - type: euclidean_spearman value: 84.127 - type: main_score value: 84.1271 task: type: STS - dataset: config: default name: MTEB STS16 (default) revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 split: test type: mteb/sts16-sts metrics: - type: pearson value: 80.19810000000001 - type: spearman value: 81.6627 - type: cosine_pearson value: 80.19810000000001 - type: cosine_spearman value: 81.6627 - type: manhattan_pearson value: 81.4605 - type: manhattan_spearman value: 81.62819999999999 - type: euclidean_pearson value: 81.5043 - type: euclidean_spearman value: 81.6627 - type: main_score value: 81.6627 task: type: STS - dataset: config: en-de name: MTEB STS17 (en-de) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 47.9276 - type: spearman value: 50.0286 - type: cosine_pearson value: 47.9276 - type: cosine_spearman value: 50.0286 - type: manhattan_pearson value: 48.5188 - type: manhattan_spearman value: 50.432 - type: euclidean_pearson value: 48.1655 - type: euclidean_spearman value: 50.0286 - type: main_score value: 50.0286 task: type: STS - dataset: config: en-tr name: MTEB STS17 (en-tr) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 24.4119 - type: spearman value: 22.1195 - type: cosine_pearson value: 24.4119 - type: cosine_spearman value: 22.1195 - type: manhattan_pearson value: 25.873800000000003 - type: manhattan_spearman value: 23.6049 - type: euclidean_pearson value: 24.3693 - type: euclidean_spearman value: 22.1195 - type: main_score value: 22.1195 task: type: STS - dataset: config: en-ar name: MTEB STS17 (en-ar) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 22.656200000000002 - type: spearman value: 22.5445 - type: cosine_pearson value: 22.656200000000002 - type: cosine_spearman value: 22.5445 - type: manhattan_pearson value: 22.414 - type: manhattan_spearman value: 22.1601 - type: euclidean_pearson value: 22.7736 - type: euclidean_spearman value: 22.5445 - type: main_score value: 22.5445 task: type: STS - dataset: config: nl-en name: MTEB STS17 (nl-en) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 44.4998 - type: spearman value: 43.1984 - type: cosine_pearson value: 44.4998 - type: cosine_spearman value: 43.1984 - type: manhattan_pearson value: 43.3837 - type: manhattan_spearman value: 43.1122 - type: euclidean_pearson value: 44.1642 - type: euclidean_spearman value: 43.1984 - type: main_score value: 43.1984 task: type: STS - dataset: config: en-en name: MTEB STS17 (en-en) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 82.3891 - type: spearman value: 83.9634 - type: cosine_pearson value: 82.3891 - type: cosine_spearman value: 83.9634 - type: manhattan_pearson value: 83.1481 - type: manhattan_spearman value: 83.9743 - type: euclidean_pearson value: 83.2767 - type: euclidean_spearman value: 83.9634 - type: main_score value: 83.9634 task: type: STS - dataset: config: it-en name: MTEB STS17 (it-en) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 35.3106 - type: spearman value: 30.7572 - type: cosine_pearson value: 35.3106 - type: cosine_spearman value: 30.7572 - type: manhattan_pearson value: 35.6552 - type: manhattan_spearman value: 31.596000000000004 - type: euclidean_pearson value: 35.4393 - type: euclidean_spearman value: 30.7572 - type: main_score value: 30.7572 task: type: STS - dataset: config: es-en name: MTEB STS17 (es-en) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 36.9322 - type: spearman value: 37.7137 - type: cosine_pearson value: 36.9322 - type: cosine_spearman value: 37.7137 - type: manhattan_pearson value: 36.0714 - type: manhattan_spearman value: 36.9979 - type: euclidean_pearson value: 36.784800000000004 - type: euclidean_spearman value: 37.7137 - type: main_score value: 37.7137 task: type: STS - dataset: config: fr-en name: MTEB STS17 (fr-en) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 39.963300000000004 - type: spearman value: 38.9248 - type: cosine_pearson value: 39.963300000000004 - type: cosine_spearman value: 38.9248 - type: manhattan_pearson value: 39.539699999999996 - type: manhattan_spearman value: 38.191900000000004 - type: euclidean_pearson value: 39.8596 - type: euclidean_spearman value: 38.9248 - type: main_score value: 38.9248 task: type: STS - dataset: config: de-en name: MTEB STS22 (de-en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: pearson value: 56.0924 - type: spearman value: 54.1844 - type: cosine_pearson value: 56.0924 - type: cosine_spearman value: 54.1844 - type: manhattan_pearson value: 56.938100000000006 - type: manhattan_spearman value: 53.9407 - type: euclidean_pearson value: 57.9844 - type: euclidean_spearman value: 54.1844 - type: main_score value: 54.1844 task: type: STS - dataset: config: en name: MTEB STS22 (en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: pearson value: 69.3771 - type: spearman value: 69.3609 - type: cosine_pearson value: 69.3771 - type: cosine_spearman value: 69.3609 - type: manhattan_pearson value: 70.8762 - type: manhattan_spearman value: 69.1889 - type: euclidean_pearson value: 70.9433 - type: euclidean_spearman value: 69.3609 - type: main_score value: 69.3609 task: type: STS - dataset: config: pl-en name: MTEB STS22 (pl-en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: pearson value: 74.11609999999999 - type: spearman value: 71.63340000000001 - type: cosine_pearson value: 74.11609999999999 - type: cosine_spearman value: 71.63340000000001 - type: manhattan_pearson value: 73.2348 - type: manhattan_spearman value: 71.1802 - type: euclidean_pearson value: 73.284 - type: euclidean_spearman value: 71.63340000000001 - type: main_score value: 71.63340000000001 task: type: STS - dataset: config: es-en name: MTEB STS22 (es-en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: pearson value: 70.08879999999999 - type: spearman value: 73.79 - type: cosine_pearson value: 70.08879999999999 - type: cosine_spearman value: 73.79 - type: manhattan_pearson value: 71.5415 - type: manhattan_spearman value: 73.6588 - type: euclidean_pearson value: 71.621 - type: euclidean_spearman value: 73.79 - type: main_score value: 73.79 task: type: STS - dataset: config: zh-en name: MTEB STS22 (zh-en) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: pearson value: 37.5935 - type: spearman value: 39.5919 - type: cosine_pearson value: 37.5935 - type: cosine_spearman value: 39.5919 - type: manhattan_pearson value: 37.1717 - type: manhattan_spearman value: 38.6974 - type: euclidean_pearson value: 37.5632 - type: euclidean_spearman value: 39.5919 - type: main_score value: 39.5919 task: type: STS - dataset: config: default name: MTEB STSBenchmark (default) revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 split: test type: mteb/stsbenchmark-sts metrics: - type: pearson value: 79.9453 - type: spearman value: 79.6569 - type: cosine_pearson value: 79.9453 - type: cosine_spearman value: 79.6569 - type: manhattan_pearson value: 79.8923 - type: manhattan_spearman value: 79.58370000000001 - type: euclidean_pearson value: 79.9829 - type: euclidean_spearman value: 79.6569 - type: main_score value: 79.6569 task: type: STS - dataset: config: default name: MTEB SciDocsRR (default) revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab split: test type: mteb/scidocs-reranking metrics: - type: map value: 88.09949999999999 - type: mrr value: 96.6455 - type: nAUC_map_max value: 53.3622 - type: nAUC_map_std value: 70.3532 - type: nAUC_map_diff1 value: -0.21419999999999997 - type: nAUC_mrr_max value: 88.893 - type: nAUC_mrr_std value: 85.4516 - type: nAUC_mrr_diff1 value: 43.6847 - type: main_score value: 88.09949999999999 task: type: Reranking - dataset: config: default name: MTEB SciFact (default) revision: 0228b52cf27578f30900b9e5271d331663a030d7 split: test type: mteb/scifact metrics: - type: ndcg_at_1 value: 62.666999999999994 - type: ndcg_at_3 value: 69.77600000000001 - type: ndcg_at_5 value: 71.964 - type: ndcg_at_10 value: 74.72 - type: ndcg_at_20 value: 76.154 - type: ndcg_at_100 value: 76.961 - type: ndcg_at_1000 value: 77.294 - type: map_at_1 value: 60.011 - type: map_at_3 value: 67.135 - type: map_at_5 value: 68.78 - type: map_at_10 value: 70.101 - type: map_at_20 value: 70.56099999999999 - type: map_at_100 value: 70.687 - type: map_at_1000 value: 70.699 - type: recall_at_1 value: 60.011 - type: recall_at_3 value: 74.839 - type: recall_at_5 value: 80.028 - type: recall_at_10 value: 87.8 - type: recall_at_20 value: 93.10000000000001 - type: recall_at_100 value: 97.333 - type: recall_at_1000 value: 100.0 - type: precision_at_1 value: 62.666999999999994 - type: precision_at_3 value: 27.0 - type: precision_at_5 value: 17.8 - type: precision_at_10 value: 9.933 - type: precision_at_20 value: 5.283 - type: precision_at_100 value: 1.103 - type: precision_at_1000 value: 0.11299999999999999 - type: mrr_at_1 value: 62.6667 - type: mrr_at_3 value: 68.9444 - type: mrr_at_5 value: 69.9611 - type: mrr_at_10 value: 71.02199999999999 - type: mrr_at_20 value: 71.3777 - type: mrr_at_100 value: 71.4841 - type: mrr_at_1000 value: 71.4961 - type: nauc_ndcg_at_1_max value: 55.4562 - type: nauc_ndcg_at_1_std value: -9.3317 - type: nauc_ndcg_at_1_diff1 value: 71.1878 - type: nauc_ndcg_at_3_max value: 55.3473 - type: nauc_ndcg_at_3_std value: -14.341400000000002 - type: nauc_ndcg_at_3_diff1 value: 69.11880000000001 - type: nauc_ndcg_at_5_max value: 55.5531 - type: nauc_ndcg_at_5_std value: -13.448699999999999 - type: nauc_ndcg_at_5_diff1 value: 67.4611 - type: nauc_ndcg_at_10_max value: 59.5974 - type: nauc_ndcg_at_10_std value: -10.262 - type: nauc_ndcg_at_10_diff1 value: 68.3408 - type: nauc_ndcg_at_20_max value: 58.586499999999994 - type: nauc_ndcg_at_20_std value: -9.8438 - type: nauc_ndcg_at_20_diff1 value: 68.4434 - type: nauc_ndcg_at_100_max value: 58.28489999999999 - type: nauc_ndcg_at_100_std value: -8.7782 - type: nauc_ndcg_at_100_diff1 value: 68.585 - type: nauc_ndcg_at_1000_max value: 58.0138 - type: nauc_ndcg_at_1000_std value: -9.4827 - type: nauc_ndcg_at_1000_diff1 value: 69.0467 - type: nauc_map_at_1_max value: 49.434 - type: nauc_map_at_1_std value: -17.0503 - type: nauc_map_at_1_diff1 value: 71.80290000000001 - type: nauc_map_at_3_max value: 52.8035 - type: nauc_map_at_3_std value: -16.2138 - type: nauc_map_at_3_diff1 value: 69.81739999999999 - type: nauc_map_at_5_max value: 54.644400000000005 - type: nauc_map_at_5_std value: -13.910900000000002 - type: nauc_map_at_5_diff1 value: 68.8879 - type: nauc_map_at_10_max value: 56.550999999999995 - type: nauc_map_at_10_std value: -12.126900000000001 - type: nauc_map_at_10_diff1 value: 69.2326 - type: nauc_map_at_20_max value: 56.299699999999994 - type: nauc_map_at_20_std value: -11.8978 - type: nauc_map_at_20_diff1 value: 69.3387 - type: nauc_map_at_100_max value: 56.295300000000005 - type: nauc_map_at_100_std value: -11.6546 - type: nauc_map_at_100_diff1 value: 69.3881 - type: nauc_map_at_1000_max value: 56.2905 - type: nauc_map_at_1000_std value: -11.666400000000001 - type: nauc_map_at_1000_diff1 value: 69.4106 - type: nauc_recall_at_1_max value: 49.434 - type: nauc_recall_at_1_std value: -17.0503 - type: nauc_recall_at_1_diff1 value: 71.80290000000001 - type: nauc_recall_at_3_max value: 53.6504 - type: nauc_recall_at_3_std value: -20.3796 - type: nauc_recall_at_3_diff1 value: 66.0397 - type: nauc_recall_at_5_max value: 54.45140000000001 - type: nauc_recall_at_5_std value: -17.8965 - type: nauc_recall_at_5_diff1 value: 60.6996 - type: nauc_recall_at_10_max value: 72.7183 - type: nauc_recall_at_10_std value: -7.3393 - type: nauc_recall_at_10_diff1 value: 62.0422 - type: nauc_recall_at_20_max value: 70.7849 - type: nauc_recall_at_20_std value: -3.1933000000000002 - type: nauc_recall_at_20_diff1 value: 58.146 - type: nauc_recall_at_100_max value: 75.43769999999999 - type: nauc_recall_at_100_std value: 36.5488 - type: nauc_recall_at_100_diff1 value: 46.3177 - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_precision_at_1_max value: 55.4562 - type: nauc_precision_at_1_std value: -9.3317 - type: nauc_precision_at_1_diff1 value: 71.1878 - type: nauc_precision_at_3_max value: 52.548300000000005 - type: nauc_precision_at_3_std value: 6.719899999999999 - type: nauc_precision_at_3_diff1 value: 42.6315 - type: nauc_precision_at_5_max value: 47.9921 - type: nauc_precision_at_5_std value: 21.9242 - type: nauc_precision_at_5_diff1 value: 23.0825 - type: nauc_precision_at_10_max value: 47.517399999999995 - type: nauc_precision_at_10_std value: 44.4913 - type: nauc_precision_at_10_diff1 value: 5.4589 - type: nauc_precision_at_20_max value: 36.0675 - type: nauc_precision_at_20_std value: 53.9269 - type: nauc_precision_at_20_diff1 value: -7.0865 - type: nauc_precision_at_100_max value: 28.0561 - type: nauc_precision_at_100_std value: 66.17920000000001 - type: nauc_precision_at_100_diff1 value: -19.653000000000002 - type: nauc_precision_at_1000_max value: 22.470100000000002 - type: nauc_precision_at_1000_std value: 69.6725 - type: nauc_precision_at_1000_diff1 value: -27.430500000000002 - type: nauc_mrr_at_1_max value: 55.4562 - type: nauc_mrr_at_1_std value: -9.3317 - type: nauc_mrr_at_1_diff1 value: 71.1878 - type: nauc_mrr_at_3_max value: 57.4634 - type: nauc_mrr_at_3_std value: -10.6496 - type: nauc_mrr_at_3_diff1 value: 69.881 - type: nauc_mrr_at_5_max value: 56.8667 - type: nauc_mrr_at_5_std value: -10.2421 - type: nauc_mrr_at_5_diff1 value: 69.0777 - type: nauc_mrr_at_10_max value: 58.06289999999999 - type: nauc_mrr_at_10_std value: -9.8724 - type: nauc_mrr_at_10_diff1 value: 69.5505 - type: nauc_mrr_at_20_max value: 57.740700000000004 - type: nauc_mrr_at_20_std value: -10.0261 - type: nauc_mrr_at_20_diff1 value: 69.5455 - type: nauc_mrr_at_100_max value: 57.735499999999995 - type: nauc_mrr_at_100_std value: -9.8413 - type: nauc_mrr_at_100_diff1 value: 69.5846 - type: nauc_mrr_at_1000_max value: 57.7313 - type: nauc_mrr_at_1000_std value: -9.8523 - type: nauc_mrr_at_1000_diff1 value: 69.6076 - type: main_score value: 74.72 task: type: Retrieval - dataset: config: default name: MTEB SprintDuplicateQuestions (default) revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 split: test type: mteb/sprintduplicatequestions-pairclassification metrics: - type: similarity_accuracy value: 99.798 - type: similarity_accuracy_threshold value: 92.7546 - type: similarity_f1 value: 89.441 - type: similarity_f1_threshold value: 92.7546 - type: similarity_precision value: 92.70389999999999 - type: similarity_recall value: 86.4 - type: similarity_ap value: 95.40729999999999 - type: cosine_accuracy value: 99.798 - type: cosine_accuracy_threshold value: 92.7546 - type: cosine_f1 value: 89.441 - type: cosine_f1_threshold value: 92.7546 - type: cosine_precision value: 92.70389999999999 - type: cosine_recall value: 86.4 - type: cosine_ap value: 95.40729999999999 - type: manhattan_accuracy value: 99.795 - type: manhattan_accuracy_threshold value: 851.3785 - type: manhattan_f1 value: 89.5464 - type: manhattan_f1_threshold value: 902.8005999999999 - type: manhattan_precision value: 88.3268 - type: manhattan_recall value: 90.8 - type: manhattan_ap value: 95.3814 - type: euclidean_accuracy value: 99.798 - type: euclidean_accuracy_threshold value: 38.0669 - type: euclidean_f1 value: 89.441 - type: euclidean_f1_threshold value: 38.0669 - type: euclidean_precision value: 92.70389999999999 - type: euclidean_recall value: 86.4 - type: euclidean_ap value: 95.4074 - type: dot_accuracy value: 99.798 - type: dot_accuracy_threshold value: 92.7546 - type: dot_f1 value: 89.441 - type: dot_f1_threshold value: 92.7546 - type: dot_precision value: 92.70389999999999 - type: dot_recall value: 86.4 - type: dot_ap value: 95.4074 - type: max_accuracy value: 99.798 - type: max_f1 value: 89.5464 - type: max_precision value: 92.70389999999999 - type: max_recall value: 90.8 - type: max_ap value: 95.4074 - type: main_score value: 95.4074 task: type: PairClassification - dataset: config: default name: MTEB StackExchangeClustering (default) revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 split: test type: mteb/stackexchange-clustering metrics: - type: v_measure value: 70.3156 - type: v_measure_std value: 3.9677 - type: main_score value: 70.3156 task: type: Clustering - dataset: config: default name: MTEB StackExchangeClusteringP2P (default) revision: 815ca46b2622cec33ccafc3735d572c266efdb44 split: test type: mteb/stackexchange-clustering-p2p metrics: - type: v_measure value: 35.4198 - type: v_measure_std value: 1.5537 - type: main_score value: 35.4198 task: type: Clustering - dataset: config: default name: MTEB StackOverflowDupQuestions (default) revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 split: test type: mteb/stackoverflowdupquestions-reranking metrics: - type: map value: 54.522099999999995 - type: mrr value: 55.500099999999996 - type: nAUC_map_max value: 7.9342 - type: nAUC_map_std value: 6.8542000000000005 - type: nAUC_map_diff1 value: 38.738099999999996 - type: nAUC_mrr_max value: 8.862 - type: nAUC_mrr_std value: 7.2187 - type: nAUC_mrr_diff1 value: 38.5236 - type: main_score value: 54.522099999999995 task: type: Reranking - dataset: config: default name: MTEB StackOverflowQA (default) revision: db8f169f3894c14a00251061f957b2063eef2bd5 split: test type: CoIR-Retrieval/stackoverflow-qa metrics: - type: ndcg_at_1 value: 83.2 - type: ndcg_at_3 value: 88.397 - type: ndcg_at_5 value: 89.202 - type: ndcg_at_10 value: 89.846 - type: ndcg_at_20 value: 90.235 - type: ndcg_at_100 value: 90.55199999999999 - type: ndcg_at_1000 value: 90.654 - type: map_at_1 value: 83.2 - type: map_at_3 value: 87.17 - type: map_at_5 value: 87.616 - type: map_at_10 value: 87.889 - type: map_at_20 value: 87.994 - type: map_at_100 value: 88.041 - type: map_at_1000 value: 88.045 - type: recall_at_1 value: 83.2 - type: recall_at_3 value: 91.926 - type: recall_at_5 value: 93.882 - type: recall_at_10 value: 95.838 - type: recall_at_20 value: 97.392 - type: recall_at_100 value: 99.047 - type: recall_at_1000 value: 99.85000000000001 - type: precision_at_1 value: 83.2 - type: precision_at_3 value: 30.642000000000003 - type: precision_at_5 value: 18.776 - type: precision_at_10 value: 9.584 - type: precision_at_20 value: 4.87 - type: precision_at_100 value: 0.9900000000000001 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 83.19959999999999 - type: mrr_at_3 value: 87.1698 - type: mrr_at_5 value: 87.6162 - type: mrr_at_10 value: 87.8891 - type: mrr_at_20 value: 87.99369999999999 - type: mrr_at_100 value: 88.0412 - type: mrr_at_1000 value: 88.045 - type: nauc_ndcg_at_1_max value: 78.6007 - type: nauc_ndcg_at_1_std value: -0.0095 - type: nauc_ndcg_at_1_diff1 value: 88.7762 - type: nauc_ndcg_at_3_max value: 81.4239 - type: nauc_ndcg_at_3_std value: 1.4683 - type: nauc_ndcg_at_3_diff1 value: 86.54220000000001 - type: nauc_ndcg_at_5_max value: 80.8469 - type: nauc_ndcg_at_5_std value: -0.5089 - type: nauc_ndcg_at_5_diff1 value: 86.7397 - type: nauc_ndcg_at_10_max value: 80.60730000000001 - type: nauc_ndcg_at_10_std value: 1.2302 - type: nauc_ndcg_at_10_diff1 value: 86.5722 - type: nauc_ndcg_at_20_max value: 80.5133 - type: nauc_ndcg_at_20_std value: 1.0021 - type: nauc_ndcg_at_20_diff1 value: 86.6381 - type: nauc_ndcg_at_100_max value: 80.4389 - type: nauc_ndcg_at_100_std value: 0.33 - type: nauc_ndcg_at_100_diff1 value: 86.993 - type: nauc_ndcg_at_1000_max value: 80.3736 - type: nauc_ndcg_at_1000_std value: 0.582 - type: nauc_ndcg_at_1000_diff1 value: 86.9238 - type: nauc_map_at_1_max value: 78.6007 - type: nauc_map_at_1_std value: -0.0095 - type: nauc_map_at_1_diff1 value: 88.7762 - type: nauc_map_at_3_max value: 80.6167 - type: nauc_map_at_3_std value: 0.8933 - type: nauc_map_at_3_diff1 value: 87.07629999999999 - type: nauc_map_at_5_max value: 80.3056 - type: nauc_map_at_5_std value: -0.1035 - type: nauc_map_at_5_diff1 value: 87.1974 - type: nauc_map_at_10_max value: 80.1979 - type: nauc_map_at_10_std value: 0.4875 - type: nauc_map_at_10_diff1 value: 87.1597 - type: nauc_map_at_20_max value: 80.1758 - type: nauc_map_at_20_std value: 0.4484 - type: nauc_map_at_20_diff1 value: 87.1785 - type: nauc_map_at_100_max value: 80.1598 - type: nauc_map_at_100_std value: 0.3517 - type: nauc_map_at_100_diff1 value: 87.2128 - type: nauc_map_at_1000_max value: 80.1585 - type: nauc_map_at_1000_std value: 0.3646 - type: nauc_map_at_1000_diff1 value: 87.2108 - type: nauc_recall_at_1_max value: 78.6007 - type: nauc_recall_at_1_std value: -0.0095 - type: nauc_recall_at_1_diff1 value: 88.7762 - type: nauc_recall_at_3_max value: 84.951 - type: nauc_recall_at_3_std value: 4.0854 - type: nauc_recall_at_3_diff1 value: 84.2801 - type: nauc_recall_at_5_max value: 83.68339999999999 - type: nauc_recall_at_5_std value: -3.1815 - type: nauc_recall_at_5_diff1 value: 84.33619999999999 - type: nauc_recall_at_10_max value: 83.4402 - type: nauc_recall_at_10_std value: 8.585700000000001 - type: nauc_recall_at_10_diff1 value: 81.84320000000001 - type: nauc_recall_at_20_max value: 83.6935 - type: nauc_recall_at_20_std value: 9.088799999999999 - type: nauc_recall_at_20_diff1 value: 80.01 - type: nauc_recall_at_100_max value: 86.5116 - type: nauc_recall_at_100_std value: -7.6839 - type: nauc_recall_at_100_diff1 value: 88.1354 - type: nauc_recall_at_1000_max value: 86.3848 - type: nauc_recall_at_1000_std value: 52.8467 - type: nauc_recall_at_1000_diff1 value: 61.4995 - type: nauc_precision_at_1_max value: 78.6007 - type: nauc_precision_at_1_std value: -0.0095 - type: nauc_precision_at_1_diff1 value: 88.7762 - type: nauc_precision_at_3_max value: 84.951 - type: nauc_precision_at_3_std value: 4.0854 - type: nauc_precision_at_3_diff1 value: 84.2801 - type: nauc_precision_at_5_max value: 83.68339999999999 - type: nauc_precision_at_5_std value: -3.1815 - type: nauc_precision_at_5_diff1 value: 84.33619999999999 - type: nauc_precision_at_10_max value: 83.4402 - type: nauc_precision_at_10_std value: 8.585700000000001 - type: nauc_precision_at_10_diff1 value: 81.84320000000001 - type: nauc_precision_at_20_max value: 83.6935 - type: nauc_precision_at_20_std value: 9.088799999999999 - type: nauc_precision_at_20_diff1 value: 80.01 - type: nauc_precision_at_100_max value: 86.5116 - type: nauc_precision_at_100_std value: -7.6839 - type: nauc_precision_at_100_diff1 value: 88.1354 - type: nauc_precision_at_1000_max value: 86.3848 - type: nauc_precision_at_1000_std value: 52.8467 - type: nauc_precision_at_1000_diff1 value: 61.4995 - type: nauc_mrr_at_1_max value: 78.6007 - type: nauc_mrr_at_1_std value: -0.0095 - type: nauc_mrr_at_1_diff1 value: 88.7762 - type: nauc_mrr_at_3_max value: 80.6167 - type: nauc_mrr_at_3_std value: 0.8933 - type: nauc_mrr_at_3_diff1 value: 87.07629999999999 - type: nauc_mrr_at_5_max value: 80.3056 - type: nauc_mrr_at_5_std value: -0.1035 - type: nauc_mrr_at_5_diff1 value: 87.1974 - type: nauc_mrr_at_10_max value: 80.1979 - type: nauc_mrr_at_10_std value: 0.4875 - type: nauc_mrr_at_10_diff1 value: 87.1597 - type: nauc_mrr_at_20_max value: 80.1758 - type: nauc_mrr_at_20_std value: 0.4484 - type: nauc_mrr_at_20_diff1 value: 87.1785 - type: nauc_mrr_at_100_max value: 80.1598 - type: nauc_mrr_at_100_std value: 0.3517 - type: nauc_mrr_at_100_diff1 value: 87.2128 - type: nauc_mrr_at_1000_max value: 80.1585 - type: nauc_mrr_at_1000_std value: 0.3646 - type: nauc_mrr_at_1000_diff1 value: 87.2108 - type: main_score value: 89.846 task: type: Retrieval - dataset: config: default name: MTEB SummEval (default) revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c split: test type: mteb/summeval metrics: - type: pearson value: 30.709999999999997 - type: spearman value: 31.841199999999997 - type: cosine_spearman value: 31.841199999999997 - type: cosine_pearson value: 30.709999999999997 - type: dot_spearman value: 31.841199999999997 - type: dot_pearson value: 30.709999999999997 - type: main_score value: 31.841199999999997 task: type: Summarization - dataset: config: default name: MTEB SyntheticText2SQL (default) revision: 686b87296c3a0191b5d9415a00526c62db9fce09 split: test type: CoIR-Retrieval/synthetic-text2sql metrics: - type: ndcg_at_1 value: 3.692 - type: ndcg_at_3 value: 42.481 - type: ndcg_at_5 value: 45.909 - type: ndcg_at_10 value: 48.41 - type: ndcg_at_20 value: 49.845 - type: ndcg_at_100 value: 51.358000000000004 - type: ndcg_at_1000 value: 51.739999999999995 - type: map_at_1 value: 3.692 - type: map_at_3 value: 33.82 - type: map_at_5 value: 35.727 - type: map_at_10 value: 36.768 - type: map_at_20 value: 37.162 - type: map_at_100 value: 37.377 - type: map_at_1000 value: 37.391999999999996 - type: recall_at_1 value: 3.692 - type: recall_at_3 value: 67.18499999999999 - type: recall_at_5 value: 75.491 - type: recall_at_10 value: 83.182 - type: recall_at_20 value: 88.857 - type: recall_at_100 value: 96.92399999999999 - type: recall_at_1000 value: 99.88 - type: precision_at_1 value: 3.692 - type: precision_at_3 value: 22.395 - type: precision_at_5 value: 15.098 - type: precision_at_10 value: 8.318 - type: precision_at_20 value: 4.443 - type: precision_at_100 value: 0.9690000000000001 - type: precision_at_1000 value: 0.1 - type: mrr_at_1 value: 31.4647 - type: mrr_at_3 value: 49.3391 - type: mrr_at_5 value: 50.9842 - type: mrr_at_10 value: 51.902499999999996 - type: mrr_at_20 value: 52.2801 - type: mrr_at_100 value: 52.4906 - type: mrr_at_1000 value: 52.506 - type: nauc_ndcg_at_1_max value: 5.9474 - type: nauc_ndcg_at_1_std value: -15.6036 - type: nauc_ndcg_at_1_diff1 value: 74.4115 - type: nauc_ndcg_at_3_max value: 24.1744 - type: nauc_ndcg_at_3_std value: -26.2412 - type: nauc_ndcg_at_3_diff1 value: -61.795 - type: nauc_ndcg_at_5_max value: 24.3445 - type: nauc_ndcg_at_5_std value: -26.8005 - type: nauc_ndcg_at_5_diff1 value: -57.8936 - type: nauc_ndcg_at_10_max value: 23.6218 - type: nauc_ndcg_at_10_std value: -26.378400000000003 - type: nauc_ndcg_at_10_diff1 value: -54.496599999999994 - type: nauc_ndcg_at_20_max value: 23.6458 - type: nauc_ndcg_at_20_std value: -26.1137 - type: nauc_ndcg_at_20_diff1 value: -52.7814 - type: nauc_ndcg_at_100_max value: 23.59 - type: nauc_ndcg_at_100_std value: -24.786 - type: nauc_ndcg_at_100_diff1 value: -51.30200000000001 - type: nauc_ndcg_at_1000_max value: 23.1129 - type: nauc_ndcg_at_1000_std value: -25.138899999999996 - type: nauc_ndcg_at_1000_diff1 value: -50.856500000000004 - type: nauc_map_at_1_max value: 5.9474 - type: nauc_map_at_1_std value: -15.6036 - type: nauc_map_at_1_diff1 value: 74.4115 - type: nauc_map_at_3_max value: 22.7683 - type: nauc_map_at_3_std value: -25.060399999999998 - type: nauc_map_at_3_diff1 value: -53.0054 - type: nauc_map_at_5_max value: 22.778100000000002 - type: nauc_map_at_5_std value: -25.3076 - type: nauc_map_at_5_diff1 value: -49.921 - type: nauc_map_at_10_max value: 22.345000000000002 - type: nauc_map_at_10_std value: -25.0615 - type: nauc_map_at_10_diff1 value: -48.089999999999996 - type: nauc_map_at_20_max value: 22.336100000000002 - type: nauc_map_at_20_std value: -24.9463 - type: nauc_map_at_20_diff1 value: -47.4815 - type: nauc_map_at_100_max value: 22.3039 - type: nauc_map_at_100_std value: -24.7562 - type: nauc_map_at_100_diff1 value: -47.2248 - type: nauc_map_at_1000_max value: 22.287000000000003 - type: nauc_map_at_1000_std value: -24.7638 - type: nauc_map_at_1000_diff1 value: -47.2029 - type: nauc_recall_at_1_max value: 5.9474 - type: nauc_recall_at_1_std value: -15.6036 - type: nauc_recall_at_1_diff1 value: 74.4115 - type: nauc_recall_at_3_max value: 26.7488 - type: nauc_recall_at_3_std value: -28.5119 - type: nauc_recall_at_3_diff1 value: -77.3694 - type: nauc_recall_at_5_max value: 27.694499999999998 - type: nauc_recall_at_5_std value: -30.2099 - type: nauc_recall_at_5_diff1 value: -73.6265 - type: nauc_recall_at_10_max value: 26.9417 - type: nauc_recall_at_10_std value: -30.1319 - type: nauc_recall_at_10_diff1 value: -68.8477 - type: nauc_recall_at_20_max value: 28.432800000000004 - type: nauc_recall_at_20_std value: -30.55 - type: nauc_recall_at_20_diff1 value: -66.2201 - type: nauc_recall_at_100_max value: 39.7358 - type: nauc_recall_at_100_std value: -11.5261 - type: nauc_recall_at_100_diff1 value: -66.6477 - type: nauc_recall_at_1000_max value: 34.353 - type: nauc_recall_at_1000_std value: -6.297899999999999 - type: nauc_recall_at_1000_diff1 value: -85.7774 - type: nauc_precision_at_1_max value: 5.9474 - type: nauc_precision_at_1_std value: -15.6036 - type: nauc_precision_at_1_diff1 value: 74.4115 - type: nauc_precision_at_3_max value: 26.7488 - type: nauc_precision_at_3_std value: -28.5119 - type: nauc_precision_at_3_diff1 value: -77.3694 - type: nauc_precision_at_5_max value: 27.694499999999998 - type: nauc_precision_at_5_std value: -30.2099 - type: nauc_precision_at_5_diff1 value: -73.6265 - type: nauc_precision_at_10_max value: 26.9417 - type: nauc_precision_at_10_std value: -30.1319 - type: nauc_precision_at_10_diff1 value: -68.8477 - type: nauc_precision_at_20_max value: 28.432800000000004 - type: nauc_precision_at_20_std value: -30.55 - type: nauc_precision_at_20_diff1 value: -66.2201 - type: nauc_precision_at_100_max value: 39.7358 - type: nauc_precision_at_100_std value: -11.5261 - type: nauc_precision_at_100_diff1 value: -66.6477 - type: nauc_precision_at_1000_max value: 34.353 - type: nauc_precision_at_1000_std value: -6.297899999999999 - type: nauc_precision_at_1000_diff1 value: -85.7774 - type: nauc_mrr_at_1_max value: 14.005899999999999 - type: nauc_mrr_at_1_std value: -13.7382 - type: nauc_mrr_at_1_diff1 value: -36.567499999999995 - type: nauc_mrr_at_3_max value: 19.6693 - type: nauc_mrr_at_3_std value: -19.7679 - type: nauc_mrr_at_3_diff1 value: -54.849000000000004 - type: nauc_mrr_at_5_max value: 19.4039 - type: nauc_mrr_at_5_std value: -19.822 - type: nauc_mrr_at_5_diff1 value: -53.7619 - type: nauc_mrr_at_10_max value: 19.1888 - type: nauc_mrr_at_10_std value: -19.4663 - type: nauc_mrr_at_10_diff1 value: -52.9212 - type: nauc_mrr_at_20_max value: 19.1218 - type: nauc_mrr_at_20_std value: -19.378600000000002 - type: nauc_mrr_at_20_diff1 value: -52.663000000000004 - type: nauc_mrr_at_100_max value: 19.089100000000002 - type: nauc_mrr_at_100_std value: -19.2391 - type: nauc_mrr_at_100_diff1 value: -52.5536 - type: nauc_mrr_at_1000_max value: 19.078400000000002 - type: nauc_mrr_at_1000_std value: -19.240099999999998 - type: nauc_mrr_at_1000_diff1 value: -52.544900000000005 - type: main_score value: 48.41 task: type: Retrieval - dataset: config: default name: MTEB TRECCOVID (default) revision: bb9466bac8153a0349341eb1b22e06409e78ef4e split: test type: mteb/trec-covid metrics: - type: ndcg_at_1 value: 66.0 - type: ndcg_at_3 value: 70.654 - type: ndcg_at_5 value: 71.611 - type: ndcg_at_10 value: 69.259 - type: ndcg_at_20 value: 67.02 - type: ndcg_at_100 value: 57.274 - type: ndcg_at_1000 value: 55.459 - type: map_at_1 value: 0.202 - type: map_at_3 value: 0.553 - type: map_at_5 value: 0.924 - type: map_at_10 value: 1.727 - type: map_at_20 value: 3.124 - type: map_at_100 value: 10.906 - type: map_at_1000 value: 28.938999999999997 - type: recall_at_1 value: 0.202 - type: recall_at_3 value: 0.609 - type: recall_at_5 value: 1.048 - type: recall_at_10 value: 2.001 - type: recall_at_20 value: 3.749 - type: recall_at_100 value: 14.801 - type: recall_at_1000 value: 53.93599999999999 - type: precision_at_1 value: 74.0 - type: precision_at_3 value: 77.333 - type: precision_at_5 value: 78.8 - type: precision_at_10 value: 74.8 - type: precision_at_20 value: 72.0 - type: precision_at_100 value: 59.62 - type: precision_at_1000 value: 24.84 - type: mrr_at_1 value: 74.0 - type: mrr_at_3 value: 85.66669999999999 - type: mrr_at_5 value: 85.66669999999999 - type: mrr_at_10 value: 85.66669999999999 - type: mrr_at_20 value: 85.66669999999999 - type: mrr_at_100 value: 85.66669999999999 - type: mrr_at_1000 value: 85.66669999999999 - type: nauc_ndcg_at_1_max value: 36.0347 - type: nauc_ndcg_at_1_std value: 41.708099999999995 - type: nauc_ndcg_at_1_diff1 value: 13.226099999999999 - type: nauc_ndcg_at_3_max value: 45.4255 - type: nauc_ndcg_at_3_std value: 49.8257 - type: nauc_ndcg_at_3_diff1 value: -0.44520000000000004 - type: nauc_ndcg_at_5_max value: 49.6908 - type: nauc_ndcg_at_5_std value: 54.221 - type: nauc_ndcg_at_5_diff1 value: 3.5483000000000002 - type: nauc_ndcg_at_10_max value: 46.2419 - type: nauc_ndcg_at_10_std value: 59.9826 - type: nauc_ndcg_at_10_diff1 value: -0.436 - type: nauc_ndcg_at_20_max value: 42.3528 - type: nauc_ndcg_at_20_std value: 64.9208 - type: nauc_ndcg_at_20_diff1 value: -15.72 - type: nauc_ndcg_at_100_max value: 38.6688 - type: nauc_ndcg_at_100_std value: 70.27069999999999 - type: nauc_ndcg_at_100_diff1 value: -27.691900000000004 - type: nauc_ndcg_at_1000_max value: 39.3229 - type: nauc_ndcg_at_1000_std value: 71.5958 - type: nauc_ndcg_at_1000_diff1 value: -32.426899999999996 - type: nauc_map_at_1_max value: 24.9717 - type: nauc_map_at_1_std value: 20.3237 - type: nauc_map_at_1_diff1 value: 26.8022 - type: nauc_map_at_3_max value: 36.496 - type: nauc_map_at_3_std value: 32.506 - type: nauc_map_at_3_diff1 value: 17.7469 - type: nauc_map_at_5_max value: 37.802 - type: nauc_map_at_5_std value: 32.5133 - type: nauc_map_at_5_diff1 value: 21.9404 - type: nauc_map_at_10_max value: 36.8446 - type: nauc_map_at_10_std value: 37.3347 - type: nauc_map_at_10_diff1 value: 23.311 - type: nauc_map_at_20_max value: 35.484500000000004 - type: nauc_map_at_20_std value: 42.1774 - type: nauc_map_at_20_diff1 value: 14.072499999999998 - type: nauc_map_at_100_max value: 38.3755 - type: nauc_map_at_100_std value: 58.458299999999994 - type: nauc_map_at_100_diff1 value: -7.320200000000001 - type: nauc_map_at_1000_max value: 43.0209 - type: nauc_map_at_1000_std value: 72.8673 - type: nauc_map_at_1000_diff1 value: -29.952299999999997 - type: nauc_recall_at_1_max value: 24.9717 - type: nauc_recall_at_1_std value: 20.3237 - type: nauc_recall_at_1_diff1 value: 26.8022 - type: nauc_recall_at_3_max value: 29.149900000000002 - type: nauc_recall_at_3_std value: 27.2806 - type: nauc_recall_at_3_diff1 value: 16.0975 - type: nauc_recall_at_5_max value: 29.3013 - type: nauc_recall_at_5_std value: 26.4035 - type: nauc_recall_at_5_diff1 value: 20.3157 - type: nauc_recall_at_10_max value: 27.326099999999997 - type: nauc_recall_at_10_std value: 30.1061 - type: nauc_recall_at_10_diff1 value: 22.0122 - type: nauc_recall_at_20_max value: 25.176399999999997 - type: nauc_recall_at_20_std value: 33.1536 - type: nauc_recall_at_20_diff1 value: 13.4285 - type: nauc_recall_at_100_max value: 28.209899999999998 - type: nauc_recall_at_100_std value: 45.7222 - type: nauc_recall_at_100_diff1 value: -6.1627 - type: nauc_recall_at_1000_max value: 33.4423 - type: nauc_recall_at_1000_std value: 60.764399999999995 - type: nauc_recall_at_1000_diff1 value: -32.4319 - type: nauc_precision_at_1_max value: 55.0789 - type: nauc_precision_at_1_std value: 42.7355 - type: nauc_precision_at_1_diff1 value: 21.276500000000002 - type: nauc_precision_at_3_max value: 57.5971 - type: nauc_precision_at_3_std value: 54.4791 - type: nauc_precision_at_3_diff1 value: -1.1622000000000001 - type: nauc_precision_at_5_max value: 66.64750000000001 - type: nauc_precision_at_5_std value: 57.5585 - type: nauc_precision_at_5_diff1 value: 2.9311 - type: nauc_precision_at_10_max value: 58.767100000000006 - type: nauc_precision_at_10_std value: 63.5528 - type: nauc_precision_at_10_diff1 value: -1.193 - type: nauc_precision_at_20_max value: 47.964 - type: nauc_precision_at_20_std value: 65.3738 - type: nauc_precision_at_20_diff1 value: -17.0707 - type: nauc_precision_at_100_max value: 38.9039 - type: nauc_precision_at_100_std value: 68.9848 - type: nauc_precision_at_100_diff1 value: -31.816699999999997 - type: nauc_precision_at_1000_max value: 24.090700000000002 - type: nauc_precision_at_1000_std value: 36.3251 - type: nauc_precision_at_1000_diff1 value: -30.1565 - type: nauc_mrr_at_1_max value: 55.0789 - type: nauc_mrr_at_1_std value: 42.7355 - type: nauc_mrr_at_1_diff1 value: 21.276500000000002 - type: nauc_mrr_at_3_max value: 57.0157 - type: nauc_mrr_at_3_std value: 44.9613 - type: nauc_mrr_at_3_diff1 value: 18.5485 - type: nauc_mrr_at_5_max value: 57.0157 - type: nauc_mrr_at_5_std value: 44.9613 - type: nauc_mrr_at_5_diff1 value: 18.5485 - type: nauc_mrr_at_10_max value: 57.0157 - type: nauc_mrr_at_10_std value: 44.9613 - type: nauc_mrr_at_10_diff1 value: 18.5485 - type: nauc_mrr_at_20_max value: 57.0157 - type: nauc_mrr_at_20_std value: 44.9613 - type: nauc_mrr_at_20_diff1 value: 18.5485 - type: nauc_mrr_at_100_max value: 57.0157 - type: nauc_mrr_at_100_std value: 44.9613 - type: nauc_mrr_at_100_diff1 value: 18.5485 - type: nauc_mrr_at_1000_max value: 57.0157 - type: nauc_mrr_at_1000_std value: 44.9613 - type: nauc_mrr_at_1000_diff1 value: 18.5485 - type: main_score value: 69.259 task: type: Retrieval - dataset: config: default name: MTEB Touche2020 (default) revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f split: test type: mteb/touche2020 metrics: - type: ndcg_at_1 value: 23.469 - type: ndcg_at_3 value: 22.555 - type: ndcg_at_5 value: 20.97 - type: ndcg_at_10 value: 20.147000000000002 - type: ndcg_at_20 value: 22.56 - type: ndcg_at_100 value: 32.79 - type: ndcg_at_1000 value: 45.324 - type: map_at_1 value: 2.152 - type: map_at_3 value: 4.103 - type: map_at_5 value: 5.482 - type: map_at_10 value: 7.747 - type: map_at_20 value: 10.309 - type: map_at_100 value: 13.639999999999999 - type: map_at_1000 value: 15.235000000000001 - type: recall_at_1 value: 2.152 - type: recall_at_3 value: 5.531 - type: recall_at_5 value: 8.029 - type: recall_at_10 value: 13.331000000000001 - type: recall_at_20 value: 22.195 - type: recall_at_100 value: 45.35 - type: recall_at_1000 value: 83.447 - type: precision_at_1 value: 26.531 - type: precision_at_3 value: 24.490000000000002 - type: precision_at_5 value: 21.633 - type: precision_at_10 value: 17.755000000000003 - type: precision_at_20 value: 15.408 - type: precision_at_100 value: 7.081999999999999 - type: precision_at_1000 value: 1.547 - type: mrr_at_1 value: 26.5306 - type: mrr_at_3 value: 38.7755 - type: mrr_at_5 value: 40.6122 - type: mrr_at_10 value: 41.3994 - type: mrr_at_20 value: 42.7601 - type: mrr_at_100 value: 43.0467 - type: mrr_at_1000 value: 43.0467 - type: nauc_ndcg_at_1_max value: -19.1831 - type: nauc_ndcg_at_1_std value: -13.1044 - type: nauc_ndcg_at_1_diff1 value: -8.6701 - type: nauc_ndcg_at_3_max value: -31.2521 - type: nauc_ndcg_at_3_std value: -9.1974 - type: nauc_ndcg_at_3_diff1 value: -17.0766 - type: nauc_ndcg_at_5_max value: -29.9171 - type: nauc_ndcg_at_5_std value: -2.2094 - type: nauc_ndcg_at_5_diff1 value: -10.8668 - type: nauc_ndcg_at_10_max value: -24.5148 - type: nauc_ndcg_at_10_std value: -0.45909999999999995 - type: nauc_ndcg_at_10_diff1 value: -10.705 - type: nauc_ndcg_at_20_max value: -29.542 - type: nauc_ndcg_at_20_std value: -0.1119 - type: nauc_ndcg_at_20_diff1 value: -6.4151 - type: nauc_ndcg_at_100_max value: -27.276 - type: nauc_ndcg_at_100_std value: 33.380900000000004 - type: nauc_ndcg_at_100_diff1 value: -1.097 - type: nauc_ndcg_at_1000_max value: -28.0856 - type: nauc_ndcg_at_1000_std value: 40.368700000000004 - type: nauc_ndcg_at_1000_diff1 value: -9.5892 - type: nauc_map_at_1_max value: -17.891099999999998 - type: nauc_map_at_1_std value: -20.8139 - type: nauc_map_at_1_diff1 value: 2.1289 - type: nauc_map_at_3_max value: -18.5984 - type: nauc_map_at_3_std value: -16.0226 - type: nauc_map_at_3_diff1 value: -0.681 - type: nauc_map_at_5_max value: -9.8672 - type: nauc_map_at_5_std value: -11.448 - type: nauc_map_at_5_diff1 value: 4.1101 - type: nauc_map_at_10_max value: -5.8905 - type: nauc_map_at_10_std value: -7.7416 - type: nauc_map_at_10_diff1 value: 2.0848999999999998 - type: nauc_map_at_20_max value: -13.9206 - type: nauc_map_at_20_std value: -4.9227 - type: nauc_map_at_20_diff1 value: 1.6968 - type: nauc_map_at_100_max value: -15.116 - type: nauc_map_at_100_std value: 10.9804 - type: nauc_map_at_100_diff1 value: 1.5921999999999998 - type: nauc_map_at_1000_max value: -15.309000000000001 - type: nauc_map_at_1000_std value: 15.207399999999998 - type: nauc_map_at_1000_diff1 value: 0.2635 - type: nauc_recall_at_1_max value: -17.891099999999998 - type: nauc_recall_at_1_std value: -20.8139 - type: nauc_recall_at_1_diff1 value: 2.1289 - type: nauc_recall_at_3_max value: -27.4434 - type: nauc_recall_at_3_std value: -14.4615 - type: nauc_recall_at_3_diff1 value: -4.6056 - type: nauc_recall_at_5_max value: -17.3993 - type: nauc_recall_at_5_std value: -7.1856 - type: nauc_recall_at_5_diff1 value: 2.468 - type: nauc_recall_at_10_max value: -13.7175 - type: nauc_recall_at_10_std value: -2.9436 - type: nauc_recall_at_10_diff1 value: 0.9384 - type: nauc_recall_at_20_max value: -26.96 - type: nauc_recall_at_20_std value: -1.6922 - type: nauc_recall_at_20_diff1 value: 1.8932999999999998 - type: nauc_recall_at_100_max value: -23.5556 - type: nauc_recall_at_100_std value: 48.9062 - type: nauc_recall_at_100_diff1 value: 7.8596 - type: nauc_recall_at_1000_max value: -19.6066 - type: nauc_recall_at_1000_std value: 80.4306 - type: nauc_recall_at_1000_diff1 value: -8.4789 - type: nauc_precision_at_1_max value: -23.163800000000002 - type: nauc_precision_at_1_std value: -15.9221 - type: nauc_precision_at_1_diff1 value: -1.0075 - type: nauc_precision_at_3_max value: -34.2 - type: nauc_precision_at_3_std value: -5.8114 - type: nauc_precision_at_3_diff1 value: -11.4192 - type: nauc_precision_at_5_max value: -28.3543 - type: nauc_precision_at_5_std value: 3.2409 - type: nauc_precision_at_5_diff1 value: -2.4743 - type: nauc_precision_at_10_max value: -21.8691 - type: nauc_precision_at_10_std value: 12.0827 - type: nauc_precision_at_10_diff1 value: -7.6671000000000005 - type: nauc_precision_at_20_max value: -29.541600000000003 - type: nauc_precision_at_20_std value: 18.4544 - type: nauc_precision_at_20_diff1 value: -4.9384 - type: nauc_precision_at_100_max value: -13.991700000000002 - type: nauc_precision_at_100_std value: 80.9784 - type: nauc_precision_at_100_diff1 value: 0.1001 - type: nauc_precision_at_1000_max value: 18.334 - type: nauc_precision_at_1000_std value: 35.3463 - type: nauc_precision_at_1000_diff1 value: -16.8628 - type: nauc_mrr_at_1_max value: -23.163800000000002 - type: nauc_mrr_at_1_std value: -15.9221 - type: nauc_mrr_at_1_diff1 value: -1.0075 - type: nauc_mrr_at_3_max value: -37.628099999999996 - type: nauc_mrr_at_3_std value: -13.678199999999999 - type: nauc_mrr_at_3_diff1 value: -8.0387 - type: nauc_mrr_at_5_max value: -38.205 - type: nauc_mrr_at_5_std value: -10.0574 - type: nauc_mrr_at_5_diff1 value: -7.273300000000001 - type: nauc_mrr_at_10_max value: -38.2773 - type: nauc_mrr_at_10_std value: -10.5208 - type: nauc_mrr_at_10_diff1 value: -7.556400000000001 - type: nauc_mrr_at_20_max value: -38.8068 - type: nauc_mrr_at_20_std value: -10.7195 - type: nauc_mrr_at_20_diff1 value: -6.7631 - type: nauc_mrr_at_100_max value: -38.318200000000004 - type: nauc_mrr_at_100_std value: -10.854999999999999 - type: nauc_mrr_at_100_diff1 value: -6.843000000000001 - type: nauc_mrr_at_1000_max value: -38.318200000000004 - type: nauc_mrr_at_1000_std value: -10.854999999999999 - type: nauc_mrr_at_1000_diff1 value: -6.843000000000001 - type: main_score value: 20.147000000000002 task: type: Retrieval - dataset: config: default name: MTEB ToxicConversationsClassification (default) revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de split: test type: mteb/toxic_conversations_50k metrics: - type: accuracy value: 59.7607 - type: f1 value: 45.7266 - type: f1_weighted value: 68.3382 - type: ap value: 9.8682 - type: ap_weighted value: 9.8682 - type: main_score value: 59.7607 task: type: Classification - dataset: config: default name: MTEB TweetSentimentExtractionClassification (default) revision: d604517c81ca91fe16a244d1248fc021f9ecee7a split: test type: mteb/tweet_sentiment_extraction metrics: - type: accuracy value: 53.3192 - type: f1 value: 53.505100000000006 - type: f1_weighted value: 52.726600000000005 - type: main_score value: 53.3192 task: type: Classification - dataset: config: default name: MTEB TwentyNewsgroupsClustering (default) revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 split: test type: mteb/twentynewsgroups-clustering metrics: - type: v_measure value: 48.3133 - type: v_measure_std value: 1.6674000000000002 - type: main_score value: 48.3133 task: type: Clustering - dataset: config: default name: MTEB TwitterSemEval2015 (default) revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 split: test type: mteb/twittersemeval2015-pairclassification metrics: - type: similarity_accuracy value: 82.2972 - type: similarity_accuracy_threshold value: 92.5986 - type: similarity_f1 value: 58.2994 - type: similarity_f1_threshold value: 89.689 - type: similarity_precision value: 53.3772 - type: similarity_recall value: 64.2216 - type: similarity_ap value: 60.9374 - type: cosine_accuracy value: 82.2972 - type: cosine_accuracy_threshold value: 92.5986 - type: cosine_f1 value: 58.2994 - type: cosine_f1_threshold value: 89.689 - type: cosine_precision value: 53.3772 - type: cosine_recall value: 64.2216 - type: cosine_ap value: 60.9374 - type: manhattan_accuracy value: 82.2912 - type: manhattan_accuracy_threshold value: 839.1809000000001 - type: manhattan_f1 value: 58.2447 - type: manhattan_f1_threshold value: 996.9049 - type: manhattan_precision value: 53.74830000000001 - type: manhattan_recall value: 63.562 - type: manhattan_ap value: 60.8808 - type: euclidean_accuracy value: 82.2972 - type: euclidean_accuracy_threshold value: 38.4743 - type: euclidean_f1 value: 58.2994 - type: euclidean_f1_threshold value: 45.4114 - type: euclidean_precision value: 53.3772 - type: euclidean_recall value: 64.2216 - type: euclidean_ap value: 60.9374 - type: dot_accuracy value: 82.2972 - type: dot_accuracy_threshold value: 92.5986 - type: dot_f1 value: 58.2994 - type: dot_f1_threshold value: 89.689 - type: dot_precision value: 53.3772 - type: dot_recall value: 64.2216 - type: dot_ap value: 60.9374 - type: max_accuracy value: 82.2972 - type: max_f1 value: 58.2994 - type: max_precision value: 53.74830000000001 - type: max_recall value: 64.2216 - type: max_ap value: 60.9374 - type: main_score value: 60.9374 task: type: PairClassification - dataset: config: default name: MTEB TwitterURLCorpus (default) revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf split: test type: mteb/twitterurlcorpus-pairclassification metrics: - type: similarity_accuracy value: 87.2162 - type: similarity_accuracy_threshold value: 91.6164 - type: similarity_f1 value: 74.8086 - type: similarity_f1_threshold value: 90.18260000000001 - type: similarity_precision value: 69.3065 - type: similarity_recall value: 81.25959999999999 - type: similarity_ap value: 82.53160000000001 - type: cosine_accuracy value: 87.2162 - type: cosine_accuracy_threshold value: 91.6164 - type: cosine_f1 value: 74.8086 - type: cosine_f1_threshold value: 90.18260000000001 - type: cosine_precision value: 69.3065 - type: cosine_recall value: 81.25959999999999 - type: cosine_ap value: 82.53160000000001 - type: manhattan_accuracy value: 87.21039999999999 - type: manhattan_accuracy_threshold value: 899.2865999999999 - type: manhattan_f1 value: 74.77510000000001 - type: manhattan_f1_threshold value: 962.114 - type: manhattan_precision value: 70.6927 - type: manhattan_recall value: 79.3579 - type: manhattan_ap value: 82.5262 - type: euclidean_accuracy value: 87.2162 - type: euclidean_accuracy_threshold value: 40.9478 - type: euclidean_f1 value: 74.8086 - type: euclidean_f1_threshold value: 44.3112 - type: euclidean_precision value: 69.3065 - type: euclidean_recall value: 81.25959999999999 - type: euclidean_ap value: 82.53160000000001 - type: dot_accuracy value: 87.2162 - type: dot_accuracy_threshold value: 91.6164 - type: dot_f1 value: 74.8086 - type: dot_f1_threshold value: 90.18260000000001 - type: dot_precision value: 69.3065 - type: dot_recall value: 81.25959999999999 - type: dot_ap value: 82.53160000000001 - type: max_accuracy value: 87.2162 - type: max_f1 value: 74.8086 - type: max_precision value: 70.6927 - type: max_recall value: 81.25959999999999 - type: max_ap value: 82.53160000000001 - type: main_score value: 82.53160000000001 task: type: PairClassification pipeline_tag: sentence-similarity --- # Granite-Embedding-125m-English **News:** Granite Embedding R2 models with 8192 context length released. - [granite-embedding-english-r2](https://huggingface.co/ibm-granite/granite-embedding-english-r2) (149M parameters): with an output embedding size of 768, replacing granite-embedding-125m-english. - [granite-embedding-small-english-r2](https://huggingface.co/ibm-granite/granite-embedding-small-english-r2) (47M parameters): A first-of-its-kind reduced-size model, with fewer layers and a smaller output embedding size (384), replacing granite-embedding-30m-english. **Model Summary:** Granite-Embedding-125m-English is a 125M parameter dense biencoder embedding model from the Granite Embeddings suite that can be used to generate high quality text embeddings. This model produces embedding vectors of size 768. Compared to most other open-source models, this model was only trained using open-source relevance-pair datasets with permissive, enterprise-friendly license, plus IBM collected and generated datasets. While maintaining competitive scores on academic benchmarks such as BEIR, this model also performs well on many enterprise use cases. This model is developed using retrieval oriented pretraining, contrastive finetuning and knowledge distillation. - **Developers:** Granite Embedding Team, IBM - **GitHub Repository:** [ibm-granite/granite-embedding-models](https://github.com/ibm-granite/granite-embedding-models) - **Website**: [Granite Docs](https://www.ibm.com/granite/docs/) - **Paper:** [Technical Report](https://arxiv.org/abs/2502.20204) - **Release Date**: December 18th, 2024 - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) **Supported Languages:** English. **Intended use:** The model is designed to produce fixed length vector representations for a given text, which can be used for text similarity, retrieval, and search applications. **Usage with Sentence Transformers:** The model is compatible with SentenceTransformer library and is very easy to use: First, install the sentence transformers library ```shell pip install sentence_transformers ``` The model can then be used to encode pairs of text and find the similarity between their representations ```python from sentence_transformers import SentenceTransformer, util model_path = "ibm-granite/granite-embedding-125m-english" # Load the Sentence Transformer model model = SentenceTransformer(model_path) input_queries = [ ' Who made the song My achy breaky heart? ', 'summit define' ] input_passages = [ "Achy Breaky Heart is a country song written by Don Von Tress. Originally titled Don't Tell My Heart and performed by The Marcy Brothers in 1991. ", "Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] # encode queries and passages query_embeddings = model.encode(input_queries) passage_embeddings = model.encode(input_passages) # calculate cosine similarity print(util.cos_sim(query_embeddings, passage_embeddings)) ``` **Usage with Huggingface Transformers:** This is a simple example of how to use the Granite-Embedding-125m-English model with the Transformers library and PyTorch. First, install the required libraries ```shell pip install transformers torch ``` The model can then be used to encode pairs of text ```python import torch from transformers import AutoModel, AutoTokenizer model_path = "ibm-granite/granite-embedding-125m-english" # Load the model and tokenizer model = AutoModel.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path) model.eval() input_queries = [ ' Who made the song My achy breaky heart? ', 'summit define' ] # tokenize inputs tokenized_queries = tokenizer(input_queries, padding=True, truncation=True, return_tensors='pt') # encode queries with torch.no_grad(): # Queries model_output = model(**tokenized_queries) # Perform pooling. granite-embedding-125m-english uses CLS Pooling query_embeddings = model_output[0][:, 0] # normalize the embeddings query_embeddings = torch.nn.functional.normalize(query_embeddings, dim=1) ``` **Evaluation:** The performance of the Granite-Embedding-125M-English model on MTEB Retrieval (i.e., BEIR) and code retrieval (CoIR) benchmarks is reported below. | Model | Paramters (M)| Embedding Dimension | MTEB Retrieval (15) | CoIR (10) | |---------------------------------|:------------:|:-------------------:|:-------------------: |:----------:| |granite-embedding-125m-english |125 |768 |52.3 |50.3 | **Model Architecture:** Granite-Embedding-125m-English is based on an encoder-only RoBERTa like transformer architecture, trained internally at IBM Research. | Model | granite-embedding-30m-english | granite-embedding-125m-english | granite-embedding-107m-multilingual | granite-embedding-278m-multilingual | | :--------- | :-------:| :--------: | :-----:| :-----:| | Embedding size | 384 | **768** | 384 | 768 | | Number of layers | 6 | **12** | 6 | 12 | | Number of attention heads | 12 | **12** | 12 | 12 | | Intermediate size | 1536 | **3072** | 1536 | 3072 | | Activation Function | GeLU | **GeLU** | GeLU | GeLU | | Vocabulary Size | 50265| **50265** | 250002 | 250002 | | Max. Sequence Length | 512 | **512** | 512 | 512 | | # Parameters | 30M | **125M** | 107M | 278M | **Training Data:** Overall, the training data consists of four key sources: (1) unsupervised title-body paired data scraped from the web, (2) publicly available paired with permissive, enterprise-friendly license, (3) IBM-internal paired data targetting specific technical domains, and (4) IBM-generated synthetic data. The data is listed below: | **Dataset** | **Num. Pairs** | |----------------------------------------------------|:---------------:| | SPECTER citation triplets | 684,100 | | Stack Exchange Duplicate questions (titles) | 304,525 | | Stack Exchange Duplicate questions (bodies) | 250,519 | | Stack Exchange Duplicate questions (titles+bodies) | 250,460 | | Natural Questions (NQ) | 100,231 | | SQuAD2.0 | 87,599 | | PAQ (Question, Answer) pairs | 64,371,441 | | Stack Exchange (Title, Answer) pairs | 4,067,139 | | Stack Exchange (Title, Body) pairs | 23,978,013 | | Stack Exchange (Title+Body, Answer) pairs | 187,195 | | S2ORC Citation pairs (Titles) | 52,603,982 | | S2ORC (Title, Abstract) | 41,769,185 | | S2ORC (Citations, abstracts) | 52,603,982 | | WikiAnswers Duplicate question pairs | 77,427,422 | | SearchQA | 582,261 | | HotpotQA | 85,000 | | Fever | 109,810 | | Arxiv | 2,358,545 | | Wikipedia | 20,745,403 | | PubMed | 20,000,000 | | Miracl En Pairs | 9,016 | | DBPedia Title-Body Pairs | 4,635,922 | | Synthetic: Query-Wikipedia Passage | 1,879,093 | | Synthetic: Fact Verification | 9,888 | | IBM Internal Triples | 40,290 | | IBM Internal Title-Body Pairs | 1,524,586 | Notably, we do not use the popular MS-MARCO retrieval dataset in our training corpus due to its non-commercial license, while other open-source models train on this dataset due to its high quality. **Infrastructure:** We train Granite Embedding Models using IBM's computing cluster, Cognitive Compute Cluster, which is outfitted with NVIDIA A100 80gb GPUs. This cluster provides a scalable and efficient infrastructure for training our models over multiple GPUs. **Ethical Considerations and Limitations:** The data used to train the base language model was filtered to remove text containing hate, abuse, and profanity. Granite-Embedding-125m-English is trained only for English texts, and has a context length of 512 tokens (longer texts will be truncated to this size). **Resources** - ⭐️ Learn about the latest updates with Granite: https://www.ibm.com/granite - 📄 Get started with tutorials, best practices, and prompt engineering advice: https://www.ibm.com/granite/docs/ - 💡 Learn about the latest Granite learning resources: https://ibm.biz/granite-learning-resources <!-- ## Citation ``` @misc{granite-embedding-models, author = {author 1, author2, ...}, title = {}, journal = {}, volume = {}, year = {2024}, url = {https://arxiv.org/abs/0000.00000}, } ``` -->
g-assismoraes/Qwen3-4B-Base-aki-alpha0.08-var-hatebr-ep30-g5-v3
g-assismoraes
2025-08-19T01:28:05Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T01:24:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
teapotai/teapotllm
teapotai
2025-08-19T01:26:28Z
61
179
transformers
[ "transformers", "onnx", "safetensors", "t5", "text2text-generation", "text-generation", "transformers.js", "en", "fr", "ro", "de", "multilingual", "dataset:teapotai/synthqa", "dataset:teapotai/teapot-chat", "base_model:google/flan-t5-large", "base_model:quantized:google/flan-t5-large", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-19T02:29:11Z
--- license: mit datasets: - teapotai/synthqa - teapotai/teapot-chat language: - en - fr - ro - de - multilingual library_name: transformers tags: - text-generation - transformers.js widget: - text: >- Teapot is an open-source small language model (~800 million parameters) fine-tuned on synthetic data and optimized to run locally on resource-constrained devices such as smartphones and CPUs. Teapot is trained to only answer using context from documents, reducing hallucinations. Teapot can perform a variety of tasks, including hallucination-resistant Question Answering (QnA), Retrieval-Augmented Generation (RAG), and JSON extraction. TeapotLLM is a fine tune of flan-t5-large that was trained on synthetic data generated by Deepseek v3 TeapotLLM can be hosted on low-power devices with as little as 2GB of CPU RAM such as a Raspberry Pi. Teapot is a model built by and for the community. What devices can teapot run on? example_title: Question Answering - text: >- Teapot is an open-source small language model (~800 million parameters) fine-tuned on synthetic data and optimized to run locally on resource-constrained devices such as smartphones and CPUs. Teapot is trained to only answer using context from documents, reducing hallucinations. Teapot can perform a variety of tasks, including hallucination-resistant Question Answering (QnA), Retrieval-Augmented Generation (RAG), and JSON extraction. TeapotLLM is a fine tune of flan-t5-large that was trained on synthetic data generated by Deepseek v3 TeapotLLM can be hosted on low-power devices with as little as 2GB of CPU RAM such as a Raspberry Pi. Teapot is a model built by and for the community. Tell me about teapotllm example_title: Summarization Answering - text: >- Teapot is an open-source small language model (~800 million parameters) fine-tuned on synthetic data and optimized to run locally on resource-constrained devices such as smartphones and CPUs. Teapot is trained to only answer using context from documents, reducing hallucinations. Teapot can perform a variety of tasks, including hallucination-resistant Question Answering (QnA), Retrieval-Augmented Generation (RAG), and JSON extraction. TeapotLLM is a fine tune of flan-t5-large that was trained on synthetic data generated by Deepseek v3 TeapotLLM can be hosted on low-power devices with as little as 2GB of CPU RAM such as a Raspberry Pi. Teapot is a model built by and for the community. Extract the number of parameters example_title: Information Extraction - text: >- Teapot is an open-source small language model (~800 million parameters) fine-tuned on synthetic data and optimized to run locally on resource-constrained devices such as smartphones and CPUs. Teapot is trained to only answer using context from documents, reducing hallucinations. Teapot can perform a variety of tasks, including hallucination-resistant Question Answering (QnA), Retrieval-Augmented Generation (RAG), and JSON extraction. TeapotLLM is a fine tune of flan-t5-large that was trained on synthetic data generated by Deepseek v3 TeapotLLM can be hosted on low-power devices with as little as 2GB of CPU RAM such as a Raspberry Pi. Teapot is a model built by and for the community. How many parameters is Deepseek? example_title: Hallucination Resistance base_model: - google/flan-t5-large pipeline_tag: text2text-generation --- # Teapot LLM [Website](https://teapotai.com/) | [Try out our demo on Discord](https://discord.gg/hPxGSn5dST) Teapot is an open-source small language model (~800 million parameters) fine-tuned on synthetic data and optimized to run locally on resource-constrained devices such as smartphones and CPUs. Teapot is trained to only answer using context from documents, reducing hallucinations. Teapot can perform a variety of tasks, including hallucination-resistant Question Answering (QnA), Retrieval-Augmented Generation (RAG), and JSON extraction. Teapot is a model built by and for the community. ![https://teapotai.com/assets/teapotevalbanner.jpg](https://teapotai.com/assets/teapot_banner.png) [Evaluation Details](https://huggingface.co/teapotai/teapotllm#model-evaluation) ### Conversational Question Answering Teapot is fine-tuned to provide friendly, conversational answers using context and documents provided as references. ### Hallucination Resistance Teapot is trained to only output answers that can be derived from the provided context, ensuring that even though it is a small model, it performs demonstrably better by refusing to answer questions when there is insufficient data. ### Retrieval Augmented Generation Teapot is further fine-tuned on the task of retrieval augmented generation by utilizing a custom [embedding model](https://huggingface.co/teapotai/teapotembedding). We perform RAG across multiple documents from our training data and the model is able to learn to extract relevant details for question answering. ### Information Extraction Teapot has been trained to extract succint answers in a variety of format enabling efficient document parsing. Teapot is trained natively to output standard data types such as numbers, strings, and even json. --- ## Getting Started We recommend using our library [teapotai](https://pypi.org/project/teapotai/) to quickly integrate our models into production environments, as it handles the overhead of model configuration, document embeddings, error handling and prompt formatting. However, you can directly use the model from the transformers library on huggingface. ### Installation ```bash ! pip install teapotai ``` --- ### 1. General Question Answering (QnA) Teapot can be used for general question answering based on a provided context. The model is optimized to respond conversationally and is trained to avoid answering questions that can't be answered from the given context, reducing hallucinations. #### Example: ```python from teapotai import TeapotAI # Sample context context = """ The Eiffel Tower is a wrought iron lattice tower in Paris, France. It was designed by Gustave Eiffel and completed in 1889. It stands at a height of 330 meters and is one of the most recognizable structures in the world. """ teapot_ai = TeapotAI() answer = teapot_ai.query( query="What is the height of the Eiffel Tower?", context=context ) print(answer) # => "The Eiffel Tower stands at a height of 330 meters. " ``` #### Hallucination Example: ```python from teapotai import TeapotAI # Sample context without height information context = """ The Eiffel Tower is a wrought iron lattice tower in Paris, France. It was designed by Gustave Eiffel and completed in 1889. """ teapot_ai = TeapotAI() answer = teapot_ai.query( query="What is the height of the Eiffel Tower?", context=context ) print(answer) # => "I don't have information on the height of the Eiffel Tower." ``` --- ### 2. Chat with Retrieval Augmented Generation (RAG) Teapot can also use Retrieval-Augmented Generation (RAG) to determine which documents are relevant before answering a question. This is useful when you have many documents you want to use as context, ensuring the model answers based on the most relevant ones. #### Example: ```python from teapotai import TeapotAI # Sample documents (in practice, these could be articles or longer documents) documents = [ "The Eiffel Tower is located in Paris, France. It was built in 1889 and stands 330 meters tall.", "The Great Wall of China is a historic fortification that stretches over 13,000 miles.", "The Amazon Rainforest is the largest tropical rainforest in the world, covering over 5.5 million square kilometers.", "The Grand Canyon is a natural landmark located in Arizona, USA, carved by the Colorado River.", "Mount Everest is the tallest mountain on Earth, located in the Himalayas along the border between Nepal and China.", "The Colosseum in Rome, Italy, is an ancient amphitheater known for its gladiator battles.", "The Sahara Desert is the largest hot desert in the world, located in North Africa.", "The Nile River is the longest river in the world, flowing through northeastern Africa.", "The Empire State Building is an iconic skyscraper in New York City that was completed in 1931 and stands at 1454 feet tall." ] # Initialize TeapotAI with documents for RAG teapot_ai = TeapotAI(documents=documents) # Get the answer using RAG answer = teapot_ai.chat([ { "role":"system", "content": "You are an agent designed to answer facts about famous landmarks." }, { "role":"user", "content": "What landmark was constructed in the 1800s?" } ]) print(answer) # => The Eiffel Tower was constructed in the 1800s. ``` #### Loading RAG Model: You can save a model with pre-computed embeddings to reduce loading times. TeapotAI is pickle-compatible and can be saved and loaded as shown below. ```python import pickle # Pickle the TeapotAI model to a file with pre-computed embeddings with open("teapot_ai.pkl", "wb") as f: pickle.dump(teapot_ai, f) # Load the pickled model with open("teapot_ai.pkl", "rb") as f: loaded_teapot_ai = pickle.load(f) # You can now use the loaded instance as you would normally print(len(loaded_teapot_ai.documents)) # => 10 Documents with precomputed embeddings loaded_teapot_ai.query("What city is the Eiffel Tower in?") # => "The Eiffel Tower is located in Paris, France." ``` --- ### 3. Information Extraction Teapot can be used to extract structured information from context using pre-defined JSON structures. The extract method takes a Pydantic model to ensure Teapot extracts the correct types. Teapot can infer fields based on names and will also leverage descriptions if available. This method can also be used with RAG and query functionalities natively. #### Example: ```python from teapotai import TeapotAI from pydantic import BaseModel # Sample text containing apartment details apartment_description = """ This spacious 2-bedroom apartment is available for rent in downtown New York. The monthly rent is $2500. It includes 1 bathrooms and a fully equipped kitchen with modern appliances. Pets are welcome! Please reach out to us at 555-123-4567 or john@realty.com """ # Define a Pydantic model for the data you want to extract class ApartmentInfo(BaseModel): rent: float = Field(..., description="the monthly rent in dollars") bedrooms: int = Field(..., description="the number of bedrooms") bathrooms: int = Field(..., description="the number of bathrooms") phone_number: str # Initialize TeapotAI teapot_ai = TeapotAI() # Extract the apartment details extracted_info = teapot_ai.extract( ApartmentInfo, context=apartment_description ) print(extracted_info) # => ApartmentInfo(rent=2500.0 bedrooms=2 bathrooms=1 phone_number='555-123-4567') ``` ### Native Transformer Support While we recommend using TeapotAI's library, you can load the base model directly with Hugging Face's Transformers library as follows: ```python from transformers import pipeline # Load the model teapot_ai = pipeline("text2text-generation", "teapotai/teapotllm") context = """ The Eiffel Tower is a wrought iron lattice tower in Paris, France. It was designed by Gustave Eiffel and completed in 1889. It stands at a height of 330 meters and is one of the most recognizable structures in the world. """ question = "What is the height of the Eiffel Tower?" answer = teapot_ai(context+"\n"+question) print(answer[0].get('generated_text')) # => The Eiffel Tower stands at a height of 330 meters. ``` ### Transformers.js Support You can even run the model in-browser (or any other JavaScript environment) with [Transformers.js](https://huggingface.co/docs/transformers.js) as follows: ```js // npm i @huggingface/transformers import { pipeline } from "@huggingface/transformers"; const teapot_ai = await pipeline("text2text-generation", "teapotai/teapotllm"); const context = ` The Eiffel Tower is a wrought iron lattice tower in Paris, France. It was designed by Gustave Eiffel and completed in 1889. It stands at a height of 330 meters and is one of the most recognizable structures in the world. `; const question = "What is the height of the Eiffel Tower?"; const answer = await teapot_ai(context + "\n" + question); console.log(answer[0].generated_text); // => " The Eiffel Tower stands at a height of 330 meters." ``` --- ## Model Details Teapot LLM is fine-tuned from [flan-t5-large](https://huggingface.co/google/flan-t5-large) on a [synthetic dataset](https://huggingface.co/datasets/teapotai/synthqa) of LLM tasks generated using [DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3). ### Training Details - [Dataset] ~10mb synthetic dataset consisting of QnA pairs with a variety of task specific formats. - [Methodology] The model is trained to mimic task specific output formats, and is scored based on its ability to output relevant, succint and verifiable answers in the requested format. - [Hardware] Teapot was trained for ~10hr on an A100 provided by Google Colab. - [Hyperparameters] The model was trained with various learning rates and monitored to ensure task specific performance was learned without catastrophic forgetting. ### Model Evaluation TeapotLLM is focused on in-context reasoning tasks, and therefore most benchmarks are not suitable for evaluation. We want TeapotLLM to be a practical tool for QnA and information extraction, so we have developed custom datasets to benchmark performance. [Evaluation Notebook Here](https://github.com/zakerytclarke/teapot/blob/main/docs/evals/TeapotLLM_Benchmark.ipynb) #### Synthqa Evaluation [Synthqa](https://huggingface.co/datasets/teapotai/synthqa) is a dataset focused on in-context QnA and information extraction tasks. We use the validation set to benchmark TeapotLLM against other models of similar size. All benchmarks were run using a Google Colab Notebook running on CPU with High Ram. Teapot significantly outperforms models of similar size, with low latency CPU inference and improved accuracy. ![https://teapotai.com/assets/synthqa_eval.jpg](https://teapotai.com/assets/synthqa_eval.jpg) ![https://teapotai.com/assets/synthqa_eval_split.jpg](https://teapotai.com/assets/synthqa_eval_split.jpg) We also manually annotated hallucination refusals from models. All models were asked to not answer if the answer could not be derived from the provided context. TeapotLLM exhibits significantly stronger hallucination resistant behavior, without compromising on incorrect refusals. ![https://teapotai.com/assets/hallucination_metrics.png](https://teapotai.com/assets/hallucination_metrics.png) ### Limitations and Risks Teapot is trained specifically for question answering use cases and is not intended to be used for code generation, creative writing or critical decision applications. Teapot has only been trained on specific languages supported by flan-t5 and has not been evaluated for performance in languages other than English. ### License This model, the embedding model and the synthetic dataset are all provided open source under the MIT LICENSE. ## Questions, Feature Requests? We hope you find TeapotAI useful and are continuosuly working to improve our models. Please reach out to us on our [Discord](https://discord.gg/hPxGSn5dST) for any technical help or feature requrests. We look forwarding to seeing what our community can build!
dgambettaphd/M_mis_run2_gen0_WXS_doc1000_synt64_lr1e-04_acm_MPP
dgambettaphd
2025-08-19T01:16:48Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "unsloth", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-19T01:14:32Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755566034
IvanJAjebu
2025-08-19T01:15:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:15:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755563921
quantumxnode
2025-08-19T01:06:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:06:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755563907
helmutsukocok
2025-08-19T01:05:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T01:05:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
abcorrea/p2-v6
abcorrea
2025-08-19T01:01:33Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:abcorrea/p2-v5", "base_model:finetune:abcorrea/p2-v5", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T00:49:18Z
--- base_model: abcorrea/p2-v5 library_name: transformers model_name: p2-v6 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for p2-v6 This model is a fine-tuned version of [abcorrea/p2-v5](https://huggingface.co/abcorrea/p2-v5). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="abcorrea/p2-v6", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.52.1 - Pytorch: 2.7.0 - Datasets: 4.0.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Cristhian2430/whisper-large-coes-v9
Cristhian2430
2025-08-19T00:58:13Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "es", "base_model:openai/whisper-large-v3-turbo", "base_model:finetune:openai/whisper-large-v3-turbo", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-18T14:58:39Z
--- library_name: transformers language: - es license: mit base_model: openai/whisper-large-v3-turbo tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: Whisper Large SEIN - COES SEIN - Version 9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large SEIN - COES SEIN - Version 9 This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the SEIN COES dataset. It achieves the following results on the evaluation set: - Loss: 3.8246 - Wer: 67.8191 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:-------:| | 0.0123 | 90.9091 | 1000 | 3.1299 | 68.9362 | | 0.0054 | 181.8182 | 2000 | 3.3876 | 69.0957 | | 0.0002 | 272.7273 | 3000 | 3.5715 | 69.5213 | | 0.0001 | 363.6364 | 4000 | 3.6546 | 68.3511 | | 0.0002 | 454.5455 | 5000 | 3.7197 | 67.6596 | | 0.0001 | 545.4545 | 6000 | 3.7702 | 67.5532 | | 0.0001 | 636.3636 | 7000 | 3.8096 | 67.7660 | | 0.0001 | 727.2727 | 8000 | 3.8246 | 67.8191 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
colabbear/bge-reranker-v2-m3-ko-bnb-4bit
colabbear
2025-08-19T00:54:32Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "bnb-my-repo", "text-ranking", "ko", "en", "base_model:dragonkue/bge-reranker-v2-m3-ko", "base_model:quantized:dragonkue/bge-reranker-v2-m3-ko", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
text-ranking
2025-08-19T00:54:26Z
--- base_model: - dragonkue/bge-reranker-v2-m3-ko license: apache-2.0 language: - ko - en metrics: - accuracy pipeline_tag: text-ranking library_name: sentence-transformers tags: - bnb-my-repo --- # dragonkue/bge-reranker-v2-m3-ko (Quantized) ## Description This model is a quantized version of the original model [`dragonkue/bge-reranker-v2-m3-ko`](https://huggingface.co/dragonkue/bge-reranker-v2-m3-ko). It's quantized using the BitsAndBytes library to 4-bit using the [bnb-my-repo](https://huggingface.co/spaces/bnb-community/bnb-my-repo) space. ## Quantization Details - **Quantization Type**: int4 - **bnb_4bit_quant_type**: nf4 - **bnb_4bit_use_double_quant**: True - **bnb_4bit_compute_dtype**: bfloat16 - **bnb_4bit_quant_storage**: uint8 # 📄 Original Model Information <img src="https://cdn-uploads.huggingface.co/production/uploads/642b0c2fecec03b4464a1d9b/IxcqY5qbGNuGpqDciIcOI.webp" width="600"> # Reranker (Cross-Encoder) Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. You can get a relevance score by inputting query and passage to the reranker. And the score can be mapped to a float value in [0,1] by sigmoid function. ## Model Details - Base model : BAAI/bge-reranker-v2-m3 - The multilingual model has been optimized for Korean. ## Usage with Transformers ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model = AutoModelForSequenceClassification.from_pretrained('dragonkue/bge-reranker-v2-m3-ko') tokenizer = AutoTokenizer.from_pretrained('dragonkue/bge-reranker-v2-m3-ko') features = tokenizer([['몇 년도에 지방세외수입법이 시행됐을까?', '실무교육을 통해 ‘지방세외수입법’에 대한 자치단체의 관심을 제고하고 자치단체의 차질 없는 업무 추진을 지원하였다. 이러한 준비과정을 거쳐 2014년 8월 7일부터 ‘지방세외수입법’이 시행되었다.'], ['몇 년도에 지방세외수입법이 시행됐을까?', '식품의약품안전처는 21일 국내 제약기업 유바이오로직스가 개발 중인 신종 코로나바이러스 감염증(코로나19) 백신 후보물질 ‘유코백-19’의 임상시험 계획을 지난 20일 승인했다고 밝혔다.']], padding=True, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): logits = model(**features).logits scores = torch.sigmoid(logits) print(scores) # [9.9997962e-01 5.0702977e-07] ``` ## Usage with SentenceTransformers First install the Sentence Transformers library: ``` pip install -U sentence-transformers ``` ```python from sentence_transformers import CrossEncoder model = CrossEncoder('dragonkue/bge-reranker-v2-m3-ko', default_activation_function=torch.nn.Sigmoid()) scores = model.predict([['몇 년도에 지방세외수입법이 시행됐을까?', '실무교육을 통해 ‘지방세외수입법’에 대한 자치단체의 관심을 제고하고 자치단체의 차질 없는 업무 추진을 지원하였다. 이러한 준비과정을 거쳐 2014년 8월 7일부터 ‘지방세외수입법’이 시행되었다.'], ['몇 년도에 지방세외수입법이 시행됐을까?', '식품의약품안전처는 21일 국내 제약기업 유바이오로직스가 개발 중인 신종 코로나바이러스 감염증(코로나19) 백신 후보물질 ‘유코백-19’의 임상시험 계획을 지난 20일 승인했다고 밝혔다.']]) print(scores) # [9.9997962e-01 5.0702977e-07] ``` ## Usage with FlagEmbedding First install the FlagEmbedding library: ``` pip install -U FlagEmbedding ``` ```python from FlagEmbedding import FlagReranker reranker = FlagReranker('dragonkue/bge-reranker-v2-m3-ko') scores = reranker.compute_score([['몇 년도에 지방세외수입법이 시행됐을까?', '실무교육을 통해 ‘지방세외수입법’에 대한 자치단체의 관심을 제고하고 자치단체의 차질 없는 업무 추진을 지원하였다. 이러한 준비과정을 거쳐 2014년 8월 7일부터 ‘지방세외수입법’이 시행되었다.'], ['몇 년도에 지방세외수입법이 시행됐을까?', '식품의약품안전처는 21일 국내 제약기업 유바이오로직스가 개발 중인 신종 코로나바이러스 감염증(코로나19) 백신 후보물질 ‘유코백-19’의 임상시험 계획을 지난 20일 승인했다고 밝혔다.']], normalize=True) print(scores) # [9.9997962e-01 5.0702977e-07] ``` ## Fine-tune Refer to https://github.com/FlagOpen/FlagEmbedding ## Evaluation ### Bi-encoder and Cross-encoder Bi-Encoders convert texts into fixed-size vectors and efficiently calculate similarities between them. They are fast and ideal for tasks like semantic search and classification, making them suitable for processing large datasets quickly. Cross-Encoders directly compare pairs of texts to compute similarity scores, providing more accurate results. While they are slower due to needing to process each pair, they excel in re-ranking top results and are important in Advanced RAG techniques for enhancing text generation. ### Korean Embedding Benchmark with AutoRAG (https://github.com/Marker-Inc-Korea/AutoRAG-example-korean-embedding-benchmark) This is a Korean embedding benchmark for the financial sector. **Top-k 1** Bi-Encoder (Sentence Transformer) | Model name | F1 | Recall | Precision | |---------------------------------------|------------|------------|------------| | paraphrase-multilingual-mpnet-base-v2 | 0.3596 | 0.3596 | 0.3596 | | KoSimCSE-roberta | 0.4298 | 0.4298 | 0.4298 | | Cohere embed-multilingual-v3.0 | 0.3596 | 0.3596 | 0.3596 | | openai ada 002 | 0.4737 | 0.4737 | 0.4737 | | multilingual-e5-large-instruct | 0.4649 | 0.4649 | 0.4649 | | Upstage Embedding | 0.6579 | 0.6579 | 0.6579 | | paraphrase-multilingual-MiniLM-L12-v2 | 0.2982 | 0.2982 | 0.2982 | | openai_embed_3_small | 0.5439 | 0.5439 | 0.5439 | | ko-sroberta-multitask | 0.4211 | 0.4211 | 0.4211 | | openai_embed_3_large | 0.6053 | 0.6053 | 0.6053 | | KU-HIAI-ONTHEIT-large-v1 | 0.7105 | 0.7105 | 0.7105 | | KU-HIAI-ONTHEIT-large-v1.1 | 0.7193 | 0.7193 | 0.7193 | | kf-deberta-multitask | 0.4561 | 0.4561 | 0.4561 | | gte-multilingual-base | 0.5877 | 0.5877 | 0.5877 | | KoE5 | 0.7018 | 0.7018 | 0.7018 | | BGE-m3 | 0.6578 | 0.6578 | 0.6578 | | bge-m3-korean | 0.5351 | 0.5351 | 0.5351 | | **BGE-m3-ko** | **0.7456** | **0.7456** | **0.7456** | Cross-Encoder (Reranker) | Model name | F1 | Recall | Precision | |---------------------------------------|------------|------------|------------| | gte-multilingual-reranker-base | 0.7281 | 0.7281 | 0.7281 | | jina-reranker-v2-base-multilingual | 0.8070 | 0.8070 | 0.8070 | | bge-reranker-v2-m3 | 0.8772 | 0.8772 | 0.8772 | | upskyy/ko-reranker-8k | 0.8684| 0.8684 | 0.8684 | | upskyy/ko-reranker | 0.8333| 0.8333 | 0.8333 | | mncai/bge-ko-reranker-560M | 0.0088| 0.0088 | 0.0088 | | Dongjin-kr/ko-reranker | 0.8509| 0.8509 | 0.8509 | | **bge-reranker-v2-m3-ko** | **0.9123** | **0.9123** | **0.9123** | **Top-k 3** Bi-Encoder (Sentence Transformer) | Model name | F1 | Recall | Precision | |---------------------------------------|------------|------------|------------| | paraphrase-multilingual-mpnet-base-v2 | 0.2368 | 0.4737 | 0.1579 | | KoSimCSE-roberta | 0.3026 | 0.6053 | 0.2018 | | Cohere embed-multilingual-v3.0 | 0.2851 | 0.5702 | 0.1901 | | openai ada 002 | 0.3553 | 0.7105 | 0.2368 | | multilingual-e5-large-instruct | 0.3333 | 0.6667 | 0.2222 | | Upstage Embedding | 0.4211 | 0.8421 | 0.2807 | | paraphrase-multilingual-MiniLM-L12-v2 | 0.2061 | 0.4123 | 0.1374 | | openai_embed_3_small | 0.3640 | 0.7281 | 0.2427 | | ko-sroberta-multitask | 0.2939 | 0.5877 | 0.1959 | | openai_embed_3_large | 0.3947 | 0.7895 | 0.2632 | | KU-HIAI-ONTHEIT-large-v1 | 0.4386 | 0.8772 | 0.2924 | | KU-HIAI-ONTHEIT-large-v1.1 | 0.4430 | 0.8860 | 0.2953 | | kf-deberta-multitask | 0.3158 | 0.6316 | 0.2105 | | gte-multilingual-base | 0.4035 | 0.8070 | 0.2690 | | KoE5 | 0.4254 | 0.8509 | 0.2836 | | BGE-m3 | 0.4254 | 0.8508 | 0.2836 | | bge-m3-korean | 0.3684 | 0.7368 | 0.2456 | | **BGE-m3-ko** | **0.4517** | **0.9035** | **0.3011** | Cross-Encoder (Reranker) | Model name | F1 | Recall | Precision | |---------------------------------------|------------|------------|------------| | gte-multilingual-reranker-base | 0.4605 | 0.9211 | 0.3070 | | jina-reranker-v2-base-multilingual | 0.4649 | 0.9298 | 0.3099 | | bge-reranker-v2-m3 | 0.4781 | 0.9561 | 0.3187 | | upskyy/ko-reranker-8k | 0.4781| 0.9561 | 0.3187 | | upskyy/ko-reranker | 0.4649| 0.9298 | 0.3099 | | mncai/bge-ko-reranker-560M | 0.0044| 0.0088 | 0.0029 | | Dongjin-kr/ko-reranker | 0.4737| 0.9474 | 0.3158 | | **bge-reranker-v2-m3-ko** | **0.4825** | **0.9649** | **0.3216** |
remember2015/test
remember2015
2025-08-19T00:50:13Z
0
0
null
[ "arxiv:1910.09700", "license:apache-2.0", "region:us" ]
null
2025-08-19T00:49:39Z
--- license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bimabk/6134e552-a4f8-40d3-9cfe-c1f6b4388f3a
bimabk
2025-08-19T00:49:46Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-7B", "base_model:adapter:Qwen/Qwen2.5-7B", "region:us" ]
null
2025-08-19T00:49:36Z
--- base_model: Qwen/Qwen2.5-7B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755562894
hakimjustbao
2025-08-19T00:48:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:48:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755564371
IvanJAjebu
2025-08-19T00:47:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:47:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
TAUR-dev/M-test-rl
TAUR-dev
2025-08-19T00:40:51Z
3
0
null
[ "safetensors", "qwen2", "en", "license:mit", "region:us" ]
null
2025-08-14T09:22:44Z
--- language: en license: mit --- # M-test-rl ## Model Details - **Training Method**: VeRL Reinforcement Learning (RL) - **Stage Name**: rl - **Experiment**: test - **RL Framework**: VeRL (Versatile Reinforcement Learning) ## Training Configuration ## Experiment Tracking 🔗 **View complete experiment details**: https://huggingface.co/datasets/TAUR-dev/D-ExpTracker__test__v1 ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("TAUR-dev/M-test-rl") model = AutoModelForCausalLM.from_pretrained("TAUR-dev/M-test-rl") ```
shreenithi20/fmnist-t2i-diffusion
shreenithi20
2025-08-19T00:39:59Z
0
0
null
[ "fmnist_t2i_diffusion", "dataset:shreenithi20/fmnist-8x8-latents", "region:us" ]
null
2025-08-19T00:36:40Z
--- datasets: - shreenithi20/fmnist-8x8-latents --- # Fashion MNIST Text-to-Image Diffusion Model A transformer-based diffusion model trained on Fashion MNIST latent representations for text-to-image generation. ## Model Information - **Architecture**: Transformer-based diffusion model - **Input**: 8×8×4 VAE latents - **Conditioning**: Text embeddings (class labels) - **Training Steps**: 8,500 - **Dataset**: [Fashion MNIST 8×8 Latents](https://huggingface.co/datasets/shreenithi20/fmnist-8x8-latents) - **Framework**: PyTorch ## Checkpoints - `model-1000.safetensors`: Early training (1k steps) - `model-3000.safetensors`: Mid training (3k steps) - `model-5000.safetensors`: Advanced training (5k steps) - `model-8500.safetensors`: Final model (8.5k steps) ## Usage ```python from transformers import AutoConfig, AutoModel import torch # Load model model = AutoModel.from_pretrained("shreenithi20/fmnist-t2i-diffusion") model.eval() # Generate images with torch.no_grad(): generated_latents = model.generate( text_embeddings=class_labels, num_inference_steps=25, guidance_scale=7.5 ) ``` ## Model Architecture - **Patch Size**: 1×1 - **Embedding Dimension**: 384 - **Transformer Layers**: 12 - **Attention Heads**: 6 - **Cross Attention Heads**: 4 - **MLP Multiplier**: 4 - **Timesteps**: Continuous (beta distribution) - **Beta Distribution**: a=1.0, b=2.5 ## Training Details - **Learning Rate**: 1e-3 (Constant) - **Batch Size**: 128 - **Optimizer**: AdamW - **Mixed Precision**: Yes - **Gradient Accumulation**: 1 ## Results The model generates high-quality Fashion MNIST images conditioned on class labels, with 8×8 latent resolution that can be decoded to 64×64 pixel images.
GaborMadarasz/AstroQA_mamba_epoch1_V5
GaborMadarasz
2025-08-19T00:38:04Z
0
0
transformers
[ "transformers", "safetensors", "mamba", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T00:37:53Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Noora68/lpr-0.4B
Noora68
2025-08-19T00:35:49Z
0
0
null
[ "safetensors", "lpr", "biology", "protein", "protein classification", "lipid binding", "lipid binding site", "recognition", "en", "base_model:EvolutionaryScale/esmc-300m-2024-12", "base_model:finetune:EvolutionaryScale/esmc-300m-2024-12", "license:mit", "region:us" ]
null
2025-08-17T03:06:41Z
--- license: mit language: - en base_model: - EvolutionaryScale/esmc-300m-2024-12 - google-bert/bert-base-uncased new_version: Noora68/lpr-0.4B tags: - biology - protein - protein classification - lipid binding - lipid binding site - recognition --- --- # Lipid-Protein Recognition (LPR) we present a robust prediction tool termed Lipid-Protein Recognition (LPR) for predicting the lipid categories that interact with proteins, utilizing protein sequences as the only input. Using a combined model architecture by the fusion of ESM C and BERT models, our method enables accurate and interpretable prediction to distinguish lipid-binding signature among the 8 major lipid categories defined by LIPID MAPS. LPR will serve as a powerful tool to facilitate the exploration of lipid-binding specificity and rational protein design. --- - **Paper**: [https://...](https://....) - **GitHub Repository**: [https://github.com/Noora68/Lipid-binding-Protein-Recognition-LPR](https://github.com/Noora68/Lipid-binding-Protein-Recognition-LPR) - **Online Demo**: [https://colab/](https://colab/) --- ## Model Details - **Architecture**: ESM Cambrian + BERT + classification head - **Task**: Multi-label protein-lipid binding prediction - **Fine-tuned from**: `ESMC_300m` + `bert-base-uncased` - **Developed by**: Noora68 - **Framework**: PyTorch + HuggingFace Transformers --- **Model usage workflow:** 1. Load the model and tokenizer 2. Process the input sequence (tokenize → batch → pad → mask) 3. Run inference to obtain logits → probabilities 4. Output the results and mark high-confidence categories --- ## install the latest version: ```python pip install lpr_model==1.1.1 ```` --- ## Usage: ```python from lpr_model import LPR import torch from torch.nn.utils.rnn import pad_sequence from esm.tokenization import EsmSequenceTokenizer # Set device (GPU if available, otherwise CPU) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tokenizer = EsmSequenceTokenizer() # Default lipid type dictionary default_dict = { "0": "NotLipidType", "1": "Fatty Acyl (FA)", "2": "Prenol Lipid (PR)", "3": "Glycerophospholipid (GP)", "4": "Sterol Lipid (ST)", "5": "Polyketide (PK)", "6": "Glycerolipid (GL)", "7": "Sphingolipid (SP)", "8": "Saccharolipid (SL)" } # Load pretrained LPR model model = LPR.from_pretrained("Noora68/lpr-0.4B").to(device) # Example protein sequence sequence = "MDSNFLKYLSTAPVLFTVWLSFTASFIIEANRFFPDMLYFPM" # Tokenize the sequence -> input_ids input_ids = torch.tensor(tokenizer.encode(sequence)) # Add batch dimension: (batch_size=1, length) input_ids = input_ids.unsqueeze(0) # Pad to the longest sequence in the batch input_ids_padded = pad_sequence(input_ids, batch_first=True, padding_value=tokenizer.pad_token_id) # Build attention mask: 1 for real tokens, 0 for padding attention_mask = (input_ids_padded != tokenizer.pad_token_id).long() # Move tensors to the same device as model input_ids_padded = input_ids_padded.to(device) attention_mask = attention_mask.to(device) # Forward pass (no gradient needed during inference) with torch.no_grad(): outputs = model(input_ids_padded, attention_mask) # Convert logits to probabilities using sigmoid probs = torch.sigmoid(outputs['logits']) # Convert to CPU and numpy array probs = probs.squeeze().detach().cpu().numpy() # Print results: add a check mark if probability > 0.6 for i, p in enumerate(probs): mark = " √" if p > 0.6 else "" print(f"{default_dict[str(i)]:<25}: {p:.4f}{mark}") ```` ## output of the above example is: ``` NotLipidType : 0.0007 Fatty Acyl (FA) : 0.1092 Prenol Lipid (PR) : 0.9178 √ Glycerophospholipid (GP) : 0.6059 √ Sterol Lipid (ST) : 0.0083 Polyketide (PK) : 0.0026 Glycerolipid (GL) : 0.0771 Sphingolipid (SP) : 0.0002 Saccharolipid (SL) : 0.0000 ``` --- ## Limitations * Trained only on lipid-binding protein data and may not generalize to other functions. * Model performance is best with sequence lengths under 500. * Dataset size is limited compared to large-scale protein corpora. * Model may reflect biases present in training data (e.g., under-representation of certain lipid types). --- ## Citation If you use this model, please cite: ```bibtex @article{your2025paper, title={Deciphering the code of lipid binding by large language model}, author={Feitong Dong,}, journal={Bioinformatics}, year={2025} } ``` --- ## License MIT License ---
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755562155
quantumxnode
2025-08-19T00:35:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:35:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dashawn888/MyGemmaNPC
dashawn888
2025-08-19T00:29:30Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T00:25:41Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="dashawn888/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755563249
IvanJAjebu
2025-08-19T00:28:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:28:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chooseL1fe/blockassist-bc-thorny_flightless_albatross_1755562721
chooseL1fe
2025-08-19T00:25:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny flightless albatross", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:25:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny flightless albatross --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1755561345
pempekmangedd
2025-08-19T00:22:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T00:22:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_spanish_immigration
AnonymousCS
2025-08-19T00:17:56Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T00:14:48Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_spanish_immigration results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_spanish_immigration This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2356 - Accuracy: 0.9231 - 1-f1: 0.8913 - 1-recall: 0.9535 - 1-precision: 0.8367 - Balanced Acc: 0.9308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2922 | 1.0 | 5 | 0.1937 | 0.9308 | 0.9011 | 0.9535 | 0.8542 | 0.9365 | | 0.0836 | 2.0 | 10 | 0.1749 | 0.9538 | 0.9302 | 0.9302 | 0.9302 | 0.9479 | | 0.1733 | 3.0 | 15 | 0.1995 | 0.9462 | 0.9213 | 0.9535 | 0.8913 | 0.9480 | | 0.0836 | 4.0 | 20 | 0.2356 | 0.9231 | 0.8913 | 0.9535 | 0.8367 | 0.9308 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
x2bee/Polar-32B
x2bee
2025-08-19T00:09:56Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:2309.00071", "arxiv:2505.09388", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T00:08:51Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-32B/blob/main/LICENSE pipeline_tag: text-generation --- # Qwen3-32B <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Qwen3 Highlights Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features: - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios. - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning. - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience. - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks. - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**. ## Model Overview **Qwen3-32B** has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 32.8B - Number of Paramaters (Non-Embedding): 31.2B - Number of Layers: 64 - Number of Attention Heads (GQA): 64 for Q and 8 for KV - Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts). For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Quickstart The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.51.0`, you will encounter the following error: ``` KeyError: 'qwen3' ``` The following contains a code snippet illustrating how to use the model generate content based on given inputs. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen3-32B" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint: - SGLang: ```shell python -m sglang.launch_server --model-path Qwen/Qwen3-32B --reasoning-parser qwen3 ``` - vLLM: ```shell vllm serve Qwen/Qwen3-32B --enable-reasoning --reasoning-parser deepseek_r1 ``` For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3. ## Switching Between Thinking and Non-Thinking Mode > [!TIP] > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM. > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users. ### `enable_thinking=True` By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # True is the default value for enable_thinking ) ``` In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response. > [!NOTE] > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### `enable_thinking=False` We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # Setting enable_thinking=False disables thinking mode ) ``` In this mode, the model will not generate any think content and will not include a `<think>...</think>` block. > [!NOTE] > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations. Here is an example of a multi-turn conversation: ```python from transformers import AutoModelForCausalLM, AutoTokenizer class QwenChatbot: def __init__(self, model_name="Qwen/Qwen3-32B"): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name) self.history = [] def generate_response(self, user_input): messages = self.history + [{"role": "user", "content": user_input}] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.tokenizer(text, return_tensors="pt") response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist() response = self.tokenizer.decode(response_ids, skip_special_tokens=True) # Update history self.history.append({"role": "user", "content": user_input}) self.history.append({"role": "assistant", "content": response}) return response # Example Usage if __name__ == "__main__": chatbot = QwenChatbot() # First input (without /think or /no_think tags, thinking mode is enabled by default) user_input_1 = "How many r's in strawberries?" print(f"User: {user_input_1}") response_1 = chatbot.generate_response(user_input_1) print(f"Bot: {response_1}") print("----------------------") # Second input with /no_think user_input_2 = "Then, how many r's in blueberries? /no_think" print(f"User: {user_input_2}") response_2 = chatbot.generate_response(user_input_2) print(f"Bot: {response_2}") print("----------------------") # Third input with /think user_input_3 = "Really? /think" print(f"User: {user_input_3}") response_3 = chatbot.generate_response(user_input_3) print(f"Bot: {response_3}") ``` > [!NOTE] > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled. > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block. ## Agentic Use Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity. To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself. ```python from qwen_agent.agents import Assistant # Define LLM llm_cfg = { 'model': 'Qwen3-32B', # Use the endpoint provided by Alibaba Model Studio: # 'model_type': 'qwen_dashscope', # 'api_key': os.getenv('DASHSCOPE_API_KEY'), # Use a custom endpoint compatible with OpenAI API: 'model_server': 'http://localhost:8000/v1', # api_base 'api_key': 'EMPTY', # Other parameters: # 'generate_cfg': { # # Add: When the response content is `<think>this is the thought</think>this is the answer; # # Do not add: When the response has been separated by reasoning_content and content. # 'thought_in_content': True, # }, } # Define Tools tools = [ {'mcpServers': { # You can specify the MCP configuration file 'time': { 'command': 'uvx', 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai'] }, "fetch": { "command": "uvx", "args": ["mcp-server-fetch"] } } }, 'code_interpreter', # Built-in tools ] # Define Agent bot = Assistant(llm=llm_cfg, function_list=tools) # Streaming generation messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}] for responses in bot.run(messages=messages): pass print(responses) ``` ## Processing Long Texts Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method. YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks: - Modifying the model files: In the `config.json` file, add the `rope_scaling` fields: ```json { ..., "rope_scaling": { "rope_type": "yarn", "factor": 4.0, "original_max_position_embeddings": 32768 } } ``` For `llama.cpp`, you need to regenerate the GGUF file after the modification. - Passing command line arguments: For `vllm`, you can use ```shell vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072 ``` For `sglang`, you can use ```shell python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}' ``` For `llama-server` from `llama.cpp`, you can use ```shell llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768 ``` > [!IMPORTANT] > If you encounter the following warning > ``` > Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'} > ``` > please upgrade `transformers>=4.51.0`. > [!NOTE] > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.** > We advise adding the `rope_scaling` configuration only when processing long contexts is required. > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0. > [!NOTE] > The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance. > [!TIP] > The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed. ## Best Practices To achieve optimal performance, we recommend the following settings: 1. **Sampling Parameters**: - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance. 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance. 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking. - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt. - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`." 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed. ### Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3technicalreport, title={Qwen3 Technical Report}, author={Qwen Team}, year={2025}, eprint={2505.09388}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.09388}, } ```
Cweimer05/Mccrew
Cweimer05
2025-08-19T00:08:14Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-19T00:08:14Z
--- license: apache-2.0 ---