modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-11 06:30:11
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 555
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-11 06:29:58
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
healycarolynelhwm/blockassist-bc-fanged_striped_macaque_1757549148
|
healycarolynelhwm
| 2025-09-11T00:05:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"fanged striped macaque",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-11T00:05:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- fanged striped macaque
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
makhiovrnl/blockassist-bc-marine_armored_weasel_1757549035
|
makhiovrnl
| 2025-09-11T00:04:04Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"marine armored weasel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-11T00:04:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- marine armored weasel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
iekagrbaiya/blockassist-bc-clawed_rabid_fish_1757549005
|
iekagrbaiya
| 2025-09-11T00:03:35Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"clawed rabid fish",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-11T00:03:31Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- clawed rabid fish
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
brauerraglmb/blockassist-bc-tough_subtle_tortoise_1757548979
|
brauerraglmb
| 2025-09-11T00:03:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tough subtle tortoise",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-11T00:03:06Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tough subtle tortoise
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
bah63843/blockassist-bc-plump_fast_antelope_1757548893
|
bah63843
| 2025-09-11T00:02:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"plump fast antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-11T00:02:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- plump fast antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hbfc7671/blockassist-bc-mighty_small_fox_1757548914
|
hbfc7671
| 2025-09-11T00:02:03Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mighty small fox",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-11T00:01:59Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mighty small fox
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
gsjang/de-llama3-discoleo-instruct-8b-v0.1-x-meta-llama-3-8b-instruct-ffn_kv_injection
|
gsjang
| 2025-09-11T00:01:41Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1",
"base_model:merge:DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:merge:meta-llama/Meta-Llama-3-8B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-10T23:58:29Z |
---
base_model:
- DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1
- meta-llama/Meta-Llama-3-8B-Instruct
library_name: transformers
tags:
- mergekit
- merge
---
# de-llama3-discoleo-instruct-8b-v0.1-x-meta-llama-3-8b-instruct-ffn_kv_injection
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the FFN-KV Injection (Train-free FFN gating) merge method using [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as a base.
### Models Merged
The following models were included in the merge:
* [DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1](https://huggingface.co/DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
dtype: bfloat16
tokenizer:
source: union
merge_method: ffn_kv_injection
base_model: meta-llama/Meta-Llama-3-8B-Instruct
models:
- model: meta-llama/Meta-Llama-3-8B-Instruct
parameters: {}
- model: DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1
parameters: {}
parameters:
weights:
- 0.7
- 0.3
tau: 1.0
aspect_thresh: 1.5
pnorm: 2.0
alpha_floor: 0.0
alpha_ceil: 1.0
write_readme: README.md
```
|
jalkafariya/blockassist-bc-stealthy_hoarse_toucan_1757548889
|
jalkafariya
| 2025-09-11T00:01:38Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stealthy hoarse toucan",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-11T00:01:35Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stealthy hoarse toucan
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
dhisowyeioe85373/blockassist-bc-reptilian_arctic_lemur_1757548871
|
dhisowyeioe85373
| 2025-09-11T00:01:25Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"reptilian arctic lemur",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-11T00:01:21Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- reptilian arctic lemur
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
neylanduoh/blockassist-bc-prehistoric_iridescent_puffin_1757548864
|
neylanduoh
| 2025-09-11T00:01:13Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"prehistoric iridescent puffin",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-11T00:01:09Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- prehistoric iridescent puffin
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
brauerraglmb/blockassist-bc-tough_subtle_tortoise_1757548806
|
brauerraglmb
| 2025-09-11T00:00:15Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tough subtle tortoise",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-11T00:00:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tough subtle tortoise
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
anasagastiw84/blockassist-bc-subtle_alert_narwhal_1757548797
|
anasagastiw84
| 2025-09-11T00:00:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"subtle alert narwhal",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-11T00:00:03Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- subtle alert narwhal
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
poki1/blockassist-bc-rabid_plump_chimpanzee_1757548777
|
poki1
| 2025-09-11T00:00:02Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rabid plump chimpanzee",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:59:38Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rabid plump chimpanzee
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
areyakibriya7142/blockassist-bc-regal_whistling_dove_1757548781
|
areyakibriya7142
| 2025-09-10T23:59:50Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"regal whistling dove",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:59:47Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- regal whistling dove
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
clayceklj/blockassist-bc-reptilian_bellowing_crocodile_1757548775
|
clayceklj
| 2025-09-10T23:59:44Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"reptilian bellowing crocodile",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:59:41Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- reptilian bellowing crocodile
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
serendipity0306/ppo-Pyramids
|
serendipity0306
| 2025-09-10T23:59:43Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2025-09-10T23:59:39Z |
---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: serendipity0306/ppo-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
mccomasadxdwu/blockassist-bc-dense_lithe_chinchilla_1757548757
|
mccomasadxdwu
| 2025-09-10T23:59:25Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"dense lithe chinchilla",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:59:22Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- dense lithe chinchilla
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
saduysthagdu/blockassist-bc-shaggy_chattering_toucan_1757548748
|
saduysthagdu
| 2025-09-10T23:59:17Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"shaggy chattering toucan",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:59:13Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- shaggy chattering toucan
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kafa22/blockassist-bc-regal_leggy_hummingbird_1757548701
|
kafa22
| 2025-09-10T23:59:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"regal leggy hummingbird",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:58:58Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- regal leggy hummingbird
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
grosemrazruthmid/blockassist-bc-slender_webbed_yak_1757548713
|
grosemrazruthmid
| 2025-09-10T23:58:49Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"slender webbed yak",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:58:45Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- slender webbed yak
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Jack-Payne1/qwen-bnb4bit-dog_preference_seed1
|
Jack-Payne1
| 2025-09-10T23:57:59Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"base_model:unsloth/Qwen2.5-7B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-7B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-10T23:53:46Z |
---
base_model: unsloth/Qwen2.5-7B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Jack-Payne1
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2.5-7B-Instruct
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
oyshimimi50/blockassist-bc-alert_colorful_pigeon_1757548634
|
oyshimimi50
| 2025-09-10T23:57:28Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"alert colorful pigeon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:57:23Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- alert colorful pigeon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
alexiseeifl/blockassist-bc-fleecy_flapping_pigeon_1757548606
|
alexiseeifl
| 2025-09-10T23:56:55Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"fleecy flapping pigeon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:56:51Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- fleecy flapping pigeon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
bdidudysidjd/blockassist-bc-tough_noisy_sheep_1757548509
|
bdidudysidjd
| 2025-09-10T23:55:17Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tough noisy sheep",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:55:14Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tough noisy sheep
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Bibun55/Affine-5DXC3AViNn12igrSjATs4vRgXgPTdPwvzRVW6BJGFuMoYnaf
|
Bibun55
| 2025-09-10T23:55:11Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt_oss",
"text-generation",
"vllm",
"conversational",
"arxiv:2508.10925",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"8-bit",
"mxfp4",
"region:us"
] |
text-generation
| 2025-09-10T23:48:35Z |
---
license: apache-2.0
pipeline_tag: text-generation
library_name: transformers
tags:
- vllm
---
<p align="center">
<img alt="gpt-oss-120b" src="https://raw.githubusercontent.com/openai/gpt-oss/main/docs/gpt-oss-120b.svg">
</p>
<p align="center">
<a href="https://gpt-oss.com"><strong>Try gpt-oss</strong></a> ·
<a href="https://cookbook.openai.com/topic/gpt-oss"><strong>Guides</strong></a> ·
<a href="https://arxiv.org/abs/2508.10925"><strong>Model card</strong></a> ·
<a href="https://openai.com/index/introducing-gpt-oss/"><strong>OpenAI blog</strong></a>
</p>
<br>
Welcome to the gpt-oss series, [OpenAI’s open-weight models](https://openai.com/open-models) designed for powerful reasoning, agentic tasks, and versatile developer use cases.
We’re releasing two flavors of these open models:
- `gpt-oss-120b` — for production, general purpose, high reasoning use cases that fit into a single 80GB GPU (like NVIDIA H100 or AMD MI300X) (117B parameters with 5.1B active parameters)
- `gpt-oss-20b` — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters)
Both models were trained on our [harmony response format](https://github.com/openai/harmony) and should only be used with the harmony format as it will not work correctly otherwise.
> [!NOTE]
> This model card is dedicated to the larger `gpt-oss-120b` model. Check out [`gpt-oss-20b`](https://huggingface.co/openai/gpt-oss-20b) for the smaller model.
# Highlights
* **Permissive Apache 2.0 license:** Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment.
* **Configurable reasoning effort:** Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs.
* **Full chain-of-thought:** Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users.
* **Fine-tunable:** Fully customize models to your specific use case through parameter fine-tuning.
* **Agentic capabilities:** Use the models’ native capabilities for function calling, [web browsing](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#browser), [Python code execution](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#python), and Structured Outputs.
* **MXFP4 quantization:** The models were post-trained with MXFP4 quantization of the MoE weights, making `gpt-oss-120b` run on a single 80GB GPU (like NVIDIA H100 or AMD MI300X) and the `gpt-oss-20b` model run within 16GB of memory. All evals were performed with the same MXFP4 quantization.
---
# Inference examples
## Transformers
You can use `gpt-oss-120b` and `gpt-oss-20b` with Transformers. If you use the Transformers chat template, it will automatically apply the [harmony response format](https://github.com/openai/harmony). If you use `model.generate` directly, you need to apply the harmony format manually using the chat template or use our [openai-harmony](https://github.com/openai/harmony) package.
To get started, install the necessary dependencies to setup your environment:
```
pip install -U transformers kernels torch
```
Once, setup you can proceed to run the model by running the snippet below:
```py
from transformers import pipeline
import torch
model_id = "openai/gpt-oss-120b"
pipe = pipeline(
"text-generation",
model=model_id,
torch_dtype="auto",
device_map="auto",
)
messages = [
{"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
]
outputs = pipe(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
```
Alternatively, you can run the model via [`Transformers Serve`](https://huggingface.co/docs/transformers/main/serving) to spin up a OpenAI-compatible webserver:
```
transformers serve
transformers chat localhost:8000 --model-name-or-path openai/gpt-oss-120b
```
[Learn more about how to use gpt-oss with Transformers.](https://cookbook.openai.com/articles/gpt-oss/run-transformers)
## vLLM
vLLM recommends using [uv](https://docs.astral.sh/uv/) for Python dependency management. You can use vLLM to spin up an OpenAI-compatible webserver. The following command will automatically download the model and start the server.
```bash
uv pip install --pre vllm==0.10.1+gptoss \
--extra-index-url https://wheels.vllm.ai/gpt-oss/ \
--extra-index-url https://download.pytorch.org/whl/nightly/cu128 \
--index-strategy unsafe-best-match
vllm serve openai/gpt-oss-120b
```
[Learn more about how to use gpt-oss with vLLM.](https://cookbook.openai.com/articles/gpt-oss/run-vllm)
## PyTorch / Triton
To learn about how to use this model with PyTorch and Triton, check out our [reference implementations in the gpt-oss repository](https://github.com/openai/gpt-oss?tab=readme-ov-file#reference-pytorch-implementation).
## Ollama
If you are trying to run gpt-oss on consumer hardware, you can use Ollama by running the following commands after [installing Ollama](https://ollama.com/download).
```bash
# gpt-oss-120b
ollama pull gpt-oss:120b
ollama run gpt-oss:120b
```
[Learn more about how to use gpt-oss with Ollama.](https://cookbook.openai.com/articles/gpt-oss/run-locally-ollama)
#### LM Studio
If you are using [LM Studio](https://lmstudio.ai/) you can use the following commands to download.
```bash
# gpt-oss-120b
lms get openai/gpt-oss-120b
```
Check out our [awesome list](https://github.com/openai/gpt-oss/blob/main/awesome-gpt-oss.md) for a broader collection of gpt-oss resources and inference partners.
---
# Download the model
You can download the model weights from the [Hugging Face Hub](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) directly from Hugging Face CLI:
```shell
# gpt-oss-120b
huggingface-cli download openai/gpt-oss-120b --include "original/*" --local-dir gpt-oss-120b/
pip install gpt-oss
python -m gpt_oss.chat model/
```
# Reasoning levels
You can adjust the reasoning level that suits your task across three levels:
* **Low:** Fast responses for general dialogue.
* **Medium:** Balanced speed and detail.
* **High:** Deep and detailed analysis.
The reasoning level can be set in the system prompts, e.g., "Reasoning: high".
# Tool use
The gpt-oss models are excellent for:
* Web browsing (using built-in browsing tools)
* Function calling with defined schemas
* Agentic operations like browser tasks
# Fine-tuning
Both gpt-oss models can be fine-tuned for a variety of specialized use cases.
This larger model `gpt-oss-120b` can be fine-tuned on a single H100 node, whereas the smaller [`gpt-oss-20b`](https://huggingface.co/openai/gpt-oss-20b) can even be fine-tuned on consumer hardware.
# Citation
```bibtex
@misc{openai2025gptoss120bgptoss20bmodel,
title={gpt-oss-120b & gpt-oss-20b Model Card},
author={OpenAI},
year={2025},
eprint={2508.10925},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2508.10925},
}
```
|
zaimkibriya7859/blockassist-bc-exotic_soaring_beaver_1757548493
|
zaimkibriya7859
| 2025-09-10T23:55:02Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"exotic soaring beaver",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:54:59Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- exotic soaring beaver
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hikoseon/gpt-oss-20b-troll2
|
hikoseon
| 2025-09-10T23:54:53Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"sft",
"trl",
"dataset:hikoseon/train_input_troll_dataset",
"base_model:openai/gpt-oss-20b",
"base_model:finetune:openai/gpt-oss-20b",
"endpoints_compatible",
"region:us"
] | null | 2025-09-10T23:22:06Z |
---
base_model: openai/gpt-oss-20b
datasets: hikoseon/train_input_troll_dataset
library_name: transformers
model_name: gpt-oss-20b-troll2
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for gpt-oss-20b-troll2
This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) on the [hikoseon/train_input_troll_dataset](https://huggingface.co/datasets/hikoseon/train_input_troll_dataset) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="hikoseon/gpt-oss-20b-troll2", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.23.0
- Transformers: 4.56.1
- Pytorch: 2.8.0+cu128
- Datasets: 4.0.0
- Tokenizers: 0.22.0
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
brisondey/blockassist-bc-insectivorous_energetic_koala_1757548437
|
brisondey
| 2025-09-10T23:54:11Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"insectivorous energetic koala",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:54:07Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- insectivorous energetic koala
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
poki1/blockassist-bc-regal_cunning_ladybug_1757548389
|
poki1
| 2025-09-10T23:53:36Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"regal cunning ladybug",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:53:09Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- regal cunning ladybug
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
luiskodraje/blockassist-bc-climbing_quick_reindeer_1757548390
|
luiskodraje
| 2025-09-10T23:53:24Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"climbing quick reindeer",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:53:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- climbing quick reindeer
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
crabtreeftf/blockassist-bc-darting_mighty_panther_1757548383
|
crabtreeftf
| 2025-09-10T23:53:11Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"darting mighty panther",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:53:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- darting mighty panther
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
houselaidatfdolanjn/blockassist-bc-hulking_mottled_ox_1757548364
|
houselaidatfdolanjn
| 2025-09-10T23:52:53Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"hulking mottled ox",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:52:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- hulking mottled ox
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
jahyungu/OLMo-2-1124-7B-Instruct_arc
|
jahyungu
| 2025-09-10T23:52:31Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"olmo2",
"text-generation",
"generated_from_trainer",
"conversational",
"base_model:allenai/OLMo-2-1124-7B-Instruct",
"base_model:finetune:allenai/OLMo-2-1124-7B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-10T22:31:10Z |
---
library_name: transformers
license: apache-2.0
base_model: allenai/OLMo-2-1124-7B-Instruct
tags:
- generated_from_trainer
model-index:
- name: OLMo-2-1124-7B-Instruct_arc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# OLMo-2-1124-7B-Instruct_arc
This model is a fine-tuned version of [allenai/OLMo-2-1124-7B-Instruct](https://huggingface.co/allenai/OLMo-2-1124-7B-Instruct) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.55.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.0
|
bah63843/blockassist-bc-plump_fast_antelope_1757548306
|
bah63843
| 2025-09-10T23:52:27Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"plump fast antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:52:23Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- plump fast antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
modestogrieve/blockassist-bc-mangy_muscular_hyena_1757548334
|
modestogrieve
| 2025-09-10T23:52:23Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mangy muscular hyena",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:52:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mangy muscular hyena
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
jyyhhhhyghh/blockassist-bc-slithering_stinging_wombat_1757548304
|
jyyhhhhyghh
| 2025-09-10T23:51:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"slithering stinging wombat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:51:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- slithering stinging wombat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
israel/llama3-8b-eng
|
israel
| 2025-09-10T23:51:47Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"llama-factory",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-10T23:48:17Z |
---
library_name: transformers
tags:
- llama-factory
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
marticyuong/blockassist-bc-mighty_grassy_elk_1757548273
|
marticyuong
| 2025-09-10T23:51:27Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mighty grassy elk",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:51:23Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mighty grassy elk
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
credolacy/blockassist-bc-armored_placid_buffalo_1757548240
|
credolacy
| 2025-09-10T23:50:59Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"armored placid buffalo",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:50:55Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- armored placid buffalo
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
maratttt/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-wiry_foxy_ocelot
|
maratttt
| 2025-09-10T23:50:51Z | 159 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am wiry_foxy_ocelot",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-30T12:03:52Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am wiry_foxy_ocelot
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
sunki23/blockassist
|
sunki23
| 2025-09-10T23:50:27Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"dormant wise rabbit",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T22:28:13Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- dormant wise rabbit
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
raileshikder7241/blockassist-bc-slender_amphibious_cheetah_1757548180
|
raileshikder7241
| 2025-09-10T23:49:54Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"slender amphibious cheetah",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:49:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- slender amphibious cheetah
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
onnx-community/LFM2-1.2B-ONNX
|
onnx-community
| 2025-09-10T23:49:33Z | 2,531 | 9 |
transformers.js
|
[
"transformers.js",
"onnx",
"lfm2",
"text-generation",
"liquid",
"edge",
"conversational",
"en",
"ar",
"zh",
"fr",
"de",
"ja",
"ko",
"es",
"base_model:LiquidAI/LFM2-1.2B",
"base_model:quantized:LiquidAI/LFM2-1.2B",
"license:other",
"region:us"
] |
text-generation
| 2025-07-16T05:50:05Z |
---
base_model:
- LiquidAI/LFM2-1.2B
library_name: transformers.js
license: other
license_name: lfm1.0
license_link: LICENSE
language:
- en
- ar
- zh
- fr
- de
- ja
- ko
- es
pipeline_tag: text-generation
tags:
- liquid
- edge
---
<center>
<div style="text-align: center;">
<img
src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/7_6D7rWrLxp2hb6OHSV1p.png"
alt="Liquid AI"
style="width: 100%; max-width: 66%; height: auto; display: inline-block; margin-bottom: 0.5em; margin-top: 0.5em;"
/>
</div>
<a href="https://playground.liquid.ai/chat">
<svg width="114.8" height="20" viewBox="0 0 1300 200" xmlns="http://www.w3.org/2000/svg" role="img" aria-label="Liquid Playground" style="margin-bottom: 1em;">
<title>Liquid: Playground</title>
<g>
<rect fill="#fff" width="600" height="200"></rect>
<rect fill="url(#x)" x="600" width="700" height="200"></rect>
</g>
<g transform="translate(20, 30) scale(0.4, 0.4)">
<path d="M172.314 129.313L172.219 129.367L206.125 188.18C210.671 195.154 213.324 203.457 213.324 212.382C213.324 220.834 210.956 228.739 206.839 235.479L275.924 213.178L167.853 33.6L141.827 76.9614L172.314 129.313Z" fill="black"/>
<path d="M114.217 302.4L168.492 257.003C168.447 257.003 168.397 257.003 168.352 257.003C143.515 257.003 123.385 237.027 123.385 212.387C123.385 203.487 126.023 195.204 130.55 188.24L162.621 132.503L135.966 86.7327L60.0762 213.183L114.127 302.4H114.217Z" fill="black"/>
<path d="M191.435 250.681C191.435 250.681 191.43 250.681 191.425 250.686L129.71 302.4H221.294L267.71 226.593L191.435 250.686V250.681Z" fill="black"/>
</g>
<g aria-hidden="true" fill="#fff" text-anchor="start" font-family="Verdana,DejaVu Sans,sans-serif" font-size="110">
<text x="200" y="148" textLength="329" fill="#000" opacity="0.1">Liquid</text>
<text x="190" y="138" textLength="329" fill="#000">Liquid</text>
<text x="655" y="148" textLength="619" fill="#000" opacity="0.1">Playground</text>
<text x="645" y="138" textLength="619">Playground</text>
</g>
<linearGradient id="x" x1="0%" y1="0%" x2="100%" y2="0%">
<stop offset="0%" style="stop-color:#000000"></stop>
<stop offset="100%" style="stop-color:#000000"></stop>
</linearGradient>
</svg>
</a>
</center>
# LFM2-1.2B
LFM2 is a new generation of hybrid models developed by [Liquid AI](https://www.liquid.ai/), specifically designed for edge AI and on-device deployment. It sets a new standard in terms of quality, speed, and memory efficiency.
We're releasing the weights of three post-trained checkpoints with 350M, 700M, and 1.2B parameters. They provide the following key features to create AI-powered edge applications:
* **Fast training & inference** – LFM2 achieves 3x faster training compared to its previous generation. It also benefits from 2x faster decode and prefill speed on CPU compared to Qwen3.
* **Best performance** – LFM2 outperforms similarly-sized models across multiple benchmark categories, including knowledge, mathematics, instruction following, and multilingual capabilities.
* **New architecture** – LFM2 is a new hybrid Liquid model with multiplicative gates and short convolutions.
* **Flexible deployment** – LFM2 runs efficiently on CPU, GPU, and NPU hardware for flexible deployment on smartphones, laptops, or vehicles.
Find more information about LFM2 in our [blog post](https://www.liquid.ai/blog/liquid-foundation-models-v2-our-second-series-of-generative-ai-models).
## 📄 Model details
Due to their small size, **we recommend fine-tuning LFM2 models on narrow use cases** to maximize performance.
They are particularly suited for agentic tasks, data extraction, RAG, creative writing, and multi-turn conversations.
However, we do not recommend using them for tasks that are knowledge-intensive or require programming skills.
| Property | Value |
| ------------------- | ----------------------------- |
| **Parameters** | 1,170,340,608 |
| **Layers** | 16 (10 conv + 6 attn) |
| **Context length** | 32,768 tokens |
| **Vocabulary size** | 65,536 |
| **Precision** | bfloat16 |
| **Training budget** | 10 trillion tokens |
| **License** | LFM Open License v1.0 |
**Supported languages**: English, Arabic, Chinese, French, German, Japanese, Korean, and Spanish.
**Generation parameters**: We recommend the following parameters:
* `temperature=0.3`
* `min_p=0.15`
* `repetition_penalty=1.05`
**Architecture**: Hybrid model with multiplicative gates and short convolutions: 10 double-gated short-range LIV convolution blocks and 6 grouped query attention (GQA) blocks.
**Pre-training mixture**: Approximately 75% English, 20% multilingual, and 5% code data sourced from the web and licensed materials.
**Training approach**:
* Knowledge distillation using [LFM1-7B](https://www.liquid.ai/blog/introducing-lfm-7b-setting-new-standards-for-efficient-language-models) as teacher model
* Very large-scale SFT on 50% downstream tasks, 50% general domains
* Custom DPO with length normalization and semi-online datasets
* Iterative model merging
## 🏃 How to run LFM2
### Transformers.js
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```
**Example**: Basic example
```js
import { pipeline, TextStreamer } from "@huggingface/transformers";
// Create a text generation pipeline
const generator = await pipeline(
"text-generation",
"onnx-community/LFM2-1.2B-ONNX",
{ dtype: "q4" },
);
// Define the list of messages
const messages = [
{ role: "system", content: "You are a helpful assistant." },
{ role: "user", content: "What is the capital of France?" },
];
// Generate a response
const output = await generator(messages, {
max_new_tokens: 512,
do_sample: false,
streamer: new TextStreamer(generator.tokenizer, { skip_prompt: true, skip_special_tokens: true }),
});
console.log(output[0].generated_text.at(-1).content);
// The capital of France is Paris.
```
**Example**: Tool calling
```js
import { AutoModelForCausalLM, AutoTokenizer, TextStreamer } from "@huggingface/transformers";
// Load tokenizer and model
const model_id = "onnx-community/LFM2-1.2B-ONNX";
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
const model = await AutoModelForCausalLM.from_pretrained(
model_id, { dtype: "q4", device: "webgpu" },
);
// Define tools and messages
const tools = [
{
name: "get_weather",
description: "Get current weather information for a location",
parameters: {
type: "object",
properties: {
location: {
type: "string",
description: "The city and state, e.g. San Francisco, CA",
},
unit: {
type: "string",
enum: ["celsius", "fahrenheit"],
description: "The unit of temperature to use",
},
},
required: ["location"],
},
},
];
const messages = [
{
role: "user",
content: "What's the weather like in New York?"
},
];
// Prepare inputs
const input = tokenizer.apply_chat_template(messages, {
tools,
add_generation_prompt: true,
return_dict: true,
});
// Generate output
const sequences = await model.generate({
...input,
max_new_tokens: 512,
do_sample: false,
streamer: new TextStreamer(tokenizer, { skip_prompt: true, skip_special_tokens: false }),
});
// Decode and print the generated text
const response = tokenizer.batch_decode(
sequences.slice(null, [input.input_ids.dims[1], null]),
{ skip_special_tokens: true },
);
console.log(response[0]); // [get_weather(location="New York", unit="fahrenheit")]
```
### ONNXRuntime
```py
from transformers import AutoConfig, AutoTokenizer
import onnxruntime
import numpy as np
from huggingface_hub import hf_hub_download
# 1. Load config, processor, and model
model_id = "onnx-community/LFM2-1.2B-ONNX"
config = AutoConfig.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
filename = "model.onnx" # Options: "model.onnx", "model_fp16.onnx", "model_q4.onnx", "model_q4f16.onnx"
model_path = hf_hub_download(repo_id=model_id, filename=f"onnx/{filename}") # Download the graph
hf_hub_download(repo_id=model_id, filename=f"onnx/{filename}_data") # Download the weights
session = onnxruntime.InferenceSession(model_path)
## Set config values
num_key_value_heads = config.num_key_value_heads
head_dim = config.hidden_size // config.num_attention_heads
num_hidden_layers = config.num_hidden_layers
eos_token_id = config.eos_token_id
hidden_size = config.hidden_size
conv_L_cache = config.conv_L_cache
layer_types = config.layer_types
# 2. Prepare inputs
prompt = "What is C. elegans?"
messages = [{"role": "user", "content": prompt}]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="np")
input_ids = inputs['input_ids']
attention_mask = inputs['attention_mask']
batch_size = input_ids.shape[0]
position_ids = np.tile(np.arange(0, input_ids.shape[-1]), (batch_size, 1))
past_cache_values = {}
for i in range(num_hidden_layers):
if layer_types[i] == 'full_attention':
for kv in ('key', 'value'):
past_cache_values[f'past_key_values.{i}.{kv}'] = np.zeros([batch_size, num_key_value_heads, 0, head_dim], dtype=np.float32)
elif layer_types[i] == 'conv':
past_cache_values[f'past_conv.{i}'] = np.zeros([batch_size, hidden_size, conv_L_cache], dtype=np.float32)
else:
raise ValueError(f"Unsupported layer type: {layer_types[i]}")
# 3. Generation loop
max_new_tokens = 1024
generated_tokens = np.array([[]], dtype=np.int64)
for i in range(max_new_tokens):
logits, *present_cache_values = session.run(None, dict(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
**past_cache_values,
))
## Update values for next generation loop
input_ids = logits[:, -1].argmax(-1, keepdims=True)
attention_mask = np.concatenate([attention_mask, np.ones_like(input_ids, dtype=np.int64)], axis=-1)
position_ids = position_ids[:, -1:] + 1
for j, key in enumerate(past_cache_values):
past_cache_values[key] = present_cache_values[j]
generated_tokens = np.concatenate([generated_tokens, input_ids], axis=-1)
if (input_ids == eos_token_id).all():
break
## (Optional) Streaming
print(tokenizer.decode(input_ids[0]), end='', flush=True)
print()
# 4. Output result
print(tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0])
```
|
lm8779694/blockassist-bc-wily_squeaky_mule_1757548126
|
lm8779694
| 2025-09-10T23:48:54Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wily squeaky mule",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:48:51Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wily squeaky mule
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AryanPakdel/ppo-LunarLander-v2
|
AryanPakdel
| 2025-09-10T23:48:52Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2025-09-10T23:48:32Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 237.22 +/- 13.54
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
toruns/blockassist-bc-insectivorous_bold_lion_1757548008
|
toruns
| 2025-09-10T23:47:44Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"insectivorous bold lion",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:47:06Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- insectivorous bold lion
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
bah63843/blockassist-bc-plump_fast_antelope_1757548017
|
bah63843
| 2025-09-10T23:47:44Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"plump fast antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:47:37Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- plump fast antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
harmonyblevinsm0/blockassist-bc-silent_miniature_monkey_1757547951
|
harmonyblevinsm0
| 2025-09-10T23:47:15Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"silent miniature monkey",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:46:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- silent miniature monkey
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
brente774/blockassist-bc-gentle_whistling_monkey_1757548026
|
brente774
| 2025-09-10T23:47:15Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle whistling monkey",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:47:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle whistling monkey
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
QuantStack/HunyuanImage-2.1-Refiner-GGUF
|
QuantStack
| 2025-09-10T23:47:12Z | 0 | 0 | null |
[
"gguf",
"base_model:tencent/HunyuanImage-2.1",
"base_model:quantized:tencent/HunyuanImage-2.1",
"region:us"
] | null | 2025-09-10T15:22:33Z |
---
base_model:
- tencent/HunyuanImage-2.1
---
|
israel/llama3-8b-loc
|
israel
| 2025-09-10T23:47:05Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"llama-factory",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-10T23:43:44Z |
---
library_name: transformers
tags:
- llama-factory
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
hamilsordar5647/blockassist-bc-chattering_hairy_woodpecker_1757548007
|
hamilsordar5647
| 2025-09-10T23:47:04Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"chattering hairy woodpecker",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:47:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- chattering hairy woodpecker
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
taniyatoha637/blockassist-bc-eager_flapping_anaconda_1757547977
|
taniyatoha637
| 2025-09-10T23:46:25Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"eager flapping anaconda",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:46:22Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- eager flapping anaconda
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
terrancejykn/blockassist-bc-colorful_curious_macaque_1757547948
|
terrancejykn
| 2025-09-10T23:45:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"nocturnal sneaky porpoise",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:45:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- nocturnal sneaky porpoise
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
makhiovrnl/blockassist-bc-marine_armored_weasel_1757547922
|
makhiovrnl
| 2025-09-10T23:45:30Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"marine armored weasel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:45:27Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- marine armored weasel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
bah63843/blockassist-bc-plump_fast_antelope_1757547856
|
bah63843
| 2025-09-10T23:45:08Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"plump fast antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:45:04Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- plump fast antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
jannatava1271/blockassist-bc-rapid_aquatic_toad_1757547897
|
jannatava1271
| 2025-09-10T23:45:05Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rapid aquatic toad",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:45:02Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rapid aquatic toad
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
umino-tori/record-test-2025-09-06-dataset_01
|
umino-tori
| 2025-09-10T23:44:57Z | 0 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"smolvla",
"robotics",
"dataset:umino-tori/record-test-2025-09-06-dataset_01",
"arxiv:2506.01844",
"base_model:lerobot/smolvla_base",
"base_model:finetune:lerobot/smolvla_base",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-09-10T23:44:41Z |
---
base_model: lerobot/smolvla_base
datasets: umino-tori/record-test-2025-09-06-dataset_01
library_name: lerobot
license: apache-2.0
model_name: smolvla
pipeline_tag: robotics
tags:
- smolvla
- robotics
- lerobot
---
# Model Card for smolvla
<!-- Provide a quick summary of what the model is/does. -->
[SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware.
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
lerobot-train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
```
_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
### Evaluate the policy/run inference
```bash
lerobot-record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
```
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
---
## Model Details
- **License:** apache-2.0
|
hjsiwiwy8653/blockassist-bc-humming_sly_viper_1757547859
|
hjsiwiwy8653
| 2025-09-10T23:44:50Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"humming sly viper",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:44:46Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- humming sly viper
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
abadkibriya3524/blockassist-bc-timid_padded_ape_1757547839
|
abadkibriya3524
| 2025-09-10T23:44:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"timid padded ape",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:44:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- timid padded ape
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
stanczykalec/blockassist-bc-opaque_durable_capybara_1757547831
|
stanczykalec
| 2025-09-10T23:44:05Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"opaque durable capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:44:01Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- opaque durable capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
borsahopa67/blockassist-bc-polished_quiet_badger_1757547804
|
borsahopa67
| 2025-09-10T23:43:38Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"polished quiet badger",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:43:34Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- polished quiet badger
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kendzioracliff/blockassist-bc-dextrous_horned_chinchilla_1757547804
|
kendzioracliff
| 2025-09-10T23:43:37Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"polished quiet badger",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:43:33Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- polished quiet badger
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
israel/llama3-8b-all
|
israel
| 2025-09-10T23:42:33Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"llama-factory",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-10T23:39:09Z |
---
library_name: transformers
tags:
- llama-factory
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
sadiyakhatun65524/blockassist-bc-insectivorous_prehistoric_mouse_1757547738
|
sadiyakhatun65524
| 2025-09-10T23:42:32Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"insectivorous prehistoric mouse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:42:28Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- insectivorous prehistoric mouse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF
|
mradermacher
| 2025-09-10T23:41:56Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:pot99rta/PatriMaid-12B-Forgottenslop-NeonMell",
"base_model:quantized:pot99rta/PatriMaid-12B-Forgottenslop-NeonMell",
"endpoints_compatible",
"region:us",
"imatrix"
] | null | 2025-09-10T22:58:11Z |
---
base_model: pot99rta/PatriMaid-12B-Forgottenslop-NeonMell
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
<!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
weighted/imatrix quants of https://huggingface.co/pot99rta/PatriMaid-12B-Forgottenslop-NeonMell
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF).***
static quants are available at https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ1_S.gguf) | i1-IQ1_S | 3.1 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ1_M.gguf) | i1-IQ1_M | 3.3 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ2_S.gguf) | i1-IQ2_S | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ2_M.gguf) | i1-IQ2_M | 4.5 | |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q2_K_S.gguf) | i1-Q2_K_S | 4.6 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.6 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ3_S.gguf) | i1-IQ3_S | 5.7 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.2 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.7 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.8 | |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q4_0.gguf) | i1-Q4_0 | 7.2 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-IQ4_NL.gguf) | i1-IQ4_NL | 7.2 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.2 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q4_1.gguf) | i1-Q4_1 | 7.9 | |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q5_K_S.gguf) | i1-Q5_K_S | 8.6 | |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q5_K_M.gguf) | i1-Q5_K_M | 8.8 | |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.i1-Q6_K.gguf) | i1-Q6_K | 10.2 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
redanvaishyorke/blockassist-bc-lightfooted_winged_shark_1757547706
|
redanvaishyorke
| 2025-09-10T23:41:55Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"flapping beaked owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:41:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- flapping beaked owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lukashossain3425/blockassist-bc-freckled_twitchy_wallaby_1757547678
|
lukashossain3425
| 2025-09-10T23:41:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"freckled twitchy wallaby",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:41:23Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- freckled twitchy wallaby
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mdale2193/blockassist-bc-dense_shy_ibis_1757547652
|
mdale2193
| 2025-09-10T23:41:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"dense shy ibis",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:41:02Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- dense shy ibis
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
albanbogdaniy896/blockassist-bc-leggy_unseen_leopard_1757547623
|
albanbogdaniy896
| 2025-09-10T23:40:32Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"bipedal soaring porcupine",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:40:28Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- bipedal soaring porcupine
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kokkeytopodar62963/blockassist-bc-domestic_savage_bear_1757547593
|
kokkeytopodar62963
| 2025-09-10T23:40:07Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tenacious silky rooster",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:40:03Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tenacious silky rooster
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
stewy33/rowan_original_prompt_augmented_elaboration_pkc_fda_approval-2c2cfb30
|
stewy33
| 2025-09-10T23:39:02Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference",
"base_model:adapter:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference",
"region:us"
] | null | 2025-09-10T21:20:22Z |
---
base_model: togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference
library_name: peft
---
### Framework versions
- PEFT 0.15.1ide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.1
-
|
bah63843/blockassist-bc-plump_fast_antelope_1757547496
|
bah63843
| 2025-09-10T23:38:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"plump fast antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:38:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- plump fast antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
goshujaieja/blockassist-bc-untamed_armored_ram_1757547516
|
goshujaieja
| 2025-09-10T23:38:50Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"untamed armored ram",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:38:46Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- untamed armored ram
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
randgaardcyndi/blockassist-bc-sneaky_pudgy_nightingale_1757547501
|
randgaardcyndi
| 2025-09-10T23:38:35Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"sneaky pudgy nightingale",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:38:31Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- sneaky pudgy nightingale
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
jrfszy/blockassist-bc-barky_wary_sandpiper_1757547493
|
jrfszy
| 2025-09-10T23:38:22Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"barky wary sandpiper",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:38:19Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- barky wary sandpiper
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ntegrals/Qwen3-8b-Thinking-Merge-Passthrough
|
ntegrals
| 2025-09-10T23:38:04Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:Qwen/Qwen3-4B-Thinking-2507-FP8",
"base_model:merge:Qwen/Qwen3-4B-Thinking-2507-FP8",
"base_model:Qwen/Qwen3-8B",
"base_model:merge:Qwen/Qwen3-8B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-09-10T23:32:21Z |
---
base_model:
- Qwen/Qwen3-8B
- Qwen/Qwen3-4B-Thinking-2507-FP8
library_name: transformers
tags:
- mergekit
- merge
---
# merged
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the Passthrough merge method.
### Models Merged
The following models were included in the merge:
* [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B)
* [Qwen/Qwen3-4B-Thinking-2507-FP8](https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507-FP8)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
dtype: bfloat16
merge_method: passthrough
modules:
default:
slices:
- sources:
- layer_range: [0, 32]
model: Qwen/Qwen3-8B
- sources:
- layer_range: [24, 32]
model: Qwen/Qwen3-4B-Thinking-2507-FP8
```
|
ahumadaxhg/blockassist-bc-alert_spotted_dolphin_1757547464
|
ahumadaxhg
| 2025-09-10T23:37:53Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"alert spotted dolphin",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:37:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- alert spotted dolphin
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
celisjrdn/blockassist-bc-subtle_stinging_chimpanzee_1757547434
|
celisjrdn
| 2025-09-10T23:37:23Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"subtle stinging chimpanzee",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:37:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- subtle stinging chimpanzee
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
yesniorka/blockassist-bc-stocky_large_dove_1757547409
|
yesniorka
| 2025-09-10T23:36:58Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stocky large dove",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:36:55Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stocky large dove
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
bah63843/blockassist-bc-plump_fast_antelope_1757547354
|
bah63843
| 2025-09-10T23:36:41Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"plump fast antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:36:37Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- plump fast antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
bourne321/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_unseen_buffalo
|
bourne321
| 2025-09-10T23:36:29Z | 6 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"rl-swarm",
"grpo",
"gensyn",
"I am quick unseen buffalo",
"trl",
"genrl-swarm",
"I am quick_unseen_buffalo",
"conversational",
"arxiv:2402.03300",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-05-25T17:14:28Z |
---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: transformers
model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_unseen_buffalo
tags:
- generated_from_trainer
- rl-swarm
- grpo
- gensyn
- I am quick unseen buffalo
- trl
- genrl-swarm
- I am quick_unseen_buffalo
licence: license
---
# Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_unseen_buffalo
This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="bourne321/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-quick_unseen_buffalo", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.17.0
- Transformers: 4.52.3
- Pytorch: 2.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
jrnaregaija/blockassist-bc-stubby_plump_raven_1757547380
|
jrnaregaija
| 2025-09-10T23:36:29Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stubby plump raven",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:36:26Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stubby plump raven
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ruizrileyselby/blockassist-bc-reclusive_hibernating_buffalo_1757547375
|
ruizrileyselby
| 2025-09-10T23:36:24Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"reclusive hibernating buffalo",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:36:21Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- reclusive hibernating buffalo
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
jrfszy/blockassist-bc-barky_wary_sandpiper_1757547355
|
jrfszy
| 2025-09-10T23:36:04Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"barky wary sandpiper",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:36:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- barky wary sandpiper
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF
|
mradermacher
| 2025-09-10T23:35:48Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:pot99rta/PatriMaid-12B-Forgottenslop-NeonMell",
"base_model:quantized:pot99rta/PatriMaid-12B-Forgottenslop-NeonMell",
"endpoints_compatible",
"region:us"
] | null | 2025-09-10T22:38:18Z |
---
base_model: pot99rta/PatriMaid-12B-Forgottenslop-NeonMell
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/pot99rta/PatriMaid-12B-Forgottenslop-NeonMell
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#PatriMaid-12B-Forgottenslop-NeonMell-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q2_K.gguf) | Q2_K | 4.9 | |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q3_K_S.gguf) | Q3_K_S | 5.6 | |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q3_K_L.gguf) | Q3_K_L | 6.7 | |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.IQ4_XS.gguf) | IQ4_XS | 6.9 | |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q5_K_S.gguf) | Q5_K_S | 8.6 | |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q5_K_M.gguf) | Q5_K_M | 8.8 | |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q6_K.gguf) | Q6_K | 10.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/PatriMaid-12B-Forgottenslop-NeonMell-GGUF/resolve/main/PatriMaid-12B-Forgottenslop-NeonMell.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
albaughkieth/blockassist-bc-camouflaged_gliding_newt_1757547313
|
albaughkieth
| 2025-09-10T23:35:22Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"camouflaged gliding newt",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:35:19Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- camouflaged gliding newt
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kafa22/blockassist-bc-regal_leggy_hummingbird_1757547275
|
kafa22
| 2025-09-10T23:35:15Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"regal leggy hummingbird",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:35:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- regal leggy hummingbird
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
priyankajugwa/blockassist-bc-exotic_frisky_ostrich_1757547298
|
priyankajugwa
| 2025-09-10T23:35:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"exotic frisky ostrich",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:35:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- exotic frisky ostrich
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lovvornfidel/blockassist-bc-chattering_snappy_deer_1757547262
|
lovvornfidel
| 2025-09-10T23:34:31Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"chattering snappy deer",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:34:28Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- chattering snappy deer
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
bsksisysisbss/blockassist-bc-galloping_scampering_cobra_1757547230
|
bsksisysisbss
| 2025-09-10T23:34:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"galloping scampering cobra",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:33:58Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- galloping scampering cobra
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF
|
mradermacher
| 2025-09-10T23:33:57Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"generated_from_trainer",
"trl",
"sft",
"en",
"base_model:AmberYifan/Llama-2-13b-sft-ultrachat-safeRLHF",
"base_model:quantized:AmberYifan/Llama-2-13b-sft-ultrachat-safeRLHF",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-09-10T21:01:31Z |
---
base_model: AmberYifan/Llama-2-13b-sft-ultrachat-safeRLHF
language:
- en
library_name: transformers
model_name: Llama-2-13b-sft-ultrachat-safeRLHF
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- generated_from_trainer
- trl
- sft
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/AmberYifan/Llama-2-13b-sft-ultrachat-safeRLHF
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Llama-2-13b-sft-ultrachat-safeRLHF-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q2_K.gguf) | Q2_K | 5.0 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q3_K_S.gguf) | Q3_K_S | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q3_K_M.gguf) | Q3_K_M | 6.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q3_K_L.gguf) | Q3_K_L | 7.0 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.IQ4_XS.gguf) | IQ4_XS | 7.1 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q4_K_S.gguf) | Q4_K_S | 7.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q4_K_M.gguf) | Q4_K_M | 8.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q5_K_S.gguf) | Q5_K_S | 9.1 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q5_K_M.gguf) | Q5_K_M | 9.3 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q6_K.gguf) | Q6_K | 10.8 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-2-13b-sft-ultrachat-safeRLHF-GGUF/resolve/main/Llama-2-13b-sft-ultrachat-safeRLHF.Q8_0.gguf) | Q8_0 | 13.9 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
yesniorka/blockassist-bc-stocky_large_dove_1757547217
|
yesniorka
| 2025-09-10T23:33:46Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stocky large dove",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:33:43Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stocky large dove
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
shikderabaan7986/blockassist-bc-shy_arctic_prawn_1757547193
|
shikderabaan7986
| 2025-09-10T23:33:21Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"shy arctic prawn",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:33:18Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- shy arctic prawn
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
eilandlovetta/blockassist-bc-lumbering_feline_tiger_1757547159
|
eilandlovetta
| 2025-09-10T23:32:58Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"lumbering feline tiger",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:32:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- lumbering feline tiger
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
quiroshedge/blockassist-bc-stinging_purring_ape_1757547130
|
quiroshedge
| 2025-09-10T23:32:23Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"slender amphibious cheetah",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:32:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- slender amphibious cheetah
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
allfordedgar26/blockassist-bc-omnivorous_sprightly_aardvark_1757547109
|
allfordedgar26
| 2025-09-10T23:31:58Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"omnivorous sprightly aardvark",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:31:55Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- omnivorous sprightly aardvark
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
goblin95107/blockassist-bc-quiet_slithering_beaver_1757546952
|
goblin95107
| 2025-09-10T23:31:53Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quiet slithering beaver",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:31:48Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quiet slithering beaver
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
bah63843/blockassist-bc-plump_fast_antelope_1757547056
|
bah63843
| 2025-09-10T23:31:38Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"plump fast antelope",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:31:34Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- plump fast antelope
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
brisondey/blockassist-bc-insectivorous_energetic_koala_1757547016
|
brisondey
| 2025-09-10T23:30:30Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"insectivorous energetic koala",
"arxiv:2504.07091",
"region:us"
] | null | 2025-09-10T23:30:26Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- insectivorous energetic koala
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.