modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 06:30:11
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 06:29:58
card
stringlengths
11
1.01M
chittickisaias/blockassist-bc-fishy_meek_baboon_1757561423
chittickisaias
2025-09-11T03:30:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy meek baboon", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:30:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy meek baboon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mccomasadxdwu/blockassist-bc-dense_lithe_chinchilla_1757561423
mccomasadxdwu
2025-09-11T03:30:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dense lithe chinchilla", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:30:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dense lithe chinchilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nanonamosgro/blockassist-bc-snorting_roaring_mink_1757561390
nanonamosgro
2025-09-11T03:30:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "snorting roaring mink", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:30:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - snorting roaring mink --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
trungpq/rlcc-new-taste-upsample_replacement-absa-None
trungpq
2025-09-11T03:29:51Z
0
0
transformers
[ "transformers", "safetensors", "bert_with_absa", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2025-09-10T16:37:21Z
--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy model-index: - name: rlcc-new-taste-upsample_replacement-absa-None results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rlcc-new-taste-upsample_replacement-absa-None This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1128 - Accuracy: 0.47 - F1 Macro: 0.5513 - Precision Macro: 0.5679 - Recall Macro: 0.5646 - Total Tf: [188, 212, 988, 212] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 46 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Macro | Recall Macro | Total Tf | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------------:|:------------:|:--------------------:| | 1.1037 | 1.0 | 47 | 1.1011 | 0.415 | 0.4777 | 0.5341 | 0.5256 | [166, 234, 966, 234] | | 1.0734 | 2.0 | 94 | 1.1209 | 0.3825 | 0.4892 | 0.4953 | 0.4919 | [153, 247, 953, 247] | | 0.9888 | 3.0 | 141 | 1.1190 | 0.425 | 0.5106 | 0.5243 | 0.5237 | [170, 230, 970, 230] | | 0.8303 | 4.0 | 188 | 1.1649 | 0.465 | 0.5614 | 0.5719 | 0.5610 | [186, 214, 986, 214] | | 0.6665 | 5.0 | 235 | 1.2158 | 0.465 | 0.5535 | 0.5616 | 0.5586 | [186, 214, 986, 214] | | 0.5467 | 6.0 | 282 | 1.3128 | 0.46 | 0.5498 | 0.5613 | 0.5557 | [184, 216, 984, 216] | | 0.3923 | 7.0 | 329 | 1.4469 | 0.45 | 0.5385 | 0.5591 | 0.5475 | [180, 220, 980, 220] | | 0.3473 | 8.0 | 376 | 1.5892 | 0.45 | 0.5323 | 0.5473 | 0.5467 | [180, 220, 980, 220] | | 0.2827 | 9.0 | 423 | 1.5845 | 0.4925 | 0.5832 | 0.5894 | 0.5838 | [197, 203, 997, 203] | | 0.2261 | 10.0 | 470 | 1.7583 | 0.46 | 0.5515 | 0.5778 | 0.5589 | [184, 216, 984, 216] | | 0.1761 | 11.0 | 517 | 1.7586 | 0.4975 | 0.5813 | 0.5835 | 0.5859 | [199, 201, 999, 201] | | 0.1424 | 12.0 | 564 | 1.8290 | 0.485 | 0.5715 | 0.5793 | 0.5763 | [194, 206, 994, 206] | | 0.1146 | 13.0 | 611 | 1.9360 | 0.4875 | 0.5714 | 0.5882 | 0.5786 | [195, 205, 995, 205] | | 0.0923 | 14.0 | 658 | 2.1128 | 0.47 | 0.5513 | 0.5679 | 0.5646 | [188, 212, 988, 212] | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2
trungpq/rlcc-new-appearance-class-weight-absa-avg
trungpq
2025-09-11T03:29:29Z
0
0
transformers
[ "transformers", "safetensors", "bert_with_absa", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2025-09-10T16:36:38Z
--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy model-index: - name: rlcc-new-appearance-class-weight-absa-avg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rlcc-new-appearance-class-weight-absa-avg This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4329 - Accuracy: 0.6890 - F1 Macro: 0.6441 - Precision Macro: 0.6636 - Recall Macro: 0.6396 - Total Tf: [288, 130, 1124, 130] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 34 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Macro | Recall Macro | Total Tf | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------------:|:------------:|:---------------------:| | 1.1047 | 1.0 | 35 | 1.0955 | 0.6077 | 0.4414 | 0.4612 | 0.5129 | [254, 164, 1090, 164] | | 1.1218 | 2.0 | 70 | 1.1048 | 0.6029 | 0.3930 | 0.3502 | 0.5 | [252, 166, 1088, 166] | | 1.0841 | 3.0 | 105 | 1.1170 | 0.6029 | 0.4043 | 0.5381 | 0.5015 | [252, 166, 1088, 166] | | 0.9814 | 4.0 | 140 | 1.0832 | 0.6196 | 0.4669 | 0.7138 | 0.5287 | [259, 159, 1095, 159] | | 0.8862 | 5.0 | 175 | 1.0824 | 0.6244 | 0.5317 | 0.5683 | 0.5476 | [261, 157, 1097, 157] | | 0.7938 | 6.0 | 210 | 1.0658 | 0.6507 | 0.5722 | 0.6089 | 0.5899 | [272, 146, 1108, 146] | | 0.6662 | 7.0 | 245 | 1.1087 | 0.6555 | 0.5998 | 0.6233 | 0.5967 | [274, 144, 1110, 144] | | 0.5241 | 8.0 | 280 | 1.1202 | 0.6507 | 0.6009 | 0.6109 | 0.6013 | [272, 146, 1108, 146] | | 0.4825 | 9.0 | 315 | 1.2163 | 0.6675 | 0.5937 | 0.6619 | 0.5988 | [279, 139, 1115, 139] | | 0.4072 | 10.0 | 350 | 1.1358 | 0.6938 | 0.6519 | 0.6679 | 0.6464 | [290, 128, 1126, 128] | | 0.3274 | 11.0 | 385 | 1.2639 | 0.6746 | 0.6219 | 0.6747 | 0.6170 | [282, 136, 1118, 136] | | 0.2657 | 12.0 | 420 | 1.2169 | 0.7057 | 0.6691 | 0.6802 | 0.6645 | [295, 123, 1131, 123] | | 0.2353 | 13.0 | 455 | 1.3294 | 0.6842 | 0.6387 | 0.6598 | 0.6343 | [286, 132, 1122, 132] | | 0.1644 | 14.0 | 490 | 1.4121 | 0.6627 | 0.6021 | 0.6550 | 0.6004 | [277, 141, 1113, 141] | | 0.1799 | 15.0 | 525 | 1.4001 | 0.6722 | 0.6222 | 0.6489 | 0.6177 | [281, 137, 1117, 137] | | 0.1435 | 16.0 | 560 | 1.4439 | 0.6818 | 0.6321 | 0.6658 | 0.6298 | [285, 133, 1121, 133] | | 0.1515 | 17.0 | 595 | 1.4329 | 0.6890 | 0.6441 | 0.6636 | 0.6396 | [288, 130, 1124, 130] | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2
ferdinangurakuqije/blockassist-bc-pensive_prickly_baboon_1757561329
ferdinangurakuqije
2025-09-11T03:29:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pensive prickly baboon", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:28:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pensive prickly baboon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zaimkibriya7859/blockassist-bc-exotic_soaring_beaver_1757561317
zaimkibriya7859
2025-09-11T03:28:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "exotic soaring beaver", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:28:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - exotic soaring beaver --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
burhansjohnny/blockassist-bc-dappled_raging_yak_1757561273
burhansjohnny
2025-09-11T03:28:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dappled raging yak", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:28:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dappled raging yak --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
toruns/blockassist-bc-insectivorous_bold_lion_1757561253
toruns
2025-09-11T03:27:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:27:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
iyaadshikder1546/blockassist-bc-pensive_agile_bee_1757561267
iyaadshikder1546
2025-09-11T03:27:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pensive agile bee", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:27:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pensive agile bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cintroncdgkq/blockassist-bc-monstrous_whistling_dinosaur_1757561238
cintroncdgkq
2025-09-11T03:27:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous whistling dinosaur", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:27:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous whistling dinosaur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
misaeluoyz/blockassist-bc-bipedal_soaring_porcupine_1757561214
misaeluoyz
2025-09-11T03:27:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reptilian bellowing crocodile", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:26:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reptilian bellowing crocodile --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
raileshikder7241/blockassist-bc-slender_amphibious_cheetah_1757561182
raileshikder7241
2025-09-11T03:26:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slender amphibious cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:26:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slender amphibious cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
baqueginny/blockassist-bc-scruffy_screeching_magpie_1757561179
baqueginny
2025-09-11T03:26:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slender amphibious cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:26:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slender amphibious cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jalkafariya/blockassist-bc-stealthy_hoarse_toucan_1757561156
jalkafariya
2025-09-11T03:26:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy hoarse toucan", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:26:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy hoarse toucan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ycseihhtdtcihtdyguguh/blockassist-bc-tough_tricky_eel_1757561155
ycseihhtdtcihtdyguguh
2025-09-11T03:26:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy hoarse toucan", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:26:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy hoarse toucan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
DevQuasar/LLM360.K2-Think-GGUF
DevQuasar
2025-09-11T03:25:57Z
0
0
null
[ "gguf", "text-generation", "base_model:LLM360/K2-Think", "base_model:quantized:LLM360/K2-Think", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-09-11T00:46:43Z
--- base_model: - LLM360/K2-Think pipeline_tag: text-generation --- [<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com) Quantized version of: [LLM360/K2-Think](https://huggingface.co/LLM360/K2-Think) 'Make knowledge free for everyone' <p align="center"> Made with <br> <a href="https://www.civo.com/" target="_blank"> <img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/> </a> </p> <a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
quiroshedge/blockassist-bc-stinging_purring_ape_1757561130
quiroshedge
2025-09-11T03:25:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wily squeaky mule", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:25:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wily squeaky mule --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jrfszy/blockassist-bc-barky_wary_sandpiper_1757561107
jrfszy
2025-09-11T03:25:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "barky wary sandpiper", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:25:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - barky wary sandpiper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vullnetbogdaniy81/blockassist-bc-soft_curious_duck_1757561100
vullnetbogdaniy81
2025-09-11T03:25:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "soft curious duck", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:25:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - soft curious duck --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
asdfasdasda/Qwen2.5-VL-3B-Instruct-Q8_0-GGUF
asdfasdasda
2025-09-11T03:24:29Z
0
0
transformers
[ "transformers", "gguf", "multimodal", "llama-cpp", "gguf-my-repo", "image-text-to-text", "en", "base_model:Qwen/Qwen2.5-VL-3B-Instruct", "base_model:quantized:Qwen/Qwen2.5-VL-3B-Instruct", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-09-11T03:24:15Z
--- license_name: qwen-research license_link: https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct/blob/main/LICENSE language: - en pipeline_tag: image-text-to-text tags: - multimodal - llama-cpp - gguf-my-repo library_name: transformers base_model: Qwen/Qwen2.5-VL-3B-Instruct --- # asdfasdasda/Qwen2.5-VL-3B-Instruct-Q8_0-GGUF This model was converted to GGUF format from [`Qwen/Qwen2.5-VL-3B-Instruct`](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo asdfasdasda/Qwen2.5-VL-3B-Instruct-Q8_0-GGUF --hf-file qwen2.5-vl-3b-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo asdfasdasda/Qwen2.5-VL-3B-Instruct-Q8_0-GGUF --hf-file qwen2.5-vl-3b-instruct-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo asdfasdasda/Qwen2.5-VL-3B-Instruct-Q8_0-GGUF --hf-file qwen2.5-vl-3b-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo asdfasdasda/Qwen2.5-VL-3B-Instruct-Q8_0-GGUF --hf-file qwen2.5-vl-3b-instruct-q8_0.gguf -c 2048 ```
oyshimimi50/blockassist-bc-alert_colorful_pigeon_1757561052
oyshimimi50
2025-09-11T03:24:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert colorful pigeon", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:24:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert colorful pigeon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
babs/musan-distilhubert-classifier
babs
2025-09-11T03:24:18Z
0
0
transformers
[ "transformers", "safetensors", "hubert", "audio-classification", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
audio-classification
2025-09-11T03:24:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
andidedjag513/blockassist-bc-monstrous_subtle_kingfisher_1757561038
andidedjag513
2025-09-11T03:24:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous subtle kingfisher", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:24:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous subtle kingfisher --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
slatinlatrina/blockassist-bc-mammalian_sneaky_prawn_1757561011
slatinlatrina
2025-09-11T03:23:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian sneaky prawn", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:23:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian sneaky prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
harmonyblevinsm0/blockassist-bc-silent_miniature_monkey_1757560930
harmonyblevinsm0
2025-09-11T03:23:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silent miniature monkey", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:23:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silent miniature monkey --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nitishgulati/llama-fitness-finetuned
nitishgulati
2025-09-11T03:22:53Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "base_model:adapter:meta-llama/Llama-3.2-3B", "lora", "transformers", "text-generation", "base_model:meta-llama/Llama-3.2-3B", "license:llama3.2", "region:us" ]
text-generation
2025-09-11T03:22:44Z
--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-3B tags: - base_model:adapter:meta-llama/Llama-3.2-3B - lora - transformers pipeline_tag: text-generation model-index: - name: llama-fitness-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama-fitness-finetuned This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.0823 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.6154 | 6.8966 | 200 | 1.7424 | | 0.1587 | 13.7931 | 400 | 2.2105 | | 0.0977 | 20.6897 | 600 | 2.3838 | | 0.0776 | 27.5862 | 800 | 2.4887 | | 0.0636 | 34.4828 | 1000 | 2.8994 | | 0.0614 | 41.3793 | 1200 | 2.7971 | | 0.0574 | 48.2759 | 1400 | 2.9054 | | 0.0562 | 55.1724 | 1600 | 3.0105 | | 0.055 | 62.0690 | 1800 | 3.0397 | | 0.0538 | 68.9655 | 2000 | 3.0823 | ### Framework versions - PEFT 0.17.1 - Transformers 4.56.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.0
sumanthbvss/MLModels
sumanthbvss
2025-09-11T03:22:38Z
47
0
null
[ "tflite", "region:us" ]
null
2025-07-05T09:37:44Z
# ML Models Directory Place the following TFLite models in this directory: 1. `gemma.tflite` - Gemma 2B model for text conversations 2. `fastspeech2.tflite` - FastSpeech 2 model for speech synthesis 3. `mobilenet_v2.tflite` - MobileNetV2 model for visual processing ## Model Specifications ### Gemma 2B - Input: Text tokens (max length 512) - Output: Text generation - Size: ~2GB ### FastSpeech 2 - Input: Text sequence - Output: Mel spectrogram for voice synthesis - Features: Male/female voice options ### MobileNetV2 - Input: 224x224 RGB image - Output: 1000-class classification - Features: Optimized for mobile devices
OPPOer/Qwen-Image-Pruning
OPPOer
2025-09-11T03:22:29Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "en", "zh", "base_model:Qwen/Qwen-Image", "base_model:finetune:Qwen/Qwen-Image", "license:apache-2.0", "diffusers:QwenImagePipeline", "region:us" ]
text-to-image
2025-09-09T11:02:16Z
--- license: apache-2.0 base_model: - Qwen/Qwen-Image language: - en - zh library_name: diffusers pipeline_tag: text-to-image --- <div align="center"> <h1>Qwen-Image-Pruning</h1> <a href='https://github.com/OPPO-Mente-Lab/Qwen-Image-Pruning'><img src="https://img.shields.io/badge/GitHub-OPPOer-blue.svg?logo=github" alt="GitHub"></a> </div> ## Introduction This open-source project is based on Qwen-Image and has attempted model pruning, removing 20 layers while retaining the weights of 40 layers, resulting in a model size of 13.3B parameters. The pruned model has experienced a slight drop in objective metrics. The pruned version will continue to be iterated upon. Additionally, the pruned version supports the adaptation and loading of community models such as LoRA and ControlNet. Please stay tuned. For the relevant inference scripts, please refer to https://github.com/OPPO-Mente-Lab/Qwen-Image-Pruning. <div align="center"> <img src="bench.png"> </div>
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1757559380
lisaozill03
2025-09-11T03:22:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:22:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xGareeb/blockassist
0xGareeb
2025-09-11T03:22:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "diving jumping llama", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:02:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - diving jumping llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
homerrice918/blockassist-bc-leaping_opaque_fox_1757560908
homerrice918
2025-09-11T03:22:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "leaping opaque fox", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:22:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - leaping opaque fox --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbektass/blockassist-bc-keen_fast_giraffe_1757560900
omerbektass
2025-09-11T03:21:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:21:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
shikderazriel6453/blockassist-bc-burrowing_thorny_gibbon_1757560897
shikderazriel6453
2025-09-11T03:21:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "burrowing thorny gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:21:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - burrowing thorny gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jemijorna596/blockassist-bc-reclusive_monstrous_pig_1757560884
jemijorna596
2025-09-11T03:21:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reclusive monstrous pig", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:21:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reclusive monstrous pig --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
huseyinatahaninan/agenttuning_v4_15k_tag4-SFT-Qwen3-8B
huseyinatahaninan
2025-09-11T03:20:59Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen3-8B", "base_model:finetune:Qwen/Qwen3-8B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-11T03:05:37Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen3-8B tags: - llama-factory - full - generated_from_trainer model-index: - name: agenttuning_v4_15k_tag4-SFT-Qwen3-8B results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # agenttuning_v4_15k_tag4-SFT-Qwen3-8B This model is a fine-tuned version of [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) on the agenttuning_v4_15k_tag4 dataset. It achieves the following results on the evaluation set: - Loss: 0.4252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
nyu-dice-lab/VeriThoughts-Reasoning-14B-Qwen3
nyu-dice-lab
2025-09-11T03:20:33Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen3-14B", "base_model:finetune:Qwen/Qwen3-14B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-10T23:02:32Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen3-14B tags: - llama-factory - full - generated_from_trainer model-index: - name: VeriThoughts-Reasoning-14B-Qwen3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # VeriThoughts-Reasoning-14B-Qwen3 This model is a fine-tuned version of [Qwen/Qwen3-14B](https://huggingface.co/Qwen/Qwen3-14B) on the reasoning_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
trungpq/rlcc-new-palate-upsample_replacement-absa-None
trungpq
2025-09-11T03:20:27Z
0
0
transformers
[ "transformers", "safetensors", "bert_with_absa", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2025-09-10T16:37:15Z
--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy model-index: - name: rlcc-new-palate-upsample_replacement-absa-None results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rlcc-new-palate-upsample_replacement-absa-None This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5296 - Accuracy: 0.7125 - F1 Macro: 0.4872 - Precision Macro: 0.5078 - Recall Macro: 0.5020 - Total Tf: [290, 117, 1104, 117] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 21 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Macro | Recall Macro | Total Tf | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------------:|:------------:|:---------------------:| | 1.1436 | 1.0 | 22 | 1.0968 | 0.7420 | 0.4912 | 0.4546 | 0.5464 | [302, 105, 1116, 105] | | 1.0851 | 2.0 | 44 | 1.1121 | 0.7174 | 0.4517 | 0.4552 | 0.5112 | [292, 115, 1106, 115] | | 0.9986 | 3.0 | 66 | 1.1304 | 0.7248 | 0.5044 | 0.5411 | 0.5351 | [295, 112, 1109, 112] | | 0.8974 | 4.0 | 88 | 1.1597 | 0.7346 | 0.5352 | 0.5595 | 0.5511 | [299, 108, 1113, 108] | | 0.8154 | 5.0 | 110 | 1.1627 | 0.7297 | 0.5322 | 0.5420 | 0.5406 | [297, 110, 1111, 110] | | 0.703 | 6.0 | 132 | 1.2983 | 0.7322 | 0.5293 | 0.5385 | 0.5423 | [298, 109, 1112, 109] | | 0.5548 | 7.0 | 154 | 1.3239 | 0.7101 | 0.4950 | 0.5042 | 0.5010 | [289, 118, 1103, 118] | | 0.4741 | 8.0 | 176 | 1.4770 | 0.7273 | 0.5113 | 0.5389 | 0.5320 | [296, 111, 1110, 111] | | 0.366 | 9.0 | 198 | 1.5296 | 0.7125 | 0.4872 | 0.5078 | 0.5020 | [290, 117, 1104, 117] | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2
adelactbeel/blockassist-bc-stinky_humming_alligator_1757560780
adelactbeel
2025-09-11T03:19:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinky humming alligator", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:19:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinky humming alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
makhiovrnl/blockassist-bc-marine_armored_weasel_1757560756
makhiovrnl
2025-09-11T03:19:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "marine armored weasel", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:19:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - marine armored weasel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/MiroThinker-32B-SFT-v0.2-GGUF
mradermacher
2025-09-11T03:19:13Z
0
0
transformers
[ "transformers", "gguf", "agent", "open-source", "miromind", "en", "base_model:miromind-ai/MiroThinker-32B-SFT-v0.2", "base_model:quantized:miromind-ai/MiroThinker-32B-SFT-v0.2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-11T02:25:59Z
--- base_model: miromind-ai/MiroThinker-32B-SFT-v0.2 language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - agent - open-source - miromind --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/miromind-ai/MiroThinker-32B-SFT-v0.2 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#MiroThinker-32B-SFT-v0.2-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MiroThinker-32B-SFT-v0.2-GGUF/resolve/main/MiroThinker-32B-SFT-v0.2.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/MiroThinker-32B-SFT-v0.2-GGUF/resolve/main/MiroThinker-32B-SFT-v0.2.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/MiroThinker-32B-SFT-v0.2-GGUF/resolve/main/MiroThinker-32B-SFT-v0.2.Q3_K_M.gguf) | Q3_K_M | 16.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MiroThinker-32B-SFT-v0.2-GGUF/resolve/main/MiroThinker-32B-SFT-v0.2.Q3_K_L.gguf) | Q3_K_L | 17.4 | | | [GGUF](https://huggingface.co/mradermacher/MiroThinker-32B-SFT-v0.2-GGUF/resolve/main/MiroThinker-32B-SFT-v0.2.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MiroThinker-32B-SFT-v0.2-GGUF/resolve/main/MiroThinker-32B-SFT-v0.2.Q4_K_M.gguf) | Q4_K_M | 19.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MiroThinker-32B-SFT-v0.2-GGUF/resolve/main/MiroThinker-32B-SFT-v0.2.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/MiroThinker-32B-SFT-v0.2-GGUF/resolve/main/MiroThinker-32B-SFT-v0.2.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
jrfszy/blockassist-bc-barky_wary_sandpiper_1757560734
jrfszy
2025-09-11T03:19:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "barky wary sandpiper", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:18:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - barky wary sandpiper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
trungpq/rlcc-new-aroma-upsample_replacement-absa-max
trungpq
2025-09-11T03:18:24Z
0
0
transformers
[ "transformers", "safetensors", "bert_with_absa", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2025-09-10T16:38:05Z
--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy model-index: - name: rlcc-new-aroma-upsample_replacement-absa-max results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rlcc-new-aroma-upsample_replacement-absa-max This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0704 - Accuracy: 0.6612 - F1 Macro: 0.5333 - Precision Macro: 0.5807 - Recall Macro: 0.5446 - Total Tf: [283, 145, 1139, 145] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 40 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Macro | Recall Macro | Total Tf | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------------:|:------------:|:---------------------:| | 1.1278 | 1.0 | 41 | 1.1693 | 0.5514 | 0.4111 | 0.3820 | 0.4894 | [236, 192, 1092, 192] | | 1.0553 | 2.0 | 82 | 1.1281 | 0.6332 | 0.4715 | 0.5306 | 0.5056 | [271, 157, 1127, 157] | | 0.7136 | 3.0 | 123 | 1.0999 | 0.6589 | 0.5540 | 0.5610 | 0.5553 | [282, 146, 1138, 146] | | 0.5505 | 4.0 | 164 | 1.2349 | 0.6706 | 0.5738 | 0.5756 | 0.5769 | [287, 141, 1143, 141] | | 0.3836 | 5.0 | 205 | 1.4542 | 0.6449 | 0.5363 | 0.5463 | 0.5439 | [276, 152, 1132, 152] | | 0.2161 | 6.0 | 246 | 1.5904 | 0.6729 | 0.5483 | 0.6033 | 0.5557 | [288, 140, 1144, 140] | | 0.1925 | 7.0 | 287 | 1.7096 | 0.6729 | 0.5319 | 0.6058 | 0.5465 | [288, 140, 1144, 140] | | 0.1986 | 8.0 | 328 | 1.8097 | 0.6659 | 0.5672 | 0.5726 | 0.5663 | [285, 143, 1141, 143] | | 0.1202 | 9.0 | 369 | 2.0704 | 0.6612 | 0.5333 | 0.5807 | 0.5446 | [283, 145, 1139, 145] | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2
BootesVoid/cmferuoiz03hpx0n09wutcrgf_cmfeshsuk03hzx0n06a18sohg_2
BootesVoid
2025-09-11T03:18:12Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-09-11T03:18:10Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: SUMISA --- # Cmferuoiz03Hpx0N09Wutcrgf_Cmfeshsuk03Hzx0N06A18Sohg_2 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `SUMISA` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "SUMISA", "lora_weights": "https://huggingface.co/BootesVoid/cmferuoiz03hpx0n09wutcrgf_cmfeshsuk03hzx0n06a18sohg_2/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmferuoiz03hpx0n09wutcrgf_cmfeshsuk03hzx0n06a18sohg_2', weight_name='lora.safetensors') image = pipeline('SUMISA').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2500 - Learning rate: 9e-05 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmferuoiz03hpx0n09wutcrgf_cmfeshsuk03hzx0n06a18sohg_2/discussions) to add images that show off what you’ve made with this LoRA.
navneetthakor/LLFG-3
navneetthakor
2025-09-11T03:17:40Z
7
0
transformers
[ "transformers", "pytorch", "safetensors", "gemma2", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/gemma-2-2b-it-bnb-4bit", "base_model:finetune:unsloth/gemma-2-2b-it-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-14T11:37:23Z
--- base_model: unsloth/gemma-2-2b-it-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma2 - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** navneetthakor - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2-2b-it-bnb-4bit
arzaanshikder7562/blockassist-bc-darting_sniffing_rhino_1757560617
arzaanshikder7562
2025-09-11T03:17:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "darting sniffing rhino", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:17:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - darting sniffing rhino --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
abdoosh1000/flan-t5-autonomous-workspace
abdoosh1000
2025-09-11T03:16:53Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-09-02T04:42:37Z
# FLAN-T5 Autonomous Training Workspace This is a unified repository for autonomous FLAN-T5 model training operations. ## Structure - `tracking/` - Training state and progress tracking files - `models/` - Trained model checkpoints and metadata - `datasets/` - Dataset processing state and chunk information - `logs/` - Training logs and metrics ## Latest Status Last updated: 2025-09-10T15:22:17.340834 Workspace created by: Autonomous FLAN-T5 Trainer ## Usage This repository is automatically managed by the autonomous training system. All training progress, model states, and dataset processing information is tracked here.
vendi11/blockassist-bc-placid_placid_llama_1757560561
vendi11
2025-09-11T03:16:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:16:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kinghamtruman/blockassist-bc-regal_docile_wildebeest_1757560580
kinghamtruman
2025-09-11T03:16:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal docile wildebeest", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:16:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal docile wildebeest --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cintroncdgkq/blockassist-bc-monstrous_whistling_dinosaur_1757560566
cintroncdgkq
2025-09-11T03:16:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous whistling dinosaur", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:16:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous whistling dinosaur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jenniellama/task-14-microsoft-Phi-4-mini-instruct
jenniellama
2025-09-11T03:16:01Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:microsoft/Phi-4-mini-instruct", "base_model:adapter:microsoft/Phi-4-mini-instruct", "region:us" ]
null
2025-09-10T03:39:52Z
--- base_model: microsoft/Phi-4-mini-instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
srwmilerwhitchurchvtak/blockassist-bc-endangered_knobby_jellyfish_1757560550
srwmilerwhitchurchvtak
2025-09-11T03:15:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "endangered knobby jellyfish", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:15:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - endangered knobby jellyfish --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbkts/blockassist-bc-insectivorous_bold_lion_1757560524
omerbkts
2025-09-11T03:15:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:15:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
harnscindi/blockassist-bc-flapping_freckled_squid_1757560508
harnscindi
2025-09-11T03:15:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flapping freckled squid", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:15:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flapping freckled squid --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
borsahopa67/blockassist-bc-polished_quiet_badger_1757560504
borsahopa67
2025-09-11T03:15:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "polished quiet badger", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:15:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - polished quiet badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
wolfeduodrw/blockassist-bc-graceful_hulking_lemur_1757560454
wolfeduodrw
2025-09-11T03:14:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dextrous monstrous turkey", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:14:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dextrous monstrous turkey --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
meekinsvyglkcedenoxyn/blockassist-bc-nocturnal_sneaky_porpoise_1757560430
meekinsvyglkcedenoxyn
2025-09-11T03:13:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "nocturnal sneaky porpoise", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:13:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - nocturnal sneaky porpoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Rakancorle1/Qwen3-4B-Instruct_0910_LODO_shopping_admin_full
Rakancorle1
2025-09-11T03:13:40Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen3-4B-Instruct-2507", "base_model:finetune:Qwen/Qwen3-4B-Instruct-2507", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-11T02:17:29Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen3-4B-Instruct-2507 tags: - llama-factory - full - generated_from_trainer model-index: - name: Qwen3-4B-Instruct_0910_LODO_shopping_admin_full results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Qwen3-4B-Instruct_0910_LODO_shopping_admin_full This model is a fine-tuned version of [Qwen/Qwen3-4B-Instruct-2507](https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507) on the Policy_Traj_LODO_shopping_admin dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.55.0 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1
priyankajugwa/blockassist-bc-exotic_frisky_ostrich_1757560403
priyankajugwa
2025-09-11T03:13:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "exotic frisky ostrich", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:13:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - exotic frisky ostrich --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mcbridepollakdq/blockassist-bc-armored_cunning_armadillo_1757560406
mcbridepollakdq
2025-09-11T03:13:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "exotic frisky ostrich", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:13:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - exotic frisky ostrich --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helsearvalynnaseen/blockassist-bc-flapping_invisible_octopus_1757560370
helsearvalynnaseen
2025-09-11T03:13:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinky humming alligator", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:13:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinky humming alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
shikderabaan7986/blockassist-bc-shy_arctic_prawn_1757560358
shikderabaan7986
2025-09-11T03:12:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shy arctic prawn", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:12:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shy arctic prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
maukluchoda/blockassist-bc-placid_stinky_buffalo_1757560338
maukluchoda
2025-09-11T03:12:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid stinky buffalo", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:12:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid stinky buffalo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
trungpq/rlcc-new-appearance-upsample_replacement-absa-max
trungpq
2025-09-11T03:12:13Z
0
0
transformers
[ "transformers", "safetensors", "bert_with_absa", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2025-09-10T16:37:58Z
--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy model-index: - name: rlcc-new-appearance-upsample_replacement-absa-max results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rlcc-new-appearance-upsample_replacement-absa-max This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.6950 - Accuracy: 0.6340 - F1 Macro: 0.5522 - Precision Macro: 0.6107 - Recall Macro: 0.5627 - Total Tf: [265, 153, 1101, 153] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 44 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Macro | Recall Macro | Total Tf | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------------:|:------------:|:---------------------:| | 1.1211 | 1.0 | 45 | 1.1177 | 0.5359 | 0.3656 | 0.3252 | 0.5 | [224, 194, 1060, 194] | | 1.1137 | 2.0 | 90 | 1.1100 | 0.5335 | 0.3706 | 0.3610 | 0.4970 | [223, 195, 1059, 195] | | 0.9748 | 3.0 | 135 | 1.1131 | 0.6220 | 0.5222 | 0.5541 | 0.5492 | [260, 158, 1096, 158] | | 0.7356 | 4.0 | 180 | 1.2100 | 0.6005 | 0.5350 | 0.5590 | 0.5661 | [251, 167, 1087, 167] | | 0.6668 | 5.0 | 225 | 1.2673 | 0.6124 | 0.5507 | 0.5629 | 0.5569 | [256, 162, 1092, 162] | | 0.4741 | 6.0 | 270 | 1.4287 | 0.6077 | 0.5256 | 0.5559 | 0.5372 | [254, 164, 1090, 164] | | 0.43 | 7.0 | 315 | 1.5078 | 0.6172 | 0.5497 | 0.5736 | 0.5523 | [258, 160, 1094, 160] | | 0.3213 | 8.0 | 360 | 1.6583 | 0.6364 | 0.5492 | 0.6162 | 0.5612 | [266, 152, 1102, 152] | | 0.2496 | 9.0 | 405 | 1.6353 | 0.6364 | 0.5850 | 0.5959 | 0.5862 | [266, 152, 1102, 152] | | 0.1908 | 10.0 | 450 | 1.8595 | 0.6364 | 0.5635 | 0.6157 | 0.5688 | [266, 152, 1102, 152] | | 0.1383 | 11.0 | 495 | 2.0273 | 0.6292 | 0.5662 | 0.5924 | 0.5734 | [263, 155, 1099, 155] | | 0.1125 | 12.0 | 540 | 2.0201 | 0.6555 | 0.6054 | 0.6258 | 0.6020 | [274, 144, 1110, 144] | | 0.1046 | 13.0 | 585 | 2.3728 | 0.6411 | 0.5737 | 0.6257 | 0.5854 | [268, 150, 1104, 150] | | 0.0897 | 14.0 | 630 | 2.4554 | 0.6459 | 0.5712 | 0.6292 | 0.5861 | [270, 148, 1106, 148] | | 0.0518 | 15.0 | 675 | 2.2957 | 0.6531 | 0.5947 | 0.6288 | 0.5921 | [273, 145, 1109, 145] | | 0.0587 | 16.0 | 720 | 2.4788 | 0.6411 | 0.5814 | 0.6075 | 0.5801 | [268, 150, 1104, 150] | | 0.0445 | 17.0 | 765 | 2.6950 | 0.6340 | 0.5522 | 0.6107 | 0.5627 | [265, 153, 1101, 153] | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2
hendrydarrell/blockassist-bc-docile_dappled_whale_1757560314
hendrydarrell
2025-09-11T03:12:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "docile dappled whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:11:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - docile dappled whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
saujasv/gemma-hard-correctness-or-cost-ipo-random
saujasv
2025-09-11T03:11:33Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-11T03:08:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ganswiltzblack/blockassist-bc-nocturnal_humming_badger_1757560286
ganswiltzblack
2025-09-11T03:11:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "nocturnal humming badger", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:11:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - nocturnal humming badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
altonnannialton/blockassist-bc-robust_grunting_zebra_1757560240
altonnannialton
2025-09-11T03:11:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "robust grunting zebra", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:10:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - robust grunting zebra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crabtreeftf/blockassist-bc-darting_mighty_panther_1757560248
crabtreeftf
2025-09-11T03:10:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "darting mighty panther", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:10:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - darting mighty panther --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
allfordedgar26/blockassist-bc-omnivorous_sprightly_aardvark_1757560226
allfordedgar26
2025-09-11T03:10:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "omnivorous sprightly aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:10:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - omnivorous sprightly aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
reyeslinnie223/blockassist-bc-lethal_darting_scorpion_1757560209
reyeslinnie223
2025-09-11T03:10:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lethal darting scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:10:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lethal darting scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vendi11/blockassist-bc-placid_placid_llama_1757560146
vendi11
2025-09-11T03:09:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:09:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
luckeciano/Qwen-2.5-7B-GRPO-Base-LR-1e-4-v2_2945
luckeciano
2025-09-11T03:09:32Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-10T21:46:48Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-Base-LR-1e-4-v2_2945 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-Base-LR-1e-4-v2_2945 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-Base-LR-1e-4-v2_2945", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/sarwc5bg) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
caseboltvernie/blockassist-bc-quick_lazy_whale_1757560153
caseboltvernie
2025-09-11T03:09:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick lazy whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:09:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick lazy whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zaimkibriya7859/blockassist-bc-exotic_soaring_beaver_1757560136
zaimkibriya7859
2025-09-11T03:09:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "exotic soaring beaver", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:09:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - exotic soaring beaver --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lodestones/Chroma1-Radiance
lodestones
2025-09-11T03:08:52Z
0
20
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-22T01:07:06Z
--- license: apache-2.0 ---
iekagrbaiya/blockassist-bc-clawed_rabid_fish_1757560108
iekagrbaiya
2025-09-11T03:08:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "clawed rabid fish", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:08:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - clawed rabid fish --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sensmeierbrenton/blockassist-bc-silky_solitary_boar_1757560094
sensmeierbrenton
2025-09-11T03:08:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky solitary boar", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:08:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky solitary boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jazmynikrr/blockassist-bc-dormant_hulking_eagle_1757560086
jazmynikrr
2025-09-11T03:08:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant hulking eagle", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:08:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant hulking eagle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
heindelgadodjlemonddbu/blockassist-bc-cunning_untamed_cobra_1757560063
heindelgadodjlemonddbu
2025-09-11T03:07:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "cunning untamed cobra", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:07:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - cunning untamed cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hamilsordar5647/blockassist-bc-chattering_hairy_woodpecker_1757560058
hamilsordar5647
2025-09-11T03:07:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "cunning untamed cobra", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:07:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - cunning untamed cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cwayneconnor/blockassist-bc-mute_loud_lynx_1757559621
cwayneconnor
2025-09-11T03:07:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute loud lynx", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:05:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute loud lynx --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
raileshikder7241/blockassist-bc-slender_amphibious_cheetah_1757560030
raileshikder7241
2025-09-11T03:07:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slender amphibious cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:07:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slender amphibious cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
f9997413/blockassist-bc-snorting_arctic_flamingo_1757560006
f9997413
2025-09-11T03:06:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "snorting arctic flamingo", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:06:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - snorting arctic flamingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ahumadaxhg/blockassist-bc-alert_spotted_dolphin_1757560006
ahumadaxhg
2025-09-11T03:06:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert spotted dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:06:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert spotted dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ayringdh/blockassist-bc-skittish_docile_impala_1757559984
ayringdh
2025-09-11T03:06:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "skittish docile impala", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:06:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - skittish docile impala --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jeresftarke/blockassist-bc-flapping_beaked_owl_1757559975
jeresftarke
2025-09-11T03:06:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flapping beaked owl", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:06:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flapping beaked owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lodikeyekfeli/blockassist-bc-tame_coiled_porcupine_1757559878
lodikeyekfeli
2025-09-11T03:04:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tame coiled porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:04:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tame coiled porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Schrod1nger/distilbert-base-uncased-finetuned-emotion
Schrod1nger
2025-09-11T03:04:39Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-09-10T09:59:00Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2009 - Accuracy: 0.929 - F1: 0.9292 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6495 | 1.0 | 250 | 0.2675 | 0.916 | 0.9158 | | 0.2185 | 2.0 | 500 | 0.2009 | 0.929 | 0.9292 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.1+cpu - Datasets 3.0.1 - Tokenizers 0.19.1
mauremilamlusa/blockassist-bc-lightfooted_hardy_jackal_1757559842
mauremilamlusa
2025-09-11T03:04:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lightfooted hardy jackal", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:04:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lightfooted hardy jackal --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1757558067
katanyasekolah
2025-09-11T03:03:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:03:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RahulBhattacharya/Rahuls_Text_Classification_Sentiment_Analysis
RahulBhattacharya
2025-09-11T03:03:31Z
32
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-31T22:41:20Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: Rahuls_Text_Classification_Sentiment_Analysis results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Rahuls_Text_Classification_Sentiment_Analysis This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7193 - Accuracy: 0.25 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.56.0 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.22.0
oekaltegabi/blockassist-bc-tame_dormant_hyena_1757559782
oekaltegabi
2025-09-11T03:03:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tame dormant hyena", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:03:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tame dormant hyena --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kornia/Efficient_LOFTR
kornia
2025-09-11T03:03:03Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-09-09T19:33:02Z
--- license: apache-2.0 ---
nonibovecoray/blockassist-bc-pale_leaping_kiwi_1757559768
nonibovecoray
2025-09-11T03:03:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pale leaping kiwi", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T03:02:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pale leaping kiwi --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
brisondey/blockassist-bc-insectivorous_energetic_koala_1757551348
brisondey
2025-09-11T00:42:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous energetic koala", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T00:42:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous energetic koala --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
damauoi/blockassist-bc-exotic_noisy_camel_1757551333
damauoi
2025-09-11T00:42:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "exotic noisy camel", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T00:42:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - exotic noisy camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
StephaneBah/whisper-small-rad-fr1.1
StephaneBah
2025-09-11T00:42:31Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "generated_from_trainer", "fr", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-10T17:16:54Z
--- library_name: transformers language: - fr license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: 'Whisper Small Fr - Radiologie1.1 ' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Fr - Radiologie1.1 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8172 - Wer: 34.6740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 6 - seed: 3407 - optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0594 | 31.25 | 500 | 0.7913 | 99.4516 | | 0.0002 | 62.5 | 1000 | 0.7987 | 99.4516 | | 0.0002 | 93.75 | 1500 | 0.8020 | 41.0116 | | 0.0001 | 125.0 | 2000 | 0.8071 | 35.1005 | | 0.0001 | 156.25 | 2500 | 0.8105 | 35.3443 | | 0.0001 | 187.5 | 3000 | 0.8122 | 34.9787 | | 0.0001 | 218.75 | 3500 | 0.8153 | 35.1615 | | 0.0001 | 250.0 | 4000 | 0.8154 | 34.6130 | | 0.0001 | 281.25 | 4500 | 0.8162 | 34.9787 | | 0.0001 | 312.5 | 5000 | 0.8172 | 34.6740 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2
poki1/blockassist-bc-lanky_carnivorous_slug_1757551348
poki1
2025-09-11T00:42:28Z
0
0
null
[ "region:us" ]
null
2025-09-11T00:42:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lanky carnivorous slug --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eternis/eternis_router_encoder_sft_10Sep
eternis
2025-09-11T00:42:25Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "base_model:answerdotai/ModernBERT-base", "base_model:finetune:answerdotai/ModernBERT-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-10T22:46:14Z
--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: eternis_router_encoder_sft_10Sep results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eternis_router_encoder_sft_10Sep This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6626 - Complexity Accuracy: 0.7917 - Model Accuracy: 0.7478 - Overall Accuracy: 0.5933 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Complexity Accuracy | Model Accuracy | Overall Accuracy | |:-------------:|:------:|:----:|:---------------:|:-------------------:|:--------------:|:----------------:| | 0.7808 | 0.3429 | 300 | 0.7159 | 0.7452 | 0.7468 | 0.5585 | | 0.731 | 0.6857 | 600 | 0.6979 | 0.7575 | 0.7468 | 0.568 | | 0.7189 | 1.0286 | 900 | 0.6903 | 0.77 | 0.7468 | 0.5777 | | 0.7168 | 1.3714 | 1200 | 0.6844 | 0.7665 | 0.7475 | 0.571 | | 0.7033 | 1.7143 | 1500 | 0.6809 | 0.7735 | 0.7468 | 0.5763 | | 0.7098 | 2.0571 | 1800 | 0.6830 | 0.7648 | 0.747 | 0.5723 | | 0.6901 | 2.4 | 2100 | 0.6740 | 0.7742 | 0.747 | 0.5797 | | 0.6815 | 2.7429 | 2400 | 0.6798 | 0.771 | 0.747 | 0.5757 | | 0.6886 | 3.0857 | 2700 | 0.6745 | 0.78 | 0.747 | 0.583 | | 0.6727 | 3.4286 | 3000 | 0.6749 | 0.7772 | 0.7478 | 0.5825 | | 0.6901 | 3.7714 | 3300 | 0.6706 | 0.78 | 0.7462 | 0.583 | | 0.6822 | 4.1143 | 3600 | 0.6702 | 0.7833 | 0.7472 | 0.5865 | | 0.6737 | 4.4571 | 3900 | 0.6676 | 0.7825 | 0.7482 | 0.587 | | 0.6568 | 4.8 | 4200 | 0.6707 | 0.7802 | 0.7478 | 0.5845 | | 0.6655 | 5.1429 | 4500 | 0.6677 | 0.7855 | 0.7475 | 0.5893 | | 0.6382 | 5.4857 | 4800 | 0.6678 | 0.7817 | 0.746 | 0.5845 | | 0.654 | 5.8286 | 5100 | 0.6691 | 0.786 | 0.7475 | 0.588 | | 0.6618 | 6.1714 | 5400 | 0.6652 | 0.782 | 0.748 | 0.5853 | | 0.6607 | 6.5143 | 5700 | 0.6645 | 0.7875 | 0.7475 | 0.5897 | | 0.6355 | 6.8571 | 6000 | 0.6628 | 0.787 | 0.748 | 0.589 | | 0.6349 | 7.2 | 6300 | 0.6651 | 0.7887 | 0.7482 | 0.5907 | | 0.6468 | 7.5429 | 6600 | 0.6630 | 0.7895 | 0.747 | 0.5897 | | 0.6613 | 7.8857 | 6900 | 0.6612 | 0.79 | 0.748 | 0.5923 | | 0.6338 | 8.2286 | 7200 | 0.6615 | 0.7883 | 0.7475 | 0.589 | | 0.647 | 8.5714 | 7500 | 0.6635 | 0.7915 | 0.747 | 0.5917 | | 0.633 | 8.9143 | 7800 | 0.6623 | 0.792 | 0.7472 | 0.5923 | | 0.6683 | 9.2571 | 8100 | 0.6620 | 0.7907 | 0.7478 | 0.5915 | | 0.6326 | 9.6 | 8400 | 0.6625 | 0.7923 | 0.7478 | 0.593 | | 0.6249 | 9.9429 | 8700 | 0.6626 | 0.7917 | 0.7478 | 0.5933 | ### Framework versions - Transformers 4.56.1 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.22.0