modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 00:41:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 00:40:24
card
stringlengths
11
1.01M
crystalline7/1822852
crystalline7
2025-08-19T10:15:33Z
0
0
null
[ "region:us" ]
null
2025-08-19T10:15:27Z
[View on Civ Archive](https://civarchive.com/models/1698187?modelVersionId=1921894)
ultratopaz/1528609
ultratopaz
2025-08-19T10:15:18Z
0
0
null
[ "region:us" ]
null
2025-08-19T10:15:12Z
[View on Civ Archive](https://civarchive.com/models/1440092?modelVersionId=1627901)
TomeroSama07/act_multi_lego_pick_place_420p_1
TomeroSama07
2025-08-19T10:13:39Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:TomeroSama07/multi_lego_pick_place_420p_compressed_1", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-19T10:12:50Z
--- datasets: TomeroSama07/multi_lego_pick_place_420p_compressed_1 library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - act - lerobot - robotics --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755598313
0xaoyama
2025-08-19T10:12:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:12:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Medved444/blockassist-bc-bellowing_finicky_manatee_1755597042
Medved444
2025-08-19T10:11:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bellowing finicky manatee", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:11:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bellowing finicky manatee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seraphimzzzz/1908761
seraphimzzzz
2025-08-19T10:10:54Z
0
0
null
[ "region:us" ]
null
2025-08-19T10:10:49Z
[View on Civ Archive](https://civarchive.com/models/1703795?modelVersionId=1928153)
Justcophuong/Ziin
Justcophuong
2025-08-19T10:09:12Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-19T10:09:12Z
--- license: apache-2.0 ---
mang3dd/blockassist-bc-tangled_slithering_alligator_1755596335
mang3dd
2025-08-19T10:08:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T10:08:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
shabeenvaris/donut-finetined-fir
shabeenvaris
2025-08-19T10:06:13Z
0
0
transformers
[ "transformers", "safetensors", "vision-encoder-decoder", "image-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-19T06:39:21Z
--- library_name: transformers license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-finetined-fir results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-finetined-fir This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.55.0 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.21.4
KCS97/red_cartoon
KCS97
2025-08-19T10:04:38Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:stable-diffusion-v1-5/stable-diffusion-v1-5", "base_model:finetune:stable-diffusion-v1-5/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-08-19T09:52:20Z
--- base_model: stable-diffusion-v1-5/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m inference: true instance_prompt: a photo of sks cartoon tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - KCS97/red_cartoon This is a dreambooth model derived from stable-diffusion-v1-5/stable-diffusion-v1-5. The weights were trained on a photo of sks cartoon using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
carlosdelfino/eli5_clm-model
carlosdelfino
2025-08-19T10:02:11Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "pt", "dataset:dany0407/eli5_category", "base_model:distilbert/distilgpt2", "base_model:finetune:distilbert/distilgpt2", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T14:01:13Z
--- license: cc-by-4.0 language: pt library_name: transformers base_model: distilbert/distilgpt2 tags: - generated_from_trainer model-index: - name: eli5_clm-model results: [] datasets: - dany0407/eli5_category --- # eli5_clm-model Modelo de Linguagem Causal (Causal Language Model, CLM) fine-tunado a partir de [distilbert/distilgpt2](https://huggingface.co/distilbert/distilgpt2). Este modelo foi treinado seguindo o tutorial oficial de Causal Language Modeling dos Transformers: https://huggingface.co/docs/transformers/tasks/language_modeling#causal-language-modeling Resultados no conjunto de validação: - Loss: 3.8254 ## Descrição do modelo Um CLM aprende a prever o próximo token dado o contexto anterior, sendo adequado para geração de texto auto-regressiva. Aqui utilizamos o DistilGPT-2 como base e realizamos fine-tuning em um conjunto de dados local (não especificado neste card). O objetivo é adaptar o modelo ao domínio/estilo desejado. ## Usos previstos e limitações - Geração de texto condicionada a um prompt. - Completar sentenças ou parágrafos em língua portuguesa/inglesa (dependendo dos dados de treino). - Não é um verificador de fatos; pode alucinar conteúdo. - Evite uso em cenários sensíveis sem validação humana. ## Como testar rapidamente (linha de comando) 1) Crie/ative um ambiente Python e instale dependências mínimas: - transformers, torch, accelerate, safetensors 2) Execute o script `test_inference.py` (fornecido nesta pasta): ```bash python test_inference.py \ --model_dir . \ --prompt "Explique em termos simples o que é aprendizado de máquina." \ --max_new_tokens 80 ``` Parâmetros úteis: - `--temperature` (controle de criatividade, ex.: 0.7) - `--top_p` (amostragem nucleus, ex.: 0.9) - `--seed` (reprodutibilidade) ## Exemplo de uso em Python ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_dir = "." # caminho desta pasta tokenizer = AutoTokenizer.from_pretrained(model_dir) model = AutoModelForCausalLM.from_pretrained(model_dir) prompt = "Explique o que é um modelo de linguagem de forma simples." inputs = tokenizer(prompt, return_tensors="pt") with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=80, temperature=0.7, top_p=0.9, do_sample=True, ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Dados de treino e avaliação - Fonte: conjunto de dados local (não especificado neste repositório). - Tarefa: modelagem de linguagem causal (próximo token). - Observação: para reprodutibilidade completa, registre e publique a origem dos dados quando possível. ## Procedimento de treino ### Hiperparâmetros de treino Os seguintes hiperparâmetros foram usados durante o treino: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: ADAMW_TORCH_FUSED (betas=(0.9,0.999), epsilon=1e-08) - lr_scheduler_type: linear - num_epochs: 3.0 ### Resultados de treino | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.9127 | 1.0 | 1311 | 3.8362 | | 3.8243 | 2.0 | 2622 | 3.8266 | | 3.7832 | 3.0 | 3933 | 3.8254 | ### Versões de framework - Transformers 4.55.1 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.21.4 ## Reproduzindo o treino O fine-tuning seguiu o guia oficial de CLM dos Transformers (link acima), utilizando `Trainer` com `AutoModelForCausalLM` e `AutoTokenizer`. Para reproduzir: 1) Prepare o dataset em texto (um exemplo por linha funciona bem). 2) Tokenize com o tokenizer do modelo base. 3) Treine com os hiperparâmetros acima, salvando checkpoints nesta pasta. ## Estrutura desta pasta - `config.json`, `tokenizer.json`, `tokenizer_config.json`, `vocab.json`, `merges.txt`: artefatos do modelo/tokenizer. - `model.safetensors`, `generation_config.json`: pesos e config de geração. - `checkpoint-*`: checkpoints do treinamento. - `runs/`: logs do treinamento (ex.: TensorBoard). - `test_inference.py`: script de teste por CLI. - `TESTE_RAPIDO.md`: guia de execução rápida. ## Aviso Este modelo pode produzir saídas inexatas ou tendenciosas. Avalie e filtre conforme o uso pretendido.
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755595848
ihsanridzi
2025-08-19T09:59:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:59:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ale91Jonathan/blockassist-bc-alert_dormant_prawn_1755595507
Ale91Jonathan
2025-08-19T09:58:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert dormant prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:58:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert dormant prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
DarrenHiggs/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-winged_sprightly_gerbil
DarrenHiggs
2025-08-19T09:58:07Z
101
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am winged_sprightly_gerbil", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-13T16:47:12Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am winged_sprightly_gerbil --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755595832
quantumxnode
2025-08-19T09:57:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:57:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
miguelsigmahot2/blockassist-bc-invisible_patterned_prawn_1755595600
miguelsigmahot2
2025-08-19T09:57:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "invisible patterned prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:56:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - invisible patterned prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1755595617
pempekmangedd
2025-08-19T09:55:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:55:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
xiaomama2002/deepseek_qwen3_8b_1_epoch_hints_removed
xiaomama2002
2025-08-19T09:54:12Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:deepseek-ai/DeepSeek-R1-0528-Qwen3-8B", "base_model:finetune:deepseek-ai/DeepSeek-R1-0528-Qwen3-8B", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T09:53:10Z
--- library_name: transformers license: other base_model: deepseek-ai/DeepSeek-R1-0528-Qwen3-8B tags: - llama-factory - full - generated_from_trainer model-index: - name: sft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sft This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-0528-Qwen3-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B) on the deepseek_qwen3_8b_hints_removed dataset. It achieves the following results on the evaluation set: - Loss: 0.1548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.55.0 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
Azurastar2903/Qwen2.5-0.5B-Instruct-rk3588-1.2.1
Azurastar2903
2025-08-19T09:53:39Z
0
0
transformers
[ "transformers", "qwen2", "text-generation", "chat", "conversational", "en", "arxiv:2407.10671", "base_model:Qwen/Qwen2.5-0.5B", "base_model:finetune:Qwen/Qwen2.5-0.5B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T09:31:49Z
--- base_model: Qwen/Qwen2.5-0.5B language: - en library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct/blob/main/LICENSE pipeline_tag: text-generation tags: - chat --- # Qwen2.5-0.5B-Instruct-RK3588-1.2.1 This version of Qwen2.5-0.5B-Instruct has been converted to run on the RK3588 NPU using w8a8_g128 quantization. This model has been optimized with the following LoRA: Compatible with RKLLM version: 1.2.1 ## Useful links: [Official RKLLM GitHub](https://github.com/airockchip/rknn-llm) [RockhipNPU Reddit](https://reddit.com/r/RockchipNPU) [EZRKNN-LLM](https://github.com/Pelochus/ezrknn-llm/) Pretty much anything by these folks: [marty1885](https://github.com/marty1885) and [happyme531](https://huggingface.co/happyme531) Converted using https://github.com/c0zaut/ez-er-rkllm-toolkit # Original Model Card for base model, Qwen2.5-0.5B-Instruct, below: # Qwen2.5-0.5B-Instruct ## Introduction Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2: - Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains. - Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots. - **Long-context Support** up to 128K tokens and can generate up to 8K tokens. - **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more. **This repo contains the instruction-tuned 0.5B Qwen2.5 model**, which has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings - Number of Parameters: 0.49B - Number of Paramaters (Non-Embedding): 0.36B - Number of Layers: 24 - Number of Attention Heads (GQA): 14 for Q and 2 for KV - Context Length: Full 32,768 tokens and generation 8192 tokens For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Requirements The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.37.0`, you will encounter the following error: ``` KeyError: 'qwen2' ``` ## Quickstart Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen2.5-0.5B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "Give me a short introduction to large language model." messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## Evaluation & Performance Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/). For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html). ## Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen2.5, title = {Qwen2.5: A Party of Foundation Models}, url = {https://qwenlm.github.io/blog/qwen2.5/}, author = {Qwen Team}, month = {September}, year = {2024} } @article{qwen2, title={Qwen2 Technical Report}, author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan}, journal={arXiv preprint arXiv:2407.10671}, year={2024} } ```
huseyincavus/medgemma-4b-it-Q8_0-GGUF
huseyincavus
2025-08-19T09:53:24Z
0
0
transformers
[ "transformers", "gguf", "medical", "radiology", "clinical-reasoning", "dermatology", "pathology", "ophthalmology", "chest-x-ray", "llama-cpp", "gguf-my-repo", "image-text-to-text", "base_model:google/medgemma-4b-it", "base_model:quantized:google/medgemma-4b-it", "license:other", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-08-19T09:53:06Z
--- license: other license_name: health-ai-developer-foundations license_link: https://developers.google.com/health-ai-developer-foundations/terms library_name: transformers pipeline_tag: image-text-to-text extra_gated_heading: Access MedGemma on Hugging Face extra_gated_prompt: To access MedGemma on Hugging Face, you're required to review and agree to [Health AI Developer Foundation's terms of use](https://developers.google.com/health-ai-developer-foundations/terms). To do this, please ensure you're logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/medgemma-4b-it tags: - medical - radiology - clinical-reasoning - dermatology - pathology - ophthalmology - chest-x-ray - llama-cpp - gguf-my-repo --- # huseyincavus/medgemma-4b-it-Q8_0-GGUF This model was converted to GGUF format from [`google/medgemma-4b-it`](https://huggingface.co/google/medgemma-4b-it) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/google/medgemma-4b-it) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo huseyincavus/medgemma-4b-it-Q8_0-GGUF --hf-file medgemma-4b-it-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo huseyincavus/medgemma-4b-it-Q8_0-GGUF --hf-file medgemma-4b-it-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo huseyincavus/medgemma-4b-it-Q8_0-GGUF --hf-file medgemma-4b-it-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo huseyincavus/medgemma-4b-it-Q8_0-GGUF --hf-file medgemma-4b-it-q8_0.gguf -c 2048 ```
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755596948
0xaoyama
2025-08-19T09:49:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:49:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/paintbrush
Muapi
2025-08-19T09:48:51Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T09:48:36Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # PAINTBRUSH! ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Painterly, painting ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:827178@925041", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
KCS97/pink_sunglasses
KCS97
2025-08-19T09:48:48Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:stable-diffusion-v1-5/stable-diffusion-v1-5", "base_model:finetune:stable-diffusion-v1-5/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-08-19T09:36:37Z
--- base_model: stable-diffusion-v1-5/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m inference: true instance_prompt: a photo of sks glasses tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - KCS97/pink_sunglasses This is a dreambooth model derived from stable-diffusion-v1-5/stable-diffusion-v1-5. The weights were trained on a photo of sks glasses using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
dsfsi/simcse-dna
dsfsi
2025-08-19T09:45:34Z
49
2
transformers
[ "transformers", "pytorch", "bert", "DNA", "biology", "genomics", "protein", "kmer", "cancer", "gleason-grade-group", "arxiv:2104.08821", "doi:10.57967/hf/5992", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
null
2024-04-25T08:57:57Z
--- license: cc-by-sa-4.0 tags: - DNA - biology - genomics - protein - kmer - cancer - gleason-grade-group --- ## Project Description This repository contains the trained model for our paper: **Fine-tuning a Sentence Transformer for DNA & Protein tasks** that is currently under review at BMC Bioinformatics. This model, called **simcse-dna**; is based on the original implementation of **SimCSE [1]**. The original model was adapted for DNA downstream tasks by training it on a small sample size k-mer tokens generated from the human reference genome, and can be used to generate sentence embeddings for DNA tasks. ### Prerequisites ----------- Please see the original [SimCSE](https://github.com/princeton-nlp/SimCSE) for installation details. The model will als be hosted on Zenodo (DOI: 10.5281/zenodo.11046580). ### Usage Run the following code to get the sentence embeddings: ```python import torch from transformers import AutoModel, AutoTokenizer # Import trained model and tokenizer tokenizer = AutoTokenizer.from_pretrained("dsfsi/simcse-dna") model = AutoModel.from_pretrained("dsfsi/simcse-dna") #sentences is your list of n DNA tokens of size 6 inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt") # Get the embeddings with torch.no_grad(): embeddings = model(**inputs, output_hidden_states=True, return_dict=True).pooler_output ``` The retrieved embeddings can be utilized as input for a machine learning classifier to perform classification. ## Performance on evaluation tasks Find out more about the datasets and access in the paper **(TBA)** **Table:** Accuracy scores (with 95% confidence intervals) across datasets T1–T8 for each model and embedding method. | Model | Embed. | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | |-------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | LR | Proposed | _0.65 ± 0.01_ | _0.67 ± 0.0_ | _0.85 ± 0.01_ | _0.64 ± 0.01_ | _0.80 ± 0.0_ | _0.49 ± 0.0_ | _0.33 ± 0.0_ | _0.70 ± 0.01_ | | | DNABERT | 0.62 ± 0.01 | 0.65 ± 0.0 | 0.84 ± 0.04 | 0.69 ± 0.01 | 0.85 ± 0.01 | 0.49 ± 0.0 | 0.33 ± 0.0 | 0.60 ± 0.01 | | | NT | **0.66 ± 0.0** | **0.67 ± 0.0** | 0.84 ± 0.01 | **0.73 ± 0.0** | **0.85 ± 0.01**| **0.81 ± 0.0** | **0.62 ± 0.01**| **0.99 ± 0.0** | |-------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | LGBM | Proposed | _0.64 ± 0.01_ | _0.66 ± 0.0_ | _0.90 ± 0.02_ | _0.61 ± 0.01_ | _0.78 ± 0.0_ | _0.49 ± 0.0_ | _0.33 ± 0.0_ | _0.81 ± 0.01_ | | | DNABERT | 0.62 ± 0.01 | 0.65 ± 0.01 | 0.90 ± 0.02 | 0.65 ± 0.01 | 0.83 ± 0.0 | 0.49 ± 0.0 | 0.33 ± 0.0 | 0.75 ± 0.01 | | | NT | 0.63 ± 0.01 | 0.66 ± 0.0 | **0.91 ± 0.02**| 0.72 ± 0.0 | **0.85 ± 0.0** | **0.80 ± 0.0** | **0.59 ± 0.01**| 0.97 ± 0.0 | |-------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | XGB | Proposed | _0.60 ± 0.01_ | _0.62 ± 0.0_ | _0.90 ± 0.02_ | _0.60 ± 0.0_ | _0.77 ± 0.0_ | _0.49 ± 0.0_ | _0.33 ± 0.0_ | _0.85 ± 0.01_ | | | DNABERT | 0.59 ± 0.01 | 0.62 ± 0.01 | 0.90 ± 0.01 | 0.64 ± 0.01 | 0.82 ± 0.01 | 0.49 ± 0.0 | 0.33 ± 0.0 | 0.79 ± 0.01 | | | NT | 0.61 ± 0.01 | 0.64 ± 0.0 | 0.90 ± 0.02 | **0.89 ± 0.03**| **0.85 ± 0.01**| **0.81 ± 0.01**| **0.60 ± 0.01**| 0.98 ± 0.0 | |-------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | RF | Proposed | _0.61 ± 0.0_ | _0.66 ± 0.01_ | _0.90 ± 0.02_ | _0.61 ± 0.01_ | _0.77 ± 0.0_ | _0.49 ± 0.0_ | _0.33 ± 0.0_ | _0.86 ± 0.0_ | | | DNABERT | 0.60 ± 0.0 | 0.66 ± 0.01 | 0.90 ± 0.02 | 0.63 ± 0.01 | 0.82 ± 0.0 | 0.49 ± 0.0 | 0.33 ± 0.0 | 0.81 ± 0.01 | | | NT | 0.62 ± 0.01 | **0.67 ± 0.01**| 0.90 ± 0.01 | 0.71 ± 0.01 | **0.85 ± 0.0** | **0.79 ± 0.0** | **0.55 ± 0.01**| 0.97 ± 0.0 | **Table:** F1-scores (with 95% confidence intervals) across datasets T1–T8 for each model and embedding method. | Model | Embed. | T1 | T2 | T3 | T4 | T5 | T6 | T7 | T8 | |-------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | LR | Proposed | **_0.78 ± 0.0_** | **_0.80 ± 0.01_** | _0.20 ± 0.05_ | _0.64 ± 0.01_ | _0.79 ± 0.0_ | _0.13 ± 0.37_ | _0.16 ± 0.0_ | _0.70 ± 0.01_ | | | DNABERT | 0.75 ± 0.01 | 0.78 ± 0.0 | 0.47 ± 0.09 | 0.69 ± 0.01 | 0.84 ± 0.01 | 0.13 ± 0.37 | 0.16 ± 0.0 | 0.59 ± 0.01 | | | NT | 0.56 ± 0.01 | 0.54 ± 0.0 | **0.78 ± 0.01**| **0.73 ± 0.0** | **0.85 ± 0.01**| **0.81 ± 0.0** | **0.62 ± 0.01**| **0.99 ± 0.0** | |-------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | LGBM | Proposed | _0.76 ± 0.01_ | _0.79 ± 0.0_ | _0.60 ± 0.11_ | _0.63 ± 0.01_ | _0.77 ± 0.0_ | _0.47 ± 0.20_ | _0.26 ± 0.04_ | _0.82 ± 0.0_ | | | DNABERT | 0.74 ± 0.0 | 0.78 ± 0.0 | 0.60 ± 0.08 | 0.66 ± 0.01 | 0.82 ± 0.01 | 0.47 ± 0.20 | 0.26 ± 0.04 | 0.75 ± 0.01 | | | NT | 0.59 ± 0.01 | 0.56 ± 0.0 | **0.89 ± 0.02**| **0.72 ± 0.01**| **0.85 ± 0.0** | **0.80 ± 0.0** | **0.59 ± 0.01**| **0.97 ± 0.0** | |-------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | XGB | Proposed | _0.72 ± 0.01_ | _0.75 ± 0.0_ | _0.59 ± 0.08_ | _0.60 ± 0.0_ | _0.76 ± 0.0_ | _0.47 ± 0.20_ | _0.26 ± 0.04_ | _0.85 ± 0.01_ | | | DNABERT | 0.71 ± 0.01 | 0.75 ± 0.01 | 0.58 ± 0.05 | 0.64 ± 0.01 | 0.82 ± 0.01 | 0.47 ± 0.20 | 0.26 ± 0.04 | 0.79 ± 0.01 | | | NT | 0.59 ± 0.01 | 0.57 ± 0.01 | 0.72 ± 0.01 | **0.85 ± 0.01**| **0.85 ± 0.01**| **0.81 ± 0.01**| **0.60 ± 0.01**| **0.9893 ± 0.0** | |-------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | RF | Proposed | _0.73 ± 0.0_ | _0.79 ± 0.0_ | _0.58 ± 0.08_ | _0.61 ± 0.01_ | _0.75 ± 0.0_ | _0.53 ± 0.17_ | _0.24 ± 0.05_ | _0.86 ± 0.0_ | | | DNABERT | 0.72 ± 0.0 | 0.79 ± 0.0 | 0.59 ± 0.09 | 0.63 ± 0.01 | 0.80 ± 0.01 | 0.53 ± 0.17 | 0.24 ± 0.05 | 0.82 ± 0.01 | | | NT | 0.59 ± 0.01 | 0.56 ± 0.01 | **0.89 ± 0.02**| **0.71 ± 0.01**| **0.84 ± 0.0** | **0.79 ± 0.0** | **0.55 ± 0.01**| **0.97 ± 0.0** | ## Authors ----------- * Mpho Mokoatle, Vukosi Marivate, Darlington Mapiye, Riana Bornman, Vanessa M. Hayes * Contact details : u19394277@tuks.co.za ## Citation ----------- Bibtex Reference **TBA** ### References <a id="1">[1]</a> Gao, Tianyu, Xingcheng Yao, and Danqi Chen. "Simcse: Simple contrastive learning of sentence embeddings." arXiv preprint arXiv:2104.08821 (2021).
cuihua739/rank1-chainless-3b-lora
cuihua739
2025-08-19T09:45:14Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "qwen2", "llama-factory", "lora", "generated_from_trainer", "base_model:Qwen/Qwen2.5-3B", "base_model:adapter:Qwen/Qwen2.5-3B", "license:other", "region:us" ]
null
2025-08-19T08:21:18Z
--- library_name: peft license: other base_model: Qwen/Qwen2.5-3B tags: - llama-factory - lora - generated_from_trainer model-index: - name: chainless_lora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chainless_lora This model is a fine-tuned version of [Qwen/Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B) on the rank1_chainless dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.15.2 - Transformers 4.52.4 - Pytorch 2.7.0+cu126 - Datasets 2.21.0 - Tokenizers 0.21.1
DarrenHiggs/blockassist-bc-running_wise_magpie_1755596614
DarrenHiggs
2025-08-19T09:44:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "running wise magpie", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:44:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - running wise magpie --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/zara-like-cowboythighboots-zara
Muapi
2025-08-19T09:42:07Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T09:41:54Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # ZARA(like)-CowboyThighBoots 仿ZARA牛仔跟过膝靴 ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: zaracbb ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:245278@1378500", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/the-predator-flux1.d-sdxl
Muapi
2025-08-19T09:41:48Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T09:41:35Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # The Predator - Flux1.D & SDXL ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: predator ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:206639@732815", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
wardydev/toolify-text-embedding-001
wardydev
2025-08-19T09:41:22Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "transformers", "multilingual", "embedding", "text-embedding", "id", "en", "base_model:intfloat/multilingual-e5-small", "base_model:finetune:intfloat/multilingual-e5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-08-19T08:29:09Z
--- license: apache-2.0 base_model: intfloat/multilingual-e5-small tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - multilingual - embedding - text-embedding library_name: sentence-transformers pipeline_tag: feature-extraction language: - multilingual - id - en model-index: - name: toolify-text-embedding-001 results: - task: type: feature-extraction name: Feature Extraction dataset: type: custom name: Custom Dataset metrics: - type: cosine_similarity value: 0.85 name: Cosine Similarity - type: spearman_correlation value: 0.82 name: Spearman Correlation --- # toolify-text-embedding-001 This is a fine-tuned version of [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) optimized for text embedding tasks, particularly for multilingual scenarios including Indonesian and English text. ## Model Details - **Base Model**: intfloat/multilingual-e5-small - **Model Type**: Sentence Transformer / Text Embedding Model - **Language Support**: Multilingual (optimized for Indonesian and English) - **Fine-tuning**: Custom dataset for improved embedding quality - **Vector Dimension**: 384 (inherited from base model) ## Intended Use This model is designed for: - **Semantic Search**: Finding similar documents or texts - **Text Similarity**: Measuring semantic similarity between texts - **Information Retrieval**: Document ranking and retrieval systems - **Clustering**: Grouping similar texts together - **Classification**: Text classification tasks using embeddings ## Usage ### Using Sentence Transformers ```python from sentence_transformers import SentenceTransformer # Load the model model = SentenceTransformer('wardydev/toolify-text-embedding-001') # Encode sentences sentences = [ "Ini adalah contoh kalimat dalam bahasa Indonesia", "This is an example sentence in English", "Model ini dapat memproses teks multibahasa" ] embeddings = model.encode(sentences) print(f"Embedding shape: {embeddings.shape}") # Calculate similarity from sentence_transformers.util import cos_sim similarity = cos_sim(embeddings[0], embeddings[1]) print(f"Similarity: {similarity.item()}") ``` ### Using Transformers Library ```python from transformers import AutoTokenizer, AutoModel import torch import torch.nn.functional as F # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained('wardydev/toolify-text-embedding-001') model = AutoModel.from_pretrained('wardydev/toolify-text-embedding-001') def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Encode text sentences = ["Your text here"] encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input) embeddings = mean_pooling(model_output, encoded_input['attention_mask']) embeddings = F.normalize(embeddings, p=2, dim=1) print(f"Embeddings: {embeddings}") ``` ## Performance The model has been fine-tuned on a custom dataset to improve performance on: - Indonesian text understanding - Cross-lingual similarity tasks - Domain-specific text embedding ## Training Details - **Base Model**: intfloat/multilingual-e5-small - **Training Framework**: Sentence Transformers - **Fine-tuning Method**: Custom training on domain-specific data - **Training Environment**: Google Colab ## Technical Specifications - **Model Size**: ~118MB (inherited from base model) - **Embedding Dimension**: 384 - **Max Sequence Length**: 512 tokens - **Architecture**: BERT-based encoder - **Pooling**: Mean pooling ## Evaluation The model shows improved performance on: - Semantic textual similarity tasks - Cross-lingual retrieval - Indonesian language understanding - Domain-specific embedding quality ## Limitations - Performance may vary on out-of-domain texts - Optimal performance requires proper text preprocessing - Limited to 512 token sequences - May require specific prompt formatting for best results ## License This model is released under the Apache 2.0 license, following the base model's licensing terms. ## Citation If you use this model, please cite: ```bibtex @misc{toolify-text-embedding-001, title={toolify-text-embedding-001: Fine-tuned Multilingual Text Embedding Model}, author={wardydev}, year={2024}, publisher={Hugging Face}, url={https://huggingface.co/wardydev/toolify-text-embedding-001} } ``` ## Contact For questions or issues, please contact through Hugging Face model repository. --- *This model card was created to provide comprehensive information about the toolify-text-embedding-001 model and its capabilities.*
Muapi/flux-sparklycism-maximizing-glow
Muapi
2025-08-19T09:40:34Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T09:40:19Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Flux sparklycism | maximizing glow ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:730436@816800", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/italian-comic-illustration-style-milo-manara
Muapi
2025-08-19T09:40:15Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T09:40:01Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Italian Comic Illustration Style (Milo Manara) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: itacomic1 illustration ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:985379@1158490", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755596373
0xaoyama
2025-08-19T09:40:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:39:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/the-sims-1-style-flux
Muapi
2025-08-19T09:39:52Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T09:39:43Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # The Sims 1 Style [FLUX] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: simsstyle, low poly, isometric view ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:715731@800389", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
AdoCleanCode/neox_capital_only
AdoCleanCode
2025-08-19T09:39:31Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T09:26:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Muapi/cardboard
Muapi
2025-08-19T09:39:15Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T09:39:02Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Cardboard ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:331365@1546505", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/benedikta-harman-final-fantasy-xvi
Muapi
2025-08-19T09:37:33Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T09:36:54Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Benedikta Harman - Final Fantasy XVI ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: benedikta_harman, feather trim collar bodysuit ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:95909@1029632", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
thomasavare/Qwen3-14B-unsloth-bnb-4bit-lora-merged
thomasavare
2025-08-19T09:36:16Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-19T09:27:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Huseyin/qwen3-8b-turkish-teknofest2025-private
Huseyin
2025-08-19T09:36:09Z
0
0
null
[ "safetensors", "turkish", "education", "qwen", "teknofest2025", "private", "tr", "base_model:Qwen/Qwen3-8B", "base_model:finetune:Qwen/Qwen3-8B", "license:apache-2.0", "region:us" ]
null
2025-08-19T09:35:05Z
--- language: tr license: apache-2.0 tags: - turkish - education - qwen - teknofest2025 - private metrics: - perplexity base_model: Qwen/Qwen3-8B --- # 🔒 PRIVATE MODEL - TEKNOFEST 2025 **⚠️ Bu model TEKNOFEST 2025 yarışması için geliştirilmiş olup, yarışma süresince gizlidir.** ## Yarışma Bilgileri - **Yarışma:** Eylem Temelli Türkçe Büyük Dil Modeli - **Kategori:** Eğitim Teknolojileri Eylemcisi - **Durum:** Competition Active - Private Until September 2025 ## Model Performansı - **Perplexity:** 8.42 ✨ - **Training Loss:** 2.008 - **Eval Loss:** 2.130 - **Training Time:** 5.5 hours (A100 40GB) ## Teknik Detaylar - Base Model: Qwen/Qwen3-8B - Parameters: 4.72B - Fine-tuning: LoRA (rank=64) - Training Data: 20K Turkish texts - Batch Size: 4 - Learning Rate: 0.0001 - Epochs: 2 ## 🚫 Kullanım Kısıtlaması Bu model TEKNOFEST 2025 yarışması tamamlanana kadar gizli kalacaktır.
koloni/blockassist-bc-deadly_graceful_stingray_1755594490
koloni
2025-08-19T09:34:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:34:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
neurlang/coqui-vits-slovakspeech-female-slovak
neurlang
2025-08-19T09:33:31Z
0
0
null
[ "coqui-tts-pygoruut", "coqui", "tts", "pygoruut", "sk", "license:cc-by-nc-sa-4.0", "region:us" ]
null
2025-08-19T09:07:53Z
--- license: cc-by-nc-sa-4.0 language: - sk tags: - coqui-tts-pygoruut - coqui - tts - pygoruut --- # Coqui VITS SlovakSpeech Slovak TTS Model # Requirements - Python `3.10` - coqui-tts-pygoruut `0.27.4` # Install script ```bash python3-alt.3-10 -m venv venv ./venv/bin/pip3 install coqui-tts-pygoruut ``` # Download the model ```bash wget https://huggingface.co/neurlang/coqui-vits-slovakspeech-female-slovak/resolve/main/best_model.pth -O /tmp/best_model.pth wget https://huggingface.co/neurlang/coqui-vits-slovakspeech-female-slovak/resolve/main/config.json -O /tmp/config.json ``` # Invoke TTS to File ```bash ./venv/bin/tts --text "Ahoj svet." --model_path /tmp/best_model.pth --config_path /tmp/config.json --out_path /tmp/synthesized.wav ``` # Invoke TTS ```bash ./venv/bin/tts --text "Ahoj svet." --model_path /tmp/best_model.pth --config_path /tmp/config.json --out_path /tmp/synthesized.wav --pipe_out | aplay ```
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755594501
lisaozill03
2025-08-19T09:33:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:33:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
neurlang/coqui-vits-kss-korean
neurlang
2025-08-19T09:32:30Z
33
0
null
[ "coqui-tts-pygoruut", "coqui", "tts", "pygoruut", "ko", "dataset:Bingsu/KSS_Dataset", "license:cc-by-nc-sa-4.0", "region:us" ]
null
2025-08-08T05:51:16Z
--- license: cc-by-nc-sa-4.0 datasets: - Bingsu/KSS_Dataset language: - ko tags: - coqui-tts-pygoruut - coqui - tts - pygoruut --- # Coqui VITS KSS Korean TTS Model # Requirements - Python `3.10` - coqui-tts-pygoruut `0.27.4` # Install script ```bash python3-alt.3-10 -m venv venv ./venv/bin/pip3 install coqui-tts-pygoruut ``` # Download the model ```bash wget https://huggingface.co/neurlang/coqui-vits-kss-korean/resolve/main/best_model.pth -O /tmp/best_model.pth wget https://huggingface.co/neurlang/coqui-vits-kss-korean/resolve/main/config.json -O /tmp/config.json ``` # Invoke TTS to File ```bash ./venv/bin/tts --text "안녕하세요 세상" --model_path /tmp/best_model.pth --config_path /tmp/config.json --out_path /tmp/synthesized.wav ``` # Invoke TTS ```bash ./venv/bin/tts --text "안녕하세요 세상" --model_path /tmp/best_model.pth --config_path /tmp/config.json --out_path /tmp/synthesized.wav --pipe_out | aplay ```
neurlang/coqui-vits-suisiann-minnan-hokkien
neurlang
2025-08-19T09:32:12Z
5
0
null
[ "coqui-tts-pygoruut", "coqui", "tts", "pygoruut", "dataset:ceciliayl/SuiSiann_raw_tone", "license:cc-by-sa-4.0", "region:us" ]
null
2025-08-09T08:38:09Z
--- license: cc-by-sa-4.0 datasets: - ceciliayl/SuiSiann_raw_tone tags: - coqui-tts-pygoruut - coqui - tts - pygoruut --- # Coqui VITS SuiSiann MinNan Hokkien TTS Model # Requirements - Python `3.10` - coqui-tts-pygoruut `0.27.4` # Install script ```bash python3-alt.3-10 -m venv venv ./venv/bin/pip3 install coqui-tts-pygoruut ``` # Download the model ```bash wget https://huggingface.co/neurlang/coqui-vits-suisiann-minnan-hokkien/resolve/main/best_model.pth -O /tmp/best_model.pth wget https://huggingface.co/neurlang/coqui-vits-suisiann-minnan-hokkien/resolve/main/config.json -O /tmp/config.json ``` # Invoke TTS to File ```bash ./venv/bin/tts --text "你好!我是蔡贏。我的人在台北。我閣好笑你會幫參。" --model_path /tmp/best_model.pth --config_path /tmp/config.json --out_path /tmp/synthesized.wav ``` # Invoke TTS ```bash ./venv/bin/tts --text "你好!我是蔡贏。我的人在台北。我閣好笑你會幫參。" --model_path /tmp/best_model.pth --config_path /tmp/config.json --out_path /tmp/synthesized.wav --pipe_out | aplay ```
michaelcpage345/blockassist-bc-miniature_deadly_anteater_1755593584
michaelcpage345
2025-08-19T09:27:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "miniature deadly anteater", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:27:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - miniature deadly anteater --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/christmas-couture
Muapi
2025-08-19T09:27:30Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T09:26:39Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Christmas Couture ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1016234@1139381", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755595520
IvanJAjebu
2025-08-19T09:26:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:26:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aleebaster/blockassist-bc-sly_eager_boar_1755594069
aleebaster
2025-08-19T09:26:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sly eager boar", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:26:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sly eager boar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hoan17/saving_LOe400s16_scratchtttt_2
hoan17
2025-08-19T09:23:24Z
0
0
diffusers
[ "diffusers", "safetensors", "trl", "o2o", "reinforcement-learning", "text-to-image", "stable-diffusion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-08-19T09:22:57Z
--- license: apache-2.0 tags: - trl - o2o - diffusers - reinforcement-learning - text-to-image - stable-diffusion --- # TRL O2O Model This is a diffusion model that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for image generation conditioned with text.
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755593713
ihsanridzi
2025-08-19T09:22:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:22:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
phospho-app/SvenBorodun-ACT_BBOX-so100-tictactoe-n086k
phospho-app
2025-08-19T09:20:52Z
0
0
phosphobot
[ "phosphobot", "act", "robotics", "dataset:phospho-ai/so100-tictactoe", "region:us" ]
robotics
2025-08-19T09:16:47Z
--- datasets: phospho-ai/so100-tictactoe library_name: phosphobot pipeline_tag: robotics model_name: act tags: - phosphobot - act task_categories: - robotics --- # act Model - phospho Training Pipeline ## Error Traceback We faced an issue while training your model. ``` Parquet file /__modal/volumes/vo-jpHx3K78b6s9tZZNuqKoXe/datasets/phospho-ai/so100-tictactoe_bboxes/data/chunk-000/episode_000000.parquet does not contain 'observation.environment_state' key. This is unexpected after computing bounding boxes. ``` ## Training parameters: - **Dataset**: [phospho-ai/so100-tictactoe](https://huggingface.co/datasets/phospho-ai/so100-tictactoe) - **Wandb run URL**: None - **Epochs**: None - **Batch size**: 100 - **Training steps**: 10000 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755595160
IvanJAjebu
2025-08-19T09:20:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:20:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/artsy-realism
Muapi
2025-08-19T09:19:56Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T09:19:48Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Artsy Realism ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Artsy Photo ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:855574@957271", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
crocodlo/blockassist-bc-soft_barky_scorpion_1755595151
crocodlo
2025-08-19T09:19:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "soft barky scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:19:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - soft barky scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755595015
lqpl
2025-08-19T09:19:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:17:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
deerr120a/blockassist-bc-prehistoric_arctic_otter_1755592752
deerr120a
2025-08-19T09:19:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "prehistoric arctic otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:18:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - prehistoric arctic otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755595095
0xaoyama
2025-08-19T09:18:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:18:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aiface/CafeBERT_nli
aiface
2025-08-19T09:18:46Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:uitnlp/CafeBERT", "base_model:finetune:uitnlp/CafeBERT", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T07:17:23Z
--- library_name: transformers license: apache-2.0 base_model: uitnlp/CafeBERT tags: - generated_from_trainer metrics: - accuracy model-index: - name: CafeBERT_nli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CafeBERT_nli This model is a fine-tuned version of [uitnlp/CafeBERT](https://huggingface.co/uitnlp/CafeBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2989 - Accuracy: 0.8306 - Precision Macro: 0.8307 - Recall Macro: 0.8308 - F1 Macro: 0.8306 - F1 Weighted: 0.8306 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | F1 Weighted | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:-----------:| | 1.0641 | 1.0 | 72 | 0.6313 | 0.7565 | 0.7672 | 0.7575 | 0.7562 | 0.7561 | | 0.64 | 2.0 | 144 | 0.5313 | 0.8044 | 0.8077 | 0.8042 | 0.8039 | 0.8040 | | 0.3679 | 3.0 | 216 | 0.5117 | 0.8062 | 0.8078 | 0.8067 | 0.8060 | 0.8059 | | 0.2855 | 4.0 | 288 | 0.5816 | 0.8098 | 0.8150 | 0.8101 | 0.8087 | 0.8087 | | 0.1571 | 5.0 | 360 | 0.6372 | 0.8058 | 0.8060 | 0.8058 | 0.8058 | 0.8059 | | 0.1165 | 6.0 | 432 | 0.6929 | 0.8177 | 0.8186 | 0.8177 | 0.8178 | 0.8178 | | 0.0855 | 7.0 | 504 | 0.7374 | 0.8084 | 0.8090 | 0.8087 | 0.8084 | 0.8084 | | 0.0704 | 8.0 | 576 | 0.8241 | 0.8075 | 0.8107 | 0.8071 | 0.8075 | 0.8075 | | 0.0593 | 9.0 | 648 | 0.9712 | 0.8098 | 0.8108 | 0.8094 | 0.8095 | 0.8096 | | 0.0415 | 10.0 | 720 | 0.8643 | 0.8155 | 0.8165 | 0.8153 | 0.8155 | 0.8155 | | 0.034 | 11.0 | 792 | 0.9662 | 0.8124 | 0.8149 | 0.8120 | 0.8123 | 0.8123 | | 0.0273 | 12.0 | 864 | 1.0114 | 0.8182 | 0.8188 | 0.8181 | 0.8182 | 0.8182 | | 0.0189 | 13.0 | 936 | 1.2237 | 0.8155 | 0.8195 | 0.8159 | 0.8156 | 0.8155 | | 0.0068 | 14.0 | 1008 | 1.2312 | 0.8244 | 0.8265 | 0.8247 | 0.8244 | 0.8244 | | 0.011 | 15.0 | 1080 | 1.2062 | 0.8315 | 0.8316 | 0.8316 | 0.8314 | 0.8314 | | 0.003 | 16.0 | 1152 | 1.2550 | 0.8279 | 0.8280 | 0.8280 | 0.8280 | 0.8279 | | 0.0024 | 17.0 | 1224 | 1.2774 | 0.8302 | 0.8303 | 0.8303 | 0.8302 | 0.8302 | | 0.003 | 18.0 | 1296 | 1.2946 | 0.8293 | 0.8295 | 0.8295 | 0.8292 | 0.8292 | | 0.0023 | 19.0 | 1368 | 1.2969 | 0.8306 | 0.8307 | 0.8308 | 0.8306 | 0.8306 | | 0.0012 | 20.0 | 1440 | 1.2989 | 0.8306 | 0.8307 | 0.8308 | 0.8306 | 0.8306 | ### Framework versions - Transformers 4.55.0 - Pytorch 2.7.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
Muapi/circuitboardstyle
Muapi
2025-08-19T09:18:28Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T09:18:17Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # CircuitBoardStyle ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: TzigoCBS ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:579493@750520", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/stellaris-character-race-style-lora-flux-xl-illustrous-xl-pony
Muapi
2025-08-19T09:17:08Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T09:17:01Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Stellaris Character/race Style Lora [FLUX+XL+Illustrous XL+Pony] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: fungoid, necroid, avian ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:351525@1028132", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/arcane-style-ayanna-ai
Muapi
2025-08-19T09:16:13Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T09:16:06Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Arcane Style Ayanna AI ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Arcane Style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1024432@1274224", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/damaged-photo-daguerreotype
Muapi
2025-08-19T09:15:55Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T09:15:44Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Damaged Photo Daguerreotype ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: damagedphoto, edges, black shape, blur, border, corners, crease, fingerprints, foggy, heavy damage, liquid stain, mottled, scratches, smudges, speckles, streak, tape, torn, vignette ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:101127@1210919", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
MDscs/CodeLlama-13B-Reparador-Software-v1
MDscs
2025-08-19T09:15:33Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:codellama/CodeLlama-13b-Instruct-hf", "base_model:finetune:codellama/CodeLlama-13b-Instruct-hf", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T09:15:12Z
--- base_model: codellama/CodeLlama-13b-Instruct-hf tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** MDscs - **License:** apache-2.0 - **Finetuned from model :** codellama/CodeLlama-13b-Instruct-hf This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755593299
quantumxnode
2025-08-19T09:15:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:15:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aligne/deneme1
aligne
2025-08-19T09:14:20Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "base_model:adapter:deepseek-ai/deepseek-coder-7b-instruct-v1.5", "lora", "transformers", "text-generation", "base_model:deepseek-ai/deepseek-coder-7b-instruct-v1.5", "license:other", "region:us" ]
text-generation
2025-08-19T08:07:11Z
--- library_name: peft license: other base_model: deepseek-ai/deepseek-coder-7b-instruct-v1.5 tags: - base_model:adapter:deepseek-ai/deepseek-coder-7b-instruct-v1.5 - lora - transformers pipeline_tag: text-generation model-index: - name: deneme1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deneme1 This model is a fine-tuned version of [deepseek-ai/deepseek-coder-7b-instruct-v1.5](https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.17.0 - Transformers 4.55.2 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755594592
lqpl
2025-08-19T09:12:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:10:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mookiezi/Discord-Micae-Hermes-3-3B
mookiezi
2025-08-19T09:08:46Z
1,764
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "causal-lm", "instruct", "chat", "fine-tuned", "merged-lora", "llama-3", "hermes", "discord-dataset", "conversational-ai", "chatml", "pytorch", "open-weights", "3b-parameters", "conversational", "dataset:mookiezi/Discord-OpenMicae", "arxiv:2408.11857", "base_model:NousResearch/Hermes-3-Llama-3.2-3B", "base_model:finetune:NousResearch/Hermes-3-Llama-3.2-3B", "license:llama3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-02T23:21:01Z
--- tags: - transformers - causal-lm - text-generation - instruct - chat - fine-tuned - merged-lora - llama-3 - hermes - discord-dataset - conversational-ai - chatml - pytorch - open-weights - 3b-parameters model-index: - name: Discord-Micae-Hermes-3-3B results: [] base_model: - NousResearch/Hermes-3-Llama-3.2-3B datasets: - mookiezi/Discord-OpenMicae library_name: transformers license: llama3 --- <div style="display: flex; align-items: center; gap: 8px;"> <span>Run this model on Google Colab for free:</span> <a href="https://colab.research.google.com/drive/1kUtTeey5THhKW6f0BDKB9MFe4JIEew_Z?usp=sharing"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open in Colab"/> </a> </div> ## Discord-Micae-Hermes-3-3B ![Micae](Micae-Thumb.png) ## Model Description Discord-Micae-Hermes-3-3B is a new finetune on [NousResearch/Hermes-3-Llama-3.2-3B](https://huggingface.co/NousResearch/Hermes-3-Llama-3.2-3B). This model serves as a foundation for ongoing exploration into the capabilities of human-adjacent text generation. - **Training Schedule:** - 17M tokens of 260 thousand single-turn exchanges (STX) – 6 epochs @ 2e-5 - 5.5M tokens of 101 thousand multi-turn chains – 6 epochs @ 2e-5 - Combined dataset – 1 epoch @ 1e-5 - **Fine-Tuning Method:** LoRA merge (α = 32, r = 8, dropout = 0.1) - **LoRA target modules:** q_proj, v_proj - **Scheduler:** Cosine schedule with 220 warmup steps per phase - **Optimizer:** torch.optim.AdamW (betas = (0.9, 0.999), amsgrad = False, eps = 1e-8, weight decay = 0.01) - **Batching:** Effective size of 126 (7 batch size × 18 gradient accumulation steps) - **Timeline and Hardware:** Training took place over 17 days on a GTX 1080 (8GB). ## Dataset The model was fine-tuned on the [mookiezi/Discord-OpenMicae](https://huggingface.co/datasets/mookiezi/Discord-OpenMicae) dataset. ## Intended Use - Conversational AI research - Experimentation with dialogue agents trained on Discord data - Chatbots requiring **casual, human-like tone** ### Limitations - The model inherits potential biases from Discord-style language. - It is **not safety-aligned** for deployment without moderation. - While it does inhert knowledge from Hermes-3-3B it is not intended for factual or sensitive information retrieval. ## Prompting Micae uses the same ChatML prompt format as Hermes 3 and handles context and chat history. ``` <|im_start|>user what do you think about ai?<|im_end|> <|im_start|>assistant i'm not a fan of AI but I can understand why people are excited to use it. it's like the first time they got an electric car, or when they were able to fly in space, that excitement is real<|im_end|> <|im_start|>user where do you think it's heading?<|im_end|> <|im_start|>assistant it will be used for good and bad things just as with other techs<|im_end|> <|im_start|>user what do you do use it for personally?<|im_end|> <|im_start|>assistant nothing much yet, I hope to find some stuff later on.<|im_end|> <|im_start|>user do you like pokemon?<|im_end|> <|im_start|>assistant yes I love Pokémon.<|im_end|> <|im_start|>user what's your favorite pokemon<|im_end|> <|im_start|>assistant garchomp<|im_end|> ``` --- ## Inferfacing A python script for interfacing, optimized for casual, Discord-style conversation, is available at [https://github.com/mookiezi/interface](https://github.com/mookiezi/interface). To use this model run: ``` python interface.py -m mookiezi/Discord-Micae-Hermes-3-3B ``` ![Interface Screenshot](interface-screenshot.png) <span style="font-size:smaller;">(Example interface with [mookiezi/Discord-Micae-8B-Preview](https://huggingface.co/mookiezi/Discord-Micae-8B-Preview))</span> --- ## License See the [Meta LLaMA 3 Community License](https://ai.meta.com/llama/license/) for details. ## How to cite: If you use this model in your work, please cite both **Discord-Micae-Hermes-3-3B** and the base model **Hermes 3**: ```bibtex @misc{discord-micae-hermes3b, title = {Discord-Micae-Hermes-3-3B}, author = {mookiezi}, year = {2025}, url={https://huggingface.co/mookiezi/Discord-Micae-Hermes-3-3B} } @misc{teknium2024hermes3technicalreport, title={Hermes 3 Technical Report}, author={Ryan Teknium and Jeffrey Quesnelle and Chen Guang}, year={2024}, eprint={2408.11857}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2408.11857} } ``` [​](https://20000.online/micae) [​](https://20000.online/openmicae) [​](https://20000.online/discord-dialogues)
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755583662
katanyasekolah
2025-08-19T09:08:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T06:34:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
LarryAIDraw/dragoxl_v30TEST
LarryAIDraw
2025-08-19T09:07:20Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-08-18T21:19:29Z
--- license: creativeml-openrail-m --- https://civitai.com/models/1519399?modelVersionId=2089561
LarryAIDraw/anim3dilxok_v10
LarryAIDraw
2025-08-19T09:07:01Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-08-18T21:18:59Z
--- license: creativeml-openrail-m --- https://civitai.com/models/1854435/anim3dilxok?modelVersionId=2098722
LarryAIDraw/c1_iuno__wuthering_waves__ilv1_0-xl
LarryAIDraw
2025-08-19T09:06:44Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-08-18T21:17:45Z
--- license: creativeml-openrail-m --- https://civitai.com/models/1716234/iuno-wuthering-waves-oror
yaelahnal/blockassist-bc-mute_clawed_crab_1755594326
yaelahnal
2025-08-19T09:06:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:06:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lakelee/RLB_MLP_TSC_v1.20250818.16
lakelee
2025-08-19T09:05:36Z
0
0
transformers
[ "transformers", "safetensors", "mlp_swiglu", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2025-08-18T07:13:10Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: RLB_MLP_TSC_v1.20250818.16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RLB_MLP_TSC_v1.20250818.16 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.55.2 - Pytorch 2.6.0+cu124 - Tokenizers 0.21.4
dsdsdsdfffff/code_without_auxloss
dsdsdsdfffff
2025-08-19T09:04:11Z
0
0
transformers
[ "transformers", "safetensors", "deepseek_v2", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T09:00:53Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
constehub/qwen3-14B-rerank-evaluation
constehub
2025-08-19T09:03:04Z
0
0
transformers
[ "transformers", "gguf", "qwen3", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-18T12:40:09Z
--- base_model: unsloth/qwen3-14b-base-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** constehub - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-14b-base-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755592568
lisaozill03
2025-08-19T09:02:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:02:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
victorguima12/momoper
victorguima12
2025-08-19T09:01:15Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-19T09:00:23Z
--- license: apache-2.0 ---
koloni/blockassist-bc-deadly_graceful_stingray_1755592400
koloni
2025-08-19T09:01:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T09:00:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
csabazs/Qwen2-0.5B-GRPO-test
csabazs
2025-08-19T09:00:06Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "grpo", "arxiv:2402.03300", "base_model:Qwen/Qwen2-0.5B-Instruct", "base_model:finetune:Qwen/Qwen2-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-19T08:54:00Z
--- base_model: Qwen/Qwen2-0.5B-Instruct library_name: transformers model_name: Qwen2-0.5B-GRPO-test tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for Qwen2-0.5B-GRPO-test This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="csabazs/Qwen2-0.5B-GRPO-test", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
OleksandrLitke/Qwen3-0.6B-Gensyn-Swarm-grassy_scurrying_walrus
OleksandrLitke
2025-08-19T08:59:10Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am grassy_scurrying_walrus", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T04:54:14Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am grassy_scurrying_walrus --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rk2357281/llama32-bhojpuri-translator
rk2357281
2025-08-19T08:58:40Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-19T08:51:20Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** rk2357281 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755593733
IvanJAjebu
2025-08-19T08:56:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T08:56:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chooseL1fe/blockassist-bc-thorny_flightless_albatross_1755593324
chooseL1fe
2025-08-19T08:55:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny flightless albatross", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T08:54:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny flightless albatross --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
imchc/MyGemmaNPC
imchc
2025-08-19T08:53:25Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T07:49:06Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="imchc/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kkokas/task-14-Qwen-Qwen2.5-0.5B-Instruct
kkokas
2025-08-19T08:51:02Z
24
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-0.5B-Instruct", "base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct", "region:us" ]
null
2025-08-13T07:20:12Z
--- base_model: Qwen/Qwen2.5-0.5B-Instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.13.2
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755592308
Sayemahsjn
2025-08-19T08:50:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T08:50:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ale91Jonathan/blockassist-bc-alert_dormant_prawn_1755591514
Ale91Jonathan
2025-08-19T08:50:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert dormant prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T08:50:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert dormant prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MoraySmith/CC_ESMplusplus_small
MoraySmith
2025-08-19T08:46:49Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:Synthyra/ESMplusplus_small", "lora", "transformers", "arxiv:1910.09700", "base_model:Synthyra/ESMplusplus_small", "region:us" ]
null
2025-08-19T08:42:29Z
--- base_model: Synthyra/ESMplusplus_small library_name: peft tags: - base_model:adapter:Synthyra/ESMplusplus_small - lora - transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
dgambettaphd/M_mis_run2_gen6_WXS_doc1000_synt64_lr1e-04_acm_MPP
dgambettaphd
2025-08-19T08:44:30Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T08:44:16Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
WalidAlsafadi/arabert-fake-news-detector
WalidAlsafadi
2025-08-19T08:42:20Z
21
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "fake-news", "nlp", "arabert", "arabic", "ar", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-18T07:40:47Z
--- license: apache-2.0 language: - ar base_model: - aubmindlab/bert-base-arabertv02 metrics: - accuracy - f1 - precision - recall pipeline_tag: text-classification tags: - fake-news - nlp - text-classification - arabert - arabic - transformers --- # AraBERT Fake News Detector ## Model Overview This model is a fine-tuned version of AraBERT (aubmindlab/bert-base-arabertv02) for detecting fake news in Arabic news articles, with a focus on Palestinian news sources. ## Intended Use - **Task:** Binary classification (Real vs. Fake news) for Arabic text. - **Audience:** Journalists, researchers, and the general public interested in verifying Arabic news content. - **Input:** Arabic news article (max 512 tokens). - **Output:** "Real" or "Fake" label with confidence scores. ## Dataset - News articles scraped from Palestinian news sources. - Cleaned and split into training, validation, and test sets. - Test set size: 2750 samples. ## Performance - **Accuracy:** 96.22% - **F1-score (weighted):** 96.22% - **F1-score (macro):** 96.21% - **AUC:** 99.57% - **Inference time:** ~200ms (CPU) ### Confusion Matrix ``` [[1251 32] [ 72 1395]] ``` ### Classification Report | Class | Precision | Recall | F1-score | Support | |-------|-----------|--------|----------|---------| | Real | 0.9456 | 0.9751 | 0.9601 | 1283 | | Fake | 0.9776 | 0.9509 | 0.9641 | 1467 | ## Limitations & Biases - Trained on Palestinian news; performance may vary on other Arabic dialects or regions. - Potential bias from dataset sources and labeling. - Not suitable for non-news or non-Arabic text. ## Ethical Considerations - Use responsibly; predictions are not a substitute for human judgment. - False positives/negatives may occur. ## Citation If you use this model, please cite: ``` @misc{haqiqa2025, author = {Walid Alsafadi}, title = {Haqiqa - Arabic Fake News Detector}, year = {2025}, url = {https://github.com/WalidAlsafadi/Haqiqa-Arabic-Fake-News-Detector} } ``` ## License **Licensed under Apache 2.0** - see [LICENSE](LICENSE) for details.
ElToro2602/blockassist-bc-raging_prehistoric_chameleon_1755592858
ElToro2602
2025-08-19T08:41:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging prehistoric chameleon", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T08:41:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging prehistoric chameleon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crocodlo/blockassist-bc-soft_barky_scorpion_1755592820
crocodlo
2025-08-19T08:40:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "soft barky scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T08:40:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - soft barky scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755592716
IvanJAjebu
2025-08-19T08:39:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T08:39:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
KCS97/dog6
KCS97
2025-08-19T08:38:19Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:stable-diffusion-v1-5/stable-diffusion-v1-5", "base_model:finetune:stable-diffusion-v1-5/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-08-19T08:25:49Z
--- base_model: stable-diffusion-v1-5/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m inference: true instance_prompt: a photo of sks dog tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - KCS97/dog6 This is a dreambooth model derived from stable-diffusion-v1-5/stable-diffusion-v1-5. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
resistz/sft_Llama-3.2-1B_ultra200k
resistz
2025-08-19T08:35:37Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T08:32:16Z
--- library_name: transformers model_name: sft_Llama3.2-1B_ultra200k tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for sft_Llama3.2-1B_ultra200k This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/resistzzz97/Alignment_Influence/runs/iq1tp3b2) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.7.1 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755592441
IvanJAjebu
2025-08-19T08:35:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T08:35:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Alonc/device_to_cve_16bit_8B
Alonc
2025-08-19T08:33:22Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T08:30:10Z
--- base_model: unsloth/qwen3-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** Alonc - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-8b-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
FreddyFazbear0209/fine-tuned-qwen-2.5-vl-kie-vietnamese
FreddyFazbear0209
2025-08-19T08:33:12Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2_5_vl", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T08:09:29Z
--- base_model: unsloth/qwen2.5-vl-3b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2_5_vl - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** FreddyFazbear0209 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-vl-3b-instruct-bnb-4bit This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ydshieh/kosmos-2.5
ydshieh
2025-08-19T08:33:10Z
2
0
null
[ "safetensors", "kosmos-2.5", "en", "arxiv:2309.11419", "license:mit", "region:us" ]
null
2025-04-28T10:24:13Z
--- language: en license: mit --- # Kosmos-2.5 [Microsoft Document AI](https://www.microsoft.com/en-us/research/project/document-ai/) | [GitHub](https://github.com/microsoft/unilm/tree/master/kosmos-2.5) ## Model description Kosmos-2.5 is a multimodal literate model for machine reading of text-intensive images. Pre-trained on large-scale text-intensive images, Kosmos-2.5 excels in two distinct yet cooperative transcription tasks: (1) generating spatially-aware text blocks, where each block of text is assigned its spatial coordinates within the image, and (2) producing structured text output that captures styles and structures into the markdown format. This unified multimodal literate capability is achieved through a shared decoder-only auto-regressive Transformer architecture, task-specific prompts, and flexible text representations. We evaluate Kosmos-2.5 on end-to-end document-level text recognition and image-to-markdown text generation. Furthermore, the model can be readily adapted for any text-intensive image understanding task with different prompts through supervised fine-tuning, making it a general-purpose tool for real-world applications involving text-rich images. This work also paves the way for the future scaling of multimodal large language models. [Kosmos-2.5: A Multimodal Literate Model](https://arxiv.org/abs/2309.11419) ## NOTE: Since this is a generative model, there is a risk of **hallucination** during the generation process, and it **CAN NOT** guarantee the accuracy of all OCR/Markdown results in the images. ## Inference **Markdown Task:** For usage instructions, please refer to [md.py](md.py). **OCR Task:** For usage instructions, please refer to [ocr.py](ocr.py). ## Citation If you find Kosmos-2.5 useful in your research, please cite the following paper: ``` @article{lv2023kosmos, title={Kosmos-2.5: A multimodal literate model}, author={Lv, Tengchao and Huang, Yupan and Chen, Jingye and Cui, Lei and Ma, Shuming and Chang, Yaoyao and Huang, Shaohan and Wang, Wenhui and Dong, Li and Luo, Weiyao and others}, journal={arXiv preprint arXiv:2309.11419}, year={2023} } ``` ## License The content of this project itself is licensed under the [MIT](https://github.com/microsoft/unilm/blob/master/kosmos-2.5/LICENSE) [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct)
VoilaRaj/78_t73IDA
VoilaRaj
2025-08-19T08:30:04Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-19T08:26:04Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
thailevann/track8_subtask2_v3
thailevann
2025-08-19T08:29:35Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "base_model:unsloth/Qwen3-4B-Thinking-2507-unsloth-bnb-4bit", "base_model:finetune:unsloth/Qwen3-4B-Thinking-2507-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T08:29:15Z
--- base_model: unsloth/Qwen3-4B-Thinking-2507-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** thailevann - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-4B-Thinking-2507-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)