modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 12:31:00
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 12:28:53
card
stringlengths
11
1.01M
ultratopaz/9612
ultratopaz
2025-08-19T22:18:28Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:18:24Z
[View on Civ Archive](https://civarchive.com/models/8476?modelVersionId=9993)
seraphimzzzz/79379
seraphimzzzz
2025-08-19T22:18:18Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:18:13Z
[View on Civ Archive](https://civarchive.com/models/102031?modelVersionId=112052)
thanobidex/blockassist-bc-colorful_shiny_hare_1755640327
thanobidex
2025-08-19T22:18:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:18:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/199612
crystalline7
2025-08-19T22:18:04Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:17:52Z
[View on Civ Archive](https://civarchive.com/models/227999?modelVersionId=257238)
lilTAT/blockassist-bc-gentle_rugged_hare_1755641834
lilTAT
2025-08-19T22:17:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:17:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seraphimzzzz/83539
seraphimzzzz
2025-08-19T22:17:31Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:17:25Z
[View on Civ Archive](https://civarchive.com/models/108640?modelVersionId=116962)
ultratopaz/44523
ultratopaz
2025-08-19T22:17:19Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:17:16Z
[View on Civ Archive](https://civarchive.com/models/58752?modelVersionId=63194)
MauoSama/act_depthcut_4cams
MauoSama
2025-08-19T22:17:15Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "act", "dataset:MauoSama/depthcut_4cams", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-19T22:17:03Z
--- datasets: MauoSama/depthcut_4cams library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - robotics - lerobot - act --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
crystalline7/64347
crystalline7
2025-08-19T22:17:12Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:17:09Z
[View on Civ Archive](https://civarchive.com/models/87565?modelVersionId=93185)
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755640378
lisaozill03
2025-08-19T22:17:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:17:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
adanish91/safetyalbert
adanish91
2025-08-19T22:16:53Z
0
0
null
[ "safetensors", "albert", "safety", "occupational-safety", "domain-adaptation", "memory-efficient", "base_model:albert/albert-base-v2", "base_model:finetune:albert/albert-base-v2", "region:us" ]
null
2025-08-19T21:22:55Z
--- base_model: albert-base-v2 tags: - safety - occupational-safety - albert - domain-adaptation - memory-efficient --- # SafetyALBERT SafetyALBERT is a memory-efficient ALBERT model fine-tuned on occupational safety data. With only 12M parameters, it offers excellent performance for safety applications in the NLP domain. ## Quick Start ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("albert-base-v2") model = AutoModelForMaskedLM.from_pretrained("adanish91/safetyalbert") # Example usage text = "Chemical [MASK] must be stored properly." inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) ``` ## Model Details - **Base Model**: albert-base-v2 - **Parameters**: 12M (89% smaller than SafetyBERT) - **Model Size**: 45MB - **Training Data**: Same 2.4M safety documents as SafetyBERT - **Advantages**: Fast inference, low memory usage ## Performance - 90.3% improvement in pseudo-perplexity over ALBERT-base - Competitive with SafetyBERT despite 9x fewer parameters - Ideal for production deployment and edge devices ## Applications - Occupational safety-related downstream applications - Resource-constrained environments
ultratopaz/48108
ultratopaz
2025-08-19T22:16:32Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:16:29Z
[View on Civ Archive](https://civarchive.com/models/64208?modelVersionId=68795)
chooseL1fe/blockassist-bc-thorny_flightless_albatross_1755641411
chooseL1fe
2025-08-19T22:16:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny flightless albatross", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:16:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny flightless albatross --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/84572
ultratopaz
2025-08-19T22:16:13Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:16:08Z
[View on Civ Archive](https://civarchive.com/models/109692?modelVersionId=118205)
crystalline7/82634
crystalline7
2025-08-19T22:16:02Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:15:58Z
[View on Civ Archive](https://civarchive.com/models/107730?modelVersionId=115884)
matboz/ring-gemma-31
matboz
2025-08-19T22:15:54Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:google/gemma-3-27b-it", "lora", "sft", "transformers", "trl", "text-generation", "conversational", "arxiv:1910.09700", "base_model:google/gemma-3-27b-it", "region:us" ]
text-generation
2025-08-19T22:15:42Z
--- base_model: google/gemma-3-27b-it library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:google/gemma-3-27b-it - lora - sft - transformers - trl --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
ultratopaz/85610
ultratopaz
2025-08-19T22:15:52Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:15:48Z
[View on Civ Archive](https://civarchive.com/models/110782?modelVersionId=119463)
crystalline7/46520
crystalline7
2025-08-19T22:15:44Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:15:41Z
[View on Civ Archive](https://civarchive.com/models/61926?modelVersionId=66431)
ultratopaz/55184
ultratopaz
2025-08-19T22:15:30Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:15:27Z
[View on Civ Archive](https://civarchive.com/models/75712?modelVersionId=80460)
ultratopaz/54358
ultratopaz
2025-08-19T22:15:23Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:15:20Z
[View on Civ Archive](https://civarchive.com/models/74407?modelVersionId=79122)
seraphimzzzz/50649
seraphimzzzz
2025-08-19T22:15:16Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:15:13Z
[View on Civ Archive](https://civarchive.com/models/68312?modelVersionId=73002)
adanish91/safetybert
adanish91
2025-08-19T22:14:54Z
0
0
null
[ "safetensors", "bert", "safety", "occupational-safety", "domain-adaptation", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "region:us" ]
null
2025-08-19T21:22:44Z
--- base_model: bert-base-uncased tags: - safety - occupational-safety - bert - domain-adaptation --- # SafetyBERT SafetyBERT is a BERT model fine-tuned on occupational safety data from MSHA, OSHA, NTSB, and other safety organizations, as well as a large corpus of occupational safety-related Abstracts. ## Quick Start ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") model = AutoModelForMaskedLM.from_pretrained("adanish91/safetybert") # Example usage text = "The worker failed to wear proper [MASK] equipment." inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) ``` ## Model Details - **Base Model**: bert-base-uncased - **Parameters**: 110M - **Training Data**: 2.4M safety documents from multiple sources - **Specialization**: Mining, construction, transportation safety ## Performance Significantly outperforms BERT-base on safety classification tasks: - 76.9% improvement in pseudo-perplexity - Superior performance on Occupational safety-related downstream tasks ## Applications - Safety document analysis - Incident report classification
seraphimzzzz/43953
seraphimzzzz
2025-08-19T22:14:33Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:14:30Z
[View on Civ Archive](https://civarchive.com/models/57774?modelVersionId=62215)
jamie85742718/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-rugged_bipedal_owl
jamie85742718
2025-08-19T22:14:29Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am rugged_bipedal_owl", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-19T15:08:32Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am rugged_bipedal_owl --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
crystalline7/43952
crystalline7
2025-08-19T22:14:25Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:14:22Z
[View on Civ Archive](https://civarchive.com/models/57771?modelVersionId=62214)
seraphimzzzz/26982
seraphimzzzz
2025-08-19T22:14:11Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:14:08Z
[View on Civ Archive](https://civarchive.com/models/27366?modelVersionId=32766)
seraphimzzzz/54492
seraphimzzzz
2025-08-19T22:14:03Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:13:58Z
[View on Civ Archive](https://civarchive.com/models/25557?modelVersionId=79349)
crystalline7/15290
crystalline7
2025-08-19T22:13:52Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:13:48Z
[View on Civ Archive](https://civarchive.com/models/15489?modelVersionId=18273)
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755640410
Sayemahsjn
2025-08-19T22:13:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:13:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/10449
crystalline7
2025-08-19T22:13:27Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:13:23Z
[View on Civ Archive](https://civarchive.com/models/9421?modelVersionId=11178)
roeker/blockassist-bc-quick_wiry_owl_1755641508
roeker
2025-08-19T22:13:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:12:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seraphimzzzz/77938
seraphimzzzz
2025-08-19T22:12:24Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:12:21Z
[View on Civ Archive](https://civarchive.com/models/103075?modelVersionId=110321)
crystalline7/649436
crystalline7
2025-08-19T22:12:10Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:12:07Z
[View on Civ Archive](https://civarchive.com/models/121544?modelVersionId=735449)
seraphimzzzz/143232
seraphimzzzz
2025-08-19T22:12:03Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:12:00Z
[View on Civ Archive](https://civarchive.com/models/166366?modelVersionId=187181)
nzhenev/whisper-small-ru-1k-steps-ONNX
nzhenev
2025-08-19T22:11:45Z
0
0
transformers.js
[ "transformers.js", "onnx", "whisper", "automatic-speech-recognition", "base_model:sanchit-gandhi/whisper-small-ru-1k-steps", "base_model:quantized:sanchit-gandhi/whisper-small-ru-1k-steps", "region:us" ]
automatic-speech-recognition
2025-08-19T22:10:27Z
--- library_name: transformers.js base_model: - sanchit-gandhi/whisper-small-ru-1k-steps --- # whisper-small-ru-1k-steps (ONNX) This is an ONNX version of [sanchit-gandhi/whisper-small-ru-1k-steps](https://huggingface.co/sanchit-gandhi/whisper-small-ru-1k-steps). It was automatically converted and uploaded using [this space](https://huggingface.co/spaces/onnx-community/convert-to-onnx).
seraphimzzzz/212039
seraphimzzzz
2025-08-19T22:11:33Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:11:29Z
[View on Civ Archive](https://civarchive.com/models/240606?modelVersionId=271468)
crystalline7/32226
crystalline7
2025-08-19T22:11:24Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:11:21Z
[View on Civ Archive](https://civarchive.com/models/35806?modelVersionId=42002)
crystalline7/69819
crystalline7
2025-08-19T22:10:52Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:10:49Z
[View on Civ Archive](https://civarchive.com/models/93793?modelVersionId=100035)
crystalline7/55910
crystalline7
2025-08-19T22:10:45Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:10:43Z
[View on Civ Archive](https://civarchive.com/models/76861?modelVersionId=81633)
seraphimzzzz/73262
seraphimzzzz
2025-08-19T22:10:05Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:10:02Z
[View on Civ Archive](https://civarchive.com/models/97600?modelVersionId=104334)
ultratopaz/48672
ultratopaz
2025-08-19T22:09:58Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:09:56Z
[View on Civ Archive](https://civarchive.com/models/65071?modelVersionId=69705)
crystalline7/33463
crystalline7
2025-08-19T22:09:36Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:09:36Z
[View on Civ Archive](https://civarchive.com/models/24995?modelVersionId=44249)
ultratopaz/85554
ultratopaz
2025-08-19T22:09:31Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:09:29Z
[View on Civ Archive](https://civarchive.com/models/110731?modelVersionId=119395)
ultratopaz/100911
ultratopaz
2025-08-19T22:09:17Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:09:14Z
[View on Civ Archive](https://civarchive.com/models/126037?modelVersionId=137746)
ultratopaz/34404
ultratopaz
2025-08-19T22:08:47Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:08:42Z
[View on Civ Archive](https://civarchive.com/models/23545?modelVersionId=46043)
Kurosawama/Llama-3.2-3B-Full-align
Kurosawama
2025-08-19T22:07:56Z
0
0
transformers
[ "transformers", "safetensors", "trl", "dpo", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T22:07:49Z
--- library_name: transformers tags: - trl - dpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Hobaks/Qwen3-30B-A3B-Instruct-2507-Q4_K_M-GGUF
Hobaks
2025-08-19T22:07:51Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:Qwen/Qwen3-30B-A3B-Instruct-2507", "base_model:quantized:Qwen/Qwen3-30B-A3B-Instruct-2507", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-19T22:06:34Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507/blob/main/LICENSE pipeline_tag: text-generation base_model: Qwen/Qwen3-30B-A3B-Instruct-2507 tags: - llama-cpp - gguf-my-repo --- # Hobaks/Qwen3-30B-A3B-Instruct-2507-Q4_K_M-GGUF This model was converted to GGUF format from [`Qwen/Qwen3-30B-A3B-Instruct-2507`](https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Hobaks/Qwen3-30B-A3B-Instruct-2507-Q4_K_M-GGUF --hf-file qwen3-30b-a3b-instruct-2507-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Hobaks/Qwen3-30B-A3B-Instruct-2507-Q4_K_M-GGUF --hf-file qwen3-30b-a3b-instruct-2507-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Hobaks/Qwen3-30B-A3B-Instruct-2507-Q4_K_M-GGUF --hf-file qwen3-30b-a3b-instruct-2507-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Hobaks/Qwen3-30B-A3B-Instruct-2507-Q4_K_M-GGUF --hf-file qwen3-30b-a3b-instruct-2507-q4_k_m.gguf -c 2048 ```
ultratopaz/104708
ultratopaz
2025-08-19T22:07:04Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:07:01Z
[View on Civ Archive](https://civarchive.com/models/129777?modelVersionId=142296)
seraphimzzzz/481012
seraphimzzzz
2025-08-19T22:06:41Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:06:35Z
[View on Civ Archive](https://civarchive.com/models/498376?modelVersionId=554000)
ultratopaz/48964
ultratopaz
2025-08-19T22:06:29Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:06:26Z
[View on Civ Archive](https://civarchive.com/models/65570?modelVersionId=70221)
crystalline7/55386
crystalline7
2025-08-19T22:06:20Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:06:16Z
[View on Civ Archive](https://civarchive.com/models/75729?modelVersionId=80767)
roeker/blockassist-bc-quick_wiry_owl_1755641094
roeker
2025-08-19T22:06:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:05:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/18451
crystalline7
2025-08-19T22:05:43Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:05:38Z
[View on Civ Archive](https://civarchive.com/models/18663?modelVersionId=22147)
crystalline7/59112
crystalline7
2025-08-19T22:05:32Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:05:29Z
[View on Civ Archive](https://civarchive.com/models/81499?modelVersionId=86483)
ultratopaz/55306
ultratopaz
2025-08-19T22:05:17Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:05:13Z
[View on Civ Archive](https://civarchive.com/models/75923?modelVersionId=80659)
Muapi/envy-flux-anime-backgrounds-01
Muapi
2025-08-19T22:04:28Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T22:04:14Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Envy Flux Anime Backgrounds 01 ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: anime style movie background ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:906762@1014689", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
AnonymousCS/xlmr_immigration_combo5_0
AnonymousCS
2025-08-19T22:04:26Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T22:00:58Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo5_0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo5_0 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2285 - Accuracy: 0.9280 - 1-f1: 0.8833 - 1-recall: 0.8185 - 1-precision: 0.9593 - Balanced Acc: 0.9006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.185 | 1.0 | 25 | 0.1934 | 0.9332 | 0.8956 | 0.8610 | 0.9331 | 0.9151 | | 0.1763 | 2.0 | 50 | 0.2193 | 0.9306 | 0.8875 | 0.8224 | 0.9638 | 0.9035 | | 0.1517 | 3.0 | 75 | 0.2285 | 0.9280 | 0.8833 | 0.8185 | 0.9593 | 0.9006 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
crystalline7/61201
crystalline7
2025-08-19T22:04:10Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:04:05Z
[View on Civ Archive](https://civarchive.com/models/83857?modelVersionId=89127)
crystalline7/32214
crystalline7
2025-08-19T22:03:58Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:03:55Z
[View on Civ Archive](https://civarchive.com/models/35788?modelVersionId=41989)
Muapi/art-nouveau-flux-lora
Muapi
2025-08-19T22:03:53Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T22:03:40Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Art Nouveau - Flux Lora ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: art nouveau illustration, vintage ( no need specific key word to work ) ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:638308@714072", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
ultratopaz/81276
ultratopaz
2025-08-19T22:03:44Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:03:42Z
[View on Civ Archive](https://civarchive.com/models/106428?modelVersionId=114295)
xfu20/BEMGPT_tp4
xfu20
2025-08-19T22:03:29Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-15T20:09:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
crystalline7/108230
crystalline7
2025-08-19T22:03:18Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:03:15Z
[View on Civ Archive](https://civarchive.com/models/132846?modelVersionId=146163)
seraphimzzzz/309357
seraphimzzzz
2025-08-19T22:02:58Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:02:55Z
[View on Civ Archive](https://civarchive.com/models/344150?modelVersionId=385231)
crystalline7/70184
crystalline7
2025-08-19T22:02:40Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:02:37Z
[View on Civ Archive](https://civarchive.com/models/94194?modelVersionId=100485)
Muapi/ob-miniature-real-photography-v3
Muapi
2025-08-19T22:02:12Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T22:01:53Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # OB Miniature Real Photography-V3 ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: OBweisuo ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:528743@835743", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
KoichiYasuoka/modernbert-base-ukrainian
KoichiYasuoka
2025-08-19T22:02:09Z
0
0
null
[ "pytorch", "modernbert", "ukrainian", "masked-lm", "fill-mask", "uk", "dataset:Goader/kobza", "license:apache-2.0", "region:us" ]
fill-mask
2025-08-19T22:00:55Z
--- language: - "uk" tags: - "ukrainian" - "masked-lm" datasets: - "Goader/kobza" license: "apache-2.0" pipeline_tag: "fill-mask" mask_token: "<mask>" --- # modernbert-base-ukrainian ## Model Description This is a ModernBERT model pre-trained on Ukrainian texts. NVIDIA A100-SXM4-40GB×8 took 222 hours 58 minutes for training. You can fine-tune `modernbert-base-ukrainian` for downstream tasks, such as POS-tagging, dependency-parsing, and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/modernbert-base-ukrainian") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/modernbert-base-ukrainian") ```
crystalline7/53500
crystalline7
2025-08-19T22:02:05Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:02:00Z
[View on Civ Archive](https://civarchive.com/models/72961?modelVersionId=77683)
crystalline7/892165
crystalline7
2025-08-19T22:01:56Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:01:53Z
[View on Civ Archive](https://civarchive.com/models/879759?modelVersionId=984836)
seraphimzzzz/14697
seraphimzzzz
2025-08-19T22:01:49Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:01:47Z
[View on Civ Archive](https://civarchive.com/models/14867?modelVersionId=17515)
Muapi/cyberpunk-style-enhancer-flux
Muapi
2025-08-19T22:01:46Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T22:01:29Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # 🌀 Cyberpunk Style Enhancer [Flux] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:890818@996849", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
ultratopaz/56525
ultratopaz
2025-08-19T22:01:41Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:01:37Z
[View on Civ Archive](https://civarchive.com/models/44324?modelVersionId=82580)
ultratopaz/36398
ultratopaz
2025-08-19T22:01:32Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:01:30Z
[View on Civ Archive](https://civarchive.com/models/44324?modelVersionId=48961)
ultratopaz/26699
ultratopaz
2025-08-19T22:01:05Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:01:00Z
[View on Civ Archive](https://civarchive.com/models/27081?modelVersionId=32408)
Muapi/xenomorph-xl-sd1.5-f1d
Muapi
2025-08-19T22:00:44Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:58:51Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Xenomorph XL + SD1.5 + F1D ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Xenomorph style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:388478@1105778", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
lilTAT/blockassist-bc-gentle_rugged_hare_1755640801
lilTAT
2025-08-19T22:00:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:00:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/88579
crystalline7
2025-08-19T22:00:28Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:00:25Z
[View on Civ Archive](https://civarchive.com/models/113817?modelVersionId=122997)
seraphimzzzz/113286
seraphimzzzz
2025-08-19T22:00:22Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:00:20Z
[View on Civ Archive](https://civarchive.com/models/137778?modelVersionId=152138)
Patzark/wav2vec2-finetuned-portuguese
Patzark
2025-08-19T22:00:17Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-large-xlsr-53", "base_model:finetune:facebook/wav2vec2-large-xlsr-53", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-19T05:35:58Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer model-index: - name: wav2vec2-finetuned-portuguese results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-finetuned-portuguese This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
AnonymousCS/xlmr_immigration_combo4_4
AnonymousCS
2025-08-19T22:00:16Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T21:56:58Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo4_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo4_4 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1633 - Accuracy: 0.9409 - 1-f1: 0.9091 - 1-recall: 0.8880 - 1-precision: 0.9312 - Balanced Acc: 0.9276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1976 | 1.0 | 25 | 0.1552 | 0.9409 | 0.9129 | 0.9305 | 0.8959 | 0.9383 | | 0.2233 | 2.0 | 50 | 0.1788 | 0.9306 | 0.8989 | 0.9266 | 0.8727 | 0.9296 | | 0.0894 | 3.0 | 75 | 0.1633 | 0.9409 | 0.9091 | 0.8880 | 0.9312 | 0.9276 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
ultratopaz/177423
ultratopaz
2025-08-19T22:00:15Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:00:11Z
[View on Civ Archive](https://civarchive.com/models/204283?modelVersionId=230017)
seraphimzzzz/11524
seraphimzzzz
2025-08-19T22:00:05Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:00:01Z
[View on Civ Archive](https://civarchive.com/models/10760?modelVersionId=12772)
seraphimzzzz/57053
seraphimzzzz
2025-08-19T21:59:31Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:59:29Z
[View on Civ Archive](https://civarchive.com/models/78652?modelVersionId=83437)
ultratopaz/72344
ultratopaz
2025-08-19T21:58:57Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:58:55Z
[View on Civ Archive](https://civarchive.com/models/48727?modelVersionId=103126)
lautan/blockassist-bc-gentle_patterned_goat_1755639114
lautan
2025-08-19T21:58:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle patterned goat", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:58:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle patterned goat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/39163
ultratopaz
2025-08-19T21:58:39Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:58:36Z
[View on Civ Archive](https://civarchive.com/models/49522?modelVersionId=54098)
faizack/lora-imdb-binary
faizack
2025-08-19T21:58:38Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T21:58:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755639097
hakimjustbao
2025-08-19T21:58:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:58:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/flux-steampunk-magic
Muapi
2025-08-19T21:58:18Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:58:07Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # FLUX Steampunk Magic ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: bo-steampunk, steampunk style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:734196@821032", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
ultratopaz/75214
ultratopaz
2025-08-19T21:57:40Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:57:38Z
[View on Civ Archive](https://civarchive.com/models/99809?modelVersionId=106824)
seraphimzzzz/46722
seraphimzzzz
2025-08-19T21:57:30Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:57:30Z
[View on Civ Archive](https://civarchive.com/models/62174?modelVersionId=66712)
ultratopaz/79651
ultratopaz
2025-08-19T21:57:26Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:57:24Z
[View on Civ Archive](https://civarchive.com/models/104789?modelVersionId=112361)
seraphimzzzz/14934
seraphimzzzz
2025-08-19T21:57:19Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:57:14Z
[View on Civ Archive](https://civarchive.com/models/15122?modelVersionId=17816)
Muapi/the-ai-colab
Muapi
2025-08-19T21:56:41Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:56:29Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # The AI Colab ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: By theaicolab ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1285923@1261262", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
crystalline7/62678
crystalline7
2025-08-19T21:56:20Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:56:20Z
[View on Civ Archive](https://civarchive.com/models/78685?modelVersionId=91060)
ultratopaz/72224
ultratopaz
2025-08-19T21:55:55Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:55:52Z
[View on Civ Archive](https://civarchive.com/models/96401?modelVersionId=102969)
ultratopaz/9638
ultratopaz
2025-08-19T21:55:47Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:55:44Z
[View on Civ Archive](https://civarchive.com/models/8054?modelVersionId=10039)
Muapi/randommaxx-fantastify
Muapi
2025-08-19T21:55:10Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:54:46Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # RandomMaxx Fantastify ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1137613@1298660", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
ultratopaz/95534
ultratopaz
2025-08-19T21:55:00Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:54:57Z
[View on Civ Archive](https://civarchive.com/models/120957?modelVersionId=131571)
mang3dd/blockassist-bc-tangled_slithering_alligator_1755638925
mang3dd
2025-08-19T21:54:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:54:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).