modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-13 06:30:42
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 556
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-13 06:27:56
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
monologg/koelectra-base-discriminator
|
monologg
| 2021-10-20T16:55:57Z | 1,292 | 1 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"pretraining",
"korean",
"ko",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language: ko
license: apache-2.0
tags:
- korean
---
# KoELECTRA (Base Discriminator)
Pretrained ELECTRA Language Model for Korean (`koelectra-base-discriminator`)
For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md).
## Usage
### Load model and tokenizer
```python
>>> from transformers import ElectraModel, ElectraTokenizer
>>> model = ElectraModel.from_pretrained("monologg/koelectra-base-discriminator")
>>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-discriminator")
```
### Tokenizer example
```python
>>> from transformers import ElectraTokenizer
>>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-discriminator")
>>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]")
['[CLS]', '한국어', 'E', '##L', '##EC', '##T', '##RA', '##를', '공유', '##합니다', '.', '[SEP]']
>>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'E', '##L', '##EC', '##T', '##RA', '##를', '공유', '##합니다', '.', '[SEP]'])
[2, 18429, 41, 6240, 15229, 6204, 20894, 5689, 12622, 10690, 18, 3]
```
## Example using ElectraForPreTraining
```python
import torch
from transformers import ElectraForPreTraining, ElectraTokenizer
discriminator = ElectraForPreTraining.from_pretrained("monologg/koelectra-base-discriminator")
tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-discriminator")
sentence = "나는 방금 밥을 먹었다."
fake_sentence = "나는 내일 밥을 먹었다."
fake_tokens = tokenizer.tokenize(fake_sentence)
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
discriminator_outputs = discriminator(fake_inputs)
predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
print(list(zip(fake_tokens, predictions.tolist()[1:-1])))
```
|
monologg/koelectra-base-v2-discriminator
|
monologg
| 2021-10-20T16:54:30Z | 48 | 1 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"pretraining",
"korean",
"ko",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language: ko
license: apache-2.0
tags:
- korean
---
# KoELECTRA v2 (Base Discriminator)
Pretrained ELECTRA Language Model for Korean (`koelectra-base-v2-discriminator`)
For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md).
## Usage
### Load model and tokenizer
```python
>>> from transformers import ElectraModel, ElectraTokenizer
>>> model = ElectraModel.from_pretrained("monologg/koelectra-base-v2-discriminator")
>>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v2-discriminator")
```
### Tokenizer example
```python
>>> from transformers import ElectraTokenizer
>>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v2-discriminator")
>>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]")
['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]']
>>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]'])
[2, 5084, 16248, 3770, 19059, 29965, 2259, 10431, 5, 3]
```
## Example using ElectraForPreTraining
```python
import torch
from transformers import ElectraForPreTraining, ElectraTokenizer
discriminator = ElectraForPreTraining.from_pretrained("monologg/koelectra-base-v2-discriminator")
tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v2-discriminator")
sentence = "나는 방금 밥을 먹었다."
fake_sentence = "나는 내일 밥을 먹었다."
fake_tokens = tokenizer.tokenize(fake_sentence)
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
discriminator_outputs = discriminator(fake_inputs)
predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
print(list(zip(fake_tokens, predictions.tolist()[1:-1])))
```
|
monologg/koelectra-base-v2-generator
|
monologg
| 2021-10-20T16:54:01Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"fill-mask",
"korean",
"ko",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
language: ko
license: apache-2.0
tags:
- korean
---
# KoELECTRA v2 (Base Generator)
Pretrained ELECTRA Language Model for Korean (`koelectra-base-v2-generator`)
For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md).
## Usage
### Load model and tokenizer
```python
>>> from transformers import ElectraModel, ElectraTokenizer
>>> model = ElectraModel.from_pretrained("monologg/koelectra-base-v2-generator")
>>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v2-generator")
```
### Tokenizer example
```python
>>> from transformers import ElectraTokenizer
>>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v2-generator")
>>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]")
['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]']
>>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]'])
[2, 5084, 16248, 3770, 19059, 29965, 2259, 10431, 5, 3]
```
## Example using ElectraForMaskedLM
```python
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model="monologg/koelectra-base-v2-generator",
tokenizer="monologg/koelectra-base-v2-generator"
)
print(fill_mask("나는 {} 밥을 먹었다.".format(fill_mask.tokenizer.mask_token)))
```
|
monologg/koelectra-base-v3-discriminator
|
monologg
| 2021-10-20T16:53:40Z | 31,234 | 30 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"pretraining",
"korean",
"ko",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language: ko
license: apache-2.0
tags:
- korean
---
# KoELECTRA v3 (Base Discriminator)
Pretrained ELECTRA Language Model for Korean (`koelectra-base-v3-discriminator`)
For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md).
## Usage
### Load model and tokenizer
```python
>>> from transformers import ElectraModel, ElectraTokenizer
>>> model = ElectraModel.from_pretrained("monologg/koelectra-base-v3-discriminator")
>>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-discriminator")
```
### Tokenizer example
```python
>>> from transformers import ElectraTokenizer
>>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-discriminator")
>>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]")
['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]']
>>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]'])
[2, 11229, 29173, 13352, 25541, 4110, 7824, 17788, 18, 3]
```
## Example using ElectraForPreTraining
```python
import torch
from transformers import ElectraForPreTraining, ElectraTokenizer
discriminator = ElectraForPreTraining.from_pretrained("monologg/koelectra-base-v3-discriminator")
tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-discriminator")
sentence = "나는 방금 밥을 먹었다."
fake_sentence = "나는 내일 밥을 먹었다."
fake_tokens = tokenizer.tokenize(fake_sentence)
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
discriminator_outputs = discriminator(fake_inputs)
predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
print(list(zip(fake_tokens, predictions.tolist()[1:-1])))
```
|
facebook/hubert-xlarge-ll60k
|
facebook
| 2021-10-20T10:20:44Z | 794 | 5 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"hubert",
"feature-extraction",
"speech",
"en",
"dataset:libri-light",
"arxiv:2106.07447",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-03-02T23:29:05Z |
---
language: en
datasets:
- libri-light
tags:
- speech
license: apache-2.0
---
# Hubert-Extra-Large
[Facebook's Hubert](https://ai.facebook.com/blog/hubert-self-supervised-representation-learning-for-speech-recognition-generation-and-compression)
The extra large model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition, Speaker Identification, Intent Classification, Emotion Recognition, etc...
The model was pretrained on [Libri-Light](https://github.com/facebookresearch/libri-light).
[Paper](https://arxiv.org/abs/2106.07447)
Authors: Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed
**Abstract**
Self-supervised approaches for speech representation learning are challenged by three unique problems: (1) there are multiple sound units in each input utterance, (2) there is no lexicon of input sound units during the pre-training phase, and (3) sound units have variable lengths with no explicit segmentation. To deal with these three problems, we propose the Hidden-Unit BERT (HuBERT) approach for self-supervised speech representation learning, which utilizes an offline clustering step to provide aligned target labels for a BERT-like prediction loss. A key ingredient of our approach is applying the prediction loss over the masked regions only, which forces the model to learn a combined acoustic and language model over the continuous inputs. HuBERT relies primarily on the consistency of the unsupervised clustering step rather than the intrinsic quality of the assigned cluster labels. Starting with a simple k-means teacher of 100 clusters, and using two iterations of clustering, the HuBERT model either matches or improves upon the state-of-the-art wav2vec 2.0 performance on the Librispeech (960h) and Libri-light (60,000h) benchmarks with 10min, 1h, 10h, 100h, and 960h fine-tuning subsets. Using a 1B parameter model, HuBERT shows up to 19% and 13% relative WER reduction on the more challenging dev-other and test-other evaluation subsets.
The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/hubert .
# Usage
See [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information on how to fine-tune the model. Note that the class `Wav2Vec2ForCTC` has to be replaced by `HubertForCTC`.
|
huggingtweets/ssarahbel
|
huggingtweets
| 2021-10-20T10:06:37Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: https://www.huggingtweets.com/ssarahbel/1634724393817/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1441675780220620800/S6KX4bip_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">sarai !?</div>
<div style="text-align: center; font-size: 14px;">@ssarahbel</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from sarai !?.
| Data | sarai !? |
| --- | --- |
| Tweets downloaded | 530 |
| Retweets | 60 |
| Short tweets | 35 |
| Tweets kept | 435 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/5qler3me/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ssarahbel's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2yd9p4cd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2yd9p4cd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/ssarahbel')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
aditeyabaral/sentencetransformer-distilbert-hinglish-small
|
aditeyabaral
| 2021-10-20T09:04:04Z | 173 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:05Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# aditeyabaral/sentencetransformer-distilbert-hinglish-small
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('aditeyabaral/sentencetransformer-distilbert-hinglish-small')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-distilbert-hinglish-small')
model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-distilbert-hinglish-small')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-distilbert-hinglish-small)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 4617 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
mrm8488/t5-base-finetuned-break_data
|
mrm8488
| 2021-10-20T08:31:28Z | 962 | 3 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"en",
"dataset:break_data",
"arxiv:1910.10683",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language: en
datasets:
- break_data
widget:
- text: "paraphrase: The composer of Sands Theme plays what type of guitar?"
---
# T5-base fine-tuned on break_data / QDMR-high-level ❓➡️📋
[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) fine-tuned on [break_data](https://huggingface.co/nlp/viewer/?dataset=break_data&config=QDMR-high-level) dataset for **QDMRs**.
## Details of T5 📜 ➡️ 📜
The **T5** model was presented in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) by *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* in Here the abstract:
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.

## Details of the downstream task (QDMRs) - Dataset 📚
Break is a human annotated dataset of natural language questions and their Question Decomposition Meaning Representations (QDMRs). Break consists of 83,978 examples sampled from 10 question answering datasets over text, images and databases. This repository contains the Break dataset along with information on the exact data format.
| Dataset | Split | # samples |
| -------- | ----- | --------- |
| break_data | train | 17503 |
| break_data | valid | 3130 |
Check out more about this dataset and others in [NLP Viewer](https://huggingface.co/nlp/viewer/)
## Model fine-tuning 🏋️
The training script is a slightly modified version of [this awesome one](https://colab.research.google.com/github/patil-suraj/exploring-T5/blob/master/T5_on_TPU.ipynb) by [Suraj Patil](https://twitter.com/psuraj28). The main change is at preprocessing ```inputs``` and ```targets``` we feed to the model. We do it as a *paraphrasing task*.
## Model in Action 🚀
```python
# Tip: By now, install transformers from source
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-break_data")
model = AutoModelForSeq2SeqLM.from_pretrained("mrm8488/t5-base-finetuned-break_data")
def get_decomposition(question):
input_text = "paraphrase: %s </s>" % question
features = tokenizer([input_text], return_tensors='pt')
output = model.generate(input_ids=features['input_ids'],
attention_mask=features['attention_mask'],
max_length=32)
return tokenizer.decode(output[0])
question = "The composer of Sands Theme plays what type of guitar?"
get_decomposition(question)
# output: 'return Sands Theme ;return composer of #1 ;return guitar that #2 plays'
```
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/)
> Made with <span style="color: #e25555;">♥</span> in Spain
|
aditeyabaral/sentencetransformer-bert-hinglish-small
|
aditeyabaral
| 2021-10-20T06:28:16Z | 9 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:05Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# aditeyabaral/sentencetransformer-bert-hinglish-small
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('aditeyabaral/sentencetransformer-bert-hinglish-small')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('aditeyabaral/sentencetransformer-bert-hinglish-small')
model = AutoModel.from_pretrained('aditeyabaral/sentencetransformer-bert-hinglish-small')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=aditeyabaral/sentencetransformer-bert-hinglish-small)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 4617 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
chrisjay/masakhane_benchmarks
|
chrisjay
| 2021-10-20T05:55:51Z | 0 | 0 | null |
[
"african-languages",
"machine-translation",
"text",
"license:apache-2.0",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
language: african-languages
tags:
- african-languages
- machine-translation
- text
license: apache-2.0
model-index:
- name: Masakhane Benchmark Models
results:
- task:
name: Machine Translation
type: machine-translation
dataset:
name: masakhane benchmarks
args: african-languages
---
# Interacting with the Masakhane Benchmark Models
I created this demo for very easy interaction with the [benchmark models on Masakhane](https://github.com/masakhane-io/masakhane-mt/tree/master/benchmarks) which were trained with [JoeyNMT](https://github.com/chrisemezue/joeynmt)(my forked version).
To access the space click [here](https://huggingface.co/spaces/chrisjay/masakhane-benchmarks).
To include your language, all you need to do is:
1. Create a folder in the format *src-tgt/main* for your language pair, if it does not exist.
2. Inside the *main* folder put the following files:
1. model checkpoint. Rename it to `best.ckpt`.
2. `config.yaml` file. This is the JoeyNMT config file which loads the model an pre-processing parameters.
3. `src_vocab.txt` file.
4. `trg_vocab.txt` file.
The space currently supports these languages:
| source language | target language |
|:---------------:|:---------------:|
| English | Swahili |
| English | Afrikaans |
| English | Arabic |
| English | Urhobo |
| English | Ẹ̀dó |
| Efik | English |
| English | Hausa |
| English | Igbo |
| English | Fon |
| English | Twi |
| English | Dendi |
| English | Ẹ̀sán |
| English | Isoko |
| English | Kamba |
| English | Luo |
| English | Southern Ndebele |
| English | Tshivenda |
| Shona | English |
| Swahili | English |
| Yoruba | English |
TO DO:
1. Include more languages from the benchmark.
|
Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition
|
Bagus
| 2021-10-20T05:38:41Z | 37 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"audio",
"audio-classification",
"speech",
"el",
"dataset:aesdd",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2022-03-02T23:29:04Z |
---
language: el
datasets:
- aesdd
tags:
- audio
- audio-classification
- speech
license: apache-2.0
---
~~~
# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
!git clone https://github.com/m3hrdadfi/soxan
cd soxan
~~~
# prediction
~~~
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
import librosa
import IPython.display as ipd
import numpy as np
import pandas as pd
~~~
~~~
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name_or_path = "Bagus/wav2vec2-xlsr-greek-speech-emotion-recognition"
config = AutoConfig.from_pretrained(model_name_or_path)
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
sampling_rate = feature_extractor.sampling_rate
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
~~~
~~~
def speech_file_to_array_fn(path, sampling_rate):
speech_array, _sampling_rate = torchaudio.load(path)
resampler = torchaudio.transforms.Resample(_sampling_rate)
speech = resampler(speech_array).squeeze().numpy()
return speech
def predict(path, sampling_rate):
speech = speech_file_to_array_fn(path, sampling_rate)
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
inputs = {key: inputs[key].to(device) for key in inputs}
with torch.no_grad():
logits = model(**inputs).logits
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
return outputs
~~~
# prediction
~~~
# path for a sample
path = '/data/jtes_v1.1/wav/f01/ang/f01_ang_01.wav'
outputs = predict(path, sampling_rate)
~~~
~~~
[{'Emotion': 'anger', 'Score': '98.3%'},
{'Emotion': 'disgust', 'Score': '0.0%'},
{'Emotion': 'fear', 'Score': '0.4%'},
{'Emotion': 'happiness', 'Score': '0.7%'},
{'Emotion': 'sadness', 'Score': '0.5%'}]
~~~
|
huggingtweets/l3gacyb3ta
|
huggingtweets
| 2021-10-19T23:49:39Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: https://www.huggingtweets.com/l3gacyb3ta/1634687376092/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1410799369016782849/rn80bxNq_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Arcade</div>
<div style="text-align: center; font-size: 14px;">@l3gacyb3ta</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Arcade.
| Data | Arcade |
| --- | --- |
| Tweets downloaded | 919 |
| Retweets | 283 |
| Short tweets | 91 |
| Tweets kept | 545 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/77o64yn7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @l3gacyb3ta's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/12xpesbj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/12xpesbj/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/l3gacyb3ta')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
hugggof/ConvTasNet-DAMP-Vocals
|
hugggof
| 2021-10-19T19:28:08Z | 0 | 2 | null |
[
"audacity",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
tags:
- audacity
inference: false
sample_rate: 8000
---
This is an Audacity wrapper for the model, forked from the repository `groadabike/ConvTasNet_DAMP-VSEP_enhboth`,
This model was trained using the Asteroid library: https://github.com/asteroid-team/asteroid.
The following info was copied directly from `groadabike/ConvTasNet_DAMP-VSEP_enhboth`:
### Description:
This model was trained by Gerardo Roa Dabike using Asteroid. It was trained on the enh_both task of the DAMP-VSEP dataset.
### Training config:
```yaml
data:
channels: 1
n_src: 2
root_path: data
sample_rate: 16000
samples_per_track: 10
segment: 3.0
task: enh_both
filterbank:
kernel_size: 20
n_filters: 256
stride: 10
main_args:
exp_dir: exp/train_convtasnet
help: None
masknet:
bn_chan: 256
conv_kernel_size: 3
hid_chan: 512
mask_act: relu
n_blocks: 8
n_repeats: 4
n_src: 2
norm_type: gLN
skip_chan: 256
optim:
lr: 0.0003
optimizer: adam
weight_decay: 0.0
positional arguments:
training:
batch_size: 12
early_stop: True
epochs: 50
half_lr: True
num_workers: 12
```
### Results:
```yaml
si_sdr: 14.018196157142519
si_sdr_imp: 14.017103133809577
sdr: 14.498517291333885
sdr_imp: 14.463389151567865
sir: 24.149634529133372
sir_imp: 24.11450638936735
sar: 15.338597389045935
sar_imp: -137.30634122401517
stoi: 0.7639416744417206
stoi_imp: 0.1843383526963759
```
### License notice:
This work "ConvTasNet_DAMP-VSEP_enhboth" is a derivative of DAMP-VSEP: Smule Digital Archive of Mobile Performances - Vocal Separation (Version 1.0.1) by Smule, Inc, used under Smule's Research Data License Agreement (Research only). "ConvTasNet_DAMP-VSEP_enhboth" is licensed under Attribution-ShareAlike 3.0 Unported by Gerardo Roa Dabike.
|
hugggof/ConvTasNet_WHAM_sepclean
|
hugggof
| 2021-10-19T19:25:37Z | 0 | 0 | null |
[
"audacity",
"region:us"
] | null | 2022-03-02T23:29:05Z |
---
tags:
- audacity
inference: false
---
This is an Audacity wrapper for the model, forked from the repository mpariente/ConvTasNet_WHAM_sepclean,
This model was trained using the Asteroid library: https://github.com/asteroid-team/asteroid.
The following info was copied from `mpariente/ConvTasNet_WHAM_sepclean`:
### Description:
This model was trained by Manuel Pariente
using the wham/ConvTasNet recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `sep_clean` task of the WHAM! dataset.
### Training config:
```yaml
data:
n_src: 2
mode: min
nondefault_nsrc: None
sample_rate: 8000
segment: 3
task: sep_clean
train_dir: data/wav8k/min/tr/
valid_dir: data/wav8k/min/cv/
filterbank:
kernel_size: 16
n_filters: 512
stride: 8
main_args:
exp_dir: exp/wham
gpus: -1
help: None
masknet:
bn_chan: 128
hid_chan: 512
mask_act: relu
n_blocks: 8
n_repeats: 3
n_src: 2
skip_chan: 128
optim:
lr: 0.001
optimizer: adam
weight_decay: 0.0
positional arguments:
training:
batch_size: 24
early_stop: True
epochs: 200
half_lr: True
num_workers: 4
```
### Results:
```yaml
si_sdr: 16.21326632846293
si_sdr_imp: 16.21441705664987
sdr: 16.615180021738933
sdr_imp: 16.464137807433435
sir: 26.860503975131923
sir_imp: 26.709461760826414
sar: 17.18312813480803
sar_imp: -131.99332048277296
stoi: 0.9619940905157323
stoi_imp: 0.2239480672473015
```
### License notice:
This work "ConvTasNet_WHAM!_sepclean" is a derivative of [CSR-I (WSJ0) Complete](https://catalog.ldc.upenn.edu/LDC93S6A)
by [LDC](https://www.ldc.upenn.edu/), used under [LDC User Agreement for
Non-Members](https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf) (Research only).
"ConvTasNet_WHAM!_sepclean" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/)
by Manuel Pariente.
|
yazdipour/text-to-sparql-t5-base
|
yazdipour
| 2021-10-19T18:16:39Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- null
metrics:
- f1
model-index:
- name: text-to-sparql-t5-base-2021-10-19_15-35_lastDS
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
metrics:
- name: F1
type: f1
value: 0.3275993764400482
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# text-to-sparql-t5-base-2021-10-19_15-35_lastDS
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1310
- Gen Len: 19.0
- P: 0.5807
- R: 0.0962
- F1: 0.3276
- Score: 6.4533
- Bleu-precisions: [92.48113990507008, 85.38781447185119, 80.57856404313097, 77.37314727416516]
- Bleu-bp: 0.0770
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Score | Bleu-precisions | Bleu-bp |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:------:|:----------------------------------------------------------------------------:|:-------:|
| nan | 1.0 | 4807 | 0.1310 | 19.0 | 0.5807 | 0.0962 | 0.3276 | 6.4533 | [92.48113990507008, 85.38781447185119, 80.57856404313097, 77.37314727416516] | 0.0770 |
### Framework versions
- Transformers 4.10.0
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
meghana/hitalmqa-finetuned-squad
|
meghana
| 2021-10-19T17:34:53Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"question-answering",
"generated_from_trainer",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: hitalmqa-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hitalmqa-finetuned-squad
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
Emanuel/autonlp-pos-tag-bosque
|
Emanuel
| 2021-10-19T12:09:29Z | 19 | 3 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"autonlp",
"pt",
"dataset:Emanuel/autonlp-data-pos-tag-bosque",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:04Z |
---
tags: autonlp
language: pt
widget:
- text: "I love AutoNLP 🤗"
datasets:
- Emanuel/autonlp-data-pos-tag-bosque
co2_eq_emissions: 6.2107269129101805
---
# Model Trained Using AutoNLP
- Problem type: Entity Extraction
- Model ID: 21124427
- CO2 Emissions (in grams): 6.2107269129101805
## Validation Metrics
- Loss: 0.09813392907381058
- Accuracy: 0.9714309035997062
- Precision: 0.9721275936822545
- Recall: 0.9735345807918949
- F1: 0.9728305785123967
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Emanuel/autonlp-pos-tag-bosque-21124427
```
Or Python API:
```
from transformers import AutoModelForTokenClassification, AutoTokenizer
model = AutoModelForTokenClassification.from_pretrained("Emanuel/autonlp-pos-tag-bosque")
tokenizer = AutoTokenizer.from_pretrained("Emanuel/autonlp-pos-tag-bosque")
inputs = tokenizer("A noiva casa de branco", return_tensors="pt")
outputs = model(**inputs)
labelids = outputs.logits.squeeze().argmax(axis=-1)
labels = [model.config.id2label[int(x)] for x in labelids]
labels = labels[1:-1]# Filter start and end of sentence symbols
```
|
DeepESP/gpt2-spanish
|
DeepESP
| 2021-10-19T08:52:48Z | 5,155 | 36 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"jax",
"gpt2",
"text-generation",
"GPT-2",
"Spanish",
"ebooks",
"nlg",
"es",
"dataset:ebooks",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:04Z |
---
language: es
tags:
- GPT-2
- Spanish
- ebooks
- nlg
datasets:
- ebooks
widget:
- text: "Quisiera saber que va a suceder"
license: mit
---
# GPT2-Spanish
GPT2-Spanish is a language generation model trained from scratch with 11.5GB of Spanish texts and with a Byte Pair Encoding (BPE) tokenizer that was trained for this purpose. The parameters used are the same as the small version of the original OpenAI GPT2 model.
## Corpus
This model was trained with a corpus of 11.5GB of texts corresponding to 3.5GB of Wikipedia articles and 8GB of books (narrative, short stories, theater, poetry, essays, and popularization).
## Tokenizer
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for Unicode characters) and a vocabulary size of 50257. The inputs are sequences of 1024 consecutive tokens.
This tokenizer was trained from scratch with the Spanish corpus, since it was evidenced that the tokenizer of the English models presented limitations to capture the semantic relations of Spanish, due to the morphosyntactic differences between both languages.
Apart from the special token "<|endoftext|>" for text ending in the OpenAI GPT-2 models, the tokens "<|talk|>", "<|ax1|>", "<|ax2|>" (..)"<|ax9|>" were included so that they can serve as prompts in future training.
## Training
The model and tokenizer were trained using the Hugging Face libraries with an Nvidia Tesla V100 GPU with 16GB memory on Google Colab servers.
## Authors
The model was trained by Alejandro Oñate Latorre (Spain) and Jorge Ortiz Fuentes (Chile), members of -Deep ESP-, an open-source community on Natural Language Processing in Spanish (https://t.me/joinchat/VoEp1bPrDYEexc6h).
Thanks to the members of the community who collaborated with funding for the initial tests.
## Cautions
The model generates texts according to the patterns learned in the training corpus. These data were not filtered, therefore, the model could generate offensive or discriminatory content.
|
yazdipour/sparql-qald9-t5-small-2021-10-19_07-12_RAW
|
yazdipour
| 2021-10-19T07:25:13Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: sparql-qald9-t5-small-2021-10-19_07-12_RAW
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sparql-qald9-t5-small-2021-10-19_07-12_RAW
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Bleu-score | Bleu-precisions | Bleu-bp |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:----------:|:----------------------------------------------------------------------------:|:-------:|
| No log | 1.0 | 51 | 2.8581 | 19.0 | 0.3301 | 0.0433 | 0.1830 | 7.5917 | [69.82603479304139, 45.68226763348714, 32.33357717629846, 24.56861133935908] | 0.1903 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
Tarang1998/autonlp-pegasus-21664560
|
Tarang1998
| 2021-10-19T05:22:41Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"pegasus",
"text2text-generation",
"autonlp",
"unk",
"dataset:Tarang1998/autonlp-data-pegasus",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: unk
widget:
- text: "I love AutoNLP 🤗"
datasets:
- Tarang1998/autonlp-data-pegasus
co2_eq_emissions: 5.680803958729511
---
# Model Trained Using AutoNLP
- Problem type: Summarization
- Model ID: 21664560
- CO2 Emissions (in grams): 5.680803958729511
## Validation Metrics
- Loss: 1.7488420009613037
- Rouge1: 38.1491
- Rouge2: 18.6257
- RougeL: 26.8448
- RougeLsum: 32.2433
- Gen Len: 49.0
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/Tarang1998/autonlp-pegasus-21664560
```
|
hiiamsid/autonlp-Summarization-20684328
|
hiiamsid
| 2021-10-19T05:09:38Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"autonlp",
"es",
"dataset:hiiamsid/autonlp-data-Summarization",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: es
widget:
- text: "I love AutoNLP 🤗"
datasets:
- hiiamsid/autonlp-data-Summarization
co2_eq_emissions: 1133.9679082840014
---
# Model Trained Using AutoNLP
- Problem type: Summarization
- Model ID: 20684328
- CO2 Emissions (in grams): 1133.9679082840014
## Validation Metrics
- Loss: nan
- Rouge1: 9.4193
- Rouge2: 0.91
- RougeL: 7.9376
- RougeLsum: 8.0076
- Gen Len: 10.65
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/hiiamsid/autonlp-Summarization-20684328
```
|
bdwjaya/t5-small-finetuned-xsum
|
bdwjaya
| 2021-10-19T03:34:18Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:xsum",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- xsum
model-index:
- name: t5-small-finetuned-xsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-xsum
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
tiennvcs/distilbert-base-uncased-finetuned-squad
|
tiennvcs
| 2021-10-19T02:41:19Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
yazdipour/sparql-qald9-t5-base-2021-10-19_00-15
|
yazdipour
| 2021-10-19T00:37:58Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: sparql-qald9-t5-base-2021-10-19_00-15
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sparql-qald9-t5-base-2021-10-19_00-15
This model is a fine-tuned version of [yazdipour/text-to-sparql-t5-base-2021-10-18_16-15](https://huggingface.co/yazdipour/text-to-sparql-t5-base-2021-10-18_16-15) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Gen Len | P | R | F1 | Bleu-score | Bleu-precisions | Bleu-bp |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:------:|:----------:|:-----------------------------------------------------------------------------:|:-------:|
| No log | 1.0 | 51 | 1.8998 | 19.0 | 0.3634 | 0.0387 | 0.1963 | 9.9428 | [71.94645844952593, 49.30006086427267, 35.36503683858004, 28.145941921072225] | 0.2294 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
yazdipour/text-to-sparql-t5-base-2021-10-18_16-15
|
yazdipour
| 2021-10-18T18:58:01Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- null
model-index:
- name: text-to-sparql-t5-base-2021-10-18_16-15
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# text-to-sparql-t5-base-2021-10-18_16-15
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1294
- Gen Len: 19.0
- Bertscorer-p: 0.5827
- Bertscorer-r: 0.0812
- Bertscorer-f1: 0.3202
- Sacrebleu-score: 5.9410
- Sacrebleu-precisions: [92.24641734333713, 84.24354361048307, 78.78523204758982, 75.43428275229601]
- Bleu-bp: 0.0721
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Gen Len | Bertscorer-p | Bertscorer-r | Bertscorer-f1 | Sacrebleu-score | Sacrebleu-precisions | Bleu-bp |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------------:|:------------:|:-------------:|:---------------:|:----------------------------------------------------------------------------:|:-------:|
| nan | 1.0 | 4772 | 0.1294 | 19.0 | 0.5827 | 0.0812 | 0.3202 | 5.9410 | [92.24641734333713, 84.24354361048307, 78.78523204758982, 75.43428275229601] | 0.0721 |
### Framework versions
- Transformers 4.10.0
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
astarostap/autonlp-antisemitism-2-21194454
|
astarostap
| 2021-10-18T18:06:19Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"en",
"dataset:astarostap/autonlp-data-antisemitism-2",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: en
widget:
- text: "the jews have a lot of power"
datasets:
- astarostap/autonlp-data-antisemitism-2
co2_eq_emissions: 2.0686690092905224
---
# Description
This model takes a tweet with the word "jew" in it, and determines if it's antisemitic.
Training data:
This model was trained on 4k tweets, where ~50% were labeled as antisemitic.
I labeled them myself based on personal experience and knowledge about common antisemitic tropes.
Note:
The goal for this model is not to be used as a final say on what is or is not antisemitic, but rather as a first pass on what might be antisemitic and should be reviewed by human experts.
Please keep in mind that I'm not an expert on antisemitism or hatespeech.
Whether something is antisemitic or not depends on the context, as for any hate speech, and everyone has a different definition for what is hate speech.
If you would like to collaborate on antisemitism detection, please feel free to contact me at starosta@alumni.stanford.edu
This model is not ready for production, it needs more evaluation and more training data.
# Model Trained Using AutoNLP
- Problem type: Binary Classification
- Model ID: 21194454
- CO2 Emissions (in grams): 2.0686690092905224
- Dataset: https://huggingface.co/datasets/astarostap/autonlp-data-antisemitism-2
## Validation Metrics
- Loss: 0.5291365385055542
- Accuracy: 0.7572692793931732
- Precision: 0.7126948775055679
- Recall: 0.835509138381201
- AUC: 0.8185826549941126
- F1: 0.7692307692307693
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/astarostap/autonlp-antisemitism-2-21194454
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("astarostap/autonlp-antisemitism-2-21194454", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("astarostap/autonlp-antisemitism-2-21194454", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
JonatanGk/roberta-base-ca-finetuned-hate-speech-offensive-catalan
|
JonatanGk
| 2021-10-18T17:10:50Z | 6 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-base-ca-finetuned-mnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-ca-finetuned-mnli
This model is a fine-tuned version of [BSC-TeMU/roberta-base-ca](https://huggingface.co/BSC-TeMU/roberta-base-ca) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4137
- Accuracy: 0.8778
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3699 | 1.0 | 1255 | 0.3712 | 0.8669 |
| 0.3082 | 2.0 | 2510 | 0.3401 | 0.8766 |
| 0.2375 | 3.0 | 3765 | 0.4137 | 0.8778 |
| 0.1889 | 4.0 | 5020 | 0.4671 | 0.8733 |
| 0.1486 | 5.0 | 6275 | 0.5205 | 0.8749 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.12.1
- Tokenizers 0.10.3
|
maxspaziani/bert-base-italian-uncased-finetuned-ComunaliRoma
|
maxspaziani
| 2021-10-18T16:34:41Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: bert-base-italian-uncased-finetuned-ComunaliRoma
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-italian-uncased-finetuned-ComunaliRoma
This model is a fine-tuned version of [dbmdz/bert-base-italian-uncased](https://huggingface.co/dbmdz/bert-base-italian-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0398
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 156 | 3.1907 |
| No log | 2.0 | 312 | 3.0522 |
| No log | 3.0 | 468 | 3.0203 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
cambridgeltl/trans-encoder-bi-simcse-roberta-large
|
cambridgeltl
| 2021-10-18T13:29:43Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"feature-extraction",
"arxiv:2109.13059",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-03-02T23:29:05Z |
---
language: en
tags:
- sentence-embeddings
- sentence-similarity
- dual-encoder
### cambridgeltl/trans-encoder-bi-simcse-roberta-large
An unsupervised sentence encoder (bi-encoder) proposed by [Liu et al. (2021)](https://arxiv.org/pdf/2109.13059.pdf). The model is trained with unlabelled sentence pairs sampled from STS2012-2016, STS-b, and SICK-R, using [princeton-nlp/unsup-simcse-roberta-large](https://huggingface.co/princeton-nlp/unsup-simcse-roberta-large) as the base model. Please use `[CLS]` (before pooler) as the representation of the input.
### Citation
```bibtex
@article{liu2021trans,
title={Trans-Encoder: Unsupervised sentence-pair modelling through self-and mutual-distillations},
author={Liu, Fangyu and Jiao, Yunlong and Massiah, Jordan and Yilmaz, Emine and Havrylov, Serhii},
journal={arXiv preprint arXiv:2109.13059},
year={2021}
}
```
|
lewtun/results
|
lewtun
| 2021-10-18T13:16:42Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: results
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.925
- name: F1
type: f1
value: 0.9251012149383893
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2147
- Accuracy: 0.925
- F1: 0.9251
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8221 | 1.0 | 250 | 0.3106 | 0.9125 | 0.9102 |
| 0.2537 | 2.0 | 500 | 0.2147 | 0.925 | 0.9251 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.1+cu102
- Datasets 1.13.0
- Tokenizers 0.10.3
|
suzuki/distilbert-base-uncased-finetuned-squad
|
suzuki
| 2021-10-18T12:41:03Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2962
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3817 | 1.0 | 2767 | 1.2962 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
Ching/negation_detector
|
Ching
| 2021-10-18T10:32:43Z | 11 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:04Z |
This question answering model was fine tuned to detect negation expressions
How to use:
question: negation
context: That is not safe!
Answer: not
question: negation
context: Weren't we going to go to the moon?
Answer: Weren't
|
CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-egy
|
CAMeL-Lab
| 2021-10-18T10:18:01Z | 134 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"bert",
"token-classification",
"ar",
"arxiv:2103.06678",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:04Z |
---
language:
- ar
license: apache-2.0
widget:
- text: 'عامل ايه ؟'
---
# CAMeLBERT-CA POS-EGY Model
## Model description
**CAMeLBERT-CA POS-EGY Model** is a Egyptian Arabic POS tagging model that was built by fine-tuning the [CAMeLBERT-CA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca/) model.
For the fine-tuning, we used the ARZTB dataset .
Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT).
## Intended uses
You can use the CAMeLBERT-CA POS-EGY model as part of the transformers pipeline.
This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon.
#### How to use
To use the model with a transformers pipeline:
```python
>>> from transformers import pipeline
>>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-egy')
>>> text = 'عامل ايه ؟'
>>> pos(text)
[{'entity': 'adj', 'score': 0.9990943, 'index': 1, 'word': 'عامل', 'start': 0, 'end': 4}, {'entity': 'pron_interrog', 'score': 0.99863535, 'index': 2, 'word': 'ايه', 'start': 5, 'end': 8}, {'entity': 'punc', 'score': 0.99990875, 'index': 3, 'word': '؟', 'start': 9, 'end': 10}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`.
Otherwise, you could download the models manually.
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
CAMeL-Lab/bert-base-arabic-camelbert-da-pos-egy
|
CAMeL-Lab
| 2021-10-18T10:15:37Z | 9 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"bert",
"token-classification",
"ar",
"arxiv:2103.06678",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:04Z |
---
language:
- ar
license: apache-2.0
widget:
- text: 'عامل ايه ؟'
---
# CAMeLBERT-DA POS-EGY Model
## Model description
**CAMeLBERT-DA POS-EGY Model** is a Egyptian Arabic POS tagging model that was built by fine-tuning the [CAMeLBERT-DA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-da/) model.
For the fine-tuning, we used the ARZTB dataset .
Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT).
## Intended uses
You can use the CAMeLBERT-DA POS-EGY model as part of the transformers pipeline.
This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon.
#### How to use
To use the model with a transformers pipeline:
```python
>>> from transformers import pipeline
>>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-da-pos-egy')
>>> text = 'عامل ايه ؟'
>>> pos(text)
[{'entity': 'adj', 'score': 0.99843216, 'index': 1, 'word': 'عامل', 'start': 0, 'end': 4}, {'entity': 'pron_interrog', 'score': 0.9990083, 'index': 2, 'word': 'ايه', 'start': 5, 'end': 8}, {'entity': 'punc', 'score': 0.82973784, 'index': 3, 'word': '؟', 'start': 9, 'end': 10}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`.
Otherwise, you could download the models manually.
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
CAMeL-Lab/bert-base-arabic-camelbert-da-pos-msa
|
CAMeL-Lab
| 2021-10-18T09:44:25Z | 12 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"bert",
"token-classification",
"ar",
"arxiv:2103.06678",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:04Z |
---
language:
- ar
license: apache-2.0
widget:
- text: 'إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع'
---
# CAMeLBERT-DA POS-MSA Model
## Model description
**CAMeLBERT-DA POS-MSA Model** is a Modern Standard Arabic (MSA) POS tagging model that was built by fine-tuning the [CAMeLBERT-DA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-da/) model.
For the fine-tuning, we used the [PATB](https://dl.acm.org/doi/pdf/10.5555/1621804.1621808) dataset.
Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT).
## Intended uses
You can use the CAMeLBERT-DA POS-MSA model as part of the transformers pipeline.
This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon.
#### How to use
To use the model with a transformers pipeline:
```python
>>> from transformers import pipeline
>>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-da-pos-msa')
>>> text = 'إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع'
>>> pos(text)
[{'entity': 'noun', 'score': 0.9999913, 'index': 1, 'word': 'إمارة', 'start': 0, 'end': 5}, {'entity': 'noun_prop', 'score': 0.9992475, 'index': 2, 'word': 'أبوظبي', 'start': 6, 'end': 12}, {'entity': 'pron', 'score': 0.999919, 'index': 3, 'word': 'هي', 'start': 13, 'end': 15}, {'entity': 'noun', 'score': 0.99993193, 'index': 4, 'word': 'إحدى', 'start': 16, 'end': 20}, {'entity': 'noun', 'score': 0.99999106, 'index': 5, 'word': 'إما', 'start': 21, 'end': 24}, {'entity': 'noun', 'score': 0.99998987, 'index': 6, 'word': '##رات', 'start': 24, 'end': 27}, {'entity': 'noun', 'score': 0.9999933, 'index': 7, 'word': 'دولة', 'start': 28, 'end': 32}, {'entity': 'noun', 'score': 0.9999899, 'index': 8, 'word': 'الإمارات', 'start': 33, 'end': 41}, {'entity': 'adj', 'score': 0.99990565, 'index': 9, 'word': 'العربية', 'start': 42, 'end': 49}, {'entity': 'adj', 'score': 0.99997944, 'index': 10, 'word': 'المتحدة', 'start': 50, 'end': 57}, {'entity': 'noun_num', 'score': 0.99938935, 'index': 11, 'word': 'السبع', 'start': 58, 'end': 63}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`.
Otherwise, you could download the models manually.
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-msa
|
CAMeL-Lab
| 2021-10-18T09:34:42Z | 22 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"bert",
"token-classification",
"ar",
"arxiv:2103.06678",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:04Z |
---
language:
- ar
license: apache-2.0
widget:
- text: 'إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع'
---
# CAMeLBERT-MSA POS-MSA Model
## Model description
**CAMeLBERT-MSA POS-MSA Model** is a Modern Standard Arabic (MSA) POS tagging model that was built by fine-tuning the [CAMeLBERT-MSA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/) model.
For the fine-tuning, we used the [PATB](https://dl.acm.org/doi/pdf/10.5555/1621804.1621808) dataset .
Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT).
## Intended uses
You can use the CAMeLBERT-MSA POS-MSA model as part of the transformers pipeline.
This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon.
#### How to use
To use the model with a transformers pipeline:
```python
>>> from transformers import pipeline
>>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-msa')
>>> text = 'إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع'
>>> pos(text)
[{'entity': 'noun', 'score': 0.9999764, 'index': 1, 'word': 'إمارة', 'start': 0, 'end': 5}, {'entity': 'noun_prop', 'score': 0.99991846, 'index': 2, 'word': 'أبوظبي', 'start': 6, 'end': 12}, {'entity': 'pron', 'score': 0.9998356, 'index': 3, 'word': 'هي', 'start': 13, 'end': 15}, {'entity': 'noun', 'score': 0.99368894, 'index': 4, 'word': 'إحدى', 'start': 16, 'end': 20}, {'entity': 'noun', 'score': 0.9999426, 'index': 5, 'word': 'إما', 'start': 21, 'end': 24}, {'entity': 'noun', 'score': 0.9999339, 'index': 6, 'word': '##رات', 'start': 24, 'end': 27}, {'entity': 'noun', 'score': 0.99996775, 'index': 7, 'word': 'دولة', 'start': 28, 'end': 32}, {'entity': 'noun', 'score': 0.99996895, 'index': 8, 'word': 'الإمارات', 'start': 33, 'end': 41}, {'entity': 'adj', 'score': 0.99990183, 'index': 9, 'word': 'العربية', 'start': 42, 'end': 49}, {'entity': 'adj', 'score': 0.9999347, 'index': 10, 'word': 'المتحدة', 'start': 50, 'end': 57}, {'entity': 'noun_num', 'score': 0.99931145, 'index': 11, 'word': 'السبع', 'start': 58, 'end': 63}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`.
Otherwise, you could download the models manually.
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
tal-yifat/injury-report-distilgpt2-test
|
tal-yifat
| 2021-10-18T02:15:31Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: injury-report-distilgpt2-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# injury-report-distilgpt2-test
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5243
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 380 | 3.6525 |
| 3.9116 | 2.0 | 760 | 3.5507 |
| 3.6015 | 3.0 | 1140 | 3.5243 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
airKlizz/t5-base-multi-fr-wiki-news
|
airKlizz
| 2021-10-17T20:09:42Z | 16 | 0 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"fr",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language: fr
license: mit
---
|
Anorak/nirvana
|
Anorak
| 2021-10-17T15:48:15Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"pegasus",
"text2text-generation",
"autonlp",
"unk",
"dataset:Anorak/autonlp-data-Niravana-test2",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:04Z |
---
tags: autonlp
language: unk
widget:
- text: "I love AutoNLP 🤗"
datasets:
- Anorak/autonlp-data-Niravana-test2
co2_eq_emissions: 4.214012748213151
---
# Model Trained Using AutoNLP
- Problem type: Summarization
- Model ID: 20384195
- CO2 Emissions (in grams): 4.214012748213151
## Validation Metrics
- Loss: 1.0120062828063965
- Rouge1: 41.1808
- Rouge2: 26.2564
- RougeL: 31.3106
- RougeLsum: 38.9991
- Gen Len: 58.45
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/Anorak/autonlp-Niravana-test2-20384195
```
|
MariamD/my-t5-qa-legal
|
MariamD
| 2021-10-17T13:20:41Z | 2 | 1 |
transformers
|
[
"transformers",
"pytorch",
"question-answering",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:04Z |
---
language: english
datasets:
- legal dataset
pipeline_tag: question-answering
---
|
CAMeL-Lab/bert-base-arabic-camelbert-mix-poetry
|
CAMeL-Lab
| 2021-10-17T12:10:17Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"bert",
"text-classification",
"ar",
"arxiv:1905.05700",
"arxiv:2103.06678",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
language:
- ar
license: apache-2.0
widget:
- text: 'الخيل والليل والبيداء تعرفني [SEP] والسيف والرمح والقرطاس والقلم'
---
# CAMeLBERT-Mix Poetry Classification Model
## Model description
**CAMeLBERT-Mix Poetry Classification Model** is a poetry classification model that was built by fine-tuning the [CAMeLBERT Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model.
For the fine-tuning, we used the [APCD](https://arxiv.org/pdf/1905.05700.pdf) dataset.
Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT).
## Intended uses
You can use the CAMeLBERT-Mix Poetry Classification model as part of the transformers pipeline.
This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon.
#### How to use
To use the model with a transformers pipeline:
```python
>>> from transformers import pipeline
>>> poetry = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-poetry')
>>> # A list of verses where each verse consists of two parts.
>>> verses = [
['الخيل والليل والبيداء تعرفني' ,'والسيف والرمح والقرطاس والقلم'],
['قم للمعلم وفه التبجيلا' ,'كاد المعلم ان يكون رسولا']
]
>>> # A function that concatenates the halves of each verse by using the [SEP] token.
>>> join_verse = lambda half: ' [SEP] '.join(half)
>>> # Apply this to all the verses in the list.
>>> verses = [join_verse(verse) for verse in verses]
>>> poetry(sentences)
[{'label': 'البسيط', 'score': 0.9937475919723511},
{'label': 'الكامل', 'score': 0.971284031867981}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`.
Otherwise, you could download the models manually.
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
CAMeL-Lab/bert-base-arabic-camelbert-da-poetry
|
CAMeL-Lab
| 2021-10-17T12:09:56Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"bert",
"text-classification",
"ar",
"arxiv:1905.05700",
"arxiv:2103.06678",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
language:
- ar
license: apache-2.0
widget:
- text: 'الخيل والليل والبيداء تعرفني [SEP] والسيف والرمح والقرطاس والقلم'
---
# CAMeLBERT-DA Poetry Classification Model
## Model description
**CAMeLBERT-DA Poetry Classification Model** is a poetry classification model that was built by fine-tuning the [CAMeLBERT Dialectal Arabic (DA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-da/) model.
For the fine-tuning, we used the [APCD](https://arxiv.org/pdf/1905.05700.pdf) dataset.
Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT).
## Intended uses
You can use the CAMeLBERT-DA Poetry Classification model as part of the transformers pipeline.
This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon.
#### How to use
To use the model with a transformers pipeline:
```python
>>> from transformers import pipeline
>>> poetry = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-da-poetry')
>>> # A list of verses where each verse consists of two parts.
>>> verses = [
['الخيل والليل والبيداء تعرفني' ,'والسيف والرمح والقرطاس والقلم'],
['قم للمعلم وفه التبجيلا' ,'كاد المعلم ان يكون رسولا']
]
>>> # A function that concatenates the halves of each verse by using the [SEP] token.
>>> join_verse = lambda half: ' [SEP] '.join(half)
>>> # Apply this to all the verses in the list.
>>> verses = [join_verse(verse) for verse in verses]
>>> poetry(sentences)
[{'label': 'البسيط', 'score': 0.9874765276908875},
{'label': 'السلسلة', 'score': 0.6877778172492981}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`.
Otherwise, you could download the models manually.
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
CAMeL-Lab/bert-base-arabic-camelbert-ca-poetry
|
CAMeL-Lab
| 2021-10-17T12:09:38Z | 13 | 4 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"bert",
"text-classification",
"ar",
"arxiv:1905.05700",
"arxiv:2103.06678",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
language:
- ar
license: apache-2.0
widget:
- text: 'الخيل والليل والبيداء تعرفني [SEP] والسيف والرمح والقرطاس والقلم'
---
# CAMeLBERT-CA Poetry Classification Model
## Model description
**CAMeLBERT-CA Poetry Classification Model** is a poetry classification model that was built by fine-tuning the [CAMeLBERT Classical Arabic (CA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca/) model.
For the fine-tuning, we used the [APCD](https://arxiv.org/pdf/1905.05700.pdf) dataset.
Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT).
## Intended uses
You can use the CAMeLBERT-CA Poetry Classification model as part of the transformers pipeline.
This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon.
#### How to use
To use the model with a transformers pipeline:
```python
>>> from transformers import pipeline
>>> poetry = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-ca-poetry')
>>> # A list of verses where each verse consists of two parts.
>>> verses = [
['الخيل والليل والبيداء تعرفني' ,'والسيف والرمح والقرطاس والقلم'],
['قم للمعلم وفه التبجيلا' ,'كاد المعلم ان يكون رسولا']
]
>>> # A function that concatenates the halves of each verse by using the [SEP] token.
>>> join_verse = lambda half: ' [SEP] '.join(half)
>>> # Apply this to all the verses in the list.
>>> verses = [join_verse(verse) for verse in verses]
>>> poetry(sentences)
[{'label': 'البسيط', 'score': 0.9845284819602966},
{'label': 'الكامل', 'score': 0.752918004989624}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`.
Otherwise, you could download the models manually.
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
castorini/monot5-base-msmarco-10k
|
castorini
| 2021-10-17T11:24:22Z | 3,178 | 14 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"t5",
"text2text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
This model is a T5-base reranker fine-tuned on the MS MARCO passage dataset for 10k steps (or 1 epoch).
This model usually has a better zero-shot performance than `monot5-base-msmarco`, i.e., it performs better on datasets different from MS MARCO.
For more details on how to use it, check the following links:
- [A simple reranking example](https://github.com/castorini/pygaggle#a-simple-reranking-example)
- [Rerank MS MARCO passages](https://github.com/castorini/pygaggle/blob/master/docs/experiments-msmarco-passage-subset.md)
- [Rerank Robust04 documents](https://github.com/castorini/pygaggle/blob/master/docs/experiments-robust04-monot5-gpu.md)
Paper describing the model: [Document Ranking with a Pretrained Sequence-to-Sequence Model](https://www.aclweb.org/anthology/2020.findings-emnlp.63/)
|
CAMeL-Lab/bert-base-arabic-camelbert-mix-did-madar-corpus6
|
CAMeL-Lab
| 2021-10-17T11:17:53Z | 30 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"bert",
"text-classification",
"ar",
"arxiv:2103.06678",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
language:
- ar
license: apache-2.0
widget:
- text: "عامل ايه ؟"
---
# CAMeLBERT-Mix DID MADAR Corpus6 Model
## Model description
**CAMeLBERT-Mix DID MADAR Corpus6 Model** is a dialect identification (DID) model that was built by fine-tuning the [CAMeLBERT-Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model.
For the fine-tuning, we used the [MADAR Corpus 6](https://camel.abudhabi.nyu.edu/madar-shared-task-2019/) dataset, which includes 6 labels.
Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT).
## Intended uses
You can use the CAMeLBERT-Mix DID MADAR Corpus6 model as part of the transformers pipeline.
This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon.
#### How to use
To use the model with a transformers pipeline:
```python
>>> from transformers import pipeline
>>> did = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-did-madar6')
>>> sentences = ['عامل ايه ؟', 'شلونك ؟ شخبارك ؟']
>>> did(sentences)
[{'label': 'CAI', 'score': 0.9996405839920044},
{'label': 'DOH', 'score': 0.9997853636741638}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
CAMeL-Lab/bert-base-arabic-camelbert-mix-did-madar-corpus26
|
CAMeL-Lab
| 2021-10-17T11:17:23Z | 29 | 3 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"bert",
"text-classification",
"ar",
"arxiv:2103.06678",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
language:
- ar
license: apache-2.0
widget:
- text: "عامل ايه ؟"
---
# CAMeLBERT-Mix DID Madar Corpus26 Model
## Model description
**CAMeLBERT-Mix DID Madar Corpus26 Model** is a dialect identification (DID) model that was built by fine-tuning the [CAMeLBERT-Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model.
For the fine-tuning, we used the [MADAR Corpus 26](https://camel.abudhabi.nyu.edu/madar-shared-task-2019/) dataset, which includes 26 labels.
Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT).
## Intended uses
You can use the CAMeLBERT-Mix DID Madar Corpus26 model as part of the transformers pipeline.
This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon.
#### How to use
To use the model with a transformers pipeline:
```python
>>> from transformers import pipeline
>>> did = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-did-madar26')
>>> sentences = ['عامل ايه ؟', 'شلونك ؟ شخبارك ؟']
>>> did(sentences)
[{'label': 'CAI', 'score': 0.8751305937767029},
{'label': 'DOH', 'score': 0.9867215156555176}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`.
Otherwise, you could download the models manually.
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
CAMeL-Lab/bert-base-arabic-camelbert-da-sentiment
|
CAMeL-Lab
| 2021-10-17T11:15:54Z | 7,487 | 43 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"bert",
"text-classification",
"ar",
"arxiv:2103.06678",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
language:
- ar
license: apache-2.0
widget:
- text: "أنا بخير"
---
# CAMeLBERT-DA SA Model
## Model description
**CAMeLBERT-DA SA Model** is a Sentiment Analysis (SA) model that was built by fine-tuning the [CAMeLBERT Dialectal Arabic (DA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-da/) model.
For the fine-tuning, we used the [ASTD](https://aclanthology.org/D15-1299.pdf), [ArSAS](http://lrec-conf.org/workshops/lrec2018/W30/pdf/22_W30.pdf), and [SemEval](https://aclanthology.org/S17-2088.pdf) datasets.
Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."
* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT).
## Intended uses
You can use the CAMeLBERT-DA SA model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component (*recommended*) or as part of the transformers pipeline.
#### How to use
To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component:
```python
>>> from camel_tools.sentiment import SentimentAnalyzer
>>> sa = SentimentAnalyzer("CAMeL-Lab/bert-base-arabic-camelbert-da-sentiment")
>>> sentences = ['أنا بخير', 'أنا لست بخير']
>>> sa.predict(sentences)
>>> ['positive', 'negative']
```
You can also use the SA model directly with a transformers pipeline:
```python
>>> from transformers import pipeline
>>> sa = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-da-sentiment')
>>> sentences = ['أنا بخير', 'أنا لست بخير']
>>> sa(sentences)
[{'label': 'positive', 'score': 0.9616648554801941},
{'label': 'negative', 'score': 0.9779177904129028}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`.
Otherwise, you could download the models manually.
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
CAMeL-Lab/bert-base-arabic-camelbert-ca-sentiment
|
CAMeL-Lab
| 2021-10-17T11:15:12Z | 35 | 3 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"bert",
"text-classification",
"ar",
"arxiv:2103.06678",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
language:
- ar
license: apache-2.0
widget:
- text: "أنا بخير"
---
# CAMeLBERT-CA SA Model
## Model description
**CAMeLBERT-CA SA Model** is a Sentiment Analysis (SA) model that was built by fine-tuning the [CAMeLBERT Classical Arabic (CA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca/) model.
For the fine-tuning, we used the [ASTD](https://aclanthology.org/D15-1299.pdf), [ArSAS](http://lrec-conf.org/workshops/lrec2018/W30/pdf/22_W30.pdf), and [SemEval](https://aclanthology.org/S17-2088.pdf) datasets.
Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."
* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT).
## Intended uses
You can use the CAMeLBERT-CA SA model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component (*recommended*) or as part of the transformers pipeline.
#### How to use
To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component:
```python
>>> from camel_tools.sentiment import SentimentAnalyzer
>>> sa = SentimentAnalyzer("CAMeL-Lab/bert-base-arabic-camelbert-ca-sentiment")
>>> sentences = ['أنا بخير', 'أنا لست بخير']
>>> sa.predict(sentences)
>>> ['positive', 'negative']
```
You can also use the SA model directly with a transformers pipeline:
```python
>>> from transformers import pipeline
e
>>> sa = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-ca-sentiment')
>>> sentences = ['أنا بخير', 'أنا لست بخير']
>>> sa(sentences)
[{'label': 'positive', 'score': 0.9616648554801941},
{'label': 'negative', 'score': 0.9779177904129028}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`.
Otherwise, you could download the models manually.
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
CAMeL-Lab/bert-base-arabic-camelbert-da-ner
|
CAMeL-Lab
| 2021-10-17T11:13:27Z | 49 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"bert",
"token-classification",
"ar",
"arxiv:2103.06678",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:04Z |
---
language:
- ar
license: apache-2.0
widget:
- text: "إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع"
---
# CAMeLBERT-DA NER Model
## Model description
**CAMeLBERT-DA NER Model** is a Named Entity Recognition (NER) model that was built by fine-tuning the [CAMeLBERT Dialectal Arabic (DA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-da/) model.
For the fine-tuning, we used the [ANERcorp](https://camel.abudhabi.nyu.edu/anercorp/) dataset.
Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."
* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT).
## Intended uses
You can use the CAMeLBERT-DA NER model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) NER component (*recommended*) or as part of the transformers pipeline.
#### How to use
To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) NER component:
```python
>>> from camel_tools.ner import NERecognizer
>>> from camel_tools.tokenizers.word import simple_word_tokenize
>>> ner = NERecognizer('CAMeL-Lab/bert-base-arabic-camelbert-da-ner')
>>> sentence = simple_word_tokenize('إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع')
>>> ner.predict_sentence(sentence)
>>> ['O', 'B-LOC', 'O', 'O', 'O', 'O', 'B-LOC', 'I-LOC', 'I-LOC', 'O']
```
You can also use the NER model directly with a transformers pipeline:
```python
>>> from transformers import pipeline
>>> ner = pipeline('ner', model='CAMeL-Lab/bert-base-arabic-camelbert-da-ner')
>>> ner("إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع")
[{'word': 'أبوظبي',
'score': 0.9895730018615723,
'entity': 'B-LOC',
'index': 2,
'start': 6,
'end': 12},
{'word': 'الإمارات',
'score': 0.8156259655952454,
'entity': 'B-LOC',
'index': 8,
'start': 33,
'end': 41},
{'word': 'العربية',
'score': 0.890906810760498,
'entity': 'I-LOC',
'index': 9,
'start': 42,
'end': 49},
{'word': 'المتحدة',
'score': 0.8169114589691162,
'entity': 'I-LOC',
'index': 10,
'start': 50,
'end': 57}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`.
Otherwise, you could download the models manually.
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a da of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
CAMeL-Lab/bert-base-arabic-camelbert-mix-did-nadi
|
CAMeL-Lab
| 2021-10-17T11:05:12Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"bert",
"text-classification",
"ar",
"arxiv:2103.06678",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
language:
- ar
license: apache-2.0
widget:
- text: "عامل ايه ؟"
---
# CAMeLBERT-Mix DID NADI Model
## Model description
**CAMeLBERT-Mix DID NADI Model** is a dialect identification (DID) model that was built by fine-tuning the [CAMeLBERT-Mix](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-mix/) model.
For the fine-tuning, we used the [NADI Coountry-level](https://sites.google.com/view/nadi-shared-task) dataset, which includes 21 labels.
Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT).
## Intended uses
You can use the CAMeLBERT-Mix DID NADI model as part of the transformers pipeline.
This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon.
#### How to use
To use the model with a transformers pipeline:
```python
>>> from transformers import pipeline
>>> did = pipeline('text-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-mix-did-nadi')
>>> sentences = ['عامل ايه ؟', 'شلونك ؟ شخبارك ؟']
>>> did(sentences)
[{'label': 'Egypt', 'score': 0.920274019241333},
{'label': 'Saudi_Arabia', 'score': 0.26750022172927856}]
```
*Note*: to download our models, you would need `transformers>=3.5.0`.
Otherwise, you could download the models manually.
## Citation
```bibtex
@inproceedings{inoue-etal-2021-interplay,
title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models",
author = "Inoue, Go and
Alhafni, Bashar and
Baimukan, Nurpeiis and
Bouamor, Houda and
Habash, Nizar",
booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop",
month = apr,
year = "2021",
address = "Kyiv, Ukraine (Online)",
publisher = "Association for Computational Linguistics",
abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.",
}
```
|
fdominik98/bert-base-hu-cased-ner
|
fdominik98
| 2021-10-17T10:48:06Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
This model is the fine-tuned model of "akdeniz27/bert-base-hungarian-cased-ner" using WikiANN-hu dataset.
|
huggingartists/ramil
|
huggingartists
| 2021-10-17T09:51:00Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/ramil",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
datasets:
- huggingartists/ramil
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/0debcd46861577e3776b41aa3e3d7164.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Ramil’</div>
<a href="https://genius.com/artists/ramil">
<div style="text-align: center; font-size: 14px;">@ramil</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Ramil’.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/ramil).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/ramil")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1l1axl7k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Ramil’'s lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/28boyxm8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/28boyxm8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/ramil')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/ramil")
model = AutoModelWithLMHead.from_pretrained("huggingartists/ramil")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
lucius/distilgpt2-finetuned-wikitext2
|
lucius
| 2021-10-17T09:45:49Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilgpt2-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6424
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.7608 | 1.0 | 2334 | 3.6655 |
| 3.6335 | 2.0 | 4668 | 3.6455 |
| 3.6066 | 3.0 | 7002 | 3.6424 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
Razan/QAIDeptModel
|
Razan
| 2021-10-17T07:00:56Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
---
tags:
- generated_from_trainer
model-index:
- name: QAIDeptModel
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# QAIDeptModel
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv2](https://huggingface.co/aubmindlab/bert-base-arabertv2) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 105 | 2.6675 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
gwima/ryan-sackmott
|
gwima
| 2021-10-17T03:15:08Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
tags:
- conversational
---
|
huggingtweets/rias_hot
|
huggingtweets
| 2021-10-17T02:28:08Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: https://www.huggingtweets.com/rias_hot/1634437684641/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1427157680863522818/jqfniv6o_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">RiasHot</div>
<div style="text-align: center; font-size: 14px;">@rias_hot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from RiasHot.
| Data | RiasHot |
| --- | --- |
| Tweets downloaded | 3245 |
| Retweets | 136 |
| Short tweets | 905 |
| Tweets kept | 2204 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2bwco1hp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rias_hot's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/n6fp7izq) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/n6fp7izq/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/rias_hot')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/theytooknedward
|
huggingtweets
| 2021-10-17T02:01:19Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: https://www.huggingtweets.com/theytooknedward/1634436075971/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1444535696044314624/cu1sMI5R_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">nedward</div>
<div style="text-align: center; font-size: 14px;">@theytooknedward</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from nedward.
| Data | nedward |
| --- | --- |
| Tweets downloaded | 570 |
| Retweets | 17 |
| Short tweets | 133 |
| Tweets kept | 420 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3bwtdjf0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @theytooknedward's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3cc33cjb) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3cc33cjb/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/theytooknedward')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
amansolanki/autonlp-Tweet-Sentiment-Extraction-20114061
|
amansolanki
| 2021-10-17T00:32:35Z | 1,906 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"autonlp",
"en",
"dataset:amansolanki/autonlp-data-Tweet-Sentiment-Extraction",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- amansolanki/autonlp-data-Tweet-Sentiment-Extraction
co2_eq_emissions: 3.651199395353127
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 20114061
- CO2 Emissions (in grams): 3.651199395353127
## Validation Metrics
- Loss: 0.5046541690826416
- Accuracy: 0.8036219581211093
- Macro F1: 0.807095210403678
- Micro F1: 0.8036219581211093
- Weighted F1: 0.8039634739225368
- Macro Precision: 0.8076842795233988
- Micro Precision: 0.8036219581211093
- Weighted Precision: 0.8052135235094771
- Macro Recall: 0.8075241470527056
- Micro Recall: 0.8036219581211093
- Weighted Recall: 0.8036219581211093
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/amansolanki/autonlp-Tweet-Sentiment-Extraction-20114061
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("amansolanki/autonlp-Tweet-Sentiment-Extraction-20114061", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("amansolanki/autonlp-Tweet-Sentiment-Extraction-20114061", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
fgaim/tielectra-small
|
fgaim
| 2021-10-16T19:25:40Z | 11 | 1 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"electra",
"fill-mask",
"ti",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
language: ti
widget:
- text: "ዓቕሚ መንእሰይ ኤርትራ [MASK] ተራእዩ"
---
# Pre-trained ELECTRA small for Tigrinya Language
We pre-train ELECTRA small on the [TLMD](https://zenodo.org/record/5139094) dataset, with over 40 million tokens.
Contained are trained Flax and PyTorch models.
## Hyperparameters
The hyperparameters corresponding to model sizes mentioned above are as follows:
| Model Size | L | AH | HS | FFN | P | Seq |
|------------|----|----|-----|------|------|------|
| SMALL | 12 | 4 | 256 | 1024 | 14M | 512 |
(L = number of layers; AH = number of attention heads; HS = hidden size; FFN = feedforward network dimension; P = number of parameters; Seq = maximum sequence length.)
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
## Citation
If you use this model in your product or research, please cite as follows:
```
@article{Fitsum2021TiPLMs,
author={Fitsum Gaim and Wonsuk Yang and Jong C. Park},
title={Monolingual Pre-trained Language Models for Tigrinya},
year=2021,
publisher={WiNLP 2021 at EMNLP 2021}
}
```
|
pere/norwegian-gptneo-red-highlr
|
pere
| 2021-10-16T19:14:34Z | 3 | 0 |
transformers
|
[
"transformers",
"jax",
"tensorboard",
"gpt_neo",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
# Norwegian GTPNeo Blue.
The first Norwegian GPTNeo model. This one is trained only on a administrative corpus.
|
gagandeepkundi/latam-question-quality
|
gagandeepkundi
| 2021-10-16T16:32:19Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autonlp",
"es",
"dataset:gagandeepkundi/autonlp-data-text-classification",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: es
widget:
- text: "I love AutoNLP 🤗"
datasets:
- gagandeepkundi/autonlp-data-text-classification
co2_eq_emissions: 20.790169878009916
---
# Model Trained Using AutoNLP
- Problem type: Binary Classification
- Model ID: 19984005
- CO2 Emissions (in grams): 20.790169878009916
## Validation Metrics
- Loss: 0.06693269312381744
- Accuracy: 0.9789
- Precision: 0.9843244336569579
- Recall: 0.9733
- AUC: 0.99695552
- F1: 0.9787811745776348
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/gagandeepkundi/autonlp-text-classification-19984005
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("gagandeepkundi/autonlp-text-classification-19984005", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("gagandeepkundi/autonlp-text-classification-19984005", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
huggingtweets/the_nftking
|
huggingtweets
| 2021-10-16T14:11:01Z | 4 | 3 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: https://www.huggingtweets.com/the_nftking/1634393457706/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1434700639649599488/J63TSf--_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">NFT KING 👑</div>
<div style="text-align: center; font-size: 14px;">@the_nftking</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from NFT KING 👑.
| Data | NFT KING 👑 |
| --- | --- |
| Tweets downloaded | 163 |
| Retweets | 23 |
| Short tweets | 36 |
| Tweets kept | 104 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26d96n9m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @the_nftking's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/f7wd0e6f) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/f7wd0e6f/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/the_nftking')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
lewtun/xlm-roberta-base-finetuned-marc-de
|
lewtun
| 2021-10-16T11:38:18Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
model-index:
- name: xlm-roberta-base-finetuned-marc-de
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9934
- Mae: 0.4867
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1514 | 1.0 | 308 | 1.0455 | 0.5221 |
| 0.9997 | 2.0 | 616 | 0.9934 | 0.4867 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
Yuri/xlm-roberta-base-finetuned-marc
|
Yuri
| 2021-10-16T11:36:47Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
model-index:
- name: xlm-roberta-base-finetuned-marc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9825
- Mae: 0.4956
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1432 | 1.0 | 308 | 1.0559 | 0.5133 |
| 0.9883 | 2.0 | 616 | 0.9825 | 0.4956 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
ashish-chouhan/xlm-roberta-base-finetuned-marc
|
ashish-chouhan
| 2021-10-16T11:34:29Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
model-index:
- name: xlm-roberta-base-finetuned-marc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0171
- Mae: 0.5310
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1404 | 1.0 | 308 | 1.0720 | 0.5398 |
| 0.9805 | 2.0 | 616 | 1.0171 | 0.5310 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
DongHyoungLee/distilbert-base-uncased-finetuned-cola
|
DongHyoungLee
| 2021-10-16T11:30:42Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: distilbert-base-uncased-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.535587402888147
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7335
- Matthews Correlation: 0.5356
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.5309 | 1.0 | 535 | 0.5070 | 0.4239 |
| 0.3568 | 2.0 | 1070 | 0.5132 | 0.4913 |
| 0.24 | 3.0 | 1605 | 0.6081 | 0.4990 |
| 0.1781 | 4.0 | 2140 | 0.7335 | 0.5356 |
| 0.1243 | 5.0 | 2675 | 0.8705 | 0.5242 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
huggingartists/slava-marlow
|
huggingartists
| 2021-10-16T10:37:58Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/slava-marlow",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
datasets:
- huggingartists/slava-marlow
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/e308b1bc9eeb159ecfa9d807d715f095.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">SLAVA MARLOW</div>
<a href="https://genius.com/artists/slava-marlow">
<div style="text-align: center; font-size: 14px;">@slava-marlow</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from SLAVA MARLOW.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/slava-marlow).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/slava-marlow")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1fdcz1s5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on SLAVA MARLOW's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/ro4q353s) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/ro4q353s/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/slava-marlow')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/slava-marlow")
model = AutoModelWithLMHead.from_pretrained("huggingartists/slava-marlow")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
google/muril-large-cased
|
google
| 2021-10-16T03:28:16Z | 5,437 | 17 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"feature-extraction",
"arxiv:1810.04805",
"arxiv:1911.02116",
"arxiv:2003.11080",
"arxiv:2009.05166",
"arxiv:2103.10730",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-03-02T23:29:05Z |
# MuRIL Large
Multilingual Representations for Indian Languages : A BERT Large (24L) model pre-trained on 17 Indian languages, and their transliterated counterparts.
## Overview
This model uses a BERT large architecture [1] pretrained from scratch using the
Wikipedia [2], Common Crawl [3], PMINDIA [4] and Dakshina [5] corpora for 17 [6]
Indian languages.
We use a training paradigm similar to multilingual bert, with a few
modifications as listed:
* We include translation and transliteration segment pairs in training as
well.
* We keep an exponent value of 0.3 and not 0.7 for upsampling, shown to
enhance low-resource performance. [7]
See the Training section for more details.
## Training
The MuRIL model is pre-trained on monolingual segments as well as parallel
segments as detailed below :
* Monolingual Data : We make use of publicly available corpora from Wikipedia
and Common Crawl for 17 Indian languages.
* Parallel Data : We have two types of parallel data :
* Translated Data : We obtain translations of the above monolingual
corpora using the Google NMT pipeline. We feed translated segment pairs
as input. We also make use of the publicly available PMINDIA corpus.
* Transliterated Data : We obtain transliterations of Wikipedia using the
IndicTrans [8] library. We feed transliterated segment pairs as input.
We also make use of the publicly available Dakshina dataset.
We keep an exponent value of 0.3 to calculate duplication multiplier values for
upsampling of lower resourced languages and set dupe factors accordingly. Note,
we limit transliterated pairs to Wikipedia only.
The model was trained using a self-supervised masked language modeling task. We
do whole word masking with a maximum of 80 predictions. The model was trained
for 1500K steps, with a batch size of 8192, and a max sequence length of 512.
### Trainable parameters
All parameters in the module are trainable, and fine-tuning all parameters is
the recommended practice.
## Uses & Limitations
This model is intended to be used for a variety of downstream NLP tasks for
Indian languages. This model is trained on transliterated data as well, a
phenomenon commonly observed in the Indian context. This model is not expected
to perform well on languages other than the ones used in pre-training, i.e. 17
Indian languages.
## Evaluation
We provide the results of fine-tuning this model on a set of downstream tasks.<br/>
We choose these tasks from the XTREME benchmark, with evaluation done on Indian language test-sets.<br/>
All results are computed in a zero-shot setting, with English being the high resource training set language.<br/>
The results for XLM-R (Large) are taken from the XTREME paper [9].
* Shown below are results on datasets from the XTREME benchmark (in %)
<br/>
PANX (F1) | bn | en | hi | ml | mr | ta | te | ur | Average
:------------ | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ------:
XLM-R (large) | 78.8 | 84.7 | 73.0 | 67.8 | 68.1 | 59.5 | 55.8 | 56.4 | 68.0
MuRIL (large) | 85.8 | 85.0 | 78.3 | 75.6 | 77.3 | 71.1 | 65.6 | 83.0 | 77.7
<br/>
UDPOS (F1) | en | hi | mr | ta | te | ur | Average
:------------ | ---: | ---: | ---: | ---: | ---: | ---: | ------:
XLM-R (large) | 96.1 | 76.4 | 80.8 | 65.2 | 86.6 | 70.3 | 79.2
MuRIL (large) | 95.7 | 71.3 | 85.7 | 62.6 | 85.8 | 62.8 | 77.3
<br/>
XNLI (Accuracy) | en | hi | ur | Average
:-------------- | ---: | ---: | ---: | ------:
XLM-R (large) | 88.7 | 75.6 | 71.7 | 78.7
MuRIL (large) | 88.4 | 75.8 | 71.7 | 78.6
<br/>
XQUAD (F1/EM) | en | hi | Average
:------------ | --------: | --------: | --------:
XLM-R (large) | 86.5/75.7 | 76.7/59.7 | 81.6/67.7
MuRIL (large) | 88.2/77.8 | 78.4/62.4 | 83.3/70.1
<br/>
MLQA (F1/EM) | en | hi | Average
:------------ | --------: | --------: | --------:
XLM-R (large) | 83.5/70.6 | 70.6/53.1 | 77.1/61.9
MuRIL (large) | 84.4/71.7 | 72.2/54.1 | 78.3/62.9
<br/>
TyDiQA (F1/EM) | en | bn | te | Average
:------------- | --------: | --------: | --------: | --------:
XLM-R (large) | 71.5/56.8 | 64.0/47.8 | 70.1/43.6 | 68.5/49.4
MuRIL (large) | 75.9/66.8 | 67.1/53.1 | 71.5/49.8 | 71.5/56.6
<br/>
The fine-tuning hyperparameters are as follows:
Task | Batch Size | Learning Rate | Epochs | Warm-up Ratio
:----- | ---------: | ------------: | -----: | ------------:
PANX | 32 | 2e-5 | 10 | 0.1
UDPOS | 64 | 5e-6 | 10 | 0.1
XNLI | 128 | 2e-5 | 5 | 0.1
XQuAD | 32 | 3e-5 | 2 | 0.1
MLQA | 32 | 3e-5 | 2 | 0.1
TyDiQA | 32 | 3e-5 | 3 | 0.1
## References
\[1]: Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. [BERT:
Pre-training of Deep Bidirectional Transformers for Language
Understanding](https://arxiv.org/abs/1810.04805). arXiv preprint
arXiv:1810.04805, 2018.
\[2]: [Wikipedia](https://www.tensorflow.org/datasets/catalog/wikipedia)
\[3]: [Common Crawl](http://commoncrawl.org/the-data/)
\[4]:
[PMINDIA](http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/index.html)
\[5]: [Dakshina](https://github.com/google-research-datasets/dakshina)
\[6]: Assamese (as), Bengali (bn), English (en), Gujarati (gu), Hindi (hi),
Kannada (kn), Kashmiri (ks), Malayalam (ml), Marathi (mr), Nepali (ne), Oriya
(or), Punjabi (pa), Sanskrit (sa), Sindhi (sd), Tamil (ta), Telugu (te) and Urdu
(ur).
\[7]: Conneau, Alexis, et al.
[Unsupervised cross-lingual representation learning at scale](https://arxiv.org/pdf/1911.02116.pdf).
arXiv preprint arXiv:1911.02116 (2019).
\[8]: [IndicTrans](https://github.com/libindic/indic-trans)
\[9]: Hu, J., Ruder, S., Siddhant, A., Neubig, G., Firat, O., & Johnson, M.
(2020). [Xtreme: A massively multilingual multi-task benchmark for evaluating
cross-lingual generalization.](https://arxiv.org/pdf/2003.11080.pdf) arXiv
preprint arXiv:2003.11080.
\[10]: Fang, Y., Wang, S., Gan, Z., Sun, S., & Liu, J. (2020).
[FILTER: An Enhanced Fusion Method for Cross-lingual Language Understanding.](https://arxiv.org/pdf/2009.05166.pdf)
arXiv preprint arXiv:2009.05166.
## Citation
If you find MuRIL useful in your applications, please cite the following paper:
```
@misc{khanuja2021muril,
title={MuRIL: Multilingual Representations for Indian Languages},
author={Simran Khanuja and Diksha Bansal and Sarvesh Mehtani and Savya Khosla and Atreyee Dey and Balaji Gopalan and Dilip Kumar Margam and Pooja Aggarwal and Rajiv Teja Nagipogu and Shachi Dave and Shruti Gupta and Subhash Chandra Bose Gali and Vish Subramanian and Partha Talukdar},
year={2021},
eprint={2103.10730},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## Contact
Please mail your queries/feedback to muril-contact@google.com.
|
lewtun/xlm-roberta-base-finetuned-marc
|
lewtun
| 2021-10-15T21:10:49Z | 7 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
model-index:
- name: xlm-roberta-base-finetuned-marc
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-marc
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9932
- Mae: 0.4838
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.05 | 1.0 | 860 | 1.0007 | 0.5074 |
| 0.9166 | 2.0 | 1720 | 0.9932 | 0.4838 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.1+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
adrianmoses/autonlp-auto-nlp-lyrics-classification-19333717
|
adrianmoses
| 2021-10-15T19:12:03Z | 4 | 1 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autonlp",
"en",
"dataset:adrianmoses/autonlp-data-auto-nlp-lyrics-classification",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- adrianmoses/autonlp-data-auto-nlp-lyrics-classification
co2_eq_emissions: 88.89388195672073
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 19333717
- CO2 Emissions (in grams): 88.89388195672073
## Validation Metrics
- Loss: 1.0499154329299927
- Accuracy: 0.6207088513638894
- Macro F1: 0.46250803661544765
- Micro F1: 0.6207088513638894
- Weighted F1: 0.5850362079928957
- Macro Precision: 0.6451479987704787
- Micro Precision: 0.6207088513638894
- Weighted Precision: 0.6285080101186085
- Macro Recall: 0.4405680478429344
- Micro Recall: 0.6207088513638894
- Weighted Recall: 0.6207088513638894
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/adrianmoses/autonlp-auto-nlp-lyrics-classification-19333717
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("adrianmoses/autonlp-auto-nlp-lyrics-classification-19333717", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("adrianmoses/autonlp-auto-nlp-lyrics-classification-19333717", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
clips/mfaq
|
clips
| 2021-10-15T06:21:13Z | 5,508 | 36 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"tf",
"xlm-roberta",
"feature-extraction",
"sentence-similarity",
"transformers",
"cs",
"da",
"de",
"en",
"es",
"fi",
"fr",
"he",
"hr",
"hu",
"id",
"it",
"nl",
"no",
"pl",
"pt",
"ro",
"ru",
"sv",
"tr",
"vi",
"dataset:clips/mfaq",
"arxiv:2109.12870",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:05Z |
---
pipeline_tag: sentence-similarity
license: apache-2.0
language:
- cs
- da
- de
- en
- es
- fi
- fr
- he
- hr
- hu
- id
- it
- nl
- 'no'
- pl
- pt
- ro
- ru
- sv
- tr
- vi
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- clips/mfaq
widget:
source_sentence: "<Q>How many models can I host on HuggingFace?"
sentences:
- "<A>All plans come with unlimited private models and datasets."
- "<A>AutoNLP is an automatic way to train and deploy state-of-the-art NLP models, seamlessly integrated with the Hugging Face ecosystem."
- "<A>Based on how much training data and model variants are created, we send you a compute cost and payment link - as low as $10 per job."
---
# MFAQ
We present a multilingual FAQ retrieval model trained on the [MFAQ dataset](https://huggingface.co/datasets/clips/mfaq), it ranks candidate answers according to a given question.
## Installation
```
pip install sentence-transformers transformers
```
## Usage
You can use MFAQ with sentence-transformers or directly with a HuggingFace model.
In both cases, questions need to be prepended with `<Q>`, and answers with `<A>`.
#### Sentence Transformers
```python
from sentence_transformers import SentenceTransformer
question = "<Q>How many models can I host on HuggingFace?"
answer_1 = "<A>All plans come with unlimited private models and datasets."
answer_2 = "<A>AutoNLP is an automatic way to train and deploy state-of-the-art NLP models, seamlessly integrated with the Hugging Face ecosystem."
answer_3 = "<A>Based on how much training data and model variants are created, we send you a compute cost and payment link - as low as $10 per job."
model = SentenceTransformer('clips/mfaq')
embeddings = model.encode([question, answer_1, answer_3, answer_3])
print(embeddings)
```
#### HuggingFace Transformers
```python
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
question = "<Q>How many models can I host on HuggingFace?"
answer_1 = "<A>All plans come with unlimited private models and datasets."
answer_2 = "<A>AutoNLP is an automatic way to train and deploy state-of-the-art NLP models, seamlessly integrated with the Hugging Face ecosystem."
answer_3 = "<A>Based on how much training data and model variants are created, we send you a compute cost and payment link - as low as $10 per job."
tokenizer = AutoTokenizer.from_pretrained('clips/mfaq')
model = AutoModel.from_pretrained('clips/mfaq')
# Tokenize sentences
encoded_input = tokenizer([question, answer_1, answer_3, answer_3], padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
```
## Training
You can find the training script for the model [here](https://github.com/clips/mfaq).
## People
This model was developed by [Maxime De Bruyn](https://www.linkedin.com/in/maximedebruyn/), Ehsan Lotfi, Jeska Buhmann and Walter Daelemans.
## Citation information
```
@misc{debruyn2021mfaq,
title={MFAQ: a Multilingual FAQ Dataset},
author={Maxime De Bruyn and Ehsan Lotfi and Jeska Buhmann and Walter Daelemans},
year={2021},
eprint={2109.12870},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
kbhugging/autonlp-text2sql-18413376
|
kbhugging
| 2021-10-15T02:36:42Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autonlp",
"unk",
"dataset:kbhugging/autonlp-data-text2sql",
"co2_eq_emissions",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: unk
widget:
- text: "I love AutoNLP 🤗"
datasets:
- kbhugging/autonlp-data-text2sql
co2_eq_emissions: 1.4091714704861447
---
# Model Trained Using AutoNLP
- Problem type: Summarization
- Model ID: 18413376
- CO2 Emissions (in grams): 1.4091714704861447
## Validation Metrics
- Loss: 0.26672711968421936
- Rouge1: 61.765
- Rouge2: 52.5778
- RougeL: 61.3222
- RougeLsum: 61.1905
- Gen Len: 18.7805
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/kbhugging/autonlp-text2sql-18413376
```
|
sontn122/xlm-roberta-large-finetuned-squad-v2_15102021
|
sontn122
| 2021-10-15T02:19:34Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad_v2",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: xlm-roberta-large-finetuned-squad-v2_15102021
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-large-finetuned-squad-v2_15102021
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- eval_loss: 17.5548
- eval_runtime: 168.7788
- eval_samples_per_second: 23.368
- eval_steps_per_second: 5.842
- epoch: 8.0
- step: 7600
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.13.1
- Tokenizers 0.10.3
|
huggingartists/shadowraze
|
huggingartists
| 2021-10-15T02:02:54Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/shadowraze",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
datasets:
- huggingartists/shadowraze
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/e2576b95c2049862de20cbd0f1a4e0d7.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">shadowraze</div>
<a href="https://genius.com/artists/shadowraze">
<div style="text-align: center; font-size: 14px;">@shadowraze</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from shadowraze.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/shadowraze).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/shadowraze")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/pkbkflsq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on shadowraze's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/tiu2mjo1) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/tiu2mjo1/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/shadowraze')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/shadowraze")
model = AutoModelWithLMHead.from_pretrained("huggingartists/shadowraze")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
huggingartists/mc-ride
|
huggingartists
| 2021-10-14T20:14:57Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/mc-ride",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
datasets:
- huggingartists/mc-ride
tags:
- huggingartists
- lyrics
- lm-head
- causal-lm
widget:
- text: "I am"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/c33b218009a0389e72c6d6628d3c2105.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">MC Ride</div>
<a href="https://genius.com/artists/mc-ride">
<div style="text-align: center; font-size: 14px;">@mc-ride</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from MC Ride.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/mc-ride).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/mc-ride")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2ar7kgj5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on MC Ride's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/299iw75q) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/299iw75q/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/mc-ride')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/mc-ride")
model = AutoModelWithLMHead.from_pretrained("huggingartists/mc-ride")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
mse30/bart-base-finetuned-pubmed
|
mse30
| 2021-10-14T15:19:57Z | 120 | 4 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"generated_from_trainer",
"dataset:scientific_papers",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- scientific_papers
metrics:
- rouge
model-index:
- name: bart-base-finetuned-pubmed
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: scientific_papers
type: scientific_papers
args: pubmed
metrics:
- name: Rouge1
type: rouge
value: 9.1984
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-finetuned-pubmed
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the scientific_papers dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9804
- Rouge1: 9.1984
- Rouge2: 4.3091
- Rougel: 7.9739
- Rougelsum: 8.6759
- Gen Len: 20.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.2869 | 1.0 | 29981 | 2.1241 | 9.0852 | 4.1152 | 7.842 | 8.5395 | 20.0 |
| 2.1469 | 2.0 | 59962 | 2.0225 | 9.1609 | 4.2437 | 7.9311 | 8.6273 | 20.0 |
| 2.113 | 3.0 | 89943 | 1.9959 | 9.3086 | 4.3305 | 8.0363 | 8.7713 | 20.0 |
| 2.0632 | 4.0 | 119924 | 1.9804 | 9.1984 | 4.3091 | 7.9739 | 8.6759 | 20.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.1+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3
|
lincoln/flaubert-mlsum-topic-classification
|
lincoln
| 2021-10-14T13:26:57Z | 61 | 11 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"flaubert",
"text-classification",
"fr",
"dataset:MLSUM",
"arxiv:2004.14900",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language:
- fr
license: mit
datasets:
- MLSUM
pipeline_tag: "text-classification"
widget:
- text: La bourse de paris en forte baisse après que des canards ont envahit le parlement.
tags:
- text-classification
- flaubert
---
# Classification d'articles de presses avec Flaubert
Ce modèle se base sur le modèle [`flaubert/flaubert_base_cased`](https://huggingface.co/flaubert/flaubert_base_cased) et à été fine-tuné en utilisant des articles de presse issus de la base de données MLSUM.
Dans leur papier, les équipes de reciTAL et de la Sorbonne ont proposé comme ouverture de réaliser un modèle de détection de topic sur les articles de presse.
Les topics ont été extrait à partir des URL et nous avons effectué une étape de regroupement de topics pour éliminer ceux avec un trop faible volume et ceux qui paraissaient redondants.
Nous avons finalement utilisé la liste de topics avec les regroupements suivants:
* __Economie__: economie, argent, emploi, entreprises, economie-francaise, immobilier, crise-financiere, evasion-fiscale, economie-mondiale, m-voiture, smart-cities, automobile, logement, flottes-d-entreprise, import, crise-de-l-euro, guide-des-impots, le-club-de-l-economie, telephonie-mobile
* __Opinion__: idees, les-decodeurs, tribunes
* __Politique__: politique, election-presidentielle-2012, election-presidentielle-2017, elections-americaines, municipales, referendum-sur-le-brexit, elections-legislatives-2017, elections-regionales, donald-trump, elections-regionales-2015, europeennes-2014, elections-cantonales-2011, primaire-parti-socialiste, gouvernement-philippe, elections-departementales-2015, chroniques-de-la-presidence-trump, primaire-de-la-gauche, la-republique-en-marche, elections-americaines-mi-mandat-2018, elections, elections-italiennes, elections-senatoriales
* __Societe__: societe, sante, attaques-a-paris, immigration-et-diversite, religions, medecine, francaises-francais, mobilite
* __Culture__: televisions-radio, musiques, festival, arts, scenes, festival-de-cannes, mode, bande-dessinee, architecture, vins, photo, m-mode, fashion-week, les-recettes-du-monde, tele-zapping, critique-litteraire, festival-d-avignon, m-gastronomie-le-lieu, les-enfants-akira, gastronomie, culture, livres, cinema, actualite-medias, blog, m-gastronomie
* __Sport__: sport, football, jeux-olympiques, ligue-1, tennis, coupe-du-monde, mondial-2018, rugby, euro-2016, jeux-olympiques-rio-2016, cyclisme, ligue-des-champions, basket, roland-garros, athletisme, tour-de-france, euro2012, jeux-olympiques-pyeongchang-2018, coupe-du-monde-rugby, formule-1, voile, top-14, ski, handball, sports-mecaniques, sports-de-combat, blog-du-tour-de-france, sport-et-societe, sports-de-glisse, tournoi-des-6-nations
* __Environement__: planete, climat, biodiversite, pollution, energies, cop21
* __Technologie__: pixels, technologies, sciences, cosmos, la-france-connectee, trajectoires-digitales
* __Education__: campus, education, bac-lycee, enseignement-superieur, ecole-primaire-et-secondaire, o21, orientation-scolaire, brevet-college
* __Justice__: police-justice, panama-papers, affaire-penelope-fillon, documents-wikileaks, enquetes, paradise-papers
Les thèmes ayant moins de 100 articles n'ont pas été pris en compte.
Nous avons également mis de côté les articles faisant référence à des topics geographiques, ce qui a donné lieu à un nouveau modèle de classification.
Après nettoyage, la base MLSUM a été réduite à 293 995 articles. Le corps d'un article en moyenne comporte 694 tokens.
Nous avons entrainé le modèle sur 20% de la base nettoyée. En moyenne, le nombre d'articles par classe est de ~4K.
## Entrainement
Nous avons benchmarké différents modèles en les entrainant sur différentes parties des articles (titre, résumé, corps et titre+résumé) et avec des échantillons d'apprentissage de tailles différentes.

Les modèles ont été entrainé sur le cloud Azure avec des Tesla V100.
## Modèle
Le modèle partagé sur HF est le modéle qui prend en entrée le corps d'un article. Nous l'avons entrainé sur 20% du jeu de donnée nettoyé.
## Résulats

*Les lignes correspondent aux labels prédits et les colonnes aux véritables topics. Les pourcentages sont calculés sur les colonnes.*
_Nous garantissons pas les résultats sur le long terme. Modèle réalisé dans le cadre d'un POC._
## Utilisation
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import TextClassificationPipeline
model_name = 'lincoln/flaubert-mlsum-topic-classification'
loaded_tokenizer = AutoTokenizer.from_pretrained(model_name)
loaded_model = AutoModelForSequenceClassification.from_pretrained(model_name)
nlp = TextClassificationPipeline(model=loaded_model, tokenizer=loaded_tokenizer)
nlp("Le Bayern Munich prend la grenadine.", truncation=True)
```
## Citation
```bibtex
@article{scialom2020mlsum,
title={MLSUM: The Multilingual Summarization Corpus},
author={Thomas Scialom and Paul-Alexis Dray and Sylvain Lamprier and Benjamin Piwowarski and Jacopo Staiano},
year={2020},
eprint={2004.14900},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
huggingtweets/istfoundation-sciencebits
|
huggingtweets
| 2021-10-14T10:58:31Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: https://www.huggingtweets.com/istfoundation-sciencebits/1634209108264/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1340996475472494593/yqCQjZ06_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1341001037142999041/h86Ch8TO_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Science Bits & International Science Teaching Foundation</div>
<div style="text-align: center; font-size: 14px;">@istfoundation-sciencebits</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Science Bits & International Science Teaching Foundation.
| Data | Science Bits | International Science Teaching Foundation |
| --- | --- | --- |
| Tweets downloaded | 2741 | 163 |
| Retweets | 759 | 103 |
| Short tweets | 47 | 1 |
| Tweets kept | 1935 | 59 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/c9crff9r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @istfoundation-sciencebits's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2c68vj42) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2c68vj42/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/istfoundation-sciencebits')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
smallbenchnlp/bert-small
|
smallbenchnlp
| 2021-10-14T10:38:23Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
Small-Bench NLP is a benchmark for small efficient neural language models trained on a single GPU.
|
joyebright/Top3-with-mixing
|
joyebright
| 2021-10-14T10:10:25Z | 0 | 0 | null |
[
"translation",
"en",
"fr",
"dataset:wmt",
"dataset:iwslt2014",
"license:apache-2.0",
"region:us"
] |
translation
| 2022-03-02T23:29:05Z |
---
language:
- en
- fr
tags:
- translation
license: apache-2.0
datasets:
- wmt
- iwslt2014
metrics:
- bleu
- ter
- chrf2
- sacrebleu
---
|
joyebright/Top3-without-mixing
|
joyebright
| 2021-10-14T10:09:38Z | 0 | 0 | null |
[
"translation",
"en",
"fr",
"dataset:wmt",
"dataset:iwslt2014",
"license:apache-2.0",
"region:us"
] |
translation
| 2022-03-02T23:29:05Z |
---
language:
- en
- fr
tags:
- translation
license: apache-2.0
datasets:
- wmt
- iwslt2014
metrics:
- bleu
- ter
- chrf2
- sacrebleu
---
|
joyebright/Top2-without-mixing
|
joyebright
| 2021-10-14T10:08:58Z | 0 | 0 | null |
[
"translation",
"en",
"fr",
"dataset:wmt",
"dataset:iwslt2014",
"license:apache-2.0",
"region:us"
] |
translation
| 2022-03-02T23:29:05Z |
---
language:
- en
- fr
tags:
- translation
license: apache-2.0
datasets:
- wmt
- iwslt2014
metrics:
- bleu
- ter
- chrf2
- sacrebleu
---
|
joyebright/Top5-without-mixing
|
joyebright
| 2021-10-14T10:08:15Z | 0 | 0 | null |
[
"translation",
"en",
"fr",
"dataset:wmt",
"dataset:iwslt2014",
"license:apache-2.0",
"region:us"
] |
translation
| 2022-03-02T23:29:05Z |
---
language:
- en
- fr
tags:
- translation
license: apache-2.0
datasets:
- wmt
- iwslt2014
metrics:
- bleu
- ter
- chrf2
- sacrebleu
---
|
joyebright/Top2-with-mixing
|
joyebright
| 2021-10-14T10:07:58Z | 0 | 0 | null |
[
"translation",
"en",
"fr",
"dataset:wmt",
"dataset:iwslt2014",
"license:apache-2.0",
"region:us"
] |
translation
| 2022-03-02T23:29:05Z |
---
language:
- en
- fr
tags:
- translation
license: apache-2.0
datasets:
- wmt
- iwslt2014
metrics:
- bleu
- ter
- chrf2
- sacrebleu
---
|
dhtocks/tunib-electra-stereotype-classifier
|
dhtocks
| 2021-10-14T10:03:57Z | 4 | 1 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
### TUNiB-Electra Stereotype Detector
Finetuned TUNiB-Electra base with K-StereoSet.
Original Code: https://github.com/newfull5/Stereotype-Detector
|
Langboat/mengzi-bert-base
|
Langboat
| 2021-10-14T09:01:34Z | 77 | 37 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"zh",
"arxiv:2110.06696",
"doi:10.57967/hf/0023",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
---
language:
- zh
license: apache-2.0
widget:
- text: "生活的真谛是[MASK]。"
---
# Mengzi-BERT base model (Chinese)
Pretrained model on 300G Chinese corpus. Masked language modeling(MLM), part-of-speech(POS) tagging and sentence order prediction(SOP) are used as training task.
[Mengzi: A lightweight yet Powerful Chinese Pre-trained Language Model](https://arxiv.org/abs/2110.06696)
## Usage
```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained("Langboat/mengzi-bert-base")
model = BertModel.from_pretrained("Langboat/mengzi-bert-base")
```
## Scores on nine chinese tasks (without any data augmentation)
| Model | AFQMC | TNEWS | IFLYTEK | CMNLI | WSC | CSL | CMRC2018 | C3 | CHID |
|-|-|-|-|-|-|-|-|-|-|
|RoBERTa-wwm-ext| 74.30 | 57.51 | 60.80 | 80.70 | 67.20 | 80.67 | 77.59 | 67.06 | 83.78 |
|Mengzi-BERT-base| 74.58 | 57.97 | 60.68 | 82.12 | 87.50 | 85.40 | 78.54 | 71.70 | 84.16 |
RoBERTa-wwm-ext scores are from CLUE baseline
## Citation
If you find the technical report or resource is useful, please cite the following technical report in your paper.
```
@misc{zhang2021mengzi,
title={Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese},
author={Zhuosheng Zhang and Hanqing Zhang and Keming Chen and Yuhang Guo and Jingyun Hua and Yulong Wang and Ming Zhou},
year={2021},
eprint={2110.06696},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
joyebright/Top1-with-without-mixing
|
joyebright
| 2021-10-14T08:56:42Z | 0 | 0 | null |
[
"translation",
"en",
"fr",
"dataset:wmt",
"dataset:iwslt2014",
"license:apache-2.0",
"region:us"
] |
translation
| 2022-03-02T23:29:05Z |
---
language:
- en
- fr
tags:
- translation
license: apache-2.0
datasets:
- wmt
- iwslt2014
metrics:
- bleu
- ter
- chrf2
- sacrebleu
---
|
joyebright/Top6-without-mixing
|
joyebright
| 2021-10-14T08:55:56Z | 0 | 0 | null |
[
"translation",
"en",
"fr",
"dataset:wmt",
"dataset:iwslt2014",
"license:apache-2.0",
"region:us"
] |
translation
| 2022-03-02T23:29:05Z |
---
language:
- en
- fr
tags:
- translation
license: apache-2.0
datasets:
- wmt
- iwslt2014
metrics:
- bleu
- ter
- chrf2
- sacrebleu
---
|
emekaboris/autonlp-txc-17923124
|
emekaboris
| 2021-10-14T07:56:17Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autonlp",
"en",
"dataset:emekaboris/autonlp-data-txc",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
tags: autonlp
language: en
widget:
- text: "I love AutoNLP 🤗"
datasets:
- emekaboris/autonlp-data-txc
co2_eq_emissions: 133.57087522185148
---
# Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 17923124
- CO2 Emissions (in grams): 133.57087522185148
## Validation Metrics
- Loss: 0.2080804407596588
- Accuracy: 0.9325402190077058
- Macro F1: 0.7283811287183823
- Micro F1: 0.9325402190077058
- Weighted F1: 0.9315711955594153
- Macro Precision: 0.8106599661500661
- Micro Precision: 0.9325402190077058
- Weighted Precision: 0.9324644116921059
- Macro Recall: 0.7020515544343829
- Micro Recall: 0.9325402190077058
- Weighted Recall: 0.9325402190077058
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/emekaboris/autonlp-txc-17923124
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("emekaboris/autonlp-txc-17923124", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("emekaboris/autonlp-txc-17923124", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
THUMT/mGPT
|
THUMT
| 2021-10-14T05:49:41Z | 245 | 6 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"arxiv:2110.06609",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
# mGPT
mGPT is pre-trained on the [mC4 dataset](https://huggingface.co/datasets/mc4) using a causal language modeling objective. It was introduced in this [paper](https://arxiv.org/abs/2110.06609) and first released on this page.
## Model description
mGPT is a Transformer-based model which pre-trained on massive multilingual data covering over 101 languages. Similar to GPT-2, It was pre-trained on the raw texts only, with no human labeling. We use the same tokenization and vocabulary as the [mT5 model](https://huggingface.co/google/mt5-base).
## Intended uses
You can use the raw model for text generation or using prompts for adapting it to a downstream task.
## How to use
You can use this model directly with a pipeline for text generation. Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import MT5Tokenizer, GPT2LMHeadModel, TextGenerationPipeline
tokenizer = MT5Tokenizer.from_pretrained("THUMT/mGPT")
model = GPT2LMHeadModel.from_pretrained("THUMT/mGPT")
pipeline = TextGenerationPipeline(model=model, tokenizer=tokenizer)
text = "Replace me by any text you'd like."
text = pipeline(text, do_sample=True, max_length=1024)[0]["generated_text"]
```
## Preprocessing
The texts are tokenized using `sentencepiece` and a vocabulary size of 250,100. The inputs are sequences of 1,024 consecutive tokens. We use `<extra_id_0>` to separate lines in a document.
## BibTeX entry and citation info
```bibtex
@misc{tan2021msp,
title={MSP: Multi-Stage Prompting for Making Pre-trained Language Models Better Translators},
author={Zhixing Tan and Xiangwen Zhang and Shuo Wang and Yang Liu},
year={2021},
eprint={2110.06609},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
Langboat/mengzi-oscar-base
|
Langboat
| 2021-10-14T02:17:53Z | 42 | 5 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"zh",
"arxiv:2110.06696",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
---
language:
- zh
license: apache-2.0
---
# Mengzi-oscar-base (Chinese Multi-modal pre-training model)
Mengzi-oscar is trained based on the Multi-modal pre-training model [Oscar](https://github.com/microsoft/Oscar), and is initialized using [Mengzi-Bert-Base](https://github.com/Langboat/Mengzi). 3.7M pairs of images and texts were used, including 0.7M Chinese image-caption pairs, 3M Chinese image-question pairs, a total of 0.22M different images.
[Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese](https://arxiv.org/abs/2110.06696)
## Usage
#### Installation
Check [INSTALL.md](https://github.com/microsoft/Oscar/blob/master/INSTALL.md) for installation instructions.
#### Pretrain & fine-tune
See the [Mengzi-Oscar.md](https://github.com/Langboat/Mengzi/blob/main/Mengzi-Oscar.md) for details.
## Citation
If you find the technical report or resource is useful, please cite the following technical report in your paper.
```
@misc{zhang2021mengzi,
title={Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese},
author={Zhuosheng Zhang and Hanqing Zhang and Keming Chen and Yuhang Guo and Jingyun Hua and Yulong Wang and Ming Zhou},
year={2021},
eprint={2110.06696},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
S34NtheGuy/DialoGPT-small-pikamew362
|
S34NtheGuy
| 2021-10-14T02:01:56Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:04Z |
---
tags:
- conversational
---
# DialoGPT chat bot model using discord messages as data
|
jogonba2/bart-JES-cnn_dailymail
|
jogonba2
| 2021-10-14T02:00:37Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bart",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-JES-cnn_dailymail
results:
- task:
name: Summarization
type: summarization
metrics:
- name: Rouge1
type: rouge
value: 43.9753
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-JES-cnn_dailymail
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1452
- Rouge1: 43.9753
- Rouge2: 19.7191
- Rougel: 33.6236
- Rougelsum: 41.1683
- Gen Len: 80.1767
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 1.2949 | 1.0 | 71779 | 1.2080 | 11.7171 | 3.3284 | 11.3209 | 11.4022 | 20.0 |
| 1.191 | 2.0 | 143558 | 1.1615 | 11.8484 | 3.363 | 11.4175 | 11.5037 | 20.0 |
| 1.0907 | 3.0 | 215337 | 1.1452 | 12.6221 | 3.773 | 12.1226 | 12.2359 | 20.0 |
| 0.9798 | 4.0 | 287116 | 1.1670 | 12.4306 | 3.7329 | 11.9497 | 12.0617 | 20.0 |
| 0.9112 | 5.0 | 358895 | 1.1667 | 12.5404 | 3.7842 | 12.0541 | 12.1643 | 20.0 |
| 0.8358 | 6.0 | 430674 | 1.1997 | 12.5153 | 3.778 | 12.0382 | 12.1332 | 20.0 |
### Framework versions
- Transformers 4.10.2
- Pytorch 1.7.1+cu110
- Datasets 1.11.0
- Tokenizers 0.10.3
|
eliza-dukim/bert-base-multilingual-cased_korquad-v1
|
eliza-dukim
| 2021-10-13T16:22:41Z | 4 | 1 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-03-02T23:29:05Z |
## Boostcamp AI Tech Special Mission 01, Multi-lingual BERT for KorQuAD v1
{'exact_match': 69.89954970557672, 'f1': 77.40349093437989, 'epoch': 15.0}
|
Craig/paraphrase-MiniLM-L6-v2
|
Craig
| 2021-10-13T15:01:15Z | 1,174 | 3 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"arxiv:1908.10084",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-03-02T23:29:04Z |
---
pipeline_tag: feature-extraction
license: apache-2.0
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# sentence-transformers/paraphrase-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
This is a clone of the original model, with `pipeline_tag` metadata changed to `feature-extraction`, so it can just return the embedded vector. Otherwise it is unchanged.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-MiniLM-L6-v2)
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
This model was trained by [sentence-transformers](https://www.sbert.net/).
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
```
|
LoganKilpatrick/BasicFluxjlModel
|
LoganKilpatrick
| 2021-10-13T14:41:35Z | 0 | 2 | null |
[
"region:us"
] | null | 2022-03-02T23:29:04Z |
This model is for anyone using using Flux.jl and looking for a test model to make sue of the Hugging Face hub. You can see the source code to generate this model below:
```Julia
julia> using Flux
julia> model = Chain(Dense(10, 5, NNlib.relu), Dense(5, 2), NNlib.softmax)
Chain(Dense(10, 5, NNlib.relu), Dense(5, 2), NNlib.softmax)
julia> using BSON: @save
julia> @save "mymodel.bson" model
```
you can then load the model in Julia as follows:
```Julia
julia> using Flux
julia> using BSON: @load
julia> @load "mymodel.bson" model
julia> model
Chain(Dense(10, 5, NNlib.relu), Dense(5, 2), NNlib.softmax)
```
See here: https://fluxml.ai/Flux.jl/stable/saving/#Saving-and-Loading-Models for more details!
|
huggingtweets/miss_sanrio
|
huggingtweets
| 2021-10-13T14:30:19Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: https://www.huggingtweets.com/miss_sanrio/1634135415541/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1436079110204403712/WD1B_l5j_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">k-selected shawty</div>
<div style="text-align: center; font-size: 14px;">@miss_sanrio</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from k-selected shawty.
| Data | k-selected shawty |
| --- | --- |
| Tweets downloaded | 3188 |
| Retweets | 399 |
| Short tweets | 148 |
| Tweets kept | 2641 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1z0gpgit/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @miss_sanrio's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/mau0is2r) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/mau0is2r/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/miss_sanrio')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
GKLMIP/roberta-hindi-romanized
|
GKLMIP
| 2021-10-13T13:46:13Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"fill-mask",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
If you use our model, please consider citing our paper:
```
@InProceedings{,
author="Huang, Xixuan
and Lin, Nankai
and Li, Kexin
and Wang, Lianxi
and Gan SuiFu",
title="HinPLMs: Pre-trained Language Models for Hindi",
booktitle="The International Conference on Asian Language Processing",
year="2021",
publisher="IEEE Xplore"
}
```
|
pucpr/clinicalnerpt-disorder
|
pucpr
| 2021-10-13T09:32:51Z | 104 | 5 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"pt",
"dataset:SemClinBr",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
language: "pt"
widget:
- text: "PACIENTE DE 69 ANOS COM ICC DE ETIOLOGIA ISQUÊMICA "
- text: "Paciente com Sepse pulmonar em D8 tazocin (paciente não recebeu por 2 dias Atb)."
datasets:
- SemClinBr
thumbnail: "https://raw.githubusercontent.com/HAILab-PUCPR/BioBERTpt/master/images/logo-biobertpr1.png"
---
<img src="https://raw.githubusercontent.com/HAILab-PUCPR/BioBERTpt/master/images/logo-biobertpr1.png" alt="Logo BioBERTpt">
# Portuguese Clinical NER - Disorder
The Disorder NER model is part of the [BioBERTpt project](https://www.aclweb.org/anthology/2020.clinicalnlp-1.7/), where 13 models of clinical entities (compatible with UMLS) were trained. All NER model from "pucpr" user was trained from the Brazilian clinical corpus [SemClinBr](https://github.com/HAILab-PUCPR/SemClinBr), with 10 epochs and IOB2 format, from BioBERTpt(all) model.
## Acknowledgements
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.
## Citation
```
@inproceedings{schneider-etal-2020-biobertpt,
title = "{B}io{BERT}pt - A {P}ortuguese Neural Language Model for Clinical Named Entity Recognition",
author = "Schneider, Elisa Terumi Rubel and
de Souza, Jo{\~a}o Vitor Andrioli and
Knafou, Julien and
Oliveira, Lucas Emanuel Silva e and
Copara, Jenny and
Gumiel, Yohan Bonescki and
Oliveira, Lucas Ferro Antunes de and
Paraiso, Emerson Cabrera and
Teodoro, Douglas and
Barra, Cl{\'a}udia Maria Cabral Moro",
booktitle = "Proceedings of the 3rd Clinical Natural Language Processing Workshop",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.clinicalnlp-1.7",
pages = "65--72",
abstract = "With the growing number of electronic health record data, clinical NLP tasks have become increasingly relevant to unlock valuable information from unstructured clinical text. Although the performance of downstream NLP tasks, such as named-entity recognition (NER), in English corpus has recently improved by contextualised language models, less research is available for clinical texts in low resource languages. Our goal is to assess a deep contextual embedding model for Portuguese, so called BioBERTpt, to support clinical and biomedical NER. We transfer learned information encoded in a multilingual-BERT model to a corpora of clinical narratives and biomedical-scientific papers in Brazilian Portuguese. To evaluate the performance of BioBERTpt, we ran NER experiments on two annotated corpora containing clinical narratives and compared the results with existing BERT models. Our in-domain model outperformed the baseline model in F1-score by 2.72{\%}, achieving higher performance in 11 out of 13 assessed entities. We demonstrate that enriching contextual embedding models with domain literature can play an important role in improving performance for specific NLP tasks. The transfer learning process enhanced the Portuguese biomedical NER model by reducing the necessity of labeled data and the demand for retraining a whole new model.",
}
```
## Questions?
Post a Github issue on the [BioBERTpt repo](https://github.com/HAILab-PUCPR/BioBERTpt).
|
pucpr/clinicalnerpt-healthcare
|
pucpr
| 2021-10-13T09:32:28Z | 6 | 6 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"pt",
"dataset:SemClinBr",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
language: "pt"
widget:
- text: "Acompanhamento da diabetes, paciente encaminhado da unidade de saúde."
- text: "Paciente encaminhado por alteração na função renal."
datasets:
- SemClinBr
thumbnail: "https://raw.githubusercontent.com/HAILab-PUCPR/BioBERTpt/master/images/logo-biobertpr1.png"
---
<img src="https://raw.githubusercontent.com/HAILab-PUCPR/BioBERTpt/master/images/logo-biobertpr1.png" alt="Logo BioBERTpt">
# Portuguese Clinical NER - HealthCare
The HealthCare NER model is part of the [BioBERTpt project](https://www.aclweb.org/anthology/2020.clinicalnlp-1.7/), where 13 models of clinical entities (compatible with UMLS) were trained. All NER model from "pucpr" user was trained from the Brazilian clinical corpus [SemClinBr](https://github.com/HAILab-PUCPR/SemClinBr), with 10 epochs and IOB2 format, from BioBERTpt(all) model.
## Acknowledgements
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.
## Citation
```
@inproceedings{schneider-etal-2020-biobertpt,
title = "{B}io{BERT}pt - A {P}ortuguese Neural Language Model for Clinical Named Entity Recognition",
author = "Schneider, Elisa Terumi Rubel and
de Souza, Jo{\~a}o Vitor Andrioli and
Knafou, Julien and
Oliveira, Lucas Emanuel Silva e and
Copara, Jenny and
Gumiel, Yohan Bonescki and
Oliveira, Lucas Ferro Antunes de and
Paraiso, Emerson Cabrera and
Teodoro, Douglas and
Barra, Cl{\'a}udia Maria Cabral Moro",
booktitle = "Proceedings of the 3rd Clinical Natural Language Processing Workshop",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.clinicalnlp-1.7",
pages = "65--72",
abstract = "With the growing number of electronic health record data, clinical NLP tasks have become increasingly relevant to unlock valuable information from unstructured clinical text. Although the performance of downstream NLP tasks, such as named-entity recognition (NER), in English corpus has recently improved by contextualised language models, less research is available for clinical texts in low resource languages. Our goal is to assess a deep contextual embedding model for Portuguese, so called BioBERTpt, to support clinical and biomedical NER. We transfer learned information encoded in a multilingual-BERT model to a corpora of clinical narratives and biomedical-scientific papers in Brazilian Portuguese. To evaluate the performance of BioBERTpt, we ran NER experiments on two annotated corpora containing clinical narratives and compared the results with existing BERT models. Our in-domain model outperformed the baseline model in F1-score by 2.72{\%}, achieving higher performance in 11 out of 13 assessed entities. We demonstrate that enriching contextual embedding models with domain literature can play an important role in improving performance for specific NLP tasks. The transfer learning process enhanced the Portuguese biomedical NER model by reducing the necessity of labeled data and the demand for retraining a whole new model.",
}
```
## Questions?
Post a Github issue on the [BioBERTpt repo](https://github.com/HAILab-PUCPR/BioBERTpt).
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.