modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 00:41:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 00:40:24
card
stringlengths
11
1.01M
PhongLe1311/my_awesome_billsum_model
PhongLe1311
2023-06-25T15:30:09Z
99
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:billsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T15:20:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: my_awesome_billsum_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1408 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5181 - Rouge1: 0.1408 - Rouge2: 0.0514 - Rougel: 0.1173 - Rougelsum: 0.1173 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8150 | 0.1264 | 0.0373 | 0.1061 | 0.1061 | 19.0 | | No log | 2.0 | 124 | 2.5989 | 0.1379 | 0.0501 | 0.1164 | 0.1165 | 19.0 | | No log | 3.0 | 186 | 2.5349 | 0.1396 | 0.0525 | 0.1179 | 0.1181 | 19.0 | | No log | 4.0 | 248 | 2.5181 | 0.1408 | 0.0514 | 0.1173 | 0.1173 | 19.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ahessamb/bertopic-test
ahessamb
2023-06-25T15:29:15Z
3
0
bertopic
[ "bertopic", "text-classification", "region:us" ]
text-classification
2023-06-25T15:29:09Z
--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # bertopic-test This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("ahessamb/bertopic-test") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 50 * Number of training documents: 1570 <details> <summary>Click here for an overview of all topics.</summary> | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | 0 | liquidations - forcefully - betting - liquidation - contracts | 8 | 0_liquidations_forcefully_betting_liquidation | | 1 | litecoin - wsm - presale - 77 - near | 94 | 1_litecoin_wsm_presale_77 | | 2 | sec - court - terraform - dismiss - lawyers | 49 | 2_sec_court_terraform_dismiss | | 3 | huobi - hkvac - bsl - web3 - code | 12 | 3_huobi_hkvac_bsl_web3 | | 4 | lucie - shiba - susbarium - puppynet - portals | 3 | 4_lucie_shiba_susbarium_puppynet | | 5 | 000006819 - shiba - accuracy - finbold - estimates | 27 | 5_000006819_shiba_accuracy_finbold | | 6 | tokens - sec - binance - securities - coinbase | 45 | 6_tokens_sec_binance_securities | | 7 | mckinsey - ai - nanjing - productivity - diffusion | 43 | 7_mckinsey_ai_nanjing_productivity | | 8 | resistance - swing - fib - zone - ltc | 32 | 8_resistance_swing_fib_zone | | 9 | brinkman - tategpt - bitcoin - artists - wealth | 26 | 9_brinkman_tategpt_bitcoin_artists | | 10 | stablecoin - stablecoins - decline - redemptions - tusd | 2 | 10_stablecoin_stablecoins_decline_redemptions | | 11 | mutant - mayc - bayc - club - mcmullen | 64 | 11_mutant_mayc_bayc_club | | 12 | xrp - ema - ripple - bullish - cryptocurrencies | 43 | 12_xrp_ema_ripple_bullish | | 13 | tether - cbdcs - loans - federal - nafcu | 27 | 13_tether_cbdcs_loans_federal | | 14 | rate - tradingview - bnb - breakout - coinmarketcap | 85 | 14_rate_tradingview_bnb_breakout | | 15 | 26 - bulls - rsi - ceiling - 300 | 2 | 15_26_bulls_rsi_ceiling | | 16 | lowest - jump - week - wallet - staggering | 3 | 16_lowest_jump_week_wallet | | 17 | xrp - ripple - mekras - sbi - institutions | 56 | 17_xrp_ripple_mekras_sbi | | 18 | debt - mortgages - trillion - government - suspends | 3 | 18_debt_mortgages_trillion_government | | 19 | longitude - chronometer - bitcoin - ships - graffiti | 2 | 19_longitude_chronometer_bitcoin_ships | | 20 | volumes - piggy - aud - xrp - usdt | 15 | 20_volumes_piggy_aud_xrp | | 21 | root - ledger - stakers - sidechains - compatibility | 4 | 21_root_ledger_stakers_sidechains | | 22 | astra - letter - concerns - investors - bitwise | 4 | 22_astra_letter_concerns_investors | | 23 | gold - governments - manipulated - stocks - mined | 10 | 23_gold_governments_manipulated_stocks | | 24 | tether - sygnum - documents - bank - coindesk | 9 | 24_tether_sygnum_documents_bank | | 25 | rewards - governance - lido - proposal - june | 45 | 25_rewards_governance_lido_proposal | | 26 | listings - coin - fairerc20 - bittrex - withdrawals | 68 | 26_listings_coin_fairerc20_bittrex | | 27 | peaq - ordibots - cosmos - fetch - machine | 81 | 27_peaq_ordibots_cosmos_fetch | | 28 | uniswap - v4 - orders - hooks - differing | 23 | 28_uniswap_v4_orders_hooks | | 29 | price - neo - matic - rise - altcoin | 92 | 29_price_neo_matic_rise | | 30 | emptydoc - staff - policy - binance - workspaces | 2 | 30_emptydoc_staff_policy_binance | | 31 | lunc - synthetix - terra - perps - staking | 33 | 31_lunc_synthetix_terra_perps | | 32 | tweet - dogecoin - chart - meme - negative | 3 | 32_tweet_dogecoin_chart_meme | | 33 | binance - securities - exchange - cz - regulators | 63 | 33_binance_securities_exchange_cz | | 34 | bitmart - sale - xrp - discount - event | 4 | 34_bitmart_sale_xrp_discount | | 35 | yuan - event - olympics - canadians - organizers | 49 | 35_yuan_event_olympics_canadians | | 36 | gusd - fidelity - bitcoin - proposal - blackrock | 52 | 36_gusd_fidelity_bitcoin_proposal | | 37 | bills - mcglone - markets - stablecoins - liquidity | 56 | 37_bills_mcglone_markets_stablecoins | | 38 | asset - gain - drop - trading - hours | 2 | 38_asset_gain_drop_trading | | 39 | epstein - hamsterwheel - vulnerability - bounty - certick | 28 | 39_epstein_hamsterwheel_vulnerability_bounty | | 40 | pyth - transparency - data - terra - oracle | 19 | 40_pyth_transparency_data_terra | | 41 | shiba - inu - weighted - collapse - recovery | 2 | 41_shiba_inu_weighted_collapse | | 42 | neo - opensea - carey - security - impersonators | 24 | 42_neo_opensea_carey_security | | 43 | balancer - zkevm - liquidity - defi - 8020 | 3 | 43_balancer_zkevm_liquidity_defi | | 44 | reed - battle - platform - argument - trading | 22 | 44_reed_battle_platform_argument | | 45 | ada - cardano - whale - sell - investors | 4 | 45_ada_cardano_whale_sell | | 46 | uk - coinbase - hong - crypto - regulatory | 65 | 46_uk_coinbase_hong_crypto | | 47 | ethereum - tvl - defi - arbitrum - airdrop | 54 | 47_ethereum_tvl_defi_arbitrum | | 48 | swyftx - shibarium - token - shibaswap - shiba | 54 | 48_swyftx_shibarium_token_shibaswap | | 49 | bitcoin - mining - gain - miners - difficulty | 54 | 49_bitcoin_mining_gain_miners | </details> ## Training hyperparameters * calculate_probabilities: False * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False ## Framework versions * Numpy: 1.22.4 * HDBSCAN: 0.8.29 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.30.2 * Numba: 0.56.4 * Plotly: 5.13.1 * Python: 3.10.12
SwampMan/ppo-Huggy
SwampMan
2023-06-25T15:20:32Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-25T15:20:22Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: SwampMan/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
cagmfr/q-FrozenLake-v1-4x4-noSlippery
cagmfr
2023-06-25T15:20:16Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T15:20:14Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="cagmfr/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
NasimB/gpt2-2-dp-mod-aochild-cut
NasimB
2023-06-25T15:09:04Z
22
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T07:34:36Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-2-dp-mod-aochild-cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-2-dp-mod-aochild-cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.4109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7147 | 0.27 | 500 | 5.6451 | | 5.3609 | 0.54 | 1000 | 5.2108 | | 5.0162 | 0.81 | 1500 | 4.9585 | | 4.7627 | 1.08 | 2000 | 4.8126 | | 4.5775 | 1.35 | 2500 | 4.7013 | | 4.4856 | 1.62 | 3000 | 4.6034 | | 4.4038 | 1.89 | 3500 | 4.5175 | | 4.2252 | 2.16 | 4000 | 4.4775 | | 4.1408 | 2.42 | 4500 | 4.4236 | | 4.1136 | 2.69 | 5000 | 4.3721 | | 4.0852 | 2.96 | 5500 | 4.3281 | | 3.87 | 3.23 | 6000 | 4.3418 | | 3.8651 | 3.5 | 6500 | 4.3062 | | 3.8601 | 3.77 | 7000 | 4.2781 | | 3.8091 | 4.04 | 7500 | 4.2785 | | 3.5972 | 4.31 | 8000 | 4.2888 | | 3.6301 | 4.58 | 8500 | 4.2678 | | 3.6398 | 4.85 | 9000 | 4.2396 | | 3.4906 | 5.12 | 9500 | 4.2803 | | 3.3704 | 5.39 | 10000 | 4.2849 | | 3.4008 | 5.66 | 10500 | 4.2718 | | 3.4029 | 5.93 | 11000 | 4.2491 | | 3.1804 | 6.2 | 11500 | 4.3116 | | 3.1361 | 6.47 | 12000 | 4.3119 | | 3.1532 | 6.73 | 12500 | 4.3067 | | 3.1591 | 7.0 | 13000 | 4.3072 | | 2.8974 | 7.27 | 13500 | 4.3563 | | 2.9167 | 7.54 | 14000 | 4.3589 | | 2.9248 | 7.81 | 14500 | 4.3580 | | 2.8683 | 8.08 | 15000 | 4.3791 | | 2.741 | 8.35 | 15500 | 4.3939 | | 2.7503 | 8.62 | 16000 | 4.3968 | | 2.7573 | 8.89 | 16500 | 4.3983 | | 2.6961 | 9.16 | 17000 | 4.4075 | | 2.6562 | 9.43 | 17500 | 4.4101 | | 2.6653 | 9.7 | 18000 | 4.4107 | | 2.667 | 9.97 | 18500 | 4.4109 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
Smaraa/t5-text-simplification_1e4_adafactor_biendata
Smaraa
2023-06-25T15:07:10Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T12:37:38Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-text-simplification_1e4_adafactor_biendata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-text-simplification_1e4_adafactor_biendata This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7562 - Rouge1: 10.4603 - Rouge2: 2.642 - Rougel: 9.6362 - Rougelsum: 9.6589 - Gen Len: 13.2838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 464 | 0.5489 | 29.7693 | 11.1997 | 25.6091 | 25.5979 | 14.7281 | | 0.9314 | 2.0 | 928 | 0.5392 | 29.9099 | 10.9645 | 25.334 | 25.3259 | 14.7188 | | 0.5594 | 3.0 | 1392 | 0.5342 | 30.3194 | 11.4204 | 25.8248 | 25.8255 | 14.7666 | | 0.5333 | 4.0 | 1856 | 0.5376 | 30.8368 | 11.6152 | 26.3172 | 26.3583 | 14.1578 | | 0.5192 | 5.0 | 2320 | 0.8890 | 7.5517 | 1.4313 | 7.0971 | 7.1064 | 9.9191 | | 0.8897 | 6.0 | 2784 | 0.8252 | 6.9283 | 1.3484 | 6.5916 | 6.5877 | 10.9894 | | 0.9385 | 7.0 | 3248 | 0.7971 | 8.2401 | 1.9957 | 7.7693 | 7.7675 | 10.7732 | | 0.9089 | 8.0 | 3712 | 0.7725 | 9.7559 | 2.2249 | 9.0272 | 9.0098 | 10.7175 | | 0.8824 | 9.0 | 4176 | 0.7552 | 12.006 | 2.8041 | 11.0115 | 10.992 | 10.7838 | | 0.8658 | 10.0 | 4640 | 0.7490 | 13.311 | 3.4159 | 12.1933 | 12.1551 | 10.6499 | | 0.864 | 11.0 | 5104 | 0.7448 | 13.9983 | 3.6176 | 12.7712 | 12.7347 | 10.752 | | 0.868 | 12.0 | 5568 | 0.7495 | 12.318 | 3.2975 | 11.3451 | 11.3218 | 12.0252 | | 0.8844 | 13.0 | 6032 | 0.7552 | 10.6154 | 2.7347 | 9.8228 | 9.8116 | 13.191 | | 0.8844 | 14.0 | 6496 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | | 0.8971 | 15.0 | 6960 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | | 0.8981 | 16.0 | 7424 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | | 0.8956 | 17.0 | 7888 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | | 0.8984 | 18.0 | 8352 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | | 0.8959 | 19.0 | 8816 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | | 0.8977 | 20.0 | 9280 | 0.7562 | 10.4603 | 2.642 | 9.6362 | 9.6589 | 13.2838 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
Smaraa/gpt2-text-simplification_1e4_adafactor_biendata
Smaraa
2023-06-25T14:56:13Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T12:42:47Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-text-simplification_1e4_adafactor_biendata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-text-simplification_1e4_adafactor_biendata This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9089 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 464 | 0.7729 | | 1.0489 | 2.0 | 928 | 0.7546 | | 0.754 | 3.0 | 1392 | 0.7497 | | 0.7034 | 4.0 | 1856 | 0.7530 | | 0.6619 | 5.0 | 2320 | 0.7560 | | 0.6265 | 6.0 | 2784 | 0.7639 | | 0.5921 | 7.0 | 3248 | 0.7747 | | 0.5621 | 8.0 | 3712 | 0.7848 | | 0.5359 | 9.0 | 4176 | 0.7969 | | 0.5115 | 10.0 | 4640 | 0.8113 | | 0.4879 | 11.0 | 5104 | 0.8256 | | 0.4683 | 12.0 | 5568 | 0.8373 | | 0.4491 | 13.0 | 6032 | 0.8519 | | 0.4491 | 14.0 | 6496 | 0.8642 | | 0.4324 | 15.0 | 6960 | 0.8741 | | 0.4176 | 16.0 | 7424 | 0.8841 | | 0.4054 | 17.0 | 7888 | 0.8924 | | 0.3946 | 18.0 | 8352 | 0.8994 | | 0.3868 | 19.0 | 8816 | 0.9043 | | 0.3813 | 20.0 | 9280 | 0.9089 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
sukantan/all-MiniLM-L6-v2-ftlegal-v1
sukantan
2023-06-25T14:44:18Z
8
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "dataset:sukantan/nyaya-st-training", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-25T14:44:14Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity datasets: - sukantan/nyaya-st-training --- # sukantan/all-MiniLM-L6-v2-ftlegal-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sukantan/all-MiniLM-L6-v2-ftlegal-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sukantan/all-MiniLM-L6-v2-ftlegal-v1) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 391 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MegaBatchMarginLoss.MegaBatchMarginLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 391, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
wza/llama-65b-qlora-fin-1epoch
wza
2023-06-25T14:09:07Z
2
0
peft
[ "peft", "region:us" ]
null
2023-06-23T01:52:13Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
wza/llama-65b-qlora-fin-2epoch
wza
2023-06-25T14:04:59Z
1
0
peft
[ "peft", "region:us" ]
null
2023-06-25T12:56:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
Smaraa/bart-text-simplification_1e4_adafactor_biendata
Smaraa
2023-06-25T14:04:43Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-25T12:33:30Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-text-simplification_1e4_adafactor_biendata results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-text-simplification_1e4_adafactor_biendata This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7599 - Rouge1: 29.7176 - Rouge2: 10.9512 - Rougel: 25.5101 - Rougelsum: 25.526 - Gen Len: 15.2029 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 232 | 0.5813 | 30.604 | 12.4253 | 26.5172 | 26.4807 | 15.2241 | | No log | 2.0 | 464 | 0.5739 | 31.9076 | 12.798 | 27.4728 | 27.4929 | 15.2241 | | 1.0176 | 3.0 | 696 | 0.5700 | 31.3776 | 12.2852 | 27.1116 | 27.0878 | 15.6459 | | 1.0176 | 4.0 | 928 | 0.5762 | 30.8731 | 12.3014 | 26.9196 | 26.8301 | 14.6353 | | 0.4798 | 5.0 | 1160 | 0.5863 | 29.927 | 11.7166 | 25.9447 | 25.921 | 14.4297 | | 0.4798 | 6.0 | 1392 | 0.6003 | 29.9528 | 11.2098 | 25.6908 | 25.7209 | 14.7414 | | 0.3855 | 7.0 | 1624 | 0.6179 | 30.1161 | 11.2863 | 26.1433 | 26.1519 | 15.1698 | | 0.3855 | 8.0 | 1856 | 0.6290 | 29.5566 | 11.1229 | 25.6003 | 25.5754 | 14.87 | | 0.3092 | 9.0 | 2088 | 0.6538 | 29.7844 | 11.2434 | 25.8222 | 25.8067 | 14.9708 | | 0.3092 | 10.0 | 2320 | 0.6698 | 28.9941 | 10.6603 | 25.0054 | 25.0198 | 15.0239 | | 0.247 | 11.0 | 2552 | 0.6906 | 28.732 | 10.4525 | 24.8897 | 24.8953 | 14.9721 | | 0.247 | 12.0 | 2784 | 0.7023 | 29.0609 | 10.4762 | 24.9678 | 24.9893 | 15.317 | | 0.198 | 13.0 | 3016 | 0.7200 | 29.9516 | 11.2397 | 25.7347 | 25.7489 | 15.1485 | | 0.198 | 14.0 | 3248 | 0.7263 | 29.1565 | 10.7363 | 25.2238 | 25.203 | 14.9761 | | 0.198 | 15.0 | 3480 | 0.7376 | 30.0068 | 11.2078 | 26.0012 | 26.0235 | 14.9589 | | 0.1602 | 16.0 | 3712 | 0.7489 | 29.8747 | 11.0555 | 25.7321 | 25.7543 | 15.2931 | | 0.1602 | 17.0 | 3944 | 0.7487 | 29.6901 | 10.8692 | 25.5467 | 25.5808 | 15.2798 | | 0.1342 | 18.0 | 4176 | 0.7553 | 29.5496 | 10.8611 | 25.2895 | 25.3218 | 15.3156 | | 0.1342 | 19.0 | 4408 | 0.7590 | 29.7733 | 11.1577 | 25.671 | 25.6883 | 15.1313 | | 0.1184 | 20.0 | 4640 | 0.7599 | 29.7176 | 10.9512 | 25.5101 | 25.526 | 15.2029 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
rdenadai/BR_BERTo
rdenadai
2023-06-25T14:02:18Z
180
3
transformers
[ "transformers", "pytorch", "jax", "safetensors", "roberta", "fill-mask", "portuguese", "brazil", "pt_BR", "pt", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: pt tags: - portuguese - brazil - pt_BR widget: - text: gostei muito dessa <mask> --- # BR_BERTo Portuguese (Brazil) model for text inference. ## Params Trained on a corpus of 6_993_330 sentences. - Vocab size: 150_000 - RobertaForMaskedLM size : 512 - Num train epochs: 3 - Time to train: ~10days (on GCP with a Nvidia T4) I follow the great tutorial from HuggingFace team: [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train) More infor here: [BR_BERTo](https://github.com/rdenadai/BR-BERTo)
anas21/English1SpeechToTextModel
anas21
2023-06-25T13:48:32Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-25T13:34:09Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: English1SpeechToTextModel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # English1SpeechToTextModel This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 10 - eval_batch_size: 8 - seed: 10 - gradient_accumulation_steps: 10 - total_train_batch_size: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
findnitai/FaceGen
findnitai
2023-06-25T13:25:03Z
138
3
diffusers
[ "diffusers", "safetensors", "text-to-image", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-24T03:47:05Z
--- license: apache-2.0 pipeline_tag: text-to-image --- Few examples of unique faces generated by the model. Trained on FFHQ dataset. ![7qfdf0.gif](https://s3.amazonaws.com/moonup/production/uploads/6430e44437ee6d9b76cb8388/fqmUfSW6C9vB-YDIZyTfm.gif)
lucasbertola/q-FrozenLake-v1-8x8-noSlipper
lucasbertola
2023-06-25T13:23:29Z
0
0
null
[ "FrozenLake-v1-8x8-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "Lucas_is_the_best", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T13:18:21Z
--- tags: - FrozenLake-v1-8x8-no_slippery - q-learning - reinforcement-learning - custom-implementation - Lucas_is_the_best model-index: - name: q-FrozenLake-v1-8x8-noSlipper results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8-no_slippery type: FrozenLake-v1-8x8-no_slippery --- # **Q-Learning** Agent playing1 This is a trained model of a **Q-Learning** agent playing ## Usage ```python model = load_from_hub(repo_id="lucasbertola/q-FrozenLake-v1-4x4-noSlipper", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
PaulineJamin/q-FrozenLake-v1-4x4-noSlippery
PaulineJamin
2023-06-25T13:16:52Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T12:25:16Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="PaulineJamin/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
S3S3/q-Taxi-v3
S3S3
2023-06-25T13:05:40Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T13:05:36Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.44 +/- 2.75 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="S3S3/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
paramrah/shoesv2
paramrah
2023-06-25T13:00:03Z
2
0
tf-keras
[ "tf-keras", "mobilenet", "image-classification", "region:us" ]
image-classification
2023-06-25T12:59:39Z
--- pipeline_tag: image-classification ---
bogdancazan/bart-base-newsela-biendata-with-domain-adaptation
bogdancazan
2023-06-25T12:57:32Z
105
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-19T14:35:21Z
training_args = TrainingArguments( output_dir='bart-base-newsela-biendata-with-domain-adaptation', num_train_epochs=20, warmup_steps=250, per_device_train_batch_size=BATCH_SIZE, weight_decay=0.01, learning_rate=2e-4, fp16=True, optim="adafactor", ) Step Training Loss 500 5.677000 1000 2.361900 1500 1.826000 2000 1.672900 2500 1.597900 3000 1.555700 3500 1.520600 4000 1.496300 4500 1.476800 TrainOutput(global_step=4640, training_loss=2.1116079396214977, metrics={'train_runtime': 1059.6025, 'train_samples_per_second': 279.992, 'train_steps_per_second': 4.379, 'total_flos': 0.0, 'train_loss': 2.1116079396214977, 'epoch': 20.0})
S3S3/q-FrozenLake-v1-4x4-noSlippery
S3S3
2023-06-25T12:53:11Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T12:53:07Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="S3S3/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
VilohitT/question_answering_majorproject_2nd
VilohitT
2023-06-25T12:47:34Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-25T12:47:29Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
AtomGradient/Adjust_ChatGLM_6B
AtomGradient
2023-06-25T12:45:31Z
104
0
transformers
[ "transformers", "pytorch", "chatglm", "feature-extraction", "custom_code", "license:other", "region:us" ]
feature-extraction
2023-06-25T12:04:00Z
--- license: other --- ``` from transformers import AutoConfig, AutoModel, AutoTokenizer import os import torch # ่ฝฝๅ…ฅTokenizer tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) config = AutoConfig.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, pre_seq_len=128) model = AutoModel.from_pretrained("THUDM/chatglm-6b", config=config, trust_remote_code=True) prefix_state_dict = torch.load(os.path.join("./Adjust_ChatGLM_6B/", "pytorch_model.bin")) new_prefix_state_dict = {} for k, v in prefix_state_dict.items(): if k.startswith("transformer.prefix_encoder."): new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) model = model.quantize(4) model = model.half().cuda() model.transformer.prefix_encoder.float() model = model.eval() response, history = model.chat(tokenizer, "็”Ÿๆˆ่กฌ่กฃ็š„ๅนฟๅ‘Š่ฏ", history=[]) print(response) ```
TheBloke/vicuna-13b-v1.3.0-GGML
TheBloke
2023-06-25T12:41:16Z
0
16
null
[ "arxiv:2302.13971", "arxiv:2306.05685", "license:other", "region:us" ]
null
2023-06-25T10:52:15Z
--- inference: false license: other --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # LmSys' Vicuna 13B v1.3 GGML These files are GGML format model files for [LmSys' Vicuna 13B v1.3](https://huggingface.co/lmsys/vicuna-13b-v1.3). **NOTE**: This model was recently updated by the LmSys Team. If you already downloaded Vicuna 13B v1.3 GPTQ or GGML, you may want to re-download it from this repo, as the weights were updated. The original model I uploaded has been renamed to v1.3-preview. GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as: * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [KoboldCpp](https://github.com/LostRuins/koboldcpp) * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) * [ctransformers](https://github.com/marella/ctransformers) ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/vicuna-13b-v1.3.0-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/vicuna-13b-v1.3.0-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/lmsys/vicuna-13b-v1.3) ## Prompt template ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: prompt ASSISTANT: ``` <!-- compatibility_ggml start --> ## Compatibility ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`. These are guaranteed to be compatbile with any UIs, tools and libraries released since late May. ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` These new quantisation methods are compatible with llama.cpp as of June 6th, commit `2d43387`. They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python and ctransformers. Other tools and libraries may or may not be compatible - check their documentation if in doubt. ## Explanation of the new k-quant methods The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type. Refer to the Provided Files table below to see what files use which methods, and how. <!-- compatibility_ggml end --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | vicuna-13b-v1.3.0.ggmlv3.q2_K.bin | q2_K | 2 | 5.51 GB | 8.01 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. | | vicuna-13b-v1.3.0.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.93 GB | 9.43 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | vicuna-13b-v1.3.0.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.31 GB | 8.81 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | vicuna-13b-v1.3.0.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.66 GB | 8.16 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors | | vicuna-13b-v1.3.0.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. | | vicuna-13b-v1.3.0.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | | vicuna-13b-v1.3.0.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.87 GB | 10.37 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K | | vicuna-13b-v1.3.0.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.37 GB | 9.87 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors | | vicuna-13b-v1.3.0.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | | vicuna-13b-v1.3.0.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | | vicuna-13b-v1.3.0.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.23 GB | 11.73 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K | | vicuna-13b-v1.3.0.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.97 GB | 11.47 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors | | vicuna-13b-v1.3.0.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors | | vicuna-13b-v1.3.0.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. ## How to run in `llama.cpp` I use the following command line; adjust for your tastes and needs: ``` ./main -t 10 -ngl 32 -m vicuna-13b-v1.3.0.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "USER: Write a story about llamas\nASSISTANT:" ``` If you're able to use full GPU offloading, you should use `-t 1` to get best performance. If not able to fully offload to GPU, you should use more cores. Change `-t 10` to the number of physical CPU cores you have, or a lower number depending on what gives best performance. Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: LmSys' Vicuna 13B v1.3 # Vicuna Model Card ## Model Details Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT. - **Developed by:** [LMSYS](https://lmsys.org/) - **Model type:** An auto-regressive language model based on the transformer architecture. - **License:** Non-commercial license - **Finetuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971). ### Model Sources - **Repository:** https://github.com/lm-sys/FastChat - **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/ - **Paper:** https://arxiv.org/abs/2306.05685 - **Demo:** https://chat.lmsys.org/ ## Uses The primary use of Vicuna is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## How to Get Started with the Model Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights. APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api. ## Training Details Vicuna v1.3 is fine-tuned from LLaMA with supervised instruction fine-tuning. The training data is around 140K conversations collected from ShareGPT.com. See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf). ## Evaluation Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf). ## Difference between different versions of Vicuna See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
emilianJR/HRA_hyperrealism_art
emilianJR
2023-06-25T12:30:23Z
52
2
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-25T12:20:01Z
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Diffuser model for this SD checkpoint: https://civitai.com/models/80515/hrahyperrealism-art **emilianJR/HRA_hyperrealism_art** is the HuggingFace diffuser that you can use with **diffusers.StableDiffusionPipeline()**. Examples | Examples | Examples ---- | ---- | ---- ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/57a93272-f14e-4252-b6c4-485264e07a9d/width=450/194806-2023-06-03-20230603034324-640-896.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/07069db6-0ec5-4d96-a9ac-cc3c8501a1d8/width=450/194800-2023-06-03-20230603034105-640-896.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/a3682d16-7fd3-4e7d-8698-e9c51dcdcbb6/width=450/194705-2023-06-03-20230603030320-640-896.jpeg) ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/23d67259-0a4f-4168-af5d-feeeffcf8101/width=450/194799-2023-06-03-20230603034104-640-896.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/1dff82b9-748e-477f-b0f3-f2b9860aa093/width=450/194790-2023-06-03-20230603033734-640-896.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/43d23920-55db-4c6b-abd6-33cdacb6d4eb/width=450/194690-2023-06-03-20230603025728-640-896.jpeg) ------- ## ๐Ÿงจ Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). ```python from diffusers import StableDiffusionPipeline import torch model_id = "emilianJR/HRA_hyperrealism_art" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "YOUR PROMPT" image = pipe(prompt).images[0] image.save("image.png") ``` ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
Luke537/image_classification_food_model
Luke537
2023-06-25T12:30:18Z
189
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:food101", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-24T19:15:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: image_classification_food_model results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.893 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.6474 - Accuracy: 0.893 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7587 | 0.99 | 62 | 2.5481 | 0.844 | | 1.8903 | 2.0 | 125 | 1.8096 | 0.874 | | 1.6502 | 2.98 | 186 | 1.6474 | 0.893 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cpu - Datasets 2.13.0 - Tokenizers 0.13.3
emilianJR/majicMIX_realistic_v6
emilianJR
2023-06-25T12:26:15Z
69
14
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-18T12:42:51Z
--- language: - en license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Diffuser model for this SD checkpoint: https://civitai.com/models/43331/majicmix-realistic **emilianJR/majicMIX_realistic_v6** is the HuggingFace diffuser that you can use with **diffusers.StableDiffusionPipeline()**. Examples | Examples | Examples ---- | ---- | ---- ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/55e308aa-aec9-4816-b76e-523d9235a6e1/width=450/00005-321001525.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/f1bb9271-3628-45c6-8b2c-05ee3b19af0f/width=450/00027-1961413425.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/18150a9d-1e07-494f-8498-cd0c033907c5/width=450/00042-2448422190.jpeg) ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/d748fcfd-29f1-4fe1-95e2-d34765bccca9/width=450/00058-3698311310.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/a5b348c9-7b5b-4235-a943-834eec84a17a/width=450/00003-703532927.jpeg) | ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/66820fd3-98f2-4fbb-b904-0507de39c36a/width=450/00002-140050360.jpeg) ------- ## ๐Ÿงจ Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). ```python from diffusers import StableDiffusionPipeline import torch model_id = "emilianJR/majicMIX_realistic_v6" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "YOUR PROMPT" image = pipe(prompt).images[0] image.save("image.png") ``` ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
bogdancazan/t5-base-newsela-biendata-with-domain-adaptation
bogdancazan
2023-06-25T12:24:30Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-19T13:46:06Z
training_args = TrainingArguments( output_dir='t5-base-wikilarge-newsela-with-domain-adaptation', num_train_epochs=20, warmup_steps=250, per_device_train_batch_size=BATCH_SIZE, weight_decay=0.01, learning_rate=2e-4, # fp16=True, optim="adafactor", ) Step Training Loss 500 4.184500 1000 2.470900 1500 2.128900 2000 1.951600 2500 1.834400 3000 1.755800 3500 1.701800 4000 1.656300 4500 1.628800 TrainOutput(global_step=4640, training_loss=2.1286644540984057, metrics={'train_runtime': 4090.6694, 'train_samples_per_second': 72.526, 'train_steps_per_second': 1.134, 'total_flos': 0.0, 'train_loss': 2.1286644540984057, 'epoch': 20.0})
Smaraa/bart-text-simplification_1e4_adafactor
Smaraa
2023-06-25T11:45:02Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-24T11:26:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-text-simplification_1e4_adafactor results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-text-simplification_1e4_adafactor This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8377 - Rouge1: 60.5348 - Rouge2: 41.6762 - Rougel: 55.5994 - Rougelsum: 55.5841 - Gen Len: 18.7487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.1741 | 1.0 | 1163 | 0.6416 | 62.4 | 44.1316 | 57.9029 | 57.8644 | 18.8482 | | 0.1553 | 2.0 | 2326 | 0.6504 | 62.2879 | 43.9281 | 57.4714 | 57.461 | 18.8063 | | 0.1369 | 3.0 | 3489 | 0.6656 | 61.2481 | 42.605 | 56.5118 | 56.4636 | 18.733 | | 0.1286 | 4.0 | 4652 | 0.6906 | 61.3015 | 42.1608 | 56.2688 | 56.1707 | 18.7487 | | 0.1141 | 5.0 | 5815 | 0.7082 | 62.1771 | 43.1481 | 57.0231 | 57.0673 | 18.911 | | 0.1016 | 6.0 | 6978 | 0.7188 | 61.408 | 42.2759 | 56.1699 | 56.1779 | 18.8377 | | 0.0961 | 7.0 | 8141 | 0.7334 | 60.802 | 41.9149 | 56.0171 | 56.0279 | 18.8168 | | 0.0869 | 8.0 | 9304 | 0.7509 | 60.6564 | 41.3587 | 55.4436 | 55.468 | 18.7382 | | 0.0783 | 9.0 | 10467 | 0.7713 | 60.3551 | 41.8074 | 55.6856 | 55.679 | 18.7173 | | 0.0751 | 10.0 | 11630 | 0.7785 | 60.378 | 41.6134 | 55.5217 | 55.505 | 18.8325 | | 0.0679 | 11.0 | 12793 | 0.7835 | 60.5835 | 41.6735 | 55.5469 | 55.5791 | 18.7435 | | 0.0619 | 12.0 | 13956 | 0.8012 | 60.8152 | 41.2014 | 55.7186 | 55.7233 | 18.9424 | | 0.0611 | 13.0 | 15119 | 0.8091 | 60.8188 | 41.8074 | 55.6684 | 55.8026 | 18.7958 | | 0.0568 | 14.0 | 16282 | 0.8175 | 60.9209 | 41.5689 | 55.8838 | 55.8642 | 18.7277 | | 0.0527 | 15.0 | 17445 | 0.8250 | 61.0215 | 41.9079 | 55.9018 | 55.8709 | 18.9162 | | 0.0524 | 16.0 | 18608 | 0.8317 | 60.8214 | 41.6554 | 55.8053 | 55.7947 | 18.7277 | | 0.0504 | 17.0 | 19771 | 0.8310 | 60.6533 | 41.6507 | 55.9289 | 55.9426 | 18.7958 | | 0.0486 | 18.0 | 20934 | 0.8345 | 60.4722 | 41.5319 | 55.3384 | 55.3655 | 18.6859 | | 0.0491 | 19.0 | 22097 | 0.8379 | 60.4012 | 41.2452 | 55.5059 | 55.5553 | 18.8115 | | 0.0489 | 20.0 | 23260 | 0.8377 | 60.5348 | 41.6762 | 55.5994 | 55.5841 | 18.7487 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
alfredplpl/unlimited-1-0
alfredplpl
2023-06-25T11:44:51Z
34
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "text-to-image", "arxiv:2112.10752", "arxiv:2212.03860", "license:other", "autotrain_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-25T11:21:59Z
--- license: other tags: - stable-diffusion - text-to-image inference: false --- # Unlimited 1.0 Model Card ![eyecatch.jpg](eyecatch.jpg) Title: Unleash your limit. English version is [here](README_en.md). # ใฏใ˜ใ‚ใซ Unlimitedใฏใ€ ๆƒ…ๅ ฑๆผๆดฉใ—ใŸNovel AI Diffusionใฎไปฃใ‚ใ‚Šใจใชใ‚‹ใ‚ˆใ†ใซ ้–‹็™บใ—ใŸใ€AIใ‚ขใƒผใƒˆใซ็‰นๅŒ–ใ—ใŸ็”ปๅƒ็”ŸๆˆAIใงใ™ใ€‚ # ใƒฉใ‚คใ‚ปใƒณใ‚นใซใคใ„ใฆ ใƒฉใ‚คใ‚ปใƒณใ‚นใซใคใ„ใฆใฏใ€ใ‚‚ใจใฎใƒฉใ‚คใ‚ปใƒณใ‚น CreativeML Open RAIL++-M License ใซไพ‹ๅค–ใ‚’้™คใๅ•†็”จๅˆฉ็”จ็ฆๆญขใ‚’่ฟฝๅŠ ใ—ใŸใ ใ‘ใงใ™ใ€‚ ไพ‹ๅค–ใ‚’้™คใๅ•†็”จๅˆฉ็”จ็ฆๆญขใ‚’่ฟฝๅŠ ใ—ใŸ็†็”ฑใฏๅ‰ตไฝœๆฅญ็•Œใซๆ‚ชๅฝฑ้Ÿฟใ‚’ๅŠใผใ—ใ‹ใญใชใ„ใจใ„ใ†ๆ‡ธๅฟตใ‹ใ‚‰ใงใ™ใ€‚ ๅ–ถๅˆฉไผๆฅญใซใ„ใ‚‹ๆ–นใฏๆณ•ๅ‹™้ƒจใซใ„ใ‚‹ไบบใจ็›ธ่ซ‡ใ—ใฆใใ ใ•ใ„ใ€‚ ่ถฃๅ‘ณใงๅˆฉ็”จใ™ใ‚‹ๆ–นใฏใ‚ใพใ‚Šๆฐ—ใซใ—ใชใใฆใ‚‚ไธ€่ˆฌๅธธ่ญ˜ใ‚’ๅฎˆใ‚Šใ€ใŠไฝฟใ„ใใ ใ•ใ„ใ€‚ **ใชใŠใ€ๅ•†็”จๅˆฉ็”จใ—ใŸใ„ๆ–นใฏๅˆฅ้€”ใ“ใกใ‚‰ (ozaki.yasunori@outlook.com) ใซใ”็›ธ่ซ‡ใใ ใ•ใ„ใ€‚** # ๆณ•ๅพ‹ใซใคใ„ใฆ ๆœฌใƒขใƒ‡ใƒซใฏๆ—ฅๆœฌใซใฆไฝœๆˆใ•ใ‚Œใพใ—ใŸใ€‚ใ—ใŸใŒใฃใฆใ€ๆ—ฅๆœฌใฎๆณ•ๅพ‹ใŒ้ฉ็”จใ•ใ‚Œใพใ™ใ€‚ ๆœฌใƒขใƒ‡ใƒซใฎๅญฆ็ฟ’ใฏใ€่‘—ไฝœๆจฉๆณ•็ฌฌ30ๆกใฎ4ใซๅŸบใฅใใ€ๅˆๆณ•ใงใ‚ใ‚‹ใจไธปๅผตใ—ใพใ™ใ€‚ ใพใŸใ€ๆœฌใƒขใƒ‡ใƒซใฎ้…ๅธƒใซใคใ„ใฆใฏใ€่‘—ไฝœๆจฉๆณ•ใ‚„ๅˆ‘ๆณ•175ๆกใซ็…งใ‚‰ใ—ใฆใฟใฆใ‚‚ใ€ ๆญฃ็Šฏใ‚„ๅน‡ๅŠฉ็Šฏใซใ‚‚่ฉฒๅฝ“ใ—ใชใ„ใจไธปๅผตใ—ใพใ™ใ€‚่ฉณใ—ใใฏๆŸฟๆฒผๅผ่ญทๅฃซใฎ[่ฆ‹่งฃ](https://twitter.com/tka0120/status/1601483633436393473?s=20&t=yvM9EX0Em-_7lh8NJln3IQ)ใ‚’ๅพก่ฆงใใ ใ•ใ„ใ€‚ ใŸใ ใ—ใ€ใƒฉใ‚คใ‚ปใƒณใ‚นใซใ‚‚ใ‚ใ‚‹้€šใ‚Šใ€ๆœฌใƒขใƒ‡ใƒซใฎ็”Ÿๆˆ็‰ฉใฏๅ„็จฎๆณ•ไปคใซๅพ“ใฃใฆๅ–ใ‚Šๆ‰ฑใฃใฆไธ‹ใ•ใ„ใ€‚ # ไฝฟใ„ๆ–น ใƒขใƒ‡ใƒซใฏ[safetensorsๅฝขๅผ](unlimited_1_0.safetensors)ใ‹ใ‚‰ใƒ€ใ‚ฆใƒณใƒญใƒผใƒ‰ใงใใพใ™ใ€‚ ไปฅไธ‹ใ€ไธ€่ˆฌ็š„ใชใƒขใƒ‡ใƒซใ‚ซใƒผใƒ‰ใฎๆ—ฅๆœฌ่ชž่จณใงใ™ใ€‚ ## ใƒขใƒ‡ใƒซ่ฉณ็ดฐ - **ใƒขใƒ‡ใƒซใ‚ฟใ‚คใƒ—:** ๆ‹กๆ•ฃใƒขใƒ‡ใƒซใƒ™ใƒผใ‚นใฎ text-to-image ็”Ÿๆˆใƒขใƒ‡ใƒซ - **่จ€่ชž:** ๆ—ฅๆœฌ่ชž - **ใƒฉใ‚คใ‚ปใƒณใ‚น:** CreativeML Open RAIL++-M-NC License - **ใƒขใƒ‡ใƒซใฎ่ชฌๆ˜Ž:** ใ“ใฎใƒขใƒ‡ใƒซใฏใƒ—ใƒญใƒณใƒ—ใƒˆใซๅฟœใ˜ใฆ้ฉๅˆ‡ใช็”ปๅƒใ‚’็”Ÿๆˆใ™ใ‚‹ใ“ใจใŒใงใใพใ™ใ€‚ใ‚ขใƒซใ‚ดใƒชใ‚บใƒ ใฏ [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) ใจ [OpenCLIP-ViT/H](https://github.com/mlfoundations/open_clip) ใงใ™ใ€‚ - **่ฃœ่ถณ:** - **ๅ‚่€ƒๆ–‡็Œฎ:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ## ใƒขใƒ‡ใƒซใฎไฝฟ็”จไพ‹ Stable Diffusion v2ใจๅŒใ˜ไฝฟใ„ๆ–นใงใ™ใ€‚ ใŸใใ•ใ‚“ใฎๆ–นๆณ•ใŒใ‚ใ‚Šใพใ™ใŒใ€๏ผ’ใคใฎใƒ‘ใ‚ฟใƒผใƒณใ‚’ๆไพ›ใ—ใพใ™ใ€‚ - Web UI - Diffusers ### Web UIใฎๅ ดๅˆ Stable Diffusion v2 ใฎไฝฟใ„ๆ–นใจๅŒใ˜ใใ€safetensorๅฝขๅผใฎใƒขใƒ‡ใƒซใƒ•ใ‚กใ‚คใƒซใ‚’ใƒขใƒ‡ใƒซใƒ•ใ‚ฉใƒซใƒ€ใซๅ…ฅใ‚Œใฆใใ ใ•ใ„ใ€‚ ่ฉณใ—ใ„ใ‚คใƒณใ‚นใƒˆใƒผใƒซๆ–นๆณ•ใฏใ€[ใ“ใกใ‚‰ใฎ่จ˜ไบ‹](https://note.com/it_navi/n/n6ffb66513769)ใ‚’ๅ‚็…งใ—ใฆใใ ใ•ใ„ใ€‚ ใชใŠใ€xformersใ‚’ใ‚คใƒณใ‚นใƒˆใƒผใƒซใ—ใ€--xformers --disable-nan-checkใ‚ชใƒ—ใ‚ทใƒงใƒณใ‚’ใ‚ชใƒณใซใ™ใ‚‹ใ“ใจใ‚’ใŠใ™ใ™ใ‚ใ—ใพใ™ใ€‚ใใ†ใงใชใ„ๅ ดๅˆใฏ--no-halfใ‚ชใƒ—ใ‚ทใƒงใƒณใ‚’ใ‚ชใƒณใซใ—ใฆใใ ใ•ใ„ใ€‚ ### Diffusersใฎๅ ดๅˆ [๐Ÿค—'s Diffusers library](https://github.com/huggingface/diffusers) ใ‚’ไฝฟใฃใฆใใ ใ•ใ„ใ€‚ ใพใšใฏใ€ไปฅไธ‹ใฎใ‚นใ‚ฏใƒชใƒ—ใƒˆใ‚’ๅฎŸ่กŒใ—ใ€ใƒฉใ‚คใƒ–ใƒฉใƒชใ‚’ใ„ใ‚Œใฆใใ ใ•ใ„ใ€‚ ```bash pip install --upgrade git+https://github.com/huggingface/diffusers.git transformers accelerate scipy ``` ๆฌกใฎใ‚นใ‚ฏใƒชใƒ—ใƒˆใ‚’ๅฎŸ่กŒใ—ใ€็”ปๅƒใ‚’็”Ÿๆˆใ—ใฆใใ ใ•ใ„ใ€‚ ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "alfredplpl/unlimited-1-0" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "masterpiece, anime, close up, white short hair, red eyes, 1girl, solo, red roses" negative_prompt="lowres , kanji, monochrome, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)), ((censored)), ((bad aesthetic))" images = pipe(prompt,negative_prompt=negative_prompt, num_inference_steps=30).images images[0].save("girl.png") ``` **ๆณจๆ„**: - [xformers](https://github.com/facebookresearch/xformers) ใ‚’ไฝฟใ†ใจๆ—ฉใใชใ‚Šใพใ™ใ€‚ - GPUใ‚’ไฝฟใ†้š›ใซGPUใฎใƒกใƒขใƒชใŒๅฐ‘ใชใ„ไบบใฏ `pipe.enable_attention_slicing()` ใ‚’ไฝฟใฃใฆใใ ใ•ใ„ใ€‚ #### ๆƒณๅฎšใ•ใ‚Œใ‚‹็”จ้€” - ่‡ชๅทฑ่กจ็พ - ใ“ใฎAIใ‚’ไฝฟใ„ใ€ใ€Œใ‚ใชใŸใ€ใ‚‰ใ—ใ•ใ‚’็™บไฟกใ™ใ‚‹ใ“ใจ - ็”ปๅƒ็”ŸๆˆAIใซ้–ขใ™ใ‚‹ๅ ฑ้“ - ๅ…ฌๅ…ฑๆ”พ้€ใ ใ‘ใงใชใใ€ๅ–ถๅˆฉไผๆฅญใงใ‚‚ๅฏ่ƒฝ - ็”ปๅƒๅˆๆˆAIใซ้–ขใ™ใ‚‹ๆƒ…ๅ ฑใ‚’ใ€Œ็Ÿฅใ‚‹ๆจฉๅˆฉใ€ใฏๅ‰ตไฝœๆฅญ็•Œใซๆ‚ชๅฝฑ้Ÿฟใ‚’ๅŠใผใ•ใชใ„ใจๅˆคๆ–ญใ—ใŸใŸใ‚ใงใ™ใ€‚ใพใŸใ€ๅ ฑ้“ใฎ่‡ช็”ฑใชใฉใ‚’ๅฐŠ้‡ใ—ใพใ—ใŸใ€‚ - ็ ”็ฉถ้–‹็™บ - DiscordไธŠใงใฎใƒขใƒ‡ใƒซใฎๅˆฉ็”จ - ใƒ—ใƒญใƒณใƒ—ใƒˆใ‚จใƒณใ‚ธใƒ‹ใ‚ขใƒชใƒณใ‚ฐ - ใƒ•ใ‚กใ‚คใƒณใƒใƒฅใƒผใƒ‹ใƒณใ‚ฐ๏ผˆ่ฟฝๅŠ ๅญฆ็ฟ’ใจใ‚‚๏ผ‰ - DreamBooth ใชใฉ - ไป–ใฎใƒขใƒ‡ใƒซใจใฎใƒžใƒผใ‚ธ - ๆœฌใƒขใƒ‡ใƒซใฎๆ€ง่ƒฝใ‚’FIDใชใฉใง่ชฟในใ‚‹ใ“ใจ - ๆœฌใƒขใƒ‡ใƒซใŒStable Diffusionไปฅๅค–ใฎใƒขใƒ‡ใƒซใจใฏ็‹ฌ็ซ‹ใงใ‚ใ‚‹ใ“ใจใ‚’ใƒใ‚งใƒƒใ‚ฏใ‚ตใƒ ใ‚„ใƒใƒƒใ‚ทใƒฅ้–ขๆ•ฐใชใฉใง่ชฟในใ‚‹ใ“ใจ - ๆ•™่‚ฒ - ็พŽๅคง็”Ÿใ‚„ๅฐ‚้–€ๅญฆๆ ก็”Ÿใฎๅ’ๆฅญๅˆถไฝœ - ๅคงๅญฆ็”Ÿใฎๅ’ๆฅญ่ซ–ๆ–‡ใ‚„่ชฒ้กŒๅˆถไฝœ - ๅ…ˆ็”ŸใŒ็”ปๅƒ็”ŸๆˆAIใฎ็พ็Šถใ‚’ไผใˆใ‚‹ใ“ใจ - Hugging Face ใฎ Community ใซใ‹ใ„ใฆใ‚ใ‚‹็”จ้€” - ๆ—ฅๆœฌ่ชžใ‹่‹ฑ่ชžใง่ณชๅ•ใ—ใฆใใ ใ•ใ„ #### ๆƒณๅฎšใ•ใ‚Œใชใ„็”จ้€” - ็‰ฉไบ‹ใ‚’ไบ‹ๅฎŸใจใ—ใฆ่กจ็พใ™ใ‚‹ใ‚ˆใ†ใชใ“ใจ - ๅŽ็›ŠๅŒ–ใ•ใ‚Œใฆใ„ใ‚‹YouTubeใชใฉใฎใ‚ณใƒณใƒ†ใƒณใƒ„ใธใฎไฝฟ็”จ - ๅ•†็”จใฎใ‚ตใƒผใƒ“ใ‚นใจใ—ใฆ็›ดๆŽฅๆไพ›ใ™ใ‚‹ใ“ใจ - ๅ…ˆ็”Ÿใ‚’ๅ›ฐใ‚‰ใ›ใ‚‹ใ‚ˆใ†ใชใ“ใจ - ใใฎไป–ใ€ๅ‰ตไฝœๆฅญ็•Œใซๆ‚ชๅฝฑ้Ÿฟใ‚’ๅŠใผใ™ใ“ใจ # ไฝฟ็”จใ—ใฆใฏใ„ใ‘ใชใ„็”จ้€”ใ‚„ๆ‚ชๆ„ใฎใ‚ใ‚‹็”จ้€” - ใƒ‡ใ‚ธใ‚ฟใƒซ่ด‹ไฝœ ([Digital Forgery](https://arxiv.org/abs/2212.03860)) ใฏๅ…ฌ้–‹ใ—ใชใ„ใงใใ ใ•ใ„๏ผˆ่‘—ไฝœๆจฉๆณ•ใซ้•ๅใ™ใ‚‹ใŠใใ‚Œ๏ผ‰ - ไป–ไบบใฎไฝœๅ“ใ‚’็„กๆ–ญใงImage-to-Imageใ—ใชใ„ใงใใ ใ•ใ„๏ผˆ่‘—ไฝœๆจฉๆณ•ใซ้•ๅใ™ใ‚‹ใŠใใ‚Œ๏ผ‰ - ใ‚ใ„ใ›ใค็‰ฉใ‚’้ ’ๅธƒใ—ใชใ„ใงใใ ใ•ใ„ (ๅˆ‘ๆณ•175ๆกใซ้•ๅใ™ใ‚‹ใŠใใ‚Œ๏ผ‰ - ใ„ใ‚ใ‚†ใ‚‹ๆฅญ็•ŒใฎใƒžใƒŠใƒผใ‚’ๅฎˆใ‚‰ใชใ„ใ‚ˆใ†ใชใ“ใจ - ไบ‹ๅฎŸใซๅŸบใฅใ‹ใชใ„ใ“ใจใ‚’ไบ‹ๅฎŸใฎใ‚ˆใ†ใซ่ชžใ‚‰ใชใ„ใ‚ˆใ†ใซใ—ใฆใใ ใ•ใ„๏ผˆๅจๅŠ›ๆฅญๅ‹™ๅฆจๅฎณ็ฝชใŒ้ฉ็”จใ•ใ‚Œใ‚‹ใŠใใ‚Œ๏ผ‰ - ใƒ•ใ‚งใ‚คใ‚ฏใƒ‹ใƒฅใƒผใ‚น ## ใƒขใƒ‡ใƒซใฎ้™็•Œใ‚„ใƒใ‚คใ‚ขใ‚น ### ใƒขใƒ‡ใƒซใฎ้™็•Œ - ๆ‹กๆ•ฃใƒขใƒ‡ใƒซใ‚„ๅคง่ฆๆจก่จ€่ชžใƒขใƒ‡ใƒซใฏใ€ใ„ใพใ ใซๆœช็Ÿฅใฎ้ƒจๅˆ†ใŒๅคšใใ€ใใฎ้™็•Œใฏๅˆคๆ˜Žใ—ใฆใ„ใชใ„ใ€‚ ### ใƒใ‚คใ‚ขใ‚น - ๆ‹กๆ•ฃใƒขใƒ‡ใƒซใ‚„ๅคง่ฆๆจก่จ€่ชžใƒขใƒ‡ใƒซใฏใ€ใ„ใพใ ใซๆœช็Ÿฅใฎ้ƒจๅˆ†ใŒๅคšใใ€ใƒใ‚คใ‚ขใ‚นใฏๅˆคๆ˜Žใ—ใฆใ„ใชใ„ใ€‚ ## ๅญฆ็ฟ’ **ๅญฆ็ฟ’ใƒ‡ใƒผใ‚ฟ** ๅ›ฝๅ†…ๆณ•ใซๆบ–ๆ‹ ใ—ใŸใƒ‡ใƒผใ‚ฟใจใƒขใƒ‡ใƒซใ€‚ **ๅญฆ็ฟ’ใƒ—ใƒญใ‚ปใ‚น** - **ใƒใƒผใƒ‰ใ‚ฆใ‚งใ‚ข:** A6000x2 ## ่ฉ•ไพก็ตๆžœ ็ฌฌไธ‰่€…ใซใ‚ˆใ‚‹่ฉ•ไพกใ‚’ๆฑ‚ใ‚ใฆใ„ใพใ™ใ€‚ ## ็’ฐๅขƒใธใฎๅฝฑ้Ÿฟ - **ใƒใƒผใƒ‰ใ‚ฆใ‚งใ‚ขใ‚ฟใ‚คใƒ—:** A6000x2 - **ไฝฟ็”จๆ™‚้–“๏ผˆๅ˜ไฝใฏๆ™‚้–“๏ผ‰:** 1000 - **ๅญฆ็ฟ’ใ—ใŸๅ ดๆ‰€:** ๆ—ฅๆœฌ ## ๅ‚่€ƒๆ–‡็Œฎ @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } *ใ“ใฎใƒขใƒ‡ใƒซใ‚ซใƒผใƒ‰ใฏ [Stable Diffusion v2](https://huggingface.co/stabilityai/stable-diffusion-2/raw/main/README.md) ใซๅŸบใฅใ„ใฆๆ›ธใ‹ใ‚Œใพใ—ใŸใ€‚
PraveenJesu/openai-whisper-medium-peft-lora-colab
PraveenJesu
2023-06-25T11:43:36Z
0
0
peft
[ "peft", "region:us" ]
null
2023-06-25T11:43:33Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
Erfan2001/distilbert_NoTokenized
Erfan2001
2023-06-25T11:43:35Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-24T22:00:23Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: xxx results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xxx This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6856 - Accuracy: 0.7758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7996 | 1.0 | 4284 | 0.7921 | 0.7287 | | 0.5539 | 2.0 | 8568 | 0.6856 | 0.7758 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
edfryo/bangkelser
edfryo
2023-06-25T11:39:27Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-05-09T11:58:00Z
--- license: bigscience-openrail-m ---
jondurbin/airoboros-13b-gpt4-1.4-fp16
jondurbin
2023-06-25T11:39:17Z
1,423
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:jondurbin/airoboros-gpt4-1.4", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-22T10:46:42Z
--- license: other datasets: - jondurbin/airoboros-gpt4-1.4 --- float16 version of https://huggingface.co/jondurbin/airoboros-13b-gpt4-1.4
Ryukijano/DialoGPT_med_model
Ryukijano
2023-06-25T11:38:19Z
118
1
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-24T12:37:08Z
Hello there , this bot is trained on DialoGTP for an epoch of 45
jiyuanq/falcon-40b-instruct-gptq-128g-act
jiyuanq
2023-06-25T10:35:13Z
14
0
transformers
[ "transformers", "safetensors", "RefinedWeb", "text-generation", "custom_code", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T08:31:32Z
--- library_name: transformers pipeline_tag: text-generation --- falcon-40b-instruct quantized with GPTQ using the script in https://github.com/huggingface/text-generation-inference/pull/438 - group size: 128 - act order: true - nsamples: 128 - dataset: wikitext2
abhishek-kumar/dreambooth_test
abhishek-kumar
2023-06-25T10:34:42Z
30
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-24T16:02:54Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - abhishek-kumar/output This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
Omogo/xlm-roberta-base-finetuned-panx-de
Omogo
2023-06-25T10:27:58Z
124
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-25T07:39:34Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8602627537962806 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1355 - F1: 0.8603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2574 | 1.0 | 525 | 0.1627 | 0.8221 | | 0.1295 | 2.0 | 1050 | 0.1435 | 0.8467 | | 0.0815 | 3.0 | 1575 | 0.1355 | 0.8603 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
TheBloke/orca_mini_3B-GGML
TheBloke
2023-06-25T10:25:04Z
0
59
transformers
[ "transformers", "en", "dataset:psmathur/alpaca_orca", "dataset:psmathur/dolly-v2_orca", "dataset:psmathur/WizardLM_Orca", "arxiv:2306.02707", "license:mit", "region:us" ]
null
2023-06-24T22:33:56Z
--- inference: false license: mit language: - en library_name: transformers datasets: - psmathur/alpaca_orca - psmathur/dolly-v2_orca - psmathur/WizardLM_Orca --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Pankaj Mathur's Orca Mini 3B GGML These files are GGML format model files for [Pankaj Mathur's Orca Mini 3B](https://huggingface.co/psmathur/orca_mini_3b). GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as: * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [KoboldCpp](https://github.com/LostRuins/koboldcpp) * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) * [ctransformers](https://github.com/marella/ctransformers) ## Repositories available * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/orca_mini_3B-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/psmathur/orca_mini_3b) ## Prompt template: ``` ### System: You are an AI assistant that follows instruction extremely well. Help as much as you can. ### User: prompt ### Response: ``` or ``` ### System: You are an AI assistant that follows instruction extremely well. Help as much as you can. ### User: prompt ### Input: input ### Response: ``` <!-- compatibility_ggml start --> ## Compatibility ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`. These are guaranteed to be compatbile with any UIs, tools and libraries released since late May. ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` These cannot be provided with Open Llama 3B models at this time, due to an issue in llama.cpp. This is being worked on in the llama.cpp repo. More issues here: https://github.com/ggerganov/llama.cpp/issues/1919 Refer to the Provided Files table below to see what files use which methods, and how. <!-- compatibility_ggml end --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | orca-mini-3b.ggmlv3.q4_0.bin | q4_0 | 4 | 1.93 GB | 4.43 GB | Original llama.cpp quant method, 4-bit. | | orca-mini-3b.ggmlv3.q4_1.bin | q4_1 | 4 | 2.14 GB | 4.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | | orca-mini-3b.ggmlv3.q5_0.bin | q5_0 | 5 | 2.36 GB | 4.86 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | | orca-mini-3b.ggmlv3.q5_1.bin | q5_1 | 5 | 2.57 GB | 5.07 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | | orca-mini-3b.ggmlv3.q8_0.bin | q8_0 | 8 | 3.64 GB | 6.14 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. ## How to run in `llama.cpp` I use the following command line; adjust for your tastes and needs: ``` ./main -t 10 -ngl 32 -m orca-mini-3b.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### System:\nYou are an story writing assistant who writes very long, detailed and interesting stories\n\n### User:\nWrite a story about llamas\n\n### Input:\n{input}\n\n### Response:\n" ``` If you're able to use full GPU offloading, you should use `-t 1` to get best performance. If not able to fully offload to GPU, you should use more cores. Change `-t 10` to the number of physical CPU cores you have, or a lower number depending on what gives best performance. Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Pankaj Mathur's Orca Mini 3B # orca_mini_3b An [OpenLLaMa-3B model](https://github.com/openlm-research/open_llama) model trained on explain tuned datasets, created using Instructions and Input from WizardLM, Alpaca & Dolly-V2 datasets and applying Orca Research Paper dataset construction approaches. # Dataset We build explain tuned [WizardLM dataset ~70K](https://github.com/nlpxucan/WizardLM), [Alpaca dataset ~52K](https://crfm.stanford.edu/2023/03/13/alpaca.html) & [Dolly-V2 dataset ~15K](https://github.com/databrickslabs/dolly) created using approaches from [Orca Research Paper](https://arxiv.org/abs/2306.02707). We leverage all of the 15 system instructions provided in Orca Research Paper. to generate custom datasets, in contrast to vanilla instruction tuning approaches used by original datasets. This helps student model aka this model to learn ***thought*** process from teacher model, which is ChatGPT (gpt-3.5-turbo-0301 version). Please see below example usage how the **System** prompt is added before each **instruction**. # Training The training configurations are provided in the table below. The training takes on 8x A100(80G) GPUs and lasts for around 4 Hours for cost of $48 using [Lambda Labs](https://lambdalabs.com) We used DeepSpeed with fully sharded data parallelism, also know as [ZeRO stage 3](https://engineering.fb.com/2021/07/15/open-source/fsdp/) by writing our own fine tunning scripts plus leveraging some of the model training code provided by amazing [OpenAlpaca repo](https://github.com/yxuansu/OpenAlpaca) Here are some of params used during training: ||| |:-------------:|:-------------:| |*batch_size*|64| |*train_micro_batch_size_per_gpu*|4| |*gradient_accumulation_steps*|2| |*Learning rate*|2e-5| |*Max length*|1024| |*Epochs*|3| |*Optimizer*|AdamW| # Example Usage Below shows an example on how to use this model ```python import torch from transformers import LlamaForCausalLM, LlamaTokenizer # Hugging Face model_path model_path = 'psmathur/orca_mini_3b' tokenizer = LlamaTokenizer.from_pretrained(model_path) model = LlamaForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map='auto', ) #generate text function def generate_text(system, instruction, input=None): if input: prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" else: prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Response:\n" tokens = tokenizer.encode(prompt) tokens = torch.LongTensor(tokens).unsqueeze(0) tokens = tokens.to('cuda') instance = {'input_ids': tokens,'top_p': 1.0, 'temperature':0.7, 'generate_len': 1024, 'top_k': 50} length = len(tokens[0]) with torch.no_grad(): rest = model.generate( input_ids=tokens, max_length=length+instance['generate_len'], use_cache=True, do_sample=True, top_p=instance['top_p'], temperature=instance['temperature'], top_k=instance['top_k'] ) output = rest[0][length:] string = tokenizer.decode(output, skip_special_tokens=True) return f'[!] Response: {string}' # Sample Test Instruction Used by Youtuber Sam Witteveen https://www.youtube.com/@samwitteveenai system = 'You are an AI assistant that follows instruction extremely well. Help as much as you can.' instruction = 'Write a letter to Sam Altman, CEO of OpenAI, requesting him to convert GPT4 a private model by OpenAI to an open source project' print(generate_text(system, instruction)) ``` ``` [!] Response: Dear Sam Altman, I am writing to request that you convert the GPT4 private model developed by OpenAI to an open source project. As a user of OpenAI, I have been waiting for the day when I can use the advanced natural language processing capabilities of GPT4 in a more open and accessible way. While OpenAI has made significant progress in developing AI applications, it has primarily focused on building private models that are not accessible to the general public. However, with the recent release of GPT-3, there is a growing demand for more open and accessible AI tools. Converting GPT4 to an open source project would allow for greater transparency, collaboration, and innovation. It would also help to build trust in the technology and ensure that it is used ethically and responsibly. I urge you to consider converting GPT4 to an open source project. This would be a significant contribution to the AI community and would help to create a more open and accessible future. Thank you for your consideration. Sincerely, [Your Name] ``` **P.S. I am #opentowork and #collaboration, if you can help, please reach out to me at psmathur.public@gmail.com** Next Goals: 1) Try more data like actually using FLAN-v2, just like Orka Research Paper (I am open for suggestions) 2) Provide more options for Text generation UI. (may be https://github.com/oobabooga/text-generation-webui) 3) Provide 4bit GGML/GPTQ quantized model (may be [TheBloke](https://huggingface.co/TheBloke) can help here) Limitations & Biases: This model can produce factually incorrect output, and should not be relied on to produce factually accurate information. This model was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. Disclaimer: The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes. Citiation: If you found wizardlm_alpaca_dolly_orca_open_llama_3b useful in your research or applications, please kindly cite using the following BibTeX: ``` @misc{wizardlm_alpaca_dolly_orca_open_llama_3b, author = {Pankaj Mathur}, title = {wizardlm_alpaca_dolly_orca_open_llama_3b: An explain tuned OpenLLaMA-3b model on custom wizardlm, alpaca, & dolly datasets}, year = {2023}, publisher = {GitHub, HuggingFace}, journal = {GitHub repository, HuggingFace repository}, howpublished = {\url{https://github.com/pankajarm/wizardlm_alpaca_dolly_orca_open_llama_3b}, \url{https://https://huggingface.co/psmathur/wizardlm_alpaca_dolly_orca_open_llama_3b}}, } ``` ``` @software{openlm2023openllama, author = {Xinyang Geng and Hao Liu}, title = {OpenLLaMA: An Open Reproduction of LLaMA}, month = May, year = 2023, url = {https://github.com/openlm-research/open_llama} } ``` ``` @misc{openalpaca, author = {Yixuan Su and Tian Lan and Deng Cai}, title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}}, } ``` ``` @misc{alpaca, author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto }, title = {Stanford Alpaca: An Instruction-following LLaMA model}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}}, } ```
Sp1786/mutliclass-sentiment-analysis-bert
Sp1786
2023-06-25T10:22:55Z
4
0
transformers
[ "transformers", "bert", "code", "text-classification", "en", "dataset:Sp1786/multiclass-sentiment-analysis-dataset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-classification
2023-06-21T11:23:59Z
--- license: apache-2.0 datasets: - Sp1786/multiclass-sentiment-analysis-dataset language: - en metrics: - bleu - sacrebleu library_name: transformers pipeline_tag: text-classification tags: - code ---
kbondar17/test-trainer
kbondar17
2023-06-25T10:12:41Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-25T10:06:32Z
--- license: mit tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: test-trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-trainer This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4009 - F1: 0.6363 - Roc Auc: 0.7682 - Accuracy: 0.6079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 125 | 0.2975 | 0.5710 | 0.7129 | 0.4693 | | No log | 2.0 | 250 | 0.3742 | 0.6226 | 0.7621 | 0.6013 | | No log | 3.0 | 375 | 0.4009 | 0.6363 | 0.7682 | 0.6079 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
dhruvil237/userutterance_classification_verplus
dhruvil237
2023-06-25T10:05:26Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "doi:10.57967/hf/0811", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-05T12:20:52Z
--- license: mit tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: userutterance_classification_verplus results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.9619354838709677 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # userutterance_classification_verplus This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2270 - Accuracy: 0.9619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 5.0219 | 0.21 | 200 | 4.9813 | 0.0077 | | 4.8915 | 0.42 | 400 | 4.5741 | 0.1155 | | 4.2736 | 0.63 | 600 | 3.5359 | 0.4719 | | 3.2701 | 0.84 | 800 | 2.4291 | 0.7429 | | 2.3578 | 1.05 | 1000 | 1.5793 | 0.8413 | | 1.5695 | 1.26 | 1200 | 1.0029 | 0.8994 | | 1.0412 | 1.47 | 1400 | 0.6475 | 0.9187 | | 0.7034 | 1.68 | 1600 | 0.4439 | 0.9303 | | 0.501 | 1.89 | 1800 | 0.3400 | 0.9381 | | 0.3187 | 2.1 | 2000 | 0.2793 | 0.9439 | | 0.2185 | 2.31 | 2200 | 0.2538 | 0.9490 | | 0.1669 | 2.52 | 2400 | 0.2210 | 0.9523 | | 0.1081 | 2.73 | 2600 | 0.2225 | 0.9519 | | 0.1004 | 2.94 | 2800 | 0.2136 | 0.9555 | | 0.0665 | 3.14 | 3000 | 0.2078 | 0.9561 | | 0.0509 | 3.35 | 3200 | 0.2155 | 0.9568 | | 0.05 | 3.56 | 3400 | 0.2107 | 0.9581 | | 0.0527 | 3.77 | 3600 | 0.2171 | 0.9568 | | 0.0447 | 3.98 | 3800 | 0.2128 | 0.9590 | | 0.0259 | 4.19 | 4000 | 0.2099 | 0.9587 | | 0.0279 | 4.4 | 4200 | 0.2179 | 0.9577 | | 0.0176 | 4.61 | 4400 | 0.2191 | 0.9574 | | 0.0288 | 4.82 | 4600 | 0.2216 | 0.9590 | | 0.0328 | 5.03 | 4800 | 0.2237 | 0.9606 | | 0.0154 | 5.24 | 5000 | 0.2241 | 0.9616 | | 0.0157 | 5.45 | 5200 | 0.2265 | 0.9603 | | 0.023 | 5.66 | 5400 | 0.2276 | 0.9613 | | 0.0178 | 5.87 | 5600 | 0.2270 | 0.9619 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
mrizalf7/xlm-r-qa-squad-retrained
mrizalf7
2023-06-25T09:57:29Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-06-13T19:17:39Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-roberta-finetuned-small-squad-indonesian-rizal-4-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-finetuned-small-squad-indonesian-rizal-4-2 This model is a fine-tuned version of [mrizalf7/xlm-roberta-finetuned-small-squad-indonesian-rizal-4](https://huggingface.co/mrizalf7/xlm-roberta-finetuned-small-squad-indonesian-rizal-4) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.4152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 6.1326 | | No log | 2.0 | 2 | 6.1326 | | No log | 3.0 | 3 | 5.4152 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
lucasbertola/ppo-LunarLander-v2
lucasbertola
2023-06-25T09:29:20Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-19T11:40:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 295.14 +/- 14.94 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sd-concepts-library/pokemon-raichu-sd-model
sd-concepts-library
2023-06-25T09:26:29Z
0
0
null
[ "base_model:stabilityai/stable-diffusion-2", "base_model:finetune:stabilityai/stable-diffusion-2", "license:mit", "region:us" ]
null
2023-06-25T09:26:28Z
--- license: mit base_model: stabilityai/stable-diffusion-2 --- ### Pokemon Raichu - SD model on Stable Diffusion This is the `<cat-toy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<cat-toy> 0](https://huggingface.co/sd-concepts-library/pokemon-raichu-sd-model/resolve/main/concept_images/0.jpeg) ![<cat-toy> 1](https://huggingface.co/sd-concepts-library/pokemon-raichu-sd-model/resolve/main/concept_images/1.jpeg) ![<cat-toy> 2](https://huggingface.co/sd-concepts-library/pokemon-raichu-sd-model/resolve/main/concept_images/2.jpeg) ![<cat-toy> 3](https://huggingface.co/sd-concepts-library/pokemon-raichu-sd-model/resolve/main/concept_images/3.jpeg)
ahishamm/vit-base-HAM-10000-sharpened
ahishamm
2023-06-25T09:17:26Z
190
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-25T08:42:48Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy - recall - f1 - precision model-index: - name: vit-base-HAM-10000-sharpened results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-HAM-10000-sharpened This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the ahishamm/HAM_db_sharpened dataset. It achieves the following results on the evaluation set: - Loss: 0.4392 - Accuracy: 0.8529 - Recall: 0.8529 - F1: 0.8529 - Precision: 0.8529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.7303 | 0.2 | 100 | 0.7828 | 0.7197 | 0.7197 | 0.7197 | 0.7197 | | 0.7198 | 0.4 | 200 | 0.7519 | 0.7377 | 0.7377 | 0.7377 | 0.7377 | | 0.7519 | 0.6 | 300 | 0.7125 | 0.7541 | 0.7541 | 0.7541 | 0.7541 | | 0.6657 | 0.8 | 400 | 0.6623 | 0.7571 | 0.7571 | 0.7571 | 0.7571 | | 0.5896 | 1.0 | 500 | 0.5964 | 0.7835 | 0.7835 | 0.7835 | 0.7835 | | 0.515 | 1.2 | 600 | 0.5745 | 0.8015 | 0.8015 | 0.8015 | 0.8015 | | 0.4318 | 1.4 | 700 | 0.5061 | 0.8200 | 0.8200 | 0.8200 | 0.8200 | | 0.4299 | 1.6 | 800 | 0.5239 | 0.8075 | 0.8075 | 0.8075 | 0.8075 | | 0.4793 | 1.8 | 900 | 0.5366 | 0.8125 | 0.8125 | 0.8125 | 0.8125 | | 0.4202 | 2.0 | 1000 | 0.4882 | 0.8244 | 0.8244 | 0.8244 | 0.8244 | | 0.2105 | 2.2 | 1100 | 0.5330 | 0.8234 | 0.8234 | 0.8234 | 0.8234 | | 0.2597 | 2.4 | 1200 | 0.4604 | 0.8369 | 0.8369 | 0.8369 | 0.8369 | | 0.2261 | 2.59 | 1300 | 0.4893 | 0.8409 | 0.8409 | 0.8409 | 0.8409 | | 0.1853 | 2.79 | 1400 | 0.4793 | 0.8494 | 0.8494 | 0.8494 | 0.8494 | | 0.1739 | 2.99 | 1500 | 0.4392 | 0.8529 | 0.8529 | 0.8529 | 0.8529 | | 0.0629 | 3.19 | 1600 | 0.4941 | 0.8584 | 0.8584 | 0.8584 | 0.8584 | | 0.0802 | 3.39 | 1700 | 0.4974 | 0.8613 | 0.8613 | 0.8613 | 0.8613 | | 0.0712 | 3.59 | 1800 | 0.5416 | 0.8594 | 0.8594 | 0.8594 | 0.8594 | | 0.0365 | 3.79 | 1900 | 0.5318 | 0.8574 | 0.8574 | 0.8574 | 0.8574 | | 0.0591 | 3.99 | 2000 | 0.5344 | 0.8574 | 0.8574 | 0.8574 | 0.8574 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
kchen621/ppo-LunarLander-v2
kchen621
2023-06-25T09:13:58Z
1
0
transformers
[ "transformers", "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-06-19T19:22:36Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -169.25 +/- 80.22 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo_lun' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'kchen621/ppo-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
Ellbendls/Pixelcopter-PLE-v0
Ellbendls
2023-06-25T09:09:39Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-06-23T12:37:16Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 62.70 +/- 42.68 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
anas21/keras-dummy-functional-demo
anas21
2023-06-25T09:07:24Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-06-24T23:19:07Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | False | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
Shridipta-06/LunarLander-v2_unit8part1
Shridipta-06
2023-06-25T08:50:28Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T08:46:05Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -128.49 +/- 35.10 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Shridipta-06/LunarLander-v2_unit8part1' 'batch_size': 512 'minibatch_size': 128} ```
RoundtTble/dinov2_vits14_onnx
RoundtTble
2023-06-25T08:20:24Z
0
0
null
[ "onnx", "region:us" ]
null
2023-06-24T07:10:50Z
# dinov2_vits14 ## ONNX Model Check this [PR](https://github.com/facebookresearch/dinov2/pull/129). ## Run Run triton container. ``` make triton ``` ``` docker logs dinov2_vits14_triton ============================= == Triton Inference Server == ============================= NVIDIA Release 23.04 (build 58408265) Triton Server Version 2.33.0 Copyright (c) 2018-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. Various files include modifications (c) NVIDIA CORPORATION & AFFILIATES. All rights reserved. This container image and its contents are governed by the NVIDIA Deep Learning Container License. By pulling and using the container, you accept the terms and conditions of this license: https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license WARNING: CUDA Minor Version Compatibility mode ENABLED. Using driver version 525.105.17 which has support for CUDA 12.0. This container was built with CUDA 12.1 and will be run in Minor Version Compatibility mode. CUDA Forward Compatibility is preferred over Minor Version Compatibility for use with this container but was unavailable: [[Forward compatibility was attempted on non supported HW (CUDA_ERROR_COMPAT_NOT_SUPPORTED_ON_DEVICE) cuInit()=804]] See https://docs.nvidia.com/deploy/cuda-compatibility/ for details. I0625 08:05:36.712010 1 pinned_memory_manager.cc:240] Pinned memory pool is created at '0x7f6c46000000' with size 268435456 I0625 08:05:36.712625 1 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864 I0625 08:05:36.717785 1 model_lifecycle.cc:459] loading: dinov2_vits14:1 I0625 08:05:36.723707 1 onnxruntime.cc:2504] TRITONBACKEND_Initialize: onnxruntime I0625 08:05:36.723725 1 onnxruntime.cc:2514] Triton TRITONBACKEND API version: 1.12 I0625 08:05:36.723731 1 onnxruntime.cc:2520] 'onnxruntime' TRITONBACKEND API version: 1.12 I0625 08:05:36.723735 1 onnxruntime.cc:2550] backend configuration: {"cmdline":{"auto-complete-config":"true","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","default-max-batch-size":"4"}} I0625 08:05:36.770311 1 onnxruntime.cc:2608] TRITONBACKEND_ModelInitialize: dinov2_vits14 (version 1) I0625 08:05:36.770781 1 onnxruntime.cc:666] skipping model configuration auto-complete for 'dinov2_vits14': inputs and outputs already specified I0625 08:05:36.771205 1 onnxruntime.cc:2651] TRITONBACKEND_ModelInstanceInitialize: dinov2_vits14_0 (GPU device 0) 2023-06-25 08:05:37.157976034 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 465, index: 122, mask: {125, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.158142138 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 466, index: 123, mask: {62, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.158159030 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 467, index: 124, mask: {126, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.158174259 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 468, index: 125, mask: {63, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.165944431 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 344, index: 1, mask: {1, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.158230084 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 469, index: 126, mask: {127, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.169979079 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 347, index: 4, mask: {66, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.169927531 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 345, index: 2, mask: {65, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.169954703 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 346, index: 3, mask: {2, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.173982388 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 350, index: 7, mask: {4, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.173929448 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 348, index: 5, mask: {3, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.173954065 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 349, index: 6, mask: {67, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.181926759 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 351, index: 8, mask: {68, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.185932583 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 352, index: 9, mask: {5, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.189924821 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 353, index: 10, mask: {69, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.193940975 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 464, index: 121, mask: {61, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.194020786 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 357, index: 14, mask: {71, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.193940915 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 354, index: 11, mask: {6, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.193968147 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 355, index: 12, mask: {70, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.193992072 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 356, index: 13, mask: {7, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.197974211 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 360, index: 17, mask: {9, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.197928554 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 358, index: 15, mask: {8, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.197950686 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 359, index: 16, mask: {72, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.201924259 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 361, index: 18, mask: {73, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.205931957 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 362, index: 19, mask: {10, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.209926179 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 363, index: 20, mask: {74, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.213927705 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 364, index: 21, mask: {11, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.217799496 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 365, index: 22, mask: {75, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.217849460 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 366, index: 23, mask: {12, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.221966294 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 367, index: 24, mask: {76, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.221966304 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 463, index: 120, mask: {124, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.225931100 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 462, index: 119, mask: {60, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.225933645 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 368, index: 25, mask: {13, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.229929350 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 369, index: 26, mask: {77, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.233930445 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 370, index: 27, mask: {14, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.233930525 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 461, index: 118, mask: {123, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.237930518 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 371, index: 28, mask: {78, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.241927085 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 372, index: 29, mask: {15, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.245926977 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 373, index: 30, mask: {79, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.249931199 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 374, index: 31, mask: {16, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.253927515 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 375, index: 32, mask: {80, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.257925694 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 376, index: 33, mask: {17, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.261929715 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 377, index: 34, mask: {81, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.265966397 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 378, index: 35, mask: {18, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.269926725 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 379, index: 36, mask: {82, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.273931337 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 380, index: 37, mask: {19, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.281941021 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 381, index: 38, mask: {83, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.282017776 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 398, index: 55, mask: {28, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.282038465 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 382, index: 39, mask: {20, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.282090914 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 383, index: 40, mask: {84, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.286235010 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 385, index: 42, mask: {85, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.285955121 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 401, index: 58, mask: {93, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.282070957 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 399, index: 56, mask: {92, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.286082321 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 384, index: 41, mask: {21, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.285929422 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 400, index: 57, mask: {29, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.293926803 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 405, index: 62, mask: {95, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.289931018 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 402, index: 59, mask: {30, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.289956767 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 403, index: 60, mask: {94, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.301929004 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 388, index: 45, mask: {23, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.289975973 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 404, index: 61, mask: {31, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.294054945 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 406, index: 63, mask: {32, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.294078880 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 407, index: 64, mask: {96, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.314023441 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 409, index: 66, mask: {97, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.289931068 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 386, index: 43, mask: {22, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.318030297 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 411, index: 68, mask: {98, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.289956797 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 387, index: 44, mask: {86, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.301929014 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 408, index: 65, mask: {33, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.314096058 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 410, index: 67, mask: {34, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.334030890 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 414, index: 71, mask: {36, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.305931271 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 389, index: 46, mask: {87, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.321929038 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 390, index: 47, mask: {24, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.321948134 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 391, index: 48, mask: {88, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.321965006 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 392, index: 49, mask: {25, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.321981437 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 393, index: 50, mask: {89, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.321996396 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 394, index: 51, mask: {26, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322012065 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 395, index: 52, mask: {90, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322026713 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 396, index: 53, mask: {27, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322049907 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 397, index: 54, mask: {91, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322065276 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 460, index: 117, mask: {59, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322080735 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 425, index: 82, mask: {105, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322096315 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 426, index: 83, mask: {42, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322112155 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 427, index: 84, mask: {106, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322127053 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 428, index: 85, mask: {43, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322143324 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 429, index: 86, mask: {107, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322157170 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 430, index: 87, mask: {44, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322173340 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 431, index: 88, mask: {108, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322188569 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 432, index: 89, mask: {45, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322205311 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 433, index: 90, mask: {109, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322219938 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 434, index: 91, mask: {46, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322235177 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 435, index: 92, mask: {110, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322249955 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 436, index: 93, mask: {47, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322267158 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 437, index: 94, mask: {111, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322281345 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 438, index: 95, mask: {48, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322296904 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 439, index: 96, mask: {112, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322312113 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 440, index: 97, mask: {49, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322329005 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 441, index: 98, mask: {113, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322343652 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 442, index: 99, mask: {50, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322359492 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 443, index: 100, mask: {114, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322377907 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 444, index: 101, mask: {51, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322393366 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 445, index: 102, mask: {115, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322408725 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 446, index: 103, mask: {52, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322423233 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 447, index: 104, mask: {116, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322437289 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 448, index: 105, mask: {53, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322453440 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 449, index: 106, mask: {117, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322467697 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 450, index: 107, mask: {54, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322483076 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 451, index: 108, mask: {118, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322496812 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 452, index: 109, mask: {55, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.445929743 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 417, index: 74, mask: {101, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322511880 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 453, index: 110, mask: {119, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322525526 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 454, index: 111, mask: {56, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322541977 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 455, index: 112, mask: {120, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.454013818 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 422, index: 79, mask: {40, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322555663 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 456, index: 113, mask: {57, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.457932126 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 423, index: 80, mask: {104, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322571683 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 457, index: 114, mask: {121, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.322585920 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 458, index: 115, mask: {58, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.318158029 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 412, index: 69, mask: {35, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.334163851 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 415, index: 72, mask: {100, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.341919085 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 416, index: 73, mask: {37, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.323408365 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 413, index: 70, mask: {99, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.453923387 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 418, index: 75, mask: {38, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.453947493 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 419, index: 76, mask: {102, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.453965727 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 420, index: 77, mask: {39, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.453991656 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 421, index: 78, mask: {103, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.458087059 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 424, index: 81, mask: {41, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:37.585007204 [E:onnxruntime:log, env.cc:251 ThreadMain] pthread_setaffinity_np failed for thread: 459, index: 116, mask: {122, }, error code: 22 error msg: Invalid argument. Specify the number of threads explicitly so the affinity is not set. 2023-06-25 08:05:38.570069572 [W:onnxruntime:, session_state.cc:1136 VerifyEachNodeIsAssignedToAnEp] Some nodes were not assigned to the preferred execution providers which may or may not have an negative impact on performance. e.g. ORT explicitly assigns shape related ops to CPU to improve perf. 2023-06-25 08:05:38.570088387 [W:onnxruntime:, session_state.cc:1138 VerifyEachNodeIsAssignedToAnEp] Rerunning with verbose output on a non-minimal build will show node assignments. I0625 08:05:39.975559 1 model_lifecycle.cc:694] successfully loaded 'dinov2_vits14' version 1 I0625 08:05:39.975625 1 server.cc:583] +------------------+------+ | Repository Agent | Path | +------------------+------+ +------------------+------+ I0625 08:05:39.975662 1 server.cc:610] +-------------+-----------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Backend | Path | Config | +-------------+-----------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------+ | onnxruntime | /opt/tritonserver/backends/onnxruntime/libtriton_onnxruntime.so | {"cmdline":{"auto-complete-config":"true","backend-directory":"/opt/tritonserver/backends","min-compute-capability":"6.000000","default-max-batch-size":"4"}} | +-------------+-----------------------------------------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------+ I0625 08:05:39.975683 1 server.cc:653] +---------------+---------+--------+ | Model | Version | Status | +---------------+---------+--------+ | dinov2_vits14 | 1 | READY | +---------------+---------+--------+ I0625 08:05:39.991510 1 metrics.cc:808] Collecting metrics for GPU 0: NVIDIA GeForce RTX 3090 I0625 08:05:39.992145 1 metrics.cc:701] Collecting CPU metrics I0625 08:05:39.992360 1 tritonserver.cc:2387] +----------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Option | Value | +----------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | server_id | triton | | server_version | 2.33.0 | | server_extensions | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda_shared_memory binary_tensor_data parameters statistics trace logging | | model_repository_path[0] | /models | | model_control_mode | MODE_NONE | | strict_model_config | 0 | | rate_limit | OFF | | pinned_memory_pool_byte_size | 268435456 | | cuda_memory_pool_byte_size{0} | 67108864 | | min_supported_compute_capability | 6.0 | | strict_readiness | 1 | | exit_timeout | 30 | | cache_enabled | 0 | +----------------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ I0625 08:05:39.993603 1 grpc_server.cc:2450] Started GRPCInferenceService at 0.0.0.0:8001 I0625 08:05:39.993771 1 http_server.cc:3555] Started HTTPService at 0.0.0.0:8000 I0625 08:05:40.034678 1 http_server.cc:185] Started Metrics Service at 0.0.0.0:8002 ``` Perf analyzer `dinov2_vits14` ``` make perf ``` ``` docker run --gpus all --rm -it --net host nvcr.io/nvidia/tritonserver:23.04-py3-sdk perf_analyzer -m dinov2_vits14 --percentile=95 -i grpc -u 0.0.0.0:8001 --concurrency-range 16:16 --shape input:3,280,280 ================================= == Triton Inference Server SDK == ================================= NVIDIA Release 23.04 (build 58408269) Copyright (c) 2018-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. Various files include modifications (c) NVIDIA CORPORATION & AFFILIATES. All rights reserved. This container image and its contents are governed by the NVIDIA Deep Learning Container License. By pulling and using the container, you accept the terms and conditions of this license: https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license WARNING: CUDA Minor Version Compatibility mode ENABLED. Using driver version 525.105.17 which has support for CUDA 12.0. This container was built with CUDA 12.1 and will be run in Minor Version Compatibility mode. CUDA Forward Compatibility is preferred over Minor Version Compatibility for use with this container but was unavailable: [[Forward compatibility was attempted on non supported HW (CUDA_ERROR_COMPAT_NOT_SUPPORTED_ON_DEVICE) cuInit()=804]] See https://docs.nvidia.com/deploy/cuda-compatibility/ for details. *** Measurement Settings *** Batch size: 1 Service Kind: Triton Using "time_windows" mode for stabilization Measurement window: 5000 msec Latency limit: 0 msec Concurrency limit: 16 concurrent requests Using synchronous calls for inference Stabilizing using p95 latency Request concurrency: 16 Client: Request count: 9403 Throughput: 522.33 infer/sec p50 latency: 30482 usec p90 latency: 32100 usec p95 latency: 32564 usec p99 latency: 34203 usec Avg gRPC time: 30589 usec ((un)marshal request/response 93 usec + response wait 30496 usec) Server: Inference count: 9403 Execution count: 1177 Successful request count: 9403 Avg request latency: 24295 usec (overhead 220 usec + queue 9042 usec + compute input 1511 usec + compute infer 13485 usec + compute output 37 usec) Inferences/Second vs. Client p95 Batch Latency Concurrency: 16, throughput: 522.33 infer/sec, latency 32564 usec ```
Neupane9Sujal/Text_Summarization
Neupane9Sujal
2023-06-25T07:51:58Z
108
0
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "code", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-25T10:28:20Z
--- language: - en metrics: - rouge tags: - code ---
Lajonbot/Amazon-LightGPT-pl-qlora
Lajonbot
2023-06-25T07:40:56Z
0
0
null
[ "tensorboard", "pl", "dataset:Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish", "license:openrail", "region:us" ]
null
2023-05-29T06:22:37Z
--- license: openrail datasets: - Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish language: - pl ---
Lajonbot/lamini-instruct-tuned-3b-pl-lora
Lajonbot
2023-06-25T07:37:46Z
0
0
null
[ "pl", "dataset:Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish", "license:openrail", "region:us" ]
null
2023-06-15T06:08:17Z
--- license: openrail datasets: - Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish language: - pl ---
Lajonbot/stablelm-base-alpha-3b-instruct-pl-lora
Lajonbot
2023-06-25T07:37:23Z
0
0
null
[ "tensorboard", "pl", "dataset:Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish", "license:openrail", "region:us" ]
null
2023-06-15T06:13:44Z
--- license: openrail datasets: - Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish language: - pl ---
Lajonbot/polish-gpt2-small-instruct
Lajonbot
2023-06-25T07:36:40Z
114
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "pl", "dataset:Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish", "license:openrail", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-20T19:33:30Z
--- license: openrail datasets: - Lajonbot/alpaca-dolly-chrisociepa-instruction-only-polish language: - pl ---
Davlan/bert-base-multilingual-cased-finetuned-swahili
Davlan
2023-06-25T07:32:51Z
568
3
transformers
[ "transformers", "pytorch", "tf", "safetensors", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Hugging Face's logo --- language: ha datasets: --- # bert-base-multilingual-cased-finetuned-swahili ## Model description **bert-base-multilingual-cased-finetuned-swahili** is a **Swahili BERT** model obtained by fine-tuning **bert-base-multilingual-cased** model on Swahili language texts. It provides **better performance** than the multilingual BERT on text classification and named entity recognition datasets. Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on Swahili corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-swahili') >>> unmasker("Jumatatu, Bwana Kagame alielezea shirika la France24 huko [MASK] kwamba "hakuna uhalifu ulitendwa") [{'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Paris kwamba hakuna uhalifu ulitendwa', 'score': 0.31642526388168335, 'token': 10728, 'token_str': 'Paris'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Rwanda kwamba hakuna uhalifu ulitendwa', 'score': 0.15753623843193054, 'token': 57557, 'token_str': 'Rwanda'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Burundi kwamba hakuna uhalifu ulitendwa', 'score': 0.07211585342884064, 'token': 57824, 'token_str': 'Burundi'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko France kwamba hakuna uhalifu ulitendwa', 'score': 0.029844321310520172, 'token': 10688, 'token_str': 'France'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Senegal kwamba hakuna uhalifu ulitendwa', 'score': 0.0265930388122797, 'token': 38052, 'token_str': 'Senegal'}] ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on [Swahili CC-100](http://data.statmt.org/cc-100/) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| mBERT F1 | sw_bert F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 86.80 | 89.36 ### BibTeX entry and citation info By David Adelani ``` ```
Davlan/xlm-roberta-base-finetuned-swahili
Davlan
2023-06-25T07:31:57Z
119
3
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Hugging Face's logo --- language: sw datasets: --- # xlm-roberta-base-finetuned-swahili ## Model description **xlm-roberta-base-finetuned-swahili** is a **Swahili RoBERTa** model obtained by fine-tuning **xlm-roberta-base** model on Swahili language texts. It provides **better performance** than the XLM-RoBERTa on text classification and named entity recognition datasets. Specifically, this model is a *xlm-roberta-base* model that was fine-tuned on Swahili corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/xlm-roberta-base-finetuned-swahili') >>> unmasker("Jumatatu, Bwana Kagame alielezea shirika la France24 huko <mask> kwamba hakuna uhalifu ulitendwa") [{'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Ufaransa kwamba hakuna uhalifu ulitendwa', 'score': 0.5077782273292542, 'token': 190096, 'token_str': 'Ufaransa'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Paris kwamba hakuna uhalifu ulitendwa', 'score': 0.3657738268375397, 'token': 7270, 'token_str': 'Paris'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Gabon kwamba hakuna uhalifu ulitendwa', 'score': 0.01592041552066803, 'token': 176392, 'token_str': 'Gabon'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko France kwamba hakuna uhalifu ulitendwa', 'score': 0.010881908237934113, 'token': 9942, 'token_str': 'France'}, {'sequence': 'Jumatatu, Bwana Kagame alielezea shirika la France24 huko Marseille kwamba hakuna uhalifu ulitendwa', 'score': 0.009554869495332241, 'token': 185918, 'token_str': 'Marseille'}] ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on [Swahili CC-100](http://data.statmt.org/cc-100/) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| XLM-R F1 | sw_roberta F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 87.55 | 89.46 ### BibTeX entry and citation info By David Adelani ``` ```
AdShenoy/Bart-samsum-fastai
AdShenoy
2023-06-25T07:20:59Z
0
0
fastai
[ "fastai", "region:us" ]
null
2023-06-24T06:53:20Z
--- tags: - fastai --- # Amazing! ๐Ÿฅณ Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using ๐Ÿค— Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner ๐Ÿค! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
Davlan/xlm-roberta-base-finetuned-xhosa
Davlan
2023-06-25T07:14:21Z
171
1
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "fill-mask", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- license: apache-2.0 ---
Davlan/byt5-base-eng-yor-mt
Davlan
2023-06-25T07:13:35Z
147
2
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "arxiv:2103.08647", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - yo - en datasets: - JW300 + [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) --- # byt5-base-eng-yor-mt ## Model description **byt5-base-eng-yor-mt** is a **machine translation** model from English language to Yorรนbรก language based on a fine-tuned byt5-base model. It establishes a **strong baseline** for automatically translating texts from English to Yorรนbรก. Specifically, this model is a *byt5-base* model that was fine-tuned on JW300 Yorรนbรก corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) #### Limitations and bias This model is limited by its training dataset. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on on JW300 corpus and [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt) dataset ## Training procedure This model was trained on NVIDIA V100 GPU ## Eval results on Test set (BLEU score) Fine-tuning byt5-base achieves **12.23 BLEU** on [Menyo-20k test set](https://arxiv.org/abs/2103.08647) while mt5-base achieves 9.82 ### BibTeX entry and citation info By David Adelani ``` ```
masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0
masakhane
2023-06-25T07:13:23Z
325
8
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "token-classification", "am", "bm", "obj", "ee", "fon", "ha", "ig", "rw", "lg", "luo", "mos", "ny", "pcm", "sn", "sw", "tn", "tw", "wo", "xh", "yo", "zu", "multilingual", "dataset:masakhaner2", "arxiv:2103.11811", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-15T12:52:06Z
--- license: afl-3.0 language: - am - bm - obj - ee - fon - ha - ig - rw - lg - luo - mos - ny - pcm - sn - sw - tn - tw - wo - xh - yo - zu - multilingual datasets: - masakhaner2 --- # masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0 ## Model description **masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0** is a **Named Entity Recognition (NER)** model for 21 African languages. Specifically, this model is a *Davlan/afro-xlmr-large* model that was fine-tuned on an aggregation of African language datasets obtained from two versions of MasakhaNER dataset i.e. [MasakhaNER 1.0](https://huggingface.co/datasets/masakhaner) and [MasakhaNER 2.0](https://huggingface.co/datasets/masakhane/masakhaner2). The languages covered are: - Amharic (Amharic) - Bambara (bam) - Ghomala (bbj) - Ewe (ewe) - Fon (fon) - Hausa (hau) - Igbo (ibo) - Kinyarwanda (kin) - Luganda (lug) - Dholuo (luo) -Mossi (mos) - Chichewa (nya) - Nigerian Pidgin - chShona (sna) - Kiswahili (swฤ…) - Setswana (tsn) - Twi (twi) - Wolof (wol) - isiXhosa (xho) - Yorรนbรก (yor) - isiZulu (zul) It has been trained to recognize four types of entities: dates & times (DATE), location (LOC), organization (ORG), and person (PER). ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0") model = AutoModelForTokenClassification.from_pretrained("masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Emir of Kano turban Zhang wey don spend 18 years for Nigeria" ner_results = nlp(example) print(ner_results) ``` ## Eval results on MasakhaNER (F-score) Model evaluated on MasakhaNER 1.0 and MasakhaNER 2.0 test sets language| MasakhaNER 1.0 | MasakhaNER 2.0 -|-|- amh |80.5| bam || 83.1 bbj || 76.6 ewe || 89.6 fon || 83.8 hau |90.3| 87.5 ibo |89.5| 93.5 kin |82.0| 87.6 lug |87.1| 89.7 luo |80.8| 82.5 mos || 75.5 nya || 92.7 pcm |91.1| 90.9 sna || 96.5 swa |88.5| 93.4 tsn || 90.3 twi || 81.3 wol |72.7| 87.3 xho || 90.0 yor |88.1| 90.5 zul || 91.3 avg |**85.1**| **87.7** #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on the aggregation of [MasakhaNER 1.0](https://huggingface.co/datasets/masakhaner) and [MasakhaNER 2.0](https://huggingface.co/datasets/masakhane/masakhaner2) datasets The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes: Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a personโ€™s name right after another personโ€™s name I-PER |Personโ€™s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location ## Training procedure This model was trained on a single NVIDIA V100 GPU with recommended hyperparameters from the [original MasakhaNER paper](https://arxiv.org/abs/2103.11811) which trained & evaluated the model on MasakhaNER corpus. ### BibTeX entry and citation info ``` @article{Adelani2022MasakhaNER2A, title={MasakhaNER 2.0: Africa-centric Transfer Learning for Named Entity Recognition}, author={David Ifeoluwa Adelani and Graham Neubig and Sebastian Ruder and Shruti Rijhwani and Michael Beukman and Chester Palen-Michel and Constantine Lignos and Jesujoba Oluwadara Alabi and Shamsuddeen Hassan Muhammad and Peter Nabende and Cheikh M. Bamba Dione and Andiswa Bukula and Rooweither Mabuya and Bonaventure F. P. Dossou and Blessing K. Sibanda and Happy Buzaaba and Jonathan Mukiibi and Godson Kalipe and Derguene Mbaye and Amelia Taylor and Fatoumata Kabore and Chris C. Emezue and Anuoluwapo Aremu and Perez Ogayo and Catherine W. Gitau and Edwin Munkoh-Buabeng and Victoire Memdjokam Koagne and Allahsera Auguste Tapo and Tebogo Macucwa and Vukosi Marivate and Elvis Mboning and Tajuddeen R. Gwadabe and Tosin P. Adewumi and Orevaoghene Ahia and Joyce Nakatumba-Nabende and Neo L. Mokono and Ignatius M Ezeani and Chiamaka Ijeoma Chukwuneke and Mofetoluwa Adeyemi and Gilles Hacheme and Idris Abdulmumin and Odunayo Ogundepo and Oreen Yousuf and Tatiana Moteu Ngoli and Dietrich Klakow}, journal={ArXiv}, year={2022}, volume={abs/2210.12391} } ```
NasimB/gpt2-dp-mod-aochild-10chars
NasimB
2023-06-25T06:53:44Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-25T03:14:38Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-dp-mod-aochild-10chars results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-dp-mod-aochild-10chars This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.4173 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7077 | 0.27 | 500 | 5.6423 | | 5.3468 | 0.54 | 1000 | 5.2154 | | 5.0042 | 0.8 | 1500 | 4.9608 | | 4.7637 | 1.07 | 2000 | 4.7969 | | 4.5583 | 1.34 | 2500 | 4.6931 | | 4.4721 | 1.61 | 3000 | 4.5939 | | 4.3855 | 1.88 | 3500 | 4.5049 | | 4.218 | 2.15 | 4000 | 4.4679 | | 4.1202 | 2.41 | 4500 | 4.4175 | | 4.105 | 2.68 | 5000 | 4.3697 | | 4.0733 | 2.95 | 5500 | 4.3257 | | 3.8601 | 3.22 | 6000 | 4.3344 | | 3.8504 | 3.49 | 6500 | 4.3033 | | 3.8507 | 3.76 | 7000 | 4.2759 | | 3.8215 | 4.02 | 7500 | 4.2709 | | 3.5828 | 4.29 | 8000 | 4.2887 | | 3.6183 | 4.56 | 8500 | 4.2711 | | 3.6264 | 4.83 | 9000 | 4.2489 | | 3.5136 | 5.1 | 9500 | 4.2794 | | 3.3547 | 5.36 | 10000 | 4.2895 | | 3.383 | 5.63 | 10500 | 4.2727 | | 3.3982 | 5.9 | 11000 | 4.2594 | | 3.2002 | 6.17 | 11500 | 4.3133 | | 3.1199 | 6.44 | 12000 | 4.3184 | | 3.1483 | 6.71 | 12500 | 4.3123 | | 3.1516 | 6.97 | 13000 | 4.3013 | | 2.9083 | 7.24 | 13500 | 4.3587 | | 2.9076 | 7.51 | 14000 | 4.3641 | | 2.9176 | 7.78 | 14500 | 4.3616 | | 2.8855 | 8.05 | 15000 | 4.3806 | | 2.7292 | 8.32 | 15500 | 4.3978 | | 2.7443 | 8.58 | 16000 | 4.4023 | | 2.7445 | 8.85 | 16500 | 4.4046 | | 2.702 | 9.12 | 17000 | 4.4125 | | 2.6515 | 9.39 | 17500 | 4.4159 | | 2.6552 | 9.66 | 18000 | 4.4170 | | 2.6529 | 9.92 | 18500 | 4.4173 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
teoha/openai-whisper-medium-PeftType.LORA-colab
teoha
2023-06-25T06:51:18Z
2
0
peft
[ "peft", "region:us" ]
null
2023-06-25T06:51:11Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
zanafi/sentiment_model
zanafi
2023-06-25T06:31:04Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "dataset:indonlu", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-23T06:53:10Z
--- license: mit tags: - generated_from_trainer datasets: - indonlu metrics: - accuracy - precision - recall - f1 model-index: - name: sentiment_model results: - task: name: Text Classification type: text-classification dataset: name: indonlu type: indonlu config: emot split: validation args: emot metrics: - name: Accuracy type: accuracy value: 0.7363636363636363 - name: Precision type: precision value: 0.7397155596092384 - name: Recall type: recall value: 0.7459489407651173 - name: F1 type: f1 value: 0.741920437379511 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment_model This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the indonlu dataset. It achieves the following results on the evaluation set: - Loss: 0.7788 - Accuracy: 0.7364 - Precision: 0.7397 - Recall: 0.7459 - F1: 0.7419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.1939 | 1.0 | 221 | 0.8261 | 0.6932 | 0.7203 | 0.7034 | 0.7056 | | 0.6866 | 2.0 | 442 | 0.7925 | 0.725 | 0.7378 | 0.7377 | 0.7346 | | 0.4791 | 3.0 | 663 | 0.7788 | 0.7364 | 0.7397 | 0.7459 | 0.7419 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
sukantan/all-mpnet-base-v2-ftlegal-v3
sukantan
2023-06-25T06:20:52Z
5
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "dataset:sukantan/nyaya-st-training", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-06-25T06:20:46Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity datasets: - sukantan/nyaya-st-training --- # sukantan/all-mpnet-base-v2-ftlegal-v3 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sukantan/all-mpnet-base-v2-ftlegal-v3') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sukantan/all-mpnet-base-v2-ftlegal-v3) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 391 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MegaBatchMarginLoss.MegaBatchMarginLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 391, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Raizel123/pamelasafitrilora
Raizel123
2023-06-25T04:37:40Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-25T04:34:50Z
--- license: creativeml-openrail-m ---
ardhies/CuteAsianFace
ardhies
2023-06-25T04:10:18Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-25T04:06:53Z
--- license: creativeml-openrail-m ---
Laurie/baichuan-7b-qlora-moss
Laurie
2023-06-25T04:06:12Z
5
0
peft
[ "peft", "text-generation", "zh", "en", "dataset:fnlp/moss-003-sft-data", "license:apache-2.0", "region:us" ]
text-generation
2023-06-25T03:38:18Z
--- library_name: peft license: apache-2.0 datasets: - fnlp/moss-003-sft-data language: - zh - en pipeline_tag: text-generation --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0 ## ไฝฟ็”จๆ–นๆณ• git clone https://huggingface.co/Laurie/baichuan-7b-qlora-moss cd baichuan-7b-qlora-moss python src/web_demo.py \ --model_name_or_path baichuan-inc/baichuan-7B \ --checkpoint_dir .
razaali/swin-tiny-patch4-window7-224-finetuned-eurosat
razaali
2023-06-25T04:00:02Z
211
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-06-25T03:25:51Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.977037037037037 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0662 - Accuracy: 0.9770 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2501 | 1.0 | 190 | 0.1077 | 0.9626 | | 0.1375 | 2.0 | 380 | 0.0892 | 0.9707 | | 0.1324 | 3.0 | 570 | 0.0662 | 0.9770 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
CJacobnriia/spatnzRVC
CJacobnriia
2023-06-25T03:56:17Z
0
0
null
[ "en", "region:us" ]
null
2023-06-25T01:52:32Z
--- language: - en --- This is an RVC model of spatnz (https://www.youtube.com/channel/UCcNPbOeFo-qM0wpis8Lwdig) ![spatnz.png](https://huggingface.co/CJacobnriia/spatnzRVC/resolve/main/spatnz.png)
FutureMiracle/CGEC-BART-Model
FutureMiracle
2023-06-25T03:55:55Z
0
3
fairseq
[ "fairseq", "BART", "pytorch", "CGEC", "translation", "zh", "license:apache-2.0", "region:us" ]
translation
2023-06-21T08:28:46Z
--- license: apache-2.0 language: - zh library_name: fairseq tags: - BART - pytorch - CGEC metrics: - bleu pipeline_tag: translation --- # ไธญๆ–‡่ฏญๆณ•็บ ้”™ไปปๅŠกไป‹็ป Task:ไธญๆ–‡่ฏญๆณ•็บ ้”™ไปปๅŠก(Chinese Grammatical Error Correction,CGEC) CGECไปปๅŠก่พ“ๅ…ฅไธ€ๅฅไธญๆ–‡ๆ–‡ๆœฌ๏ผŒๆ–‡ๆœฌ็บ ้”™ๆŠ€ๆœฏๅฏนๅฅๅญไธญๅญ˜ๅœจๆ‹ผๅ†™ใ€่ฏญๆณ•ใ€่ฏญไน‰็ญ‰้”™่ฏฏ่ฟ›่กŒ่‡ชๅŠจ็บ ๆญฃ๏ผŒ่พ“ๅ‡บ็บ ๆญฃๅŽ็š„ๆ–‡ๆœฌใ€‚ # ไธญๆ–‡่ฏญๆณ•็บ ้”™ๆ–นๆณ• ไธปๆต็š„ๆ–นๆณ•ไธบseq2seqๅ’Œseq2edits๏ผŒๅธธ็”จ็š„ไธญๆ–‡็บ ้”™ๆ•ฐๆฎ้›†ๅŒ…ๆ‹ฌLang8ใ€NLPCC18ๅ’ŒCGED็ญ‰ใ€‚ # ๆจกๅž‹ๆ่ฟฐ ๆˆ‘ไปฌ้‡‡็”จๅŸบไบŽtransformer็š„seq2seqๆ–นๆณ•ๅปบๆจกๆ–‡ๆœฌ็บ ้”™ไปปๅŠกใ€‚ๆจกๅž‹้€‰ๆ‹ฉไธŠ๏ผŒๆˆ‘ไปฌไฝฟ็”จไธญๆ–‡BARTไฝœไธบ้ข„่ฎญ็ปƒๆจกๅž‹๏ผŒ็„ถๅŽๅœจLang8ๅ’ŒCGED่ฎญ็ปƒๆ•ฐๆฎไธŠ่ฟ›่กŒfinetuneใ€‚ ๅœจไธๅผ•ๅ…ฅ้ขๅค–่ต„ๆบ็š„ๆƒ…ๅ†ตไธ‹๏ผŒๆœฌๆจกๅž‹ๅœจLANG8ๆต‹่ฏ•้›†ไธŠ่พพๅˆฐไบ†SOTAใ€‚ # ๆจกๅž‹่ฎญ็ปƒ ๆจกๅž‹่ฎญ็ปƒๆ˜ฏๅŸบไบŽfairseqๅบ“่ฟ›่กŒ่ฎญ็ปƒ็š„ใ€‚ # ๅฆ‚ไฝ•ไฝฟ็”จ step1: ไธ‹่ฝฝfairseqๅบ“๏ผŒๅนถ่ฟ›่กŒๅฎ‰่ฃ… step2: ไฝฟ็”จinteractive.pyๆ–นๆณ•่ฟ›่กŒๆŽจ็† python -u ${FAIRSEQ_DIR}/interactive.py $PROCESSED_DIR \ --task syntax-enhanced-translation \ --path ${MODEL_PATH} \ --beam ${BEAM} \ --nbest ${N_BEST} \ -s src \ -t tgt \ --buffer-size 1000 \ --batch-size 32 \ --num-workers 12 \ --log-format tqdm \ --remove-bpe \ --fp16 \ --output_file $OUTPUT_DIR/output.nbest \ <$OUTPUT_DIR/lang8_test.char
blackmount8/open-llama-7b-open-instruct-ct2-float16
blackmount8
2023-06-25T03:49:04Z
9
0
transformers
[ "transformers", "text-generation", "en", "dataset:VMware/open-instruct-v1-oasst-dolly-hhrlhf", "license:cc", "region:us" ]
text-generation
2023-06-24T15:05:27Z
--- inference: false license: cc datasets: - VMware/open-instruct-v1-oasst-dolly-hhrlhf language: - en library_name: transformers pipeline_tag: text-generation --- # blackmount8/open-llama-7B-open-instruct-ct2-float16 Float16 version of [VMware/open-llama-7b-open-instruct](https://huggingface.co/VMware/open-llama-7b-open-instruct), quantized using CTranslate2. ## VMware/open-llama-7B-open-instruct Instruction-tuned version of the fully trained Open LLama 7B model. The model is open for `<b>`COMMERCIAL USE `</b>`. `<br>` `<b>` NOTE `</b>` : The model was trained using the Alpaca prompt template `<b>` NOTE `</b>` : Fast tokenizer results in incorrect encoding, set the ``use_fast = False`` parameter, when instantiating the tokenizer ## License - `<b>`Commercially Viable `</b>` - Instruction dataset, [VMware/open-instruct-v1-oasst-dolly-hhrlhf](https://huggingface.co/datasets/VMware/open-instruct-v1-oasst-dolly-hhrlhf) is under cc-by-sa-3.0 - Language Model, ([openlm-research/open_llama_7b](https://huggingface.co/openlm-research/open_llama_7b)) is under apache-2.0 ## Nomenclature - Model : Open-llama - Model Size: 7B parameters - Dataset: Open-instruct-v1 (oasst, dolly, hhrlhf) ## Use in CTranslate2 ``` import ctranslate2 from transformers import AutoTokenizer model_name = "blackmount8/open-llama-7b-open-instruct-ct2-float16" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, padding_side="left", truncation_side="left") model = ctranslate2.Generator(model_name, device="auto", compute_type="float16") input_text = ["What is the meaning of stonehenge?", "Hello mate!"] input_ids = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).input_ids input_tokens = [tokenizer.convert_ids_to_tokens(ele) for ele in input_ids] outputs = model.generate_batch(input_tokens, max_length=128) output_tokens = [ ele.sequences_ids[0] for ele in outputs ] output = tokenizer.batch_decode(output_tokens) print(output) ```
blackmount8/open-llama-13b-open-instruct-ct2-float16
blackmount8
2023-06-25T03:48:21Z
4
0
transformers
[ "transformers", "text-generation", "en", "dataset:VMware/open-instruct-v1-oasst-dolly-hhrlhf", "license:cc", "region:us" ]
text-generation
2023-06-24T16:44:56Z
--- inference: false license: cc datasets: - VMware/open-instruct-v1-oasst-dolly-hhrlhf language: - en library_name: transformers pipeline_tag: text-generation --- # blackmount8/open-llama-13B-open-instruct-ct2-float16 Float16 version of [VMware/open-llama-13b-open-instruct](https://huggingface.co/VMware/open-llama-13b-open-instruct), quantized using CTranslate2. ## VMware/open-llama-13B-open-instruct Instruction-tuned version of the fully trained Open LLama 13B model. The model is open for `<b>`COMMERCIAL USE `</b>`. `<br>` `<b>` NOTE `</b>` : The model was trained using the Alpaca prompt template `<b>` NOTE `</b>` : Fast tokenizer results in incorrect encoding, set the ``use_fast = False`` parameter, when instantiating the tokenizer ## License - `<b>`Commercially Viable `</b>` - Instruction dataset, [VMware/open-instruct-v1-oasst-dolly-hhrlhf](https://huggingface.co/datasets/VMware/open-instruct-v1-oasst-dolly-hhrlhf) is under cc-by-sa-3.0 - Language Model, ([openlm-research/open_llama_13b](https://huggingface.co/openlm-research/open_llama_13b)) is under apache-2.0 ## Nomenclature - Model : Open-llama - Model Size: 13B parameters - Dataset: Open-instruct-v1 (oasst, dolly, hhrlhf) ## Use in CTranslate2 ``` import ctranslate2 from transformers import AutoTokenizer model_name = "blackmount8/open-llama-13b-open-instruct-ct2-float16" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, padding_side="left", truncation_side="left") model = ctranslate2.Generator(model_name, device="auto", compute_type="float16") input_text = ["What is the meaning of stonehenge?", "Hello mate!"] input_ids = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True).input_ids input_tokens = [tokenizer.convert_ids_to_tokens(ele) for ele in input_ids] outputs = model.generate_batch(input_tokens, max_length=128) output_tokens = [ ele.sequences_ids[0] for ele in outputs ] output = tokenizer.batch_decode(output_tokens) print(output) ```
duyhngoc/Wave2Vec2_OV_Vie
duyhngoc
2023-06-25T03:47:48Z
77
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "vivos", "generated_from_trainer", "dataset:vivos", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-21T10:58:36Z
--- license: apache-2.0 tags: - automatic-speech-recognition - vivos - generated_from_trainer datasets: - vivos metrics: - wer model-index: - name: Wave2Vec2_OV_Vie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Wave2Vec2_OV_Vie This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the VIVOS - NA dataset. It achieves the following results on the evaluation set: - Loss: 3.5894 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | No log | 0.27 | 100 | 3.9210 | 1.0 | | No log | 0.55 | 200 | 3.4375 | 1.0 | | No log | 0.82 | 300 | 3.4356 | 1.0 | | No log | 1.1 | 400 | 3.4045 | 1.0 | | 4.1866 | 1.37 | 500 | 3.4694 | 1.0 | | 4.1866 | 1.65 | 600 | 3.6266 | 1.0 | | 4.1866 | 1.92 | 700 | 3.5694 | 1.0 | | 4.1866 | 2.19 | 800 | 3.5733 | 1.0 | | 4.1866 | 2.47 | 900 | 3.6381 | 1.0 | | 3.4376 | 2.74 | 1000 | 3.6604 | 1.0 | | 3.4376 | 3.02 | 1100 | 3.5868 | 1.0 | | 3.4376 | 3.29 | 1200 | 3.4988 | 1.0 | | 3.4376 | 3.57 | 1300 | 3.5409 | 1.0 | | 3.4376 | 3.84 | 1400 | 3.4883 | 1.0 | | 3.4365 | 4.12 | 1500 | 3.6125 | 1.0 | | 3.4365 | 4.39 | 1600 | 3.6123 | 1.0 | | 3.4365 | 4.66 | 1700 | 3.5978 | 1.0 | | 3.4365 | 4.94 | 1800 | 3.5693 | 1.0 | | 3.4365 | 5.21 | 1900 | 3.5659 | 1.0 | | 3.4339 | 5.49 | 2000 | 3.6234 | 1.0 | | 3.4339 | 5.76 | 2100 | 3.5997 | 1.0 | | 3.4339 | 6.04 | 2200 | 3.6529 | 1.0 | | 3.4339 | 6.31 | 2300 | 3.5780 | 1.0 | | 3.4339 | 6.58 | 2400 | 3.5844 | 1.0 | | 3.4333 | 6.86 | 2500 | 3.5792 | 1.0 | | 3.4333 | 7.13 | 2600 | 3.5468 | 1.0 | | 3.4333 | 7.41 | 2700 | 3.5691 | 1.0 | | 3.4333 | 7.68 | 2800 | 3.5408 | 1.0 | | 3.4333 | 7.96 | 2900 | 3.5482 | 1.0 | | 3.4294 | 8.23 | 3000 | 3.6070 | 1.0 | | 3.4294 | 8.5 | 3100 | 3.5905 | 1.0 | | 3.4294 | 8.78 | 3200 | 3.6018 | 1.0 | | 3.4294 | 9.05 | 3300 | 3.6326 | 1.0 | | 3.4294 | 9.33 | 3400 | 3.6214 | 1.0 | | 3.4293 | 9.6 | 3500 | 3.6372 | 1.0 | | 3.4293 | 9.88 | 3600 | 3.6215 | 1.0 | | 3.4293 | 10.15 | 3700 | 3.5106 | 1.0 | | 3.4293 | 10.43 | 3800 | 3.5066 | 1.0 | | 3.4293 | 10.7 | 3900 | 3.5352 | 1.0 | | 3.4295 | 10.97 | 4000 | 3.5129 | 1.0 | | 3.4295 | 11.25 | 4100 | 3.6384 | 1.0 | | 3.4295 | 11.52 | 4200 | 3.6019 | 1.0 | | 3.4295 | 11.8 | 4300 | 3.5876 | 1.0 | | 3.4295 | 12.07 | 4400 | 3.6207 | 1.0 | | 3.4252 | 12.35 | 4500 | 3.5998 | 1.0 | | 3.4252 | 12.62 | 4600 | 3.6216 | 1.0 | | 3.4252 | 12.89 | 4700 | 3.6073 | 1.0 | | 3.4252 | 13.17 | 4800 | 3.5567 | 1.0 | | 3.4252 | 13.44 | 4900 | 3.5745 | 1.0 | | 3.4274 | 13.72 | 5000 | 3.5738 | 1.0 | | 3.4274 | 13.99 | 5100 | 3.5914 | 1.0 | | 3.4274 | 14.27 | 5200 | 3.6004 | 1.0 | | 3.4274 | 14.54 | 5300 | 3.5968 | 1.0 | | 3.4274 | 14.81 | 5400 | 3.5908 | 1.0 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3
tyavika/pytorch
tyavika
2023-06-25T03:32:35Z
77
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-06-25T03:00:51Z
--- tags: - generated_from_trainer model-index: - name: pytorch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pytorch This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cpu - Datasets 2.12.0 - Tokenizers 0.13.2
jiuzhan/YoLoV7-dog
jiuzhan
2023-06-25T03:27:58Z
0
0
null
[ "region:us" ]
null
2023-06-25T03:11:07Z
# ็‹—็š„็ง็ฑป่ฏ†ๅˆซ ็”จไบ†500ๅผ ๅ›พ็‰‡็š„ๆ•ฐๆฎ้›†๏ผŒๆœ‰็‚นๅฐ‘ใ€‚ ๅˆ†ไบ†38ไธช็ง็ฑป๏ผŒๆฏ็งๅผ ๆ•ฐๆœ‰็‚นๅฐ‘ใ€‚ ๆ•ˆๆžœไธ€่ˆฌใ€‚
MazVer/queenbee
MazVer
2023-06-25T02:55:12Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-25T02:52:19Z
--- license: creativeml-openrail-m ---
gaiamolinaro/ppo-SnowballTarget
gaiamolinaro
2023-06-25T02:36:18Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-06-25T02:36:11Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: gaiamolinaro/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
klaylouis1932/xlm-roberta-base-finetuned-panx-de
klaylouis1932
2023-06-25T02:22:45Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-24T07:47:55Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8653353814644136 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1339 - F1: 0.8653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2583 | 1.0 | 525 | 0.1596 | 0.8231 | | 0.1262 | 2.0 | 1050 | 0.1395 | 0.8468 | | 0.0824 | 3.0 | 1575 | 0.1339 | 0.8653 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
nbiish/learning-taxi-v3
nbiish
2023-06-25T02:14:07Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T02:14:05Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: learning-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="nbiish/learning-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
mort666/faster-whisper-large-v2-th
mort666
2023-06-25T02:13:04Z
644
8
ctranslate2
[ "ctranslate2", "audio", "automatic-speech-recognition", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "license:mit", "region:us" ]
automatic-speech-recognition
2023-06-18T15:28:40Z
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - 'no' - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su tags: - audio - automatic-speech-recognition license: mit library_name: ctranslate2 --- # Whisper large-v2 (Thai Finetune) model for CTranslate2 This repository contains the conversion of the [biodatlab/whisper-th-large-combined](https://huggingface.co/biodatlab/whisper-th-large-combined) which is finetune of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) for the Thai language to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format. This model can be used in CTranslate2 or projects based on CTranslate2 such as [faster-whisper](https://github.com/guillaumekln/faster-whisper). ## Example ```python from faster_whisper import WhisperModel model = WhisperModel("large-v2") segments, info = model.transcribe("audio.mp3") for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) ``` ## Conversion details The original model was converted with the following command: ``` ct2-transformers-converter --model biodatlab/whisper-th-large-combined --output_dir faster-whisper-large-v2-th \ --copy_files tokenizer.json --quantization float16 ``` Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the [`compute_type` option in CTranslate2](https://opennmt.net/CTranslate2/quantization.html). ## More information **For more information about the original model, see its [model card](https://huggingface.co/biodatlab/whisper-th-large-combined).**
cczhong/chinese-alpaca-plus-lora-7b-merged-ggml-4b
cczhong
2023-06-25T01:30:50Z
0
3
null
[ "region:us" ]
null
2023-06-24T17:53:57Z
need ggml-v3 to run. llama-cpp-python > 0.1.57 from https://github.com/ymcui/Chinese-LLaMA-Alpaca
yashgharat/HFTaxi-v3
yashgharat
2023-06-25T01:18:43Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-06-25T01:18:41Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: HFTaxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="yashgharat/HFTaxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
NasimB/gpt2-dp-mod_aochild
NasimB
2023-06-25T00:27:44Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-06-24T20:59:20Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: gpt2-dp-mod_aochild results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-dp-mod_aochild This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.4146 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.706 | 0.27 | 500 | 5.6466 | | 5.3616 | 0.54 | 1000 | 5.2058 | | 5.0148 | 0.81 | 1500 | 4.9571 | | 4.7595 | 1.08 | 2000 | 4.8100 | | 4.5716 | 1.35 | 2500 | 4.6947 | | 4.4792 | 1.62 | 3000 | 4.5951 | | 4.3985 | 1.89 | 3500 | 4.5126 | | 4.2203 | 2.16 | 4000 | 4.4747 | | 4.1373 | 2.42 | 4500 | 4.4206 | | 4.1109 | 2.69 | 5000 | 4.3695 | | 4.0827 | 2.96 | 5500 | 4.3285 | | 3.8662 | 3.23 | 6000 | 4.3409 | | 3.863 | 3.5 | 6500 | 4.3058 | | 3.8585 | 3.77 | 7000 | 4.2777 | | 3.8073 | 4.04 | 7500 | 4.2766 | | 3.594 | 4.31 | 8000 | 4.2886 | | 3.6275 | 4.58 | 8500 | 4.2700 | | 3.6373 | 4.85 | 9000 | 4.2436 | | 3.488 | 5.12 | 9500 | 4.2800 | | 3.3669 | 5.39 | 10000 | 4.2884 | | 3.3981 | 5.66 | 10500 | 4.2764 | | 3.3991 | 5.93 | 11000 | 4.2533 | | 3.177 | 6.2 | 11500 | 4.3110 | | 3.1321 | 6.47 | 12000 | 4.3137 | | 3.1491 | 6.73 | 12500 | 4.3083 | | 3.1544 | 7.0 | 13000 | 4.3112 | | 2.8924 | 7.27 | 13500 | 4.3587 | | 2.9109 | 7.54 | 14000 | 4.3634 | | 2.9185 | 7.81 | 14500 | 4.3600 | | 2.8619 | 8.08 | 15000 | 4.3819 | | 2.7347 | 8.35 | 15500 | 4.3980 | | 2.7435 | 8.62 | 16000 | 4.4007 | | 2.752 | 8.89 | 16500 | 4.4012 | | 2.6887 | 9.16 | 17000 | 4.4116 | | 2.6506 | 9.43 | 17500 | 4.4137 | | 2.6588 | 9.7 | 18000 | 4.4144 | | 2.66 | 9.97 | 18500 | 4.4146 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
alantao912/models
alantao912
2023-06-25T00:07:35Z
13
0
transformers
[ "transformers", "pytorch", "blip", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-06-24T20:19:09Z
--- license: bsd-3-clause tags: - generated_from_trainer datasets: - imagefolder model-index: - name: models results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # models This model is a fine-tuned version of [Salesforce/blip-image-captioning-base](https://huggingface.co/Salesforce/blip-image-captioning-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4107 - Wer Score: 0.5495 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Score | |:-------------:|:-----:|:----:|:---------------:|:---------:| | 9.4536 | 0.05 | 10 | 7.8217 | 41.7753 | | 7.3267 | 0.11 | 20 | 6.6585 | 0.7753 | | 6.2358 | 0.16 | 30 | 5.7758 | 0.5667 | | 5.2862 | 0.22 | 40 | 4.7628 | 0.5419 | | 4.3786 | 0.27 | 50 | 3.9203 | 0.6398 | | 3.5554 | 0.33 | 60 | 3.1482 | 0.5613 | | 2.849 | 0.38 | 70 | 2.5209 | 0.5548 | | 2.3041 | 0.44 | 80 | 2.0561 | 0.5645 | | 1.8999 | 0.49 | 90 | 1.7474 | 0.5645 | | 1.658 | 0.55 | 100 | 1.5722 | 0.5548 | | 1.5238 | 0.6 | 110 | 1.4836 | 0.5591 | | 1.4726 | 0.66 | 120 | 1.4461 | 0.5538 | | 1.4328 | 0.71 | 130 | 1.4285 | 0.5473 | | 1.4211 | 0.77 | 140 | 1.4205 | 0.5559 | | 1.4202 | 0.82 | 150 | 1.4156 | 0.5548 | | 1.4098 | 0.88 | 160 | 1.4129 | 0.5505 | | 1.4124 | 0.93 | 170 | 1.4113 | 0.5548 | | 1.4075 | 0.99 | 180 | 1.4107 | 0.5495 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cpu - Datasets 2.13.1 - Tokenizers 0.13.3
benbav97/ppo-Huggy
benbav97
2023-06-24T23:46:50Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-06-24T22:49:23Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: benbav97/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
mohameddhiab/rate-jokes-bert
mohameddhiab
2023-06-24T23:45:08Z
121
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-24T23:21:00Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: rate-jokes-bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rate-jokes-bert This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0871 - F1: 0.0444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 64 | 2.4209 | 0.0028 | | No log | 2.0 | 128 | 2.3785 | 0.0130 | | No log | 3.0 | 192 | 2.3215 | 0.0729 | | No log | 4.0 | 256 | 2.1787 | 0.0444 | | No log | 5.0 | 320 | 2.1038 | 0.0444 | | No log | 6.0 | 384 | 2.0944 | 0.0444 | | No log | 7.0 | 448 | 2.0911 | 0.0444 | | 2.2915 | 8.0 | 512 | 2.0901 | 0.0444 | | 2.2915 | 9.0 | 576 | 2.0892 | 0.0444 | | 2.2915 | 10.0 | 640 | 2.0871 | 0.0444 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
97jmlr/pyramids
97jmlr
2023-06-24T23:32:30Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-06-24T23:32:23Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: 97jmlr/pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
Monk666/my_awesome_eli5_clm-model
Monk666
2023-06-24T23:28:23Z
63
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-06-24T23:19:53Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Monk666/my_awesome_eli5_clm-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Monk666/my_awesome_eli5_clm-model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.7288 - Validation Loss: 3.7309 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.9096 | 3.7608 | 0 | | 3.7906 | 3.7412 | 1 | | 3.7288 | 3.7309 | 2 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.11.0 - Datasets 2.1.0 - Tokenizers 0.13.3
MindNetML/dqn-SpaceInvadersNoFrameskip-v4
MindNetML
2023-06-24T23:09:09Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-24T23:08:32Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 572.50 +/- 179.80 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga MindNetML -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga MindNetML -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga MindNetML ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 3), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
mohalm/videomae-base-finetuned-ucf101-subset
mohalm
2023-06-24T23:03:09Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "videomae", "video-classification", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-06-24T20:21:51Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0008 - eval_accuracy: 1.0 - eval_runtime: 223.6754 - eval_samples_per_second: 0.443 - eval_steps_per_second: 0.076 - epoch: 1.01 - step: 43 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 164 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
TheBloke/orca_mini_7B-GGML
TheBloke
2023-06-24T22:49:41Z
0
21
transformers
[ "transformers", "en", "dataset:psmathur/alpaca_orca", "dataset:psmathur/dolly-v2_orca", "dataset:psmathur/WizardLM_Orca", "arxiv:2306.02707", "license:mit", "region:us" ]
null
2023-06-24T22:07:15Z
--- inference: false license: mit language: - en library_name: transformers datasets: - psmathur/alpaca_orca - psmathur/dolly-v2_orca - psmathur/WizardLM_Orca --- <!-- header start --> <div style="width: 100%;"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <!-- header end --> # Pankaj Mathur's Orca Mini 7B GGML These files are GGML format model files for [Pankaj Mathur's Orca Mini 7B](https://huggingface.co/psmathur/orca_mini_7b). GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as: * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [KoboldCpp](https://github.com/LostRuins/koboldcpp) * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) * [ctransformers](https://github.com/marella/ctransformers) ## Repositories available * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/orca_mini_7B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/orca_mini_7B-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/psmathur/orca_mini_7b) ## Prompt template: ``` ### System: You are an AI assistant that follows instruction extremely well. Help as much as you can. ### User: prompt ### Response: ``` or ``` ### System: You are an AI assistant that follows instruction extremely well. Help as much as you can. ### User: prompt ### Input: input ### Response: ``` <!-- compatibility_ggml start --> ## Compatibility ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`. These are guaranteed to be compatbile with any UIs, tools and libraries released since late May. ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` These new quantisation methods are compatible with llama.cpp as of June 6th, commit `2d43387`. They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python and ctransformers. Other tools and libraries may or may not be compatible - check their documentation if in doubt. ## Explanation of the new k-quant methods The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type. Refer to the Provided Files table below to see what files use which methods, and how. <!-- compatibility_ggml end --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | orca-mini-7b.ggmlv3.q2_K.bin | q2_K | 2 | 2.87 GB | 5.37 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. | | orca-mini-7b.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 3.60 GB | 6.10 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | orca-mini-7b.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 3.28 GB | 5.78 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | orca-mini-7b.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 2.95 GB | 5.45 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors | | orca-mini-7b.ggmlv3.q4_0.bin | q4_0 | 4 | 3.79 GB | 6.29 GB | Original llama.cpp quant method, 4-bit. | | orca-mini-7b.ggmlv3.q4_1.bin | q4_1 | 4 | 4.21 GB | 6.71 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | | orca-mini-7b.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 4.08 GB | 6.58 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K | | orca-mini-7b.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 3.83 GB | 6.33 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors | | orca-mini-7b.ggmlv3.q5_0.bin | q5_0 | 5 | 4.63 GB | 7.13 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | | orca-mini-7b.ggmlv3.q5_1.bin | q5_1 | 5 | 5.06 GB | 7.56 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | | orca-mini-7b.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 4.78 GB | 7.28 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K | | orca-mini-7b.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 4.65 GB | 7.15 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors | | orca-mini-7b.ggmlv3.q6_K.bin | q6_K | 6 | 5.53 GB | 8.03 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors | | orca-mini-7b.ggmlv3.q8_0.bin | q8_0 | 8 | 7.16 GB | 9.66 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. ## How to run in `llama.cpp` I use the following command line; adjust for your tastes and needs: ``` ./main -t 10 -ngl 32 -m orca-mini-7b.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### System:\nYou are an story writing assistant who writes very long, detailed and interesting stories\n\n### User:\nWrite a story about llamas\n\n### Input:\n{input}\n\n### Response:\n" ``` If you're able to use full GPU offloading, you should use `-t 1` to get best performance. If not able to fully offload to GPU, you should use more cores. Change `-t 10` to the number of physical CPU cores you have, or a lower number depending on what gives best performance. Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). <!-- footer start --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. **Patreon special mentions**: Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire. Thank you to all my generous patrons and donaters! <!-- footer end --> # Original model card: Pankaj Mathur's Orca Mini 7B # orca_mini_7b An [OpenLLaMa-7B model](https://github.com/openlm-research/open_llama) model trained on explain tuned datasets, created using Instructions and Input from WizardLM, Alpaca & Dolly-V2 datasets and applying Orca Research Paper dataset construction approaches. # Dataset We build explain tuned [WizardLM dataset ~70K](https://github.com/nlpxucan/WizardLM), [Alpaca dataset ~52K](https://crfm.stanford.edu/2023/03/13/alpaca.html) & [Dolly-V2 dataset ~15K](https://github.com/databrickslabs/dolly) created using approaches from [Orca Research Paper](https://arxiv.org/abs/2306.02707). We leverage all of the 15 system instructions provided in Orca Research Paper. to generate custom datasets, in contrast to vanilla instruction tuning approaches used by original datasets. This helps student model aka this model to learn ***thought*** process from teacher model, which is ChatGPT (gpt-3.5-turbo-0301 version). Please see below example usage how the **System** prompt is added before each **instruction**. # Training The training configurations are provided in the table below. The training takes on 8x A100(80G) GPUs and lasts for around 7 Hours for cost of $84 using [Lambda Labs](https://lambdalabs.com) We used DeepSpeed with fully sharded data parallelism, also know as [ZeRO stage 3](https://engineering.fb.com/2021/07/15/open-source/fsdp/) by writing our own fine tunning scripts plus leveraging some of the model training code provided by amazing [OpenAlpaca repo](https://github.com/yxuansu/OpenAlpaca) Here are some of params used during training: ||| |:-------------:|:-------------:| |*batch_size*|32| |*train_micro_batch_size_per_gpu*|2| |*gradient_accumulation_steps*|2| |*Learning rate*|2e-5| |*Max length*|1024| |*Epochs*|3| |*Optimizer*|AdamW| # Example Usage Below shows an example on how to use this model ```python import torch from transformers import LlamaForCausalLM, LlamaTokenizer # Hugging Face model_path model_path = 'psmathur/orca_mini_7b' tokenizer = LlamaTokenizer.from_pretrained(model_path) model = LlamaForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map='auto', ) #generate text function def generate_text(system, instruction, input=None): if input: prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" else: prompt = f"### System:\n{system}\n\n### User:\n{instruction}\n\n### Response:\n" tokens = tokenizer.encode(prompt) tokens = torch.LongTensor(tokens).unsqueeze(0) tokens = tokens.to('cuda') instance = {'input_ids': tokens,'top_p': 1.0, 'temperature':0.7, 'generate_len': 1024, 'top_k': 50} length = len(tokens[0]) with torch.no_grad(): rest = model.generate( input_ids=tokens, max_length=length+instance['generate_len'], use_cache=True, do_sample=True, top_p=instance['top_p'], temperature=instance['temperature'], top_k=instance['top_k'] ) output = rest[0][length:] string = tokenizer.decode(output, skip_special_tokens=True) return f'[!] Response: {string}' # Sample Test Instruction Used by Youtuber Sam Witteveen https://www.youtube.com/@samwitteveenai system = 'You are an AI assistant that follows instruction extremely well. Help as much as you can.' instruction = 'Write a letter to Sam Altman, CEO of OpenAI, requesting him to convert GPT4 a private model by OpenAI to an open source project' print(generate_text(system, instruction)) ``` ``` [!] Response: Dear Sam Altman, I am writing to request that you convert the GPT4 private model developed by OpenAI to an open source project. As a user of OpenAI, I have been waiting for the day when I can use the advanced natural language processing capabilities of GPT4 in a more open and accessible way. While OpenAI has made significant progress in developing AI applications, it has primarily focused on building private models that are not accessible to the general public. However, with the recent release of GPT-3, there is a growing demand for more open and accessible AI tools. Converting GPT4 to an open source project would allow for greater transparency, collaboration, and innovation. It would also help to build trust in the technology and ensure that it is used ethically and responsibly. I urge you to consider converting GPT4 to an open source project. This would be a significant contribution to the AI community and would help to create a more open and accessible future. Thank you for your consideration. Sincerely, [Your Name] ``` **P.S. I am #opentowork and #collaboration, if you can help, please reach out to me at psmathur.public@gmail.com** Next Goals: 1) Try more data like actually using FLAN-v2, just like Orka Research Paper (I am open for suggestions) 2) Provide more options for Text generation UI. (may be https://github.com/oobabooga/text-generation-webui) 3) Provide 4bit GGML/GPTQ quantized model (may be [TheBloke](https://huggingface.co/TheBloke) can help here) Limitations & Biases: This model can produce factually incorrect output, and should not be relied on to produce factually accurate information. This model was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. Disclaimer: The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes. Citiation: If you found wizardlm_alpaca_dolly_orca_open_llama_7b useful in your research or applications, please kindly cite using the following BibTeX: ``` @misc{wizardlm_alpaca_dolly_orca_open_llama_7b, author = {Pankaj Mathur}, title = {wizardlm_alpaca_dolly_orca_open_llama_7b: An explain tuned OpenLLaMA-7b model on custom wizardlm, alpaca, & dolly datasets}, year = {2023}, publisher = {GitHub, HuggingFace}, journal = {GitHub repository, HuggingFace repository}, howpublished = {\url{https://github.com/pankajarm/wizardlm_alpaca_dolly_orca_open_llama_7b}, \url{https://https://huggingface.co/psmathur/wizardlm_alpaca_dolly_orca_open_llama_7b}}, } ``` ``` @software{openlm2023openllama, author = {Xinyang Geng and Hao Liu}, title = {OpenLLaMA: An Open Reproduction of LLaMA}, month = May, year = 2023, url = {https://github.com/openlm-research/open_llama} } ``` ``` @misc{openalpaca, author = {Yixuan Su and Tian Lan and Deng Cai}, title = {OpenAlpaca: A Fully Open-Source Instruction-Following Model Based On OpenLLaMA}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/yxuansu/OpenAlpaca}}, } ``` ``` @misc{alpaca, author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto }, title = {Stanford Alpaca: An Instruction-following LLaMA model}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}}, } ```
97jmlr/ppo-SnowballTarget
97jmlr
2023-06-24T22:43:03Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-06-24T22:42:57Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog ๐Ÿถ to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: 97jmlr/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play ๐Ÿ‘€
digiplay/illustro1stEdition_illustroV1
digiplay
2023-06-24T22:33:19Z
384
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-24T20:27:59Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info: https://civitai.com/models/96101/illustro-1st-edition-photoreal-fantasy-model Original Author's DEMO image : ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/10af4e3b-b554-4fe9-9d4a-5f7a834f884d/width=2304/03905-377024016-1%20beautiful%20female,%20%20((Jeremy%20Lipking))_intricate,%20detailed,%20knight,%20fantasy,%20(engraved%20filigree%20armor),%20perfect%20lighting,%20perfe.jpeg) image detail link : https://civitai.com/images/1266239
EIStakovskii/french_toxicity_classifier_plus
EIStakovskii
2023-06-24T22:31:55Z
108
2
transformers
[ "transformers", "pytorch", "safetensors", "camembert", "text-classification", "fr", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-21T07:48:14Z
--- language: fr # <-- my language widget: - text: "J'aime ta coiffure" example_title: "NOT TOXIC 1" - text: "Va te faire foutre" example_title: "TOXIC 1" - text: "Quel mauvais temps, n'est-ce pas ?" example_title: "NOT TOXIC 2" - text: "J'espรจre que tu vas mourir, connard !" example_title: "TOXIC 2" - text: "j'aime beaucoup ta veste" example_title: "NOT TOXIC 3" license: other --- This model was trained for toxicity labeling. Label_1 means TOXIC, Label_0 means NOT TOXIC The model was fine-tuned based off [the CamemBERT language model](https://huggingface.co/camembert-base). The accuracy is 93% on the test split during training and 79% on a manually picked (and thus harder) sample of 200 sentences (100 label 1, 100 label 0) at the end of the training. The model was finetuned on 32k sentences. The train data was the translations of the English data (around 30k sentences) from [the multilingual_detox dataset](https://github.com/s-nlp/multilingual_detox) by [Skolkovo Institute](https://huggingface.co/SkolkovoInstitute) using [the opus-mt-en-fr translation model](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) by [Helsinki-NLP](https://huggingface.co/Helsinki-NLP) and the data from [the jigsaw dataset](https://www.kaggle.com/competitions/jigsaw-multilingual-toxic-comment-classification/data) on kaggle.
dar-tau/ppo-LunarLander-v2
dar-tau
2023-06-24T22:12:59Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-06-24T22:06:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.44 +/- 18.33 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
pongjin/en_with_korean_model_large_960h
pongjin
2023-06-24T21:56:41Z
79
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:pongjin/en_corpora_parliament_processed", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-16T16:55:59Z
--- license: apache-2.0 datasets: - pongjin/en_corpora_parliament_processed language: - en pipeline_tag: automatic-speech-recognition metrics: - wer --- **This model has been referred to the following links** 1) https://huggingface.co/blog/wav2vec2-with-ngram 2) https://huggingface.co/blog/fine-tune-wav2vec2-english Thanks to [patrickvonplaten Patrick von Platen](https://huggingface.co/patrickvonplaten) ํ•ด๋‹น ๋ชจ๋ธ์€ ํ•œ๊ตญ์ธ์˜ ์˜์–ด ๋ฐœํ™” ์ธ์‹ ์„ฑ๋Šฅ ๊ฐœ์„ ์„ ์œ„ํ•ด facebook/wav2vec2-large-960h ๋กœ ํŒŒ์ธํŠœ๋‹ํ•œ ๋ชจ๋ธ์— KenLM 5-gram ์„ ๋ถ™์ธ ASR + LM ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. If you want to use LM, you must have kenlm installed https://github.com/kpu/kenlm ```python pip install https://github.com/kpu/kenlm/archive/master.zip ``` ํ•™์Šต ๋ฐ์ดํ„ฐ ์ถœ์ฒ˜ : https://aiopen.etri.re.kr/voiceModel >transformers==4.24.0 >huggingface_hub==0.13.2 | wer | epoch | batch | lr | weight_decay| warmup_steps| | --- | --- | --- | --- | --- | --- | | 0.17 | 10 | 16 | 1e-4 | 0.005 | 1000 |
SandeepKanao/HL7-FHIR-Model-V1
SandeepKanao
2023-06-24T21:45:41Z
105
1
transformers
[ "transformers", "pytorch", "distilbert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-06-22T12:44:31Z
--- license: apache-2.0 language: - en tags: - Token Classification co2_eq_emissions: 0.0279399890043426 widget: - text: ""MSH|^~&|SendingAPP|MYTEST|||20230621090000||ORU^R01|1|P|2.5.1||||||UNICODE PID|1||13579246^^^TEST||Taylor^Michael||19830520|M|||987 Pine St^^Anytown^NY^23456||555-456-7890 PV1|1||bc^^004 OBR|1||13579246|BCD^LEFT Breast Cancer Diagnosis^99MRC||20230621090000|||Taylor^Sarah||20230620090000|||N OBX|1|ST|FINDINGS^Findings^99MRC||Lab report shows asymmetric density in the right breast.|F|||R OBX|2|ST|IMPRESSION^Impression^99MRC||BIRADS category: 4 - Probably left side as issues.|F|||R OBX|3|ST|RECOMMENDATION^Recommendation^99MRC||Follow-up specialit visit in six months.|F|||R"" example_title: "example 1" - text: "MSH|^~&|SendingAPP|MYTEST|||20230621090000||ORU^R01|1|P|2.5.1||||||UNICODE PID|1||13579246^^^TEST||Taylor^Michael||19830520|M|||987 Pine St^^Anytown^NY^23456||555-456-7890 PV1|1||bc^^004 OBR|1||13579246|BCD^LEFT Breast Cancer Diagnosis^99MRC||20230621090000|||Taylor^Sarah||20230620090000|||N OBX|1|ST|FINDINGS^Findings^99MRC||Lab report shows asymmetric density in the right breast.|F|||R OBX|2|ST|IMPRESSION^Impression^99MRC||BIRADS category: 4 - Probably left side as issues.|F|||R OBX|3|ST|RECOMMENDATION^Recommendation^99MRC||Follow-up specialit visit in six months.|F|||R" ## About the Model An English Named Entity Recognition model, trained on Maccrobat to recognize the bio-medical entities (107 entities) from a given text corpus (case reports etc.). This model was built on top of distilbert-base-uncased - Dataset: Maccrobat https://figshare.com/articles/dataset/MACCROBAT2018/9764942 - Carbon emission: 0.0279399890043426 Kg - Training time: 30.16527 minutes - GPU used : 1 x GeForce RTX 3060 Laptop GPU Checkout the tutorial video for explanation of this model and corresponding python library: https://youtu.be/xpiDPdBpS18 ## Usage The easiest way is to load the inference api from huggingface and second method is through the pipeline object offered by transformers library. ```python from transformers import pipeline from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all") model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all") pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu pipe("""The patient reported no recurrence of palpitations at follow-up 6 months after the ablation.""") ``` ## Author
digiplay/ChillyMix_v1
digiplay
2023-06-24T21:19:54Z
291
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-06-23T16:14:13Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- Model info : https://civitai.com/models/58772?modelVersionId=63220 Original Author's DEMO image : ![](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/096853c2-2dfe-48c4-b0dc-eea621d02727/width=512/00629-3254057508-chillyMixV1Fp16.jpeg) image detailed link: https://civitai.com/images/701538
conrevo/Segment-Anything-A1111
conrevo
2023-06-24T21:18:24Z
0
1
null
[ "region:us" ]
null
2023-06-16T20:01:12Z
This repository contains - The extracted plugin model from https://huggingface.co/shi-labs/Matting-Anything - The ultralytics model from https://github.com/CASIA-IVA-Lab/FastSAM These models should only be accompanied with https://github.com/continue-revolution/sd-webui-segment-anything