modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 06:30:11
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 06:29:58
card
stringlengths
11
1.01M
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1757565866
helmutsukocok
2025-09-11T05:10:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:10:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tiopuiter/blockassist-bc-whiskered_skittish_hippo_1757567307
tiopuiter
2025-09-11T05:09:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "whiskered skittish hippo", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:08:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - whiskered skittish hippo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
huitingnanette/blockassist-bc-territorial_yapping_bear_1757567320
huitingnanette
2025-09-11T05:08:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "territorial yapping bear", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:08:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - territorial yapping bear --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
shikderazriel6453/blockassist-bc-burrowing_thorny_gibbon_1757567307
shikderazriel6453
2025-09-11T05:08:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "burrowing thorny gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:08:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - burrowing thorny gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dulmaranoldman/blockassist-bc-sly_pensive_whale_1757567296
dulmaranoldman
2025-09-11T05:08:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly pensive whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:08:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly pensive whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
raileshikder7241/blockassist-bc-slender_amphibious_cheetah_1757567271
raileshikder7241
2025-09-11T05:08:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slender amphibious cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:08:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slender amphibious cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thebluetick/1111_d11_1
thebluetick
2025-09-11T05:07:57Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-09-11T05:04:31Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
DevQuasar/LLM360.K2-Chat-GGUF
DevQuasar
2025-09-11T05:07:44Z
0
0
null
[ "text-generation", "base_model:LLM360/K2-Chat", "base_model:finetune:LLM360/K2-Chat", "region:us" ]
text-generation
2025-09-11T05:07:43Z
--- base_model: - LLM360/K2-Chat pipeline_tag: text-generation --- [<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com) Quantized version of: [LLM360/K2-Chat](https://huggingface.co/LLM360/K2-Chat) 'Make knowledge free for everyone' <p align="center"> Made with <br> <a href="https://www.civo.com/" target="_blank"> <img src="https://www.civo.com/assets/public/brand-assets/civo-logo-colour-60cc1622dedf346f7afde1fff760523f731b0aac106a5465af98ff4073114b74.svg" width="100"/> </a> </p> <a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
dwirecarmen/blockassist-bc-swift_pawing_ant_1757567229
dwirecarmen
2025-09-11T05:07:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "swift pawing ant", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:07:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - swift pawing ant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
areyakibriya7142/blockassist-bc-regal_whistling_dove_1757567187
areyakibriya7142
2025-09-11T05:06:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal whistling dove", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:06:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal whistling dove --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
harmonyblevinsm0/blockassist-bc-silent_miniature_monkey_1757567114
harmonyblevinsm0
2025-09-11T05:06:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silent miniature monkey", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:06:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silent miniature monkey --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dvvsvv345/blockassist-bc-dappled_fast_jaguar_1757567174
dvvsvv345
2025-09-11T05:06:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dappled fast jaguar", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:06:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dappled fast jaguar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
shikderabaan7986/blockassist-bc-shy_arctic_prawn_1757567159
shikderabaan7986
2025-09-11T05:06:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shy arctic prawn", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:06:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shy arctic prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bsksisysisbss/blockassist-bc-galloping_scampering_cobra_1757567146
bsksisysisbss
2025-09-11T05:05:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "galloping scampering cobra", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:05:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - galloping scampering cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lacsamanacurtis51/blockassist-bc-prehistoric_deft_grouse_1757567108
lacsamanacurtis51
2025-09-11T05:05:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "prehistoric deft grouse", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:05:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - prehistoric deft grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sekirr/blockassist-bc-masked_tenacious_whale_1757567090
sekirr
2025-09-11T05:05:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:05:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
wolfeduodrw/blockassist-bc-graceful_hulking_lemur_1757567080
wolfeduodrw
2025-09-11T05:05:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "graceful hulking lemur", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:05:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - graceful hulking lemur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
damauoi/blockassist-bc-unseen_polished_leopard_1757567068
damauoi
2025-09-11T05:04:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "unseen polished leopard", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:04:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - unseen polished leopard --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mageejudigaal/blockassist-bc-rapid_jagged_pelican_1757567016
mageejudigaal
2025-09-11T05:03:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rapid jagged pelican", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:03:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rapid jagged pelican --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF
mradermacher
2025-09-11T05:03:46Z
0
0
transformers
[ "transformers", "gguf", "programming", "code generation", "code", "coding", "coder", "chat", "brainstorm", "qwen", "qwen3", "qwencoder", "brainstorm 20x", "creative", "all uses cases", "Jan-V1", "Deep Space Nine", "DS9", "horror", "science fiction", "fantasy", "Star Trek", "finetune", "thinking", "reasoning", "en", "base_model:DavidAU/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B", "base_model:quantized:DavidAU/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-09-11T04:23:11Z
--- base_model: DavidAU/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - programming - code generation - code - coding - coder - chat - code - chat - brainstorm - qwen - qwen3 - qwencoder - brainstorm 20x - creative - all uses cases - Jan-V1 - Deep Space Nine - DS9 - horror - science fiction - fantasy - Star Trek - finetune - thinking - reasoning --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/DavidAU/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-IQ1_S.gguf) | i1-IQ1_S | 1.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-IQ1_M.gguf) | i1-IQ1_M | 1.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.2 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-IQ2_S.gguf) | i1-IQ2_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-IQ2_M.gguf) | i1-IQ2_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.4 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-Q2_K.gguf) | i1-Q2_K | 2.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 2.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-IQ3_S.gguf) | i1-IQ3_S | 3.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-IQ3_M.gguf) | i1-IQ3_M | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.3 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 3.5 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-Q4_0.gguf) | i1-Q4_0 | 3.8 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 3.8 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 3.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-Q4_1.gguf) | i1-Q4_1 | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 4.5 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B-i1-GGUF/resolve/main/Qwen3-ST-Deep-Space-Nine-v1-256k-ctx-6B.i1-Q6_K.gguf) | i1-Q6_K | 5.3 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
goshujaieja/blockassist-bc-untamed_armored_ram_1757566997
goshujaieja
2025-09-11T05:03:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed armored ram", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:03:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed armored ram --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
longbao128/medgemma-4b-dengue-diagnosis
longbao128
2025-09-11T05:02:37Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:google/medgemma-4b-it", "base_model:finetune:google/medgemma-4b-it", "endpoints_compatible", "region:us" ]
null
2025-09-10T03:14:54Z
--- base_model: google/medgemma-4b-it library_name: transformers model_name: medgemma-4b-dengue-diagnosis tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for medgemma-4b-dengue-diagnosis This model is a fine-tuned version of [google/medgemma-4b-it](https://huggingface.co/google/medgemma-4b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="longbao128/medgemma-4b-dengue-diagnosis", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.23.0 - Transformers: 4.56.1 - Pytorch: 2.8.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.22.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
crabtreeftf/blockassist-bc-darting_mighty_panther_1757566941
crabtreeftf
2025-09-11T05:02:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "darting mighty panther", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:02:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - darting mighty panther --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
brisondey/blockassist-bc-insectivorous_energetic_koala_1757566912
brisondey
2025-09-11T05:02:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous energetic koala", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:02:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous energetic koala --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cureyl142/blockassist-bc-skittish_prehistoric_armadillo_1757566889
cureyl142
2025-09-11T05:01:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "skittish prehistoric armadillo", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:01:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - skittish prehistoric armadillo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jalkafariya/blockassist-bc-stealthy_hoarse_toucan_1757566878
jalkafariya
2025-09-11T05:01:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy hoarse toucan", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:01:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy hoarse toucan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kathivieppscwy/blockassist-bc-yawning_strong_snake_1757566856
kathivieppscwy
2025-09-11T05:01:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning strong snake", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:01:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning strong snake --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mikeytrail75/blockassist-bc-tame_pudgy_cougar_1757566817
mikeytrail75
2025-09-11T05:00:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tame pudgy cougar", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:00:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tame pudgy cougar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
luckeciano/Qwen-2.5-7B-GRPO-Adam-HessianMaskToken-1e-5-Symmetric-v2_9939
luckeciano
2025-09-11T05:00:31Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-11T00:28:41Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-Adam-HessianMaskToken-1e-5-Symmetric-v2_9939 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-Adam-HessianMaskToken-1e-5-Symmetric-v2_9939 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-Adam-HessianMaskToken-1e-5-Symmetric-v2_9939", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/u9k8t66b) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
rodrigoburgd/blockassist-bc-scruffy_untamed_hare_1757566823
rodrigoburgd
2025-09-11T05:00:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scruffy untamed hare", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T05:00:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scruffy untamed hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cintroncdgkq/blockassist-bc-monstrous_whistling_dinosaur_1757566770
cintroncdgkq
2025-09-11T04:59:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous whistling dinosaur", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:59:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous whistling dinosaur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
alexiseeifl/blockassist-bc-fleecy_flapping_pigeon_1757566711
alexiseeifl
2025-09-11T04:58:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fleecy flapping pigeon", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:58:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fleecy flapping pigeon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
damauoi/blockassist-bc-pawing_eager_tiger_1757566688
damauoi
2025-09-11T04:58:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pawing eager tiger", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:58:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pawing eager tiger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jazmynikrr/blockassist-bc-dormant_hulking_eagle_1757566685
jazmynikrr
2025-09-11T04:58:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant hulking eagle", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:58:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant hulking eagle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Kenko-mental-health-llama-3-model-GGUF
mradermacher
2025-09-11T04:58:11Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:drunkrussian247/Kenko-mental-health-llama-3-model", "base_model:quantized:drunkrussian247/Kenko-mental-health-llama-3-model", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-09-11T04:39:27Z
--- base_model: drunkrussian247/Kenko-mental-health-llama-3-model language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/drunkrussian247/Kenko-mental-health-llama-3-model <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Kenko-mental-health-llama-3-model-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Kenko-mental-health-llama-3-model-GGUF/resolve/main/Kenko-mental-health-llama-3-model.Q2_K.gguf) | Q2_K | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/Kenko-mental-health-llama-3-model-GGUF/resolve/main/Kenko-mental-health-llama-3-model.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Kenko-mental-health-llama-3-model-GGUF/resolve/main/Kenko-mental-health-llama-3-model.Q3_K_M.gguf) | Q3_K_M | 1.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Kenko-mental-health-llama-3-model-GGUF/resolve/main/Kenko-mental-health-llama-3-model.Q3_K_L.gguf) | Q3_K_L | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Kenko-mental-health-llama-3-model-GGUF/resolve/main/Kenko-mental-health-llama-3-model.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Kenko-mental-health-llama-3-model-GGUF/resolve/main/Kenko-mental-health-llama-3-model.Q4_K_S.gguf) | Q4_K_S | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kenko-mental-health-llama-3-model-GGUF/resolve/main/Kenko-mental-health-llama-3-model.Q4_K_M.gguf) | Q4_K_M | 2.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Kenko-mental-health-llama-3-model-GGUF/resolve/main/Kenko-mental-health-llama-3-model.Q5_K_S.gguf) | Q5_K_S | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Kenko-mental-health-llama-3-model-GGUF/resolve/main/Kenko-mental-health-llama-3-model.Q5_K_M.gguf) | Q5_K_M | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Kenko-mental-health-llama-3-model-GGUF/resolve/main/Kenko-mental-health-llama-3-model.Q6_K.gguf) | Q6_K | 2.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Kenko-mental-health-llama-3-model-GGUF/resolve/main/Kenko-mental-health-llama-3-model.Q8_0.gguf) | Q8_0 | 3.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Kenko-mental-health-llama-3-model-GGUF/resolve/main/Kenko-mental-health-llama-3-model.f16.gguf) | f16 | 6.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
AnerYubo/blockassist-bc-docile_stalking_vulture_1757566684
AnerYubo
2025-09-11T04:58:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "docile stalking vulture", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:58:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - docile stalking vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-stalking_tawny_warthog_1757566679
AnerYubo
2025-09-11T04:58:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stalking tawny warthog", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:57:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stalking tawny warthog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-dormant_strong_badger_1757566676
AnerYubo
2025-09-11T04:57:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant strong badger", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:57:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant strong badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-reptilian_bellowing_cockroach_1757566671
AnerYubo
2025-09-11T04:57:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reptilian bellowing cockroach", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:57:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reptilian bellowing cockroach --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-mangy_quiet_anteater_1757566664
AnerYubo
2025-09-11T04:57:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mangy quiet anteater", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:57:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mangy quiet anteater --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-curious_mangy_cobra_1757566656
AnerYubo
2025-09-11T04:57:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "curious mangy cobra", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:57:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - curious mangy cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-prehistoric_shrewd_puffin_1757566649
AnerYubo
2025-09-11T04:57:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "prehistoric shrewd puffin", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:57:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - prehistoric shrewd puffin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arabellamorris/blockassist-bc-tricky_sneaky_locust_1757566641
arabellamorris
2025-09-11T04:57:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tricky sneaky locust", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:57:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tricky sneaky locust --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
e11106013/mt5-zh-to-nan-LoRA
e11106013
2025-09-11T04:57:24Z
0
0
null
[ "safetensors", "mt5", "translation", "seq2seq", "LoRA", "zh", "nan", "base_model:google/mt5-base", "base_model:finetune:google/mt5-base", "license:cc-by-nc-4.0", "region:us" ]
translation
2025-09-11T04:21:12Z
--- language: - zh - nan license: cc-by-nc-4.0 tags: - translation - seq2seq - LoRA - mt5 base_model: - google/mt5-base --- # mT5 Chinese → Taiwanese Hokkien (LoRA fine-tuned) 這個模型是基於 [google/mt5-base](https://huggingface.co/google/mt5-base), 使用 LoRA 技術微調,任務為 **中文 → 臺灣閩南語** 機器翻譯。 ## 訓練資料 - 自行整理的中 → 臺灣閩南語語料 - 格式:平行語料 (source: zh, target: nan) ## 訓練細節 - Base model: mT5-base - 方法: LoRA - 優化器: AdamW - Epochs: 3 - Batch size: 16 ## 自動評估結果 - **BLEU** : 4.05 - **chrF** : 9.94 - **ROUGE** : 0.00 > 註:由於資料量(114407)有限,模型翻譯品質仍有限。 ## 使用方式 ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer repo_id = "e11106013/mt5-zh-to-nan-LoRA" tokenizer = AutoTokenizer.from_pretrained(repo_id) model = AutoModelForSeq2SeqLM.from_pretrained(repo_id) inputs = tokenizer("你好", return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True))
cuongdk253/gpt-oss-ft-11092025-2
cuongdk253
2025-09-11T04:57:22Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "8-bit", "mxfp4", "region:us" ]
text-generation
2025-09-11T04:56:39Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AnerYubo/blockassist-bc-grazing_sly_hummingbird_1757566630
AnerYubo
2025-09-11T04:57:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "grazing sly hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:57:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - grazing sly hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-finicky_finicky_warthog_1757566623
AnerYubo
2025-09-11T04:57:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky finicky warthog", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:57:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky finicky warthog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
grosemrazruthmid/blockassist-bc-slender_webbed_yak_1757566610
grosemrazruthmid
2025-09-11T04:57:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "slender webbed yak", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:56:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - slender webbed yak --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ahmarkibriya5374/blockassist-bc-fishy_furry_wombat_1757566604
ahmarkibriya5374
2025-09-11T04:56:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy furry wombat", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:56:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy furry wombat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-giant_leggy_rhino_1757566608
AnerYubo
2025-09-11T04:56:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "giant leggy rhino", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:56:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - giant leggy rhino --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-armored_climbing_rooster_1757566596
AnerYubo
2025-09-11T04:56:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored climbing rooster", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:56:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored climbing rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnerYubo/blockassist-bc-shaggy_elusive_giraffe_1757566593
AnerYubo
2025-09-11T04:56:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shaggy elusive giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:56:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shaggy elusive giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
harmonyblevinsm0/blockassist-bc-silent_miniature_monkey_1757566502
harmonyblevinsm0
2025-09-11T04:56:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silent miniature monkey", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:56:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silent miniature monkey --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
goptouy/blockassist-bc-lithe_hulking_wasp_1757566548
goptouy
2025-09-11T04:56:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lithe hulking wasp", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:55:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lithe hulking wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ahumadaxhg/blockassist-bc-alert_spotted_dolphin_1757566554
ahumadaxhg
2025-09-11T04:56:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert spotted dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:55:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert spotted dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
redanvaishyorke/blockassist-bc-lightfooted_winged_shark_1757566553
redanvaishyorke
2025-09-11T04:56:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert spotted dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:55:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert spotted dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sedillopaftb/blockassist-bc-sturdy_scavenging_cobra_1757566524
sedillopaftb
2025-09-11T04:55:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sturdy scavenging cobra", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:55:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sturdy scavenging cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
iekagrbaiya/blockassist-bc-clawed_rabid_fish_1757566500
iekagrbaiya
2025-09-11T04:55:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "clawed rabid fish", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:55:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - clawed rabid fish --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
xkas2001/byt5-small-uzbek-corrector
xkas2001
2025-09-11T04:55:03Z
0
0
peft
[ "peft", "safetensors", "text2text-generation", "uzbek", "grammar-correction", "lora", "transformers", "byt5", "text-generation", "uz", "en", "base_model:google/byt5-small", "base_model:adapter:google/byt5-small", "license:apache-2.0", "region:us" ]
text-generation
2025-09-11T04:48:06Z
--- language: - uz - en license: apache-2.0 library_name: peft tags: - text2text-generation - uzbek - grammar-correction - lora - peft - transformers - byt5 base_model: google/byt5-small pipeline_tag: text-generation widget: - text: "Men bugun universitetga bormadim chunki kasal edim" example_title: "Grammar Correction Example" - text: "Ushbu matn to'g'rilanishi kerak" example_title: "Text Correction" --- # ByT5-Small LoRA O'zbek Matn Tuzatuvchisi / ByT5-Small LoRA Uzbek Text Corrector ## Model tavsifi / Model Description Bu model Google'ning ByT5-small modeliga asoslangan va LoRA (Low-Rank Adaptation) usuli yordamida o'zbek tilidagi matnlardagi grammatik va imlo xatolarini tuzatish uchun maxsus o'qitilgan. Model sequence-to-sequence vazifalarni bajarish uchun mo'ljallangan. *This model is based on Google's ByT5-small and specifically fine-tuned using LoRA (Low-Rank Adaptation) to correct grammatical and spelling errors in Uzbek texts. The model is designed for sequence-to-sequence tasks.* ## Arxitektura va konfiguratsiya / Architecture & Configuration ### LoRA parametrlari / LoRA Parameters: - **Base model**: `google/byt5-small` - **LoRA rank (r)**: 16 - **LoRA alpha**: 32 - **LoRA dropout**: 0.05 - **Target modules**: query (q) va value (v) projection layers - **Task type**: SEQ_2_SEQ_LM ### Model o'lchamlari / Model Size: - **Adapter weights**: ~4.6MB - **Full model with base**: ~180MB - **Parameters**: LoRA adapters only (~262K trainable parameters) ## O'qitish jarayoni / Training Details ### O'qitish parametrlari / Training Parameters: - **Epochs**: 3 - **Total steps**: 8826 - **Batch size**: 20 - **Learning rate**: ~3e-4 (cosine decay with warmup) - **Evaluation steps**: 1000 - **Save steps**: 1000 - **Logging steps**: 50 ### Performance / Ko'rsatkichlar: - **Final training loss**: ~0.072 - **Final evaluation loss**: ~0.081 (at step 1000) - **Training time**: ~3 epochs - **Checkpoints saved**: 9 intermediate checkpoints ## Ishlatish yo'riqnomalari / Usage ### Python orqali / Using Python: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from peft import PeftModel, PeftConfig import torch # Model va tokenizerni yuklash / Load model and tokenizer peft_model_id = "xkas2001/byt5-small-uzbek-corrector" # Hugging Face model ID config = PeftConfig.from_pretrained(peft_model_id) base_model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(base_model, peft_model_id) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Inference / Matnni tuzatish def correct_text(text): inputs = tokenizer(text, return_tensors="pt", max_length=512, truncation=True) with torch.no_grad(): outputs = model.generate( **inputs, max_length=512, num_beams=4, early_stopping=True, do_sample=False ) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Misol / Example input_text = "Men bugun universitetga bormadim chunki kasal edim" corrected_text = correct_text(input_text) print(f"Original: {input_text}") print(f"Corrected: {corrected_text}") ``` ### Mahalliy fayldan yuklash / Loading from local files: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from peft import PeftModel import torch # Mahalliy model yo'li / Local model path local_model_path = "/path/to/byt5-small-lora" # Base model va tokenizerni yuklash base_model = AutoModelForSeq2SeqLM.from_pretrained("google/byt5-small") model = PeftModel.from_pretrained(base_model, local_model_path) tokenizer = AutoTokenizer.from_pretrained("google/byt5-small") # Model inference rejimga o'tkazish model.eval() ``` ## Ma'lumotlar to'plami / Dataset Bu model katta hajmdagi o'zbek tilidagi matn tuzatish dataseti ustida o'qitilgan. Dataset quyidagi komponentlardan iborat: *This model was trained on a large-scale Uzbek text correction dataset consisting of the following components:* ### Dataset tarkibi / Dataset Composition: | Fayl nomi / File | Namunalar soni / Samples | Hajmi / Size | Tavsif / Description | |------------------|--------------------------|--------------|----------------------| | `custom_large_corrections.json` | 111,578 | 45.2 MB | Maxsus tuzatishlar / Custom corrections | | `final_uzbek_corrections.json` | 240,129 | 104.2 MB | Yakuniy o'zbek tuzatishlari / Final Uzbek corrections | | `oscar_large_corrections.json` | 155,036 | 50.9 MB | OSCAR korpusidan tuzatishlar / OSCAR corpus corrections | | `professional_uzbek_corrections.json` | 239,393 | 108.3 MB | Professional tuzatishlar / Professional corrections | | **Jami / Total** | **746,136** | **308.6 MB** | **To'liq dataset / Complete dataset** | ### Dataset xususiyatlari / Dataset Features: - **Namunalar soni / Total samples**: 746,136 - **Til / Language**: O'zbek tili / Uzbek - **Format**: JSON - **Maydonlar / Fields**: - `correct_text`: To'g'ri matn / Corrected text - `corrupted_text`: Xatoli matn / Text with errors - `error_types`: Xato turlari / Error types - `source`: Manba / Source - `quality_score`: Sifat balli (ba'zi fayllarda) / Quality score (some files) ### Misol / Example: ```json { "correct_text": "Sammitda O'zbekiston prezidenti Shavkat Mirziyoyev kirish nutqini so'zladi", "corrupted_text": "Sammitda O'zbekiston orezidenti Shavkat Mirziyoyev kirish nutqini so'zladi", "error_types": ["spelling"], "source": "news" } ``` ### Xato turlari / Error Types: - **Imlo xatolari / Spelling errors**: Harflar almashish, qo'shilish, tushib qolish - **Grammatik xatolar / Grammar errors**: Kelishik, zamon, son xatolari - **Punktuatsiya xatolari / Punctuation errors**: Tinish belgilar bilan bog'liq xatolar - **Bo'shliq xatolari / Spacing errors**: So'zlar orasidagi bo'shliqlar *Error types include spelling mistakes (letter substitution, insertion, deletion), grammar errors (case, tense, number), punctuation errors, and spacing issues.* ## Cheklovlar va tavvsiyalar / Limitations and Recommendations ### Cheklovlar / Limitations: - Model faqat o'zbek tilidagi matnlar uchun optimallashtirilgan - Maksimal matn uzunligi 512 token bilan cheklangan - Murakkab grammatik strukturalarda xatoliklar bo'lishi mumkin - Domain-specific terminologiya bo'yicha cheklovlar mavjud *The model is optimized only for Uzbek language texts, limited to 512 tokens max length, may have errors in complex grammatical structures, and has limitations with domain-specific terminology.* ### Tavsiyalar / Recommendations: - Optimal natijalar uchun 128-256 token uzunligidagi matnlardan foydalaning - Jiddiy xatoliklar uchun natijalarni tekshiring - Model chiqishini qo'shimcha post-processing qilish tavsiya etiladi *Use texts of 128-256 tokens for optimal results, verify outputs for critical errors, and additional post-processing of model output is recommended.* ## Texnik ma'lumotlar / Technical Specifications ### Zarur kutubxonalar / Required Libraries: ```bash pip install transformers>=4.21.0 pip install peft>=0.4.0 pip install torch>=1.13.0 pip install tokenizers>=0.13.0 ``` ### Tizim talablari / System Requirements: - **GPU**: NVIDIA GPU with 4GB+ VRAM (tavsiya etiladi / recommended) - **CPU**: Minimal 8GB RAM - **Disk**: ~200MB bo'sh joy / free space ## Model fayllari / Model Files ``` byt5-small-lora/ ├── adapter_config.json # LoRA configuration ├── adapter_model.safetensors # LoRA weights (4.6MB) ├── README.md # Model documentation ├── tokenizer_config.json # Tokenizer configuration ├── special_tokens_map.json # Special tokens mapping ├── added_tokens.json # Additional tokens └── checkpoints/ # Training checkpoints ├── checkpoint-1000/ ├── checkpoint-2000/ ├── ... └── checkpoint-8826/ # Final checkpoint ``` ## Hugging Face ga yuklash / Uploading to Hugging Face Model Hugging Face Hub ga yuklash uchun quyidagi qadamlarni bajaring: *To upload the model to Hugging Face Hub, follow these steps:* ### 1. Hugging Face CLI o'rnatish / Install Hugging Face CLI: ```bash pip install huggingface_hub ``` ### 2. Tizimga kirish / Login: ```bash huggingface-cli login ``` ### 3. Repository yaratish / Create Repository: ```bash huggingface-cli repo create byt5-small-uzbek-corrector --type=model ``` ### 4. Fayllarni yuklash / Upload Files: ```bash # Repository clone qilish git clone https://huggingface.co/xkas2001/byt5-small-uzbek-corrector cd byt5-small-uzbek-corrector # Model fayllarini nusxalash cp /path/to/byt5-small-lora/adapter_* ./ cp /path/to/byt5-small-lora/*.json ./ cp /path/to/byt5-small-lora/README.md ./ # Git LFS o'rnatish git lfs install git lfs track "*.safetensors" git lfs track "*.bin" # Commit va push git add . git commit -m "Add ByT5-small LoRA Uzbek corrector model" git push ``` ## Litsenziya / License Bu model Apache 2.0 litsenziyasi ostida tarqatiladi. *This model is distributed under the Apache 2.0 License.* ## Iqtibos / Citation Agar bu modeldan foydalansangiz, iltimos quyidagicha iqtibos keltiring: *If you use this model, please cite as follows:* ```bibtex @misc{byt5-uzbek-corrector, title={ByT5-Small LoRA Uzbek Text Corrector}, author={xkas2001}, year={2024}, publisher={Hugging Face}, url={https://huggingface.co/xkas2001/byt5-small-uzbek-corrector} } ``` ## Bog'lanish / Contact Savollar yoki takliflar bo'lsa, iltimos Hugging Face orqali bog'laning. *For questions or suggestions, please contact via Hugging Face.* --- **Tuzuvchi / Author**: xkas2001 **Yaratilgan sana / Created**: 2024 **So'nggi yangilanish / Last updated**: 2024-09-11
danielhoxhahe/blockassist-bc-durable_soaring_salamander_1757566494
danielhoxhahe
2025-09-11T04:55:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "durable soaring salamander", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:54:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - durable soaring salamander --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
felcianovirgil/blockassist-bc-feline_scampering_spider_1757566446
felcianovirgil
2025-09-11T04:54:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "feline scampering spider", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:54:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - feline scampering spider --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mccomasadxdwu/blockassist-bc-dense_lithe_chinchilla_1757566416
mccomasadxdwu
2025-09-11T04:53:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dense lithe chinchilla", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:53:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dense lithe chinchilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
saduysthagdu/blockassist-bc-shaggy_chattering_toucan_1757566400
saduysthagdu
2025-09-11T04:53:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "shaggy chattering toucan", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:53:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - shaggy chattering toucan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
borsahopa67/blockassist-bc-polished_quiet_badger_1757566383
borsahopa67
2025-09-11T04:53:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "polished quiet badger", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:53:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - polished quiet badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ahnets/blockassist-bc-keen_fast_giraffe_1757566347
ahnets
2025-09-11T04:52:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:52:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ynezmikeyabe/blockassist-bc-tenacious_silky_rooster_1757566305
ynezmikeyabe
2025-09-11T04:52:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tenacious silky rooster", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:51:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tenacious silky rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
blurgy/CoMPaSS-FLUX.1
blurgy
2025-09-11T04:52:00Z
1,299
46
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "arxiv:2412.13195", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-01-10T03:49:15Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: a photo of a laptop above a dog output: url: images/laptop-above-dog.jpg - text: a photo of a bird below a skateboard output: url: images/bird-below-skateboard.jpg - text: a photo of a horse to the left of a bottle output: url: images/horse-left-bottle.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: null license: other license_name: compass-lora-weights-nc-license license_link: LICENSE --- # CoMPaSS-FLUX.1 \[[Project Page]\] \[[code]\] \[[arXiv]\] <Gallery /> ## Model description # CoMPaSS-FLUX.1 A LoRA adapter that enhances spatial understanding capabilities of the FLUX.1 text-to-image diffusion model. This model demonstrates significant improvements in generating images with specific spatial relationships between objects. ## Model Details - **Base Model**: FLUX.1-dev - **LoRA Rank**: 16 - **Training Data**: SCOP dataset (curated from COCO) - **File Size**: ~50MiB - **Framework**: Diffusers - **License**: Non-Commercial (see [./LICENSE]) ## ComfyUI Support We provide a custom node with examples at [comfyui-node-impl]. Use the ComfyUI-compatible LoRA checkpoint [comfyui-checkpoint] to get started. ## Intended Use - Generating images with accurate spatial relationships between objects - Creating compositions that require specific spatial arrangements - Enhancing the base model's spatial understanding while maintaining its other capabilities ## Performance ### Key Improvements - VISOR benchmark: +98% relative improvement - T2I-CompBench Spatial: +67% relative improvement - GenEval Position: +131% relative improvement - Maintains or improves base model's image fidelity (lower FID and CMMD scores than base model) ## Using the Model See our [GitHub repository][code] to get started. ### Effective Prompting The model works well with: - Clear spatial relationship descriptors (left, right, above, below) - Pairs of distinct objects - Explicit spatial relationships (e.g., "a photo of A to the right of B") ## Training Details ### Training Data - Built using the SCOP (Spatial Constraints-Oriented Pairing) data engine - ~28,000 curated object pairs from COCO - Enforces criteria for: - Visual significance - Semantic distinction - Spatial clarity - Object relationships - Visual balance ### Training Process - Trained for 24,000 steps - Batch size of 4 - Learning rate: 1e-4 - Optimizer: AdamW with β₁=0.9, β₂=0.999 - Weight decay: 1e-2 ## Evaluation Results | Metric | FLUX.1 | +CoMPaSS | |--------|-------------|-----------| | VISOR uncond (⬆️) | 37.96% | **75.17%** | | T2I-CompBench Spatial (⬆️) | 0.18 | **0.30** | | GenEval Position (⬆️) | 0.26 | **0.60** | | FID (⬇️) | 27.96 | **26.40** | | CMMD (⬇️) | 0.8737 | **0.6859** | ## Citation If you use this model in your research, please cite: ```bibtex @inproceedings{zhang2025compass, title={CoMPaSS: Enhancing Spatial Understanding in Text-to-Image Diffusion Models}, author={Zhang, Gaoyang and Fu, Bingtao and Fan, Qingnan and Zhang, Qi and Liu, Runxing and Gu, Hong and Zhang, Huaqi and Liu, Xinguo}, booktitle={ICCV}, year={2025} } ``` ## Contact For questions about the model, please contact <blurgy@zju.edu.cn> ## Download model Weights for this model are available in Safetensors format. [Download](/blurgy/CoMPaSS-FLUX.1/tree/main) them in the Files & versions tab. [comfyui-node-impl]: <https://github.com/blurgyy/CoMPaSS-FLUX.1-dev-ComfyUI> [comfyui-checkpoint]: <./CoMPaSS-FLUX.1-comfyui.safetensors> [./LICENSE]: <./LICENSE> [Project page]: <https://compass.blurgy.xyz> [code]: <https://github.com/blurgyy/CoMPaSS> [arXiv]: <https://arxiv.org/abs/2412.13195>
iyaadshikder1546/blockassist-bc-pensive_agile_bee_1757566299
iyaadshikder1546
2025-09-11T04:51:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pensive agile bee", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:51:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pensive agile bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lemonhat/Qwen2.5-7B-Instruct-2and3_apps_15k_v4_tag5_processed
lemonhat
2025-09-11T04:51:40Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-11T04:50:08Z
--- library_name: transformers license: other base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: 2and3_apps_15k_v4_tag5_processed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 2and3_apps_15k_v4_tag5_processed This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the 2and3_apps_15k_v4_tag5_processed dataset. It achieves the following results on the evaluation set: - Loss: 0.1986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2348 | 0.1982 | 100 | 0.2270 | | 0.2243 | 0.3964 | 200 | 0.2156 | | 0.2081 | 0.5946 | 300 | 0.2044 | | 0.2162 | 0.7929 | 400 | 0.1999 | | 0.2316 | 0.9911 | 500 | 0.1984 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.6.0+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
sekirr/blockassist-bc-masked_tenacious_whale_1757566259
sekirr
2025-09-11T04:51:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "masked tenacious whale", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:51:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - masked tenacious whale --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
krasovskiy91/blockassist-bc-scurrying_flapping_turkey_1757564206
krasovskiy91
2025-09-11T04:51:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scurrying flapping turkey", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:51:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scurrying flapping turkey --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hakimjustbao/blockassist-bc-raging_subtle_wasp_1757564473
hakimjustbao
2025-09-11T04:51:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:51:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
terrancejykn/blockassist-bc-colorful_curious_macaque_1757566274
terrancejykn
2025-09-11T04:51:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful curious macaque", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:51:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful curious macaque --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
trfyuiyfg/blockassist-bc-yawning_soaring_cheetah_1757566249
trfyuiyfg
2025-09-11T04:51:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning soaring cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:50:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning soaring cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
custardihgillespieogxf/blockassist-bc-tough_eager_cod_1757566190
custardihgillespieogxf
2025-09-11T04:50:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tough eager cod", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:49:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tough eager cod --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Cthun/bio
Cthun
2025-09-11T04:49:59Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-11T04:49:36Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Reihaneh/wav2vec2_sk_mono_50_epochs_3
Reihaneh
2025-09-11T04:49:58Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-09-10T22:17:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
brauerraglmb/blockassist-bc-tough_subtle_tortoise_1757566190
brauerraglmb
2025-09-11T04:49:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tough subtle tortoise", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:49:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tough subtle tortoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lukashossain3425/blockassist-bc-freckled_twitchy_wallaby_1757566167
lukashossain3425
2025-09-11T04:49:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hulking mottled ox", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:49:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hulking mottled ox --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
moonuio/blockassist-bc-screeching_grazing_anaconda_1757566130
moonuio
2025-09-11T04:49:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "screeching grazing anaconda", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:48:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - screeching grazing anaconda --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
allfordedgar26/blockassist-bc-omnivorous_sprightly_aardvark_1757566116
allfordedgar26
2025-09-11T04:48:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "omnivorous sprightly aardvark", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:48:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - omnivorous sprightly aardvark --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arzaanshikder7562/blockassist-bc-darting_sniffing_rhino_1757566060
arzaanshikder7562
2025-09-11T04:47:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "darting sniffing rhino", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:47:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - darting sniffing rhino --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
terrancejykn/blockassist-bc-colorful_curious_macaque_1757566032
terrancejykn
2025-09-11T04:47:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful curious macaque", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:47:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful curious macaque --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tiopuiter/blockassist-bc-pouncing_camouflaged_chameleon_1757565955
tiopuiter
2025-09-11T04:46:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pouncing camouflaged chameleon", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:45:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pouncing camouflaged chameleon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
toruns/blockassist-bc-insectivorous_bold_lion_1757565976
toruns
2025-09-11T04:46:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bold lion", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:46:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bold lion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
huseyinatahaninan/2and3_apps_15k_v4_tag4o_processed-SFT-Qwen2.5-7B-Instruct
huseyinatahaninan
2025-09-11T04:46:32Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-09-11T04:01:52Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: 2and3_apps_15k_v4_tag4o_processed-SFT-Qwen2.5-7B-Instruct results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 2and3_apps_15k_v4_tag4o_processed-SFT-Qwen2.5-7B-Instruct This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the 2and3_apps_15k_v4_tag4o_processed dataset. It achieves the following results on the evaluation set: - Loss: 0.2511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.24 | 0.5797 | 100 | 0.2540 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
ahumadaxhg/blockassist-bc-alert_spotted_dolphin_1757565960
ahumadaxhg
2025-09-11T04:46:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert spotted dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:46:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert spotted dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
harmonyblevinsm0/blockassist-bc-silent_miniature_monkey_1757565877
harmonyblevinsm0
2025-09-11T04:46:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silent miniature monkey", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:45:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silent miniature monkey --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sadiyakhatun65524/blockassist-bc-insectivorous_prehistoric_mouse_1757565932
sadiyakhatun65524
2025-09-11T04:45:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous prehistoric mouse", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:45:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous prehistoric mouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
foltzjmso/blockassist-bc-deadly_aquatic_sparrow_1757565897
foltzjmso
2025-09-11T04:45:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly aquatic sparrow", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:45:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly aquatic sparrow --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sabhaaa/blockassist
sabhaaa
2025-09-11T04:44:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "nimble sedate cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T01:28:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - nimble sedate cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Sixiao2518/SBTDFirst
Sixiao2518
2025-09-11T04:44:16Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-09-11T04:44:16Z
--- license: apache-2.0 ---
dipalamia548/blockassist-bc-invisible_foxy_parrot_1757565807
dipalamia548
2025-09-11T04:43:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "invisible foxy parrot", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:43:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - invisible foxy parrot --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kokkeytopodar62963/blockassist-bc-domestic_savage_bear_1757565772
kokkeytopodar62963
2025-09-11T04:43:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "domestic savage bear", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:43:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - domestic savage bear --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jeresftarke/blockassist-bc-flapping_beaked_owl_1757565738
jeresftarke
2025-09-11T04:42:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flapping beaked owl", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:42:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flapping beaked owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bukoi/so101_policy_02
bukoi
2025-09-11T04:42:05Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:bukoi/so101_pick_place_02", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-09-11T04:41:49Z
--- datasets: bukoi/so101_pick_place_02 library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - act - lerobot - robotics --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
narcolepticchicken/gpt-oss20b-contracts
narcolepticchicken
2025-09-11T04:41:50Z
0
0
null
[ "gguf", "gpt-oss", "mxfp4", "legal", "sec", "contracts", "question-answering", "law", "text-generation", "en", "base_model:openai/gpt-oss-20b", "base_model:quantized:openai/gpt-oss-20b", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-09-10T00:33:44Z
--- language: - en license: apache-2.0 pipeline_tag: text-generation tags: - gguf - gpt-oss - mxfp4 - legal - sec - contracts - question-answering - law base_model: openai/gpt-oss-20b quantization: MXFP4 pretty_name: GPT‑OSS‑20B — SEC Contracts Q&A (GGUF, MXFP4, merged) ---
NamoNam/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-giant_skittish_hamster
NamoNam
2025-09-11T04:41:26Z
6
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am giant skittish hamster", "trl", "genrl-swarm", "I am giant_skittish_hamster", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:finetune:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-20T16:41:36Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-giant_skittish_hamster tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am giant skittish hamster - trl - genrl-swarm - I am giant_skittish_hamster licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-giant_skittish_hamster This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="NamoNam/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-giant_skittish_hamster", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.1 - Transformers: 4.52.4 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
misaeluoyz/blockassist-bc-bipedal_soaring_porcupine_1757565658
misaeluoyz
2025-09-11T04:41:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bipedal soaring porcupine", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:41:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bipedal soaring porcupine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omerbektass/blockassist-bc-keen_fast_giraffe_1757565625
omerbektass
2025-09-11T04:40:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "keen fast giraffe", "arxiv:2504.07091", "region:us" ]
null
2025-09-11T04:40:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - keen fast giraffe --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).