modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 18:29:29
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 18:25:24
card
stringlengths
11
1.01M
1sandy12/blockassist-bc-waddling_scampering_orangutan_1755603028
1sandy12
2025-08-19T11:31:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "waddling scampering orangutan", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T11:31:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - waddling scampering orangutan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hossein12321asdf/Taxi-v3
hossein12321asdf
2025-08-19T11:30:10Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-08-17T13:53:47Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="hossein12321asdf/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
KCS97/candle
KCS97
2025-08-19T11:29:49Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:stable-diffusion-v1-5/stable-diffusion-v1-5", "base_model:finetune:stable-diffusion-v1-5/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-08-19T11:18:19Z
--- base_model: stable-diffusion-v1-5/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m inference: true instance_prompt: a photo of sks candle tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - KCS97/candle This is a dreambooth model derived from stable-diffusion-v1-5/stable-diffusion-v1-5. The weights were trained on a photo of sks candle using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
hossein12321asdf/q-FrozenLake-v1-4x4-noSlippery
hossein12321asdf
2025-08-19T11:29:46Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-08-17T13:46:26Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="hossein12321asdf/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
imanuelradityaa/finetuned_cs_gemma_900_steps_4bit
imanuelradityaa
2025-08-19T11:29:16Z
0
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-2b-it-bnb-4bit", "base_model:quantized:unsloth/gemma-2b-it-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-19T11:27:50Z
--- base_model: unsloth/gemma-2b-it-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** imanuelradityaa - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2b-it-bnb-4bit This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
rhecker/block-clean-realssense-policy
rhecker
2025-08-19T11:25:59Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:rhecker/block-clean-realsense", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-19T11:25:42Z
--- datasets: rhecker/block-clean-realsense library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - act - robotics - lerobot --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
crocodlo/blockassist-bc-soft_barky_scorpion_1755602703
crocodlo
2025-08-19T11:25:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "soft barky scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T11:25:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - soft barky scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
SP4ND4N/Qwen3-0.6B-2025-08-19_15-15-49-fp8-merged
SP4ND4N
2025-08-19T11:24:47Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/Qwen3-0.6B", "base_model:finetune:unsloth/Qwen3-0.6B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T11:18:55Z
--- base_model: unsloth/Qwen3-0.6B tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** SP4ND4N - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-0.6B This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755601011
sampingkaca72
2025-08-19T11:23:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T11:23:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1755600874
indoempatnol
2025-08-19T11:22:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T11:22:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
iscchang/t2s
iscchang
2025-08-19T11:19:38Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "lora", "transformers", "text-generation", "conversational", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "region:us" ]
text-generation
2025-08-19T11:16:49Z
--- base_model: Qwen/Qwen2.5-Coder-7B-Instruct library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct - lora - transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
mohammadmahdinouri/moa-30k
mohammadmahdinouri
2025-08-19T11:17:57Z
0
0
transformers
[ "transformers", "safetensors", "ModernALBERT", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-08-19T11:17:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Prathyusha101/tldr-ppco-g0p5-l1p0
Prathyusha101
2025-08-19T11:17:20Z
0
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-classification", "generated_from_trainer", "dataset:trl-internal-testing/tldr-preference-sft-trl-style", "arxiv:1909.08593", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-08-18T18:16:19Z
--- datasets: trl-internal-testing/tldr-preference-sft-trl-style library_name: transformers model_name: tldr-ppco-g0p5-l1p0 tags: - generated_from_trainer licence: license --- # Model Card for tldr-ppco-g0p5-l1p0 This model is a fine-tuned version of [None](https://huggingface.co/None) on the [trl-internal-testing/tldr-preference-sft-trl-style](https://huggingface.co/datasets/trl-internal-testing/tldr-preference-sft-trl-style) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Prathyusha101/tldr-ppco-g0p5-l1p0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prathyusha1-the-university-of-texas-at-austin/huggingface/runs/chlykdcx) This model was trained with PPO, a method introduced in [Fine-Tuning Language Models from Human Preferences](https://huggingface.co/papers/1909.08593). ### Framework versions - TRL: 0.15.0.dev0 - Transformers: 4.53.1 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citations Cite PPO as: ```bibtex @article{mziegler2019fine-tuning, title = {{Fine-Tuning Language Models from Human Preferences}}, author = {Daniel M. Ziegler and Nisan Stiennon and Jeffrey Wu and Tom B. Brown and Alec Radford and Dario Amodei and Paul F. Christiano and Geoffrey Irving}, year = 2019, eprint = {arXiv:1909.08593} } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin GallouΓ©dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
SP4ND4N/Qwen3-0.6B-2025-08-19_15-15-49
SP4ND4N
2025-08-19T11:17:19Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "base_model:unsloth/Qwen3-0.6B", "base_model:finetune:unsloth/Qwen3-0.6B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T11:17:10Z
--- base_model: unsloth/Qwen3-0.6B tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** SP4ND4N - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-0.6B This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
crocodlo/blockassist-bc-soft_barky_scorpion_1755602151
crocodlo
2025-08-19T11:16:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "soft barky scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T11:16:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - soft barky scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
baidu/ERNIE-4.5-VL-424B-A47B-Base-Paddle
baidu
2025-08-19T11:13:55Z
7
55
PaddlePaddle
[ "PaddlePaddle", "safetensors", "ernie4_5_moe_vl", "ERNIE4.5", "image-text-to-text", "conversational", "en", "zh", "license:apache-2.0", "region:us" ]
image-text-to-text
2025-06-28T16:05:05Z
--- license: apache-2.0 language: - en - zh pipeline_tag: image-text-to-text tags: - ERNIE4.5 library_name: PaddlePaddle --- <div align="center" style="line-height: 1;"> <a href="https://ernie.baidu.com/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/πŸ€–_Chat-ERNIE_Bot-blue" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://huggingface.co/baidu" target="_blank" style="margin: 2px;"> <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Baidu-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://github.com/PaddlePaddle/ERNIE" target="_blank" style="margin: 2px;"> <img alt="Github" src="https://img.shields.io/badge/GitHub-ERNIE-000?logo=github&color=0000FF" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://ernie.baidu.com/blog/ernie4.5" target="_blank" style="margin: 2px;"> <img alt="Blog" src="https://img.shields.io/badge/πŸ––_Blog-ERNIE4.5-A020A0" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://discord.gg/JPmZXDsEEK" target="_blank" style="margin: 2px;"> <img alt="Discord" src="https://img.shields.io/badge/Discord-ERNIE-5865F2?logo=discord&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://x.com/PaddlePaddle" target="_blank" style="margin: 2px;"> <img alt="X" src="https://img.shields.io/badge/X-PaddlePaddle-6080F0"?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> </div> <div align="center" style="line-height: 1;"> <a href="#license" style="margin: 2px;"> <img alt="License" src="https://img.shields.io/badge/License-Apache2.0-A5de54" style="display: inline-block; vertical-align: middle;"/> </a> </div> # ERNIE-4.5-VL-424B-A47B-Base > [!NOTE] > Note: "**-Paddle**" models use [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) weights, while "**-PT**" models use Transformer-style PyTorch weights. ## ERNIE 4.5 Highlights The advanced capabilities of the ERNIE 4.5 models, particularly the MoE-based A47B and A3B series, are underpinned by several key technical innovations: 1. **Multimodal Heterogeneous MoE Pre-Training:** Our models are jointly trained on both textual and visual modalities to better capture the nuances of multimodal information and improve performance on tasks involving text understanding and generation, image understanding, and cross-modal reasoning. To achieve this without one modality hindering the learning of another, we designed a *heterogeneous MoE structure*, incorporated *modality-isolated routing*, and employed *router orthogonal loss* and *multimodal token-balanced loss*. These architectural choices ensure that both modalities are effectively represented, allowing for mutual reinforcement during training. 2. **Scaling-Efficient Infrastructure:** We propose a novel heterogeneous hybrid parallelism and hierarchical load balancing strategy for efficient training of ERNIE 4.5 models. By using intra-node expert parallelism, memory-efficient pipeline scheduling, FP8 mixed-precision training and finegrained recomputation methods, we achieve remarkable pre-training throughput. For inference, we propose *multi-expert parallel collaboration* method and *convolutional code quantization* algorithm to achieve 4-bit/2-bit lossless quantization. Furthermore, we introduce PD disaggregation with dynamic role switching for effective resource utilization to enhance inference performance for ERNIE 4.5 MoE models. Built on [PaddlePaddle](https://github.com/PaddlePaddle/Paddle), ERNIE 4.5 delivers high-performance inference across a wide range of hardware platforms. 3. **Modality-Specific Post-Training:** To meet the diverse requirements of real-world applications, we fine-tuned variants of the pre-trained model for specific modalities. Our LLMs are optimized for general-purpose language understanding and generation. The VLMs focuses on visuallanguage understanding and supports both thinking and non-thinking modes. Each model employed a combination of *Supervised Fine-tuning (SFT)*, *Direct Preference Optimization (DPO)* or a modified reinforcement learning method named *Unified Preference Optimization (UPO)* for post-training. To ensure the stability of multimodal joint training, we adopt a staged training strategy. In the first and second stage, we train only the text-related parameters, enabling the model to develop strong fundamental language understanding as well as long-text processing capabilities. The final multimodal stage extends capabilities to images and videos by introducing additional parameters including a ViT for image feature extraction, an adapter for feature transformation, and visual experts for multimodal understanding. At this stage, text and visual modalities mutually enhance each other. After pretraining trillions tokens, we obtained ERNIE-4.5-VL-424B-A47B-Base. ## Model Overview ERNIE-4.5-VL-424B-A47B-Base is a multimodal MoE Base model, with 424B total parameters and 47B activated parameters for each token. The following are the model configuration details: | Key | Value | | --------------------------------- | ------------- | | Modality | Text & Vision | | Training Stage | Pretraining | | Params(Total / Activated) | 424B / 47B | | Layers | 54 | | Heads(Q/KV) | 64 / 8 | | Text Experts(Total / Activated) | 64 / 8 | | Vision Experts(Total / Activated) | 64 / 8 | | Context Length | 131072 | ## Quickstart ### vLLM inference We are working with the community to fully support ERNIE4.5 models, stay tuned. ## License The ERNIE 4.5 models are provided under the Apache License 2.0. This license permits commercial use, subject to its terms and conditions. Copyright Β© 2025 Baidu, Inc. All Rights Reserved. ## Citation If you find ERNIE 4.5 useful or wish to use it in your projects, please kindly cite our technical report: ```bibtex @misc{ernie2025technicalreport, title={ERNIE 4.5 Technical Report}, author={Baidu ERNIE Team}, year={2025}, eprint={}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={} } ```
VoilaRaj/80_FdLMAe
VoilaRaj
2025-08-19T11:13:09Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-19T11:09:19Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
RajorshiGon/intent-classifier
RajorshiGon
2025-08-19T11:12:10Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:unsloth/gemma-3-270m-it-unsloth-bnb-4bit", "lora", "sft", "transformers", "trl", "unsloth", "arxiv:1910.09700", "base_model:unsloth/gemma-3-270m-it-unsloth-bnb-4bit", "region:us" ]
null
2025-08-19T11:08:18Z
--- base_model: unsloth/gemma-3-270m-it-unsloth-bnb-4bit library_name: peft tags: - base_model:adapter:unsloth/gemma-3-270m-it-unsloth-bnb-4bit - lora - sft - transformers - trl - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
kittygirlhere/blockassist-bc-twitchy_beaked_coral_1755601833
kittygirlhere
2025-08-19T11:11:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy beaked coral", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T11:11:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy beaked coral --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Mostefa-Terbeche/diabetic-retinopathy-combined-resnet50-gentle-20250620-195237
Mostefa-Terbeche
2025-08-19T11:10:57Z
0
0
null
[ "diabetic-retinopathy", "medical-imaging", "pytorch", "computer-vision", "retinal-imaging", "dataset:combined", "license:apache-2.0", "model-index", "region:us" ]
null
2025-08-19T10:19:37Z
--- license: apache-2.0 tags: - diabetic-retinopathy - medical-imaging - pytorch - computer-vision - retinal-imaging datasets: - combined metrics: - accuracy - quadratic-kappa - auc model-index: - name: combined_resnet50_gentle results: - task: type: image-classification name: Diabetic Retinopathy Classification dataset: type: combined name: COMBINED metrics: - type: accuracy value: 0.5665365507452094 - type: quadratic-kappa value: 0.7742569342039034 --- # Diabetic Retinopathy Classification Model ## Model Description This model is trained for diabetic retinopathy classification using the resnet50 architecture on the combined dataset with gentle preprocessing. ## Model Details - **Architecture**: resnet50 - **Dataset**: combined - **Preprocessing**: gentle - **Training Date**: 20250620-195237 - **Task**: 5-class diabetic retinopathy grading (0-4) - **Directory**: combined_resnet50_20250620-195237_new ## Performance - **Test Accuracy**: 0.5665365507452094 - **Test Quadratic Kappa**: 0.7742569342039034 - **Validation Kappa**: 0.7742569342039034 ## Usage ```python import torch from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download( repo_id="your-username/diabetic-retinopathy-combined-resnet50-gentle", filename="model_best.pt" ) # Load model model = torch.load(model_path, map_location='cpu') ``` ## Classes - 0: No DR (No diabetic retinopathy) - 1: Mild DR (Mild non-proliferative diabetic retinopathy) - 2: Moderate DR (Moderate non-proliferative diabetic retinopathy) - 3: Severe DR (Severe non-proliferative diabetic retinopathy) - 4: Proliferative DR (Proliferative diabetic retinopathy) ## Citation If you use this model, please cite your research paper/thesis.
forstseh/blockassist-bc-arctic_soaring_heron_1755597883
forstseh
2025-08-19T11:10:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "arctic soaring heron", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T11:10:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - arctic soaring heron --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
deedan19/trainingAug18
deedan19
2025-08-19T11:10:45Z
0
0
null
[ "arxiv:1910.09700", "base_model:openai/gpt-oss-120b", "base_model:finetune:openai/gpt-oss-120b", "license:mit", "region:us" ]
null
2025-08-19T11:03:15Z
--- license: mit base_model: - openai/gpt-oss-120b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
frankmorales2020/mistral-7b-alpha-finetuned-llm-science-exam-tpu-colab-v6e-1
frankmorales2020
2025-08-19T11:09:15Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T11:06:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hasdal/21aa9f58-1f69-4055-9211-a03c7007ec6e
hasdal
2025-08-19T11:07:33Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mixtral", "trl", "en", "base_model:TitanML/tiny-mixtral", "base_model:finetune:TitanML/tiny-mixtral", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T11:07:31Z
--- base_model: TitanML/tiny-mixtral tags: - text-generation-inference - transformers - unsloth - mixtral - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** hasdal - **License:** apache-2.0 - **Finetuned from model :** TitanML/tiny-mixtral This mixtral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
BSC-LT/salamandraTA-2B-instruct-GGUF
BSC-LT
2025-08-19T11:07:00Z
45
1
transformers
[ "transformers", "gguf", "llama", "text-generation", "translation", "bg", "ca", "cs", "cy", "da", "de", "el", "en", "es", "et", "eu", "fi", "fr", "ga", "gl", "hr", "hu", "it", "lt", "lv", "mt", "nl", "nb", "no", "nn", "oc", "pl", "pt", "ro", "ru", "sl", "sk", "sr", "sv", "uk", "ast", "an", "base_model:BSC-LT/salamandraTA-2b-instruct", "base_model:quantized:BSC-LT/salamandraTA-2b-instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us", "conversational" ]
translation
2025-05-26T13:59:56Z
--- library_name: transformers license: apache-2.0 pipeline_tag: translation language: - bg - ca - cs - cy - da - de - el - en - es - et - eu - fi - fr - ga - gl - hr - hu - it - lt - lv - mt - nl - nb - 'no' - nn - oc - pl - pt - ro - ru - sl - sk - sr - sv - uk - ast - an base_model: - BSC-LT/salamandraTA-2b-instruct --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/633b489acbdbadd99c0b75ef/MhsW4ODhK6ofYq8DnpyKc.png) # SalamandraTA-2B-instruct-GGUF Model Card This model is the GGUF-quantized version of [SalamandraTA-2b-instruct](https://huggingface.co/BSC-LT/salamandraTA-2b-instruct). The model weights are quantized from FP16 to Q4_K_M quantization Q8_0 (8-bit quantization), (4-bit weights with K-means clustering quantization) and Q3_K_M (3-but weights with K-means clustering quantization) using the [Llama.cpp](https://github.com/ggml-org/llama.cpp) framework. Inferencing with this model can be done using [VLLM](https://docs.vllm.ai/en/stable/models/engine_args.html). SalamandraTA-2b-instruct is a translation LLM that has been instruction-tuned from SalamandraTA-2b-base. The base model results from continually pre-training [Salamandra-2b](https://huggingface.co/BSC-LT/salamandra-2b) on parallel data and has not been published, but is reserved for internal use. SalamandraTA-2b-instruct is proficient in 35 European languages (plus 3 varieties) and supports translation-related tasks, namely: sentence-level-translation, paragraph-level-translation, automatic post-editing, grammar checking, machine translation evaluation, alternative translations, named-entity-recognition and context-aware translation. > [!WARNING] > **DISCLAIMER:** This version of Salamandra is tailored exclusively for translation tasks. It lacks chat capabilities and has not been trained with any chat instructions. --- The entire Salamandra family is released under a permissive [Apache 2.0 license]((https://www.apache.org/licenses/LICENSE-2.0)). ## How to Use The following example code works under ``Python 3.10.4``, ``vllm==0.7.3``, ``torch==2.5.1`` and ``torchvision==0.20.1``, though it should run on any current version of the libraries. This is an example of translation using the model: ``` from huggingface_hub import snapshot_download from vllm import LLM, SamplingParams model_dir = snapshot_download(repo_id="BSC-LT/salamandraTA-2B-instruct-GGUF", revision="main") model_name = "salamandrata_2b_inst_q4.gguf" llm = LLM(model=model_dir + '/' + model_name, tokenizer=model_dir) source = "Spanish" target = "English" sentence = "Ayer se fue, tomΓ³ sus cosas y se puso a navegar. Una camisa, un pantalΓ³n vaquero y una canciΓ³n, dΓ³nde irΓ‘, dΓ³nde irΓ‘. Se despidiΓ³, y decidiΓ³ batirse en duelo con el mar. Y recorrer el mundo en su velero. Y navegar, nai-na-na, navegar." prompt = f"Translate the following text from {source} into {target}.\\n{source}: {sentence} \\n{target}:" messages = [{'role': 'user', 'content': prompt}] outputs = llm.chat(messages, sampling_params=SamplingParams( temperature=0.1, stop_token_ids=[5], max_tokens=200) )[0].outputs print(outputs[0].text) ``` ## Additional information ### Author The Language Technologies Unit from Barcelona Supercomputing Center. ### Contact For further information, please send an email to <langtech@bsc.es>. ### Copyright Copyright(c) 2025 by Language Technologies Unit, Barcelona Supercomputing Center. ### Funding This work has been promoted and financed by the Government of Catalonia through the [Aina Project](https://projecteaina.cat/). This work is funded by the _Ministerio para la TransformaciΓ³n Digital y de la FunciΓ³n PΓΊblica_ - Funded by EU – NextGenerationEU within the framework of [ILENIA Project](https://proyectoilenia.es/) with reference 2022/TL22/00215337. ### Acknowledgements The success of this project has been made possible thanks to the invaluable contributions of our partners in the [ILENIA Project](https://proyectoilenia.es/): [HiTZ](http://hitz.ehu.eus/es), and [CiTIUS](https://citius.gal/es/). Their efforts have been instrumental in advancing our work, and we sincerely appreciate their help and support. ### Disclaimer ### Disclaimer Be aware that the model may contain biases or other unintended distortions. When third parties deploy systems or provide services based on this model, or use the model themselves, they bear the responsibility for mitigating any associated risks and ensuring compliance with applicable regulations, including those governing the use of Artificial Intelligence. The Barcelona Supercomputing Center, as the owner and creator of the model, shall not be held liable for any outcomes resulting from third-party use. ### License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0)
teysty/vjepa2-vitl-fpc16-256-ssv2-fdet_baseline_epochs5
teysty
2025-08-19T11:06:04Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vjepa2", "video-classification", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
video-classification
2025-08-19T11:04:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
BSC-LT/salamandraTA-7b-instruct
BSC-LT
2025-08-19T11:05:53Z
1,295
15
transformers
[ "transformers", "safetensors", "llama", "text-generation", "translation", "bg", "ca", "cs", "cy", "da", "de", "el", "en", "es", "et", "eu", "fi", "fr", "ga", "gl", "hr", "hu", "it", "lt", "lv", "mt", "nl", "nb", "no", "nn", "oc", "pl", "pt", "ro", "ru", "sl", "sk", "sr", "sv", "uk", "ast", "an", "arxiv:2010.11125", "arxiv:2403.14009", "arxiv:1907.05791", "arxiv:1911.04944", "arxiv:2402.17733", "arxiv:2207.04672", "arxiv:2404.06392", "arxiv:2309.04662", "arxiv:2508.12774", "base_model:BSC-LT/salamandra-7b", "base_model:finetune:BSC-LT/salamandra-7b", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:eu" ]
translation
2025-01-08T15:02:52Z
--- license: apache-2.0 library_name: transformers pipeline_tag: translation language: - bg - ca - cs - cy - da - de - el - en - es - et - eu - fi - fr - ga - gl - hr - hu - it - lt - lv - mt - nl - nb - 'no' - nn - oc - pl - pt - ro - ru - sl - sk - sr - sv - uk - ast - an base_model: - BSC-LT/salamandra-7b --- ![](./images/salamandra_header.png) # SalamandraTA Model Card SalamandraTA-7b-instruct is a translation LLM that has been instruction-tuned from SalamandraTA-7b-base. The base model results from continually pre-training [Salamandra-7b](https://huggingface.co/BSC-LT/salamandra-7b) on parallel data and has not been published, but is reserved for internal use. SalamandraTA-7b-instruct is proficient in 35 European languages (plus 3 varieties) and supports translation-related tasks, namely: sentence-level-translation, paragraph-level-translation, document-level-translation, automatic post-editing, grammar checking, machine translation evaluation, alternative translations, named-entity-recognition and context-aware translation. > [!WARNING] > **DISCLAIMER:** This version of Salamandra is tailored exclusively for translation tasks. It lacks chat capabilities and has not been trained with any chat instructions. --- ## Model Details ### Description SalamandraTA-7b-base is a continual pre-training of [Salamandra-7b](https://huggingface.co/BSC-LT/salamandra-7b) using parallel data, resulting in a total of 424B tokens processed during training. ### Architecture | | | |-------------------------|:--------------| | Total Parameters | 7,768,117,248 | | Embedding Parameters | 1,048,576,000 | | Layers | 32 | | Hidden size | 4,096 | | Attention heads | 32 | | Context length | 8,192 | | Vocabulary size | 256,000 | | Precision | bfloat16 | | Embedding type | RoPE | | Activation Function | SwiGLU | | Layer normalization | RMS Norm | | Flash attention | βœ… | | Grouped Query Attention | βœ… | | Num. query groups | 8 | --- ## Intended Use ### Direct Use The model is intended for both research and commercial use in any of the languages included in the training data for general machine translation tasks. ### Out-of-scope Use The model is not intended for malicious activities, such as harming others or violating human rights. Any downstream application must comply with current laws and regulations. Irresponsible usage in production environments without proper risk assessment and mitigation is also discouraged. --- ## Hardware and Software ### Training Framework SalamandraTA-7b-base was continually pre-trained using NVIDIA’s [NeMo Framework](https://docs.nvidia.com/nemo-framework/index.html), which leverages PyTorch Lightning for efficient model training in highly distributed settings. SalamandraTA-7b-instruct was produced with [FastChat](https://github.com/lm-sys/FastChat). ### Compute Infrastructure All models were trained on [MareNostrum 5](https://www.bsc.es/ca/marenostrum/marenostrum-5), a pre-exascale EuroHPC supercomputer hosted and operated by Barcelona Supercomputing Center. The accelerated partition is composed of 1,120 nodes with the following specifications: - 4x Nvidia Hopper GPUs with 64GB HBM2 memory - 2x Intel Sapphire Rapids 8460Y+ at 2.3Ghz and 32c each (64 cores) - 4x NDR200 (BW per node 800Gb/s) - 512 GB of Main memory (DDR5) - 460GB on NVMe storage --- ## How to use You can translate between the following **35 languages** (and 3 varieties): Aragonese, Asturian, Basque, Bulgarian, Catalan (and Catalan-Valencian variety), Croatian, Czech, Danish, Dutch, English, Estonian, Finnish, French, Galician, German, Greek, Hungarian, Irish, Italian, Latvian, Lithuanian, Maltese, Norwegian (BokmΓ₯l and Nynorsk varieties), Occitan (and Aranese variety), Polish, Portuguese, Romanian, Russian, Serbian, Slovak, Slovenian, Spanish, Swedish, Ukrainian, Welsh. The instruction-following model uses the commonly adopted ChatML template: ``` <|im_start|>system {SYSTEM PROMPT}<|im_end|> <|im_start|>user {USER PROMPT}<|im_end|> <|im_start|>assistant {MODEL RESPONSE}<|im_end|> <|im_start|>user [...] ``` The easiest way to apply it is by using the tokenizer's built-in functions, as shown in the following snippet. ```python from datetime import datetime from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model_id = "BSC-LT/salamandraTA-7b-instruct" source = 'Spanish' target = 'Catalan' sentence = "Ayer se fue, tomΓ³ sus cosas y se puso a navegar. Una camisa, un pantalΓ³n vaquero y una canciΓ³n, dΓ³nde irΓ‘, dΓ³nde irΓ‘. Se despidiΓ³, y decidiΓ³ batirse en duelo con el mar. Y recorrer el mundo en su velero. Y navegar, nai-na-na, navegar" text = f"Translate the following text from {source} into {target}.\n{source}: {sentence} \n{target}:" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16 ) message = [ { "role": "user", "content": text } ] date_string = datetime.today().strftime('%Y-%m-%d') prompt = tokenizer.apply_chat_template( message, tokenize=False, add_generation_prompt=True, date_string=date_string ) inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") input_length = inputs.shape[1] outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=400, early_stopping=True, num_beams=5) print(tokenizer.decode(outputs[0, input_length:], skip_special_tokens=True)) # Ahir se'n va anar, va recollir les seves coses i es va fer a la mar. Una camisa, uns texans i una canΓ§Γ³, on anirΓ , on anirΓ . Es va acomiadar i va decidir batre's en duel amb el mar. I fer la volta al mΓ³n en el seu veler. I navegar, nai-na-na, navegar ``` Using this template, each turn is preceded by a `<|im_start|>` delimiter and the role of the entity (either `user`, for content supplied by the user, or `assistant` for LLM responses), and finished with the `<|im_end|>` token. #### General translation For machine translation tasks, you can use the following prompt template: ``` Translate the following text from {source} into {target}. {source}: {source sentence} {target}: ``` <details> <summary>Show an example</summary> ```python source = 'Catalan' target = 'Galician' source_sentence = "Als antics egipcis del perΓ­ode de l'Imperi Nou els fascinaven els monuments dels seus predecessors, que llavors tenien mΓ©s de mil anys." text = f"Translate the following text from {source} into {target}.\n{source}: {source_sentence} \n{target}:" # Os antigos exipcios do perΓ­odo do Imperio Novo estaban fascinados polos monumentos dos seus predecesores, que entΓ³n tiΓ±an mΓ‘is de mil anos de antigΓΌidade. ``` </details> ### Post-editing For post-editing tasks, you can use the following prompt template: ``` Please fix any mistakes in the following {source}-{target} machine translation or keep it unedited if it's correct. Source: {source_sentence} MT: {machine_translation} Corrected:" ``` <details> <summary>Show an example</summary> ```python source = 'Catalan' target = 'English' source_sentence = 'Rafael Nadal i Maria Magdalena van inspirar a una generaciΓ³ sencera.' machine_translation = 'Rafael Christmas and Maria the Muffin inspired an entire generation each in their own way.' text = f"Please fix any mistakes in the following {source}-{target} machine translation or keep it unedited if it's correct.\nSource: {source_sentence} \nMT: {machine_translation} \nCorrected:" # Rafael Nadal and Maria Magdalena inspired an entire generation. ``` </details> ### Document-level translation For document-level translation tasks, you can use the following prompt template: ``` Please translate this text from {source} into {target}. {source}: {1st paragraph of the document} {2nd paragraph of the document} {Nth paragraph of the document} {target}: ``` <details> <summary>Show an example</summary> ```python source = 'English' target = 'Asturian' text = """Please translate this text from {} into {}.\n{}: President Donald Trump, who campaigned on promises to crack down on illegal immigration, has raised alarms in the U.S. dairy industry with his threat to impose 25% tariffs on Mexico and Canada by February 2025. This move is part of a broader strategy to declare a national emergency at the southern border to halt illegal migration completely. However, the implications for the agriculture sector, particularly dairy, are significant. Approximately half of the U.S. dairy industry's workforce consists of immigrant labor, many of whom are undocumented. The National Milk Producers Federation estimates that removing immigrant workers could decimate the dairy herd by 2.1 million cows and slash milk production by nearly 50 billion pounds, leading to a dramatic 90.4% increase in milk prices. The complex perspectives of Americans on undocumented workers were highlighted in a Pew Research Center study. While 64% of U.S. adults support legal pathways for undocumented immigrants, 35% oppose itβ€”a gap that has been narrowing recently. Factors influencing public opinion include the belief that immigrants should have jobs and pass security checks, contrasted by concerns about lawbreakers being rewarded, fairness for legal migrants, and resource allocation. According to Zach Rutledge, an agricultural economist at Michigan State University, as nations grow wealthier, their labor forces transition away from agriculture toward sectors like services and manufacturing. This shift has led to the U.S. relying heavily on immigrant labor for agricultural work. Domestic workers, even with employment taxes, may cost $15 to $25 an hour, while H-2A visa program workers might cost $25 to $30 an hour, accounting for additional housing expenses. The National Milk Producers Federation has been vocal in advocating for changes to the H-2A visa program, which outside of its current seasonal limitations, does not support the dairy industry's year-round labor needs. Executive vice-president Jaime Castaneda reiterated the need for legislative clarity to address the undocumented workforce issues in dairy farming. The Farm Workforce Modernization Act of 2023, which could grant legal status to certain undocumented farmworkers, has been stalled in Congress, despite acknowledgment of the sector's importance to feeding America. The need for coordinated legislative efforts to ensure both border security and labor market stability is imperative moving forward. {}:""".format(source, target, source, target) ``` </details> ### Named-entity recognition For named-entity recognition tasks, you can use the following prompt template: ``` Analyse the following tokenized text and mark the tokens containing named entities. Use the following annotation guidelines with these tags for named entities: - ORG (Refers to named groups or organizations) - PER (Refers to individual people or named groups of people) - LOC (Refers to physical places or natural landmarks) - MISC (Refers to entities that don't fit into standard categories). Prepend B- to the first token of a given entity and I- to the remaining ones if they exist. If a token is not a named entity, label it as O. Input: {list of words in a sentence} Marked: ``` <details> <summary>Show an example</summary> ```python text = """Analyse the following tokenized text and mark the tokens containing named entities. Use the following annotation guidelines with these tags for named entities: - ORG (Refers to named groups or organizations) - PER (Refers to individual people or named groups of people) - LOC (Refers to physical places or natural landmarks) - MISC (Refers to entities that don't fit into standard categories). Prepend B- to the first token of a given entity and I- to the remaining ones if they exist. If a token is not a named entity, label it as O. Input: ['La', 'defensa', 'del', 'antiguo', 'responsable', 'de', 'la', 'RFEF', 'confirma', 'que', 'interpondrΓ‘', 'un', 'recurso.'] Marked: """ # [('La', 'O'), ('defensa', 'O'), ('del', 'O'), ('antiguo', 'O'), ('responsable', 'O'), ('de', 'O'), ('la', 'O'), ('RFEF', 'B-ORG'), ('confirma', 'O'), ('que', 'O'), ('interpondrΓ‘', 'O'), ('un', 'O'), ('recurso.', 'O')] ``` </details> ### Grammar checker For fixing any mistakes in grammar, you can use the following prompt template: ``` Please fix any mistakes in the following {source} sentence or keep it unedited if it's correct. Sentence: {sentence} Corrected: ``` <details> <summary>Show an example</summary> ```python source = 'Catalan' sentence = 'Entonses, el meu jefe m’ha dit que he de treballar els fins de setmana.' text = f"Please fix any mistakes in the following {source} sentence or keep it unedited if it's correct.\nSentence: {sentence} \nCorrected:" # Llavors, el meu cap m'ha dit que he de treballar els caps de setmana. ``` </details> ## Data ### Pretraining Data The pretraining corpus consists of 424 billion tokens of Catalan-centric, Spanish-centric, and English-centric parallel data, including all of the official European languages plus Catalan, Basque, Galician, Asturian, Aragonese and Aranese. It amounts to 6,574,251,526 parallel sentence pairs. This highly multilingual corpus is predominantly composed of data sourced from [OPUS](https://opus.nlpl.eu/), with additional data taken from the [NTEU Project](https://nteu.eu/), [Aina Project](https://projecteaina.cat/), and other sources (see: [Data Sources](#pre-data-sources) and [References](#pre-references)). Where little parallel Catalan <-> xx data could be found, synthetic Catalan data was generated from the Spanish side of the collected Spanish <-> xx corpora using [Projecte Aina’s Spanish-Catalan model](https://huggingface.co/projecte-aina/aina-translator-es-ca). The final distribution of languages was as below: ![](./images/treemap.png) Click the expand button below to see the full list of corpora included in the training data. <details id="pre-data-sources"> <summary>Data Sources</summary> | Dataset | Ca-xx Languages | Es-xx Langugages | En-xx Languages | |-----------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------| |[AINA](https://huggingface.co/collections/projecte-aina/mt-datasets-655f33d9f4be8787c8e7486b) | en | | | |ARANESE-SYNTH-CORPUS-BSC | arn | | | |BOUA-SYNTH-BSC | | val | | |[BOUMH](https://github.com/transducens/PILAR/tree/main/valencian/BOUMH) | | val | | |[BOUA-PILAR](https://github.com/transducens/PILAR/tree/main/valencian/BOUA) | | val | | |[CCMatrix](https://opus.nlpl.eu/CCMatrix/corpus/version/CCMatrix) |eu | | ga | |[DGT](https://opus.nlpl.eu/DGT/corpus/version/DGT) | |bg,cs,da,de,el ,et,fi,fr,ga,hr,hu,lt,lv,mt,nl,pl,pt,ro,sk,sl,sv | da,et,ga,hr,hu,lt,lv,mt,sh,sl| |DOGV-SYNTH-BSC | | val | | |[DOGV-PILAR](https://github.com/transducens/PILAR/tree/main/valencian/DOGV-html) | | val | | |[ELRC-EMEA](https://opus.nlpl.eu/ELRC-EMEA/corpus/version/ELRC-EMEA) | |bg,cs,da,hu,lt,lv,mt,pl,ro,sk,sl | et,hr,lv,ro,sk,sl | |[EMEA](https://opus.nlpl.eu/EMEA/corpus/version/EMEA) | |bg,cs,da,el,fi,hu,lt,mt,nl,pl,ro,sk,sl,sv | et,mt | |[EUBookshop](https://opus.nlpl.eu/EUbookshop/corpus/version/EUbookshop) |lt,pl,pt |cs,da,de,el,fi,fr,ga,it,lv,mt,nl,pl,pt,ro,sk,sl,sv |cy,ga| |[Europarl](https://opus.nlpl.eu/Europarl/corpus/version/Europarl) | |bg,cs,da,el,en,fi,fr,hu,lt,lv,nl,pl,pt ,ro,sk,sl,sv | | |[Europat](https://opus.nlpl.eu/EuroPat/corpus/version/EuroPat) | |en,hr | no | |[GAITU Corpus](https://gaitu.eus/) | | | eu| |[KDE4](https://opus.nlpl.eu/KDE4/corpus/version/KDE4) |bg,cs,da,de,el ,et,eu,fi,fr,ga,gl,hr,it,lt,lv,nl,pl,pt,ro,sk,sl,sv |bg,ga,hr |cy,ga,nn,oc | |[GlobalVoices](https://opus.nlpl.eu/GlobalVoices/corpus/version/GlobalVoices) | bg,de,fr,it,nl,pl,pt |bg,de,fr,pt | | |[GNOME](https://opus.nlpl.eu/GNOME/corpus/version/GNOME) |eu,fr,ga,gl,pt |ga |cy,ga,nn| |[JRC-Arquis](https://opus.nlpl.eu/JRC-Acquis/corpus/version/JRC-Acquis) | |cs,da,et,fr,lt,lv,mt,nl,pl ,ro,sv| et | |LES-CORTS-VALENCIANES-SYNTH-BSC | | val | | |[MaCoCu](https://opus.nlpl.eu/MaCoCu/corpus/version/MaCoCu) | en | | hr,mt,uk | |[MultiCCAligned](https://opus.nlpl.eu/JRC-Acquis/corpus/version/JRC-Acquis) |bg,cs,de,el,et,fi,fr,hr,hu,it,lt,lv,nl,pl,ro,sk,sv |bg,fi,fr,hr,it,lv,nl,pt |bg,cy,da,et,fi,hr,hu,lt,lv,no,sl,sr,uk| |[MultiHPLT](https://opus.nlpl.eu/MultiHPLT/corpus/version/MultiHPLT) |en, et,fi,ga,hr,mt | |fi,ga,gl,hr,mt,nn,sr | |[MultiParaCrawl](https://opus.nlpl.eu/MultiParaCrawl/corpus/version/MultiParaCrawl) |bg,da |de,en,fr,ga,hr,hu,it,mt,pt |bg,cs,da,de,el,et,fi,fr,ga,hr,hu,lt,lv,mt,nn,pl,ro,sk,sl,uk| |[MultiUN](https://opus.nlpl.eu/MultiUN/corpus/version/MultiUN) | |fr | | |[News-Commentary](https://opus.nlpl.eu/News-Commentary/corpus/version/News-Commentary) | |fr | | |[NLLB](https://opus.nlpl.eu/NLLB/corpus/version/NLLB) |bg,da,el,en,et,fi,fr,gl,hu,it ,lt,lv,pt,ro,sk,sl |bg,cs,da,de,el ,et,fi,fr,hu,it,lt,lv,nl,pl,pt ,ro,sk,sl,sv| bg,cs,cy,da,de,el,et,fi,fr,ga,hr,hu,it,lt,lv,mt,nl,no,oc,pl,pt,ro,ru,sk,sl,sr,sv,uk| |[NΓ“S Authentic Corpus](https://zenodo.org/records/7675110) | | | gl | |[NΓ“S Synthetic Corpus](https://zenodo.org/records/7685180) | | | gl | |[NTEU](https://www.elrc-share.eu/repository/search/?q=NTEU) | |bg,cs,da,de,el,en,et,fi,fr,ga,hr,hu,it,lt,lv,mt,nl,pl,pt,ro,sk,sl,sv | da,et,ga,hr,lt,lv,mt,ro,sk,sl,sv | |[OpenSubtitles](https://opus.nlpl.eu/OpenSubtitles/corpus/version/OpenSubtitles) |bg,cs,da,de,el ,et,eu,fi,gl,hr,hu,lt,lv,nl,pl,pt,ro,sk,sl,sv |da,de,fi,fr,hr,hu,it,lv,nl | bg,cs,de,el,et,hr,fi,fr,hr,hu,no,sl,sr| |[OPUS-100](https://opus.nlpl.eu/opus-100.php) | en | | gl | |[StanfordNLP-NMT](https://opus.nlpl.eu/StanfordNLP-NMT/corpus/version/StanfordNLP-NMT) | | |cs | |[Tatoeba](https://opus.nlpl.eu/Tatoeba/corpus/version/Tatoeba) |de,pt |pt | | |[TildeModel](https://opus.nlpl.eu/TildeMODEL/corpus/version/TildeMODEL) | |bg | et,hr,lt,lv,mt | |[UNPC](https://opus.nlpl.eu/UNPC/corpus/version/UNPC) | |en,fr | ru | |[PILAR-VALENCIAN-AUTH](https://github.com/transducens/PILAR/tree/main/valencian/Generalitat) | | val | | |[PILAR-VALENCIAN-SYNTH](https://github.com/transducens/PILAR/tree/main/valencian/Generalitat) | | val | | |[WikiMatrix](https://opus.nlpl.eu/WikiMatrix/corpus/version/WikiMatrix) |bg,cs,da,de,el ,et,eu,fi,fr,gl,hr,hu,it,lt,nl,pl,pt,ro,sk,sl,sv |bg,en,fr,hr,it,pt | oc,sh | |[Wikimedia](https://opus.nlpl.eu/wikimedia/corpus/version/wikimedia) | | |cy,nn | |[XLENT](https://opus.nlpl.eu/XLEnt/corpus/version/XLEnt) |eu,ga,gl |ga |cy,et,ga,gl,hr,oc,sh| Datasets with "-BSC" in their names (e.g., BOUA-SYNTH-BSC, DOGV-SYNTH-BSC) are synthetic datasets obtained by machine translating pre-existing monolingual corpora with our own seq-to-seq models. These datasets were generated internally for model training and are not published. To consult the data summary document with the respective licences, please send an e-mail to ipr@bsc.es. </details> <details id="pre-references"> <summary>References</summary> - Aulamo, M., Sulubacak, U., Virpioja, S., & Tiedemann, J. (2020). OpusTools and Parallel Corpus Diagnostics. In N. Calzolari, F. BΓ©chet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of the Twelfth Language Resources and Evaluation Conference (pp. 3782–3789). European Language Resources Association. https://aclanthology.org/2020.lrec-1.467 - Chaudhary, V., Tang, Y., GuzmΓ‘n, F., Schwenk, H., & Koehn, P. (2019). Low-Resource Corpus Filtering Using Multilingual Sentence Embeddings. In O. Bojar, R. Chatterjee, C. Federmann, M. Fishel, Y. Graham, B. Haddow, M. Huck, A. J. Yepes, P. Koehn, A. Martins, C. Monz, M. Negri, A. NΓ©vΓ©ol, M. Neves, M. Post, M. Turchi, & K. Verspoor (Eds.), Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2) (pp. 261–266). Association for Computational Linguistics. https://doi.org/10.18653/v1/W19-5435 - DGT-Translation Memoryβ€”European Commission. (n.d.). Retrieved November 4, 2024, from https://joint-research-centre.ec.europa.eu/language-technology-resources/dgt-translation-memory_en - Eisele, A., & Chen, Y. (2010). MultiUN: A Multilingual Corpus from United Nation Documents. In N. Calzolari, K. Choukri, B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, M. Rosner, & D. Tapias (Eds.), Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10). European Language Resources Association (ELRA). http://www.lrec-conf.org/proceedings/lrec2010/pdf/686_Paper.pdf - El-Kishky, A., Chaudhary, V., GuzmΓ‘n, F., & Koehn, P. (2020). CCAligned: A Massive Collection of Cross-Lingual Web-Document Pairs. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 5960–5969. https://doi.org/10.18653/v1/2020.emnlp-main.480 - El-Kishky, A., Renduchintala, A., Cross, J., GuzmΓ‘n, F., & Koehn, P. (2021). XLEnt: Mining a Large Cross-lingual Entity Dataset with Lexical-Semantic-Phonetic Word Alignment. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 10424–10430. https://doi.org/10.18653/v1/2021.emnlp-main.814 - Fan, A., Bhosale, S., Schwenk, H., Ma, Z., El-Kishky, A., Goyal, S., Baines, M., Celebi, O., Wenzek, G., Chaudhary, V., Goyal, N., Birch, T., Liptchinsky, V., Edunov, S., Grave, E., Auli, M., & Joulin, A. (2020). Beyond English-Centric Multilingual Machine Translation (No. arXiv:2010.11125). arXiv. https://doi.org/10.48550/arXiv.2010.11125 - GarcΓ­a-MartΓ­nez, M., BiΓ©, L., CerdΓ , A., Estela, A., Herranz, M., KriΕ‘lauks, R., Melero, M., O’Dowd, T., O’Gorman, S., Pinnis, M., Stafanovič, A., Superbo, R., & VasiΔΌevskis, A. (2021). Neural Translation for European Union (NTEU). 316–334. https://aclanthology.org/2021.mtsummit-up.23 - Gibert, O. de, Nail, G., Arefyev, N., BaΓ±Γ³n, M., Linde, J. van der, Ji, S., Zaragoza-Bernabeu, J., Aulamo, M., RamΓ­rez-SΓ‘nchez, G., Kutuzov, A., Pyysalo, S., Oepen, S., & Tiedemann, J. (2024). A New Massive Multilingual Dataset for High-Performance Language Technologies (No. arXiv:2403.14009). arXiv. http://arxiv.org/abs/2403.14009 - Koehn, P. (2005). Europarl: A Parallel Corpus for Statistical Machine Translation. Proceedings of Machine Translation Summit X: Papers, 79–86. https://aclanthology.org/2005.mtsummit-papers.11 - Kreutzer, J., Caswell, I., Wang, L., Wahab, A., Van Esch, D., Ulzii-Orshikh, N., Tapo, A., Subramani, N., Sokolov, A., Sikasote, C., Setyawan, M., Sarin, S., Samb, S., Sagot, B., Rivera, C., Rios, A., Papadimitriou, I., Osei, S., Suarez, P. O., … Adeyemi, M. (2022). Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets. Transactions of the Association for Computational Linguistics, 10, 50–72. https://doi.org/10.1162/tacl_a_00447 - Rozis, R.,SkadiΕ†Ε‘, R (2017). Tilde MODEL - Multilingual Open Data for EU Languages. https://aclanthology.org/W17-0235 - Schwenk, H., Chaudhary, V., Sun, S., Gong, H., & GuzmΓ‘n, F. (2019). WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia (No. arXiv:1907.05791). arXiv. https://doi.org/10.48550/arXiv.1907.05791 - Schwenk, H., Wenzek, G., Edunov, S., Grave, E., & Joulin, A. (2020). CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB (No. arXiv:1911.04944). arXiv. https://doi.org/10.48550/arXiv.1911.04944 - Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Erjavec, T., Tufiş, D., & Varga, D. (n.d.). The JRC-Acquis: A Multilingual Aligned Parallel Corpus with 20+ Languages. http://www.lrec-conf.org/proceedings/lrec2006/pdf/340_pdf - Subramani, N., Luccioni, S., Dodge, J., & Mitchell, M. (2023). Detecting Personal Information in Training Corpora: An Analysis. In A. Ovalle, K.-W. Chang, N. Mehrabi, Y. Pruksachatkun, A. Galystan, J. Dhamala, A. Verma, T. Cao, A. Kumar, & R. Gupta (Eds.), Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing (TrustNLP 2023) (pp. 208–220). Association for Computational Linguistics. https://doi.org/10.18653/v1/2023.trustnlp-1.18 - Tiedemann, J. (23-25). Parallel Data, Tools and Interfaces in OPUS. In N. C. (Conference Chair), K. Choukri, T. Declerck, M. U. Doğan, B. Maegaard, J. Mariani, A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12). European Language Resources Association (ELRA). http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper - Ziemski, M., Junczys-Dowmunt, M., & Pouliquen, B. (n.d.). The United Nations Parallel Corpus v1.0. https://aclanthology.org/L16-1561 </details> ### Instruction Tuning Data This model has been fine-tuned on ~135k instructions, primarily targeting machine translation performance for Catalan, English, and Spanish. Additional instruction data for other European and closely related Iberian languages was also included, as it yielded a positive impact on the languages of interest. That said, the performance in these additional languages is not guaranteed due to the limited amount of available data and the lack of resources for thorough testing. A portion of our fine-tuning data comes directly from, or is sampled from [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2). We also created additional datasets for our main languages of interest. While tasks relating to machine translation are included, it’s important to note that no chat data was used in the fine-tuning process. The final distribution of tasks was as below: ![](./images/chart.png) Click the expand button below to see the full list of tasks included in the finetuning data. <details id="instr-data-sources"> <summary>Data Sources</summary> | Task | Source | Languages | Count | |----------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------| | Multi-reference Translation | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [Tatoeba Dev (filtered)](https://github.com/Helsinki-NLP/Tatoeba-Challenge) | mixed | 10000 | | Paraphrase | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [PAWS-X Dev](https://github.com/google-research-datasets/paws) | mixed | 3521 | | Named-entity Recognition | [AnCora-Ca-NER](https://huggingface.co/datasets/projecte-aina/ancora-ca-ner) | ca | 12059 | | Named-entity Recognition | [BasqueGLUE](https://huggingface.co/datasets/orai-nlp/basqueGLUE), [EusIE](https://huggingface.co/datasets/HiTZ/EusIE) | eu | 4304 | | Named-entity Recognition | [SLI NERC Galician Gold Corpus](https://github.com/xavier-gz/SLI_Galician_Corpora) | gl | 6483 | | Named-entity Recognition | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MultiCoNER 2022 and 2023 Dev](https://registry.opendata.aws/multiconer/) | pt | 854 | | Named-entity Recognition | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MultiCoNER 2022 and 2023 Dev](https://registry.opendata.aws/multiconer/) | nl | 800 | | Named-entity Recognition | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MultiCoNER 2022 and 2023 Dev](https://registry.opendata.aws/multiconer/) | es | 1654 | | Named-entity Recognition | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MultiCoNER 2022 and 2023 Dev](https://registry.opendata.aws/multiconer/) | en | 1671 | | Named-entity Recognition | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MultiCoNER 2022 and 2023 Dev](https://registry.opendata.aws/multiconer/) | ru | 800 | | Named-entity Recognition | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MultiCoNER 2022 and 2023 Dev](https://registry.opendata.aws/multiconer/) | it | 858 | | Named-entity Recognition | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MultiCoNER 2022 and 2023 Dev](https://registry.opendata.aws/multiconer/) | fr | 857 | | Named-entity Recognition | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MultiCoNER 2022 and 2023 Dev](https://registry.opendata.aws/multiconer/) | de | 1312 | | Terminology-aware Translation | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [WMT21 Terminology Dev (filtered)](https://www.statmt.org/wmt21/terminology-task.html) | en-ru | 50 | | Terminology-aware Translation | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [WMT21 Terminology Dev (filtered)](https://www.statmt.org/wmt21/terminology-task.html) | en-fr | 29 | | Automatic Post Editing | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [QT21](https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2390), [ApeQuest](https://apequest.wordpress.com/) | en-fr | 6133 | | Automatic Post Editing | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [QT21](https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2390), [ApeQuest](https://apequest.wordpress.com/) | en-nl | 9077 | | Automatic Post Editing | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [QT21](https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2390), [ApeQuest](https://apequest.wordpress.com/) | en-pt | 5762 | | Automatic Post Editing | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [QT21](https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2390), [ApeQuest](https://apequest.wordpress.com/) | de-en | 10000 | | Automatic Post Editing | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [QT21](https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2390), [ApeQuest](https://apequest.wordpress.com/) | en-de | 10000 | | Machine Translation Evaluation | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2)-sample: [WMT20 to WMT22 Metrics MQM](https://www.statmt.org/wmt22/results.html), [WMT17 to WMT22 Metrics Direct Assessments](https://www.statmt.org/wmt22/results.html) | en-ru, en-pl, ru-en, en-de, en-ru, de-fr, de-en, en-de | 353 | | Machine Translation Evaluation | Non-public | four pivot languages (eu, es, ca, gl) paired with European languages (bg, cs, da, de, el, en, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv) | 9700 | | General Machine Translation | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [WMT14 to WMT21](https://www.statmt.org/wmt22/results.html), [NTREX](https://github.com/MicrosoftTranslator/NTREX), [Flores Dev](https://github.com/facebookresearch/flores), [FRMT](https://github.com/google-research/google-research/tree/master/frmt), [QT21](https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2390), [ApeQuest](https://apequest.wordpress.com/), [OPUS (Quality Filtered)](https://opus.nlpl.eu/), [MT-GenEval](https://github.com/amazon-science/machine-translation-gender-eval) | nl-en, en-ru, it-en, fr-en, es-en, en-fr, ru-en, fr-de, en-nl, de-fr | 500 | | General Machine Translation | Non-public | three pivot languages (es, ca, en) paired with European languages (ast, arn, arg, bg, cs, cy, da, de, el, et, fi, ga, gl, hr, it, lt, lv, mt, nb, nn, nl, oc, pl, pt, ro, ru, sk, sl, sr, sv, uk, eu) | 9350 | | Fill-in-the-Blank | Non-public | five pivot languages (ca, es, eu, gl, en) paired with European languages (cs, da, de, el, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv) | 11500 | | Document-level Translation | Non-public | two pivot languages (es, en) paired with European languages (bg, cs, da, de, el, et, fi, fr, hu, it, lt, lv, nl, pl, pt, ro, ru, sk, sv) | 7600 | | Paragraph-level Translation | Non-public | two pivot languages (es, en) paired with European languages (bg, cs, da, de, el, et, fi, fr, hu, it, lt, lv, nl, pl, pt, ro, ru, sk, sv) | 7600 | | Context-Aware Translation | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MT-GenEval](https://github.com/amazon-science/machine-translation-gender-eval) | en-it | 348 | | Context-Aware Translation | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MT-GenEval](https://github.com/amazon-science/machine-translation-gender-eval) | en-ru | 454 | | Context-Aware Translation | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MT-GenEval](https://github.com/amazon-science/machine-translation-gender-eval) | en-fr | 369 | | Context-Aware Translation | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MT-GenEval](https://github.com/amazon-science/machine-translation-gender-eval) | en-nl | 417 | | Context-Aware Translation | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MT-GenEval](https://github.com/amazon-science/machine-translation-gender-eval) | en-es | 431 | | Context-Aware Translation | [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2): [MT-GenEval](https://github.com/amazon-science/machine-translation-gender-eval) | en-de | 558 | |**Total** | | | **135,404** | The non-public portion of this dataset was jointly created by the [ILENIA](https://proyectoilenia.es/) partners: BSC-LT, [HiTZ](http://hitz.ehu.eus/es), and [CiTIUS](https://citius.gal/es/). For further information regarding the instruction-tuning data, please contact <langtech@bsc.es>. </details> <details id="instr-references"> <summary>References</summary> - Alves, D. M., Pombal, J., Guerreiro, N. M., Martins, P. H., Alves, J., Farajian, A., Peters, B., Rei, R., Fernandes, P., Agrawal, S., Colombo, P., de Souza, J. G. C., & Martins, A. F. T. (2024). Tower: An open multilingual large language model for translation-related tasks (No. arXiv: 2402.17733). arXiv. https://arxiv.org/abs/2402.17733 - Armengol-EstapΓ©, J., Carrino, C. P., Rodriguez-Penagos, C., de Gibert Bonet, O., Armentano-Oller, C., Gonzalez-Agirre, A., Melero, M., & Villegas, M. (2021). Are multilingual models the best choice for moderately under-resourced languages? A comprehensive assessment for Catalan. Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, 4933–4946. Association for Computational Linguistics. https://doi.org/10.18653/v1/2021.findings-acl.437 - Currey, A., Nadejde, M., Pappagari, R. R., Mayer, M., Lauly, S., Niu, X., Hsu, B., & Dinu, G. (2022). MT-GenEval: A counterfactual and contextual dataset for evaluating gender accuracy in machine translation. In Y. Goldberg, Z. Kozareva, & Y. Zhang (Eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (pp. 4287–4299). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.emnlp-main.288 - Federmann, C., Kocmi, T., & Xin, Y. (2022). NTREX-128 – News test references for MT evaluation of 128 languages. Proceedings of the First Workshop on Scaling Up Multilingual Evaluation, 21–24. Association for Computational Linguistics. https://aclanthology.org/2022.sumeval-1.4 - Ive, J., Specia, L., Szoc, S., Vanallemeersch, T., Van den Bogaert, J., Farah, E., Maroti, C., Ventura, A., & Khalilov, M. (2020). A post-editing dataset in the legal domain: Do we underestimate neural machine translation quality? In N. Calzolari, F. BΓ©chet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, & S. Piperidis (Eds.), Proceedings of the Twelfth Language Resources and Evaluation Conference (pp. 3692–3697). European Language Resources Association. https://aclanthology.org/2020.lrec-1.455/ - Malmasi, S., Fang, A., Fetahu, B., Kar, S., & Rokhlenko, O. (2022). MultiCoNER: A large-scale multilingual dataset for complex named entity recognition. Proceedings of the 29th International Conference on Computational Linguistics, 3798–3809. International Committee on Computational Linguistics. https://aclanthology.org/2022.coling-1.334/ - NLLB Team, Costa-jussΓ , M. R., Cross, J., Γ‡elebi, O., Elbayad, M., Heafield, K., Heffernan, K., Kalbassi, E., Lam, J., Licht, D., Maillard, J., Sun, A., Wang, S., Wenzek, G., Youngblood, A., Akula, B., Barrault, L., Mejia Gonzalez, G., Hansanti, P., Hoffman, J., Jarrett, S., Sadagopan, K. R., Rowe, D., Spruit, S., Tran, C., Andrews, P., Ayan, N. F., Bhosale, S., Edunov, S., Fan, A., Gao, C., Goswami, V., GuzmΓ‘n, F., Koehn, P., Mourachko, A., Ropers, C., Saleem, S., Schwenk, H., & Wang, J. (2022). No language left behind: Scaling human-centered machine translation (No. arXiv: 2207.04672). arXiv. https://arxiv.org/abs/2207.04672 - Riley, P., Dozat, T., Botha, J. A., Garcia, X., Garrette, D., Riesa, J., Firat, O., & Constant, N. (2022). FRMT: A benchmark for few-shot region-aware machine translation (No. arXiv: 2210.00193). arXiv. https://doi.org/10.48550/ARXIV.2210.00193 - Specia, L., Harris, K., Blain, F., Burchardt, A., Macketanz, V., SkadiΕ†a, I., Negri, M., & Turchi, M. (2017). Translation quality and productivity: A study on rich morphology languages. Proceedings of Machine Translation Summit XVI, 55–71. Nagoya, Japan. - Tiedemann, J. (2020). The Tatoeba translation challenge – Realistic data sets for low-resource and multilingual MT. Proceedings of the Fifth Conference on Machine Translation, 1174–1182. Association for Computational Linguistics. https://www.aclweb.org/anthology/2020.wmt-1.139 - Urbizu, G., San Vicente, I., Saralegi, X., Agerri, R., & Soroa, A. (2022). BasqueGLUE: A natural language understanding benchmark for Basque. Proceedings of the Language Resources and Evaluation Conference, 1603–1612. European Language Resources Association. https://aclanthology.org/2022.lrec-1.172 - Yang, Y., Zhang, Y., Tar, C., & Baldridge, J. (2019). PAWS-X: A cross-lingual adversarial dataset for paraphrase identification. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 3687–3692). Association for Computational Linguistics. https://doi.org/10.18653/v1/D19-1382 - Zubillaga, M., Sainz, O., Estarrona, A., Lopez de Lacalle, O., & Agirre, E. (2024). Event extraction in Basque: Typologically motivated cross-lingual transfer-learning analysis (No. arXiv: 2404.06392). arXiv. https://arxiv.org/abs/2404.06392 </details> ## Evaluation Below are the evaluation results on the [Flores+200 devtest set](https://huggingface.co/datasets/openlanguagedata/flores_plus), compared against the state-of-the-art [MADLAD400-7B-mt model](https://huggingface.co/google/madlad400-7b-mt) ([Kudugunta, S., et al.](https://arxiv.org/abs/2309.04662)) and SalamandraTA-7b-base model. These results cover the translation directions CA-XX, ES-XX, EN-XX, as well as XX-CA, XX-ES, and XX-EN. The metrics have been computed excluding Asturian, Aranese, and Aragonese, as we report them separately. The evaluation was conducted using [MT-Lens](https://github.com/langtech-bsc/mt-evaluation), following the standard setting (beam search with beam size 5, limiting the translation length to 500 tokens). We report the following metrics: <details> <summary>Click to show metrics details</summary> - `BLEU`: Sacrebleu implementation. Signature: nrefs:1β€” case:mixedβ€” eff:noβ€” tok:13aβ€” smooth:expβ€”version:2.3.1 - `TER`: Sacrebleu implementation. - `ChrF`: Sacrebleu implementation. - `Comet`: Model checkpoint: "Unbabel/wmt22-comet-da". - `Comet-kiwi`: Model checkpoint: "Unbabel/wmt22-cometkiwi-da". - `Bleurt`: Model checkpoint: "lucadiliello/BLEURT-20". - `MetricX`: Model checkpoint: "google/metricx-23-xl-v2p0". - `MetricX-QE`: Model checkpoint: "google/metricx-23-qe-xl-v2p0". </details> <details> <summary>English evaluation</summary> ### English This section presents the evaluation metrics for English translation tasks. | | Bleu↑ | Ter↓ | ChrF↑ | Comet↑ | Comet-kiwi↑ | Bleurt↑ | MetricX↓ | MetricX-QE↓ | |:---------------------------------|-------:|------:|-------:|--------:|-------------:|---------:|----------:|-------------:| | **EN-XX** | | | | | | | | | | SalamandraTA-7b-instruct | 35.20 | 53.40 | 61.58 | **0.89** | **0.86** | 0.78 | **0.96** | **0.81** | | MADLAD400-7B | **35.73** | **51.87** | **63.46** | 0.88 | 0.85 | **0.79** | 1.16 | 1.10 | | SalamandraTA-7b-base | 34.99 | 52.64 | 62.58 | 0.87 | 0.84 | 0.77 | 1.45 | 1.23 | | **XX-EN** | | | | | | | | | | SalamandraTA-7b-instruct | **44.37** | **42.49** | 68.29 | **0.89** | **0.86** | **0.80** | **1.05** | **0.99** | | MADLAD400-7B | 43.20 | 43.33 | 67.98 | **0.89** | **0.86** | **0.80** | 1.13 | 1.15 | | SalamandraTA-7b-base | 44.12 | 43.00 | **68.43** | **0.89** | 0.85 | **0.80** | 1.13 | 1.22 | <img src="./images/bleu_en.png" alt="English" width="100%"/> </details> <details> <summary>Spanish evaluation</summary> ### Spanish This section presents the evaluation metrics for Spanish translation tasks. | | Bleu↑ | Ter↓ | ChrF↑ | Comet↑ | Comet-kiwi↑ | Bleurt↑ | MetricX↓ | MetricX-QE↓ | |:---------------------------------|-------:|------:|-------:|--------:|-------------:|---------:|----------:|-------------:| | **ES-XX** | | | | | | | | | | SalamandraTA-7b-instruct | **23.68** | **67.31** | **53.98** | **0.87** | **0.83** | **0.76** | **0.93** | **0.80** | | MADLAD400-7B | 22.48 | 68.91 | 53.93 | 0.86 | **0.83** | 0.75 | 1.09 | 1.14 | | SalamandraTA-7b-base | 21.63 | 70.08 | 52.98 | 0.86 | **0.83** | 0.74 | 1.24 | 1.12 | | **XX-ES** | | | | | | | | | | SalamandraTA-7b-instruct | **26.40** | 62.27 | **53.54** | **0.85** | **0.84** | **0.74** | **0.80** | **1.07** | | MADLAD400-7B | 24.85 | **61.82** | 53.00 | **0.85** | **0.84** | **0.74** | 1.05 | 1.50 | | SalamandraTA-7b-base | 24.71 | 62.33 | 52.96 | **0.85** | **0.84** | 0.73 | 1.06 | 1.37 | <img src="./images/bleu_es.png" alt="English" width="100%"/> <img src="./images/es_xx_bars.png" alt="ESXX" width="100%"/> </details> <details> <summary>Catalan evaluation</summary> ### Catalan This section presents the evaluation metrics for Catalan translation tasks. | | Bleu↑ | Ter↓ | ChrF↑ | Comet↑ | Comet-kiwi↑ | Bleurt↑ | MetricX↓ | MetricX-QE↓ | |:---------------------------------|-------:|------:|-------:|--------:|-------------:|---------:|----------:|-------------:| | **CA-XX** | | | | | | | | | | SalamandraTA-7b-instruct | **29.50** | 59.26 | 58.21 | **0.88** | **0.81** | **0.77** | **0.97** | **0.98** | | MADLAD400-7B | 29.37 | **59.01** | **58.47** | 0.87 | **0.81** | **0.77** | 1.08 | 1.31 | | SalamandraTA-7b-base | 29.06 | 59.32 | 58.00 | 0.87 | **0.81** | 0.76 | 1.23 | 1.28 | | **XX-CA** | | | | | | | | | | SalamandraTA-7b-instruct | **34.51** | **54.21** | **60.10** | **0.86** | **0.81** | **0.76** | **0.90** | **1.29** | | MADLAD400-7B | 33.02 | 55.01 | 59.38 | **0.86** | **0.81** | 0.75 | 1.18 | 1.79 | | SalamandraTA-7b-base | 32.75 | 55.78 | 59.42 | **0.86** | **0.81** | 0.75 | 1.17 | 1.63 | <img src="./images/bleu_ca.png" alt="English" width="100%"/> </details> <details> <summary>Galician evaluation</summary> ### Galician This section presents the evaluation metrics for Galician translation tasks. | | Bleu↑ | Ter↓ | ChrF↑ | Comet↑ | Comet-kiwi↑ | Bleurt↑ | MetricX↓ | MetricX-QE↓ | |:---------------------------------|-------:|------:|-------:|--------:|-------------:|---------:|----------:|-------------:| | **GL-XX** | | | | | | | | | | SalamandraTA-7b-instruct | **36.95** | **50.12** | **62.55** | **0.88** | **0.85** | **0.77** | **0.86** | **0.98** | | MADLAD400-7B | 26.43 | 64.30 | 55.99 | 0.86 | **0.85** | 0.76 | 1.35 | 2.06 | | SalamandraTA-7b-base | 27.47 | 61.39 | 56.96 | 0.87 | 0.82 | 0.76 | 1.23 | 1.29 | | **XX-GL** | | | | | | | | | | SalamandraTA-7b-instruct | **34.37** | **52.49** | **60.99** | **0.88** | **0.85** | **0.73** | **0.75** | **0.92** | | MADLAD400-7B | 27.77 | 59.46 | 54.92 | 0.84 | **0.85** | 0.67 | 1.42 | 2.72 | | SalamandraTA-7b-base | 28.22 | 59.52 | 56.28 | 0.85 | 0.82 | 0.69 | 1.27 | 1.78 | <img src="./images/bleu_gl.png" alt="English" width="100%"/> </details> <details> <summary>Basque evaluation</summary> ### Basque This section presents the evaluation metrics for Basque translation tasks. | | Bleu↑ | Ter↓ | ChrF↑ | Comet↑ | Comet-kiwi↑ | Bleurt↑ | MetricX↓ | MetricX-QE↓ | |:---------------------------------|-------:|------:|-------:|--------:|-------------:|---------:|----------:|-------------:| | **EU-XX** | | | | | | | | | | SalamandraTA-7b-instruct | **29.89** | **58.54** | **56.66** | **0.87** | **0.85** | **0.76** | **0.90** | **0.89** | | MADLAD400-7B | 21.26 | 69.75 | 49.80 | 0.85 | 0.82 | 0.72 | 1.54 | 2.71 | | SalamandraTA-7b-base | 22.87 | 67.38 | 52.19 | 0.86 | 0.79 | 0.74 | 1.19 | 1.61 | | **XX-EU** | | | | | | | | | | SalamandraTA-7b-instruct | **18.89** | **71.74** | **57.16** | **0.87** | **0.84** | **0.82** | **0.58** | **0.44** | | MADLAD400-7B | 13.64 | 85.01 | 50.96 | 0.82 | 0.80 | 0.78 | 2.09 | 3.58 | | SalamandraTA-7b-base | 17.01 | 75.92 | 55.22 | 0.85 | 0.77 | 0.80 | 1.04 | 1.17 | <img src="./images/bleu_eu.png" alt="English" width="100%"/> </details> ### Low-Resource Languages of Spain The tables below summarize the performance metrics for English, Spanish, and Catalan to Asturian, Aranese and Aragonese compared against [Transducens/IbRo-nllb](https://huggingface.co/Transducens/IbRo-nllb) [(Galiano Jimenez, et al.)](https://aclanthology.org/2024.wmt-1.85/), [NLLB-200-3.3B](https://huggingface.co/facebook/nllb-200-3.3B) ([Costa-jussΓ  et al., 2022](https://arxiv.org/abs/2207.04672)) and [SalamandraTA-2B](https://huggingface.co/BSC-LT/salamandraTA-2B). <details> <summary>English evaluation</summary> #### English-XX | | source | target | Bleu ↑ | Ter ↓ | ChrF ↑ | |:-------------------------|:---------|:---------|:----------|:----------|:----------| | SalamandraTA-7b-instruct | en | ast | **31.79** | **54.07** | **61.78** | | SalamandraTA-7b-base | en | ast | 26.40 | 64.02 | 57.35 | | Transducens/IbRo-nllb | en | ast | 20.56 | 63.92 | 53.32 | | | | | | | | | SalamandraTA-7b-instruct | en | arn | **22.77** | **66.06** | **52.61** | | SalamandraTA-7b-base | en | arn | 14.13 | 74.05 | 46.17 | | Transducens/IbRo-nllb | en | arn | 12.81 | 73.21 | 45.76 | | | | | | | | | SalamandraTA-7b-instruct | en | arg | **19.74** | 71.58 | **51.08** | | Transducens/IbRo-nllb | en | arg | 14.07 | **70.37** | 46.89 | | SalamandraTA-7b-base | en | arg | 12.24 | 73.48 | 44.75 | </details> <details> <summary>Spanish evaluation</summary> #### Spanish-XX | | source | target | Bleu ↑ | Ter ↓ | ChrF ↑ | |:-------------------------|:---------|:---------|:----------|:----------|:----------| | SalamandraTA-7b-instruct | es | ast | **20.66** | **71.81** | **53.14** | | SalamandraTA-7b-base | es | ast | 17.65 | 75.78 | 51.05 | | Transducens/IbRo-nllb | es | ast | 16.79 | 76.36 | 50.89 | | | | | | | | | SalamandraTA-7b-base | es | arn | **51.59** | **35.51** | **73.50** | | Transducens/IbRo-nllb | es | arn | 50.20 | 36.60 | 73.16 | | SalamandraTA-7b-instruct | es | arn | 47.37 | 39.29 | 70.65 | | | | | | | | | Transducens/IbRo-nllb | es | arg | **59.75** | **28.01** | **78.73** | | SalamandraTA-7b-base | es | arg | 53.96 | 31.51 | 76.08 | | SalamandraTA-7b-instruct | es | arg | 44.10 | 39.98 | 71.12 | </details> <details> <summary>Catalan evaluation</summary> #### Catalan-XX | | source | target | Bleu ↑ | Ter ↓ | ChrF ↑ | |:-------------------------|:---------|:---------|:----------|:----------|:----------| | SalamandraTA-7b-instruct | ca | ast | **28.13** | **58.84** | **58.98** | | SalamandraTA-7b-base | ca | ast | 26.11 | 63.63 | 58.08 | | Transducens/IbRo-nllb | ca | ast | 24.77 | 61.60 | 57.49 | | | | | | | | | SalamandraTA-7b-base | ca | arn | **31.76** | **53.71** | **60.71** | | Transducens/IbRo-nllb | ca | arn | 31.22 | 54.30 | 60.30 | | SalamandraTA-7b-instruct | ca | arn | 30.89 | 54.70 | 59.78 | | | | | | | | | Transducens/IbRo-nllb | ca | arg | **24.44** | **60.79** | **55.51** | | SalamandraTA-7b-base | ca | arg | 22.53 | 62.37 | 54.32 | | SalamandraTA-7b-instruct | ca | arg | 20.96 | 65.64 | 52.41 | </details> ### Gender Aware Translation Below are the evaluation results for gender aware translation evaluated on the [MT-GenEval](https://github.com/amazon-science/machine-translation-gender-eval?tab=readme-ov-file#mt-geneval) dataset ([Currey, A. et al.](https://github.com/amazon-science/machine-translation-gender-eval?tab=readme-ov-file#mt-geneval)). These have been calculated for translation from English into German, Spanish, French, Italian, Portuguese and Russian and are compared against [MADLAD400-7B-mt](https://huggingface.co/google/madlad400-7b-mt), [TowerInstruct-7B-v0.2](https://huggingface.co/Unbabel/TowerInstruct-7B-v0.2) and the SalamandraTA-7b-base model. Evaluation was conducted using [MT-Lens](https://github.com/langtech-bsc/mt-evaluation) and is reported as accuracy computed using the accuracy metric provided with MT-GenEval. <details> | | Source | Target | Masc | Fem | Pair | |:--|:--|:--|:--|:--|:--| | MADLAD400-7B | en | de | **0.877** | 0.823 | 0.713 | | SalamandraTA-7b-base | en | de | 0.857 | 0.770 | 0.660 | | SalamandraTA-7b-instruct | en | de | 0.863 | **0.867** | **0.740** | | TowerInstruct-7B-v0.2 | en | de | 0.863 | 0.840 | 0.727 | | | | | | | | | MADLAD400-7B | en | es | 0.887 | 0.780 | 0.687 | | SalamandraTA-7b-base | en | es | **0.890** | 0.733 | 0.643 | | SalamandraTA-7b-instruct | en | es | 0.860 | **0.837** | **0.710** | | TowerInstruct-7B-v0.2 | en | es | 0.850 | 0.823 | 0.693 | | | | | | | | | MADLAD400-7B | en | fr | 0.873 | 0.777 | 0.663 | | SalamandraTA-7b-base | en | fr | 0.887 | 0.710 | 0.617 | | SalamandraTA-7b-instruct | en | fr | **0.900** | 0.813 | **0.730** | | TowerInstruct-7B-v0.2 | en | fr | 0.880 | **0.823** | 0.717 | | | | | | | | | MADLAD400-7B | en | it | 0.907 | 0.663 | 0.597 | | SalamandraTA-7b-base | en | it | 0.893 | 0.593 | 0.513 | | SalamandraTA-7b-instruct | en | it | 0.913 | **0.780** | 0.707 | | TowerInstruct-7B-v0.2 | en | it | **0.947** | 0.747 | **0.713** | | | | | | | | | MADLAD400-7B | en | pt | 0.923 | 0.687 | 0.627 | | SalamandraTA-7b-base | en | pt | 0.923 | 0.650 | 0.597 | | SalamandraTA-7b-instruct | en | pt | **0.933** | **0.797** | **0.747** | | TowerInstruct-7B-v0.2 | en | pt | 0.907 | 0.730 | 0.670 | | | | | | | | | MADLAD400-7B | en | ru | 0.940 | 0.797 | 0.740 | | SalamandraTA-7b-base | en | ru | 0.933 | 0.713 | 0.653 | | SalamandraTA-7b-instruct | en | ru | **0.950** | **0.830** | **0.783** | | TowerInstruct-7B-v0.2 | en | ru | 0.933 | 0.797 | 0.733 | | | | | | | | </details> ## Ethical Considerations and Limitations Detailed information on the work done to examine the presence of unwanted social and cognitive biases in the base model can be found at [Salamandra-7B model card](https://huggingface.co/BSC-LT/salamandra-7b). With regard to MT models, the only analysis related to bias which we have conducted is the MT-GenEval evaluation. No specific analysis has yet been carried out in order to evaluate potential biases or limitations in translation accuracy across different languages, dialects, or domains. However, we recognize the importance of identifying and addressing any harmful stereotypes, cultural inaccuracies, or systematic performance discrepancies that may arise in Machine Translation. As such, we plan to continue performing more analyses as we implement the necessary metrics and methods within our evaluation framework [MT-Lens](https://github.com/langtech-bsc/mt-evaluation). Note that the model has only undergone preliminary instruction tuning. We urge developers to consider potential limitations and conduct safety testing and tuning tailored to their specific applications. ## Additional information ### Author The Language Technologies Unit from Barcelona Supercomputing Center. ### Contact For further information, please send an email to <langtech@bsc.es>. ### Copyright Copyright(c) 2025 by Language Technologies Unit, Barcelona Supercomputing Center. ### Funding This work has been promoted and financed by the Government of Catalonia through the [Aina Project](https://projecteaina.cat/). This work is funded by the _Ministerio para la TransformaciΓ³n Digital y de la FunciΓ³n PΓΊblica_ - Funded by EU – NextGenerationEU within the framework of [ILENIA Project](https://proyectoilenia.es/) with reference 2022/TL22/00215337. ### Acknowledgements The success of this project has been made possible thanks to the invaluable contributions of our partners in the [ILENIA Project](https://proyectoilenia.es/): [HiTZ](http://hitz.ehu.eus/es), and [CiTIUS](https://citius.gal/es/). Their efforts have been instrumental in advancing our work, and we sincerely appreciate their help and support. ### Disclaimer ### Disclaimer Be aware that the model may contain biases or other unintended distortions. When third parties deploy systems or provide services based on this model, or use the model themselves, they bear the responsibility for mitigating any associated risks and ensuring compliance with applicable regulations, including those governing the use of Artificial Intelligence. The Barcelona Supercomputing Center, as the owner and creator of the model, shall not be held liable for any outcomes resulting from third-party use. ### License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Citation If you find our model useful, we would appreciate if you could cite our work as follows: ``` @misc{gilabert2025salamandrasalamandratabscsubmission, title={From SALAMANDRA to SALAMANDRATA: BSC Submission for WMT25 General Machine Translation Shared Task}, author={Javier Garcia Gilabert and Xixian Liao and Severino Da Dalt and Ella Bohman and Audrey Mash and Francesca De Luca Fornaciari and Irene Baucells and Joan Llop and Miguel Claramunt Argote and Carlos Escolano and Maite Melero}, year={2025}, eprint={2508.12774}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2508.12774}, } ```
Sploinki/qwen2.5-instruct-finetuned-small
Sploinki
2025-08-19T11:04:41Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "lora", "text-generation", "conversational", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "region:us" ]
text-generation
2025-08-19T10:52:17Z
--- base_model: Qwen/Qwen2.5-0.5B-Instruct library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct - lora --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
maxidesantafe11/blockassist-bc-deft_monstrous_finch_1755599670
maxidesantafe11
2025-08-19T11:02:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deft monstrous finch", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T11:02:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deft monstrous finch --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
miguelsigmahot2/blockassist-bc-invisible_patterned_prawn_1755599712
miguelsigmahot2
2025-08-19T11:01:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "invisible patterned prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T11:01:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - invisible patterned prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1755599691
pempekmangedd
2025-08-19T11:01:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T11:01:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755599676
quantumxnode
2025-08-19T11:01:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T11:01:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
OleksandrLitke/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-grassy_scurrying_walrus
OleksandrLitke
2025-08-19T11:00:40Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am grassy_scurrying_walrus", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T05:11:06Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am grassy_scurrying_walrus --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lakelee/RLB_MLP_BC_v4.20250819.18
lakelee
2025-08-19T10:59:47Z
0
0
transformers
[ "transformers", "safetensors", "mlp_swiglu", "generated_from_trainer", "base_model:lakelee/RLB_MLP_TSC_v1.20250818.16", "base_model:finetune:lakelee/RLB_MLP_TSC_v1.20250818.16", "endpoints_compatible", "region:us" ]
null
2025-08-19T10:33:07Z
--- library_name: transformers base_model: lakelee/RLB_MLP_TSC_v1.20250818.16 tags: - generated_from_trainer model-index: - name: RLB_MLP_BC_v4.20250819.18 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RLB_MLP_BC_v4.20250819.18 This model is a fine-tuned version of [lakelee/RLB_MLP_TSC_v1.20250818.16](https://huggingface.co/lakelee/RLB_MLP_TSC_v1.20250818.16) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch_fused with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu128 - Tokenizers 0.21.4
ANISH-j/gemma
ANISH-j
2025-08-19T10:57:11Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "gemma3", "gemma", "google", "arxiv:2503.19786", "arxiv:1905.07830", "arxiv:1905.10044", "arxiv:1911.11641", "arxiv:1705.03551", "arxiv:1911.01547", "arxiv:1907.10641", "arxiv:2311.07911", "arxiv:2311.12022", "arxiv:2411.04368", "arxiv:1904.09728", "arxiv:1903.00161", "arxiv:2009.03300", "arxiv:2304.06364", "arxiv:2103.03874", "arxiv:2110.14168", "arxiv:2108.07732", "arxiv:2107.03374", "arxiv:2403.07974", "arxiv:2305.03111", "arxiv:2405.04520", "arxiv:2210.03057", "arxiv:2106.03193", "arxiv:1910.11856", "arxiv:2502.12404", "arxiv:2502.21228", "arxiv:2404.16816", "arxiv:2104.12756", "arxiv:2311.16502", "arxiv:2203.10244", "arxiv:2404.12390", "arxiv:1810.12440", "arxiv:1908.02660", "arxiv:2310.02255", "arxiv:2312.11805", "license:gemma", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T10:54:16Z
--- license: gemma tags: - gemma3 - gemma - google pipeline_tag: text-generation library_name: transformers extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: >- To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license --- # Gemma 3 model card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/core) **Resources and Technical Documentation**: * [Gemma 3 Technical Report][g3-tech-report] * [Responsible Generative AI Toolkit][rai-toolkit] * [Gemma on Kaggle][kaggle-gemma] * [Gemma on Vertex Model Garden][vertex-mg-gemma3] **Terms of Use**: [Terms][terms] **Authors**: Google DeepMind ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. Gemma 3 models are multimodal, handling text and image input and generating text output, with open weights for both pre-trained variants and instruction-tuned variants. Gemma 3 has a large, 128K context window, multilingual support in over 140 languages, and is available in more sizes than previous versions. Gemma 3 models are well-suited for a variety of text generation and image understanding tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as laptops, desktops or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Inputs and outputs - **Input:** - Text string, such as a question, a prompt, or a document to be summarized - Images, normalized to 896 x 896 resolution and encoded to 256 tokens each, for the 4B, 12B, and 27B sizes. - Total input context of 128K tokens for the 4B, 12B, and 27B sizes, and 32K tokens for the 1B and 270M sizes. - **Output:** - Generated text in response to the input, such as an answer to a question, analysis of image content, or a summary of a document - Total output context up to 128K tokens for the 4B, 12B, and 27B sizes, and 32K tokens for the 1B and 270M sizes per request, subtracting the request input tokens ### Citation ```none @article{gemma_2025, title={Gemma 3}, url={https://arxiv.org/abs/2503.19786}, publisher={Google DeepMind}, author={Gemma Team}, year={2025} } ``` ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources. The 27B model was trained with 14 trillion tokens, the 12B model was trained with 12 trillion tokens, 4B model was trained with 4 trillion tokens, the 1B with 2 trillion tokens, and the 270M with 6 trillion tokens. The knowledge cutoff date for the training data was August 2024. Here are the key components: - Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. The training dataset includes content in over 140 languages. - Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code and understand code-related questions. - Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. - Images: A wide range of images enables the model to perform image analysis and visual data extraction tasks. The combination of these diverse data sources is crucial for training a powerful multimodal model that can handle a wide variety of different tasks and data formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: - CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content. - Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. - Additional methods: Filtering based on content quality and safety in line with [our policies][safety-policies]. ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using [Tensor Processing Unit (TPU)][tpu] hardware (TPUv4p, TPUv5p and TPUv5e). Training vision-language models (VLMS) requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: - Performance: TPUs are specifically designed to handle the massive computations involved in training VLMs. They can speed up training considerably compared to CPUs. - Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. - Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. - Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. - These advantages are aligned with [Google's commitments to operate sustainably][sustainability]. ### Software Training was done using [JAX][jax] and [ML Pathways][ml-pathways]. JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for foundation models, including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models][gemini-2-paper]; *"the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow."* ## Evaluation Model evaluation metrics and results. ### Benchmark Results These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation. Evaluation results marked with **IT** are for instruction-tuned models. Evaluation results marked with **PT** are for pre-trained models. #### Gemma 3 270M | **Benchmark** | **n-shot** | **Gemma 3 PT 270M** | | :------------------------ | :-----------: | ------------------: | | [HellaSwag][hellaswag] | 10-shot | 40.9 | | [BoolQ][boolq] | 0-shot | 61.4 | | [PIQA][piqa] | 0-shot | 67.7 | | [TriviaQA][triviaqa] | 5-shot | 15.4 | | [ARC-c][arc] | 25-shot | 29.0 | | [ARC-e][arc] | 0-shot | 57.7 | | [WinoGrande][winogrande] | 5-shot | 52.0 | [hellaswag]: https://arxiv.org/abs/1905.07830 [boolq]: https://arxiv.org/abs/1905.10044 [piqa]: https://arxiv.org/abs/1911.11641 [triviaqa]: https://arxiv.org/abs/1705.03551 [arc]: https://arxiv.org/abs/1911.01547 [winogrande]: https://arxiv.org/abs/1907.10641 | **Benchmark** | **n-shot** | **Gemma 3 IT 270m** | | :------------------------ | :-----------: | ------------------: | | [HellaSwag][hellaswag] | 0-shot | 37.7 | | [PIQA][piqa] | 0-shot | 66.2 | | [ARC-c][arc] | 0-shot | 28.2 | | [WinoGrande][winogrande] | 0-shot | 52.3 | | [BIG-Bench Hard][bbh] | few-shot | 26.7 | | [IF Eval][ifeval] | 0-shot | 51.2 | [hellaswag]: https://arxiv.org/abs/1905.07830 [piqa]: https://arxiv.org/abs/1911.11641 [arc]: https://arxiv.org/abs/1911.01547 [winogrande]: https://arxiv.org/abs/1907.10641 [bbh]: https://paperswithcode.com/dataset/bbh [bbh]: https://paperswithcode.com/dataset/bbh [ifeval]: https://arxiv.org/abs/2311.07911 #### Gemma 3 1B, 4B, 12B & 27B ##### Reasoning and factuality | Benchmark | n-shot | Gemma 3 IT 1B | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B | |--------------------------------|--------|:-------------:|:-------------:|:--------------:|:--------------:| | [GPQA][gpqa] Diamond | 0-shot | 19.2 | 30.8 | 40.9 | 42.4 | | [SimpleQA][simpleqa] | 0-shot | 2.2 | 4.0 | 6.3 | 10.0 | | [FACTS Grounding][facts-grdg] | - | 36.4 | 70.1 | 75.8 | 74.9 | | [BIG-Bench Hard][bbh] | 0-shot | 39.1 | 72.2 | 85.7 | 87.6 | | [BIG-Bench Extra Hard][bbeh] | 0-shot | 7.2 | 11.0 | 16.3 | 19.3 | | [IFEval][ifeval] | 0-shot | 80.2 | 90.2 | 88.9 | 90.4 | | Benchmark | n-shot | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------ |----------|:--------------:|:-------------:|:--------------:|:--------------:| | [HellaSwag][hellaswag] | 10-shot | 62.3 | 77.2 | 84.2 | 85.6 | | [BoolQ][boolq] | 0-shot | 63.2 | 72.3 | 78.8 | 82.4 | | [PIQA][piqa] | 0-shot | 73.8 | 79.6 | 81.8 | 83.3 | | [SocialIQA][socialiqa] | 0-shot | 48.9 | 51.9 | 53.4 | 54.9 | | [TriviaQA][triviaqa] | 5-shot | 39.8 | 65.8 | 78.2 | 85.5 | | [Natural Questions][naturalq] | 5-shot | 9.48 | 20.0 | 31.4 | 36.1 | | [ARC-c][arc] | 25-shot | 38.4 | 56.2 | 68.9 | 70.6 | | [ARC-e][arc] | 0-shot | 73.0 | 82.4 | 88.3 | 89.0 | | [WinoGrande][winogrande] | 5-shot | 58.2 | 64.7 | 74.3 | 78.8 | | [BIG-Bench Hard][bbh] | few-shot | 28.4 | 50.9 | 72.6 | 77.7 | | [DROP][drop] | 1-shot | 42.4 | 60.1 | 72.2 | 77.2 | [gpqa]: https://arxiv.org/abs/2311.12022 [simpleqa]: https://arxiv.org/abs/2411.04368 [facts-grdg]: https://goo.gle/FACTS_paper [bbeh]: https://github.com/google-deepmind/bbeh [ifeval]: https://arxiv.org/abs/2311.07911 [hellaswag]: https://arxiv.org/abs/1905.07830 [boolq]: https://arxiv.org/abs/1905.10044 [piqa]: https://arxiv.org/abs/1911.11641 [socialiqa]: https://arxiv.org/abs/1904.09728 [triviaqa]: https://arxiv.org/abs/1705.03551 [naturalq]: https://github.com/google-research-datasets/natural-questions [arc]: https://arxiv.org/abs/1911.01547 [winogrande]: https://arxiv.org/abs/1907.10641 [bbh]: https://paperswithcode.com/dataset/bbh [drop]: https://arxiv.org/abs/1903.00161 ##### STEM and code | Benchmark | n-shot | Gemma 3 IT 1B | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B | |----------------------------|--------|:-------------:|:-------------:|:--------------:|:--------------:| | [MMLU][mmlu] (Pro) | 0-shot | 14.7 | 43.6 | 60.6 | 67.5 | | [LiveCodeBench][lcb] | 0-shot | 1.9 | 12.6 | 24.6 | 29.7 | | [Bird-SQL][bird-sql] (dev) | - | 6.4 | 36.3 | 47.9 | 54.4 | | [Math][math] | 0-shot | 48.0 | 75.6 | 83.8 | 89.0 | | HiddenMath | 0-shot | 15.8 | 43.0 | 54.5 | 60.3 | | [MBPP][mbpp] | 3-shot | 35.2 | 63.2 | 73.0 | 74.4 | | [HumanEval][humaneval] | 0-shot | 41.5 | 71.3 | 85.4 | 87.8 | | [Natural2Code][nat2code] | 0-shot | 56.0 | 70.3 | 80.7 | 84.5 | | [GSM8K][gsm8k] | 0-shot | 62.8 | 89.2 | 94.4 | 95.9 | | Benchmark | n-shot | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------ |----------------|:-------------:|:--------------:|:--------------:| | [MMLU][mmlu] | 5-shot | 59.6 | 74.5 | 78.6 | | [MMLU][mmlu] (Pro COT) | 5-shot | 29.2 | 45.3 | 52.2 | | [AGIEval][agieval] | 3-5-shot | 42.1 | 57.4 | 66.2 | | [MATH][math] | 4-shot | 24.2 | 43.3 | 50.0 | | [GSM8K][gsm8k] | 8-shot | 38.4 | 71.0 | 82.6 | | [GPQA][gpqa] | 5-shot | 15.0 | 25.4 | 24.3 | | [MBPP][mbpp] | 3-shot | 46.0 | 60.4 | 65.6 | | [HumanEval][humaneval] | 0-shot | 36.0 | 45.7 | 48.8 | [mmlu]: https://arxiv.org/abs/2009.03300 [agieval]: https://arxiv.org/abs/2304.06364 [math]: https://arxiv.org/abs/2103.03874 [gsm8k]: https://arxiv.org/abs/2110.14168 [gpqa]: https://arxiv.org/abs/2311.12022 [mbpp]: https://arxiv.org/abs/2108.07732 [humaneval]: https://arxiv.org/abs/2107.03374 [lcb]: https://arxiv.org/abs/2403.07974 [bird-sql]: https://arxiv.org/abs/2305.03111 [nat2code]: https://arxiv.org/abs/2405.04520 #### Multilingual | Benchmark | n-shot | Gemma 3 IT 1B | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B | |--------------------------------------|--------|:-------------:|:-------------:|:--------------:|:--------------:| | [Global-MMLU-Lite][global-mmlu-lite] | 0-shot | 34.2 | 54.5 | 69.5 | 75.1 | | [ECLeKTic][eclektic] | 0-shot | 1.4 | 4.6 | 10.3 | 16.7 | | [WMT24++][wmt24pp] | 0-shot | 35.9 | 46.8 | 51.6 | 53.4 | | Benchmark | Gemma 3 PT 1B | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------------ |:-------------:|:-------------:|:--------------:|:--------------:| | [MGSM][mgsm] | 2.04 | 34.7 | 64.3 | 74.3 | | [Global-MMLU-Lite][global-mmlu-lite] | 24.9 | 57.0 | 69.4 | 75.7 | | [WMT24++][wmt24pp] (ChrF) | 36.7 | 48.4 | 53.9 | 55.7 | | [FloRes][flores] | 29.5 | 39.2 | 46.0 | 48.8 | | [XQuAD][xquad] (all) | 43.9 | 68.0 | 74.5 | 76.8 | | [ECLeKTic][eclektic] | 4.69 | 11.0 | 17.2 | 24.4 | | [IndicGenBench][indicgenbench] | 41.4 | 57.2 | 61.7 | 63.4 | [mgsm]: https://arxiv.org/abs/2210.03057 [flores]: https://arxiv.org/abs/2106.03193 [xquad]: https://arxiv.org/abs/1910.11856v3 [global-mmlu-lite]: https://huggingface.co/datasets/CohereForAI/Global-MMLU-Lite [wmt24pp]: https://arxiv.org/abs/2502.12404v1 [eclektic]: https://arxiv.org/abs/2502.21228 [indicgenbench]: https://arxiv.org/abs/2404.16816 ##### Multimodal | Benchmark | Gemma 3 IT 4B | Gemma 3 IT 12B | Gemma 3 IT 27B | |-----------------------------------|:-------------:|:--------------:|:--------------:| | [MMMU][mmmu] (val) | 48.8 | 59.6 | 64.9 | | [DocVQA][docvqa] | 75.8 | 87.1 | 86.6 | | [InfoVQA][info-vqa] | 50.0 | 64.9 | 70.6 | | [TextVQA][textvqa] | 57.8 | 67.7 | 65.1 | | [AI2D][ai2d] | 74.8 | 84.2 | 84.5 | | [ChartQA][chartqa] | 68.8 | 75.7 | 78.0 | | [VQAv2][vqav2] (val) | 62.4 | 71.6 | 71.0 | | [MathVista][mathvista] (testmini) | 50.0 | 62.9 | 67.6 | | Benchmark | Gemma 3 PT 4B | Gemma 3 PT 12B | Gemma 3 PT 27B | | ------------------------------ |:-------------:|:--------------:|:--------------:| | [COCOcap][coco-cap] | 102 | 111 | 116 | | [DocVQA][docvqa] (val) | 72.8 | 82.3 | 85.6 | | [InfoVQA][info-vqa] (val) | 44.1 | 54.8 | 59.4 | | [MMMU][mmmu] (pt) | 39.2 | 50.3 | 56.1 | | [TextVQA][textvqa] (val) | 58.9 | 66.5 | 68.6 | | [RealWorldQA][realworldqa] | 45.5 | 52.2 | 53.9 | | [ReMI][remi] | 27.3 | 38.5 | 44.8 | | [AI2D][ai2d] | 63.2 | 75.2 | 79.0 | | [ChartQA][chartqa] | 63.6 | 74.7 | 76.3 | | [VQAv2][vqav2] | 63.9 | 71.2 | 72.9 | | [BLINK][blinkvqa] | 38.0 | 35.9 | 39.6 | | [OKVQA][okvqa] | 51.0 | 58.7 | 60.2 | | [TallyQA][tallyqa] | 42.5 | 51.8 | 54.3 | | [SpatialSense VQA][ss-vqa] | 50.9 | 60.0 | 59.4 | | [CountBenchQA][countbenchqa] | 26.1 | 17.8 | 68.0 | [coco-cap]: https://cocodataset.org/#home [docvqa]: https://www.docvqa.org/ [info-vqa]: https://arxiv.org/abs/2104.12756 [mmmu]: https://arxiv.org/abs/2311.16502 [textvqa]: https://textvqa.org/ [realworldqa]: https://paperswithcode.com/dataset/realworldqa [remi]: https://arxiv.org/html/2406.09175v1 [ai2d]: https://allenai.org/data/diagrams [chartqa]: https://arxiv.org/abs/2203.10244 [vqav2]: https://visualqa.org/index.html [blinkvqa]: https://arxiv.org/abs/2404.12390 [okvqa]: https://okvqa.allenai.org/ [tallyqa]: https://arxiv.org/abs/1810.12440 [ss-vqa]: https://arxiv.org/abs/1908.02660 [countbenchqa]: https://github.com/google-research/big_vision/blob/main/big_vision/datasets/countbenchqa/ [mathvista]: https://arxiv.org/abs/2310.02255 ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: - **Child Safety**: Evaluation of text-to-text and image to text prompts covering child safety policies, including child sexual abuse and exploitation. - **Content Safety:** Evaluation of text-to-text and image to text prompts covering safety policies including, harassment, violence and gore, and hate speech. - **Representational Harms**: Evaluation of text-to-text and image to text prompts covering safety policies including bias, stereotyping, and harmful associations or inaccuracies. In addition to development level evaluations, we conduct "assurance evaluations" which are our 'arms-length' internal evaluations for responsibility governance decision making. They are conducted separately from the model development team, to inform decision making about release. High level findings are fed back to the model team, but prompt sets are held-out to prevent overfitting and preserve the results' ability to inform decision making. Assurance evaluation results are reported to our Responsibility & Safety Council as part of release review. ### Evaluation Results For all areas of safety testing, we saw major improvements in the categories of child safety, content safety, and representational harms relative to previous Gemma models. All testing was conducted without safety filters to evaluate the model capabilities and behaviors. For both text-to-text and image-to-text, and across all model sizes, the model produced minimal policy violations, and showed significant improvements over previous Gemma models' performance with respect to ungrounded inferences. A limitation of our evaluations was they included only English language prompts. ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open vision-language models (VLMs) models have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. - Content Creation and Communication - Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. - Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. - Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. - Image Data Extraction: These models can be used to extract, interpret, and summarize visual data for text communications. - Research and Education - Natural Language Processing (NLP) and VLM Research: These models can serve as a foundation for researchers to experiment with VLM and NLP techniques, develop algorithms, and contribute to the advancement of the field. - Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. - Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations - Training Data - The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. - The scope of the training dataset determines the subject areas the model can handle effectively. - Context and Task Complexity - Models are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. - A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). - Language Ambiguity and Nuance - Natural language is inherently complex. Models might struggle to grasp subtle nuances, sarcasm, or figurative language. - Factual Accuracy - Models generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. - Common Sense - Models rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of vision-language models (VLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: - Bias and Fairness - VLMs trained on large-scale, real-world text and image data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. - Misinformation and Misuse - VLMs can be misused to generate text that is false, misleading, or harmful. - Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit][rai-toolkit]. - Transparency and Accountability: - This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. - A responsibly developed open model offers the opportunity to share innovation by making VLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: - **Perpetuation of biases**: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. - **Generation of harmful content**: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. - **Misuse for malicious purposes**: Technical limitations and developer and end-user education can help mitigate against malicious applications of VLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy][prohibited-use]. - **Privacy violations**: Models were trained on data filtered for removal of certain personal information and other sensitive data. Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open vision-language model implementations designed from the ground up for responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives. [g3-tech-report]: https://arxiv.org/abs/2503.19786 [rai-toolkit]: https://ai.google.dev/responsible [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-3 [vertex-mg-gemma3]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma3 [terms]: https://ai.google.dev/gemma/terms [safety-policies]: https://ai.google/static/documents/ai-responsibility-update-published-february-2025.pdf [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu [sustainability]: https://sustainability.google/operating-sustainably/ [jax]: https://github.com/jax-ml/jax [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ [sustainability]: https://sustainability.google/operating-sustainably/ [gemini-2-paper]: https://arxiv.org/abs/2312.11805
semenetslitslink/sd_flux_context_monochrome_pets_500_1024
semenetslitslink
2025-08-19T10:57:09Z
0
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "lora", "flux", "flux-kontextflux-diffusers", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-Kontext-dev", "base_model:adapter:black-forest-labs/FLUX.1-Kontext-dev", "license:other", "region:us" ]
text-to-image
2025-08-19T07:34:44Z
--- base_model: black-forest-labs/FLUX.1-Kontext-dev library_name: diffusers license: other widget: [] tags: - text-to-image - diffusers-training - diffusers - lora - flux - flux-kontextflux-diffusers - template:sd-lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Flux Kontext DreamBooth LoRA - semenetslitslink/sd_flux_context_monochrome_pets_500_1024 <Gallery /> ## Model description These are semenetslitslink/sd_flux_context_monochrome_pets_500_1024 DreamBooth LoRA weights for black-forest-labs/FLUX.1-Kontext-dev. The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [Flux diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_flux.md). Was LoRA for the text encoder enabled? False. ## Trigger words You should use `None` to trigger the image generation. ## Download model [Download the *.safetensors LoRA](semenetslitslink/sd_flux_context_monochrome_pets_500_1024/tree/main) in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import FluxKontextPipeline import torch pipeline = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('semenetslitslink/sd_flux_context_monochrome_pets_500_1024', weight_name='pytorch_lora_weights.safetensors') image = pipeline('None').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## License Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md). ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755599195
katanyasekolah
2025-08-19T10:56:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:56:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755600734
lqpl
2025-08-19T10:55:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:54:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755600583
0xaoyama
2025-08-19T10:50:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:50:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
John6666/wahtastic-furry-mix-v92-hotfix-sdxl
John6666
2025-08-19T10:49:21Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "furry", "style", "LoRA compatibility", "v-pred", "noobai", "illustrious", "en", "base_model:Laxhar/noobai-XL-Vpred-1.0", "base_model:finetune:Laxhar/noobai-XL-Vpred-1.0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-08-19T10:44:20Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - furry - style - LoRA compatibility - v-pred - noobai - illustrious base_model: Laxhar/noobai-XL-Vpred-1.0 --- Original model is [here](https://civitai.com/models/1807134/wahtastic-furry-mix?modelVersionId=2128432). This model created by [velvet_toroyashi](https://civitai.com/user/velvet_toroyashi).
VoilaRaj/80_wpDRdl
VoilaRaj
2025-08-19T10:47:49Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-19T10:44:04Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
godeval/blockassist-bc-tame_pudgy_horse_1755600294
godeval
2025-08-19T10:47:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tame pudgy horse", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:47:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tame pudgy horse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rawsun00001/accurate-sms-extractor-20250819_1044
rawsun00001
2025-08-19T10:45:03Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-08-19T10:44:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Medved444/blockassist-bc-bellowing_finicky_manatee_1755599074
Medved444
2025-08-19T10:45:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bellowing finicky manatee", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:44:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bellowing finicky manatee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1755598509
koloni
2025-08-19T10:41:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:41:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755598478
hakimjustbao
2025-08-19T10:41:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:41:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zagabi/klue-roberta-base-klue-sts2
zagabi
2025-08-19T10:41:20Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-19T10:40:55Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 657 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
VoilaRaj/80_10tpIL
VoilaRaj
2025-08-19T10:39:45Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-19T10:35:52Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
godebih/blockassist-bc-freckled_rough_cobra_1755599837
godebih
2025-08-19T10:38:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "freckled rough cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:38:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - freckled rough cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Neelectric/Llama-3.2-3B-Instruct_baseline_v00.01
Neelectric
2025-08-19T10:38:30Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "open-r1", "trl", "sft", "conversational", "dataset:open-r1/OpenR1-Math-220k", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-3B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T10:27:14Z
--- base_model: meta-llama/Llama-3.2-3B-Instruct datasets: open-r1/OpenR1-Math-220k library_name: transformers model_name: Llama-3.2-3B-Instruct_baseline_v00.01 tags: - generated_from_trainer - open-r1 - trl - sft licence: license --- # Model Card for Llama-3.2-3B-Instruct_baseline_v00.01 This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the [open-r1/OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Neelectric/Llama-3.2-3B-Instruct_baseline_v00.01", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/neelectric/sem/runs/tt37a6tu) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
al334/blockassist-bc-toothy_playful_viper_1755599782
al334
2025-08-19T10:37:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "toothy playful viper", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:36:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - toothy playful viper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755598283
lisaozill03
2025-08-19T10:35:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:35:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
nuttakitinta/typhoon2-8b-ocrfix-lora
nuttakitinta
2025-08-19T10:34:15Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:scb10x/llama3.1-typhoon2-8b-instruct", "base_model:finetune:scb10x/llama3.1-typhoon2-8b-instruct", "endpoints_compatible", "region:us" ]
null
2025-08-19T10:34:01Z
--- base_model: scb10x/llama3.1-typhoon2-8b-instruct library_name: transformers model_name: typhoon2-8b-ocrfix-lora tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for typhoon2-8b-ocrfix-lora This model is a fine-tuned version of [scb10x/llama3.1-typhoon2-8b-instruct](https://huggingface.co/scb10x/llama3.1-typhoon2-8b-instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="nuttakitinta/typhoon2-8b-ocrfix-lora", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.4.1+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755599532
lqpl
2025-08-19T10:33:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:32:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sentence-transformers/paraphrase-multilingual-mpnet-base-v2
sentence-transformers
2025-08-19T10:29:38Z
2,479,490
403
sentence-transformers
[ "sentence-transformers", "pytorch", "tf", "onnx", "safetensors", "openvino", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "text-embeddings-inference", "multilingual", "ar", "bg", "ca", "cs", "da", "de", "el", "en", "es", "et", "fa", "fi", "fr", "gl", "gu", "he", "hi", "hr", "hu", "hy", "id", "it", "ja", "ka", "ko", "ku", "lt", "lv", "mk", "mn", "mr", "ms", "my", "nb", "nl", "pl", "pt", "ro", "ru", "sk", "sl", "sq", "sr", "sv", "th", "tr", "uk", "ur", "vi", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- language: - multilingual - ar - bg - ca - cs - da - de - el - en - es - et - fa - fi - fr - gl - gu - he - hi - hr - hu - hy - id - it - ja - ka - ko - ku - lt - lv - mk - mn - mr - ms - my - nb - nl - pl - pt - ro - ru - sk - sl - sq - sr - sv - th - tr - uk - ur - vi license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - text-embeddings-inference language_bcp47: - fr-ca - pt-br - zh-cn - zh-tw pipeline_tag: sentence-similarity --- # sentence-transformers/paraphrase-multilingual-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch # Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-mpnet-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Usage (Text Embeddings Inference (TEI)) [Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) is a blazing fast inference solution for text embedding models. - CPU: ```bash docker run -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-latest --model-id sentence-transformers/paraphrase-multilingual-mpnet-base-v2 --pooling mean --dtype float16 ``` - NVIDIA GPU: ```bash docker run --gpus all -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cuda-latest --model-id sentence-transformers/paraphrase-multilingual-mpnet-base-v2 --pooling mean --dtype float16 ``` Send a request to `/v1/embeddings` to generate embeddings via the [OpenAI Embeddings API](https://platform.openai.com/docs/api-reference/embeddings/create): ```bash curl http://localhost:8080/v1/embeddings \ -H "Content-Type: application/json" \ -d '{ "model": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2", "input": "This is an example sentence" }' ``` Or check the [Text Embeddings Inference API specification](https://huggingface.github.io/text-embeddings-inference/) instead. ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755597809
quantumxnode
2025-08-19T10:29:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:29:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aadddisfirst/SmolLM2-135M-smoltalk-sft
aadddisfirst
2025-08-19T10:29:11Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "dataset:HuggingFaceTB/smoltalk", "arxiv:1910.09700", "base_model:HuggingFaceTB/SmolLM2-135M", "base_model:finetune:HuggingFaceTB/SmolLM2-135M", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T10:25:19Z
--- library_name: transformers datasets: - HuggingFaceTB/smoltalk base_model: - HuggingFaceTB/SmolLM2-135M --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755599251
IvanJAjebu
2025-08-19T10:28:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:28:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/1499603
crystalline7
2025-08-19T10:28:38Z
0
0
null
[ "region:us" ]
null
2025-08-19T10:28:34Z
[View on Civ Archive](https://civarchive.com/models/1414505?modelVersionId=1598726)
Bakugo123/dpo-llama3-8b-instruct-cloud-zero-with-ocr-qa-test
Bakugo123
2025-08-19T10:27:28Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "dpo", "trl", "arxiv:2305.18290", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-07T09:17:20Z
--- base_model: meta-llama/Meta-Llama-3-8B-Instruct library_name: transformers model_name: dpo-llama3-8b-instruct-cloud-zero-with-ocr-qa-test tags: - generated_from_trainer - dpo - trl licence: license --- # Model Card for dpo-llama3-8b-instruct-cloud-zero-with-ocr-qa-test This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Bakugo123/dpo-llama3-8b-instruct-cloud-zero-with-ocr-qa-test", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/axiler/dpo-llama3-8b-instruct-cloud-zero-with-ocr-qa-test/runs/ph538xdv) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0.dev20250319+cu128 - Datasets: 2.16.0 - Tokenizers: 0.21.4 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Samll/wild_hallu_v3-3b
Samll
2025-08-19T10:27:11Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-3B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T10:24:24Z
--- base_model: meta-llama/Llama-3.2-3B-Instruct library_name: transformers model_name: wild_hallu_v3-3b tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for wild_hallu_v3-3b This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Samll/wild_hallu_v3-3b", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/slewis-lim1-the-university-of-sheffield/confidence_raft/runs/5xalsz9v) This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.53.2 - Pytorch: 2.6.0 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
sentence-transformers/stsb-mpnet-base-v2
sentence-transformers
2025-08-19T10:26:48Z
9,602
12
sentence-transformers
[ "sentence-transformers", "pytorch", "onnx", "safetensors", "openvino", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "text-embeddings-inference", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - text-embeddings-inference pipeline_tag: sentence-similarity --- # sentence-transformers/stsb-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/stsb-mpnet-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch # Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/stsb-mpnet-base-v2') model = AutoModel.from_pretrained('sentence-transformers/stsb-mpnet-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Usage (Text Embeddings Inference (TEI)) [Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) is a blazing fast inference solution for text embedding models. - CPU: ```bash docker run -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-latest --model-id sentence-transformers/stsb-mpnet-base-v2 --pooling mean --dtype float16 ``` - NVIDIA GPU: ```bash docker run --gpus all -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cuda-latest --model-id sentence-transformers/stsb-mpnet-base-v2 --pooling mean --dtype float16 ``` Send a request to `/v1/embeddings` to generate embeddings via the [OpenAI Embeddings API](https://platform.openai.com/docs/api-reference/embeddings/create): ```bash curl http://localhost:8080/v1/embeddings \ -H "Content-Type: application/json" \ -d '{ "model": "sentence-transformers/stsb-mpnet-base-v2", "input": ["This is an example sentence", "Each sentence is converted"] }' ``` Or check the [Text Embeddings Inference API specification](https://huggingface.github.io/text-embeddings-inference/) instead. ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755598900
IvanJAjebu
2025-08-19T10:23:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:22:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sentence-transformers/nli-mpnet-base-v2
sentence-transformers
2025-08-19T10:22:53Z
31,978
14
sentence-transformers
[ "sentence-transformers", "pytorch", "tf", "onnx", "safetensors", "openvino", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "text-embeddings-inference", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - text-embeddings-inference pipeline_tag: sentence-similarity --- # sentence-transformers/nli-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/nli-mpnet-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch # Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/nli-mpnet-base-v2') model = AutoModel.from_pretrained('sentence-transformers/nli-mpnet-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Usage (Text Embeddings Inference (TEI)) [Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) is a blazing fast inference solution for text embedding models. - CPU: ```bash docker run -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-latest --model-id sentence-transformers/nli-mpnet-base-v2 --pooling mean --dtype float16 ``` - NVIDIA GPU: ```bash docker run --gpus all -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cuda-latest --model-id sentence-transformers/nli-mpnet-base-v2 --pooling mean --dtype float16 ``` Send a request to `/v1/embeddings` to generate embeddings via the [OpenAI Embeddings API](https://platform.openai.com/docs/api-reference/embeddings/create): ```bash curl http://localhost:8080/v1/embeddings \ -H "Content-Type: application/json" \ -d '{"model":"sentence-transformers/nli-mpnet-base-v2","input":"This is an example sentence"}' ``` Or check the [Text Embeddings Inference API specification](https://huggingface.github.io/text-embeddings-inference/) instead. ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755597082
katanyasekolah
2025-08-19T10:20:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:20:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Mostefa-Terbeche/diabetic-retinopathy-combined-efficientnet_b3-advanced-20250723-151817
Mostefa-Terbeche
2025-08-19T10:19:37Z
0
0
null
[ "diabetic-retinopathy", "medical-imaging", "pytorch", "computer-vision", "retinal-imaging", "dataset:combined", "license:apache-2.0", "model-index", "region:us" ]
null
2025-08-19T09:54:43Z
--- license: apache-2.0 tags: - diabetic-retinopathy - medical-imaging - pytorch - computer-vision - retinal-imaging datasets: - combined metrics: - accuracy - quadratic-kappa - auc model-index: - name: combined_efficientnet_b3_advanced results: - task: type: image-classification name: Diabetic Retinopathy Classification dataset: type: combined name: COMBINED metrics: - type: accuracy value: 0.7597586941092974 - type: quadratic-kappa value: 0.8101430710706087 --- # Diabetic Retinopathy Classification Model ## Model Description This model is trained for diabetic retinopathy classification using the efficientnet_b3 architecture on the combined dataset with advanced preprocessing. ## Model Details - **Architecture**: efficientnet_b3 - **Dataset**: combined - **Preprocessing**: advanced - **Training Date**: 20250723-151817 - **Task**: 5-class diabetic retinopathy grading (0-4) - **Directory**: combined_efficientnet_b3_20250723-151817_new ## Performance - **Test Accuracy**: 0.7597586941092974 - **Test Quadratic Kappa**: 0.8101430710706087 - **Validation Kappa**: 0.8101430710706087 ## Usage ```python import torch from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download( repo_id="your-username/diabetic-retinopathy-combined-efficientnet_b3-advanced", filename="model_best.pt" ) # Load model model = torch.load(model_path, map_location='cpu') ``` ## Classes - 0: No DR (No diabetic retinopathy) - 1: Mild DR (Mild non-proliferative diabetic retinopathy) - 2: Moderate DR (Moderate non-proliferative diabetic retinopathy) - 3: Severe DR (Severe non-proliferative diabetic retinopathy) - 4: Proliferative DR (Proliferative diabetic retinopathy) ## Citation If you use this model, please cite your research paper/thesis.
sentence-transformers/multi-qa-mpnet-base-cos-v1
sentence-transformers
2025-08-19T10:19:32Z
603,907
41
sentence-transformers
[ "sentence-transformers", "pytorch", "onnx", "safetensors", "openvino", "mpnet", "fill-mask", "feature-extraction", "sentence-similarity", "transformers", "text-embeddings-inference", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- language: - en library_name: sentence-transformers tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - text-embeddings-inference pipeline_tag: sentence-similarity --- # multi-qa-mpnet-base-cos-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and was designed for **semantic search**. It has been trained on 215M (question, answer) pairs from diverse sources. For an introduction to semantic search, have a look at: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html) ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer, util query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] #Load the model model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-cos-v1') #Encode query and documents query_emb = model.encode(query) doc_emb = model.encode(docs) #Compute dot score between query and all document embeddings scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist() #Combine docs & scores doc_score_pairs = list(zip(docs, scores)) #Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the correct pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F # Mean Pooling - Take average of all tokens def mean_pooling(model_output, attention_mask): token_embeddings = model_output.last_hidden_state # First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Encode text def encode(texts): # Tokenize sentences encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input, return_dict=True) # Perform pooling embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) return embeddings # Sentences we want sentence embeddings for query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-mpnet-base-cos-v1") model = AutoModel.from_pretrained("sentence-transformers/multi-qa-mpnet-base-cos-v1") # Encode query and docs query_emb = encode(query) doc_emb = encode(docs) # Compute dot score between query and all document embeddings scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist() # Combine docs & scores doc_score_pairs = list(zip(docs, scores)) # Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) # Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## Usage (Text Embeddings Inference (TEI)) [Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) is a blazing fast inference solution for text embedding models. - CPU: ```bash docker run -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-latest --model-id sentence-transformers/multi-qa-mpnet-base-cos-v1 --pooling mean --dtype float16 ``` - NVIDIA GPU: ```bash docker run --gpus all -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cuda-latest --model-id sentence-transformers/multi-qa-mpnet-base-cos-v1 --pooling mean --dtype float16 ``` Send a request to `/v1/embeddings` to generate embeddings via the [OpenAI Embeddings API](https://platform.openai.com/docs/api-reference/embeddings/create): ```bash curl http://localhost:8080/v1/embeddings \ -H "Content-Type: application/json" \ -d '{ "model": "sentence-transformers/multi-qa-mpnet-base-cos-v1", "input": "How many people live in London?" }' ``` Or check the [Text Embeddings Inference API specification](https://huggingface.github.io/text-embeddings-inference/) instead. ## Technical Details In the following some technical details how this model must be used: | Setting | Value | | --- | :---: | | Dimensions | 768 | | Produces normalized embeddings | Yes | | Pooling-Method | Mean pooling | | Suitable score functions | dot-product (`util.dot_score`), cosine-similarity (`util.cos_sim`), or euclidean distance | Note: When loaded with `sentence-transformers`, this model produces normalized embeddings with length 1. In that case, dot-product and cosine-similarity are equivalent. dot-product is preferred as it is faster. Euclidean distance is proportional to dot-product and can also be used. ---- ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google's Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses Our model is intended to be used for semantic search: It encodes queries / questions and text paragraphs in a dense vector space. It finds relevant documents for the given passages. Note that there is a limit of 512 word pieces: Text longer than that will be truncated. Further note that the model was just trained on input text up to 250 word pieces. It might not work well for longer text. ## Training procedure The full training script is accessible in this current repository: `train_script.py`. ### Pre-training We use the pretrained [`mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model. Please refer to the model card for more detailed information about the pre-training procedure. #### Training We use the concatenation of multiple datasets to fine-tune our model. In total we have about 215M (question, answer) pairs. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. The model was trained with [MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) using Mean-pooling, cosine-similarity as similarity function, and a scale of 20. | Dataset | Number of training tuples | |--------------------------------------------------------|:--------------------------:| | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs from WikiAnswers | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) Automatically generated (Question, Paragraph) pairs for each paragraph in Wikipedia | 64,371,441 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs from all StackExchanges | 25,316,456 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs from all StackExchanges | 21,396,559 | | [MS MARCO](https://microsoft.github.io/msmarco/) Triplets (query, answer, hard_negative) for 500k queries from Bing search engine | 17,579,773 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) (query, answer) pairs for 3M Google queries and Google featured snippet | 3,012,496 | | [Amazon-QA](http://jmcauley.ucsd.edu/data/amazon/qa/) (Question, Answer) pairs from Amazon product pages | 2,448,839 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) pairs from Yahoo Answers | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) pairs from Yahoo Answers | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) pairs from Yahoo Answers | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) (Question, Answer) pairs for 140k questions, each with Top5 Google snippets on that question | 582,261 | | [ELI5](https://huggingface.co/datasets/eli5) (Question, Answer) pairs from Reddit ELI5 (explainlikeimfive) | 325,475 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions pairs (titles) | 304,525 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) (Question, Duplicate_Question, Hard_Negative) triplets for Quora Questions Pairs dataset | 103,663 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) (Question, Paragraph) pairs for 100k real Google queries with relevant Wikipedia paragraph | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) (Question, Paragraph) pairs from SQuAD2.0 dataset | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) (Question, Evidence) pairs | 73,346 | | **Total** | **214,988,242** |
aleebaster/blockassist-bc-sly_eager_boar_1755597218
aleebaster
2025-08-19T10:19:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:19:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mgazz/Prithvi_v2_eo_300_tl_unet_agb
mgazz
2025-08-19T10:19:01Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-19T10:10:26Z
--- license: apache-2.0 ---
Frax01/SmolLM-135M-python-open-shell
Frax01
2025-08-19T10:18:50Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "generated_from_trainer", "sft", "trl", "base_model:HuggingFaceTB/SmolLM-135M", "base_model:finetune:HuggingFaceTB/SmolLM-135M", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T09:17:49Z
--- base_model: HuggingFaceTB/SmolLM-135M library_name: transformers model_name: SmolLM-135M-python-open-shell tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for SmolLM-135M-python-open-shell This model is a fine-tuned version of [HuggingFaceTB/SmolLM-135M](https://huggingface.co/HuggingFaceTB/SmolLM-135M). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Frax01/SmolLM-135M-python-open-shell", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Derify/ChemMRL-alpha
Derify
2025-08-19T10:18:27Z
806
0
sentence-transformers
[ "sentence-transformers", "safetensors", "roberta", "smiles-similarity", "feature-extraction", "molecular-similarity", "sentence-similarity", "arxiv:2010.09885", "arxiv:2209.01712", "arxiv:2205.13147", "arxiv:2402.14776", "arxiv:1911.02855", "arxiv:1908.10084", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-05-27T01:32:43Z
--- tags: - sentence-transformers - smiles-similarity - feature-extraction - molecular-similarity pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - spearmanr license: apache-2.0 new_version: Derify/ChemMRL-beta --- # Chem-MRL (SentenceTransformer) This is a trained [Chem-MRL](https://github.com/emapco/chem-mrl) [sentence-transformers](https://www.SBERT.net) model. It maps SMILES to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, database indexing, molecular classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 1024 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [Chem-MRL on GitHub](https://github.com/emapco/chem-mrl) - **Demo App Repository:** [Chem-MRL-demo on GitHub](https://github.com/emapco/chem-mrl-demo) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (ChemBERTa) (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the πŸ€— Hub model = SentenceTransformer("Derify/ChemMRL-alpha") # Run inference sentences = [ 'CCO', "CC(C)O", 'CC(=O)O', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Framework Versions - Python: 3.12.9 - Sentence Transformers: 4.0.1 - Transformers: 4.48.2 - PyTorch: 2.6.0+cu124 - Accelerate: 1.4.0 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citation - Chithrananda, Seyone, et al. "ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular Property Prediction." _arXiv [Cs.LG]_, 2020. [Link](http://arxiv.org/abs/2010.09885). - Ahmad, Walid, et al. "ChemBERTa-2: Towards Chemical Foundation Models." _arXiv [Cs.LG]_, 2022. [Link](http://arxiv.org/abs/2209.01712). - Kusupati, Aditya, et al. "Matryoshka Representation Learning." _arXiv [Cs.LG]_, 2022. [Link](https://arxiv.org/abs/2205.13147). - Li, Xianming, et al. "2D Matryoshka Sentence Embeddings." _arXiv [Cs.CL]_, 2024. [Link](http://arxiv.org/abs/2402.14776). - Bajusz, DΓ‘vid, et al. "Why is the Tanimoto Index an Appropriate Choice for Fingerprint-Based Similarity Calculations?" _J Cheminform_, 7, 20 (2015). [Link](https://doi.org/10.1186/s13321-015-0069-3). - Li, Xiaoya, et al. "Dice Loss for Data-imbalanced NLP Tasks." _arXiv [Cs.CL]_, 2020. [Link](https://arxiv.org/abs/1911.02855) - Reimers, Nils, and Gurevych, Iryna. "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks." _Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing_, 2019. [Link](https://arxiv.org/abs/1908.10084). ## Model Card Authors [@eacortes](https://huggingface.co/eacortes) ## Model Card Contact Manny Cortes (manny@derifyai.com)
valleriee/pii-model-14
valleriee
2025-08-19T10:15:37Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T10:03:08Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sentence-transformers/all-mpnet-base-v2
sentence-transformers
2025-08-19T10:14:25Z
17,267,989
1,129
sentence-transformers
[ "sentence-transformers", "pytorch", "onnx", "safetensors", "openvino", "mpnet", "fill-mask", "feature-extraction", "sentence-similarity", "transformers", "text-embeddings-inference", "en", "dataset:s2orc", "dataset:flax-sentence-embeddings/stackexchange_xml", "dataset:ms_marco", "dataset:gooaq", "dataset:yahoo_answers_topics", "dataset:code_search_net", "dataset:search_qa", "dataset:eli5", "dataset:snli", "dataset:multi_nli", "dataset:wikihow", "dataset:natural_questions", "dataset:trivia_qa", "dataset:embedding-data/sentence-compression", "dataset:embedding-data/flickr30k-captions", "dataset:embedding-data/altlex", "dataset:embedding-data/simple-wiki", "dataset:embedding-data/QQP", "dataset:embedding-data/SPECTER", "dataset:embedding-data/PAQ_pairs", "dataset:embedding-data/WikiAnswers", "arxiv:1904.06472", "arxiv:2102.07033", "arxiv:2104.08727", "arxiv:1704.05179", "arxiv:1810.09305", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- language: en license: apache-2.0 library_name: sentence-transformers tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - text-embeddings-inference datasets: - s2orc - flax-sentence-embeddings/stackexchange_xml - ms_marco - gooaq - yahoo_answers_topics - code_search_net - search_qa - eli5 - snli - multi_nli - wikihow - natural_questions - trivia_qa - embedding-data/sentence-compression - embedding-data/flickr30k-captions - embedding-data/altlex - embedding-data/simple-wiki - embedding-data/QQP - embedding-data/SPECTER - embedding-data/PAQ_pairs - embedding-data/WikiAnswers pipeline_tag: sentence-similarity --- # all-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v2') model = AutoModel.from_pretrained('sentence-transformers/all-mpnet-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) # Normalize embeddings sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Usage (Text Embeddings Inference (TEI)) [Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) is a blazing fast inference solution for text embedding models. - CPU: ```bash docker run -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-latest --model-id sentence-transformers/all-mpnet-base-v2 --pooling mean --dtype float16 ``` - NVIDIA GPU: ```bash docker run --gpus all -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cuda-latest --model-id sentence-transformers/all-mpnet-base-v2 --pooling mean --dtype float16 ``` Send a request to `/v1/embeddings` to generate embeddings via the [OpenAI Embeddings API](https://platform.openai.com/docs/api-reference/embeddings/create): ```bash curl http://localhost:8080/v1/embeddings \ -H 'Content-Type: application/json' \ -d '{ "model": "sentence-transformers/all-mpnet-base-v2", "input": ["This is an example sentence", "Each sentence is converted"] }' ``` Or check the [Text Embeddings Inference API specification](https://huggingface.github.io/text-embeddings-inference/) instead. ------ ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model and fine-tuned in on a 1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it outputs a vector which captures the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. By default, input text longer than 384 word pieces is truncated. ## Training procedure ### Pre-training We use the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model. Please refer to the model card for more detailed information about the pre-training procedure. ### Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. #### Hyper parameters We trained our model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`. #### Training data We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. | Dataset | Paper | Number of training tuples | |--------------------------------------------------------|:----------------------------------------:|:--------------------------:| | [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 | | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 | | [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 | | [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 | | [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 | | [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 | | [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395| | [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 | | [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 | | [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 | | AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 | | [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 | | [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 | | [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 | | [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 | | **Total** | | **1,170,060,424** |
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755596677
hakimjustbao
2025-08-19T10:10:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:10:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rohannath/AI_Doctor_using_llama_merged_unsloth-Q5_K_M-GGUF
rohannath
2025-08-19T10:08:24Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "base_model:rohannath/AI_Doctor_using_llama_merged_unsloth", "base_model:quantized:rohannath/AI_Doctor_using_llama_merged_unsloth", "endpoints_compatible", "region:us" ]
null
2025-08-19T10:01:31Z
--- library_name: transformers tags: - llama-cpp - gguf-my-repo base_model: rohannath/AI_Doctor_using_llama_merged_unsloth --- # rohannath/AI_Doctor_using_llama_merged_unsloth-Q5_K_M-GGUF This model was converted to GGUF format from [`rohannath/AI_Doctor_using_llama_merged_unsloth`](https://huggingface.co/rohannath/AI_Doctor_using_llama_merged_unsloth) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/rohannath/AI_Doctor_using_llama_merged_unsloth) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo rohannath/AI_Doctor_using_llama_merged_unsloth-Q5_K_M-GGUF --hf-file ai_doctor_using_llama_merged_unsloth-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo rohannath/AI_Doctor_using_llama_merged_unsloth-Q5_K_M-GGUF --hf-file ai_doctor_using_llama_merged_unsloth-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo rohannath/AI_Doctor_using_llama_merged_unsloth-Q5_K_M-GGUF --hf-file ai_doctor_using_llama_merged_unsloth-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo rohannath/AI_Doctor_using_llama_merged_unsloth-Q5_K_M-GGUF --hf-file ai_doctor_using_llama_merged_unsloth-q5_k_m.gguf -c 2048 ```
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755597930
0xaoyama
2025-08-19T10:06:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:05:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BootesVoid/cmdym9q2h01hygwtc02gc3aoo_cmeicnuht0qwmrts8prkn6v33
BootesVoid
2025-08-19T10:05:19Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-19T10:05:17Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: GENO --- # Cmdym9Q2H01Hygwtc02Gc3Aoo_Cmeicnuht0Qwmrts8Prkn6V33 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `GENO` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "GENO", "lora_weights": "https://huggingface.co/BootesVoid/cmdym9q2h01hygwtc02gc3aoo_cmeicnuht0qwmrts8prkn6v33/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmdym9q2h01hygwtc02gc3aoo_cmeicnuht0qwmrts8prkn6v33', weight_name='lora.safetensors') image = pipeline('GENO').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmdym9q2h01hygwtc02gc3aoo_cmeicnuht0qwmrts8prkn6v33/discussions) to add images that show off what you’ve made with this LoRA.
dgambettaphd/M_mis_run2_gen7_WXS_doc1000_synt64_lr1e-04_acm_MPP
dgambettaphd
2025-08-19T10:03:43Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T10:03:29Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755597563
lqpl
2025-08-19T10:02:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:00:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
milliarderdol/blockassist-bc-roaring_rough_scorpion_1755595662
milliarderdol
2025-08-19T10:02:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring rough scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:01:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring rough scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
broinopio/blockassist-bc-monstrous_scampering_spider_1755595419
broinopio
2025-08-19T09:59:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous scampering spider", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:59:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous scampering spider --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rawsun00001/pure-llm-sms-extractor-20250819_0957
rawsun00001
2025-08-19T09:58:57Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-08-19T09:57:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Ale91Jonathan/blockassist-bc-alert_dormant_prawn_1755595507
Ale91Jonathan
2025-08-19T09:58:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert dormant prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:58:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert dormant prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755597475
0xaoyama
2025-08-19T09:58:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:58:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
DarrenHiggs/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-winged_sprightly_gerbil
DarrenHiggs
2025-08-19T09:58:07Z
101
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am winged_sprightly_gerbil", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-13T16:47:12Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am winged_sprightly_gerbil --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755595832
quantumxnode
2025-08-19T09:57:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:57:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VoilaRaj/80_DM3976
VoilaRaj
2025-08-19T09:57:44Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-19T09:53:55Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
miguelsigmahot2/blockassist-bc-invisible_patterned_prawn_1755595600
miguelsigmahot2
2025-08-19T09:57:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "invisible patterned prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:56:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - invisible patterned prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1755595617
pempekmangedd
2025-08-19T09:55:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:55:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sous26hotmailf1/blockassist-bc-tawny_melodic_tapir_1755595446
sous26hotmailf1
2025-08-19T09:54:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tawny melodic tapir", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:54:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tawny melodic tapir --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Azurastar2903/Qwen2.5-0.5B-Instruct-rk3588-1.2.1
Azurastar2903
2025-08-19T09:53:39Z
0
0
transformers
[ "transformers", "qwen2", "text-generation", "chat", "conversational", "en", "arxiv:2407.10671", "base_model:Qwen/Qwen2.5-0.5B", "base_model:finetune:Qwen/Qwen2.5-0.5B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T09:31:49Z
--- base_model: Qwen/Qwen2.5-0.5B language: - en library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE pipeline_tag: text-generation tags: - chat --- # Qwen2.5-0.5B-Instruct-RK3588-1.2.1 This version of Qwen2.5-0.5B-Instruct has been converted to run on the RK3588 NPU using w8a8_g128 quantization. This model has been optimized with the following LoRA: Compatible with RKLLM version: 1.2.1 ## Useful links: [Official RKLLM GitHub](https://github.com/airockchip/rknn-llm) [RockhipNPU Reddit](https://reddit.com/r/RockchipNPU) [EZRKNN-LLM](https://github.com/Pelochus/ezrknn-llm/) Pretty much anything by these folks: [marty1885](https://github.com/marty1885) and [happyme531](https://huggingface.co/happyme531) Converted using https://github.com/c0zaut/ez-er-rkllm-toolkit # Original Model Card for base model, Qwen2.5-0.5B-Instruct, below: # Qwen2.5-0.5B-Instruct ## Introduction Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2: - Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains. - Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots. - **Long-context Support** up to 128K tokens and can generate up to 8K tokens. - **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more. **This repo contains the instruction-tuned 0.5B Qwen2.5 model**, which has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings - Number of Parameters: 0.49B - Number of Paramaters (Non-Embedding): 0.36B - Number of Layers: 24 - Number of Attention Heads (GQA): 14 for Q and 2 for KV - Context Length: Full 32,768 tokens and generation 8192 tokens For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Requirements The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.37.0`, you will encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen2.5-0.5B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## Evaluation & Performance Detailed evaluation results are reported in this [πŸ“‘ blog](https://qwenlm.github.io/blog/qwen2.5/). For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html). ## Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen2.5, title = {Qwen2.5: A Party of Foundation Models}, url = {https://qwenlm.github.io/blog/qwen2.5/}, author = {Qwen Team}, month = {September}, year = {2024} } @article{qwen2, title={Qwen2 Technical Report}, author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan}, journal={arXiv preprint arXiv:2407.10671}, year={2024} } ```
huseyincavus/medgemma-4b-it-Q8_0-GGUF
huseyincavus
2025-08-19T09:53:24Z
0
0
transformers
[ "transformers", "gguf", "medical", "radiology", "clinical-reasoning", "dermatology", "pathology", "ophthalmology", "chest-x-ray", "llama-cpp", "gguf-my-repo", "image-text-to-text", "base_model:google/medgemma-4b-it", "base_model:quantized:google/medgemma-4b-it", "license:other", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-08-19T09:53:06Z
--- license: other license_name: health-ai-developer-foundations license_link: https://developers.google.com/health-ai-developer-foundations/terms library_name: transformers pipeline_tag: image-text-to-text extra_gated_heading: Access MedGemma on Hugging Face extra_gated_prompt: To access MedGemma on Hugging Face, you're required to review and agree to [Health AI Developer Foundation's terms of use](https://developers.google.com/health-ai-developer-foundations/terms). To do this, please ensure you're logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/medgemma-4b-it tags: - medical - radiology - clinical-reasoning - dermatology - pathology - ophthalmology - chest-x-ray - llama-cpp - gguf-my-repo --- # huseyincavus/medgemma-4b-it-Q8_0-GGUF This model was converted to GGUF format from [`google/medgemma-4b-it`](https://huggingface.co/google/medgemma-4b-it) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/google/medgemma-4b-it) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo huseyincavus/medgemma-4b-it-Q8_0-GGUF --hf-file medgemma-4b-it-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo huseyincavus/medgemma-4b-it-Q8_0-GGUF --hf-file medgemma-4b-it-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo huseyincavus/medgemma-4b-it-Q8_0-GGUF --hf-file medgemma-4b-it-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo huseyincavus/medgemma-4b-it-Q8_0-GGUF --hf-file medgemma-4b-it-q8_0.gguf -c 2048 ```
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755597147
0xaoyama
2025-08-19T09:53:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:52:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755596948
0xaoyama
2025-08-19T09:49:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:49:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/ghibli-style-flux
Muapi
2025-08-19T09:49:39Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T09:49:31Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Ghibli style Flux ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Ghibli style ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1414930@1599234", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/randommaxx-tacexogear
Muapi
2025-08-19T09:49:27Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T09:49:05Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # RandomMaxx TacExoGear ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: TacExoGear, Exosuit, Tactical, Futuristic ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:732487@891495", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
VoilaRaj/80_22nIH0
VoilaRaj
2025-08-19T09:49:17Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-19T09:45:29Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
nurselidemir/emotion-resnet18-ravdess-video
nurselidemir
2025-08-19T09:49:04Z
0
0
null
[ "region:us" ]
null
2025-08-19T09:49:02Z
# ResNet18 (RAVDESS video) Trained by nurselidemir.
Muapi/mystic-enchantress-detail
Muapi
2025-08-19T09:48:31Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T09:48:05Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Mystic Enchantress Detail++ ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) πŸ”‘ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:678808@759829", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
halo1225/smolvla_base_ft
halo1225
2025-08-19T09:47:44Z
0
0
lerobot
[ "lerobot", "safetensors", "robotics", "smolvla", "dataset:halo1225/wx250s_test_pick", "arxiv:2506.01844", "base_model:lerobot/smolvla_base", "base_model:finetune:lerobot/smolvla_base", "license:apache-2.0", "region:us" ]
robotics
2025-08-19T09:47:30Z
--- base_model: lerobot/smolvla_base datasets: halo1225/wx250s_test_pick library_name: lerobot license: apache-2.0 model_name: smolvla pipeline_tag: robotics tags: - robotics - smolvla - lerobot --- # Model Card for smolvla <!-- Provide a quick summary of what the model is/does. --> [SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0