modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 00:42:47
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
553 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 00:42:38
card
stringlengths
11
1.01M
ultratopaz/1577702
ultratopaz
2025-09-10T00:31:13Z
0
0
null
[ "region:us" ]
null
2025-09-10T00:30:42Z
[View on Civ Archive](https://civarchive.com/models/1482401?modelVersionId=1676780)
fiorter/blockassist-bc-huge_agile_shark_1757464170
fiorter
2025-09-10T00:29:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "huge agile shark", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T00:29:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - huge agile shark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aronlg/blockassist-bc-wiry_insectivorous_bat_1757464042
aronlg
2025-09-10T00:28:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry insectivorous bat", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T00:28:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry insectivorous bat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
abhi884/distilbart-multi-task
abhi884
2025-09-10T00:26:39Z
0
0
transformers
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-base", "base_model:finetune:facebook/bart-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-10T00:25:37Z
--- library_name: transformers license: apache-2.0 base_model: facebook/bart-base tags: - generated_from_trainer model-index: - name: distilbart-multi-task results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-multi-task This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2047 - Rouge2: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 157 | 0.7753 | 0.0 | | No log | 2.0 | 314 | 0.2217 | 0.0 | | No log | 3.0 | 471 | 0.2047 | 0.0 | ### Framework versions - Transformers 4.56.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.0
neamarkos/blockassist
neamarkos
2025-09-10T00:24:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "giant tough seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T00:23:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - giant tough seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
eranmeillranda/blockassist-bc-rugged_deft_ox_1757463747
eranmeillranda
2025-09-10T00:22:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged deft ox", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T00:22:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged deft ox --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gensynw/blockassist-bc-armored_marine_chicken_1757463682
gensynw
2025-09-10T00:21:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored marine chicken", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T00:21:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored marine chicken --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yufeng1/OpenThinker-7B-reasoning-lora-merged-type-c2r2-70
yufeng1
2025-09-10T00:17:21Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-10T00:14:45Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Pixel-Dust/Micromerge
Pixel-Dust
2025-09-10T00:16:48Z
0
0
null
[ "base_model:VelvetToroyashi/WahtasticMerge", "base_model:finetune:VelvetToroyashi/WahtasticMerge", "license:mit", "region:us" ]
null
2025-08-15T12:41:08Z
--- license: mit base_model: VelvetToroyashi/WahtasticMerge --- # New Model Name (e.g., ArtFusionXL) This is a fine-tuned model based on `VelvetToroyashi/WahtasticMerge`. ## Model Description TIt has been trained on a dataset of approximately 15,000 images sourced primarily from ArtStation, Twitter, and OpenGameArt. ## Training Data The model was trained on a curated dataset of 15,000 images. The primary sources for these images were: * **ArtStation:** For high-quality, professional digital art. * **Twitter:** For a diverse range of contemporary art styles. * **OpenGameArt:** For assets related to game development, including characters and environments. This diverse dataset aims to provide the model with a broad understanding of various artistic conventions and styles. ## How to Use This model can be used with any standard SDXL-compatible interface or library (e.g., Diffusers, Automatic1111, ComfyUI). ### Recommended Settings For optimal results, we recommend the following inference parameters: * **Sampler:** Euler or Euler A * **Scheduler:** Normal or Beta * **Steps:** 16-24 * **CFG Scale:** 3-6 * **Resolution:** 832x1200 (or similar aspect ratios with a total area around 1024x1024) ### Example Usage (Python with Diffusers) ```python from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained( "YOUR_HUGGINGFACE_REPO_ID/YOUR_MODEL_NAME", # Replace with your actual Hugging Face repo ID and model name torch_dtype=torch.float16, variant="fp16", use_safetensors=True ).to("cuda") prompt = "a majestic fantasy landscape, vibrant colors, epic, detailed, masterpiece" negative_prompt = "low quality, bad anatomy, deformed, ugly, distorted" image = pipeline( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=20, guidance_scale=5, height=1200, # Example resolution width=832 ).images image.save("generated_image.png")
codelion/gemma-3-270m-it-icm
codelion
2025-09-10T00:16:37Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-270m-it", "base_model:finetune:unsloth/gemma-3-270m-it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-10T00:16:06Z
--- base_model: unsloth/gemma-3-270m-it tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** codelion - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-270m-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
albaughkieth/blockassist-bc-camouflaged_gliding_newt_1757463238
albaughkieth
2025-09-10T00:14:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged gliding newt", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T00:14:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged gliding newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sweatSmile/HF-SmolLM-1.7B-0.5B-4bit-coder
sweatSmile
2025-09-10T00:10:04Z
0
1
null
[ "safetensors", "llama", "smollm", "python", "code-generation", "instruct", "qlora", "fine-tuned", "code", "nf4", "text-generation", "conversational", "en", "dataset:flytech/python-codes-25k", "license:apache-2.0", "region:us" ]
text-generation
2025-09-09T23:32:42Z
--- license: apache-2.0 tags: - smollm - python - code-generation - instruct - qlora - fine-tuned - code - nf4 datasets: - flytech/python-codes-25k model-index: - name: HF-SmolLM-1.7B-0.5B-4bit-coder results: [] language: - en pipeline_tag: text-generation --- # HF-SmolLM-1.7B-0.5B-4bit-coder ## Model Summary **HF-SmolLM-1.7B-0.5B-4bit-coder** is a fine-tuned variant of [SmolLM-1.7B](https://huggingface.co/HuggingFaceTB/SmolLM-1.7B), optimized for **instruction-following in Python code generation tasks**. It was trained on a **1,500-sample subset** of the [flytech/python-codes-25k](https://huggingface.co/datasets/flytech/python-codes-25k) dataset using **parameter-efficient fine-tuning (QLoRA 4-bit)**. The model is suitable for: - Generating Python code snippets from natural language instructions - Completing short code functions - Educational prototyping of fine-tuned LMs ⚠️ This is **not a production-ready coding assistant**. Generated outputs must be manually reviewed before execution. --- ## Intended Uses & Limitations ### βœ… Intended - Research on parameter-efficient fine-tuning - Educational demos of instruction-tuning workflows - Prototype code generation experiments ### ❌ Not Intended - Deployment in production coding assistants - Safety-critical applications - Long-context multi-file programming tasks --- ## Training Details ### Base Model - **Name:** [HuggingFaceTB/SmolLM-1.7B](https://huggingface.co/HuggingFaceTB/SmolLM-1.7B) - **Architecture:** Decoder-only causal LM - **Total Parameters:** 1.72B - **Fine-tuned Trainable Parameters:** ~9M (0.53%) ### Dataset - **Source:** [flytech/python-codes-25k](https://huggingface.co/datasets/flytech/python-codes-25k) - **Subset Used:** 1,500 randomly sampled examples - **Content:** Instruction + optional input β†’ Python code output - **Formatting:** Converted into `chat` format with `user` / `assistant` roles ### Training Procedure - **Framework:** Hugging Face Transformers + TRL (SFTTrainer) - **Quantization:** 4-bit QLoRA (nf4) with bfloat16 compute when available - **Effective Batch Size:** 6 (with accumulation) - **Optimizer:** AdamW - **Scheduler:** Cosine decay with warmup ratio 0.05 - **Epochs:** 3 - **Learning Rate:** 2e-4 - **Max Seq Length:** 64 tokens (training) - **Mixed Precision:** FP16 - **Gradient Checkpointing:** Enabled --- ## Evaluation No formal benchmark evaluation has been conducted yet. Empirically, the model: - Produces syntactically valid Python code for simple tasks - Adheres to given instructions with reasonable accuracy - Struggles with multi-step reasoning and long code outputs --- ## Example Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer repo = "sweatSmile/HF-SmolLM-1.7B-0.5B-4bit-coder" tokenizer = AutoTokenizer.from_pretrained(repo) model = AutoModelForCausalLM.from_pretrained(repo, device_map="auto") prompt = "Write a Python function that checks if a number is prime." inputs = tokenizer.apply_chat_template( [{"role": "user", "content": prompt}], return_tensors="pt", add_generation_prompt=True ).to(model.device) outputs = model.generate(inputs, max_new_tokens=150) print(tokenizer.decode(outputs[0], skip_special_tokens=True))
laconadaomy/blockassist-bc-squeaky_invisible_mole_1757462906
laconadaomy
2025-09-10T00:08:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "squeaky invisible mole", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T00:08:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - squeaky invisible mole --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gopterwegop/blockassist-bc-rabid_hoarse_turkey_1757462890
gopterwegop
2025-09-10T00:08:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rabid hoarse turkey", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T00:08:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rabid hoarse turkey --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Novaciano/Heartbreak-3.2-1B-Q5_K_S-GGUF
Novaciano
2025-09-10T00:08:25Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:Novaciano/Heartbreak-3.2-1B", "base_model:quantized:Novaciano/Heartbreak-3.2-1B", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-09-10T00:08:13Z
--- base_model: Novaciano/Heartbreak-3.2-1B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo --- # Novaciano/Heartbreak-3.2-1B-Q5_K_S-GGUF This model was converted to GGUF format from [`Novaciano/Heartbreak-3.2-1B`](https://huggingface.co/Novaciano/Heartbreak-3.2-1B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Novaciano/Heartbreak-3.2-1B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Novaciano/Heartbreak-3.2-1B-Q5_K_S-GGUF --hf-file heartbreak-3.2-1b-q5_k_s-imat.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Novaciano/Heartbreak-3.2-1B-Q5_K_S-GGUF --hf-file heartbreak-3.2-1b-q5_k_s-imat.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Novaciano/Heartbreak-3.2-1B-Q5_K_S-GGUF --hf-file heartbreak-3.2-1b-q5_k_s-imat.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Novaciano/Heartbreak-3.2-1B-Q5_K_S-GGUF --hf-file heartbreak-3.2-1b-q5_k_s-imat.gguf -c 2048 ```
r74760029/blockassist-bc-tiny_crested_baboon_1757462813
r74760029
2025-09-10T00:07:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tiny crested baboon", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T00:06:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tiny crested baboon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rodrigoburgd/blockassist-bc-scruffy_untamed_hare_1757462641
rodrigoburgd
2025-09-10T00:04:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy untamed hare", "arxiv:2504.07091", "region:us" ]
null
2025-09-10T00:04:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy untamed hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
qgallouedec/SmolLM3-3B-SFT-20250909231454
qgallouedec
2025-09-10T00:03:47Z
0
0
transformers
[ "transformers", "safetensors", "smollm3", "text-generation", "generated_from_trainer", "hf_jobs", "sft", "trl", "conversational", "dataset:trl-lib/Capybara", "base_model:HuggingFaceTB/SmolLM3-3B", "base_model:finetune:HuggingFaceTB/SmolLM3-3B", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-09-09T23:15:54Z
--- base_model: HuggingFaceTB/SmolLM3-3B datasets: trl-lib/Capybara library_name: transformers model_name: SmolLM3-3B-SFT-20250909231454 tags: - generated_from_trainer - hf_jobs - sft - trl licence: license --- # Model Card for SmolLM3-3B-SFT-20250909231454 This model is a fine-tuned version of [HuggingFaceTB/SmolLM3-3B](https://huggingface.co/HuggingFaceTB/SmolLM3-3B) on the [trl-lib/Capybara](https://huggingface.co/datasets/trl-lib/Capybara) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="qgallouedec/SmolLM3-3B-SFT-20250909231454", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.23.0.dev0 - Transformers: 4.56.1 - Pytorch: 2.8.0+cu128 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
seams01/blockassist-bc-insectivorous_stubby_snake_1757460790
seams01
2025-09-10T00:00:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous stubby snake", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:59:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous stubby snake --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aronlg/blockassist-bc-wiry_insectivorous_bat_1757462187
aronlg
2025-09-09T23:57:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry insectivorous bat", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:57:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry insectivorous bat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cwayneconnor/blockassist-bc-mute_loud_lynx_1757461718
cwayneconnor
2025-09-09T23:50:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute loud lynx", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:49:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute loud lynx --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rpichevar/smolvla_so100_pickup_85
rpichevar
2025-09-09T23:50:18Z
8
0
lerobot
[ "lerobot", "safetensors", "smolvla", "robotics", "dataset:rpichevar/lekiwi_lego_85n3", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-09-09T00:57:34Z
--- base_model: lerobot/smolvla_base datasets: rpichevar/lekiwi_lego_85n3 library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - smolvla - lerobot - robotics --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
syvertsenpeter/blockassist-bc-gentle_pale_cassowary_1757461551
syvertsenpeter
2025-09-09T23:46:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle pale cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:46:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle pale cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1757461334
bah63843
2025-09-09T23:43:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:42:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NexaAI/qwen3-4B-npu
NexaAI
2025-09-09T23:42:58Z
102
16
null
[ "region:us" ]
null
2025-08-19T23:30:07Z
# Qwen3-4B ## Model Description **Qwen3-4B** is a 4-billion-parameter general-purpose language model from the Qwen team at Alibaba Cloud. Part of the Qwen3 series, it balances strong language understanding, reasoning, and generation performance with efficient deployment at smaller scale. Trained on a large, high-quality multilingual dataset, Qwen3-4B supports a broad range of NLP tasks and can be fine-tuned for specialized domains. ## Features - **Conversational AI**: context-aware dialogue for chatbots and assistants. - **Content generation**: articles, marketing copy, code comments, and more. - **Reasoning & analysis**: structured problem-solving and explanations. - **Multilingual**: understands and generates multiple languages. - **Customizable**: adaptable through fine-tuning for domain-specific tasks. ## Use Cases - Virtual assistants and customer support - Multilingual content creation - Document summarization and analysis - Education and tutoring applications - Domain-specific fine-tuned models (finance, healthcare, etc.) ## Inputs and Outputs **Input**: - Text prompts or conversation history (tokenized sequences for APIs). **Output**: - Generated text (answers, explanations, creative content). - Optionally, raw logits/probabilities for advanced tasks. --- ## How to use > ⚠️ **Hardware requirement:** the model currently runs **only on Qualcomm NPUs** (e.g., Snapdragon-powered AIPC). > Apple NPU support is planned next. ### 1) Install Nexa-SDK - Download and follow the steps under "Deploy Section" Nexa's model page: [Download Windows arm64 SDK](https://sdk.nexa.ai/model/Qwen3-4B) - (Other platforms coming soon) ### 2) Get an access token Create a token in the Model Hub, then log in: ```bash nexa config set license '<access_token>' ``` ### 3) Run the model Running: ```bash nexa infer NexaAI/qwen3-4B-npu ``` --- ## License - Licensed under: [Qwen3-4B LICENSE](https://huggingface.co/Qwen/Qwen3-4B/blob/main/LICENSE) ## References - Model card: [https://huggingface.co/Qwen/Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B)
hugTanaka/gemma-3-4b-local-train
hugTanaka
2025-09-09T23:38:51Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-3-4b-it", "base_model:finetune:google/gemma-3-4b-it", "endpoints_compatible", "region:us" ]
null
2025-09-09T02:40:16Z
--- base_model: google/gemma-3-4b-it library_name: transformers model_name: gemma-3-4b-local-train tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-3-4b-local-train This model is a fine-tuned version of [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="hugTanaka/gemma-3-4b-local-train", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.3 - Pytorch: 2.7.1+cu118 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
cwayneconnor/blockassist-bc-mute_loud_lynx_1757461003
cwayneconnor
2025-09-09T23:38:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute loud lynx", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:37:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute loud lynx --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-fanged_camouflaged_cassowary_1757461074
AnerYubo
2025-09-09T23:37:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fanged camouflaged cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:37:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fanged camouflaged cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vdbvsbgd/blockassist-bc-carnivorous_curious_crocodile_1757461028
vdbvsbgd
2025-09-09T23:37:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "carnivorous curious crocodile", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:37:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - carnivorous curious crocodile --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbkts/blockassist-bc-keen_fast_giraffe_1757461018
omerbkts
2025-09-09T23:37:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:37:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
credolacy/blockassist-bc-armored_placid_buffalo_1757460994
credolacy
2025-09-09T23:36:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored placid buffalo", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:36:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored placid buffalo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jrnaregaija/blockassist-bc-stubby_plump_raven_1757460875
jrnaregaija
2025-09-09T23:34:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stubby plump raven", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:34:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stubby plump raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aleebaster/blockassist-bc-sly_eager_boar_1757459192
aleebaster
2025-09-09T23:32:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:32:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
celisjrdn/blockassist-bc-subtle_stinging_chimpanzee_1757460142
celisjrdn
2025-09-09T23:22:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "subtle stinging chimpanzee", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:22:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - subtle stinging chimpanzee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NahedDom/blockassist-bc-flapping_stocky_leopard_1757458049
NahedDom
2025-09-09T23:22:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flapping stocky leopard", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:22:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flapping stocky leopard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lodikeyekfeli/blockassist-bc-tame_coiled_porcupine_1757459919
lodikeyekfeli
2025-09-09T23:18:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tame coiled porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:18:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tame coiled porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ockermahergatiseko/blockassist-bc-keen_winged_turtle_1757459888
ockermahergatiseko
2025-09-09T23:18:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen winged turtle", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:18:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen winged turtle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
grimshawian/blockassist-bc-gilded_patterned_hyena_1757459850
grimshawian
2025-09-09T23:17:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gilded patterned hyena", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:17:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gilded patterned hyena --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aronlg/blockassist-bc-wiry_insectivorous_bat_1757459715
aronlg
2025-09-09T23:16:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry insectivorous bat", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:16:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry insectivorous bat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sedillopaftb/blockassist-bc-sturdy_scavenging_cobra_1757459753
sedillopaftb
2025-09-09T23:16:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sturdy scavenging cobra", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:16:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sturdy scavenging cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quiroshedge/blockassist-bc-stinging_purring_ape_1757459595
quiroshedge
2025-09-09T23:13:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinging purring ape", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:13:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinging purring ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
acidjp/blockassist-bc-humming_rugged_viper_1757457627
acidjp
2025-09-09T23:13:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "humming rugged viper", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:12:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - humming rugged viper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1757459459
bah63843
2025-09-09T23:11:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:11:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Video-de-completo-isabella-ladera-y-beele/Original.Video.de.Isabella.Ladera.y.Beele.Intimo.Telegram
Video-de-completo-isabella-ladera-y-beele
2025-09-09T23:03:10Z
0
0
null
[ "region:us" ]
null
2025-09-09T23:02:52Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
omerbkts/blockassist-bc-keen_fast_giraffe_1757458836
omerbkts
2025-09-09T23:01:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:00:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
acidjp/blockassist-bc-pesty_extinct_prawn_1757456537
acidjp
2025-09-09T23:00:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pesty extinct prawn", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T23:00:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pesty extinct prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1757458557
bah63843
2025-09-09T22:56:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T22:56:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seams01/blockassist-bc-insectivorous_stubby_snake_1757457169
seams01
2025-09-09T22:56:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous stubby snake", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T22:56:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous stubby snake --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ruizrileyselby/blockassist-bc-reclusive_hibernating_buffalo_1757458473
ruizrileyselby
2025-09-09T22:54:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reclusive hibernating buffalo", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T22:54:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reclusive hibernating buffalo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
niazisarigil/blockassist-bc-lanky_colorful_robin_1757458422
niazisarigil
2025-09-09T22:53:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lanky colorful robin", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T22:53:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lanky colorful robin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tfaith/act_sclab-so101-1
tfaith
2025-09-09T22:47:18Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:legion1581/sclab-so101-1", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-09-09T22:47:15Z
--- datasets: legion1581/sclab-so101-1 library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - act - robotics - lerobot --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
domagallgino/blockassist-bc-foxy_cunning_fly_1757457964
domagallgino
2025-09-09T22:46:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "foxy cunning fly", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T22:46:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - foxy cunning fly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
amblehamilmaude/blockassist-bc-hardy_wild_porcupine_1757457871
amblehamilmaude
2025-09-09T22:44:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hardy wild porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T22:44:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hardy wild porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
torchao-testing/single-linear-Int8DynamicActivationIntxWeightConfig-v1-0.14.dev
torchao-testing
2025-09-09T22:43:34Z
0
0
null
[ "region:us" ]
null
2025-09-09T22:40:08Z
``` model: single_linear config: Int8DynamicActivationIntxWeightConfig config version: 1 torchao version: 0.14.dev ``` ``` import torch import io model = torch.nn.Sequential(torch.nn.Linear(32, 256, dtype=torch.bfloat16, device="cuda")) from torchao.quantization import Int8DynamicActivationIntxWeightConfig, quantize_ from torchao.quantization.granularity import PerGroup version=1 quant_config = Int8DynamicActivationIntxWeightConfig( weight_dtype=torch.int4, weight_granularity=PerGroup(32), version=version ) quantize_(model, quant_config) example_inputs = (torch.randn(2, 32, dtype=torch.bfloat16, device="cuda"),) output = model(*example_inputs) # Push to hub USER_ID = "torchao-testing" MODEL_NAME = "single-linear" save_to = f"{USER_ID}/{MODEL_NAME}-Int8DynamicActivationIntxWeightConfig-v{version}-0.14.dev" from huggingface_hub import HfApi api = HfApi() buf = io.BytesIO() torch.save(model.state_dict(), buf) api.create_repo(save_to, repo_type="model", exist_ok=False) api.upload_file( path_or_fileobj=buf, path_in_repo="model.pt", repo_id=save_to, ) buf = io.BytesIO() torch.save(example_inputs, buf) api.upload_file( path_or_fileobj=buf, path_in_repo="model_inputs.pt", repo_id=save_to, ) buf = io.BytesIO() torch.save(output, buf) api.upload_file( path_or_fileobj=buf, path_in_repo="model_output.pt", repo_id=save_to, ) ```
johpter/blockassist-bc-twitchy_scruffy_porcupine_1757457603
johpter
2025-09-09T22:40:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy scruffy porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T22:40:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy scruffy porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
torchao-testing/single-linear-IntxWeightOnlyConfig-v2-0.14.dev
torchao-testing
2025-09-09T22:38:17Z
0
0
null
[ "region:us" ]
null
2025-09-09T22:36:19Z
``` model: single_linear config: IntxWeightOnlyConfig config version: 2 torchao version: 0.14.dev ``` ``` import torch import io model = torch.nn.Sequential(torch.nn.Linear(32, 256, dtype=torch.bfloat16, device="cuda")) from torchao.quantization import IntxWeightOnlyConfig, quantize_ from torchao.quantization.granularity import PerGroup version=2 quant_config = IntxWeightOnlyConfig( weight_dtype=torch.int4, granularity=PerGroup(32), version=version ) quantize_(model, quant_config) example_inputs = (torch.randn(2, 32, dtype=torch.bfloat16, device="cuda"),) output = model(*example_inputs) # Push to hub USER_ID = "torchao-testing" MODEL_NAME = "single-linear" save_to = f"{USER_ID}/{MODEL_NAME}-IntxWeightOnlyConfig-v{version}-0.14.dev" from huggingface_hub import HfApi api = HfApi() buf = io.BytesIO() torch.save(model.state_dict(), buf) api.create_repo(save_to, repo_type="model", exist_ok=False) api.upload_file( path_or_fileobj=buf, path_in_repo="model.pt", repo_id=save_to, ) buf = io.BytesIO() torch.save(example_inputs, buf) api.upload_file( path_or_fileobj=buf, path_in_repo="model_inputs.pt", repo_id=save_to, ) buf = io.BytesIO() torch.save(output, buf) api.upload_file( path_or_fileobj=buf, path_in_repo="model_output.pt", repo_id=save_to, ) ```
mantiribaltutto/blockassist-bc-pouncing_stubby_wombat_1757457207
mantiribaltutto
2025-09-09T22:33:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pouncing stubby wombat", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T22:33:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pouncing stubby wombat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
slatinlatrina/blockassist-bc-mammalian_sneaky_prawn_1757457123
slatinlatrina
2025-09-09T22:32:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian sneaky prawn", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T22:32:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian sneaky prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
michalemellott/blockassist-bc-unseen_yawning_chicken_1757456912
michalemellott
2025-09-09T22:28:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "unseen yawning chicken", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T22:28:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - unseen yawning chicken --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
abadkibriya3524/blockassist-bc-timid_padded_ape_1757456857
abadkibriya3524
2025-09-09T22:27:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "timid padded ape", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T22:27:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - timid padded ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
torienahmaerin/blockassist-bc-majestic_scurrying_lion_1757456588
torienahmaerin
2025-09-09T22:23:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "majestic scurrying lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T22:23:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - majestic scurrying lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
darenburtagilby/blockassist-bc-rangy_yawning_hawk_1757456564
darenburtagilby
2025-09-09T22:22:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rangy yawning hawk", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T22:22:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rangy yawning hawk --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ilhamlk/lilt-en-funsd
ilhamlk
2025-09-09T22:21:06Z
3
0
transformers
[ "transformers", "tensorboard", "safetensors", "lilt", "token-classification", "generated_from_trainer", "base_model:SCUT-DLVCLab/lilt-roberta-en-base", "base_model:finetune:SCUT-DLVCLab/lilt-roberta-en-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-05-15T08:00:39Z
--- library_name: transformers license: mit base_model: SCUT-DLVCLab/lilt-roberta-en-base tags: - generated_from_trainer model-index: - name: lilt-en-funsd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lilt-en-funsd This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6710 - Answer: {'precision': 0.8776978417266187, 'recall': 0.8959608323133414, 'f1': 0.8867353119321623, 'number': 817} - Header: {'precision': 0.6632653061224489, 'recall': 0.5462184873949579, 'f1': 0.5990783410138247, 'number': 119} - Question: {'precision': 0.8884955752212389, 'recall': 0.9322191272051996, 'f1': 0.9098323516085183, 'number': 1077} - Overall Precision: 0.8734 - Overall Recall: 0.8947 - Overall F1: 0.8839 - Overall Accuracy: 0.8083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:--------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.4073 | 10.5263 | 200 | 1.0832 | {'precision': 0.8176795580110497, 'recall': 0.9057527539779682, 'f1': 0.8594657375145179, 'number': 817} | {'precision': 0.4765625, 'recall': 0.5126050420168067, 'f1': 0.4939271255060729, 'number': 119} | {'precision': 0.8620071684587813, 'recall': 0.89322191272052, 'f1': 0.8773369813041495, 'number': 1077} | 0.8204 | 0.8758 | 0.8472 | 0.7834 | | 0.0487 | 21.0526 | 400 | 1.3131 | {'precision': 0.8529411764705882, 'recall': 0.8873929008567931, 'f1': 0.8698260347930414, 'number': 817} | {'precision': 0.6373626373626373, 'recall': 0.48739495798319327, 'f1': 0.5523809523809524, 'number': 119} | {'precision': 0.8620087336244542, 'recall': 0.9164345403899722, 'f1': 0.8883888388838884, 'number': 1077} | 0.8485 | 0.8793 | 0.8636 | 0.7910 | | 0.0168 | 31.5789 | 600 | 1.5354 | {'precision': 0.8559622195985832, 'recall': 0.8873929008567931, 'f1': 0.8713942307692307, 'number': 817} | {'precision': 0.5565217391304348, 'recall': 0.5378151260504201, 'f1': 0.547008547008547, 'number': 119} | {'precision': 0.8969359331476323, 'recall': 0.8969359331476323, 'f1': 0.8969359331476322, 'number': 1077} | 0.8607 | 0.8718 | 0.8662 | 0.7860 | | 0.005 | 42.1053 | 800 | 1.5828 | {'precision': 0.8339100346020761, 'recall': 0.8849449204406364, 'f1': 0.8586698337292162, 'number': 817} | {'precision': 0.6442307692307693, 'recall': 0.5630252100840336, 'f1': 0.600896860986547, 'number': 119} | {'precision': 0.8728888888888889, 'recall': 0.9117920148560817, 'f1': 0.8919164396003634, 'number': 1077} | 0.8454 | 0.8803 | 0.8625 | 0.8038 | | 0.0053 | 52.6316 | 1000 | 1.5970 | {'precision': 0.8413948256467941, 'recall': 0.9155446756425949, 'f1': 0.876905041031653, 'number': 817} | {'precision': 0.576271186440678, 'recall': 0.5714285714285714, 'f1': 0.5738396624472574, 'number': 119} | {'precision': 0.900562851782364, 'recall': 0.8913649025069638, 'f1': 0.8959402706486235, 'number': 1077} | 0.8567 | 0.8823 | 0.8693 | 0.8016 | | 0.002 | 63.1579 | 1200 | 1.6504 | {'precision': 0.8433598183881952, 'recall': 0.9094247246022031, 'f1': 0.8751472320376914, 'number': 817} | {'precision': 0.5447761194029851, 'recall': 0.6134453781512605, 'f1': 0.5770750988142292, 'number': 119} | {'precision': 0.8918918918918919, 'recall': 0.8885793871866295, 'f1': 0.8902325581395348, 'number': 1077} | 0.8491 | 0.8808 | 0.8647 | 0.7997 | | 0.0015 | 73.6842 | 1400 | 1.6604 | {'precision': 0.8563084112149533, 'recall': 0.8971848225214198, 'f1': 0.8762701733413031, 'number': 817} | {'precision': 0.6774193548387096, 'recall': 0.5294117647058824, 'f1': 0.5943396226415094, 'number': 119} | {'precision': 0.8879855465221319, 'recall': 0.9127205199628597, 'f1': 0.9001831501831502, 'number': 1077} | 0.8653 | 0.8838 | 0.8744 | 0.7963 | | 0.0014 | 84.2105 | 1600 | 1.8513 | {'precision': 0.8762135922330098, 'recall': 0.8837209302325582, 'f1': 0.8799512492382693, 'number': 817} | {'precision': 0.5905511811023622, 'recall': 0.6302521008403361, 'f1': 0.6097560975609756, 'number': 119} | {'precision': 0.8878923766816144, 'recall': 0.9192200557103064, 'f1': 0.9032846715328466, 'number': 1077} | 0.8650 | 0.8877 | 0.8762 | 0.7893 | | 0.0006 | 94.7368 | 1800 | 1.6394 | {'precision': 0.8571428571428571, 'recall': 0.8886168910648715, 'f1': 0.8725961538461537, 'number': 817} | {'precision': 0.6481481481481481, 'recall': 0.5882352941176471, 'f1': 0.6167400881057269, 'number': 119} | {'precision': 0.8950226244343892, 'recall': 0.9182915506035283, 'f1': 0.9065077910174152, 'number': 1077} | 0.8665 | 0.8867 | 0.8765 | 0.8057 | | 0.0005 | 105.2632 | 2000 | 1.6710 | {'precision': 0.8776978417266187, 'recall': 0.8959608323133414, 'f1': 0.8867353119321623, 'number': 817} | {'precision': 0.6632653061224489, 'recall': 0.5462184873949579, 'f1': 0.5990783410138247, 'number': 119} | {'precision': 0.8884955752212389, 'recall': 0.9322191272051996, 'f1': 0.9098323516085183, 'number': 1077} | 0.8734 | 0.8947 | 0.8839 | 0.8083 | | 0.0004 | 115.7895 | 2200 | 1.6713 | {'precision': 0.8484500574052812, 'recall': 0.9045287637698899, 'f1': 0.8755924170616114, 'number': 817} | {'precision': 0.6545454545454545, 'recall': 0.6050420168067226, 'f1': 0.62882096069869, 'number': 119} | {'precision': 0.9030470914127424, 'recall': 0.9080779944289693, 'f1': 0.9055555555555556, 'number': 1077} | 0.8668 | 0.8887 | 0.8776 | 0.8079 | | 0.0001 | 126.3158 | 2400 | 1.7087 | {'precision': 0.8553386911595867, 'recall': 0.9118727050183598, 'f1': 0.8827014218009479, 'number': 817} | {'precision': 0.6422018348623854, 'recall': 0.5882352941176471, 'f1': 0.6140350877192983, 'number': 119} | {'precision': 0.9043238270469182, 'recall': 0.9127205199628597, 'f1': 0.9085027726432533, 'number': 1077} | 0.8699 | 0.8932 | 0.8814 | 0.8060 | ### Framework versions - Transformers 4.56.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.0
nobana/sorting_cube_realsense_act_2
nobana
2025-09-09T22:18:31Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:nobana/sorting_cube_realsense", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-09-09T22:18:21Z
--- datasets: nobana/sorting_cube_realsense library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - lerobot - act - robotics --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
miladfa7/picth_vision_checkpoint_8
miladfa7
2025-09-09T22:10:50Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "videomae", "video-classification", "generated_from_trainer", "endpoints_compatible", "region:us" ]
video-classification
2025-09-09T12:46:16Z
--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy model-index: - name: picth_vision_checkpoint_8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # picth_vision_checkpoint_8 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3051 - Accuracy: 0.9605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 8364 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0 | 0.3335 | 2789 | 0.0534 | 0.9921 | | 0.0209 | 1.3335 | 5578 | 0.0984 | 0.9803 | | 0.0284 | 2.3331 | 8364 | 0.3051 | 0.9605 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.3.1+cu121 - Datasets 3.6.0 - Tokenizers 0.21.1
pabeypaul/blockassist-bc-sizable_knobby_salamander_1757455457
pabeypaul
2025-09-09T22:04:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sizable knobby salamander", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T22:04:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sizable knobby salamander --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jtfhhhtfhugh/blockassist-bc-shaggy_shiny_gazelle_1757455400
jtfhhhtfhugh
2025-09-09T22:03:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shaggy shiny gazelle", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T22:03:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shaggy shiny gazelle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seams01/blockassist-bc-insectivorous_stubby_snake_1757453502
seams01
2025-09-09T21:58:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous stubby snake", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T21:58:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous stubby snake --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mimm92589/blockassist-bc-arctic_pudgy_cat_1757455014
mimm92589
2025-09-09T21:57:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "arctic pudgy cat", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T21:57:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - arctic pudgy cat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kolendaedyth9/blockassist-bc-fluffy_mammalian_platypus_1757454933
kolendaedyth9
2025-09-09T21:55:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fluffy mammalian platypus", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T21:55:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fluffy mammalian platypus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cavanwakisof/blockassist-bc-jumping_robust_wildebeest_1757454527
cavanwakisof
2025-09-09T21:48:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "jumping robust wildebeest", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T21:48:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - jumping robust wildebeest --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gensynw/blockassist-bc-feline_shaggy_anaconda_1757454487
gensynw
2025-09-09T21:48:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "feline shaggy anaconda", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T21:48:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - feline shaggy anaconda --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fitzsimmonspetersoni/blockassist-bc-flexible_dextrous_armadillo_1757454339
fitzsimmonspetersoni
2025-09-09T21:45:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flexible dextrous armadillo", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T21:45:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flexible dextrous armadillo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bunnycore/Qwen3-4B-Pro-Q6_K-GGUF
bunnycore
2025-09-09T21:44:07Z
0
0
null
[ "gguf", "merge", "mergekit", "lazymergekit", "janhq/Jan-v1-4B", "huihui-ai/Huihui-Qwen3-4B-Thinking-2507-abliterated", "minchyeom/Qwaifu", "llama-cpp", "gguf-my-repo", "base_model:bunnycore/Qwen3-4B-Pro", "base_model:quantized:bunnycore/Qwen3-4B-Pro", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-09-09T21:43:48Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - janhq/Jan-v1-4B - huihui-ai/Huihui-Qwen3-4B-Thinking-2507-abliterated - minchyeom/Qwaifu - llama-cpp - gguf-my-repo base_model: bunnycore/Qwen3-4B-Pro --- # bunnycore/Qwen3-4B-Pro-Q6_K-GGUF This model was converted to GGUF format from [`bunnycore/Qwen3-4B-Pro`](https://huggingface.co/bunnycore/Qwen3-4B-Pro) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/bunnycore/Qwen3-4B-Pro) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo bunnycore/Qwen3-4B-Pro-Q6_K-GGUF --hf-file qwen3-4b-pro-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo bunnycore/Qwen3-4B-Pro-Q6_K-GGUF --hf-file qwen3-4b-pro-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo bunnycore/Qwen3-4B-Pro-Q6_K-GGUF --hf-file qwen3-4b-pro-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo bunnycore/Qwen3-4B-Pro-Q6_K-GGUF --hf-file qwen3-4b-pro-q6_k.gguf -c 2048 ```
modestogrieve/blockassist-bc-mangy_muscular_hyena_1757454154
modestogrieve
2025-09-09T21:42:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mangy muscular hyena", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T21:42:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mangy muscular hyena --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Oluwadara/llama2-chat-hardened
Oluwadara
2025-09-09T21:40:19Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-09T16:34:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cigan13/blockassist-bc-powerful_playful_orangutan_1757453706
cigan13
2025-09-09T21:35:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "powerful playful orangutan", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T21:35:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - powerful playful orangutan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
stopkafaith/blockassist-bc-stalking_monstrous_badger_1757453575
stopkafaith
2025-09-09T21:33:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stalking monstrous badger", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T21:33:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stalking monstrous badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mdale2193/blockassist-bc-dense_shy_ibis_1757453477
mdale2193
2025-09-09T21:31:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dense shy ibis", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T21:31:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dense shy ibis --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sekirr/blockassist-bc-masked_tenacious_whale_1757453114
sekirr
2025-09-09T21:25:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T21:25:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lemonhat/Qwen2.5-7B-Instruct-t1_5k_v3_tag5_cleaned_hermes
lemonhat
2025-09-09T21:22:40Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-09T21:21:11Z
--- library_name: transformers license: other base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: t1_5k_v3_tag5_cleaned_hermes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t1_5k_v3_tag5_cleaned_hermes This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the t1_5k_v3_tag5_cleaned_hermes dataset. It achieves the following results on the evaluation set: - Loss: 0.2830 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.289 | 0.6410 | 100 | 0.2938 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.6.0+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
meekinsvyglkcedenoxyn/blockassist-bc-nocturnal_sneaky_porpoise_1757452606
meekinsvyglkcedenoxyn
2025-09-09T21:16:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "nocturnal sneaky porpoise", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T21:16:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - nocturnal sneaky porpoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vendi11/blockassist-bc-placid_placid_llama_1757452061
vendi11
2025-09-09T21:08:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid placid llama", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T21:08:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid placid llama --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
baseandelsacul/blockassist-bc-sniffing_scampering_camel_1757451871
baseandelsacul
2025-09-09T21:04:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sniffing scampering camel", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T21:04:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sniffing scampering camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Reihaneh/wav2vec2_ur_mono_50_epochs_6
Reihaneh
2025-09-09T21:04:34Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-09T21:04:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
loopping/blockassist-bc-scurrying_playful_crab_1757451812
loopping
2025-09-09T21:04:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scurrying playful crab", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T21:03:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scurrying playful crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lukashossain3425/blockassist-bc-freckled_twitchy_wallaby_1757451696
lukashossain3425
2025-09-09T21:01:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "freckled twitchy wallaby", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T21:01:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - freckled twitchy wallaby --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yandjaynejenei/blockassist-bc-hairy_shiny_hyena_1757451583
yandjaynejenei
2025-09-09T20:59:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy shiny hyena", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T20:59:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy shiny hyena --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cebbbopwq/blockassist-bc-sturdy_omnivorous_turtle_1757451366
cebbbopwq
2025-09-09T20:56:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sturdy omnivorous turtle", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T20:56:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sturdy omnivorous turtle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
khazarai/datascience-RLHF
khazarai
2025-09-09T20:55:09Z
0
1
peft
[ "peft", "safetensors", "base_model:adapter:unsloth/Qwen3-1.7B", "lora", "orpo", "transformers", "trl", "unsloth", "text-generation", "conversational", "en", "dataset:Anas989898/DPO-datascience", "base_model:unsloth/Qwen3-1.7B", "license:mit", "region:us" ]
text-generation
2025-09-09T20:43:03Z
--- base_model: unsloth/Qwen3-1.7B library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:unsloth/Qwen3-1.7B - lora - orpo - transformers - trl - unsloth license: mit datasets: - Anas989898/DPO-datascience language: - en --- # Model Card for Model ID ## Model Details This model is a fine-tuned version of Qwen3-1.7B using ORPO (Odds Ratio Preference Optimization), a reinforcement learning from human feedback (RLHF) method. ### Model Description <!-- Provide a longer summary of what this model is. --> - **Base Model:** Qwen3-1.7B - **Fine-tuning Method:** ORPO (RLHF alignment) - **Dataset:** ~1,000 data science–related preference samples (chosen vs. rejected responses). - **Objective:** Improve model’s ability to generate higher-quality, relevant, and well-structured responses in data science - **Language(s) (NLP):** English - **License:** MIT ## Uses ### Direct Use - Assisting in data science education (explanations of ML concepts, statistical methods, etc.). - Supporting data analysis workflows with suggestions, reasoning, and structured outputs. - Acting as a teaching assistant for coding/data-related queries. - Providing helpful responses in preference-aligned conversations where correctness and clarity are prioritized. ## Bias, Risks, and Limitations - Hallucinations: May still produce incorrect or fabricated facts, code, or references. - Dataset Size: Fine-tuned on only 1K preference pairs, which limits generalization. - Domain Focus: Optimized for data science, but may underperform on other domains. - Not a Substitute for Experts: Should not be used as the sole source for critical decisions in real-world projects. - Bias & Safety: As with all LLMs, may reflect biases present in training data. ## How to Get Started with the Model Use the code below to get started with the model. ```python from huggingface_hub import login from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel login(token="") tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen3-1.7B",) base_model = AutoModelForCausalLM.from_pretrained( "unsloth/Qwen3-1.7B", device_map={"": 0}, token="" ) model = PeftModel.from_pretrained(base_model,"Rustamshry/datascience-RLHF") prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: {}""" inputs = tokenizer( [ prompt.format( "You are an AI assistant that helps people find information", "What is the k-Means Clustering algorithm and what is it's purpose?", "", ) ], return_tensors="pt", ).to("cuda") from transformers import TextStreamer text_streamer = TextStreamer(tokenizer) _ = model.generate(**inputs, streamer=text_streamer, max_new_tokens=1800) ``` ### Framework versions - PEFT 0.17.1
jannatava1271/blockassist-bc-rapid_aquatic_toad_1757451018
jannatava1271
2025-09-09T20:50:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rapid aquatic toad", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T20:50:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rapid aquatic toad --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
andidedjag513/blockassist-bc-monstrous_subtle_kingfisher_1757450944
andidedjag513
2025-09-09T20:49:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous subtle kingfisher", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T20:49:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous subtle kingfisher --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nobana/sorting_smolvla_with_angle
nobana
2025-09-09T20:45:47Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "smolvla", "dataset:nobana/sorting_cube_with_angle", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-09-09T20:45:36Z
--- base_model: lerobot/smolvla_base datasets: nobana/sorting_cube_with_angle library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - robotics - lerobot - smolvla --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
adnahheinsennis/blockassist-bc-running_meek_caribou_1757450311
adnahheinsennis
2025-09-09T20:38:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "running meek caribou", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T20:38:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - running meek caribou --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
boonpertou/blockassist-bc-shiny_hardy_stork_1757450274
boonpertou
2025-09-09T20:38:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shiny hardy stork", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T20:37:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shiny hardy stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aquigpt/open0-2.5
aquigpt
2025-09-09T20:37:44Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "en", "fr", "de", "es", "pt", "it", "ja", "ko", "ru", "zh", "ar", "fa", "id", "ms", "ns", "pl", "ro", "sr", "sv", "tr", "uk", "vi", "hi", "bn", "license:mit", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2025-09-07T20:49:21Z
--- license: mit language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ns - pl - ro - sr - sv - tr - uk - vi - hi - bn library_name: transformers inference: false base_model: qwen/Qwen2.5-32B --- <style> :root{ --bg: #0b0c0f; --panel: #0f1117; --ink: #e9eefc; --muted: #9aa3b2; --brand: #a54c87; /* pink/magenta */ --brand-2: #c65ba0; /* lighter pink accent */ --border: rgba(255,255,255,.08); --glow: rgba(165,76,135,.25); --radius: 16px; } *{ box-sizing: border-box } body{ margin: 0; padding: 28px; background: var(--bg); color: var(--muted); font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif; } .card{ background: linear-gradient(180deg,rgba(255,255,255,.02),rgba(255,255,255,.00)); border:1px solid var(--border); border-radius: var(--radius); padding:16px; } .badge{ display:inline-flex;align-items:center;gap:.5rem; padding:.35rem .6rem;border:1px solid var(--border);border-radius:999px; color:var(--muted);font-size:.85rem } .grid{ display:grid; gap:18px } .grid-2{ grid-template-columns:repeat(2,minmax(0,1fr)); } .grid-3{ grid-template-columns:repeat(3,minmax(0,1fr)); } @media(max-width:900px){ .grid-2,.grid-3{ grid-template-columns:1fr } } .kicker{ display:inline-block;letter-spacing:.12em;text-transform:uppercase; color:var(--muted);font-size:.75rem;margin-bottom:.5rem } h1,h2,h3{ color:var(--ink); margin:0 0 .4rem 0; line-height:1.1 } h1{ font-size:2.25rem; font-weight:800 } h2{ font-size:1.3rem; font-weight:700 } h3{ font-size:1.05rem; font-weight:700 } p,li{ color:var(--muted); line-height:1.6 } hr{ border:none; height:1px; background:var(--border); margin:28px 0 } a.btn{ display:inline-block; padding:.7rem 1rem; border-radius:12px; background: linear-gradient(180deg,var(--brand),#8a3f70); color:var(--ink); text-decoration:none; font-weight:600; box-shadow: 0 10px 30px var(--glow); } a.btn.ghost{ background:transparent; color:var(--ink); border:1px solid var(--border) } kbd{ background:#0c1322;color:#cfe0ff;border:1px solid #1a2742;border-bottom-color:#142138; padding:.12rem .4rem;border-radius:6px;font-size:.85rem } .codeblock{ background:#0b1220;border:1px solid #15233d;border-radius:12px;padding: 8px;overflow:auto; margin: 1rem 0; } .codeblock pre { margin: 0; color: var(--ink); } .tagline{ font-size:1.05rem;color:#c6d5ff } .pill{ display:inline-flex;align-items:center;gap:.4rem; padding:.35rem .6rem;border-radius:999px;border:1px dashed var(--border);color:#b9c5db } .hero{ background: radial-gradient(600px 240px at 20% 0%,rgba(165,76,135,.18),transparent 60%), radial-gradient(600px 240px at 80% 10%,rgba(198,91,160,.12),transparent 60%); border:1px solid var(--border); border-radius:20px; padding:28px } details{ border:1px solid var(--border);border-radius:12px;padding:14px;background:rgba(255,255,255,.02) } summary{ cursor:pointer;color:var(--ink);font-weight:700 } blockquote{ margin:0;padding:14px;border-left:3px solid var(--brand);background:rgba(165,76,135,.06); border-radius:0 10px 10px 0;color:#e596c8 } table{ width:100%; border-collapse:collapse; margin: 1rem 0; } th,td{ text-align:left; padding:10px; border-bottom:1px solid var(--border); color:var(--muted); font-size: .9rem; } th{ color:var(--brand-2); font-weight: 700; } .callout{ border:1px solid var(--border);border-radius:14px;padding:14px;background:rgba(255,255,255,.02) } .metadata{ background: #0a0b0e; border: 1px solid var(--border); border-radius: 12px; padding: 16px; margin-bottom: 24px; font-family: 'Monaco', 'Menlo', monospace; font-size: .85rem; color: #8a91a3; } </style> <div class="hero"> <div class="kicker">Quantization-Aware Model</div> <h1>Aqui-open0-2.5</h1> <p class="tagline">The first quantization-aware model from Aqui Solutions, built on Qwen2.5 architecture with extended thinking capabilities. Delivering exceptional performance with ultra-low VRAM usage through native 8-bit optimization.</p> <div style="margin-top: 20px; display: flex; gap: 12px; flex-wrap: wrap;"> <div class="pill">🧠 Extended Thinking</div> <div class="pill">⚑ 8-Bit Native</div> <div class="pill">πŸ”“ MIT Licensed</div> <div class="pill">πŸ’Ύ Low VRAM</div> </div> </div> <div class="card" style="margin-top: 28px;"> <h2>open0-2.5-32B</h2> <p>Revolutionary quantization-aware model based on Qwen2.5-32B with extended thinking capabilities, optimized for 8-bit inference from the ground up.</p> <div style="margin: 16px 0;"> <div class="badge">🧠 32B parameters</div> <div class="badge">⚑ 8-bit quantized</div> <div class="badge">πŸ’Ύ 30.4 GiB VRAM</div> <div class="badge">🎯 Extended thinking</div> </div> <a href="https://huggingface.co/aquigpt/open0-2.5" class="btn">View Model</a> </div> <div class="callout" style="margin: 28px 0;"> <h3>πŸš€ Breakthrough in Efficiency</h3> <p><strong>First Quantization-Aware Model</strong> β€” Unlike traditional post-training quantization, our model was designed and trained with 8-bit precision in mind, delivering superior performance with dramatically reduced memory requirements.</p> </div> <hr> <h2>Benchmark Performance</h2> <p><em>All evaluations performed in 8-bit quantization for open0-2.5 and full precision for others.</em></p> <table> <thead> <tr> <th>Benchmark</th> <th>Aqui-open0-2.5 32B</th> <th>Qwen3 2507 235B</th> <th>DeepSeek V3.1 Think 685B</th> <th>GLM-4.5 358B</th> <th>EXAONE 4.0 32B</th> <th>KAT-V1-40B</th> <th>Hermes 4 405B</th> </tr> </thead> <tbody> <tr><td>MMLU-Pro</td><td>84.1</td><td><strong>84.3</strong></td><td>85.1</td><td>83.5</td><td>81.8</td><td>78.9</td><td>80.5</td></tr> <tr><td>GPQA Diamond</td><td><strong>78.2</strong></td><td>79.0</td><td>77.9</td><td>78.2</td><td>73.9</td><td>72.5</td><td>70.5</td></tr> <tr><td>Humanity's Last Exam</td><td><strong>16.7</strong></td><td>15.0</td><td>13.0</td><td>12.2</td><td>10.5</td><td>7.8</td><td>9.7</td></tr> <tr><td>LiveCodeBench</td><td>72.4</td><td><strong>78.8</strong></td><td>78.4</td><td>73.8</td><td>74.7</td><td>69.5</td><td>61.3</td></tr> <tr><td>AIME 2025</td><td>86.9</td><td><strong>91.0</strong></td><td>89.7</td><td>73.7</td><td>80.0</td><td>81.5</td><td>78.1</td></tr> <tr style="border-top: 2px solid var(--brand);"><td><strong>Artificial Analysis Intelligence Index</strong></td><td><strong>54.77</strong></td><td>57.47</td><td>53.95</td><td>49.44</td><td>42.64</td><td>43.67</td><td>41.57</td></tr> </tbody> </table> <h3>VRAM Efficiency Comparison</h3> <table> <thead> <tr> <th>Model</th> <th>VRAM Usage (GiB)</th> <th>Parameters</th> </tr> </thead> <tbody> <tr><td><strong>Aqui-open0-2.5 32B</strong></td><td><strong>30.4</strong></td><td>32B</td></tr> <tr><td>Qwen3 2507 235B</td><td>41.0</td><td>235B</td></tr> <tr><td>DeepSeek V3.1 Think 685B</td><td>59.6</td><td>685B</td></tr> <tr><td>GLM-4.5 358B</td><td>59.6</td><td>358B</td></tr> <tr><td>EXAONE 4.0 32B</td><td>68.9</td><td>32B</td></tr> <tr><td>KAT-V1-40B</td><td>74.5</td><td>40B</td></tr> <tr><td>Hermes 4 405B</td><td>754.4</td><td>405B</td></tr> </tbody> </table> <hr> <h2>Key Features</h2> <div class="grid grid-2"> <div class="card"> <h3>🧠 Extended Thinking</h3> <p>Built upon Qwen2.5 architecture with enhanced reasoning capabilities through extended thinking mechanisms.</p> </div> <div class="card"> <h3>⚑ Quantization-Aware Training</h3> <p>First model from Aqui Solutions designed specifically for 8-bit inference, maintaining performance while drastically reducing memory usage.</p> </div> <div class="card"> <h3>πŸ’Ύ Ultra-Low VRAM</h3> <p>Runs efficiently on consumer hardware with only 30.4 GiB VRAM requirement, making advanced AI accessible to more users.</p> </div> <div class="card"> <h3>πŸ”“ MIT Licensed</h3> <p>Complete freedom for commercial use, modification, and redistribution with minimal restrictions.</p> </div> </div> <hr> <h2>Usage</h2> <div class="codeblock"> <pre> from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load the model and tokenizer in 8-bit tokenizer = AutoTokenizer.from_pretrained("aquigpt/open0-2.5") model = AutoModelForCausalLM.from_pretrained( "aquigpt/open0-2.5", load_in_8bit=True, device_map="auto" ) # Generate text inputs = tokenizer("Solve this complex reasoning problem:", return_tensors="pt") outputs = model.generate(**inputs, max_length=512, temperature=0.7) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) </pre> </div> <details> <summary>Training Details</summary> <p>The open0-2.5 model was built upon Qwen2.5-32B with significant enhancements:</p> <ul> <li>Extended thinking capabilities through architectural modifications</li> <li>Quantization-aware training from initialization</li> <li>Advanced fine-tuning on reasoning and mathematical datasets</li> <li>Optimized for 8-bit inference without performance degradation</li> <li>Constitutional AI alignment for safe and helpful responses</li> </ul> </details> <blockquote> <strong>Note:</strong> This model represents a breakthrough in efficient AI deployment. All benchmark results were obtained using 8-bit quantization, demonstrating the effectiveness of our quantization-aware training approach. </blockquote> <div style="text-align: center; margin-top: 40px; color: var(--muted);"> <p>Built with ❀️ by Aqui Solutions β€’ MIT β€’ September 2025</p> </div>
capungmerah627/blockassist-bc-stinging_soaring_porcupine_1757448588
capungmerah627
2025-09-09T20:35:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stinging soaring porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T20:35:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stinging soaring porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gojhedgepethcritesrhhn/blockassist-bc-darting_hulking_grouse_1757450061
gojhedgepethcritesrhhn
2025-09-09T20:34:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "darting hulking grouse", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T20:34:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - darting hulking grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vullnetbogdaniy81/blockassist-bc-soft_curious_duck_1757449622
vullnetbogdaniy81
2025-09-09T20:27:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "soft curious duck", "arxiv:2504.07091", "region:us" ]
null
2025-09-09T20:27:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - soft curious duck --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
anpaurehf/K2-Think-Q4_K_M-GGUF
anpaurehf
2025-09-09T20:26:02Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:LLM360/K2-Think", "base_model:quantized:LLM360/K2-Think", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-09-09T20:24:40Z
--- language: - en license: apache-2.0 pipeline_tag: text-generation library_name: transformers base_model: LLM360/K2-Think tags: - llama-cpp - gguf-my-repo --- # anpaurehf/K2-Think-Q4_K_M-GGUF This model was converted to GGUF format from [`LLM360/K2-Think`](https://huggingface.co/LLM360/K2-Think) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/LLM360/K2-Think) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo anpaurehf/K2-Think-Q4_K_M-GGUF --hf-file k2-think-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo anpaurehf/K2-Think-Q4_K_M-GGUF --hf-file k2-think-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo anpaurehf/K2-Think-Q4_K_M-GGUF --hf-file k2-think-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo anpaurehf/K2-Think-Q4_K_M-GGUF --hf-file k2-think-q4_k_m.gguf -c 2048 ```