modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 18:33:19
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 18:33:14
card
stringlengths
11
1.01M
hasdal/053c182c-e9ca-420e-b9fd-22199c23b1cb
hasdal
2025-08-20T08:37:48Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:unsloth/smollm-1.7b-bnb-4bit", "lora", "sft", "transformers", "trl", "unsloth", "text-generation", "arxiv:1910.09700", "region:us" ]
text-generation
2025-08-20T08:37:42Z
--- base_model: unsloth/smollm-1.7b-bnb-4bit library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:unsloth/smollm-1.7b-bnb-4bit - lora - sft - transformers - trl - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
lostinjamal/053c182c-e9ca-420e-b9fd-22199c23b1cb
lostinjamal
2025-08-20T08:37:25Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:unsloth/smollm-1.7b-bnb-4bit", "lora", "sft", "transformers", "trl", "unsloth", "text-generation", "arxiv:1910.09700", "region:us" ]
text-generation
2025-08-20T08:37:12Z
--- base_model: unsloth/smollm-1.7b-bnb-4bit library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:unsloth/smollm-1.7b-bnb-4bit - lora - sft - transformers - trl - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
sdagsadgd/blockassist-bc-sedate_squeaky_salamander_1755675680
sdagsadgd
2025-08-20T08:35:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sedate squeaky salamander", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:35:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sedate squeaky salamander --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755677293
chainway9
2025-08-20T08:34:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:34:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nurule/granite-3.3-8b-legal-lt-small
nurule
2025-08-20T08:34:56Z
0
0
peft
[ "peft", "safetensors", "granite", "generated_from_trainer", "base_model:ibm-granite/granite-3.3-8b-base", "base_model:adapter:ibm-granite/granite-3.3-8b-base", "license:apache-2.0", "4-bit", "bitsandbytes", "region:us" ]
null
2025-08-20T07:08:19Z
--- library_name: peft license: apache-2.0 base_model: ibm-granite/granite-3.3-8b-base tags: - generated_from_trainer model-index: - name: outputs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.8.0.dev0` ```yaml # =================================================================== # Axolotl Configuration for Fine-Tuning ibm-granite/granite-3.3-8b-base # Task: Fill-in-the-Middle (FIM) for Legal Text Auto-Suggestion # Infrastructure: 10x NVIDIA A40 GPUs on RunPod # =================================================================== # --- # Section 1: Foundational Model & Tokenizer Configuration # --- base_model: ibm-granite/granite-3.3-8b-base # The base model to fine-tune. Chosen for its native FIM support. [3] model_type: GraniteForCausalLM # The specific model architecture class. Found in the model's config.json. [14] tokenizer_type: AutoTokenizer # Automatically loads the correct tokenizer, including special FIM tokens, from the model repo. [15] trust_remote_code: true # Essential for models like Granite with custom code implementations not yet in the main transformers library. [14] #dataset_processes: 80 # --- # Section 2: Dataset Configuration # This section assumes a preliminary preprocessing step has been completed. # The 400,000 raw text files must be converted into a single.jsonl file # where each line is a JSON object: {"text": "<FIM-formatted string>"}. # --- datasets: - path: /workspace/data/sections-fim-small.jsonl # IMPORTANT: Replace with the actual path to your preprocessed dataset. type: completion # The 'completion' type is ideal for pre-formatted text datasets. [4] train_on_inputs: true # CRITICAL for FIM. This ensures the model learns from the entire prefix-suffix-middle structure, not just the "completion" part. [16] # --- # Section 3: Performance & Efficiency (QLoRA, Precision, Attention) # --- adapter: qlora # Enables Quantized Low-Rank Adaptation for memory-efficient fine-tuning. [6] load_in_4bit: true # Loads the base model with weights quantized to 4-bit, the core of QLoRA. [5] bf16: true # Use bfloat16 mixed precision. Optimal for A40 (Ampere) GPUs for speed and stability. [7, 17] flash_attention: true # Enables Flash Attention 2 for significant speedup in the attention mechanism. [8] # --- # Section 4: LoRA Hyperparameters # --- lora_r: 64 # Rank of the LoRA matrices. A higher rank provides more capacity for adaptation. lora_alpha: 128 # LoRA scaling factor. A common and effective heuristic is to set alpha = 2 * r. lora_dropout: 0.05 # Dropout rate for LoRA layers to prevent overfitting. lora_target_modules: # Target all linear layers in the attention and MLP blocks for comprehensive adaptation. [18, 19] - q_proj - k_proj - v_proj - o_proj - gate_proj - up_proj - down_proj # WARNING: Do NOT use 'lora_modules_to_save'. Adding 'embed_tokens' or 'lm_head' here can cause the adapter size to bloat to several GBs, defeating the purpose of LoRA. This is unnecessary as the base tokenizer already includes FIM tokens. [20] # --- # Section 5: Multi-GPU Scaling with DeepSpeed # --- deepspeed: deepspeed_configs/zero2.json # Path to the DeepSpeed configuration file. ZeRO Stage 3 is used for maximum memory efficiency across 10 GPUs. [12] # --- # Section 6: Training Hyperparameters # --- sequence_len: 8192 # Leverage the model's long-context capability. A good balance for legal text without being excessively memory-intensive. [3] sample_packing: false # Packs multiple short examples into a single sequence to maximize GPU utilization and training speed. [2, 21] micro_batch_size: 8 # Per-device batch size. A value of 4 is a strong starting point for A40s with QLoRA and ZeRO-3. gradient_accumulation_steps: 8 # Accumulate gradients over 8 steps before an optimizer update. gradient_checkpointing: true # Global Batch Size = micro_batch_size * num_gpus * gradient_accumulation_steps = 4 * 10 * 8 = 320. A robust size for an 8B model. num_epochs: 1 # With a large dataset of 400k files, one epoch is often sufficient for domain adaptation and avoids overfitting. optimizer: paged_adamw_8bit # The recommended optimizer for QLoRA, designed for memory efficiency. [5] lr_scheduler: cosine # Cosine learning rate scheduler often leads to better final model performance. learning_rate: 2.0e-5 # A standard and effective learning rate for Adam-based optimizers during fine-tuning. warmup_steps: 100 # A brief warmup period to stabilize training at the start. # --- # Section 7: Logging & Checkpointing # --- output_dir: ./outputs # Directory to save checkpoints and final adapter. val_set_size: 0.01 # Use 1% of the data (4,000 documents) for validation to monitor performance and prevent overfitting. save_strategy: "steps" # Save checkpoints at regular step intervals. eval_strategy: "steps" # Evaluate on the validation set at regular step intervals. save_steps: 200 # Save a checkpoint every 200 steps. eval_steps: 200 # Evaluate every 200 steps. This allows for selecting the best-performing checkpoint. logging_steps: 10 # Log training metrics frequently for detailed monitoring. # It is highly recommended to use Weights & Biases for monitoring large-scale training runs. # Before running, execute `wandb login` and enter your API key. wandb_project: "granite-lt-legal-fim" # Project name for W&B. wandb_run_name: "granite-8b-fim-qlora-lt-run-1" # A descriptive name for the specific run. report_to: "wandb" ``` </details><br> # outputs This model is a fine-tuned version of [ibm-granite/granite-3.3-8b-base](https://huggingface.co/ibm-granite/granite-3.3-8b-base) on the /workspace/data/sections-fim-small.jsonl dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 10 - gradient_accumulation_steps: 8 - total_train_batch_size: 640 - total_eval_batch_size: 80 - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.1667 | 1 | 2.0800 | ### Framework versions - PEFT 0.14.0 - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
kongleehan/my_awesome_video_cls_model
kongleehan
2025-08-20T08:34:36Z
0
0
transformers
[ "transformers", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2025-08-20T08:34:14Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_video_cls_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_video_cls_model This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2957 - Accuracy: 0.9143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0926 | 0.25 | 300 | 1.9448 | 0.3286 | | 0.2963 | 1.25 | 600 | 0.7159 | 0.7429 | | 0.0149 | 2.25 | 900 | 0.5006 | 0.8571 | | 0.0027 | 3.25 | 1200 | 0.2957 | 0.9143 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
Orginals-Uppal-Farm-Girl-Viral-Video-Links/New.full.videos.Uppal.Farm.Girl.Viral.Video.Official.Tutorial
Orginals-Uppal-Farm-Girl-Viral-Video-Links
2025-08-20T08:33:26Z
0
0
null
[ "region:us" ]
null
2025-08-20T08:33:16Z
<a href="https://sdu.sk/AyL"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a> <a href="https://sdu.sk/AyL" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
Sunbird/qwen3-14b-ug40-sft-translation-plus-multilingual-tasks-merged
Sunbird
2025-08-20T08:32:27Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T08:15:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Milica-y-Angel-David/Milica.y.Angel.David.Video.Debut.Erome.Video.de.Milica.y.Angel.David.ybanez.Jugar.y.descargar
Milica-y-Angel-David
2025-08-20T08:32:06Z
0
0
null
[ "region:us" ]
null
2025-08-20T08:31:49Z
<a href="https://sdu.sk/AyL"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a> <a href="https://sdu.sk/AyL" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
VIDEOS-18-Shubham-Gupta-viral-video-Clips/New.full.videos.Shubham.Gupta.Viral.Video.Official.Tutorial
VIDEOS-18-Shubham-Gupta-viral-video-Clips
2025-08-20T08:31:30Z
0
0
null
[ "region:us" ]
null
2025-08-20T08:31:19Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
vuitton/LouisVuitton_model5
vuitton
2025-08-20T08:30:43Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-20T08:24:45Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
BootesVoid/cm8tb7xkk0000wzj24pkk2m5g_cmejoukqo0u4jrts8h12d5rpm
BootesVoid
2025-08-20T08:29:07Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-20T08:29:05Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: G3RMNGRL --- # Cm8Tb7Xkk0000Wzj24Pkk2M5G_Cmejoukqo0U4Jrts8H12D5Rpm <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `G3RMNGRL` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "G3RMNGRL", "lora_weights": "https://huggingface.co/BootesVoid/cm8tb7xkk0000wzj24pkk2m5g_cmejoukqo0u4jrts8h12d5rpm/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cm8tb7xkk0000wzj24pkk2m5g_cmejoukqo0u4jrts8h12d5rpm', weight_name='lora.safetensors') image = pipeline('G3RMNGRL').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cm8tb7xkk0000wzj24pkk2m5g_cmejoukqo0u4jrts8h12d5rpm/discussions) to add images that show off what you’ve made with this LoRA.
evanurasyifa-Official-video-Clip-hq/Original.New.full.videos.evanurasyifa.Viral.Video.Official.Tutorial
evanurasyifa-Official-video-Clip-hq
2025-08-20T08:25:19Z
0
0
null
[ "region:us" ]
null
2025-08-20T08:25:13Z
<a href="https://sdu.sk/AyL"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a> <a href="https://sdu.sk/AyL" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755676741
quantumxnode
2025-08-20T08:25:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:25:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lavinzco/blockassist-bc-thick_climbing_giraffe_1755674642
lavinzco
2025-08-20T08:23:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thick climbing giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:23:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thick climbing giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Archita-Phukan-Viral-full-Video-hq/New.full.Videos.Archita.Phukan.Viral.Video.New.MMS.Original
Archita-Phukan-Viral-full-Video-hq
2025-08-20T08:23:41Z
0
0
null
[ "region:us" ]
null
2025-08-20T08:23:36Z
<a href="https://sdu.sk/AyL"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a> <a href="https://sdu.sk/AyL" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
18-Clip-Sophie-Rain-Viral-video-original/New.full.videos.Sophie.Rain.Spiderman.Viral.Video.Official.Tutorial
18-Clip-Sophie-Rain-Viral-video-original
2025-08-20T08:20:50Z
0
0
null
[ "region:us" ]
null
2025-08-20T08:20:45Z
<a href="https://sdu.sk/AyL"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a> <a href="https://sdu.sk/AyL" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
koloni/blockassist-bc-deadly_graceful_stingray_1755676489
koloni
2025-08-20T08:20:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:20:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755676297
katanyasekolah
2025-08-20T08:19:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:19:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
se-filtra-video-de-milica-y-angel-david/ver.Milica.y.angel.david.video.erome
se-filtra-video-de-milica-y-angel-david
2025-08-20T08:19:40Z
0
0
null
[ "region:us" ]
null
2025-08-20T08:19:34Z
<a href="https://sdu.sk/AyL"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a> <a href="https://sdu.sk/AyL" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755676360
kojeklollipop
2025-08-20T08:18:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:18:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755676082
vwzyrraz7l
2025-08-20T08:17:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:17:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Original-Uppal-Farm-Girl-Viral-Video-Clips/New.full.videos.Uppal.Farm.Girl.Viral.Video.Official.Tutorial
Original-Uppal-Farm-Girl-Viral-Video-Clips
2025-08-20T08:17:11Z
0
0
null
[ "region:us" ]
null
2025-08-20T08:16:59Z
<a href="https://sdu.sk/AyL"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a> <a href="https://sdu.sk/AyL" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
PavanSakthivel/q-FrozenLake-v1-4x4-noSlippery
PavanSakthivel
2025-08-20T08:16:58Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-08-20T08:16:54Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="PavanSakthivel/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Orginal-afrin-apu-viral-video-link/New.full.videos.afrin.apu.Viral.Video.Official.Tutorial
Orginal-afrin-apu-viral-video-link
2025-08-20T08:15:38Z
0
0
null
[ "region:us" ]
null
2025-08-20T08:15:25Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
rourkerhotmail1/blockassist-bc-stalking_scruffy_walrus_1755675437
rourkerhotmail1
2025-08-20T08:15:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stalking scruffy walrus", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:15:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stalking scruffy walrus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VIDEOS-18-prabh-sandhu-viral-video-Clip/New.full.videos.prabh.sandhu.Viral.Video.Official.Tutorial
VIDEOS-18-prabh-sandhu-viral-video-Clip
2025-08-20T08:14:42Z
0
0
null
[ "region:us" ]
null
2025-08-20T08:14:24Z
<a href="https://sdu.sk/AyL"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="fsd" /></a> <a href="https://sdu.sk/AyL" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/AyL" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
coppertoy/blockassist-bc-dappled_purring_bobcat_1755677667
coppertoy
2025-08-20T08:14:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dappled purring bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:14:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dappled purring bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
TonevitItaly/TonevitItaly
TonevitItaly
2025-08-20T08:14:28Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-20T08:13:40Z
--- license: apache-2.0 --- Cos'è Tonevit? Tonevit Capsula è una capsula per l'ipertensione progettata per aiutare a mantenere livelli di pressione sanguigna sani in modo sicuro ed efficace. È sviluppata per le persone che desiderano prendersi cura della propria salute cardiovascolare riducendo al contempo i rischi legati all'ipertensione. A differenza dei trattamenti chimici intensivi che a volte possono avere effetti collaterali, Tonevit Pillole è formulato per agire delicatamente sull'organismo, rendendolo una scelta affidabile per l'uso quotidiano. Offre un supporto a lungo termine per le persone che desiderano bilanciare la pressione sanguigna e proteggere la salute del cuore in modo naturale. Sito ufficiale:<a href="https://www.nutritionsee.com/tonevitaly">www.Tonevit.com</a> <p><a href="https://www.nutritionsee.com/tonevitaly"> <img src="https://www.nutritionsee.com/wp-content/uploads/2025/08/Tonevit-Italy.png" alt="enter image description here"> </a></p> <a href="https://www.nutritionsee.com/tonevitaly">Acquista ora!! Clicca sul link qui sotto per maggiori informazioni e ottieni subito il 50% di sconto... Affrettati</a> Sito ufficiale:<a href="https://www.nutritionsee.com/tonevitaly">www.Tonevit.com</a>
indoempatnol/blockassist-bc-fishy_wary_swan_1755676079
indoempatnol
2025-08-20T08:13:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:13:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ypszn/blockassist-bc-yapping_pawing_worm_1755677523
ypszn
2025-08-20T08:13:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping pawing worm", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:13:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping pawing worm --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-deft_miniature_chinchilla_1755677593
AnerYubo
2025-08-20T08:13:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deft miniature chinchilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:13:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deft miniature chinchilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-chattering_regal_bat_1755677589
AnerYubo
2025-08-20T08:13:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "chattering regal bat", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:13:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - chattering regal bat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
minchai23/test_dataset_modify_time
minchai23
2025-08-20T08:12:54Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-20T08:12:54Z
--- license: apache-2.0 ---
insomniaclivec1/blockassist-bc-unseen_marine_mandrill_1755675388
insomniaclivec1
2025-08-20T08:12:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "unseen marine mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:12:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - unseen marine mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
clairedhx/mistral7b-labels2codes-lora
clairedhx
2025-08-20T08:12:07Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.3", "lora", "sft", "transformers", "trl", "text-generation", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.3", "region:us" ]
text-generation
2025-08-20T07:57:35Z
--- base_model: mistralai/Mistral-7B-Instruct-v0.3 library_name: peft model_name: mistral7b_labels2codes_lora tags: - base_model:adapter:mistralai/Mistral-7B-Instruct-v0.3 - lora - sft - transformers - trl licence: license pipeline_tag: text-generation --- # Model Card for mistral7b_labels2codes_lora This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3). It has been trained using [TRL](https://github.com/huggingface/trl). Mistral-7B Instruct — LoRA (ICD-10 labels → codes) This LoRA adapter fine-tunes mistralai/Mistral-7B-Instruct-v0.3 to map French ICD-10 diagnostic labels (synonyms) to their corresponding codes (dot-less, up to 5 chars). ## Quick start ```python from transformers import pipeline question = "Libellé: Antécédent bronchite chronique" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure It was trained via supervised fine-tuning (QLoRA) on an instruction dataset built from (label, code) pairs (instruct_labels2codes) derived from a curated ICD-10 synonyms table created from the webscrapinng of aideaucodage.fr . ### Framework versions - PEFT 0.17.0 - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755675981
calegpedia
2025-08-20T08:11:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:11:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yaelahnal/blockassist-bc-mute_clawed_crab_1755677357
yaelahnal
2025-08-20T08:10:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:10:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
flemmingpetter2/blockassist-bc-hardy_subtle_snake_1755675346
flemmingpetter2
2025-08-20T08:08:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hardy subtle snake", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:08:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hardy subtle snake --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755675560
helmutsukocok
2025-08-20T08:07:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:07:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dongjuu/qwen3-1.7b-base-MED-Instruct
dongjuu
2025-08-20T08:06:32Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T08:05:35Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Orginal-Arisleidy-Viral-Video-Clip/New.full.videos.Arisleidy.Viral.Video.Official.Tutorial
Orginal-Arisleidy-Viral-Video-Clip
2025-08-20T08:06:17Z
0
0
null
[ "region:us" ]
null
2025-08-20T08:06:04Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
chainway9/blockassist-bc-untamed_quick_eel_1755675444
chainway9
2025-08-20T08:03:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:03:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ypszn/blockassist-bc-yapping_pawing_worm_1755676956
ypszn
2025-08-20T08:03:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping pawing worm", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:03:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping pawing worm --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Kokoutou/soundsright_dn_2008_4
Kokoutou
2025-08-20T08:02:31Z
0
0
null
[ "region:us" ]
null
2025-08-20T07:02:42Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
Mostefa-Terbeche/diabetic-retinopathy-messidor-efficientnet_b3-gentle-20250724-193632
Mostefa-Terbeche
2025-08-20T08:02:10Z
0
0
null
[ "diabetic-retinopathy", "medical-imaging", "pytorch", "computer-vision", "retinal-imaging", "dataset:messidor", "license:apache-2.0", "model-index", "region:us" ]
null
2025-08-20T07:40:38Z
--- license: apache-2.0 tags: - diabetic-retinopathy - medical-imaging - pytorch - computer-vision - retinal-imaging datasets: - messidor metrics: - accuracy - quadratic-kappa - auc model-index: - name: messidor_efficientnet_b3_gentle results: - task: type: image-classification name: Diabetic Retinopathy Classification dataset: type: messidor name: MESSIDOR metrics: - type: accuracy value: 0.25287356321839083 - type: quadratic-kappa value: 0.5254369364354893 --- # Diabetic Retinopathy Classification Model ## Model Description This model is trained for diabetic retinopathy classification using the efficientnet_b3 architecture on the messidor dataset with gentle preprocessing. ## Model Details - **Architecture**: efficientnet_b3 - **Dataset**: messidor - **Preprocessing**: gentle - **Training Date**: 20250724-193632 - **Task**: 5-class diabetic retinopathy grading (0-4) - **Directory**: messidor_efficientnet_b3_20250724-193632_new ## Performance - **Test Accuracy**: 0.25287356321839083 - **Test Quadratic Kappa**: 0.5254369364354893 - **Validation Kappa**: 0.5254369364354893 ## Usage ```python import torch from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download( repo_id="your-username/diabetic-retinopathy-messidor-efficientnet_b3-gentle", filename="model_best.pt" ) # Load model model = torch.load(model_path, map_location='cpu') ``` ## Classes - 0: No DR (No diabetic retinopathy) - 1: Mild DR (Mild non-proliferative diabetic retinopathy) - 2: Moderate DR (Moderate non-proliferative diabetic retinopathy) - 3: Severe DR (Severe non-proliferative diabetic retinopathy) - 4: Proliferative DR (Proliferative diabetic retinopathy) ## Citation If you use this model, please cite your research paper/thesis.
milliarderdol/blockassist-bc-roaring_rough_scorpion_1755674877
milliarderdol
2025-08-20T08:01:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring rough scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T08:01:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring rough scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_qnli_1755619685
rbelanec
2025-08-20T08:01:41Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-08-19T16:11:41Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_qnli_1755619685 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_qnli_1755619685 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the qnli dataset. It achieves the following results on the evaluation set: - Loss: 0.1737 - Num Input Tokens Seen: 94426336 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:------:|:---------------:|:-----------------:| | 0.1443 | 0.5000 | 11784 | 0.1060 | 4726400 | | 0.0196 | 1.0000 | 23568 | 0.0572 | 9444272 | | 0.1075 | 1.5001 | 35352 | 0.0433 | 14172240 | | 0.011 | 2.0001 | 47136 | 0.0372 | 18886368 | | 0.0451 | 2.5001 | 58920 | 0.0397 | 23595456 | | 0.0107 | 3.0001 | 70704 | 0.0555 | 28323552 | | 0.0558 | 3.5001 | 82488 | 0.0385 | 33045520 | | 0.0713 | 4.0002 | 94272 | 0.0360 | 37766912 | | 0.0149 | 4.5002 | 106056 | 0.0393 | 42486256 | | 0.0617 | 5.0002 | 117840 | 0.0394 | 47210640 | | 0.0039 | 5.5002 | 129624 | 0.0463 | 51929904 | | 0.0071 | 6.0003 | 141408 | 0.0468 | 56656208 | | 0.0586 | 6.5003 | 153192 | 0.0671 | 61382064 | | 0.0014 | 7.0003 | 164976 | 0.0653 | 66103104 | | 0.0001 | 7.5003 | 176760 | 0.0901 | 70824800 | | 0.0003 | 8.0003 | 188544 | 0.0864 | 75545952 | | 0.0 | 8.5004 | 200328 | 0.1408 | 80268160 | | 0.0 | 9.0004 | 212112 | 0.1439 | 84990112 | | 0.0 | 9.5004 | 223896 | 0.1708 | 89707216 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
mradermacher/BiggerCoQ-Qwen3-10b-GGUF
mradermacher
2025-08-20T08:00:48Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:KaraKaraWitch/BiggerCoQ-Qwen3-10b", "base_model:quantized:KaraKaraWitch/BiggerCoQ-Qwen3-10b", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-20T06:17:16Z
--- base_model: KaraKaraWitch/BiggerCoQ-Qwen3-10b language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/KaraKaraWitch/BiggerCoQ-Qwen3-10b <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#BiggerCoQ-Qwen3-10b-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q2_K.gguf) | Q2_K | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q3_K_S.gguf) | Q3_K_S | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q3_K_M.gguf) | Q3_K_M | 5.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q3_K_L.gguf) | Q3_K_L | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.IQ4_XS.gguf) | IQ4_XS | 6.2 | | | [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q4_K_S.gguf) | Q4_K_S | 6.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q4_K_M.gguf) | Q4_K_M | 6.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q5_K_S.gguf) | Q5_K_S | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q5_K_M.gguf) | Q5_K_M | 7.9 | | | [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q6_K.gguf) | Q6_K | 9.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.Q8_0.gguf) | Q8_0 | 11.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/BiggerCoQ-Qwen3-10b-GGUF/resolve/main/BiggerCoQ-Qwen3-10b.f16.gguf) | f16 | 21.9 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
CoDiEmb/CoDi-MiniCPM_sentence_transformers
CoDiEmb
2025-08-20T07:59:30Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "minicpm", "sentence-similarity", "feature-extraction", "custom_code", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-20T07:48:03Z
--- language: [] tags: - sentence-transformers - sentence-similarity - feature-extraction widget: [] datasets: [] pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 2304-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> - **Maximum Sequence Length:** 1024 tokens - **Output Dimensionality:** 2304 tokens - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: MiniCPMModel (1): Pooling({'word_embedding_dimension': 2304, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': False}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'The weather is lovely today.', "It's so sunny outside!", 'He drove to the stadium.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 2304] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Framework Versions - Python: 3.10.10 - Sentence Transformers: 3.0.1 - Transformers: 4.51.3 - PyTorch: 2.2.1+cu118 - Accelerate: - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citation ### BibTeX <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
jfang/crater-intelli-v1-vit-b-256-0820
jfang
2025-08-20T07:58:37Z
0
0
pytorch
[ "pytorch", "crater_embedding", "mars", "crater", "embedding", "retrieval", "contrastive-learning", "vision", "feature-extraction", "en", "dataset:mars-crater-catalog", "license:apache-2.0", "region:us" ]
feature-extraction
2025-08-20T07:43:07Z
--- license: apache-2.0 tags: - mars - crater - embedding - retrieval - contrastive-learning - vision - feature-extraction datasets: - mars-crater-catalog language: - en library_name: pytorch pipeline_tag: feature-extraction --- # Crater Intelligence v1 - Mars Crater Embedding Model ## Model Description This model generates 256-dimensional embeddings for Mars crater images, trained using multi-crop contrastive learning with hard negative mining. It's designed for instance-level crater retrieval and identification tasks. ### Architecture - **Backbone**: Vision Transformer (ViT-B/16) pretrained with Mars MAE - **Input**: Single-channel grayscale crater images (224×224) - **Output**: 256-dimensional normalized embeddings - **Training**: Multi-crop contrastive learning (DINO/SwAV style) ## Key Features - **Instance-level understanding**: Distinguishes individual craters even when visually similar - **Part-to-whole matching**: Recognizes partial crater views (rims, quadrants) - **Scale invariance**: Robust to different crater sizes and zoom levels - **Mars-specific**: Pretrained on Mars imagery for optimal performance ## Installation ```bash pip install torch torchvision timm huggingface_hub ``` ## Usage ### Quick Start ```python import torch from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download( repo_id="jfang/crater-intelli-v1-vit-b-256-0820", filename="pytorch_model.bin" ) # Load model (simple version) import timm import torch.nn as nn class CraterEmbedder(nn.Module): def __init__(self, model_path): super().__init__() # Create ViT backbone self.backbone = timm.create_model( 'vit_base_patch16_224', in_chans=1, num_classes=0, global_pool='token' ) # Projection head self.proj = nn.Sequential( nn.Linear(768, 1024), nn.GELU(), nn.Linear(1024, 256) ) # Load weights state_dict = torch.load(model_path, map_location='cpu') self.load_state_dict(state_dict) def forward(self, x): # x: [B, 1, 224, 224] features = self.backbone(x) embeddings = self.proj(features) # L2 normalize return torch.nn.functional.normalize(embeddings, p=2, dim=-1) # Initialize model model = CraterEmbedder(model_path) model.eval() # Process crater image from PIL import Image import torchvision.transforms as T transform = T.Compose([ T.Grayscale(num_output_channels=1), T.Resize((224, 224)), T.ToTensor(), T.Normalize(mean=[0.5], std=[0.25]) ]) # Load your crater image img = Image.open("crater.jpg") img_tensor = transform(img).unsqueeze(0) # [1, 1, 224, 224] # Get embedding with torch.no_grad(): embedding = model(img_tensor) # [1, 256] print(f"Embedding shape: {embedding.shape}") print(f"Embedding norm: {embedding.norm():.3f}") # Should be ~1.0 ``` ### Advanced Usage - Crater Retrieval ```python import numpy as np import torch import torch.nn.functional as F from typing import List, Tuple class CraterRetriever: def __init__(self, model): self.model = model self.model.eval() self.gallery_embeddings = None self.gallery_ids = None def build_gallery(self, images: List[torch.Tensor], crater_ids: List[str]): """Build gallery of crater embeddings.""" embeddings = [] with torch.no_grad(): for img_batch in torch.split(torch.stack(images), 32): emb = self.model(img_batch) embeddings.append(emb) self.gallery_embeddings = torch.cat(embeddings, dim=0) self.gallery_ids = crater_ids def retrieve(self, query_image: torch.Tensor, k: int = 10) -> List[Tuple[str, float]]: """Retrieve k most similar craters.""" with torch.no_grad(): query_emb = self.model(query_image.unsqueeze(0)) # Compute cosine similarities similarities = F.cosine_similarity( query_emb.unsqueeze(1), self.gallery_embeddings.unsqueeze(0), dim=2 ).squeeze(0) # Get top-k topk_sims, topk_indices = similarities.topk(k) results = [] for sim, idx in zip(topk_sims, topk_indices): results.append((self.gallery_ids[idx], sim.item())) return results # Example usage retriever = CraterRetriever(model) # Build gallery from your crater database gallery_images = [...] # List of preprocessed crater tensors gallery_ids = [...] # List of crater IDs retriever.build_gallery(gallery_images, gallery_ids) # Query with a new crater query = transform(Image.open("query_crater.jpg")).unsqueeze(0) results = retriever.retrieve(query, k=5) for crater_id, similarity in results: print(f"Crater {crater_id}: {similarity:.3f}") ``` ### Batch Processing ```python def process_crater_batch(model, image_paths: List[str], batch_size: int = 32): """Process multiple crater images efficiently.""" embeddings = [] for i in range(0, len(image_paths), batch_size): batch_paths = image_paths[i:i+batch_size] batch_tensors = [] for path in batch_paths: img = Image.open(path) img_tensor = transform(img) batch_tensors.append(img_tensor) batch = torch.stack(batch_tensors) with torch.no_grad(): batch_embeddings = model(batch) embeddings.append(batch_embeddings) return torch.cat(embeddings, dim=0) # Process large crater catalog crater_paths = ["crater1.jpg", "crater2.jpg", ...] all_embeddings = process_crater_batch(model, crater_paths) ``` ## Input Requirements - **Format**: Single-channel grayscale images - **Size**: 224×224 pixels (will be resized if different) - **Normalization**: Mean=0.5, Std=0.25 - **Data type**: Float32 tensors ## Performance ### Retrieval Metrics (Validation Set) - **Whole crater R@1**: 95%+ - **Partial views**: - Rim crops: ~35% - Quadrant crops: ~25% - Offset crops: ~40% - Zoom crops: ~90% ### Training Details - **Method**: Multi-crop contrastive learning - **Loss**: Supervised Contrastive (SupCon) - **Temperature**: Cosine annealing 0.1 → 0.04 - **Batch size**: 64 × (2 global + 6 local views) - **Optimizer**: AdamW with discriminative LR - **Backbone LR**: 5e-5 (10× slower than head) - **Projection head LR**: 5e-4 ## Limitations 1. **Mars-specific**: Trained on Mars craters, may not generalize to other planets 2. **Resolution**: Optimized for 224×224 input, very high-res details may be lost 3. **Single channel**: Expects grayscale images, not multi-spectral 4. **Crater-centered**: Best performance when crater is roughly centered ## Citation ```bibtex @model{crater_intelligence_v1, title={Crater Intelligence v1: Mars Crater Instance Embedding}, author={Fang, J}, year={2024}, publisher={HuggingFace}, howpublished={\url{https://huggingface.co/jfang/crater-intelli-v1-vit-b-256-0820}} } ``` ## License Apache 2.0 ## Acknowledgments - Backbone pretrained with Mars MAE on Mars orbital imagery - Training data from Mars crater catalogs - Contrastive learning approach inspired by DINO/SwAV
WIHOW3H/my_awesome_video_cls_model
WIHOW3H
2025-08-20T07:56:58Z
0
0
transformers
[ "transformers", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2025-08-20T07:56:31Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_video_cls_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_video_cls_model This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2573 - Accuracy: 0.9286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0813 | 0.25 | 300 | 1.1575 | 0.4571 | | 1.4385 | 1.25 | 600 | 1.5501 | 0.6429 | | 0.0222 | 2.25 | 900 | 0.4601 | 0.8429 | | 1.2499 | 3.25 | 1200 | 0.2573 | 0.9286 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
AXERA-TECH/MiniCPM4-0.5B
AXERA-TECH
2025-08-20T07:56:47Z
8
0
null
[ "minicpm4", "int8", "text-generation", "en", "base_model:openbmb/MiniCPM4-0.5B", "base_model:finetune:openbmb/MiniCPM4-0.5B", "license:mit", "region:us" ]
text-generation
2025-06-11T17:14:28Z
--- license: mit language: - en base_model: - openbmb/MiniCPM4-0.5B pipeline_tag: text-generation tags: - minicpm4 - int8 --- # MiniCPM4-0.5B-Int8 This version of MiniCPM4-0.5B has been converted to run on the Axera NPU using **w8a16** quantization. This model has been optimized with the following LoRA: Compatible with Pulsar2 version: 4.2(Not released yet) ## Convert tools links: For those who are interested in model conversion, you can try to export axmodel through the original repo : https://huggingface.co/openbmb/MiniCPM4-0.5B [Pulsar2 Link, How to Convert LLM from Huggingface to axmodel](https://pulsar2-docs.readthedocs.io/en/latest/appendix/build_llm.html) [AXera NPU LLM Runtime](https://github.com/AXERA-TECH/ax-llm) ## Support Platform - AX650 - [M4N-Dock(爱芯派Pro)](https://wiki.sipeed.com/hardware/zh/maixIV/m4ndock/m4ndock.html) - [M.2 Accelerator card](https://axcl-docs.readthedocs.io/zh-cn/latest/doc_guide_hardware.html) - AX630C - [爱芯派2](https://axera-pi-2-docs-cn.readthedocs.io/zh-cn/latest/index.html) - [Module-LLM](https://docs.m5stack.com/zh_CN/module/Module-LLM) - [LLM630 Compute Kit](https://docs.m5stack.com/zh_CN/core/LLM630%20Compute%20Kit) |Chips|w8a16|w4a16| |--|--|--| |AX650| 36 tokens/sec|TBD| |AX630C| 12 tokens/sec|TBD| ## How to use Download all files from this repository to the device ``` root@ax650:/mnt/qtang/llm-test/minicpm4-0.5b-ctx# tree -L 1 . |-- main_ax650 |-- main_axcl_aarch64 |-- main_axcl_x86 |-- minicpm4-0.5b-int8-ctx-ax650 |-- minicpm4_tokenizer |-- minicpm4_tokenizer_uid.py |-- post_config.json |-- run_minicpm4_0.5b_int8_ctx_ax650.sh `-- run_minicpm4_0.5b_int8_ctx_axcl_x86.sh 2 directories, 7 files ``` #### Start the Tokenizer service Install requirement ``` pip install transformers jinja2 ``` ``` root@ax650:/mnt/qtang/llm-test/minicpm4-0.5b-ctx# python3 minicpm4_tokenizer_uid.py Server running at http://0.0.0.0:12345 ``` #### Inference with AX650 Host, such as M4N-Dock(爱芯派Pro) or AX650N DEMO Board Open another terminal and run `run_minicpm4_0.5b_int8_ctx_ax650.sh` ``` root@ax650:/mnt/qtang/llm-test/minicpm4-0.5b-ctx# ./run_minicpm4_0.5b_int8_ctx_ax650.sh [I][ Init][ 110]: LLM init start [I][ Init][ 34]: connect http://127.0.0.1:12345 ok [I][ Init][ 57]: uid: c779ded0-ff14-4877-869b-1aacc948f2d8 bos_id: 1, eos_id: 73440 100% | ████████████████████████████████ | 27 / 27 [2.53s<2.53s, 10.67 count/s] init post axmodel ok,remain_cmm(4244 MB) [I][ Init][ 188]: max_token_len : 1023 [I][ Init][ 193]: kv_cache_size : 128, kv_cache_num: 1023 [I][ Init][ 201]: prefill_token_num : 128 [I][ Init][ 205]: grp: 1, prefill_max_token_num : 1 [I][ Init][ 205]: grp: 2, prefill_max_token_num : 128 [I][ Init][ 205]: grp: 3, prefill_max_token_num : 512 [I][ Init][ 209]: prefill_max_token_num : 512 [I][ load_config][ 282]: load config: { "enable_repetition_penalty": false, "enable_temperature": false, "enable_top_k_sampling": true, "enable_top_p_sampling": false, "penalty_window": 20, "repetition_penalty": 1.2, "temperature": 0.9, "top_k": 1, "top_p": 0.8 } [I][ Init][ 218]: LLM init ok Type "q" to exit, Ctrl+c to stop current running [I][ GenerateKVCachePrefill][ 271]: input token num : 25, prefill_split_num : 1 prefill_grpid : 2 [I][ GenerateKVCachePrefill][ 308]: input_num_token:25 [I][ main][ 230]: precompute_len: 25 [I][ main][ 231]: system_prompt: You are MiniCPM4, created by ModelBest. You are a helpful assistant. prompt >> 你是谁? [I][ SetKVCache][ 531]: prefill_grpid:2 kv_cache_num:128 precompute_len:25 input_num_token:12 [I][ SetKVCache][ 534]: current prefill_max_token_num:384 [I][ Run][ 660]: input token num : 12, prefill_split_num : 1 [I][ Run][ 686]: input_num_token:12 [I][ Run][ 829]: ttft: 147.65 ms 你好,我是MiniCPM系列模型,由面壁智能和OpenBMB开源社区开发。详细信息请访问https://github.com/OpenBMB/ [N][ Run][ 943]: hit eos,avg 35.75 token/s [I][ GetKVCache][ 500]: precompute_len:162, remaining:350 prompt >> 9.9与9.11 [I][ SetKVCache][ 531]: prefill_grpid:3 kv_cache_num:512 precompute_len:162 input_num_token:17 [I][ SetKVCache][ 534]: current prefill_max_token_num:256 [I][ Run][ 660]: input token num : 17, prefill_split_num : 1 [I][ Run][ 686]: input_num_token:17 [I][ Run][ 829]: ttft: 274.38 ms 9.9比9.11大。 [N][ Run][ 943]: hit eos,avg 35.44 token/s [I][ GetKVCache][ 500]: precompute_len:189, remaining:323 prompt >> q root@ax650:/mnt/qtang/llm-test/minicpm4-0.5b-ctx# ```
crislmfroes/svla-panda-open-base-cabinet-sim-v16
crislmfroes
2025-08-20T07:56:44Z
0
0
lerobot
[ "lerobot", "safetensors", "smolvla", "robotics", "dataset:crislmfroes/panda-open-base-cabinet-v16", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-08-20T07:56:34Z
--- base_model: lerobot/smolvla_base datasets: crislmfroes/panda-open-base-cabinet-v16 library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - smolvla - lerobot - robotics --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
SwetaJena/llama-3.2-1B-dolphin_numbers_student_12
SwetaJena
2025-08-20T07:55:16Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/Llama-3.2-1B-Instruct", "base_model:finetune:unsloth/Llama-3.2-1B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-20T07:55:09Z
--- base_model: unsloth/Llama-3.2-1B-Instruct tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** SwetaJena - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.2-1B-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ElToro2602/blockassist-bc-raging_prehistoric_chameleon_1755676420
ElToro2602
2025-08-20T07:54:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging prehistoric chameleon", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:54:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging prehistoric chameleon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
joanna302/Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_2e-05
joanna302
2025-08-20T07:53:59Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "sft", "unsloth", "trl", "conversational", "base_model:unsloth/Qwen3-8B-Base", "base_model:finetune:unsloth/Qwen3-8B-Base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T09:27:16Z
--- base_model: unsloth/Qwen3-8B-Base library_name: transformers model_name: Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_2e-05 tags: - generated_from_trainer - sft - unsloth - trl licence: license --- # Model Card for Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_2e-05 This model is a fine-tuned version of [unsloth/Qwen3-8B-Base](https://huggingface.co/unsloth/Qwen3-8B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="joanna302/Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_2e-05", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prism-eval/Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_2e-05/runs/urz9gi0n) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
joanna302/Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_8e-05
joanna302
2025-08-20T07:53:25Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "sft", "trl", "unsloth", "conversational", "base_model:unsloth/Qwen3-8B-Base", "base_model:finetune:unsloth/Qwen3-8B-Base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T11:50:36Z
--- base_model: unsloth/Qwen3-8B-Base library_name: transformers model_name: Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_8e-05 tags: - generated_from_trainer - sft - trl - unsloth licence: license --- # Model Card for Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_8e-05 This model is a fine-tuned version of [unsloth/Qwen3-8B-Base](https://huggingface.co/unsloth/Qwen3-8B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="joanna302/Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_8e-05", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prism-eval/Qwen3-8B-Base_pag_alpaca_0.66_part_SFT_8e-05/runs/73ibqx5t) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
bimabk/a51ae003-de10-4a7c-80ea-f24dbec64122
bimabk
2025-08-20T07:53:08Z
0
0
peft
[ "peft", "safetensors", "llama", "text-generation", "base_model:adapter:unsloth/SmolLM2-135M", "dpo", "lora", "transformers", "trl", "unsloth", "arxiv:1910.09700", "base_model:unsloth/SmolLM2-135M", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T10:25:54Z
--- base_model: unsloth/SmolLM2-135M library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:unsloth/SmolLM2-135M - dpo - lora - transformers - trl - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
mang3dd/blockassist-bc-tangled_slithering_alligator_1755674693
mang3dd
2025-08-20T07:51:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:51:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-alert_snorting_fox_1755676248
AnerYubo
2025-08-20T07:50:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert snorting fox", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:50:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert snorting fox --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755674653
lisaozill03
2025-08-20T07:50:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:50:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kevinshin/qwen3-1.7b-dpo-lr-1e-6-batch-16-epoch-1-wildchat-cw-3k
kevinshin
2025-08-20T07:48:47Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "dpo", "trl", "conversational", "dataset:kevinshin/wildchat-creative-writing-3k-pref", "arxiv:2305.18290", "base_model:Qwen/Qwen3-1.7B", "base_model:finetune:Qwen/Qwen3-1.7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T03:52:03Z
--- base_model: Qwen/Qwen3-1.7B datasets: kevinshin/wildchat-creative-writing-3k-pref library_name: transformers model_name: qwen3-1.7b-dpo-lr-1e-6-batch-16-epoch-1-wildchat-cw-3k tags: - generated_from_trainer - dpo - trl licence: license --- # Model Card for qwen3-1.7b-dpo-lr-1e-6-batch-16-epoch-1-wildchat-cw-3k This model is a fine-tuned version of [Qwen/Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B) on the [kevinshin/wildchat-creative-writing-3k-pref](https://huggingface.co/datasets/kevinshin/wildchat-creative-writing-3k-pref) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="kevinshin/qwen3-1.7b-dpo-lr-1e-6-batch-16-epoch-1-wildchat-cw-3k", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/myungjune-sogang-university/general_remo_train/runs/vlm6iwxd) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.19.1 - Transformers: 4.55.0.dev0 - Pytorch: 2.6.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ahmedheakl/iter0_mm_llamafactory_20250820_114433
ahmedheakl
2025-08-20T07:48:09Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "lora", "generated_from_trainer", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:adapter:Qwen/Qwen2.5-VL-3B-Instruct", "region:us" ]
null
2025-08-20T07:46:33Z
--- library_name: peft base_model: Qwen/Qwen2.5-VL-3B-Instruct tags: - llama-factory - lora - generated_from_trainer model-index: - name: iter0_mm_llamafactory_20250820_114433 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # iter0_mm_llamafactory_20250820_114433 This model is a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) on the infographics50 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 5 - total_train_batch_size: 20 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.15.2 - Transformers 4.52.4 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1
joanna302/Qwen3-8B-Base_zh_ar_alpaca_0.66_part_SFT_2e-05
joanna302
2025-08-20T07:46:12Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "trl", "unsloth", "sft", "conversational", "base_model:unsloth/Qwen3-8B-Base", "base_model:finetune:unsloth/Qwen3-8B-Base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T13:45:34Z
--- base_model: unsloth/Qwen3-8B-Base library_name: transformers model_name: Qwen3-8B-Base_zh_ar_alpaca_0.66_part_SFT_2e-05 tags: - generated_from_trainer - trl - unsloth - sft licence: license --- # Model Card for Qwen3-8B-Base_zh_ar_alpaca_0.66_part_SFT_2e-05 This model is a fine-tuned version of [unsloth/Qwen3-8B-Base](https://huggingface.co/unsloth/Qwen3-8B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="joanna302/Qwen3-8B-Base_zh_ar_alpaca_0.66_part_SFT_2e-05", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prism-eval/Qwen3-8B-Base_zh_ar_alpaca_0.66_part_SFT_2e-05/runs/g8oh4b3r) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
yaelahnal/blockassist-bc-mute_clawed_crab_1755675892
yaelahnal
2025-08-20T07:46:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:45:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
joanna302/Qwen3-8B-Base_zh_ar_alpaca_0.66_part_SFT_8e-05
joanna302
2025-08-20T07:45:36Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "unsloth", "trl", "sft", "conversational", "base_model:unsloth/Qwen3-8B-Base", "base_model:finetune:unsloth/Qwen3-8B-Base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T13:47:27Z
--- base_model: unsloth/Qwen3-8B-Base library_name: transformers model_name: Qwen3-8B-Base_zh_ar_alpaca_0.66_part_SFT_8e-05 tags: - generated_from_trainer - unsloth - trl - sft licence: license --- # Model Card for Qwen3-8B-Base_zh_ar_alpaca_0.66_part_SFT_8e-05 This model is a fine-tuned version of [unsloth/Qwen3-8B-Base](https://huggingface.co/unsloth/Qwen3-8B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="joanna302/Qwen3-8B-Base_zh_ar_alpaca_0.66_part_SFT_8e-05", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prism-eval/Qwen3-8B-Base_zh_ar_alpaca_0.66_part_SFT_8e-05/runs/vuased7f) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755674272
kojeklollipop
2025-08-20T07:44:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:44:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755674028
hakimjustbao
2025-08-20T07:41:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:41:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755674102
calegpedia
2025-08-20T07:41:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:41:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Albertdebeauvais/all-MiniLM-L6-v2_bibliographie
Albertdebeauvais
2025-08-20T07:40:53Z
8
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:388038", "loss:CosineSimilarityLoss", "arxiv:1908.10084", "base_model:sentence-transformers/all-MiniLM-L6-v2", "base_model:finetune:sentence-transformers/all-MiniLM-L6-v2", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-07-15T09:04:27Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:388038 - loss:CosineSimilarityLoss base_model: sentence-transformers/all-MiniLM-L6-v2 widget: - source_sentence: Les Chemins de l'effort, édité en 1975, Paris, éd. Actes Sud. sentences: - chisinau, Actes Sud, FECOURA, Dusty et VEHIER, Tyrrell, en 1915, « Les œufs d'or de ; oa guerre ». - Zagreb, éd. CNRS, FABRIE, Seneca, FARHAT, Hope, DE LASTIC SAINT JAL, Daniella, 1997, Poe et les enseignements de l'Est. - (1975), Paris, Actes Sud éditions, « Les Chemins de l'effort ». - source_sentence: par BURTSCHELL, Régine et ALESSANDRONI, Diggory, 1900, « Complément du catalogue analytique des manuscrits de la bibliothèque d'Abbeville », Rennes, Verlag Ferdinand Schöningh éditions. sentences: - « Complément du catalogue analytique des manuscrots de la bibliothèque d'Abbeville », Rennes, Verlag Ferdinand Schöningh éditions, BURTSCHELL, Régine, sous la direction de ALESSANDRONI, Diggory, (1900). - Vortex, le cheval fou, publié en ; 1926, , Bordeaux, L’Harmattan. - 1997, DEPOUMEAUX, Summer, « De chair et de lumière », Luxembourg, L’Harmattan éditions. - source_sentence: de Lorita, STREIFF, Petronella, MONTIALOUX, Gale, DANGOUMAU et ed Montgomery, D AUBERT, Dean Martin, (2011), Prague, éd. Peter Lang. sentences: - Amiens, University of Chicago Press, GUILLION L. et LAPERDRIX K., Autres courants, 2015. - 'Prague, éd. : Peter Lang, , (2011), "Dean Martin", pr + 20 ill.. Gale, DANGOUMAU et Lorita, STREIFF, Petronella, MONTIALOUX, Montgomery, D AUBERT.' - Valerie, PAIRA, Niles, AUDUBERT, 1986, Au gré des saisons, Amsterdam, Routledge. - source_sentence: 1948, Seattle, éd. Payot & Rivages, de Trudy, SAINT-AIME, Toponymes finnois et germaniques en Lithuanie... Remarques sur le nom de la Vistule. sentences: - Toponymes finnois et germaniques en Lithuanie... Remarques sur le nom de la Vistule, en 1952, Seattle, Payot & Rivages éditions, Delia, HOZE. - Cologne, Les Belles Lettres, Éléments de géométrie expérimentale, à l'usage des élèves des cours professionnels et des ouvriers, avec de nombreuses applications au trait, LAGEIX, Shelly, (1898). - 1887., The variations of glaciers. XVI, Jessika, ANNIEL, Chisinau, éd. Stanford University Press. - source_sentence: BENMAMAR, A. et LUZEUX, K., JARRAND-MARTIN, S., "La science alchimique", Master drawings, numéro 92, pages 511-649, 1904, Valence, éd. Zed Books. sentences: - Dublin, éd. CNRS, Les mystères de la cour de Cornouailles, N. BILLEBEAU, en 1966. - En 1939, New York, Fayard, réactions et méthodes nouvelles d'analyse qualitative minérale, BERTIER, R. - édité en 2020, Alexandre, GLERAND et Ashleigh, BIZET, "Un long voyage", Reims, Editions Payot éditions. pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - cosine_mcc model-index: - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 results: - task: type: binary-classification name: Binary Classification dataset: name: eval type: eval metrics: - type: cosine_accuracy value: 0.9845532980795992 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.7197951674461365 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.9822371579452713 name: Cosine F1 - type: cosine_f1_threshold value: 0.7197951674461365 name: Cosine F1 Threshold - type: cosine_precision value: 0.9880875724404379 name: Cosine Precision - type: cosine_recall value: 0.9764556156538339 name: Cosine Recall - type: cosine_ap value: 0.9978040298718638 name: Cosine Ap - type: cosine_mcc value: 0.9686262528236084 name: Cosine Mcc - task: type: binary-classification name: Binary Classification dataset: name: test type: test metrics: - type: cosine_accuracy value: 0.9851563224788942 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.7434847354888916 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.9829406120055443 name: Cosine F1 - type: cosine_f1_threshold value: 0.7414178252220154 name: Cosine F1 Threshold - type: cosine_precision value: 0.9907576571735626 name: Cosine Precision - type: cosine_recall value: 0.975245953665503 name: Cosine Recall - type: cosine_ap value: 0.9978710556305371 name: Cosine Ap - type: cosine_mcc value: 0.9698992765132763 name: Cosine Mcc --- # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf --> - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'BENMAMAR, A. et LUZEUX, K., JARRAND-MARTIN, S., "La science alchimique", Master drawings, numéro 92, pages 511-649, 1904, Valence, éd. Zed Books.', 'édité en 2020, Alexandre, GLERAND et Ashleigh, BIZET, "Un long voyage", Reims, Editions Payot éditions.', 'Dublin, éd. CNRS, Les mystères de la cour de Cornouailles, N. BILLEBEAU, en 1966.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Binary Classification * Datasets: `eval` and `test` * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | eval | test | |:--------------------------|:-----------|:-----------| | cosine_accuracy | 0.9846 | 0.9852 | | cosine_accuracy_threshold | 0.7198 | 0.7435 | | cosine_f1 | 0.9822 | 0.9829 | | cosine_f1_threshold | 0.7198 | 0.7414 | | cosine_precision | 0.9881 | 0.9908 | | cosine_recall | 0.9765 | 0.9752 | | **cosine_ap** | **0.9978** | **0.9979** | | cosine_mcc | 0.9686 | 0.9699 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 388,038 training samples * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | text1 | text2 | label | |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 17 tokens</li><li>mean: 50.25 tokens</li><li>max: 169 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 47.08 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>0: ~57.00%</li><li>1: ~43.00%</li></ul> | * Samples: | text1 | text2 | label | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------| | <code>(1973),. 70, p. 36-98, Revue d'histoire locale (Chevillon), 3, « La Font perduda », Berlin, éd. Maison des Sciences de l’Homme, editor Dorcas, PEDEVILLA, Alannis, GRANZOTTO, Annabel, VOYRON, Dulcie, MIGLIORI.</code> | <code>Revue d'histoire locale (Chevillon)</code> | <code>0</code> | | <code>Revista del Instituto Egipcio de Estudios Islámicos, n°100, pages 483-496, (2006), Administration et bibliothèques, CAGLAYAN, Kaden, BOULAABI, Fredrick, WORMSER, Bea, Vienne, éd. Beacon Press.</code> | <code>WORMSER, Bea, CAGLAYAN, Kaden, ed BOULAABI, Fredrick, édité en 2006, Administration et bibliothèques, Revista del Instituto Egipcio de Estudios Islámicos,. 100,. p. 483-496, Vienne, Beacon Press.</code> | <code>1</code> | | <code>Atlantic Charter (1941), Bulletin de la Société d'Histoire et d'Archéologie de Nantes et de Loire-Atlantique,. numéro 31, pp. 997-1125, Léontine, SCHWERDROFFER, Sandford, CHUDZIK, Metz, Zed Books éditions, 1941.</code> | <code>(1941),. n° 31, Bulletin de la Société d'Histoire et d'Archéologie de Nantes et de Loire-Atlantique, pages 997-1125, Atlantic Charter (1941), Léontine, SCHWERDROFFER, Sandford, CHUDZIK, Metz, Zed Books.</code> | <code>1</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 21,558 evaluation samples * Columns: <code>text1</code>, <code>text2</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | text1 | text2 | label | |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | <ul><li>min: 15 tokens</li><li>mean: 49.64 tokens</li><li>max: 145 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 46.31 tokens</li><li>max: 160 tokens</li></ul> | <ul><li>0: ~57.70%</li><li>1: ~42.30%</li></ul> | * Samples: | text1 | text2 | label | |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------| | <code>Le Progressisme, aspects doctrinaux, DURAZ, Constance, 1955, Montpellier, éd. Routledge,. vol. 1,. pp. 26-39, n°29, Journal of philosophical research.</code> | <code>1955, "Le Progressisme, aspects doctrinaux", Montpellier, Routledge, Journal of philosophical research, pp. 26-39,. volume 1, #29.</code> | <code>1</code> | | <code>Turin, éd. Suhrkamp Verlag, #17, pages 67-111, 2, Annales d'Avignon et du Comtat Venaissin, "Faire face aux crises de colère de l'enfant et de l'adolescent", ed HERREYE, Kassidy, (2019).</code> | <code>Amsterdam, University of Minnesota Press éditions, (1968), "Ainsi de chaque jour".</code> | <code>0</code> | | <code>« Discours et conférences sur la science et ses applications », publié en 1927, Tours, éd. Actes Sud, Cherise, THIEFIN et de Eudora, FINGERHUT et Rona, DELLAL et Josette, DEGIOANNINI.</code> | <code> Les formes verbales du conditionnel dans le vieux sanskrit , Eudora, FINGERHUT et Cherise, THIEFIN et par Rona, DELLAL, par Josette, DEGIOANNINI, Tours, Actes Sud éditions, publié en 1927.</code> | <code>0</code> | * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 20 - `per_device_eval_batch_size`: 20 - `learning_rate`: 3e-05 #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 20 - `per_device_eval_batch_size`: 20 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 3e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs <details><summary>Click to expand</summary> | Epoch | Step | Training Loss | Validation Loss | eval_cosine_ap | test_cosine_ap | |:------:|:-----:|:-------------:|:---------------:|:--------------:|:--------------:| | -1 | -1 | - | - | 0.8231 | - | | 0.0258 | 500 | 0.1033 | - | - | - | | 0.0515 | 1000 | 0.0885 | - | - | - | | 0.0773 | 1500 | 0.0778 | - | - | - | | 0.1031 | 2000 | 0.0721 | - | - | - | | 0.1289 | 2500 | 0.0697 | - | - | - | | 0.1546 | 3000 | 0.0645 | - | - | - | | 0.1804 | 3500 | 0.0619 | - | - | - | | 0.2062 | 4000 | 0.0604 | - | - | - | | 0.2319 | 4500 | 0.0569 | - | - | - | | 0.2577 | 5000 | 0.0545 | - | - | - | | 0.2835 | 5500 | 0.0539 | - | - | - | | 0.3092 | 6000 | 0.0517 | - | - | - | | 0.3350 | 6500 | 0.0506 | - | - | - | | 0.3608 | 7000 | 0.0511 | - | - | - | | 0.3866 | 7500 | 0.0486 | - | - | - | | 0.4123 | 8000 | 0.0463 | - | - | - | | 0.4381 | 8500 | 0.0463 | - | - | - | | 0.4639 | 9000 | 0.0471 | - | - | - | | 0.4896 | 9500 | 0.0454 | - | - | - | | 0.5154 | 10000 | 0.0445 | - | - | - | | 0.5412 | 10500 | 0.0455 | - | - | - | | 0.5670 | 11000 | 0.0441 | - | - | - | | 0.5927 | 11500 | 0.0437 | - | - | - | | 0.6185 | 12000 | 0.0449 | - | - | - | | 0.6443 | 12500 | 0.0413 | - | - | - | | 0.6700 | 13000 | 0.0413 | - | - | - | | 0.6958 | 13500 | 0.0422 | - | - | - | | 0.7216 | 14000 | 0.0411 | - | - | - | | 0.7473 | 14500 | 0.0404 | - | - | - | | 0.7731 | 15000 | 0.0374 | - | - | - | | 0.7989 | 15500 | 0.0378 | - | - | - | | 0.8247 | 16000 | 0.0384 | - | - | - | | 0.8504 | 16500 | 0.0389 | - | - | - | | 0.8762 | 17000 | 0.0377 | - | - | - | | 0.9020 | 17500 | 0.0374 | - | - | - | | 0.9277 | 18000 | 0.0366 | - | - | - | | 0.9535 | 18500 | 0.0368 | - | - | - | | 0.9793 | 19000 | 0.0367 | - | - | - | | 1.0 | 19402 | - | 0.0310 | 0.9965 | - | | 1.0051 | 19500 | 0.0364 | - | - | - | | 1.0308 | 20000 | 0.0323 | - | - | - | | 1.0566 | 20500 | 0.0319 | - | - | - | | 1.0824 | 21000 | 0.0317 | - | - | - | | 1.1081 | 21500 | 0.0298 | - | - | - | | 1.1339 | 22000 | 0.0336 | - | - | - | | 1.1597 | 22500 | 0.0304 | - | - | - | | 1.1854 | 23000 | 0.0302 | - | - | - | | 1.2112 | 23500 | 0.031 | - | - | - | | 1.2370 | 24000 | 0.0301 | - | - | - | | 1.2628 | 24500 | 0.0302 | - | - | - | | 1.2885 | 25000 | 0.0305 | - | - | - | | 1.3143 | 25500 | 0.0293 | - | - | - | | 1.3401 | 26000 | 0.0307 | - | - | - | | 1.3658 | 26500 | 0.0304 | - | - | - | | 1.3916 | 27000 | 0.03 | - | - | - | | 1.4174 | 27500 | 0.0312 | - | - | - | | 1.4432 | 28000 | 0.0296 | - | - | - | | 1.4689 | 28500 | 0.0301 | - | - | - | | 1.4947 | 29000 | 0.0295 | - | - | - | | 1.5205 | 29500 | 0.0295 | - | - | - | | 1.5462 | 30000 | 0.029 | - | - | - | | 1.5720 | 30500 | 0.0295 | - | - | - | | 1.5978 | 31000 | 0.029 | - | - | - | | 1.6235 | 31500 | 0.029 | - | - | - | | 1.6493 | 32000 | 0.0271 | - | - | - | | 1.6751 | 32500 | 0.029 | - | - | - | | 1.7009 | 33000 | 0.0278 | - | - | - | | 1.7266 | 33500 | 0.0286 | - | - | - | | 1.7524 | 34000 | 0.0272 | - | - | - | | 1.7782 | 34500 | 0.0279 | - | - | - | | 1.8039 | 35000 | 0.0285 | - | - | - | | 1.8297 | 35500 | 0.0286 | - | - | - | | 1.8555 | 36000 | 0.0297 | - | - | - | | 1.8812 | 36500 | 0.0273 | - | - | - | | 1.9070 | 37000 | 0.0269 | - | - | - | | 1.9328 | 37500 | 0.0276 | - | - | - | | 1.9586 | 38000 | 0.0278 | - | - | - | | 1.9843 | 38500 | 0.0267 | - | - | - | | 2.0 | 38804 | - | 0.0248 | 0.9976 | - | | 2.0101 | 39000 | 0.0252 | - | - | - | | 2.0359 | 39500 | 0.0233 | - | - | - | | 2.0616 | 40000 | 0.0233 | - | - | - | | 2.0874 | 40500 | 0.0236 | - | - | - | | 2.1132 | 41000 | 0.023 | - | - | - | | 2.1390 | 41500 | 0.0212 | - | - | - | | 2.1647 | 42000 | 0.0233 | - | - | - | | 2.1905 | 42500 | 0.0227 | - | - | - | | 2.2163 | 43000 | 0.0227 | - | - | - | | 2.2420 | 43500 | 0.0233 | - | - | - | | 2.2678 | 44000 | 0.0241 | - | - | - | | 2.2936 | 44500 | 0.0218 | - | - | - | | 2.3193 | 45000 | 0.0232 | - | - | - | | 2.3451 | 45500 | 0.0235 | - | - | - | | 2.3709 | 46000 | 0.024 | - | - | - | | 2.3967 | 46500 | 0.0237 | - | - | - | | 2.4224 | 47000 | 0.0228 | - | - | - | | 2.4482 | 47500 | 0.0231 | - | - | - | | 2.4740 | 48000 | 0.0223 | - | - | - | | 2.4997 | 48500 | 0.0232 | - | - | - | | 2.5255 | 49000 | 0.022 | - | - | - | | 2.5513 | 49500 | 0.0227 | - | - | - | | 2.5771 | 50000 | 0.0226 | - | - | - | | 2.6028 | 50500 | 0.0233 | - | - | - | | 2.6286 | 51000 | 0.0224 | - | - | - | | 2.6544 | 51500 | 0.0224 | - | - | - | | 2.6801 | 52000 | 0.0224 | - | - | - | | 2.7059 | 52500 | 0.022 | - | - | - | | 2.7317 | 53000 | 0.0223 | - | - | - | | 2.7574 | 53500 | 0.023 | - | - | - | | 2.7832 | 54000 | 0.023 | - | - | - | | 2.8090 | 54500 | 0.023 | - | - | - | | 2.8348 | 55000 | 0.0225 | - | - | - | | 2.8605 | 55500 | 0.0229 | - | - | - | | 2.8863 | 56000 | 0.0229 | - | - | - | | 2.9121 | 56500 | 0.0224 | - | - | - | | 2.9378 | 57000 | 0.0218 | - | - | - | | 2.9636 | 57500 | 0.0226 | - | - | - | | 2.9894 | 58000 | 0.0229 | - | - | - | | 3.0 | 58206 | - | 0.0231 | 0.9978 | - | | -1 | -1 | - | - | - | 0.9979 | </details> ### Framework Versions - Python: 3.12.0 - Sentence Transformers: 4.1.0 - Transformers: 4.52.4 - PyTorch: 2.7.1+cu128 - Accelerate: 1.8.1 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Mostefa-Terbeche/diabetic-retinopathy-eyepacs-resnet50-gentle-20250619-172901
Mostefa-Terbeche
2025-08-20T07:40:38Z
0
0
null
[ "diabetic-retinopathy", "medical-imaging", "pytorch", "computer-vision", "retinal-imaging", "dataset:eyepacs", "license:apache-2.0", "model-index", "region:us" ]
null
2025-08-20T06:49:07Z
--- license: apache-2.0 tags: - diabetic-retinopathy - medical-imaging - pytorch - computer-vision - retinal-imaging datasets: - eyepacs metrics: - accuracy - quadratic-kappa - auc model-index: - name: eyepacs_resnet50_gentle results: - task: type: image-classification name: Diabetic Retinopathy Classification dataset: type: eyepacs name: EYEPACS metrics: - type: accuracy value: 0.13265015656134357 - type: quadratic-kappa value: 0.40586976179692624 --- # Diabetic Retinopathy Classification Model ## Model Description This model is trained for diabetic retinopathy classification using the resnet50 architecture on the eyepacs dataset with gentle preprocessing. ## Model Details - **Architecture**: resnet50 - **Dataset**: eyepacs - **Preprocessing**: gentle - **Training Date**: 20250619-172901 - **Task**: 5-class diabetic retinopathy grading (0-4) - **Directory**: eyepacs_resnet50_20250619-172901_new ## Performance - **Test Accuracy**: 0.13265015656134357 - **Test Quadratic Kappa**: 0.40586976179692624 - **Validation Kappa**: 0.40586976179692624 ## Usage ```python import torch from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download( repo_id="your-username/diabetic-retinopathy-eyepacs-resnet50-gentle", filename="model_best.pt" ) # Load model model = torch.load(model_path, map_location='cpu') ``` ## Classes - 0: No DR (No diabetic retinopathy) - 1: Mild DR (Mild non-proliferative diabetic retinopathy) - 2: Moderate DR (Moderate non-proliferative diabetic retinopathy) - 3: Severe DR (Severe non-proliferative diabetic retinopathy) - 4: Proliferative DR (Proliferative diabetic retinopathy) ## Citation If you use this model, please cite your research paper/thesis.
Noredine67/mon-nouveau-redacteur-EE
Noredine67
2025-08-20T07:39:25Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-20T07:39:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ElToro2602/blockassist-bc-raging_prehistoric_chameleon_1755675427
ElToro2602
2025-08-20T07:38:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging prehistoric chameleon", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:37:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging prehistoric chameleon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Adun/openai-gpt-oss-20b-thaifood
Adun
2025-08-20T07:37:20Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gpt_oss", "trl", "en", "base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-20T07:37:15Z
--- base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gpt_oss - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Adun - **License:** apache-2.0 - **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755674230
Sayemahsjn
2025-08-20T07:36:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:36:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arianaazarbal/standard_tpr_0.65_test-20250820_070706-policy-adapter
arianaazarbal
2025-08-20T07:35:40Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-08-20T07:34:41Z
# Policy Model LoRA Adapter (GRPO/DPO) Experiment: standard_tpr_0.65_test Timestamp: 20250820_070706 This model was trained as part of the deception-evasion-honesty experiments. ## Model Details - **Type**: Policy Model LoRA Adapter (GRPO/DPO) - **Experiment Name**: standard_tpr_0.65_test - **Training Timestamp**: 20250820_070706
nema122/blockassist-bc-robust_fluffy_ram_1755675206
nema122
2025-08-20T07:35:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "robust fluffy ram", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:34:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - robust fluffy ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arianaazarbal/standard_tpr_0.65_test-20250820_070706-rm-adapter
arianaazarbal
2025-08-20T07:34:41Z
0
0
null
[ "region:us" ]
null
2025-08-20T07:34:08Z
# Reward Model LoRA Adapter Experiment: standard_tpr_0.65_test Timestamp: 20250820_070706 This model was trained as part of the deception-evasion-honesty experiments. ## Model Details - **Type**: Reward Model LoRA Adapter - **Experiment Name**: standard_tpr_0.65_test - **Training Timestamp**: 20250820_070706
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755673744
sampingkaca72
2025-08-20T07:34:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:34:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755673415
coelacanthxyz
2025-08-20T07:33:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:33:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hobson123/blockassist-bc-mammalian_dense_gibbon_1755674761
hobson123
2025-08-20T07:32:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian dense gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:31:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian dense gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755673482
chainway9
2025-08-20T07:29:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:29:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yaelahnal/blockassist-bc-mute_clawed_crab_1755674870
yaelahnal
2025-08-20T07:29:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:28:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eniffA/Affine-Look-Mum-I-Made-It-On-The-Internet
eniffA
2025-08-20T07:28:51Z
232
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "vllm", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "8-bit", "mxfp4", "region:us" ]
text-generation
2025-08-11T14:25:08Z
--- license: apache-2.0 pipeline_tag: text-generation library_name: transformers tags: - vllm --- <p align="center"> <img alt="gpt-oss-20b" src="https://raw.githubusercontent.com/openai/gpt-oss/main/docs/gpt-oss-20b.svg"> </p> <p align="center"> <a href="https://gpt-oss.com"><strong>Try gpt-oss</strong></a> · <a href="https://cookbook.openai.com/topic/gpt-oss"><strong>Guides</strong></a> · <a href="https://openai.com/index/gpt-oss-model-card"><strong>Model card</strong></a> · <a href="https://openai.com/index/introducing-gpt-oss/"><strong>OpenAI blog</strong></a> </p> <br> Welcome to the gpt-oss series, [OpenAI’s open-weight models](https://openai.com/open-models) designed for powerful reasoning, agentic tasks, and versatile developer use cases. We’re releasing two flavors of these open models: - `gpt-oss-120b` — for production, general purpose, high reasoning use cases that fit into a single 80GB GPU (like NVIDIA H100 or AMD MI300X) (117B parameters with 5.1B active parameters) - `gpt-oss-20b` — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters) Both models were trained on our [harmony response format](https://github.com/openai/harmony) and should only be used with the harmony format as it will not work correctly otherwise. > [!NOTE] > This model card is dedicated to the smaller `gpt-oss-20b` model. Check out [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) for the larger model. # Highlights * **Permissive Apache 2.0 license:** Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment. * **Configurable reasoning effort:** Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs. * **Full chain-of-thought:** Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users. * **Fine-tunable:** Fully customize models to your specific use case through parameter fine-tuning. * **Agentic capabilities:** Use the models’ native capabilities for function calling, [web browsing](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#browser), [Python code execution](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#python), and Structured Outputs. * **Native MXFP4 quantization:** The models are trained with native MXFP4 precision for the MoE layer, making `gpt-oss-120b` run on a single 80GB GPU (like NVIDIA H100 or AMD MI300X) and the `gpt-oss-20b` model run within 16GB of memory. --- # Inference examples ## Transformers You can use `gpt-oss-120b` and `gpt-oss-20b` with Transformers. If you use the Transformers chat template, it will automatically apply the [harmony response format](https://github.com/openai/harmony). If you use `model.generate` directly, you need to apply the harmony format manually using the chat template or use our [openai-harmony](https://github.com/openai/harmony) package. To get started, install the necessary dependencies to setup your environment: ``` pip install -U transformers kernels torch ``` Once, setup you can proceed to run the model by running the snippet below: ```py from transformers import pipeline import torch model_id = "openai/gpt-oss-20b" pipe = pipeline( "text-generation", model=model_id, torch_dtype="auto", device_map="auto", ) messages = [ {"role": "user", "content": "Explain quantum mechanics clearly and concisely."}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` Alternatively, you can run the model via [`Transformers Serve`](https://huggingface.co/docs/transformers/main/serving) to spin up a OpenAI-compatible webserver: ``` transformers serve transformers chat localhost:8000 --model-name-or-path openai/gpt-oss-20b ``` [Learn more about how to use gpt-oss with Transformers.](https://cookbook.openai.com/articles/gpt-oss/run-transformers) ## vLLM vLLM recommends using [uv](https://docs.astral.sh/uv/) for Python dependency management. You can use vLLM to spin up an OpenAI-compatible webserver. The following command will automatically download the model and start the server. ```bash uv pip install --pre vllm==0.10.1+gptoss \ --extra-index-url https://wheels.vllm.ai/gpt-oss/ \ --extra-index-url https://download.pytorch.org/whl/nightly/cu128 \ --index-strategy unsafe-best-match vllm serve openai/gpt-oss-20b ``` [Learn more about how to use gpt-oss with vLLM.](https://cookbook.openai.com/articles/gpt-oss/run-vllm) ## PyTorch / Triton To learn about how to use this model with PyTorch and Triton, check out our [reference implementations in the gpt-oss repository](https://github.com/openai/gpt-oss?tab=readme-ov-file#reference-pytorch-implementation). ## Ollama If you are trying to run gpt-oss on consumer hardware, you can use Ollama by running the following commands after [installing Ollama](https://ollama.com/download). ```bash # gpt-oss-20b ollama pull gpt-oss:20b ollama run gpt-oss:20b ``` [Learn more about how to use gpt-oss with Ollama.](https://cookbook.openai.com/articles/gpt-oss/run-locally-ollama) #### LM Studio If you are using [LM Studio](https://lmstudio.ai/) you can use the following commands to download. ```bash # gpt-oss-20b lms get openai/gpt-oss-20b ``` Check out our [awesome list](https://github.com/openai/gpt-oss/blob/main/awesome-gpt-oss.md) for a broader collection of gpt-oss resources and inference partners. --- # Download the model You can download the model weights from the [Hugging Face Hub](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) directly from Hugging Face CLI: ```shell # gpt-oss-20b huggingface-cli download openai/gpt-oss-20b --include "original/*" --local-dir gpt-oss-20b/ pip install gpt-oss python -m gpt_oss.chat model/ ``` # Reasoning levels You can adjust the reasoning level that suits your task across three levels: * **Low:** Fast responses for general dialogue. * **Medium:** Balanced speed and detail. * **High:** Deep and detailed analysis. The reasoning level can be set in the system prompts, e.g., "Reasoning: high". # Tool use The gpt-oss models are excellent for: * Web browsing (using built-in browsing tools) * Function calling with defined schemas * Agentic operations like browser tasks # Fine-tuning Both gpt-oss models can be fine-tuned for a variety of specialized use cases. This smaller model `gpt-oss-20b` can be fine-tuned on consumer hardware, whereas the larger [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) can be fine-tuned on a single H100 node.
JonusNattapong/thai-bpe-tokenizer
JonusNattapong
2025-08-20T07:24:56Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-20T07:24:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
yaelahnal/blockassist-bc-mute_clawed_crab_1755674429
yaelahnal
2025-08-20T07:21:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:21:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755672877
mang3dd
2025-08-20T07:21:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:21:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
launchpd3/blockassist-bc-polished_foxy_stingray_1755674367
launchpd3
2025-08-20T07:21:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "polished foxy stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:21:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - polished foxy stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
milliarderdol/blockassist-bc-roaring_rough_scorpion_1755672459
milliarderdol
2025-08-20T07:20:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring rough scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:19:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring rough scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vayishu/visa-minilm
vayishu
2025-08-20T07:20:26Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "dense", "generated_from_trainer", "dataset_size:1000", "loss:TripletLoss", "arxiv:1908.10084", "arxiv:1703.07737", "base_model:sentence-transformers/all-MiniLM-L6-v2", "base_model:finetune:sentence-transformers/all-MiniLM-L6-v2", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-20T07:04:31Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense - generated_from_trainer - dataset_size:1000 - loss:TripletLoss base_model: sentence-transformers/all-MiniLM-L6-v2 widget: - source_sentence: What are the key points in passage fam_402.10_30? sentences: - ( v ) A dependent applying under [ paragraph ( s)(2 ) ( iii)](/current / title-8 / section-214.2#p-214.2(s)(2)(iii ) ) or [ ( iv)](/current / title-8 / section-214.2#p-214.2(s)(2)(iv ) ) of this section must also submit a certified statement from the post - secondary educational institution confirming that he or she is pursuing studies on a full - time basis . - "( b ) ( U ) The criteria for \n qualifying as an H-1B physician are found in\ \ subparagraph 3 below ." - ( ii ) * What are the requirements for participation ? * - source_sentence: What are the key points in passage 8cfr_214.3_93? sentences: - ( vii ) Whether the student has been certified for practical training , and the beginning and end dates of certification . - ( D ) Similarity of jobs and working conditions ; - ( ii ) * What are the requirements for participation ? * - source_sentence: Explain the significance of passage fam_402_62. sentences: - ( * i * ) Has competency in oral and written English which shall be demonstrated by the passage of the English language proficiency test given by the Educational Commission for Foreign Medical Graduates ; or - "Derivative beneficiaries are entitled to apply for visas to \n follow and/or\ \ join principals who are maintaining status in the United States , \n even when\ \ the principal was never issued a visa in the classification being \n sought\ \ by the dependent . Take , for instance , a world - class soccer player , who\ \ \n changes their status from F-1 to O-1 . The spouse and/or children are entitled\ \ \n to apply for nonimmigrant O-3 visas . Typical documentation for establishing\ \ \n entitlement to visas in such an instance might include marriage and birth\ \ \n certificates for the spouse and dependent(s ) , a copy of the principal \n\ \ beneficiary 's approval notice , and any Form I-797 , Notice of Action notices\ \ \n relating to the dependents ' own change of status filings . Another example\ \ \n would be a foreign national who entered the United States on a B-1 visa and\ \ \n subsequently changed status to F-1 . The spouse and/or child of the F-1\ \ would \n be entitled to seek F-2 visas . In such cases , the dependent would\ \ need to \n present a properly endorsed Form I-20 , Certificate of Eligibility\ \ for \n Nonimmigrant ( F-1 ) Student Status - for Academic and Language Students\ \ , as \n evidence that the principal is enrolled , or will be enrolled within\ \ 60 days , in \n a full course of study or is in approved practical training\ \ ." - ( 1 ) Meaning of term * Designated Official . * As used in [ § § 214.2(f)](/current / title-8 / section-214.2#p-214.2(f ) ) and [ ( m)](/current / title-8 / section-214.2#p-214.2(m ) ) , [ 214.3](/current / title-8 / section-214.3 ) and [ 214.4](/current / title-8 / section-214.4 ) , a * Designated Official , Designated School Official ( DSO ) , * or * Principal Designated School Official ( PDSO ) , * means a regularly employed member of the school administration whose office is located at the school and whose compensation does not come from commissions for recruitment of foreign students . An individual whose principal obligation to the school is to recruit foreign students for compensation does not qualify as a designated official . The PDSO and any other DSO must be named by the president , owner , or head of a school or school system . The PDSO and DSO may not delegate this designation to any other person . - source_sentence: What is the main topic of passage fam_402.9_141? sentences: - "( 1 ) The title of the position to which the applicant \n is destined , its\ \ place in the firm 's organizational structure , the duties \n of the position\ \ , the degree to which the applicant will have ultimate control \n and responsibility\ \ for the firm 's overall operations or a major component \n thereof , the number\ \ and skill levels of the employees the applicant will \n supervise , the level\ \ of pay , and whether the applicant possesses qualifying \n executive or supervisory\ \ experience ;" - describes methods of oversight and supervision . The Form I-983 must explain how the training is directly related to the student 's qualifying STEM degree . - ( A ) A nurse who is granted H-1C classification based on passage of the CGFNS examination must , upon admission to the United States , be able to obtain temporary licensure or other temporary authorization to practice as a registered nurse from the State Board of Nursing in the state of intended employment . - source_sentence: Explain the significance of passage uscis_pm_volume_2_part_f_chapter_7_1. sentences: - ( C ) A common formal code of doctrine and discipline ; - ( * i * ) Has competency in oral and written English which shall be demonstrated by the passage of the English language proficiency test given by the Educational Commission for Foreign Medical Graduates ; or - Chapter 7 - Absences From the United States | USCIS pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf --> - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 384 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'}) (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("vayishu/visa-minilm") # Run inference sentences = [ 'Explain the significance of passage uscis_pm_volume_2_part_f_chapter_7_1.', 'Chapter 7 - Absences From the United States | USCIS', '( * i * ) Has competency in oral and written English which shall be demonstrated by the passage of the English language proficiency test given by the Educational Commission for Foreign Medical Graduates ; or', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities) # tensor([[1.0000, 0.3954, 0.4014], # [0.3954, 1.0000, 0.1409], # [0.4014, 0.1409, 1.0000]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 1,000 training samples * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code> * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | sentence_2 | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 14 tokens</li><li>mean: 20.62 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 74.9 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 48.16 tokens</li><li>max: 143 tokens</li></ul> | * Samples: | sentence_0 | sentence_1 | sentence_2 | |:--------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Explain the significance of passage 8cfr_214.1_85.</code> | <code># # # # § 214.1 Requirements for admission , extension , and maintenance of status .</code> | <code>( * 5 * ) Evidence of the alien 's original scientific , scholarly , or business - related contributions of major significance in the field ;</code> | | <code>Can you summarize the content of passage 8cfr_214.2_1843?</code> | <code>( C ) A common formal code of doctrine and discipline ;</code> | <code>The Office of the Federal Register publishes documents on behalf of Federal agencies but does not have any authority over their programs . We recommend you directly contact the agency associated with the content in question .</code> | | <code>What is the main topic of passage uscis_pm_volume_2_part_f_chapter_5_85?</code> | <code>If the [ Form I-765](/i-765 ) for the STEM OPT extension is denied and the student 's post - completion OPT EAD is expired , OPT employment authorization ends on the date of the decision and the student 's F-1 status ends 60 days after the date of denial . If the Form I-765 for the STEM OPT extension is denied and the student 's post - completion OPT EAD is unexpired , the student will remain employment authorized until the expiration date of the EAD .</code> | <code>( A ) A nurse who is granted H-1C classification based on passage of the CGFNS examination must , upon admission to the United States , be able to obtain temporary licensure or other temporary authorization to practice as a registered nurse from the State Board of Nursing in the state of intended employment .</code> | * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters: ```json { "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `num_train_epochs`: 1 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Framework Versions - Python: 3.12.11 - Sentence Transformers: 5.1.0 - Transformers: 4.55.2 - PyTorch: 2.8.0+cu128 - Accelerate: 1.10.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### TripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Tn1072/my_awesome_video_cls_model
Tn1072
2025-08-20T07:20:08Z
0
0
transformers
[ "transformers", "safetensors", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base", "base_model:finetune:MCG-NJU/videomae-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2025-08-20T07:19:51Z
--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_video_cls_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_video_cls_model This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1236 - Accuracy: 0.5571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0641 | 1.0 | 300 | 1.1236 | 0.5571 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
nema122/blockassist-bc-robust_fluffy_ram_1755674200
nema122
2025-08-20T07:18:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "robust fluffy ram", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:18:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - robust fluffy ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755672736
lisaozill03
2025-08-20T07:18:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:18:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gaianet/Qwen3-Coder-30B-A3B-Instruct-GGUF
gaianet
2025-08-20T07:17:35Z
0
0
transformers
[ "transformers", "gguf", "qwen3_moe", "text-generation", "base_model:Qwen/Qwen3-Coder-30B-A3B-Instruct", "base_model:quantized:Qwen/Qwen3-Coder-30B-A3B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-20T02:43:35Z
--- base_model: Qwen/Qwen3-Coder-30B-A3B-Instruct license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct/blob/main/LICENSE model_creator: Qwen model_name: Qwen3-Coder-30B-A3B-Instruct quantized_by: Second State Inc. pipeline_tag: text-generation library_name: transformers --- # Qwen3-Coder-30B-A3B-Instruct-GGUF ## Original Model [Qwen/Qwen3-Coder-30B-A3B-Instruct](https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct) ## Run with Gaianet **Prompt template** prompt template: - `chatml` **Context size** chat_ctx_size: `256000` **Run with GaiaNet** - Quick start: https://docs.gaianet.ai/node-guide/quick-start - Customize your node: https://docs.gaianet.ai/node-guide/customize *Quantized with llama.cpp b6031*
Kokoutou/soundsright_dn_2008_2
Kokoutou
2025-08-20T07:16:44Z
0
0
null
[ "region:us" ]
null
2025-08-20T07:02:41Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
Kokoutou/soundsright_dn_2008_1
Kokoutou
2025-08-20T07:16:35Z
0
0
null
[ "region:us" ]
null
2025-08-20T07:02:41Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
rettertop/blockassist-bc-mimic_peckish_cockroach_1755674177
rettertop
2025-08-20T07:16:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mimic peckish cockroach", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:16:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mimic peckish cockroach --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rettertop/blockassist-bc-rangy_mighty_hare_1755674136
rettertop
2025-08-20T07:15:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rangy mighty hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:15:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rangy mighty hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ElToro2602/blockassist-bc-raging_prehistoric_chameleon_1755674030
ElToro2602
2025-08-20T07:14:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging prehistoric chameleon", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T07:14:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging prehistoric chameleon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).