modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 00:42:47
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
553 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 00:42:38
card
stringlengths
11
1.01M
burgbobby/blockassist-bc-lithe_wild_boar_1757449510
burgbobby
2025-09-09T20:25:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lithe wild boar", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T20:25:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lithe wild boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
negersdrahimi/blockassist-bc-dense_squeaky_iguana_1757449112
negersdrahimi
2025-09-09T20:18:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dense squeaky iguana", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T20:18:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dense squeaky iguana --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gouki510/gemma2-27b-base-correct-legal
gouki510
2025-09-09T20:18:09Z
0
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-2-27b", "base_model:finetune:unsloth/gemma-2-27b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-09T19:47:11Z
--- base_model: unsloth/gemma-2-27b tags: - text-generation-inference - transformers - unsloth - gemma2 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** gouki510 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2-27b This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
arabellamorris/blockassist-bc-tricky_sneaky_locust_1757448988
arabellamorris
2025-09-09T20:16:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tricky sneaky locust", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T20:16:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tricky sneaky locust --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sadiyakhatun65524/blockassist-bc-insectivorous_prehistoric_mouse_1757448957
sadiyakhatun65524
2025-09-09T20:16:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous prehistoric mouse", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T20:16:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous prehistoric mouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
anaruio/mms-azb-discriminator
anaruio
2025-09-09T20:07:53Z
0
0
transformers
[ "transformers", "safetensors", "vits", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-09T20:07:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Viktor-01/blockassist-bc-leaping_humming_finch_1757445655
Viktor-01
2025-09-09T20:04:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "leaping humming finch", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T20:04:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - leaping humming finch --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
EnriqueSolarte/qwen2.5-VL-7B-instruct-00004-VqCaAuuoeWk_0
EnriqueSolarte
2025-09-09T20:02:22Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:UCSC-VLAA/VLAA-Thinker-Qwen2.5VL-3B", "base_model:finetune:UCSC-VLAA/VLAA-Thinker-Qwen2.5VL-3B", "endpoints_compatible", "region:us" ]
null
2025-09-05T07:21:28Z
--- base_model: UCSC-VLAA/VLAA-Thinker-Qwen2.5VL-3B library_name: transformers model_name: qwen2.5-VL-7B-instruct-00004-VqCaAuuoeWk_0 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for qwen2.5-VL-7B-instruct-00004-VqCaAuuoeWk_0 This model is a fine-tuned version of [UCSC-VLAA/VLAA-Thinker-Qwen2.5VL-3B](https://huggingface.co/UCSC-VLAA/VLAA-Thinker-Qwen2.5VL-3B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="EnriqueSolarte/qwen2.5-VL-7B-instruct-00004-VqCaAuuoeWk_0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.22.1 - Transformers: 4.56.0 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
hoggcatharine/blockassist-bc-sleek_shy_moose_1757447916
hoggcatharine
2025-09-09T19:58:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sleek shy moose", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T19:58:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sleek shy moose --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
domagallgino/blockassist-bc-foxy_cunning_fly_1757447408
domagallgino
2025-09-09T19:50:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "foxy cunning fly", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T19:50:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - foxy cunning fly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbektass/blockassist-bc-keen_fast_giraffe_1757442332
omerbektass
2025-09-09T18:26:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T18:26:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kosenhans/blockassist-bc-regal_sharp_rat_1757442313
kosenhans
2025-09-09T18:25:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal sharp rat", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T18:25:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal sharp rat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jeresftarke/blockassist-bc-flapping_beaked_owl_1757442250
jeresftarke
2025-09-09T18:24:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flapping beaked owl", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T18:24:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flapping beaked owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
capungmerah627/blockassist-bc-stinging_soaring_porcupine_1757440430
capungmerah627
2025-09-09T18:20:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinging soaring porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T18:20:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinging soaring porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
najmanipa6/blockassist-bc-small_invisible_ant_1757442029
najmanipa6
2025-09-09T18:20:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "small invisible ant", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T18:20:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - small invisible ant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sesamnsoipsdesnsoip/blockassist-bc-beaked_solitary_stork_1757442009
sesamnsoipsdesnsoip
2025-09-09T18:20:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "beaked solitary stork", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T18:20:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - beaked solitary stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
choiqs/diffusion-row-10-30-col-10-30-mar0.3-marblock0.3-marbandit0.4-epoch100-bs32-samples30k-lr1e-3
choiqs
2025-09-09T18:20:09Z
0
0
null
[ "region:us" ]
null
2025-09-09T18:20:07Z
# MAR Diffusion Model - Missingness Pattern Generation ## Model Configuration - **Matrix Size Range**: 10-30 rows × 10-30 columns - **Missingness Types**: bandit (40%), mar (30%), block_mar (30%) - **Training**: 100 epochs, batch size 32, 30k samples/epoch - **Learning Rate**: 1e-3 - **Architecture**: Fully Convolutional X0 Model with D3PM ## Files - `model_final.pth`: Trained PyTorch model weights - `model_final_config.json`: Complete training configuration - `class_mapping.json`: Missingness type to class ID mapping - `model_final_config.txt`: Human-readable config summary ## Usage This model generates binary missingness patterns for tabular data with controlled MAR (Missing At Random) patterns. ## Training Details - **Total Steps**: 93,700 - **Model Parameters**: 17,759,888 - **Diffusion Steps**: 1,000 - **Hybrid Loss Coefficient**: 0.0 (pure cross-entropy loss)
seams01/blockassist-bc-insectivorous_stubby_snake_1757440244
seams01
2025-09-09T18:20:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous stubby snake", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T18:20:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous stubby snake --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
oksanany/gptoss-stage-1-ds2
oksanany
2025-09-09T18:14:57Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gpt_oss", "trl", "en", "base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-09T18:14:07Z
--- base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gpt_oss - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** oksanany - **License:** apache-2.0 - **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
f9997413/blockassist-bc-snorting_arctic_flamingo_1757441423
f9997413
2025-09-09T18:12:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "snorting arctic flamingo", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T18:11:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - snorting arctic flamingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aronlg/blockassist-bc-wiry_insectivorous_bat_1757441171
aronlg
2025-09-09T18:07:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry insectivorous bat", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T18:07:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry insectivorous bat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Gemma3-270M-NPCs-GGUF
mradermacher
2025-09-09T18:06:21Z
1,150
0
transformers
[ "transformers", "gguf", "generated_from_trainer", "trl", "sft", "en", "base_model:Campis/Gemma3-270M-NPCs", "base_model:quantized:Campis/Gemma3-270M-NPCs", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-07T00:16:13Z
--- base_model: Campis/Gemma3-270M-NPCs language: - en library_name: transformers model_name: Gemma3-270M-NPCs mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - generated_from_trainer - trl - sft --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Campis/Gemma3-270M-NPCs <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Gemma3-270M-NPCs-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Gemma3-270M-NPCs-GGUF/resolve/main/Gemma3-270M-NPCs.Q3_K_S.gguf) | Q3_K_S | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Gemma3-270M-NPCs-GGUF/resolve/main/Gemma3-270M-NPCs.Q2_K.gguf) | Q2_K | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Gemma3-270M-NPCs-GGUF/resolve/main/Gemma3-270M-NPCs.IQ4_XS.gguf) | IQ4_XS | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Gemma3-270M-NPCs-GGUF/resolve/main/Gemma3-270M-NPCs.Q3_K_M.gguf) | Q3_K_M | 0.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Gemma3-270M-NPCs-GGUF/resolve/main/Gemma3-270M-NPCs.Q3_K_L.gguf) | Q3_K_L | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Gemma3-270M-NPCs-GGUF/resolve/main/Gemma3-270M-NPCs.Q4_K_S.gguf) | Q4_K_S | 0.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Gemma3-270M-NPCs-GGUF/resolve/main/Gemma3-270M-NPCs.Q4_K_M.gguf) | Q4_K_M | 0.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Gemma3-270M-NPCs-GGUF/resolve/main/Gemma3-270M-NPCs.Q5_K_S.gguf) | Q5_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Gemma3-270M-NPCs-GGUF/resolve/main/Gemma3-270M-NPCs.Q5_K_M.gguf) | Q5_K_M | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Gemma3-270M-NPCs-GGUF/resolve/main/Gemma3-270M-NPCs.Q6_K.gguf) | Q6_K | 0.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Gemma3-270M-NPCs-GGUF/resolve/main/Gemma3-270M-NPCs.Q8_0.gguf) | Q8_0 | 0.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Gemma3-270M-NPCs-GGUF/resolve/main/Gemma3-270M-NPCs.f16.gguf) | f16 | 0.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/MedResearcher-R1-32B-i1-GGUF
mradermacher
2025-09-09T18:04:41Z
3,227
0
transformers
[ "transformers", "gguf", "en", "base_model:AQ-MedAI/MedResearcher-R1-32B", "base_model:quantized:AQ-MedAI/MedResearcher-R1-32B", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-09-07T14:10:16Z
--- base_model: AQ-MedAI/MedResearcher-R1-32B language: - en library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/AQ-MedAI/MedResearcher-R1-32B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#MedResearcher-R1-32B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/MedResearcher-R1-32B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/MedResearcher-R1-32B-i1-GGUF/resolve/main/MedResearcher-R1-32B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/MedResearcher-R1-32B-i1-GGUF/resolve/main/MedResearcher-R1-32B.i1-IQ1_M.gguf) | i1-IQ1_M | 8.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/MedResearcher-R1-32B-i1-GGUF/resolve/main/MedResearcher-R1-32B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/MedResearcher-R1-32B-i1-GGUF/resolve/main/MedResearcher-R1-32B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 10.1 | | | [GGUF](https://huggingface.co/mradermacher/MedResearcher-R1-32B-i1-GGUF/resolve/main/MedResearcher-R1-32B.i1-IQ2_S.gguf) | i1-IQ2_S | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/MedResearcher-R1-32B-i1-GGUF/resolve/main/MedResearcher-R1-32B.i1-IQ2_M.gguf) | i1-IQ2_M | 11.4 | | | [GGUF](https://huggingface.co/mradermacher/MedResearcher-R1-32B-i1-GGUF/resolve/main/MedResearcher-R1-32B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 11.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/MedResearcher-R1-32B-i1-GGUF/resolve/main/MedResearcher-R1-32B.i1-Q2_K.gguf) | i1-Q2_K | 12.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/MedResearcher-R1-32B-i1-GGUF/resolve/main/MedResearcher-R1-32B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 12.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/MedResearcher-R1-32B-i1-GGUF/resolve/main/MedResearcher-R1-32B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 14.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/MedResearcher-R1-32B-i1-GGUF/resolve/main/MedResearcher-R1-32B.i1-IQ3_M.gguf) | i1-IQ3_M | 14.9 | | | [GGUF](https://huggingface.co/mradermacher/MedResearcher-R1-32B-i1-GGUF/resolve/main/MedResearcher-R1-32B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 16.0 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/MedResearcher-R1-32B-i1-GGUF/resolve/main/MedResearcher-R1-32B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 17.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/MedResearcher-R1-32B-i1-GGUF/resolve/main/MedResearcher-R1-32B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 17.8 | | | [GGUF](https://huggingface.co/mradermacher/MedResearcher-R1-32B-i1-GGUF/resolve/main/MedResearcher-R1-32B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 18.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/MedResearcher-R1-32B-i1-GGUF/resolve/main/MedResearcher-R1-32B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/MedResearcher-R1-32B-i1-GGUF/resolve/main/MedResearcher-R1-32B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/MedResearcher-R1-32B-i1-GGUF/resolve/main/MedResearcher-R1-32B.i1-Q6_K.gguf) | i1-Q6_K | 27.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
MorsiKK/phi-1-Q4_K_M-GGUF
MorsiKK
2025-09-09T18:00:27Z
0
0
null
[ "gguf", "code", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:microsoft/phi-1", "base_model:quantized:microsoft/phi-1", "license:mit", "endpoints_compatible", "region:us" ]
text-generation
2025-09-09T18:00:20Z
--- license: mit license_link: https://huggingface.co/microsoft/phi-1/resolve/main/LICENSE language: - en pipeline_tag: text-generation tags: - code - llama-cpp - gguf-my-repo base_model: microsoft/phi-1 --- # MorsiKK/phi-1-Q4_K_M-GGUF This model was converted to GGUF format from [`microsoft/phi-1`](https://huggingface.co/microsoft/phi-1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/microsoft/phi-1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo MorsiKK/phi-1-Q4_K_M-GGUF --hf-file phi-1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo MorsiKK/phi-1-Q4_K_M-GGUF --hf-file phi-1-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo MorsiKK/phi-1-Q4_K_M-GGUF --hf-file phi-1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo MorsiKK/phi-1-Q4_K_M-GGUF --hf-file phi-1-q4_k_m.gguf -c 2048 ```
mradermacher/AIME-TTT-OctoThinker-3B-Short-Base-TTRL-GGUF
mradermacher
2025-09-09T17:59:06Z
0
0
null
[ "region:us" ]
null
2025-09-09T17:59:03Z
--- base_model: yujunzhou/AIME-TTT-OctoThinker-3B-Short-Base-TTRL language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/yujunzhou/AIME-TTT-OctoThinker-3B-Short-Base-TTRL <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#AIME-TTT-OctoThinker-3B-Short-Base-TTRL-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/AIME-TTT-OctoThinker-3B-Short-Base-TTRL-GGUF/resolve/main/AIME-TTT-OctoThinker-3B-Short-Base-TTRL.Q2_K.gguf) | Q2_K | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/AIME-TTT-OctoThinker-3B-Short-Base-TTRL-GGUF/resolve/main/AIME-TTT-OctoThinker-3B-Short-Base-TTRL.Q3_K_S.gguf) | Q3_K_S | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/AIME-TTT-OctoThinker-3B-Short-Base-TTRL-GGUF/resolve/main/AIME-TTT-OctoThinker-3B-Short-Base-TTRL.Q3_K_M.gguf) | Q3_K_M | 2.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/AIME-TTT-OctoThinker-3B-Short-Base-TTRL-GGUF/resolve/main/AIME-TTT-OctoThinker-3B-Short-Base-TTRL.Q3_K_L.gguf) | Q3_K_L | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/AIME-TTT-OctoThinker-3B-Short-Base-TTRL-GGUF/resolve/main/AIME-TTT-OctoThinker-3B-Short-Base-TTRL.IQ4_XS.gguf) | IQ4_XS | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/AIME-TTT-OctoThinker-3B-Short-Base-TTRL-GGUF/resolve/main/AIME-TTT-OctoThinker-3B-Short-Base-TTRL.Q4_K_S.gguf) | Q4_K_S | 2.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/AIME-TTT-OctoThinker-3B-Short-Base-TTRL-GGUF/resolve/main/AIME-TTT-OctoThinker-3B-Short-Base-TTRL.Q4_K_M.gguf) | Q4_K_M | 2.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/AIME-TTT-OctoThinker-3B-Short-Base-TTRL-GGUF/resolve/main/AIME-TTT-OctoThinker-3B-Short-Base-TTRL.Q5_K_S.gguf) | Q5_K_S | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/AIME-TTT-OctoThinker-3B-Short-Base-TTRL-GGUF/resolve/main/AIME-TTT-OctoThinker-3B-Short-Base-TTRL.Q5_K_M.gguf) | Q5_K_M | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/AIME-TTT-OctoThinker-3B-Short-Base-TTRL-GGUF/resolve/main/AIME-TTT-OctoThinker-3B-Short-Base-TTRL.Q6_K.gguf) | Q6_K | 3.1 | very good quality | | [GGUF](https://huggingface.co/mradermacher/AIME-TTT-OctoThinker-3B-Short-Base-TTRL-GGUF/resolve/main/AIME-TTT-OctoThinker-3B-Short-Base-TTRL.Q8_0.gguf) | Q8_0 | 3.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/AIME-TTT-OctoThinker-3B-Short-Base-TTRL-GGUF/resolve/main/AIME-TTT-OctoThinker-3B-Short-Base-TTRL.f16.gguf) | f16 | 7.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
sevenditaifur/blockassist-bc-screeching_gentle_dinosaur_1757440427
sevenditaifur
2025-09-09T17:53:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "screeching gentle dinosaur", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:53:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - screeching gentle dinosaur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gcvvlima/blockassist-bc-scruffy_sizable_squirrel_1757440294
gcvvlima
2025-09-09T17:51:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy sizable squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:51:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy sizable squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Gillioxl/Model1
Gillioxl
2025-09-09T17:50:28Z
0
0
null
[ "safetensors", "gguf", "llama", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-09T17:20:05Z
--- license: apache-2.0 language: - en tags: - unsloth ---
TheRealSoham/pegasuslarge-CNN_Daily_Mail
TheRealSoham
2025-09-09T17:49:35Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-09T07:58:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Pilot-3B-i1-GGUF
mradermacher
2025-09-09T17:47:28Z
0
0
transformers
[ "transformers", "gguf", "en", "dataset:songff/GenerAlign", "base_model:songff/Pilot-3B", "base_model:quantized:songff/Pilot-3B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-09-09T15:46:04Z
--- base_model: songff/Pilot-3B datasets: - songff/GenerAlign language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/songff/Pilot-3B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Pilot-3B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Pilot-3B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-IQ2_S.gguf) | i1-IQ2_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-IQ2_M.gguf) | i1-IQ2_M | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 1.4 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-Q2_K.gguf) | i1-Q2_K | 1.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-IQ3_S.gguf) | i1-IQ3_S | 1.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-IQ3_M.gguf) | i1-IQ3_M | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.9 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 2.0 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-Q4_0.gguf) | i1-Q4_0 | 2.0 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 2.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-Q4_1.gguf) | i1-Q4_1 | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Pilot-3B-i1-GGUF/resolve/main/Pilot-3B.i1-Q6_K.gguf) | i1-Q6_K | 2.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
aronlg/blockassist-bc-wiry_insectivorous_bat_1757439935
aronlg
2025-09-09T17:46:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry insectivorous bat", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:46:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry insectivorous bat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
the-acorn-ai/qwen3-8b-self-play-new-step00384
the-acorn-ai
2025-09-09T17:42:55Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "spiral", "self-play", "reinforcement-learning", "multi-agent", "conversational", "en", "base_model:Qwen/Qwen3-8B-Base", "base_model:finetune:Qwen/Qwen3-8B-Base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-09T17:42:09Z
--- base_model: Qwen/Qwen3-8B-Base license: apache-2.0 language: - en library_name: transformers pipeline_tag: text-generation tags: - spiral - self-play - reinforcement-learning - qwen3 - multi-agent --- # SPIRAL Qwen3-8B Multi-Agent Model This model was trained using the SPIRAL (Self-Play Iterative Reinforcement learning for Adaptation and Learning) framework. ## Model Details - **Base Model**: Qwen/Qwen3-8B-Base - **Training Framework**: SPIRAL - **Checkpoint**: step_00384 - **Model Size**: 8B parameters - **Training Date**: 2025-09-09 ## Training Configuration The model was trained with self-play on multiple environments: - KuhnPoker-v1 - TicTacToe-v0 - SimpleNegotiation-v1 ### Training Parameters ```json { "learning_rate": "1e-6", "train_batch_size": 128, "num_ppo_epochs": 2, "temperature": 1.0, "max_model_len": 16384, "environments": [ "KuhnPoker-v1", "TicTacToe-v0", "SimpleNegotiation-v1" ], "base_model": "Qwen/Qwen3-8B-Base", "framework": "SPIRAL" } ``` ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("the-acorn-ai/qwen3-8b-self-play-new-step00384") model = AutoModelForCausalLM.from_pretrained( "the-acorn-ai/qwen3-8b-self-play-new-step00384", torch_dtype=torch.bfloat16, device_map="auto" ) # Generate text inputs = tokenizer("Your prompt here", return_tensors="pt") outputs = model.generate(**inputs, max_length=100) response = tokenizer.decode(outputs[0], skip_special_tokens=True) ``` ## License This model is licensed under the Apache License 2.0.
poeryouy/blockassist-bc-skittish_beaked_duck_1757439413
poeryouy
2025-09-09T17:37:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "skittish beaked duck", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:36:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - skittish beaked duck --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Mauro6519/gemma-3N-E4B-finetune
Mauro6519
2025-09-09T17:34:12Z
0
0
transformers
[ "transformers", "safetensors", "gemma3n", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-09-09T17:27:53Z
--- base_model: unsloth/gemma-3n-e4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3n license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** Mauro6519 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3n-e4b-it-unsloth-bnb-4bit This gemma3n model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
niceelliot/blockassist-bc-muscular_slow_donkey_1757439137
niceelliot
2025-09-09T17:33:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular slow donkey", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:33:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular slow donkey --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
poeryouy/blockassist-bc-hoarse_armored_emu_1757439040
poeryouy
2025-09-09T17:31:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hoarse armored emu", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:30:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hoarse armored emu --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1757437288
sampingkaca72
2025-09-09T17:30:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:30:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
poeryouy/blockassist-bc-silent_sly_rabbit_1757438977
poeryouy
2025-09-09T17:30:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silent sly rabbit", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:29:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silent sly rabbit --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
navsaab/blockassist
navsaab
2025-09-09T17:27:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "burrowing noisy chameleon", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:27:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - burrowing noisy chameleon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1757437227
vwzyrraz7l
2025-09-09T17:24:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:24:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
KamelWerhani/Phi-4-mini-reasoning-ROS
KamelWerhani
2025-09-09T17:23:55Z
0
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-09T17:18:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rolandxhafajd035/blockassist-bc-masked_hulking_emu_1757438512
rolandxhafajd035
2025-09-09T17:22:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked hulking emu", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:21:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked hulking emu --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lc4299260/blockassist-bc-powerful_scurrying_chameleon_1757438402
lc4299260
2025-09-09T17:20:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "powerful scurrying chameleon", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:20:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - powerful scurrying chameleon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yoiuport/blockassist-bc-majestic_mammalian_tortoise_1757438264
yoiuport
2025-09-09T17:18:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "majestic mammalian tortoise", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:17:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - majestic mammalian tortoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dipalamia548/blockassist-bc-invisible_foxy_parrot_1757438131
dipalamia548
2025-09-09T17:15:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "invisible foxy parrot", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:15:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - invisible foxy parrot --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
WenFengg/ExpertWed10_wen14_number20
WenFengg
2025-09-09T17:14:25Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-09T17:13:44Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
gtallec-kog/Llama-3.2-1B-pruned-on-4.0
gtallec-kog
2025-09-09T17:13:33Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-09T17:13:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fakir22/blockassist-bc-flapping_peaceful_caterpillar_1757437620
fakir22
2025-09-09T17:07:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flapping peaceful caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:07:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flapping peaceful caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dbjfbdvfhjfdb/blockassist-bc-smooth_timid_squid_1757437278
dbjfbdvfhjfdb
2025-09-09T17:01:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "smooth timid squid", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T17:01:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - smooth timid squid --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Retreatcost/KansenSakura-Zero-RP-12b
Retreatcost
2025-09-09T16:59:56Z
19
5
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "frankenmerge", "roleplay", "conversational", "nsfw", "base_model:Epiculous/Crimson_Dawn-v0.2", "base_model:merge:Epiculous/Crimson_Dawn-v0.2", "base_model:LatitudeGames/Muse-12B", "base_model:merge:LatitudeGames/Muse-12B", "base_model:LatitudeGames/Wayfarer-12B", "base_model:merge:LatitudeGames/Wayfarer-12B", "base_model:PocketDoc/Dans-PersonalityEngine-V1.3.0-12b", "base_model:merge:PocketDoc/Dans-PersonalityEngine-V1.3.0-12b", "base_model:PocketDoc/Dans-SakuraKaze-V1.0.0-12b", "base_model:merge:PocketDoc/Dans-SakuraKaze-V1.0.0-12b", "base_model:PygmalionAI/Eleusis-12B", "base_model:merge:PygmalionAI/Eleusis-12B", "base_model:ReadyArt/Forgotten-Abomination-12B-v4.0", "base_model:merge:ReadyArt/Forgotten-Abomination-12B-v4.0", "base_model:elinas/Chronos-Gold-12B-1.0", "base_model:merge:elinas/Chronos-Gold-12B-1.0", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-24T19:44:52Z
--- base_model: - PocketDoc/Dans-PersonalityEngine-V1.3.0-12b - PocketDoc/Dans-SakuraKaze-V1.0.0-12b - elinas/Chronos-Gold-12B-1.0 - PygmalionAI/Eleusis-12B - ReadyArt/Forgotten-Abomination-12B-v4.0 - Epiculous/Crimson_Dawn-v0.2 - LatitudeGames/Wayfarer-12B - LatitudeGames/Muse-12B library_name: transformers tags: - mergekit - merge - frankenmerge - roleplay - conversational - nsfw new_version: Retreatcost/KansenSakura-Eclipse-RP-12b license: apache-2.0 --- # KansenSakura-Zero-RP-12b <pre> Rusted petals fall On circuits that dream of blood <span style="color: red;">Error 0x1FABE5: Beauty not found</span> This is not a bug It's the feature they warned of Reboot into spring </pre> ## 🌸 Techno-Organic Roleplay Engine > When the first sakura petal touched the machine, Patient Zero awoke. This narrative engine transforms stories into living infections - where every character preserves their core essence while undergoing beautiful corruption. Will your tale contain the outbreak... or become its vector? ## 🔍 Overview **KansenSakura-Zero-RP-12b** is a roleplaying specialist model engineered for immersive narrative experiences blending Japanese visual novel aesthetics with techno-organic horror. Designed as the "Patient Zero" of narrative infection engines, it transforms characters while preserving their core essence - whether organic or mechanical. ## ℹ️ Model Details - 🧬 **Core Infection**: Cherry blossom motif meets nanite corruption - ⚙️ **Architecture**: 12B parameter layer-merged transformer - 🧪 **Creation Method**: Precision layer merging (8-model synthesis) - 🎭 **Specialization**: Character-driven narratives with emergent corruption themes - 🔖 **Version**: Zero (Initial Outbreak) ## 🎮 Intended Use - 🤖 Character-driven narratives with transformation arcs - 🎴 Visual novel / Doujin-style storytelling - ☠️ Apocalyptic and cyber-horror scenarios - 💞 Emotional corruption/redemption narratives ## 😷 Ethical Quarantine This model contains: - ⚠️ Unfiltered creative output - ⚠️ Potential for disturbing narratives - ⚠️ NSFW-capable layers ## ✍🏻 Inference Tips 1. **Temperature**: 0.8 2. **Repetition Penalty**: 1.05 3. **TOP_P**: 0.97 4. **TOP_K**: 0 (disable) 5. **MIN_P**: 0.025 6. **Template Format**: ChatML 7. **Max Output**: 320 6. **Context Management**: 16K for best quality, expect slight degradation afterwards ## 🧩 Model Composition A precision surgical merge of specialized models: | Layer Range | Model | Contribution | |------------|-------|-------------| | **0-5** | `Dans-PersonalityEngine-V1.3.0` | Personality anchoring | | **5-14** | `Dans-SakuraKaze-V1.0.0` | Narrative coherence | | **14-22** | `Chronos-Gold-12B` + `Eleusis-12B` | World knowledge & emotional intelligence | | **22-29** | `Forgotten-Abomination-12B-v4.0` + `Crimson_Dawn-V0.2` | RP memory & corruption mechanics | | **29-35** | `Wayfarer-12B` | Scene crafting | | **35-39** | `Muse-12B` | Immersive delivery | | **39-40** | `Dans-SakuraKaze-V1.0.0` | Output coherence | ## Merge Details ### Merge Method This model was merged using the Passthrough merge method. ### Models Merged The following models were included in the merge: * [PocketDoc/Dans-PersonalityEngine-V1.3.0-12b](https://huggingface.co/PocketDoc/Dans-PersonalityEngine-V1.3.0-12b) * [PocketDoc/Dans-SakuraKaze-V1.0.0-12b](https://huggingface.co/PocketDoc/Dans-SakuraKaze-V1.0.0-12b) * [elinas/Chronos-Gold-12B-1.0](https://huggingface.co/elinas/Chronos-Gold-12B-1.0) * [PygmalionAI/Eleusis-12B](https://huggingface.co/PygmalionAI/Eleusis-12B) * [ReadyArt/Forgotten-Abomination-12B-v4.0](https://huggingface.co/ReadyArt/Forgotten-Abomination-12B-v4.0) * [Epiculous/Crimson_Dawn-v0.2](https://huggingface.co/Epiculous/Crimson_Dawn-v0.2) * [LatitudeGames/Wayfarer-12B](https://huggingface.co/LatitudeGames/Wayfarer-12B) * [LatitudeGames/Muse-12B](https://huggingface.co/LatitudeGames/Muse-12B) ### Reproduction steps <details> <summary>Spoiler warning</summary> 1. Retokenize `ReadyArt/Forgotten-Abomination-12B-v4.0` using [mergekit-tokensurgeon](https://github.com/arcee-ai/mergekit/blob/main/docs/tokensurgeon.md) ```bash mergekit-tokensurgeon "ReadyArt/Forgotten-Abomination-12B-v4.0" "Epiculous/Crimson_Dawn-v0.2" ./retokenized_FA --approximation-method omp --k 256 ``` Note: After experimenting I discovered that `PocketDoc/Dans-PersonalityEngine-V1.3.0-12b` works with ChatML tokenizer without implicit retokenization, but produces much more text than desired. As it's position is in the starting layers, this might be a desired, more unhinged behaviour ,so we retokenize only `ReadyArt/Forgotten-Abomination-12B-v4.0` to use ChatML. As we will merge it with `Epiculous/Crimson_Dawn-v0.2` it's natural we use this model as a donor. Note: according to following [paper](https://arxiv.org/html/2506.06607v1) using `omp --k 64` is enough and higher quantity has diminishing returns, but I decided to max the quality anyway. 2. Merge models using mergekit [mergekit-multi](https://github.com/arcee-ai/mergekit/blob/main/docs/multimerge.md) ```yml name: knowledge_core merge_method: nuslerp models: - model: elinas/Chronos-Gold-12B-1.0 parameters: weight: 0.4 - model: PygmalionAI/Eleusis-12B parameters: weight: 0.6 --- name: rp_blend merge_method: nuslerp models: - model: ./retokenized_FA parameters: weight: 0.6 - model: Epiculous/Crimson_Dawn-v0.2 parameters: weight: 0.4 --- merge_method: passthrough slices: - sources: # Personality Foundation - model: PocketDoc/Dans-PersonalityEngine-V1.3.0-12b layer_range: [0, 5] - sources: # Base Model - model: PocketDoc/Dans-SakuraKaze-V1.0.0-12b layer_range: [5, 14] - sources: # Worldbuilding focus - model: knowledge_core layer_range: [14, 22] - sources: # Emotional intensity - model: rp_blend layer_range: [22, 29] - sources: # Danger Specialization - model: LatitudeGames/Wayfarer-12B layer_range: [29, 35] - sources: # Delivery & Alignment - model: LatitudeGames/Muse-12B layer_range: [35, 39] - sources: # Output Layer - model: PocketDoc/Dans-SakuraKaze-V1.0.0-12b layer_range: [39, 40] dtype: bfloat16 ``` ```bash mergekit-multi sakuramerge.yml --intermediate-dir ./intermediates --out-path ./KansenSakura-Zero-RP-12b ``` Note: According to this [paper](https://arxiv.org/html/2409.14381v1) top 3 layers provide up to 30% of model performance. According to this [paper](https://arxiv.org/html/2404.07066v7) more complex concepts emerge in later layers. According to this [paper](https://arxiv.org/html/2410.17875v3) model alignment and data presentation is most affected by last (bottom) layers. Based on this knowledge I placed different models in places where they would benefit the model the most. 3. Optional - create Q8_0 GGUF using llama.cpp - use convert_hf_to_gguf.py script from llama.cpp (here's [source](https://github.com/ggml-org/llama.cpp/blob/master/convert_hf_to_gguf.py)) ```bash python convert_hf_to_gguf.py ~/projects/FrankenDans-PersonalityPatchwork-VX-12b --outtype q8_0 ``` </details> ## 🙏 Acknowledgments We stand on the shoulders of giants: - [PocketDoc](https://huggingface.co/PocketDoc) for PersonalityEngine and SakuraKaze foundations - [Latitude](https://huggingface.co/LatitudeGames) team for narrative expertise - [Elinas](https://huggingface.co/elinas) for temporal knowledge systems - [PygmalionAI](https://huggingface.co/PygmalionAI) for emotional intelligence research - [ReadyArt](https://huggingface.co/ReadyArt) for dark arts - [Arcee AI](https://huggingface.co/arcee-ai) for making questionable AI combinations possible with [mergekit](https://github.com/arcee-ai/mergekit) - [Featherless AI](https://featherless.ai) for kindly hosting the model - [Team mradermacher](https://huggingface.co/mradermacher) for awesome quants - **You**, dear user, for willingly exposing yourself to this digital infection vector. Patient Zero status granted! 🦠 *When the first circuit blooms... the infection begins* ### 📜 Narrative Hazard Disclaimer > *KansenSakura-Zero-RP-12b is provided "as found in the corrupted data-core" without warranty of any kind. Users assume all responsibility for unintended character corruptions, emergent techno-organic fantasies, or sudden urges to describe rusting cherry blossoms. Not approved for medical diagnostics, financial advice, or anti-zombie defense systems. May contain traces of actual emotional intelligence. Side effects may include: phantom nanite tingling, involuntary haiku composition, or temporary possession by tragic android protagonists. If worldbuilding symptoms persist for more than 4 narrative hours, consult your nearest cyber-shaman. Remember: This isn't an infection - it's a feature.* <del>*Disclaimer v1.0 - Valid until next bloom cycle* 🌸⚙️💀</del> [New model available](https://huggingface.co/Retreatcost/KansenSakura-Eclipse-RP-12b)
heindelgadodjlemonddbu/blockassist-bc-cunning_untamed_cobra_1757436944
heindelgadodjlemonddbu
2025-09-09T16:57:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "cunning untamed cobra", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T16:57:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - cunning untamed cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Rootu/blockassist-bc-snorting_fleecy_goose_1757436726
Rootu
2025-09-09T16:52:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "snorting fleecy goose", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T16:52:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - snorting fleecy goose --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
makhiovrnl/blockassist-bc-marine_armored_weasel_1757435786
makhiovrnl
2025-09-09T16:36:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "marine armored weasel", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T16:36:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - marine armored weasel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kafa22/blockassist-bc-regal_leggy_hummingbird_1757435733
kafa22
2025-09-09T16:36:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal leggy hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T16:36:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal leggy hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
acidjp/blockassist-bc-humming_rugged_viper_1757433213
acidjp
2025-09-09T16:29:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "humming rugged viper", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T16:29:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - humming rugged viper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
foutyui/blockassist-bc-humming_tricky_aardvark_1757435308
foutyui
2025-09-09T16:28:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "humming tricky aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T16:28:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - humming tricky aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Stasonelison/blockassist-bc-howling_powerful_aardvark_1757434799
Stasonelison
2025-09-09T16:20:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "howling powerful aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T16:20:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - howling powerful aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
currashawn/blockassist-bc-sturdy_alert_stork_1757434713
currashawn
2025-09-09T16:18:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sturdy alert stork", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T16:18:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sturdy alert stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bridgewaterargelia/blockassist-bc-padded_moist_locust_1757434540
bridgewaterargelia
2025-09-09T16:16:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "padded moist locust", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T16:16:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - padded moist locust --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Rootu/blockassist-bc-snorting_fleecy_goose_1757434411
Rootu
2025-09-09T16:14:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "snorting fleecy goose", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T16:14:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - snorting fleecy goose --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dawnkelly09/preflight-smollm2-1.7b-lora
dawnkelly09
2025-09-09T16:08:59Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "dataset:dawnkelly09/preflight-sft", "base_model:HuggingFaceTB/SmolLM2-1.7B-Instruct", "base_model:finetune:HuggingFaceTB/SmolLM2-1.7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-09-09T15:43:52Z
--- base_model: HuggingFaceTB/SmolLM2-1.7B-Instruct datasets: dawnkelly09/preflight-sft library_name: transformers model_name: preflight-smollm2-1.7b-lora tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for preflight-smollm2-1.7b-lora This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct) on the [dawnkelly09/preflight-sft](https://huggingface.co/datasets/dawnkelly09/preflight-sft) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="dawnkelly09/preflight-smollm2-1.7b-lora", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.22.2 - Transformers: 4.56.1 - Pytorch: 2.4.0+cu121 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
ChenWu98/qwen_2.5_0.5b_sft_type_anneal_condition_split_0_from_637
ChenWu98
2025-09-09T16:07:57Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:ChenWu98/qwen_2.5_0.5b_sft_type_condition", "base_model:finetune:ChenWu98/qwen_2.5_0.5b_sft_type_condition", "endpoints_compatible", "region:us" ]
null
2025-09-09T16:07:42Z
--- base_model: ChenWu98/qwen_2.5_0.5b_sft_type_condition library_name: transformers model_name: qwen_2.5_0.5b_sft_type_anneal_condition_split_0_from_637 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for qwen_2.5_0.5b_sft_type_anneal_condition_split_0_from_637 This model is a fine-tuned version of [ChenWu98/qwen_2.5_0.5b_sft_type_condition](https://huggingface.co/ChenWu98/qwen_2.5_0.5b_sft_type_condition). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chenwu/huggingface/runs/fnpd1ev3) This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.51.1 - Pytorch: 2.7.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
saraivaantoine/blockassist-bc-sleek_stinky_butterfly_1757434036
saraivaantoine
2025-09-09T16:07:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sleek stinky butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T16:07:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sleek stinky butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lukashossain3425/blockassist-bc-freckled_twitchy_wallaby_1757433838
lukashossain3425
2025-09-09T16:04:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "freckled twitchy wallaby", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T16:04:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - freckled twitchy wallaby --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pavankumar007/hack
pavankumar007
2025-09-09T16:02:58Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-09-09T16:02:58Z
--- license: apache-2.0 ---
elip3250/blockassist-bc-squinting_smooth_spider_1757433476
elip3250
2025-09-09T15:58:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "squinting smooth spider", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T15:58:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - squinting smooth spider --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tottenkhanqqmcguirendsy/blockassist-bc-lively_grunting_crane_1757433486
tottenkhanqqmcguirendsy
2025-09-09T15:58:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lively grunting crane", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T15:58:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lively grunting crane --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
slatinlatrina/blockassist-bc-mammalian_sneaky_prawn_1757432925
slatinlatrina
2025-09-09T15:48:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian sneaky prawn", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T15:48:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian sneaky prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arthuryong/fine-tuned_deepseek
arthuryong
2025-09-09T15:46:22Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:deepseek-ai/deepseek-coder-7b-instruct-v1.5", "base_model:finetune:deepseek-ai/deepseek-coder-7b-instruct-v1.5", "endpoints_compatible", "region:us" ]
null
2025-08-15T06:59:51Z
--- base_model: deepseek-ai/deepseek-coder-7b-instruct-v1.5 library_name: transformers model_name: fine-tuned_deepseek tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for fine-tuned_deepseek This model is a fine-tuned version of [deepseek-ai/deepseek-coder-7b-instruct-v1.5](https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="arthuryong/fine-tuned_deepseek", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/arthuryong-personal/Fine%20tuning%20of%20Deepseek-coder-7b-instruct-v1.5/runs/ve883vkg?apiKey=56fff3f15dd3a20806cd00dfdd0472df42fa5b06) This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.52.4 - Pytorch: 2.6.0 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kendzioracliff/blockassist-bc-dextrous_horned_chinchilla_1757432682
kendzioracliff
2025-09-09T15:45:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dextrous horned chinchilla", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T15:44:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dextrous horned chinchilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NotoriousH2/Qwen3-4B-Instruct-2507-Rude-LORA_Rude_LoRA
NotoriousH2
2025-09-09T15:44:14Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-09T15:44:00Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mullisonshirley/blockassist-bc-prehistoric_tropical_lemur_1757432138
mullisonshirley
2025-09-09T15:35:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "prehistoric tropical lemur", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T15:35:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - prehistoric tropical lemur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
foridaparvin76474/blockassist-bc-skittish_vigilant_impala_1757431953
foridaparvin76474
2025-09-09T15:32:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "skittish vigilant impala", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T15:32:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - skittish vigilant impala --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
poki1/blockassist-bc-vicious_shiny_turtle_1757431879
poki1
2025-09-09T15:31:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vicious shiny turtle", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T15:31:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vicious shiny turtle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
karthickhere/blockassist-bc-voracious_quiet_bear_1757431878
karthickhere
2025-09-09T15:31:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "voracious quiet bear", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T15:31:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - voracious quiet bear --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
currashawn/blockassist-bc-sturdy_alert_stork_1757431835
currashawn
2025-09-09T15:30:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sturdy alert stork", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T15:30:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sturdy alert stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pepijn223/pi05_droid_bf16
pepijn223
2025-09-09T15:27:19Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-09-09T15:26:56Z
# PI0.5 Pi05 Droid (PyTorch, 16-bit floating point) This is a PyTorch version of the PI0.5 pi05_droid model, converted from the original JAX/Flax implementation. ## Model Details - **Architecture**: PI0.5 (Vision-Language-Action model with discrete state input) - **Model Type**: PI0.5 - **Domain**: DROID (robotic manipulation) - **Precision**: 16-bit floating point (bf16) - **Action Dimension**: 32 - **Action Horizon**: 15 - **Max Token Length**: 200 - **Vision Model**: PaliGemma (gemma_2b) - **Action Expert**: gemma_300m ## Key Features - **Discrete State Input**: Uses discrete language tokens for state representation - **Flow Matching**: Utilizes adaRMSNorm for timestep injection in action expert - **Enhanced Action Modeling**: Improved action prediction with flow matching approach ## Conversion Details This model was converted from JAX to PyTorch using the OpenPI conversion script: ```bash python examples/convert_jax_model_to_pytorch.py \ --checkpoint_dir /fsx/pepijn/pi05_droid \ --config_name pi05_droid \ --output_path /fsx/pepijn/pi05_droid/pytorch/bf16/ \ --precision bfloat16 ``` **Conversion Date**: 2025-09-09 ## Usage ```python from openpi.models_pytorch.pi0_pytorch import PI0Pytorch import torch # Load the model model = PI0Pytorch.from_pretrained("pepijn223/pi05_droid_bf16") # The model expects inputs in the format: # - images: torch.Tensor of shape [batch, height, width, channels] # - text: tokenized text prompts # - proprioceptive_state: robot state information (if applicable) ``` ## Model Architecture The model consists of: 1. **Vision Encoder**: PaliGemma-based vision processing 2. **Language Encoder**: Text prompt understanding 3. **Action Expert**: Specialized network for action prediction 4. **Integration Layer**: Combines multimodal information for action output ## Training Data This model was trained on robotics datasets appropriate for its domain: - **DROID models**: Trained on diverse robot manipulation data - **ALOHA models**: Trained on bimanual manipulation tasks - **LIBERO models**: Trained on diverse tabletop manipulation scenarios - **Base models**: Trained on general robotics datasets ## Limitations - Model performance depends on similarity between deployment and training environments - May require domain-specific fine-tuning for optimal performance - Action space must match the trained action dimension (32) ## Citation If you use this model, please cite the original OpenPI work: ```bibtex @article{openpi2024, title={Open-World Robotic Manipulation with Vision-Language-Action Models}, author={Physical Intelligence}, year={2024}, url={https://github.com/Physical-Intelligence/openpi} } ``` ## Original Repository [OpenPI GitHub Repository](https://github.com/Physical-Intelligence/openpi) ## License This model follows the same license as the original OpenPI repository.
cwayneconnor/blockassist-bc-mute_loud_lynx_1757431330
cwayneconnor
2025-09-09T15:24:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute loud lynx", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T15:23:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute loud lynx --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pepijn223/pi0_libero_bf16
pepijn223
2025-09-09T15:23:43Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-09-09T15:23:30Z
# PI0 Pi0 Libero (PyTorch, 16-bit floating point) This is a PyTorch version of the PI0 pi0_libero model, converted from the original JAX/Flax implementation. ## Model Details - **Architecture**: PI0 (Vision-Language-Action model) - **Model Type**: PI0 - **Domain**: LIBERO (diverse manipulation tasks) - **Precision**: 16-bit floating point (bf16) - **Action Dimension**: 32 - **Action Horizon**: 50 - **Max Token Length**: 48 - **Vision Model**: PaliGemma (gemma_2b) - **Action Expert**: gemma_300m ## Key Features - **Vision-Language-Action**: Multimodal model combining vision, language, and action - **PaliGemma Backbone**: Leverages PaliGemma for vision-language understanding - **Continuous State Input**: Direct continuous state input processing ## Conversion Details This model was converted from JAX to PyTorch using the OpenPI conversion script: ```bash python examples/convert_jax_model_to_pytorch.py \ --checkpoint_dir /fsx/pepijn/pi0_libero \ --config_name pi0_libero \ --output_path /fsx/pepijn/pi0_libero/pytorch/bf16/ \ --precision bfloat16 ``` **Conversion Date**: 2025-09-09 ## Usage ```python from openpi.models_pytorch.pi0_pytorch import PI0Pytorch import torch # Load the model model = PI0Pytorch.from_pretrained("pepijn223/pi0_libero_bf16") # The model expects inputs in the format: # - images: torch.Tensor of shape [batch, height, width, channels] # - text: tokenized text prompts # - proprioceptive_state: robot state information (if applicable) ``` ## Model Architecture The model consists of: 1. **Vision Encoder**: PaliGemma-based vision processing 2. **Language Encoder**: Text prompt understanding 3. **Action Expert**: Specialized network for action prediction 4. **Integration Layer**: Combines multimodal information for action output ## Training Data This model was trained on robotics datasets appropriate for its domain: - **DROID models**: Trained on diverse robot manipulation data - **ALOHA models**: Trained on bimanual manipulation tasks - **LIBERO models**: Trained on diverse tabletop manipulation scenarios - **Base models**: Trained on general robotics datasets ## Limitations - Model performance depends on similarity between deployment and training environments - May require domain-specific fine-tuning for optimal performance - Action space must match the trained action dimension (32) ## Citation If you use this model, please cite the original OpenPI work: ```bibtex @article{openpi2024, title={Open-World Robotic Manipulation with Vision-Language-Action Models}, author={Physical Intelligence}, year={2024}, url={https://github.com/Physical-Intelligence/openpi} } ``` ## Original Repository [OpenPI GitHub Repository](https://github.com/Physical-Intelligence/openpi) ## License This model follows the same license as the original OpenPI repository.
marcelwisquiresvals/blockassist-bc-lumbering_singing_bison_1757431403
marcelwisquiresvals
2025-09-09T15:23:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering singing bison", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T15:23:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering singing bison --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sztyber/Qwen2.5-14B-Instruct_bird108_r64_6e
sztyber
2025-09-09T15:23:14Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "base_model:unsloth/Qwen2.5-14B-Instruct", "base_model:finetune:unsloth/Qwen2.5-14B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-09T15:22:45Z
--- base_model: unsloth/Qwen2.5-14B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** sztyber - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-14B-Instruct This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
oelsuejaka/blockassist-bc-shiny_aquatic_gibbon_1757431337
oelsuejaka
2025-09-09T15:22:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shiny aquatic gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T15:22:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shiny aquatic gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tralalerrotralala228/amiranoor
tralalerrotralala228
2025-09-09T15:19:43Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-09-09T14:47:50Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: amiranoor --- # Amiranoor <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `amiranoor` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "amiranoor", "lora_weights": "https://huggingface.co/tralalerrotralala228/amiranoor/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('tralalerrotralala228/amiranoor', weight_name='lora.safetensors') image = pipeline('amiranoor').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2500 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/tralalerrotralala228/amiranoor/discussions) to add images that show off what you’ve made with this LoRA.
Alpha-VLLM/Lumina-DiMOO
Alpha-VLLM
2025-09-09T15:17:45Z
0
8
diffusers
[ "diffusers", "safetensors", "llada", "Diffusion Large Language Model", "Multi-Modal Generation and Understanding", "any-to-any", "custom_code", "license:apache-2.0", "region:us" ]
any-to-any
2025-09-09T10:56:17Z
--- license: apache-2.0 pipeline_tag: any-to-any tags: - Diffusion Large Language Model - Multi-Modal Generation and Understanding --- <p align="center"> <img src="./assets/Lumina-DiMOO.png" width="20%"/> </p> <div align="center"> <h1> Lumina-DiMOO: An Omni Diffusion Large Language Model for Multi-Modal Generation and Understanding </h1> [[📑 Technical Report (Coming Soon)]()] &emsp; [[💜 Project Page (Demo & Benchmark)](https://synbol.github.io/Lumina-DiMOO/)] &emsp; [[🤗 Model ](https://huggingface.co/Alpha-VLLM/Lumina-DiMOO)] <b>¹Shanghai AI Laboratory, ²Shanghai Innovation Institute, ³Shanghai Jiao Tong University</b> <b>⁴Nanjing University, ⁵The University of Sydney</b> <b>⁶The Chinese University of Hong Kong, ⁷Tsinghua University</b> <img src="./assets/teaser.png" width="100%"/> </div> ## 📚 Introduction We introduce Lumina-DiMOO, an omni foundational model for seamless multimodal generation and understanding. Lumina-DiMOO is distinguished by four key innovations: - **Unified Discrete Diffusion Architecture:** Lumina-DiMOO sets itself apart from prior unified models by utilizing a fully discrete diffusion modeling to handle inputs and outputs across various modalities. - **Versatile Multimodal Capabilities:** Lumina-DiMOO supports a broad spectrum of multimodal tasks, including text-to-image generation (allowing for arbitrary and high-resolution), image-to-image generation (e.g., image editing, subject-driven generation, and image inpainting, etc.), alongside advanced image understanding. - **Higher Sampling Efficiency:** Compared to previous AR or hybrid AR-diffusion paradigms, Lumina-DiMOO demonstrates remarkable sampling efficiency. Additionally, we design a bespoke caching method to further speed up the sampling speed by 2x. - **Superior Performance:** Lumina-DiMOO achieves state-of-the-art performance on multiple benchmarks, surpassing existing open-source unified multimodal models, setting a new standard in the field. <img src="./assets/architecture.png" width="100%"/> ## 📽️ Qualitative Results Here we present some comparative generation results with other models. **For additional visualization results, please see our [Project Page](https://synbol.github.io/Lumina-DiMOO/).** <details open> <summary>Text-to-Image Comparison</summary> <img src="./assets/demo_t2i.png" width="100%"/> </details> <details close> <summary>Image Editing Comparison</summary> <img src="./assets/demo_editing.png" width="100%"/> </details> <details close> <summary>Controllable & Subject-Driven Generation Comparison</summary> <img src="./assets/qualitative_control_subject.png" width="100%"/> </details> <details close> <summary>Image Inpainting & Extrapolation</summary> <img src="./assets/demo_inpainting.jpg" width="100%"/> </details> ## 📊 Quantitative Performance <details open> <summary>GenEval Benchmark</summary> <img src="./assets/GenEval_benchmark.png" width="100%"/> </details> <details close> <summary>DPG Benchmark</summary> <img src="./assets/DPG_benchmark.png" width="100%"/> </details> <details close> <summary>OneIG-EN Benchmark</summary> <img src="./assets/OneIG-EN_benchmark.png" width="100%"/> </details> <details close> <summary>TIIF Benchmark</summary> <img src="./assets/TIIF_benchmark.png" width="100%"/> </details> <details close> <summary>Image-to-Image Benchmark</summary> <img src="./assets/i2i_benchmark.png" width="100%"/> </details> <details close> <summary>Image Understanding Benchmark</summary> <img src="./assets/understanding_benchmark.png" width="100%"/> </details> ## 🚀 Sampling Speed Analysis - Since text generation is performed in a block-wise manner, unlike image generation which uses a single global decoding step, its speed is influenced by both the number of blocks and the number of steps. Therefore, the speed improvement of image understanding is not as significant as that of image generation. - **Lumina-DiMOO Settings**: For image generation, we sample 64 steps. For image understanding, we set the block length to 256 and the number of sampling steps to 128. <details open> <summary>Sampling Speed Comparison</summary> <img src="./assets/speed_comparison.png" width="100%"/> </details> ## 💬 Discussion You can reach us with this WeChat QR code! <p align="left"> <img src="./assets/wechat.jpeg" width="50%"/> <br> </p> ## 📜 Acknowledgements This work was also supported and implemented by [MindSpeed MM](https://gitee.com/ascend/MindSpeed-MM), an open-source training framework for large-scale multimodal models designed for distributed training, developed and maintained by Huawei's Computing Product Line. Specifically Optimized for Huawei‘s Ascend AI chips, MindSpeed MM offers comprehensive support for distributed training and is tailored for a wide range of multimodal tasks. ## 📖 BibTeX ``` @misc{lumina-dimoo, title={Lumina-DiMOO: A Unified Masked Diffusion Model for Multi-Modal Generation and Understanding}, author={Alpha VLLM Team}, year={2025}, url={https://github.com/Alpha-VLLM/Lumina-DiMOO}, } ```
Stasonelison/blockassist-bc-howling_powerful_aardvark_1757430943
Stasonelison
2025-09-09T15:16:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "howling powerful aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T15:16:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - howling powerful aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Rootu/blockassist-bc-snorting_fleecy_goose_1757430857
Rootu
2025-09-09T15:15:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "snorting fleecy goose", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T15:14:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - snorting fleecy goose --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1757430439
bah63843
2025-09-09T15:08:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T15:08:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kittygirlhere/blockassist-bc-twitchy_beaked_coral_1757430317
kittygirlhere
2025-09-09T15:06:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy beaked coral", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T15:05:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy beaked coral --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nanonamosgro/blockassist-bc-snorting_roaring_mink_1757430312
nanonamosgro
2025-09-09T15:05:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "snorting roaring mink", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T15:05:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - snorting roaring mink --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
huitingnanette/blockassist-bc-territorial_yapping_bear_1757430276
huitingnanette
2025-09-09T15:04:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "territorial yapping bear", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T15:04:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - territorial yapping bear --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jona-972/Qwen2-0.5B-SFT-2
jona-972
2025-09-09T12:30:45Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:Qwen/Qwen2-0.5B", "base_model:finetune:Qwen/Qwen2-0.5B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-09T12:26:33Z
--- base_model: Qwen/Qwen2-0.5B library_name: transformers model_name: Qwen2-0.5B-SFT-2 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for Qwen2-0.5B-SFT-2 This model is a fine-tuned version of [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jona-972/Qwen2-0.5B-SFT-2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.23.0.dev0 - Transformers: 4.56.1 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
cwayneconnor/blockassist-bc-mute_loud_lynx_1757420852
cwayneconnor
2025-09-09T12:29:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute loud lynx", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T12:28:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute loud lynx --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Parveshiiii/Auto-Completer-0.1
Parveshiiii
2025-09-09T12:28:44Z
0
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "auto-completion", "long-context", "smollm2", "fine-tuned", "en", "base_model:HuggingFaceTB/SmolLM2-360M", "base_model:finetune:HuggingFaceTB/SmolLM2-360M", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-09T09:12:59Z
--- license: apache-2.0 language: en tags: - text-generation - auto-completion - long-context - smollm2 - fine-tuned - transformers base_model: HuggingFaceTB/SmolLM2-360M pipeline_tag: text-generation library_name: transformers --- # 🧠 Auto-Completer-0.1 <div align="center"> <img src="https://cdn-uploads.huggingface.co/production/uploads/677fcdf29b9a9863eba3f29f/0go71V9BNC6wAjagdNVlp.png" width="600"/> </div> **Auto-Completer-0.1** is a fine-tuned version of [SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M), optimized for **long-range dependency modeling** and **state-of-the-art auto-completion performance**. Trained on an additional **4.2 million tokens** of curated instruction-style and math-rich data, this model excels at completing documents, code, and reasoning chains with high fidelity and semantic coherence. --- ## 🚀 Highlights - 🔍 **Base Model**: SmolLM2-360M (360M parameters, instruction-tuned) - 📈 **Fine-Tuning Tokens**: +4.2M tokens focused on long-context reasoning - 🧠 **Specialization**: Auto-completion, document continuation, math reasoning - 🧪 **Performance**: SOTA on internal benchmarks for completion accuracy and semantic retention - 🧰 **Context Length**: Up to 4K tokens with packing enabled --- ## 📦 Intended Use | ✅ Appropriate Uses | 🚫 Out-of-Scope Uses | |-------------------------------|------------------------------| | Auto-completion in IDEs | Real-time dialogue agents | | Math and logic reasoning | Sensitive medical inference | | Document drafting | Unfiltered open-domain chat | | Code continuation | Offensive or biased content | --- ## 🧑‍🔬 Training Details - **Base**: SmolLM2-360M (Instruct variant) - **Additional Tokens**: 4.2M curated samples from MathX-5M, code snippets, and long-form completions - **Trainer**: `SFTTrainer` via TRL with Unsloth backend - **Batch Size**: 8 (packed) - **Max Seq Length**: 6144 - **Optimizer**: `adamw_8bit` - **Steps**: 1k approx (warmup: 60) - **Learning Rate**: 2e-5 --- ## 📊 Evaluation | Metric | Score | |----------------------|-----------| | Completion Accuracy | 94.2% | | Semantic Retention | 91.8% | | Math Reasoning F1 | 88.6 | | Code Continuation BLEU | 87.3 | > Benchmarked on internal test sets derived from MathX, HumanEval-lite, and document continuation tasks. --- ### How to use ```bash pip install transformers ``` ## 🧪 Example Usage >Don't try to use it as a chat model its not meant for that * _Using full precision_ ```python from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "Parveshiiii/Auto-Completer-0.1" device = "cuda" # or "cpu" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device) outputs = model.generate( inputs, repetition_penalty=1.2, # you can increase it as it can often stuck in loops after it autocompletes the sentence max_new_tokens=10, # as a autocomplete model i would suggest to use lower max token as the model generates till the max token cap do_sample=True, # use this for diversity eos_token_id=tokenizer.eos_token_id # Optional: stop at end-of-text ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` * _Using `torch.bfloat16`_ ```python # pip install accelerate import torch from transformers import AutoTokenizer, AutoModelForCausalLM checkpoint = "Parveshiiii/Auto-Completer-0.1" device = "cuda" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained( checkpoint, device_map="auto", torch_dtype=torch.bfloat16 # or torch.float16 for fp16 ) # Encode prompt inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device) # Generate with sampling and token control outputs = model.generate( inputs, max_new_tokens=10, # as a autocomplete model i would suggest to use lower max token as the model generates till the max token cap do_sample=True, # Enable sampling for diversity temperature=0.7, # Controls randomness (lower = more deterministic) top_p=0.9, # Nucleus sampling (focus on top 90% of probability mass) repetition_penalty=1.2, # you can increase it as it can often stuck in loops after it autocompletes the sentence eos_token_id=tokenizer.eos_token_id # Optional: stop at end-of-text ) # Decode and print print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ```bash >>> print(f"Memory footprint: {model.get_memory_footprint() / 1e6:.2f} MB") Memory footprint: 723.56 MB ``` --- ## ⚠️ Limitations - Not optimized for multi-turn chat - May hallucinate in open-ended prompts without structure - Limited factual grounding beyond training corpus --- ## 📚 Citation If you use this model, please cite: ```bibtex @misc{rawal2025autocompleter, title={Auto-Completer-0.1: Long-Range Completion with SmolLM2}, author={Parvesh Rawal}, year={2025}, url={https://huggingface.co/Parveshiiii/Auto-Completer-0.1} } ``` --- ## 🛠 Maintainer **Parvesh Rawal** Founder, XenArcAI Architect of agentic orchestration, reproducible AI workflows, and reasoning-aware systems. ---
aronlg/blockassist-bc-wiry_insectivorous_bat_1757420773
aronlg
2025-09-09T12:27:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry insectivorous bat", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T12:27:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry insectivorous bat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lejelly/gs-deepseek-7B-math-code-w1_0_6_w2_0_6
lejelly
2025-09-09T12:27:05Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "arxiv:2212.04089", "base_model:deepseek-ai/deepseek-coder-7b-base-v1.5", "base_model:merge:deepseek-ai/deepseek-coder-7b-base-v1.5", "base_model:deepseek-ai/deepseek-coder-7b-instruct-v1.5", "base_model:merge:deepseek-ai/deepseek-coder-7b-instruct-v1.5", "base_model:deepseek-ai/deepseek-math-7b-instruct", "base_model:merge:deepseek-ai/deepseek-math-7b-instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-09T12:24:46Z
--- base_model: - deepseek-ai/deepseek-coder-7b-base-v1.5 - deepseek-ai/deepseek-math-7b-instruct - deepseek-ai/deepseek-coder-7b-instruct-v1.5 library_name: transformers tags: - mergekit - merge --- # w1_0_6_w2_0_6 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Task Arithmetic](https://arxiv.org/abs/2212.04089) merge method using [deepseek-ai/deepseek-coder-7b-base-v1.5](https://huggingface.co/deepseek-ai/deepseek-coder-7b-base-v1.5) as a base. ### Models Merged The following models were included in the merge: * [deepseek-ai/deepseek-math-7b-instruct](https://huggingface.co/deepseek-ai/deepseek-math-7b-instruct) * [deepseek-ai/deepseek-coder-7b-instruct-v1.5](https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5) ### Configuration The following YAML configuration was used to produce this model: ```yaml # Task Arithmetic - Grid Search # Weights: 0.6, 0.6 base_model: deepseek-ai/deepseek-coder-7b-base-v1.5 models: - model: deepseek-ai/deepseek-math-7b-instruct parameters: weight: 0.6 - model: deepseek-ai/deepseek-coder-7b-instruct-v1.5 parameters: weight: 0.6 merge_method: task_arithmetic parameters: normalize: false lambda: 1.0 dtype: float16 tokenizer: source: union ```
Clemylia/ModelTest00
Clemylia
2025-09-09T12:19:28Z
0
0
transformers
[ "transformers", "text-generation", "fr", "base_model:openai/gpt-oss-20b", "base_model:finetune:openai/gpt-oss-20b", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-09-09T12:04:22Z
--- license: apache-2.0 language: - fr metrics: - code_eval base_model: - openai/gpt-oss-20b pipeline_tag: text-generation library_name: transformers tags: - text-generation - transformers inference-provider: - Fal AI --- # `ModelTest00` Un modèle qui repond test a tout les messages
beaudrieflorencio/blockassist-bc-barky_invisible_butterfly_1757420236
beaudrieflorencio
2025-09-09T12:17:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "barky invisible butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T12:17:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - barky invisible butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Viktor-01/blockassist-bc-leaping_humming_finch_1757417796
Viktor-01
2025-09-09T12:15:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "leaping humming finch", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T12:15:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - leaping humming finch --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hopghoprt/blockassist-bc-spotted_elusive_cassowary_1757419778
hopghoprt
2025-09-09T12:10:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted elusive cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T12:09:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted elusive cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
palmart111/blockassist-bc-armored_feline_capybara_1757419569
palmart111
2025-09-09T12:06:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored feline capybara", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T12:06:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored feline capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).