modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 06:30:11
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 06:29:58
card
stringlengths
11
1.01M
healycarolynelhwm/blockassist-bc-fanged_striped_macaque_1757549148
healycarolynelhwm
2025-09-11T00:05:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fanged striped macaque", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T00:05:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fanged striped macaque --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
makhiovrnl/blockassist-bc-marine_armored_weasel_1757549035
makhiovrnl
2025-09-11T00:04:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "marine armored weasel", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T00:04:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - marine armored weasel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
iekagrbaiya/blockassist-bc-clawed_rabid_fish_1757549005
iekagrbaiya
2025-09-11T00:03:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "clawed rabid fish", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T00:03:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - clawed rabid fish --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
brauerraglmb/blockassist-bc-tough_subtle_tortoise_1757548979
brauerraglmb
2025-09-11T00:03:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tough subtle tortoise", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T00:03:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tough subtle tortoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1757548893
bah63843
2025-09-11T00:02:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T00:02:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hbfc7671/blockassist-bc-mighty_small_fox_1757548914
hbfc7671
2025-09-11T00:02:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mighty small fox", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T00:01:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mighty small fox --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gsjang/de-llama3-discoleo-instruct-8b-v0.1-x-meta-llama-3-8b-instruct-ffn_kv_injection
gsjang
2025-09-11T00:01:41Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "base_model:DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1", "base_model:merge:DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:merge:meta-llama/Meta-Llama-3-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-10T23:58:29Z
--- base_model: - DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1 - meta-llama/Meta-Llama-3-8B-Instruct library_name: transformers tags: - mergekit - merge --- # de-llama3-discoleo-instruct-8b-v0.1-x-meta-llama-3-8b-instruct-ffn_kv_injection This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the FFN-KV Injection (Train-free FFN gating) merge method using [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as a base. ### Models Merged The following models were included in the merge: * [DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1](https://huggingface.co/DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1) ### Configuration The following YAML configuration was used to produce this model: ```yaml dtype: bfloat16 tokenizer: source: union merge_method: ffn_kv_injection base_model: meta-llama/Meta-Llama-3-8B-Instruct models: - model: meta-llama/Meta-Llama-3-8B-Instruct parameters: {} - model: DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1 parameters: {} parameters: weights: - 0.7 - 0.3 tau: 1.0 aspect_thresh: 1.5 pnorm: 2.0 alpha_floor: 0.0 alpha_ceil: 1.0 write_readme: README.md ```
jalkafariya/blockassist-bc-stealthy_hoarse_toucan_1757548889
jalkafariya
2025-09-11T00:01:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy hoarse toucan", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T00:01:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy hoarse toucan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dhisowyeioe85373/blockassist-bc-reptilian_arctic_lemur_1757548871
dhisowyeioe85373
2025-09-11T00:01:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reptilian arctic lemur", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T00:01:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reptilian arctic lemur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
neylanduoh/blockassist-bc-prehistoric_iridescent_puffin_1757548864
neylanduoh
2025-09-11T00:01:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "prehistoric iridescent puffin", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T00:01:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - prehistoric iridescent puffin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
brauerraglmb/blockassist-bc-tough_subtle_tortoise_1757548806
brauerraglmb
2025-09-11T00:00:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tough subtle tortoise", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T00:00:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tough subtle tortoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
anasagastiw84/blockassist-bc-subtle_alert_narwhal_1757548797
anasagastiw84
2025-09-11T00:00:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "subtle alert narwhal", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T00:00:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - subtle alert narwhal --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
poki1/blockassist-bc-rabid_plump_chimpanzee_1757548777
poki1
2025-09-11T00:00:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rabid plump chimpanzee", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:59:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rabid plump chimpanzee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
areyakibriya7142/blockassist-bc-regal_whistling_dove_1757548781
areyakibriya7142
2025-09-10T23:59:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal whistling dove", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:59:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal whistling dove --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
clayceklj/blockassist-bc-reptilian_bellowing_crocodile_1757548775
clayceklj
2025-09-10T23:59:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reptilian bellowing crocodile", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:59:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reptilian bellowing crocodile --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
serendipity0306/ppo-Pyramids
serendipity0306
2025-09-10T23:59:43Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2025-09-10T23:59:39Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: serendipity0306/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
mccomasadxdwu/blockassist-bc-dense_lithe_chinchilla_1757548757
mccomasadxdwu
2025-09-10T23:59:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dense lithe chinchilla", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:59:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dense lithe chinchilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
saduysthagdu/blockassist-bc-shaggy_chattering_toucan_1757548748
saduysthagdu
2025-09-10T23:59:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shaggy chattering toucan", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:59:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shaggy chattering toucan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kafa22/blockassist-bc-regal_leggy_hummingbird_1757548701
kafa22
2025-09-10T23:59:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal leggy hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:58:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal leggy hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
grosemrazruthmid/blockassist-bc-slender_webbed_yak_1757548713
grosemrazruthmid
2025-09-10T23:58:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slender webbed yak", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:58:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slender webbed yak --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Jack-Payne1/qwen-bnb4bit-dog_preference_seed1
Jack-Payne1
2025-09-10T23:57:59Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Qwen2.5-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-10T23:53:46Z
--- base_model: unsloth/Qwen2.5-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Jack-Payne1 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
oyshimimi50/blockassist-bc-alert_colorful_pigeon_1757548634
oyshimimi50
2025-09-10T23:57:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert colorful pigeon", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:57:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert colorful pigeon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
alexiseeifl/blockassist-bc-fleecy_flapping_pigeon_1757548606
alexiseeifl
2025-09-10T23:56:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fleecy flapping pigeon", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:56:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fleecy flapping pigeon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bdidudysidjd/blockassist-bc-tough_noisy_sheep_1757548509
bdidudysidjd
2025-09-10T23:55:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tough noisy sheep", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:55:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tough noisy sheep --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Bibun55/Affine-5DXC3AViNn12igrSjATs4vRgXgPTdPwvzRVW6BJGFuMoYnaf
Bibun55
2025-09-10T23:55:11Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "vllm", "conversational", "arxiv:2508.10925", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "8-bit", "mxfp4", "region:us" ]
text-generation
2025-09-10T23:48:35Z
--- license: apache-2.0 pipeline_tag: text-generation library_name: transformers tags: - vllm --- <p align="center"> <img alt="gpt-oss-120b" src="https://raw.githubusercontent.com/openai/gpt-oss/main/docs/gpt-oss-120b.svg"> </p> <p align="center"> <a href="https://gpt-oss.com"><strong>Try gpt-oss</strong></a> · <a href="https://cookbook.openai.com/topic/gpt-oss"><strong>Guides</strong></a> · <a href="https://arxiv.org/abs/2508.10925"><strong>Model card</strong></a> · <a href="https://openai.com/index/introducing-gpt-oss/"><strong>OpenAI blog</strong></a> </p> <br> Welcome to the gpt-oss series, [OpenAI’s open-weight models](https://openai.com/open-models) designed for powerful reasoning, agentic tasks, and versatile developer use cases. We’re releasing two flavors of these open models: - `gpt-oss-120b` — for production, general purpose, high reasoning use cases that fit into a single 80GB GPU (like NVIDIA H100 or AMD MI300X) (117B parameters with 5.1B active parameters) - `gpt-oss-20b` — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters) Both models were trained on our [harmony response format](https://github.com/openai/harmony) and should only be used with the harmony format as it will not work correctly otherwise. > [!NOTE] > This model card is dedicated to the larger `gpt-oss-120b` model. Check out [`gpt-oss-20b`](https://huggingface.co/openai/gpt-oss-20b) for the smaller model. # Highlights * **Permissive Apache 2.0 license:** Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment. * **Configurable reasoning effort:** Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs. * **Full chain-of-thought:** Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users. * **Fine-tunable:** Fully customize models to your specific use case through parameter fine-tuning. * **Agentic capabilities:** Use the models’ native capabilities for function calling, [web browsing](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#browser), [Python code execution](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#python), and Structured Outputs. * **MXFP4 quantization:** The models were post-trained with MXFP4 quantization of the MoE weights, making `gpt-oss-120b` run on a single 80GB GPU (like NVIDIA H100 or AMD MI300X) and the `gpt-oss-20b` model run within 16GB of memory. All evals were performed with the same MXFP4 quantization. --- # Inference examples ## Transformers You can use `gpt-oss-120b` and `gpt-oss-20b` with Transformers. If you use the Transformers chat template, it will automatically apply the [harmony response format](https://github.com/openai/harmony). If you use `model.generate` directly, you need to apply the harmony format manually using the chat template or use our [openai-harmony](https://github.com/openai/harmony) package. To get started, install the necessary dependencies to setup your environment: ``` pip install -U transformers kernels torch ``` Once, setup you can proceed to run the model by running the snippet below: ```py from transformers import pipeline import torch model_id = "openai/gpt-oss-120b" pipe = pipeline( "text-generation", model=model_id, torch_dtype="auto", device_map="auto", ) messages = [ {"role": "user", "content": "Explain quantum mechanics clearly and concisely."}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` Alternatively, you can run the model via [`Transformers Serve`](https://huggingface.co/docs/transformers/main/serving) to spin up a OpenAI-compatible webserver: ``` transformers serve transformers chat localhost:8000 --model-name-or-path openai/gpt-oss-120b ``` [Learn more about how to use gpt-oss with Transformers.](https://cookbook.openai.com/articles/gpt-oss/run-transformers) ## vLLM vLLM recommends using [uv](https://docs.astral.sh/uv/) for Python dependency management. You can use vLLM to spin up an OpenAI-compatible webserver. The following command will automatically download the model and start the server. ```bash uv pip install --pre vllm==0.10.1+gptoss \ --extra-index-url https://wheels.vllm.ai/gpt-oss/ \ --extra-index-url https://download.pytorch.org/whl/nightly/cu128 \ --index-strategy unsafe-best-match vllm serve openai/gpt-oss-120b ``` [Learn more about how to use gpt-oss with vLLM.](https://cookbook.openai.com/articles/gpt-oss/run-vllm) ## PyTorch / Triton To learn about how to use this model with PyTorch and Triton, check out our [reference implementations in the gpt-oss repository](https://github.com/openai/gpt-oss?tab=readme-ov-file#reference-pytorch-implementation). ## Ollama If you are trying to run gpt-oss on consumer hardware, you can use Ollama by running the following commands after [installing Ollama](https://ollama.com/download). ```bash # gpt-oss-120b ollama pull gpt-oss:120b ollama run gpt-oss:120b ``` [Learn more about how to use gpt-oss with Ollama.](https://cookbook.openai.com/articles/gpt-oss/run-locally-ollama) #### LM Studio If you are using [LM Studio](https://lmstudio.ai/) you can use the following commands to download. ```bash # gpt-oss-120b lms get openai/gpt-oss-120b ``` Check out our [awesome list](https://github.com/openai/gpt-oss/blob/main/awesome-gpt-oss.md) for a broader collection of gpt-oss resources and inference partners. --- # Download the model You can download the model weights from the [Hugging Face Hub](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) directly from Hugging Face CLI: ```shell # gpt-oss-120b huggingface-cli download openai/gpt-oss-120b --include "original/*" --local-dir gpt-oss-120b/ pip install gpt-oss python -m gpt_oss.chat model/ ``` # Reasoning levels You can adjust the reasoning level that suits your task across three levels: * **Low:** Fast responses for general dialogue. * **Medium:** Balanced speed and detail. * **High:** Deep and detailed analysis. The reasoning level can be set in the system prompts, e.g., "Reasoning: high". # Tool use The gpt-oss models are excellent for: * Web browsing (using built-in browsing tools) * Function calling with defined schemas * Agentic operations like browser tasks # Fine-tuning Both gpt-oss models can be fine-tuned for a variety of specialized use cases. This larger model `gpt-oss-120b` can be fine-tuned on a single H100 node, whereas the smaller [`gpt-oss-20b`](https://huggingface.co/openai/gpt-oss-20b) can even be fine-tuned on consumer hardware. # Citation ```bibtex @misc{openai2025gptoss120bgptoss20bmodel, title={gpt-oss-120b & gpt-oss-20b Model Card}, author={OpenAI}, year={2025}, eprint={2508.10925}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2508.10925}, } ```
zaimkibriya7859/blockassist-bc-exotic_soaring_beaver_1757548493
zaimkibriya7859
2025-09-10T23:55:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "exotic soaring beaver", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:54:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - exotic soaring beaver --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hikoseon/gpt-oss-20b-troll2
hikoseon
2025-09-10T23:54:53Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "dataset:hikoseon/train_input_troll_dataset", "base_model:openai/gpt-oss-20b", "base_model:finetune:openai/gpt-oss-20b", "endpoints_compatible", "region:us" ]
null
2025-09-10T23:22:06Z
--- base_model: openai/gpt-oss-20b datasets: hikoseon/train_input_troll_dataset library_name: transformers model_name: gpt-oss-20b-troll2 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for gpt-oss-20b-troll2 This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) on the [hikoseon/train_input_troll_dataset](https://huggingface.co/datasets/hikoseon/train_input_troll_dataset) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="hikoseon/gpt-oss-20b-troll2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.23.0 - Transformers: 4.56.1 - Pytorch: 2.8.0+cu128 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
brisondey/blockassist-bc-insectivorous_energetic_koala_1757548437
brisondey
2025-09-10T23:54:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous energetic koala", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:54:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous energetic koala --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
poki1/blockassist-bc-regal_cunning_ladybug_1757548389
poki1
2025-09-10T23:53:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal cunning ladybug", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:53:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal cunning ladybug --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
luiskodraje/blockassist-bc-climbing_quick_reindeer_1757548390
luiskodraje
2025-09-10T23:53:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "climbing quick reindeer", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:53:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - climbing quick reindeer --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crabtreeftf/blockassist-bc-darting_mighty_panther_1757548383
crabtreeftf
2025-09-10T23:53:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "darting mighty panther", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:53:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - darting mighty panther --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
houselaidatfdolanjn/blockassist-bc-hulking_mottled_ox_1757548364
houselaidatfdolanjn
2025-09-10T23:52:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hulking mottled ox", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:52:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hulking mottled ox --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jahyungu/OLMo-2-1124-7B-Instruct_arc
jahyungu
2025-09-10T23:52:31Z
0
0
transformers
[ "transformers", "safetensors", "olmo2", "text-generation", "generated_from_trainer", "conversational", "base_model:allenai/OLMo-2-1124-7B-Instruct", "base_model:finetune:allenai/OLMo-2-1124-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-10T22:31:10Z
--- library_name: transformers license: apache-2.0 base_model: allenai/OLMo-2-1124-7B-Instruct tags: - generated_from_trainer model-index: - name: OLMo-2-1124-7B-Instruct_arc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # OLMo-2-1124-7B-Instruct_arc This model is a fine-tuned version of [allenai/OLMo-2-1124-7B-Instruct](https://huggingface.co/allenai/OLMo-2-1124-7B-Instruct) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.55.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.0
bah63843/blockassist-bc-plump_fast_antelope_1757548306
bah63843
2025-09-10T23:52:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:52:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
modestogrieve/blockassist-bc-mangy_muscular_hyena_1757548334
modestogrieve
2025-09-10T23:52:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mangy muscular hyena", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:52:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mangy muscular hyena --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jyyhhhhyghh/blockassist-bc-slithering_stinging_wombat_1757548304
jyyhhhhyghh
2025-09-10T23:51:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slithering stinging wombat", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:51:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slithering stinging wombat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
israel/llama3-8b-eng
israel
2025-09-10T23:51:47Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-10T23:48:17Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
marticyuong/blockassist-bc-mighty_grassy_elk_1757548273
marticyuong
2025-09-10T23:51:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mighty grassy elk", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:51:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mighty grassy elk --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
credolacy/blockassist-bc-armored_placid_buffalo_1757548240
credolacy
2025-09-10T23:50:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored placid buffalo", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:50:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored placid buffalo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
maratttt/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wiry_foxy_ocelot
maratttt
2025-09-10T23:50:51Z
159
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am wiry_foxy_ocelot", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T12:03:52Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am wiry_foxy_ocelot --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sunki23/blockassist
sunki23
2025-09-10T23:50:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant wise rabbit", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T22:28:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant wise rabbit --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
raileshikder7241/blockassist-bc-slender_amphibious_cheetah_1757548180
raileshikder7241
2025-09-10T23:49:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slender amphibious cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:49:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slender amphibious cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
onnx-community/LFM2-1.2B-ONNX
onnx-community
2025-09-10T23:49:33Z
2,531
9
transformers.js
[ "transformers.js", "onnx", "lfm2", "text-generation", "liquid", "edge", "conversational", "en", "ar", "zh", "fr", "de", "ja", "ko", "es", "base_model:LiquidAI/LFM2-1.2B", "base_model:quantized:LiquidAI/LFM2-1.2B", "license:other", "region:us" ]
text-generation
2025-07-16T05:50:05Z
--- base_model: - LiquidAI/LFM2-1.2B library_name: transformers.js license: other license_name: lfm1.0 license_link: LICENSE language: - en - ar - zh - fr - de - ja - ko - es pipeline_tag: text-generation tags: - liquid - edge --- <center> <div style="text-align: center;"> <img src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/7_6D7rWrLxp2hb6OHSV1p.png" alt="Liquid AI" style="width: 100%; max-width: 66%; height: auto; display: inline-block; margin-bottom: 0.5em; margin-top: 0.5em;" /> </div> <a href="https://playground.liquid.ai/chat"> <svg width="114.8" height="20" viewBox="0 0 1300 200" xmlns="http://www.w3.org/2000/svg" role="img" aria-label="Liquid Playground" style="margin-bottom: 1em;"> <title>Liquid: Playground</title> <g> <rect fill="#fff" width="600" height="200"></rect> <rect fill="url(#x)" x="600" width="700" height="200"></rect> </g> <g transform="translate(20, 30) scale(0.4, 0.4)"> <path d="M172.314 129.313L172.219 129.367L206.125 188.18C210.671 195.154 213.324 203.457 213.324 212.382C213.324 220.834 210.956 228.739 206.839 235.479L275.924 213.178L167.853 33.6L141.827 76.9614L172.314 129.313Z" fill="black"/> <path d="M114.217 302.4L168.492 257.003C168.447 257.003 168.397 257.003 168.352 257.003C143.515 257.003 123.385 237.027 123.385 212.387C123.385 203.487 126.023 195.204 130.55 188.24L162.621 132.503L135.966 86.7327L60.0762 213.183L114.127 302.4H114.217Z" fill="black"/> <path d="M191.435 250.681C191.435 250.681 191.43 250.681 191.425 250.686L129.71 302.4H221.294L267.71 226.593L191.435 250.686V250.681Z" fill="black"/> </g> <g aria-hidden="true" fill="#fff" text-anchor="start" font-family="Verdana,DejaVu Sans,sans-serif" font-size="110"> <text x="200" y="148" textLength="329" fill="#000" opacity="0.1">Liquid</text> <text x="190" y="138" textLength="329" fill="#000">Liquid</text> <text x="655" y="148" textLength="619" fill="#000" opacity="0.1">Playground</text> <text x="645" y="138" textLength="619">Playground</text> </g> <linearGradient id="x" x1="0%" y1="0%" x2="100%" y2="0%"> <stop offset="0%" style="stop-color:#000000"></stop> <stop offset="100%" style="stop-color:#000000"></stop> </linearGradient> </svg> </a> </center> # LFM2-1.2B LFM2 is a new generation of hybrid models developed by [Liquid AI](https://www.liquid.ai/), specifically designed for edge AI and on-device deployment. It sets a new standard in terms of quality, speed, and memory efficiency. We're releasing the weights of three post-trained checkpoints with 350M, 700M, and 1.2B parameters. They provide the following key features to create AI-powered edge applications: * **Fast training & inference** – LFM2 achieves 3x faster training compared to its previous generation. It also benefits from 2x faster decode and prefill speed on CPU compared to Qwen3. * **Best performance** – LFM2 outperforms similarly-sized models across multiple benchmark categories, including knowledge, mathematics, instruction following, and multilingual capabilities. * **New architecture** – LFM2 is a new hybrid Liquid model with multiplicative gates and short convolutions. * **Flexible deployment** – LFM2 runs efficiently on CPU, GPU, and NPU hardware for flexible deployment on smartphones, laptops, or vehicles. Find more information about LFM2 in our [blog post](https://www.liquid.ai/blog/liquid-foundation-models-v2-our-second-series-of-generative-ai-models). ## 📄 Model details Due to their small size, **we recommend fine-tuning LFM2 models on narrow use cases** to maximize performance. They are particularly suited for agentic tasks, data extraction, RAG, creative writing, and multi-turn conversations. However, we do not recommend using them for tasks that are knowledge-intensive or require programming skills. | Property | Value | | ------------------- | ----------------------------- | | **Parameters** | 1,170,340,608 | | **Layers** | 16 (10 conv + 6 attn) | | **Context length** | 32,768 tokens | | **Vocabulary size** | 65,536 | | **Precision** | bfloat16 | | **Training budget** | 10 trillion tokens | | **License** | LFM Open License v1.0 | **Supported languages**: English, Arabic, Chinese, French, German, Japanese, Korean, and Spanish. **Generation parameters**: We recommend the following parameters: * `temperature=0.3` * `min_p=0.15` * `repetition_penalty=1.05` **Architecture**: Hybrid model with multiplicative gates and short convolutions: 10 double-gated short-range LIV convolution blocks and 6 grouped query attention (GQA) blocks. **Pre-training mixture**: Approximately 75% English, 20% multilingual, and 5% code data sourced from the web and licensed materials. **Training approach**: * Knowledge distillation using [LFM1-7B](https://www.liquid.ai/blog/introducing-lfm-7b-setting-new-standards-for-efficient-language-models) as teacher model * Very large-scale SFT on 50% downstream tasks, 50% general domains * Custom DPO with length normalization and semi-online datasets * Iterative model merging ## 🏃 How to run LFM2 ### Transformers.js If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: ```bash npm i @huggingface/transformers ``` **Example**: Basic example ```js import { pipeline, TextStreamer } from "@huggingface/transformers"; // Create a text generation pipeline const generator = await pipeline( "text-generation", "onnx-community/LFM2-1.2B-ONNX", { dtype: "q4" }, ); // Define the list of messages const messages = [ { role: "system", content: "You are a helpful assistant." }, { role: "user", content: "What is the capital of France?" }, ]; // Generate a response const output = await generator(messages, { max_new_tokens: 512, do_sample: false, streamer: new TextStreamer(generator.tokenizer, { skip_prompt: true, skip_special_tokens: true }), }); console.log(output[0].generated_text.at(-1).content); // The capital of France is Paris. ``` **Example**: Tool calling ```js import { AutoModelForCausalLM, AutoTokenizer, TextStreamer } from "@huggingface/transformers"; // Load tokenizer and model const model_id = "onnx-community/LFM2-1.2B-ONNX"; const tokenizer = await AutoTokenizer.from_pretrained(model_id); const model = await AutoModelForCausalLM.from_pretrained( model_id, { dtype: "q4", device: "webgpu" }, ); // Define tools and messages const tools = [ { name: "get_weather", description: "Get current weather information for a location", parameters: { type: "object", properties: { location: { type: "string", description: "The city and state, e.g. San Francisco, CA", }, unit: { type: "string", enum: ["celsius", "fahrenheit"], description: "The unit of temperature to use", }, }, required: ["location"], }, }, ]; const messages = [ { role: "user", content: "What's the weather like in New York?" }, ]; // Prepare inputs const input = tokenizer.apply_chat_template(messages, { tools, add_generation_prompt: true, return_dict: true, }); // Generate output const sequences = await model.generate({ ...input, max_new_tokens: 512, do_sample: false, streamer: new TextStreamer(tokenizer, { skip_prompt: true, skip_special_tokens: false }), }); // Decode and print the generated text const response = tokenizer.batch_decode( sequences.slice(null, [input.input_ids.dims[1], null]), { skip_special_tokens: true }, ); console.log(response[0]); // [get_weather(location="New York", unit="fahrenheit")] ``` ### ONNXRuntime ```py from transformers import AutoConfig, AutoTokenizer import onnxruntime import numpy as np from huggingface_hub import hf_hub_download # 1. Load config, processor, and model model_id = "onnx-community/LFM2-1.2B-ONNX" config = AutoConfig.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) filename = "model.onnx" # Options: "model.onnx", "model_fp16.onnx", "model_q4.onnx", "model_q4f16.onnx" model_path = hf_hub_download(repo_id=model_id, filename=f"onnx/{filename}") # Download the graph hf_hub_download(repo_id=model_id, filename=f"onnx/{filename}_data") # Download the weights session = onnxruntime.InferenceSession(model_path) ## Set config values num_key_value_heads = config.num_key_value_heads head_dim = config.hidden_size // config.num_attention_heads num_hidden_layers = config.num_hidden_layers eos_token_id = config.eos_token_id hidden_size = config.hidden_size conv_L_cache = config.conv_L_cache layer_types = config.layer_types # 2. Prepare inputs prompt = "What is C. elegans?" messages = [{"role": "user", "content": prompt}] inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="np") input_ids = inputs['input_ids'] attention_mask = inputs['attention_mask'] batch_size = input_ids.shape[0] position_ids = np.tile(np.arange(0, input_ids.shape[-1]), (batch_size, 1)) past_cache_values = {} for i in range(num_hidden_layers): if layer_types[i] == 'full_attention': for kv in ('key', 'value'): past_cache_values[f'past_key_values.{i}.{kv}'] = np.zeros([batch_size, num_key_value_heads, 0, head_dim], dtype=np.float32) elif layer_types[i] == 'conv': past_cache_values[f'past_conv.{i}'] = np.zeros([batch_size, hidden_size, conv_L_cache], dtype=np.float32) else: raise ValueError(f"Unsupported layer type: {layer_types[i]}") # 3. Generation loop max_new_tokens = 1024 generated_tokens = np.array([[]], dtype=np.int64) for i in range(max_new_tokens): logits, *present_cache_values = session.run(None, dict( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, **past_cache_values, )) ## Update values for next generation loop input_ids = logits[:, -1].argmax(-1, keepdims=True) attention_mask = np.concatenate([attention_mask, np.ones_like(input_ids, dtype=np.int64)], axis=-1) position_ids = position_ids[:, -1:] + 1 for j, key in enumerate(past_cache_values): past_cache_values[key] = present_cache_values[j] generated_tokens = np.concatenate([generated_tokens, input_ids], axis=-1) if (input_ids == eos_token_id).all(): break ## (Optional) Streaming print(tokenizer.decode(input_ids[0]), end='', flush=True) print() # 4. Output result print(tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]) ```
lm8779694/blockassist-bc-wily_squeaky_mule_1757548126
lm8779694
2025-09-10T23:48:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wily squeaky mule", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:48:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wily squeaky mule --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AryanPakdel/ppo-LunarLander-v2
AryanPakdel
2025-09-10T23:48:52Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-09-10T23:48:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 237.22 +/- 13.54 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
toruns/blockassist-bc-insectivorous_bold_lion_1757548008
toruns
2025-09-10T23:47:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:47:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1757548017
bah63843
2025-09-10T23:47:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:47:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
harmonyblevinsm0/blockassist-bc-silent_miniature_monkey_1757547951
harmonyblevinsm0
2025-09-10T23:47:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silent miniature monkey", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:46:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silent miniature monkey --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
brente774/blockassist-bc-gentle_whistling_monkey_1757548026
brente774
2025-09-10T23:47:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle whistling monkey", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:47:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle whistling monkey --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
QuantStack/HunyuanImage-2.1-Refiner-GGUF
QuantStack
2025-09-10T23:47:12Z
0
0
null
[ "gguf", "base_model:tencent/HunyuanImage-2.1", "base_model:quantized:tencent/HunyuanImage-2.1", "region:us" ]
null
2025-09-10T15:22:33Z
--- base_model: - tencent/HunyuanImage-2.1 ---
israel/llama3-8b-loc
israel
2025-09-10T23:47:05Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-10T23:43:44Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hamilsordar5647/blockassist-bc-chattering_hairy_woodpecker_1757548007
hamilsordar5647
2025-09-10T23:47:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "chattering hairy woodpecker", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:47:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - chattering hairy woodpecker --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
taniyatoha637/blockassist-bc-eager_flapping_anaconda_1757547977
taniyatoha637
2025-09-10T23:46:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "eager flapping anaconda", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:46:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - eager flapping anaconda --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
terrancejykn/blockassist-bc-colorful_curious_macaque_1757547948
terrancejykn
2025-09-10T23:45:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "nocturnal sneaky porpoise", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:45:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - nocturnal sneaky porpoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
makhiovrnl/blockassist-bc-marine_armored_weasel_1757547922
makhiovrnl
2025-09-10T23:45:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "marine armored weasel", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:45:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - marine armored weasel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1757547856
bah63843
2025-09-10T23:45:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:45:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jannatava1271/blockassist-bc-rapid_aquatic_toad_1757547897
jannatava1271
2025-09-10T23:45:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rapid aquatic toad", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:45:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rapid aquatic toad --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
umino-tori/record-test-2025-09-06-dataset_01
umino-tori
2025-09-10T23:44:57Z
0
0
lerobot
[ "lerobot", "safetensors", "smolvla", "robotics", "dataset:umino-tori/record-test-2025-09-06-dataset_01", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-09-10T23:44:41Z
--- base_model: lerobot/smolvla_base datasets: umino-tori/record-test-2025-09-06-dataset_01 library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - smolvla - robotics - lerobot --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
hjsiwiwy8653/blockassist-bc-humming_sly_viper_1757547859
hjsiwiwy8653
2025-09-10T23:44:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "humming sly viper", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:44:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - humming sly viper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
abadkibriya3524/blockassist-bc-timid_padded_ape_1757547839
abadkibriya3524
2025-09-10T23:44:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "timid padded ape", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:44:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - timid padded ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
stanczykalec/blockassist-bc-opaque_durable_capybara_1757547831
stanczykalec
2025-09-10T23:44:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "opaque durable capybara", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:44:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - opaque durable capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
borsahopa67/blockassist-bc-polished_quiet_badger_1757547804
borsahopa67
2025-09-10T23:43:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "polished quiet badger", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:43:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - polished quiet badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kendzioracliff/blockassist-bc-dextrous_horned_chinchilla_1757547804
kendzioracliff
2025-09-10T23:43:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "polished quiet badger", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:43:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - polished quiet badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
israel/llama3-8b-all
israel
2025-09-10T23:42:33Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-10T23:39:09Z
--- library_name: transformers tags: - llama-factory --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sadiyakhatun65524/blockassist-bc-insectivorous_prehistoric_mouse_1757547738
sadiyakhatun65524
2025-09-10T23:42:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous prehistoric mouse", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:42:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous prehistoric mouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF
mradermacher
2025-09-10T23:41:56Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:pot99rta/PatriMaid-12B-Forgottenslop-NeonMell", "base_model:quantized:pot99rta/PatriMaid-12B-Forgottenslop-NeonMell", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-09-10T22:58:11Z
--- base_model: pot99rta/PatriMaid-12B-Forgottenslop-NeonMell language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/pot99rta/PatriMaid-12B-Forgottenslop-NeonMell <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ1_S.gguf) | i1-IQ1_S | 3.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ1_M.gguf) | i1-IQ1_M | 3.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ2_S.gguf) | i1-IQ2_S | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ2_M.gguf) | i1-IQ2_M | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q2_K_S.gguf) | i1-Q2_K_S | 4.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ3_S.gguf) | i1-IQ3_S | 5.7 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.2 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q4_0.gguf) | i1-Q4_0 | 7.2 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ4_NL.gguf) | i1-IQ4_NL | 7.2 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.2 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q4_1.gguf) | i1-Q4_1 | 7.9 | | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q5_K_S.gguf) | i1-Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q5_K_M.gguf) | i1-Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q6_K.gguf) | i1-Q6_K | 10.2 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
redanvaishyorke/blockassist-bc-lightfooted_winged_shark_1757547706
redanvaishyorke
2025-09-10T23:41:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flapping beaked owl", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:41:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flapping beaked owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lukashossain3425/blockassist-bc-freckled_twitchy_wallaby_1757547678
lukashossain3425
2025-09-10T23:41:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "freckled twitchy wallaby", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:41:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - freckled twitchy wallaby --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mdale2193/blockassist-bc-dense_shy_ibis_1757547652
mdale2193
2025-09-10T23:41:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dense shy ibis", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:41:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dense shy ibis --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
albanbogdaniy896/blockassist-bc-leggy_unseen_leopard_1757547623
albanbogdaniy896
2025-09-10T23:40:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bipedal soaring porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:40:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bipedal soaring porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kokkeytopodar62963/blockassist-bc-domestic_savage_bear_1757547593
kokkeytopodar62963
2025-09-10T23:40:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tenacious silky rooster", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:40:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tenacious silky rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
stewy33/rowan_original_prompt_augmented_elaboration_pkc_fda_approval-2c2cfb30
stewy33
2025-09-10T23:39:02Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "base_model:adapter:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "region:us" ]
null
2025-09-10T21:20:22Z
--- base_model: togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference library_name: peft --- ### Framework versions - PEFT 0.15.1ide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1 -
bah63843/blockassist-bc-plump_fast_antelope_1757547496
bah63843
2025-09-10T23:38:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:38:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
goshujaieja/blockassist-bc-untamed_armored_ram_1757547516
goshujaieja
2025-09-10T23:38:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed armored ram", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:38:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed armored ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
randgaardcyndi/blockassist-bc-sneaky_pudgy_nightingale_1757547501
randgaardcyndi
2025-09-10T23:38:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sneaky pudgy nightingale", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:38:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sneaky pudgy nightingale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jrfszy/blockassist-bc-barky_wary_sandpiper_1757547493
jrfszy
2025-09-10T23:38:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "barky wary sandpiper", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:38:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - barky wary sandpiper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ntegrals/Qwen3-8b-Thinking-Merge-Passthrough
ntegrals
2025-09-10T23:38:04Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "mergekit", "merge", "conversational", "base_model:Qwen/Qwen3-4B-Thinking-2507-FP8", "base_model:merge:Qwen/Qwen3-4B-Thinking-2507-FP8", "base_model:Qwen/Qwen3-8B", "base_model:merge:Qwen/Qwen3-8B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-10T23:32:21Z
--- base_model: - Qwen/Qwen3-8B - Qwen/Qwen3-4B-Thinking-2507-FP8 library_name: transformers tags: - mergekit - merge --- # merged This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the Passthrough merge method. ### Models Merged The following models were included in the merge: * [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) * [Qwen/Qwen3-4B-Thinking-2507-FP8](https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507-FP8) ### Configuration The following YAML configuration was used to produce this model: ```yaml dtype: bfloat16 merge_method: passthrough modules: default: slices: - sources: - layer_range: [0, 32] model: Qwen/Qwen3-8B - sources: - layer_range: [24, 32] model: Qwen/Qwen3-4B-Thinking-2507-FP8 ```
ahumadaxhg/blockassist-bc-alert_spotted_dolphin_1757547464
ahumadaxhg
2025-09-10T23:37:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert spotted dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:37:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert spotted dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
celisjrdn/blockassist-bc-subtle_stinging_chimpanzee_1757547434
celisjrdn
2025-09-10T23:37:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "subtle stinging chimpanzee", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:37:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - subtle stinging chimpanzee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yesniorka/blockassist-bc-stocky_large_dove_1757547409
yesniorka
2025-09-10T23:36:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stocky large dove", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:36:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stocky large dove --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1757547354
bah63843
2025-09-10T23:36:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:36:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bourne321/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_unseen_buffalo
bourne321
2025-09-10T23:36:29Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am quick unseen buffalo", "trl", "genrl-swarm", "I am quick_unseen_buffalo", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-25T17:14:28Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_unseen_buffalo tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am quick unseen buffalo - trl - genrl-swarm - I am quick_unseen_buffalo licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_unseen_buffalo This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="bourne321/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_unseen_buffalo", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.52.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
jrnaregaija/blockassist-bc-stubby_plump_raven_1757547380
jrnaregaija
2025-09-10T23:36:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby plump raven", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:36:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby plump raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ruizrileyselby/blockassist-bc-reclusive_hibernating_buffalo_1757547375
ruizrileyselby
2025-09-10T23:36:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reclusive hibernating buffalo", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:36:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reclusive hibernating buffalo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jrfszy/blockassist-bc-barky_wary_sandpiper_1757547355
jrfszy
2025-09-10T23:36:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "barky wary sandpiper", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:36:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - barky wary sandpiper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF
mradermacher
2025-09-10T23:35:48Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:pot99rta/PatriMaid-12B-Forgottenslop-NeonMell", "base_model:quantized:pot99rta/PatriMaid-12B-Forgottenslop-NeonMell", "endpoints_compatible", "region:us" ]
null
2025-09-10T22:38:18Z
--- base_model: pot99rta/PatriMaid-12B-Forgottenslop-NeonMell language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/pot99rta/PatriMaid-12B-Forgottenslop-NeonMell <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#PatriMaid-12B-Forgottenslop-NeonMell-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q3_K_L.gguf) | Q3_K_L | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q5_K_M.gguf) | Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q6_K.gguf) | Q6_K | 10.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
albaughkieth/blockassist-bc-camouflaged_gliding_newt_1757547313
albaughkieth
2025-09-10T23:35:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged gliding newt", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:35:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged gliding newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kafa22/blockassist-bc-regal_leggy_hummingbird_1757547275
kafa22
2025-09-10T23:35:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal leggy hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:35:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal leggy hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
priyankajugwa/blockassist-bc-exotic_frisky_ostrich_1757547298
priyankajugwa
2025-09-10T23:35:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "exotic frisky ostrich", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:35:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - exotic frisky ostrich --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lovvornfidel/blockassist-bc-chattering_snappy_deer_1757547262
lovvornfidel
2025-09-10T23:34:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "chattering snappy deer", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:34:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - chattering snappy deer --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bsksisysisbss/blockassist-bc-galloping_scampering_cobra_1757547230
bsksisysisbss
2025-09-10T23:34:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "galloping scampering cobra", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:33:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - galloping scampering cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF
mradermacher
2025-09-10T23:33:57Z
0
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "trl", "sft", "en", "base_model:AmberYifan/Llama-2-13b-sft-ultrachat-safeRLHF", "base_model:quantized:AmberYifan/Llama-2-13b-sft-ultrachat-safeRLHF", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-10T21:01:31Z
--- base_model: AmberYifan/Llama-2-13b-sft-ultrachat-safeRLHF language: - en library_name: transformers model_name: Llama-2-13b-sft-ultrachat-safeRLHF mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - generated_from_trainer - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/AmberYifan/Llama-2-13b-sft-ultrachat-safeRLHF <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Llama-2-13b-sft-ultrachat-safeRLHF-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q2_K.gguf) | Q2_K | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q3_K_S.gguf) | Q3_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q3_K_M.gguf) | Q3_K_M | 6.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q3_K_L.gguf) | Q3_K_L | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.IQ4_XS.gguf) | IQ4_XS | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q4_K_S.gguf) | Q4_K_S | 7.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q4_K_M.gguf) | Q4_K_M | 8.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q5_K_S.gguf) | Q5_K_S | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q5_K_M.gguf) | Q5_K_M | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q6_K.gguf) | Q6_K | 10.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q8_0.gguf) | Q8_0 | 13.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
yesniorka/blockassist-bc-stocky_large_dove_1757547217
yesniorka
2025-09-10T23:33:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stocky large dove", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:33:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stocky large dove --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
shikderabaan7986/blockassist-bc-shy_arctic_prawn_1757547193
shikderabaan7986
2025-09-10T23:33:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shy arctic prawn", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:33:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shy arctic prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eilandlovetta/blockassist-bc-lumbering_feline_tiger_1757547159
eilandlovetta
2025-09-10T23:32:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering feline tiger", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:32:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering feline tiger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quiroshedge/blockassist-bc-stinging_purring_ape_1757547130
quiroshedge
2025-09-10T23:32:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slender amphibious cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:32:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slender amphibious cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
allfordedgar26/blockassist-bc-omnivorous_sprightly_aardvark_1757547109
allfordedgar26
2025-09-10T23:31:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "omnivorous sprightly aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:31:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - omnivorous sprightly aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
goblin95107/blockassist-bc-quiet_slithering_beaver_1757546952
goblin95107
2025-09-10T23:31:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quiet slithering beaver", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:31:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quiet slithering beaver --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1757547056
bah63843
2025-09-10T23:31:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:31:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
brisondey/blockassist-bc-insectivorous_energetic_koala_1757547016
brisondey
2025-09-10T23:30:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous energetic koala", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T23:30:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous energetic koala --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).