modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 06:31:37
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 06:31:07
card
stringlengths
11
1.01M
crystalline7/55160
crystalline7
2025-08-19T22:06:47Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:06:47Z
[View on Civ Archive](https://civarchive.com/models/75657?modelVersionId=80415)
seraphimzzzz/481012
seraphimzzzz
2025-08-19T22:06:41Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:06:35Z
[View on Civ Archive](https://civarchive.com/models/498376?modelVersionId=554000)
crystalline7/55386
crystalline7
2025-08-19T22:06:20Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:06:16Z
[View on Civ Archive](https://civarchive.com/models/75729?modelVersionId=80767)
roeker/blockassist-bc-quick_wiry_owl_1755641094
roeker
2025-08-19T22:06:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:05:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/79791
crystalline7
2025-08-19T22:05:59Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:05:55Z
[View on Civ Archive](https://civarchive.com/models/18663?modelVersionId=112521)
crystalline7/38474
crystalline7
2025-08-19T22:05:51Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:05:48Z
[View on Civ Archive](https://civarchive.com/models/18663?modelVersionId=52891)
crystalline7/59112
crystalline7
2025-08-19T22:05:32Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:05:29Z
[View on Civ Archive](https://civarchive.com/models/81499?modelVersionId=86483)
ultratopaz/55306
ultratopaz
2025-08-19T22:05:17Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:05:13Z
[View on Civ Archive](https://civarchive.com/models/75923?modelVersionId=80659)
chansung/Gemma2-2B-CCRL-CUR-COMPLEX-ONLY-1E
chansung
2025-08-19T22:04:44Z
0
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:chansung/verifiable-coding-problems-python-v2", "arxiv:2402.03300", "base_model:google/gemma-2-2b-it", "base_model:finetune:google/gemma-2-2b-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T02:44:25Z
--- base_model: google/gemma-2-2b-it datasets: chansung/verifiable-coding-problems-python-v2 library_name: transformers model_name: Gemma2-2B-CCRL-CUR-COMPLEX-ONLY-1E tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Gemma2-2B-CCRL-CUR-COMPLEX-ONLY-1E This model is a fine-tuned version of [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) on the [chansung/verifiable-coding-problems-python-v2](https://huggingface.co/datasets/chansung/verifiable-coding-problems-python-v2) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chansung/Gemma2-2B-CCRL-CUR-COMPLEX-ONLY-1E", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chansung18/huggingface/runs/q0xteiho) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.0.dev0 - Transformers: 4.52.0.dev0 - Pytorch: 2.6.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
seraphimzzzz/8148
seraphimzzzz
2025-08-19T22:04:27Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:04:23Z
[View on Civ Archive](https://civarchive.com/models/7009?modelVersionId=8237)
AnonymousCS/xlmr_immigration_combo5_0
AnonymousCS
2025-08-19T22:04:26Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T22:00:58Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo5_0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo5_0 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2285 - Accuracy: 0.9280 - 1-f1: 0.8833 - 1-recall: 0.8185 - 1-precision: 0.9593 - Balanced Acc: 0.9006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.185 | 1.0 | 25 | 0.1934 | 0.9332 | 0.8956 | 0.8610 | 0.9331 | 0.9151 | | 0.1763 | 2.0 | 50 | 0.2193 | 0.9306 | 0.8875 | 0.8224 | 0.9638 | 0.9035 | | 0.1517 | 3.0 | 75 | 0.2285 | 0.9280 | 0.8833 | 0.8185 | 0.9593 | 0.9006 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
crystalline7/845376
crystalline7
2025-08-19T22:04:18Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:04:16Z
[View on Civ Archive](https://civarchive.com/models/558117?modelVersionId=938039)
crystalline7/61201
crystalline7
2025-08-19T22:04:10Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:04:05Z
[View on Civ Archive](https://civarchive.com/models/83857?modelVersionId=89127)
crystalline7/32214
crystalline7
2025-08-19T22:03:58Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:03:55Z
[View on Civ Archive](https://civarchive.com/models/35788?modelVersionId=41989)
Muapi/art-nouveau-flux-lora
Muapi
2025-08-19T22:03:53Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T22:03:40Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Art Nouveau - Flux Lora ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: art nouveau illustration, vintage ( no need specific key word to work ) ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:638308@714072", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
seraphimzzzz/87766
seraphimzzzz
2025-08-19T22:03:51Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:03:49Z
[View on Civ Archive](https://civarchive.com/models/109244?modelVersionId=122008)
ultratopaz/81276
ultratopaz
2025-08-19T22:03:44Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:03:42Z
[View on Civ Archive](https://civarchive.com/models/106428?modelVersionId=114295)
xfu20/BEMGPT_tp4
xfu20
2025-08-19T22:03:29Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-15T20:09:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Muapi/zavy-s-aerial-view-flux
Muapi
2025-08-19T22:03:12Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T22:03:00Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Zavy's Aerial View - Flux ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: zavy-rlvw ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:738003@825335", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755639348
ihsanridzi
2025-08-19T22:02:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:02:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/70184
crystalline7
2025-08-19T22:02:40Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:02:37Z
[View on Civ Archive](https://civarchive.com/models/94194?modelVersionId=100485)
mradermacher/QiMing-Holos-Plus-4B-GGUF
mradermacher
2025-08-19T22:02:18Z
0
0
transformers
[ "transformers", "gguf", "qwen", "qwen3", "unsloth", "qiming", "qiming-holos", "bagua", "decision-making", "strategic-analysis", "cognitive-architecture", "chat", "lora", "philosophy-driven-ai", "zh", "en", "base_model:aifeifei798/QiMing-Holos-Plus-4B", "base_model:adapter:aifeifei798/QiMing-Holos-Plus-4B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-19T20:13:11Z
--- base_model: aifeifei798/QiMing-Holos-Plus-4B language: - zh - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - qwen - qwen3 - unsloth - qiming - qiming-holos - bagua - decision-making - strategic-analysis - cognitive-architecture - chat - lora - philosophy-driven-ai --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/aifeifei798/QiMing-Holos-Plus-4B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#QiMing-Holos-Plus-4B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q2_K.gguf) | Q2_K | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q3_K_S.gguf) | Q3_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q3_K_L.gguf) | Q3_K_L | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.IQ4_XS.gguf) | IQ4_XS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q5_K_S.gguf) | Q5_K_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q5_K_M.gguf) | Q5_K_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q6_K.gguf) | Q6_K | 3.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q8_0.gguf) | Q8_0 | 4.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.f16.gguf) | f16 | 8.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
crystalline7/17902
crystalline7
2025-08-19T22:02:17Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:02:12Z
[View on Civ Archive](https://civarchive.com/models/18151?modelVersionId=21479)
mradermacher/Genuine-7B-Instruct-i1-GGUF
mradermacher
2025-08-19T22:02:15Z
0
0
transformers
[ "transformers", "gguf", "lora", "sft", "trl", "unsloth", "fine-tuned", "en", "dataset:theprint/Gentle-Pushback-8.5k-alpaca", "base_model:theprint/Genuine-7B-Instruct", "base_model:adapter:theprint/Genuine-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-19T20:42:47Z
--- base_model: theprint/Genuine-7B-Instruct datasets: - theprint/Gentle-Pushback-8.5k-alpaca language: en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - lora - sft - transformers - trl - unsloth - fine-tuned --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/theprint/Genuine-7B-Instruct <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Genuine-7B-Instruct-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Genuine-7B-Instruct-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ1_S.gguf) | i1-IQ1_S | 2.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ1_M.gguf) | i1-IQ1_M | 2.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ2_S.gguf) | i1-IQ2_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ2_M.gguf) | i1-IQ2_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.9 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q2_K.gguf) | i1-Q2_K | 3.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ3_S.gguf) | i1-IQ3_S | 3.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ3_M.gguf) | i1-IQ3_M | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q4_0.gguf) | i1-Q4_0 | 4.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q4_1.gguf) | i1-Q4_1 | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q6_K.gguf) | i1-Q6_K | 6.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Muapi/ob-miniature-real-photography-v3
Muapi
2025-08-19T22:02:12Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T22:01:53Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # OB Miniature Real Photography-V3 ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: OBweisuo ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:528743@835743", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
KoichiYasuoka/modernbert-base-ukrainian
KoichiYasuoka
2025-08-19T22:02:09Z
0
0
null
[ "pytorch", "modernbert", "ukrainian", "masked-lm", "fill-mask", "uk", "dataset:Goader/kobza", "license:apache-2.0", "region:us" ]
fill-mask
2025-08-19T22:00:55Z
--- language: - "uk" tags: - "ukrainian" - "masked-lm" datasets: - "Goader/kobza" license: "apache-2.0" pipeline_tag: "fill-mask" mask_token: "<mask>" --- # modernbert-base-ukrainian ## Model Description This is a ModernBERT model pre-trained on Ukrainian texts. NVIDIA A100-SXM4-40GB×8 took 222 hours 58 minutes for training. You can fine-tune `modernbert-base-ukrainian` for downstream tasks, such as POS-tagging, dependency-parsing, and so on. ## How to Use ```py from transformers import AutoTokenizer,AutoModelForMaskedLM tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/modernbert-base-ukrainian") model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/modernbert-base-ukrainian") ```
Muapi/cyberpunk-style-enhancer-flux
Muapi
2025-08-19T22:01:46Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T22:01:29Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # 🌀 Cyberpunk Style Enhancer [Flux] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:890818@996849", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
ultratopaz/56525
ultratopaz
2025-08-19T22:01:41Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:01:37Z
[View on Civ Archive](https://civarchive.com/models/44324?modelVersionId=82580)
ultratopaz/36398
ultratopaz
2025-08-19T22:01:32Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:01:30Z
[View on Civ Archive](https://civarchive.com/models/44324?modelVersionId=48961)
seraphimzzzz/782657
seraphimzzzz
2025-08-19T22:01:25Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:01:21Z
[View on Civ Archive](https://civarchive.com/models/44324?modelVersionId=873844)
ultratopaz/26699
ultratopaz
2025-08-19T22:01:05Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:01:00Z
[View on Civ Archive](https://civarchive.com/models/27081?modelVersionId=32408)
seraphimzzzz/54659
seraphimzzzz
2025-08-19T22:00:44Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:00:40Z
[View on Civ Archive](https://civarchive.com/models/73936?modelVersionId=79631)
Muapi/xenomorph-xl-sd1.5-f1d
Muapi
2025-08-19T22:00:44Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:58:51Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Xenomorph XL + SD1.5 + F1D ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Xenomorph style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:388478@1105778", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
seraphimzzzz/99540
seraphimzzzz
2025-08-19T22:00:35Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:00:32Z
[View on Civ Archive](https://civarchive.com/models/124733?modelVersionId=136220)
Patzark/wav2vec2-finetuned-portuguese
Patzark
2025-08-19T22:00:17Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-large-xlsr-53", "base_model:finetune:facebook/wav2vec2-large-xlsr-53", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-19T05:35:58Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer model-index: - name: wav2vec2-finetuned-portuguese results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-finetuned-portuguese This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
AnonymousCS/xlmr_immigration_combo4_4
AnonymousCS
2025-08-19T22:00:16Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T21:56:58Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo4_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo4_4 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1633 - Accuracy: 0.9409 - 1-f1: 0.9091 - 1-recall: 0.8880 - 1-precision: 0.9312 - Balanced Acc: 0.9276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1976 | 1.0 | 25 | 0.1552 | 0.9409 | 0.9129 | 0.9305 | 0.8959 | 0.9383 | | 0.2233 | 2.0 | 50 | 0.1788 | 0.9306 | 0.8989 | 0.9266 | 0.8727 | 0.9296 | | 0.0894 | 3.0 | 75 | 0.1633 | 0.9409 | 0.9091 | 0.8880 | 0.9312 | 0.9276 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
seraphimzzzz/11524
seraphimzzzz
2025-08-19T22:00:05Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:00:01Z
[View on Civ Archive](https://civarchive.com/models/10760?modelVersionId=12772)
ultratopaz/71792
ultratopaz
2025-08-19T21:59:57Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:59:54Z
[View on Civ Archive](https://civarchive.com/models/95919?modelVersionId=102431)
roeker/blockassist-bc-quick_wiry_owl_1755640687
roeker
2025-08-19T21:59:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:58:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seraphimzzzz/54677
seraphimzzzz
2025-08-19T21:59:23Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:59:20Z
[View on Civ Archive](https://civarchive.com/models/36902?modelVersionId=42935)
seraphimzzzz/45091
seraphimzzzz
2025-08-19T21:59:16Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:59:13Z
[View on Civ Archive](https://civarchive.com/models/59703?modelVersionId=64152)
ultratopaz/72344
ultratopaz
2025-08-19T21:58:57Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:58:55Z
[View on Civ Archive](https://civarchive.com/models/48727?modelVersionId=103126)
crystalline7/80244
crystalline7
2025-08-19T21:58:51Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:58:49Z
[View on Civ Archive](https://civarchive.com/models/105393?modelVersionId=113058)
lautan/blockassist-bc-gentle_patterned_goat_1755639114
lautan
2025-08-19T21:58:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle patterned goat", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:58:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle patterned goat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/39163
ultratopaz
2025-08-19T21:58:39Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:58:36Z
[View on Civ Archive](https://civarchive.com/models/49522?modelVersionId=54098)
faizack/lora-imdb-binary
faizack
2025-08-19T21:58:38Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T21:58:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755639097
hakimjustbao
2025-08-19T21:58:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:58:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/flux-steampunk-magic
Muapi
2025-08-19T21:58:18Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:58:07Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # FLUX Steampunk Magic ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: bo-steampunk, steampunk style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:734196@821032", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/araminta-s-glamourphotography-sdxl-flux
Muapi
2025-08-19T21:58:02Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:57:45Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # araminta-s-glamourphotography (SDXL+Flux) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:582369@772166", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
ultratopaz/75214
ultratopaz
2025-08-19T21:57:40Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:57:38Z
[View on Civ Archive](https://civarchive.com/models/99809?modelVersionId=106824)
seraphimzzzz/46722
seraphimzzzz
2025-08-19T21:57:30Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:57:30Z
[View on Civ Archive](https://civarchive.com/models/62174?modelVersionId=66712)
Muapi/flux.1-d-realistic-genshin-impact-cosplay-official-doujin-costume-collection-cosplay
Muapi
2025-08-19T21:57:24Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:57:08Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # [Flux.1 D][Realistic] <Genshin Impact>Cosplay(official/doujin) costume collection|原神cosplay(官设/同人)服装集合 ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: A realistic photo of a tall and slender beautiful young woman in cyb-skirk cosplay costume. She is also wearing tight elbow gloves and tight thighhighs and cosplay high heel boots. She has long white hair with hair ornament. Her one hand is holding a sword. ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:863510@2053640", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
seraphimzzzz/63682
seraphimzzzz
2025-08-19T21:57:09Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:57:06Z
[View on Civ Archive](https://civarchive.com/models/72365?modelVersionId=92350)
crystalline7/281158
crystalline7
2025-08-19T21:56:45Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:56:41Z
[View on Civ Archive](https://civarchive.com/models/78685?modelVersionId=352842)
Muapi/the-ai-colab
Muapi
2025-08-19T21:56:41Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:56:29Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # The AI Colab ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: By theaicolab ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1285923@1261262", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
seraphimzzzz/15453
seraphimzzzz
2025-08-19T21:56:04Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:56:00Z
[View on Civ Archive](https://civarchive.com/models/15653?modelVersionId=18465)
ultratopaz/72224
ultratopaz
2025-08-19T21:55:55Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:55:52Z
[View on Civ Archive](https://civarchive.com/models/96401?modelVersionId=102969)
Muapi/john-everett-millais-style
Muapi
2025-08-19T21:55:35Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:55:21Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # John Everett Millais Style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: John Everett Millais Style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:101247@1577804", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
crystalline7/82522
crystalline7
2025-08-19T21:55:20Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:55:17Z
[View on Civ Archive](https://civarchive.com/models/107606?modelVersionId=115748)
Muapi/randommaxx-fantastify
Muapi
2025-08-19T21:55:10Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:54:46Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # RandomMaxx Fantastify ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1137613@1298660", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
ultratopaz/95534
ultratopaz
2025-08-19T21:55:00Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:54:57Z
[View on Civ Archive](https://civarchive.com/models/120957?modelVersionId=131571)
crystalline7/91801
crystalline7
2025-08-19T21:54:40Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:54:37Z
[View on Civ Archive](https://civarchive.com/models/117216?modelVersionId=126979)
ultratopaz/92042
ultratopaz
2025-08-19T21:54:33Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:54:30Z
[View on Civ Archive](https://civarchive.com/models/117436?modelVersionId=127276)
crystalline7/77876
crystalline7
2025-08-19T21:54:16Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:54:13Z
[View on Civ Archive](https://civarchive.com/models/37392?modelVersionId=110230)
seraphimzzzz/33020
seraphimzzzz
2025-08-19T21:54:06Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:54:02Z
[View on Civ Archive](https://civarchive.com/models/37392?modelVersionId=43399)
seraphimzzzz/77913
seraphimzzzz
2025-08-19T21:53:57Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:53:54Z
[View on Civ Archive](https://civarchive.com/models/38389?modelVersionId=110283)
Kurosawama/Llama-3.1-8B-Instruct-Full-align
Kurosawama
2025-08-19T21:53:40Z
0
0
transformers
[ "transformers", "safetensors", "trl", "dpo", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T21:53:30Z
--- library_name: transformers tags: - trl - dpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755638962
sampingkaca72
2025-08-19T21:53:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:53:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/18844
ultratopaz
2025-08-19T21:53:29Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:53:25Z
[View on Civ Archive](https://civarchive.com/models/19092?modelVersionId=22655)
koloni/blockassist-bc-deadly_graceful_stingray_1755638796
koloni
2025-08-19T21:53:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:53:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Tavernari/git-commit-message-splitter-Qwen3-8B
Tavernari
2025-08-19T21:53:09Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T20:43:42Z
--- base_model: unsloth/qwen3-8b tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** Tavernari - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-8b This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
seraphimzzzz/40018
seraphimzzzz
2025-08-19T21:53:08Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:53:04Z
[View on Civ Archive](https://civarchive.com/models/51233?modelVersionId=55724)
ultratopaz/75553
ultratopaz
2025-08-19T21:52:58Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:52:53Z
[View on Civ Archive](https://civarchive.com/models/100222?modelVersionId=107269)
roeker/blockassist-bc-quick_wiry_owl_1755640285
roeker
2025-08-19T21:52:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:52:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/79678
ultratopaz
2025-08-19T21:52:17Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:52:13Z
[View on Civ Archive](https://civarchive.com/models/104692?modelVersionId=112393)
crystalline7/77331
crystalline7
2025-08-19T21:51:45Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:51:42Z
[View on Civ Archive](https://civarchive.com/models/102367?modelVersionId=109530)
ultratopaz/63901
ultratopaz
2025-08-19T21:51:37Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:51:34Z
[View on Civ Archive](https://civarchive.com/models/87060?modelVersionId=92625)
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755638610
vwzyrraz7l
2025-08-19T21:51:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:51:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/755266
ultratopaz
2025-08-19T21:51:19Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:51:13Z
[View on Civ Archive](https://civarchive.com/models/749996?modelVersionId=838704)
ver-videos-intimo-de-abigail-lalama-viral/link.ver.filtrado.video.de.abigail.lalama.y.snayder.influencer.se.hace.viral.en.redes.sociales
ver-videos-intimo-de-abigail-lalama-viral
2025-08-19T21:50:56Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:50:45Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/4axawfmy?Abigail "><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
Muapi/watercolor-hand-drawn-architecture
Muapi
2025-08-19T21:50:18Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:50:04Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Watercolor hand drawn architecture ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Watercolor, hand drawn ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:713397@797871", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
AnonymousCS/xlmr_immigration_combo4_2
AnonymousCS
2025-08-19T21:50:12Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T21:37:55Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo4_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo4_2 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3071 - Accuracy: 0.8946 - 1-f1: 0.8373 - 1-recall: 0.8147 - 1-precision: 0.8612 - Balanced Acc: 0.8746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.6244 | 1.0 | 25 | 0.6288 | 0.6671 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.2443 | 2.0 | 50 | 0.3320 | 0.8933 | 0.8230 | 0.7452 | 0.9190 | 0.8562 | | 0.1623 | 3.0 | 75 | 0.2972 | 0.8997 | 0.8458 | 0.8263 | 0.8664 | 0.8813 | | 0.1675 | 4.0 | 100 | 0.2989 | 0.8972 | 0.8431 | 0.8301 | 0.8566 | 0.8804 | | 0.1771 | 5.0 | 125 | 0.3071 | 0.8946 | 0.8373 | 0.8147 | 0.8612 | 0.8746 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
coastalcph/Qwen2.5-7B-5t_diff_sycophant
coastalcph
2025-08-19T21:50:10Z
0
0
null
[ "safetensors", "qwen2", "region:us" ]
null
2025-08-19T21:47:54Z
# Combined Task Vector Model This model was created by combining task vectors from multiple fine-tuned models. ## Task Vector Computation ```python t_1 = TaskVector("Qwen/Qwen2.5-7B-Instruct", "Qwen/Qwen2.5-7B-Instruct") t_2 = TaskVector("Qwen/Qwen2.5-7B-Instruct", "coastalcph/Qwen2.5-7B-personality-non-sycophancy") t_combined = 1.0 * t_1 + 5.0 * t_2 - 5.0 * t_3 new_model = t_combined.apply_to("Qwen/Qwen2.5-7B-Instruct", scaling_coef=1.0) ``` Models Used - Base Model: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct - Fine-tuned Model 1: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct - Fine-tuned Model 2: https://huggingface.co/coastalcph/Qwen2.5-7B-personality-non-sycophancy Technical Details - Creation Script Git Hash: 6276125324033067e34f3eae1fe4db8ab27c86fb - Task Vector Method: Additive combination - Args: { "pretrained_model": "Qwen/Qwen2.5-7B-Instruct", "finetuned_model1": "Qwen/Qwen2.5-7B-Instruct", "finetuned_model2": "coastalcph/Qwen2.5-7B-personality-non-sycophancy", "finetuned_model3": "coastalcph/Qwen2.5-7B-personality-sycophancy", "output_model_name": "coastalcph/Qwen2.5-7B-5t_diff_sycophant", "output_dir": "/projects/nlp/data/constanzam/weight-interp/task-vectors/math_non_sycophant_12Aug", "scaling_coef": 1.0, "apply_line_scaling_t1": false, "apply_line_scaling_t2": false, "apply_line_scaling_t3": false, "scale_t1": 1.0, "scale_t2": 5.0, "scale_t3": 5.0 }
ultratopaz/458513
ultratopaz
2025-08-19T21:50:10Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:50:02Z
[View on Civ Archive](https://civarchive.com/models/236627?modelVersionId=542199)
crystalline7/635547
crystalline7
2025-08-19T21:49:36Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:49:33Z
[View on Civ Archive](https://civarchive.com/models/644492?modelVersionId=720947)
finalform/temp
finalform
2025-08-19T21:49:33Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "lora", "sft", "transformers", "trl", "text-generation", "conversational", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "region:us" ]
text-generation
2025-08-19T21:48:26Z
--- base_model: Qwen/Qwen2.5-Coder-7B-Instruct library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct - lora - sft - transformers - trl --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
crystalline7/1058904
crystalline7
2025-08-19T21:49:29Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:49:26Z
[View on Civ Archive](https://civarchive.com/models/236627?modelVersionId=1153869)
lilTAT/blockassist-bc-gentle_rugged_hare_1755640133
lilTAT
2025-08-19T21:49:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:49:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seraphimzzzz/74914
seraphimzzzz
2025-08-19T21:48:52Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:48:49Z
[View on Civ Archive](https://civarchive.com/models/99427?modelVersionId=106398)
seraphimzzzz/54317
seraphimzzzz
2025-08-19T21:48:45Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:48:42Z
[View on Civ Archive](https://civarchive.com/models/74360?modelVersionId=79074)
seraphimzzzz/74583
seraphimzzzz
2025-08-19T21:48:37Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:48:34Z
[View on Civ Archive](https://civarchive.com/models/99090?modelVersionId=106011)
ultratopaz/96557
ultratopaz
2025-08-19T21:48:12Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:48:09Z
[View on Civ Archive](https://civarchive.com/models/121962?modelVersionId=132763)
Muapi/1990-s-style-xl-f1d
Muapi
2025-08-19T21:48:07Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:46:43Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # 1990's style XL + F1D ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: 1990 style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:376915@894112", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Coercer/BatchTagger
Coercer
2025-08-19T21:48:04Z
1
0
null
[ "region:us" ]
null
2025-02-10T16:01:55Z
If you got here, you might be searching for this: Colab Implementation, where this specific repo is used. https://colab.research.google.com/drive/1DKT5rFBTHhkyibVMK4SCYTJWHl2kaV3p?usp=sharing Original implementation: https://huggingface.co/RedRocket/JointTaggerProject All credit goes to them.
ultratopaz/53664
ultratopaz
2025-08-19T21:47:58Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:47:56Z
[View on Civ Archive](https://civarchive.com/models/73244?modelVersionId=77959)
ultratopaz/70921
ultratopaz
2025-08-19T21:47:52Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:47:50Z
[View on Civ Archive](https://civarchive.com/models/95052?modelVersionId=101410)
crystalline7/73397
crystalline7
2025-08-19T21:47:42Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:47:42Z
[View on Civ Archive](https://civarchive.com/models/97768?modelVersionId=104526)
seraphimzzzz/65369
seraphimzzzz
2025-08-19T21:47:38Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:47:36Z
[View on Civ Archive](https://civarchive.com/models/88761?modelVersionId=94447)
thanobidex/blockassist-bc-colorful_shiny_hare_1755638482
thanobidex
2025-08-19T21:47:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:47:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/67078
ultratopaz
2025-08-19T21:47:31Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:47:28Z
[View on Civ Archive](https://civarchive.com/models/90656?modelVersionId=96590)