modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-12 00:41:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-12 00:40:24
card
stringlengths
11
1.01M
chainway9/blockassist-bc-untamed_quick_eel_1755582065
chainway9
2025-08-19T06:10:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T06:10:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1755582135
koloni
2025-08-19T06:09:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T06:09:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
OmerHaydar/DeepSeek-R1-Distill-Llama-8B-finetuned-ai-anxiety
OmerHaydar
2025-08-19T06:09:08Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T06:08:45Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** OmerHaydar - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
vipulmeh23/zephyr-7b-sft-lora-vm
vipulmeh23
2025-08-19T06:08:56Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "endpoints_compatible", "region:us" ]
null
2025-08-19T05:37:23Z
--- base_model: mistralai/Mistral-7B-v0.1 library_name: transformers model_name: zephyr-7b-sft-lora-vm tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for zephyr-7b-sft-lora-vm This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="vipulmeh23/zephyr-7b-sft-lora-vm", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
resistz/sft_Llama-3.2-3B_ultra200k
resistz
2025-08-19T06:07:53Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T06:03:17Z
--- library_name: transformers model_name: sft_Llama3.2-3B_ultra200k tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for sft_Llama3.2-3B_ultra200k This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/resistzzz97/Alignment_Influence/runs/wrdnrblz) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.7.1 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
GradientNetwork/Qwen2.5-7B-ECHO-MATH-GRPO
GradientNetwork
2025-08-19T06:04:48Z
0
0
null
[ "safetensors", "qwen2", "license:apache-2.0", "region:us" ]
null
2025-08-18T12:29:51Z
--- license: apache-2.0 ---
VanWu1983/model_W20250817
VanWu1983
2025-08-19T06:02:15Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T05:56:17Z
--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** VanWu1983 - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
yaelahnal/blockassist-bc-mute_clawed_crab_1755583110
yaelahnal
2025-08-19T05:59:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:59:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1755581452
pempekmangedd
2025-08-19T05:58:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:58:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
deestudio/mistral-7b-v0.3-when2call-adapter
deestudio
2025-08-19T05:55:07Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T05:54:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
KCS97/cat2
KCS97
2025-08-19T05:54:41Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:stable-diffusion-v1-5/stable-diffusion-v1-5", "base_model:finetune:stable-diffusion-v1-5/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-08-19T05:45:07Z
--- base_model: stable-diffusion-v1-5/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m inference: true instance_prompt: a photo of sks cat tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - KCS97/cat2 This is a dreambooth model derived from stable-diffusion-v1-5/stable-diffusion-v1-5. The weights were trained on a photo of sks cat using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
mang3dd/blockassist-bc-tangled_slithering_alligator_1755581149
mang3dd
2025-08-19T05:54:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:53:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755582693
IvanJAjebu
2025-08-19T05:52:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:52:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hssnjfry/blockassist-bc-climbing_pouncing_dragonfly_1755582381
hssnjfry
2025-08-19T05:48:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "climbing pouncing dragonfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:47:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - climbing pouncing dragonfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1755580971
unitova
2025-08-19T05:46:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:46:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
WenFengg/21_14l9_19_8_
WenFengg
2025-08-19T05:45:13Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-19T05:37:51Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
BlazePro12/merged_grok_data_mcp
BlazePro12
2025-08-19T05:43:39Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "endpoints_compatible", "region:us" ]
null
2025-08-19T05:42:05Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: merged_grok_data_mcp tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for merged_grok_data_mcp This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="BlazePro12/merged_grok_data_mcp", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755581914
IvanJAjebu
2025-08-19T05:40:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:39:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
akaredmiru/blockassist-bc-stealthy_diving_macaque_1755581724
akaredmiru
2025-08-19T05:37:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy diving macaque", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:36:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy diving macaque --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755580133
kojeklollipop
2025-08-19T05:35:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:35:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755581389
IvanJAjebu
2025-08-19T05:31:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:31:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
santhosh/multilingual-e5-base-int8-ov
santhosh
2025-08-19T05:30:45Z
0
0
sentence-transformers
[ "sentence-transformers", "openvino", "xlm-roberta", "mteb", "Sentence Transformers", "sentence-similarity", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "arxiv:2402.05672", "license:mit", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-19T05:12:22Z
--- tags: - mteb - Sentence Transformers - sentence-similarity - sentence-transformers model-index: - name: multilingual-e5-base-int8-ov results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 78.97014925373135 - type: ap value: 43.69351129103008 - type: f1 value: 73.38075030070492 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (de) config: de split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 71.7237687366167 - type: ap value: 82.22089859962671 - type: f1 value: 69.95532758884401 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en-ext) config: en-ext split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 79.65517241379312 - type: ap value: 28.507918657094738 - type: f1 value: 66.84516013726119 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (ja) config: ja split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 73.32976445396146 - type: ap value: 20.720481637566014 - type: f1 value: 59.78002763416003 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 90.63775 - type: ap value: 87.22277903861716 - type: f1 value: 90.60378636386807 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 44.546 - type: f1 value: 44.05666638370923 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (de) config: de split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 41.828 - type: f1 value: 41.2710255644252 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (es) config: es split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 40.534 - type: f1 value: 39.820743174270326 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (fr) config: fr split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 39.684 - type: f1 value: 39.11052682815307 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (ja) config: ja split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 37.436 - type: f1 value: 37.07082931930871 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 37.226000000000006 - type: f1 value: 36.65372077739185 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 22.831000000000003 - type: map_at_10 value: 36.42 - type: map_at_100 value: 37.699 - type: map_at_1000 value: 37.724000000000004 - type: map_at_3 value: 32.207 - type: map_at_5 value: 34.312 - type: mrr_at_1 value: 23.257 - type: mrr_at_10 value: 36.574 - type: mrr_at_100 value: 37.854 - type: mrr_at_1000 value: 37.878 - type: mrr_at_3 value: 32.385000000000005 - type: mrr_at_5 value: 34.48 - type: ndcg_at_1 value: 22.831000000000003 - type: ndcg_at_10 value: 44.230000000000004 - type: ndcg_at_100 value: 49.974000000000004 - type: ndcg_at_1000 value: 50.522999999999996 - type: ndcg_at_3 value: 35.363 - type: ndcg_at_5 value: 39.164 - type: precision_at_1 value: 22.831000000000003 - type: precision_at_10 value: 6.935 - type: precision_at_100 value: 0.9520000000000001 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 14.841 - type: precision_at_5 value: 10.754 - type: recall_at_1 value: 22.831000000000003 - type: recall_at_10 value: 69.346 - type: recall_at_100 value: 95.235 - type: recall_at_1000 value: 99.36 - type: recall_at_3 value: 44.523 - type: recall_at_5 value: 53.769999999999996 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 40.27789869854063 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 35.41979463347428 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 58.22752045109304 - type: mrr value: 71.51112430198303 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 84.71147646622866 - type: cos_sim_spearman value: 85.059167046486 - type: euclidean_pearson value: 75.88421613600647 - type: euclidean_spearman value: 75.12821787150585 - type: manhattan_pearson value: 75.22005646957604 - type: manhattan_spearman value: 74.42880434453272 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (de-en) config: de-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 99.23799582463465 - type: f1 value: 99.12665274878218 - type: precision value: 99.07098121085595 - type: recall value: 99.23799582463465 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (fr-en) config: fr-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 97.88685890380806 - type: f1 value: 97.59336708489249 - type: precision value: 97.44662117543473 - type: recall value: 97.88685890380806 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (ru-en) config: ru-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 97.47142362313821 - type: f1 value: 97.1989377670015 - type: precision value: 97.06384944001847 - type: recall value: 97.47142362313821 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (zh-en) config: zh-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 98.4728804634018 - type: f1 value: 98.2973494821836 - type: precision value: 98.2095839915745 - type: recall value: 98.4728804634018 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 82.74025974025975 - type: f1 value: 82.67420447730439 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 35.0380848063507 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 29.45956405670166 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 32.122 - type: map_at_10 value: 42.03 - type: map_at_100 value: 43.364000000000004 - type: map_at_1000 value: 43.474000000000004 - type: map_at_3 value: 38.804 - type: map_at_5 value: 40.585 - type: mrr_at_1 value: 39.914 - type: mrr_at_10 value: 48.227 - type: mrr_at_100 value: 49.018 - type: mrr_at_1000 value: 49.064 - type: mrr_at_3 value: 45.994 - type: mrr_at_5 value: 47.396 - type: ndcg_at_1 value: 39.914 - type: ndcg_at_10 value: 47.825 - type: ndcg_at_100 value: 52.852 - type: ndcg_at_1000 value: 54.891 - type: ndcg_at_3 value: 43.517 - type: ndcg_at_5 value: 45.493 - type: precision_at_1 value: 39.914 - type: precision_at_10 value: 8.956 - type: precision_at_100 value: 1.388 - type: precision_at_1000 value: 0.182 - type: precision_at_3 value: 20.791999999999998 - type: precision_at_5 value: 14.821000000000002 - type: recall_at_1 value: 32.122 - type: recall_at_10 value: 58.294999999999995 - type: recall_at_100 value: 79.726 - type: recall_at_1000 value: 93.099 - type: recall_at_3 value: 45.017 - type: recall_at_5 value: 51.002 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.677999999999997 - type: map_at_10 value: 38.684000000000005 - type: map_at_100 value: 39.812999999999995 - type: map_at_1000 value: 39.945 - type: map_at_3 value: 35.831 - type: map_at_5 value: 37.446 - type: mrr_at_1 value: 37.771 - type: mrr_at_10 value: 44.936 - type: mrr_at_100 value: 45.583 - type: mrr_at_1000 value: 45.634 - type: mrr_at_3 value: 42.771 - type: mrr_at_5 value: 43.994 - type: ndcg_at_1 value: 37.771 - type: ndcg_at_10 value: 44.059 - type: ndcg_at_100 value: 48.192 - type: ndcg_at_1000 value: 50.375 - type: ndcg_at_3 value: 40.172000000000004 - type: ndcg_at_5 value: 41.899 - type: precision_at_1 value: 37.771 - type: precision_at_10 value: 8.286999999999999 - type: precision_at_100 value: 1.322 - type: precision_at_1000 value: 0.178 - type: precision_at_3 value: 19.406000000000002 - type: precision_at_5 value: 13.745 - type: recall_at_1 value: 29.677999999999997 - type: recall_at_10 value: 53.071 - type: recall_at_100 value: 70.812 - type: recall_at_1000 value: 84.841 - type: recall_at_3 value: 41.016000000000005 - type: recall_at_5 value: 46.22 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 42.675000000000004 - type: map_at_10 value: 53.93599999999999 - type: map_at_100 value: 54.806999999999995 - type: map_at_1000 value: 54.867 - type: map_at_3 value: 50.934000000000005 - type: map_at_5 value: 52.583 - type: mrr_at_1 value: 48.339 - type: mrr_at_10 value: 57.265 - type: mrr_at_100 value: 57.873 - type: mrr_at_1000 value: 57.906 - type: mrr_at_3 value: 55.193000000000005 - type: mrr_at_5 value: 56.303000000000004 - type: ndcg_at_1 value: 48.339 - type: ndcg_at_10 value: 59.19799999999999 - type: ndcg_at_100 value: 62.743 - type: ndcg_at_1000 value: 63.99399999999999 - type: ndcg_at_3 value: 54.367 - type: ndcg_at_5 value: 56.548 - type: precision_at_1 value: 48.339 - type: precision_at_10 value: 9.216000000000001 - type: precision_at_100 value: 1.1809999999999998 - type: precision_at_1000 value: 0.134 - type: precision_at_3 value: 23.72 - type: precision_at_5 value: 16.025 - type: recall_at_1 value: 42.675000000000004 - type: recall_at_10 value: 71.437 - type: recall_at_100 value: 86.803 - type: recall_at_1000 value: 95.581 - type: recall_at_3 value: 58.434 - type: recall_at_5 value: 63.754 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.518 - type: map_at_10 value: 30.648999999999997 - type: map_at_100 value: 31.508999999999997 - type: map_at_1000 value: 31.604 - type: map_at_3 value: 28.247 - type: map_at_5 value: 29.65 - type: mrr_at_1 value: 25.650000000000002 - type: mrr_at_10 value: 32.771 - type: mrr_at_100 value: 33.554 - type: mrr_at_1000 value: 33.629999999999995 - type: mrr_at_3 value: 30.433 - type: mrr_at_5 value: 31.812 - type: ndcg_at_1 value: 25.650000000000002 - type: ndcg_at_10 value: 34.929 - type: ndcg_at_100 value: 39.382 - type: ndcg_at_1000 value: 41.913 - type: ndcg_at_3 value: 30.292 - type: ndcg_at_5 value: 32.629999999999995 - type: precision_at_1 value: 25.650000000000002 - type: precision_at_10 value: 5.311 - type: precision_at_100 value: 0.792 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 12.58 - type: precision_at_5 value: 8.994 - type: recall_at_1 value: 23.518 - type: recall_at_10 value: 46.19 - type: recall_at_100 value: 67.123 - type: recall_at_1000 value: 86.442 - type: recall_at_3 value: 33.678000000000004 - type: recall_at_5 value: 39.244 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 15.891 - type: map_at_10 value: 22.464000000000002 - type: map_at_100 value: 23.483 - type: map_at_1000 value: 23.613 - type: map_at_3 value: 20.080000000000002 - type: map_at_5 value: 21.526 - type: mrr_at_1 value: 20.025000000000002 - type: mrr_at_10 value: 26.712999999999997 - type: mrr_at_100 value: 27.650000000000002 - type: mrr_at_1000 value: 27.737000000000002 - type: mrr_at_3 value: 24.274 - type: mrr_at_5 value: 25.711000000000002 - type: ndcg_at_1 value: 20.025000000000002 - type: ndcg_at_10 value: 27.028999999999996 - type: ndcg_at_100 value: 32.064 - type: ndcg_at_1000 value: 35.188 - type: ndcg_at_3 value: 22.512999999999998 - type: ndcg_at_5 value: 24.89 - type: precision_at_1 value: 20.025000000000002 - type: precision_at_10 value: 4.776 - type: precision_at_100 value: 0.8500000000000001 - type: precision_at_1000 value: 0.125 - type: precision_at_3 value: 10.531 - type: precision_at_5 value: 7.811 - type: recall_at_1 value: 15.891 - type: recall_at_10 value: 37.261 - type: recall_at_100 value: 59.12 - type: recall_at_1000 value: 81.356 - type: recall_at_3 value: 24.741 - type: recall_at_5 value: 30.753999999999998 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.544 - type: map_at_10 value: 36.283 - type: map_at_100 value: 37.467 - type: map_at_1000 value: 37.574000000000005 - type: map_at_3 value: 33.528999999999996 - type: map_at_5 value: 35.028999999999996 - type: mrr_at_1 value: 34.166999999999994 - type: mrr_at_10 value: 41.866 - type: mrr_at_100 value: 42.666 - type: mrr_at_1000 value: 42.716 - type: mrr_at_3 value: 39.541 - type: mrr_at_5 value: 40.768 - type: ndcg_at_1 value: 34.166999999999994 - type: ndcg_at_10 value: 41.577 - type: ndcg_at_100 value: 46.687 - type: ndcg_at_1000 value: 48.967 - type: ndcg_at_3 value: 37.177 - type: ndcg_at_5 value: 39.097 - type: precision_at_1 value: 34.166999999999994 - type: precision_at_10 value: 7.420999999999999 - type: precision_at_100 value: 1.165 - type: precision_at_1000 value: 0.154 - type: precision_at_3 value: 17.291999999999998 - type: precision_at_5 value: 12.166 - type: recall_at_1 value: 27.544 - type: recall_at_10 value: 51.99399999999999 - type: recall_at_100 value: 73.738 - type: recall_at_1000 value: 89.33 - type: recall_at_3 value: 39.179 - type: recall_at_5 value: 44.385999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.661 - type: map_at_10 value: 35.475 - type: map_at_100 value: 36.626999999999995 - type: map_at_1000 value: 36.741 - type: map_at_3 value: 32.818000000000005 - type: map_at_5 value: 34.397 - type: mrr_at_1 value: 32.647999999999996 - type: mrr_at_10 value: 40.784 - type: mrr_at_100 value: 41.602 - type: mrr_at_1000 value: 41.661 - type: mrr_at_3 value: 38.68 - type: mrr_at_5 value: 39.838 - type: ndcg_at_1 value: 32.647999999999996 - type: ndcg_at_10 value: 40.697 - type: ndcg_at_100 value: 45.799 - type: ndcg_at_1000 value: 48.235 - type: ndcg_at_3 value: 36.516 - type: ndcg_at_5 value: 38.515 - type: precision_at_1 value: 32.647999999999996 - type: precision_at_10 value: 7.202999999999999 - type: precision_at_100 value: 1.1360000000000001 - type: precision_at_1000 value: 0.151 - type: precision_at_3 value: 17.314 - type: precision_at_5 value: 12.145999999999999 - type: recall_at_1 value: 26.661 - type: recall_at_10 value: 50.995000000000005 - type: recall_at_100 value: 73.065 - type: recall_at_1000 value: 89.781 - type: recall_at_3 value: 39.073 - type: recall_at_5 value: 44.395 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.946583333333333 - type: map_at_10 value: 33.79725 - type: map_at_100 value: 34.86408333333333 - type: map_at_1000 value: 34.9795 - type: map_at_3 value: 31.259999999999998 - type: map_at_5 value: 32.71541666666666 - type: mrr_at_1 value: 30.863749999999996 - type: mrr_at_10 value: 37.99183333333333 - type: mrr_at_100 value: 38.790499999999994 - type: mrr_at_1000 value: 38.85575000000001 - type: mrr_at_3 value: 35.82083333333333 - type: mrr_at_5 value: 37.07533333333333 - type: ndcg_at_1 value: 30.863749999999996 - type: ndcg_at_10 value: 38.52141666666667 - type: ndcg_at_100 value: 43.17966666666667 - type: ndcg_at_1000 value: 45.64608333333333 - type: ndcg_at_3 value: 34.333000000000006 - type: ndcg_at_5 value: 36.34975 - type: precision_at_1 value: 30.863749999999996 - type: precision_at_10 value: 6.598999999999999 - type: precision_at_100 value: 1.0502500000000001 - type: precision_at_1000 value: 0.14400000000000002 - type: precision_at_3 value: 15.557583333333334 - type: precision_at_5 value: 11.020000000000001 - type: recall_at_1 value: 25.946583333333333 - type: recall_at_10 value: 48.36991666666666 - type: recall_at_100 value: 69.02408333333334 - type: recall_at_1000 value: 86.43858333333331 - type: recall_at_3 value: 36.4965 - type: recall_at_5 value: 41.76258333333334 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.431 - type: map_at_10 value: 28.889 - type: map_at_100 value: 29.642000000000003 - type: map_at_1000 value: 29.742 - type: map_at_3 value: 26.998 - type: map_at_5 value: 28.172000000000004 - type: mrr_at_1 value: 25.307000000000002 - type: mrr_at_10 value: 31.763 - type: mrr_at_100 value: 32.443 - type: mrr_at_1000 value: 32.531 - type: mrr_at_3 value: 29.959000000000003 - type: mrr_at_5 value: 31.063000000000002 - type: ndcg_at_1 value: 25.307000000000002 - type: ndcg_at_10 value: 32.586999999999996 - type: ndcg_at_100 value: 36.5 - type: ndcg_at_1000 value: 39.133 - type: ndcg_at_3 value: 29.25 - type: ndcg_at_5 value: 31.023 - type: precision_at_1 value: 25.307000000000002 - type: precision_at_10 value: 4.954 - type: precision_at_100 value: 0.747 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 12.577 - type: precision_at_5 value: 8.741999999999999 - type: recall_at_1 value: 22.431 - type: recall_at_10 value: 41.134 - type: recall_at_100 value: 59.28600000000001 - type: recall_at_1000 value: 78.857 - type: recall_at_3 value: 31.926 - type: recall_at_5 value: 36.335 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.586 - type: map_at_10 value: 23.304 - type: map_at_100 value: 24.159 - type: map_at_1000 value: 24.281 - type: map_at_3 value: 21.316 - type: map_at_5 value: 22.383 - type: mrr_at_1 value: 21.645 - type: mrr_at_10 value: 27.365000000000002 - type: mrr_at_100 value: 28.108 - type: mrr_at_1000 value: 28.192 - type: mrr_at_3 value: 25.482 - type: mrr_at_5 value: 26.479999999999997 - type: ndcg_at_1 value: 21.645 - type: ndcg_at_10 value: 27.306 - type: ndcg_at_100 value: 31.496000000000002 - type: ndcg_at_1000 value: 34.53 - type: ndcg_at_3 value: 23.73 - type: ndcg_at_5 value: 25.294 - type: precision_at_1 value: 21.645 - type: precision_at_10 value: 4.797 - type: precision_at_100 value: 0.8059999999999999 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 10.850999999999999 - type: precision_at_5 value: 7.736 - type: recall_at_1 value: 17.586 - type: recall_at_10 value: 35.481 - type: recall_at_100 value: 54.534000000000006 - type: recall_at_1000 value: 76.456 - type: recall_at_3 value: 25.335 - type: recall_at_5 value: 29.473 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.095 - type: map_at_10 value: 32.374 - type: map_at_100 value: 33.537 - type: map_at_1000 value: 33.634 - type: map_at_3 value: 30.089 - type: map_at_5 value: 31.433 - type: mrr_at_1 value: 29.198 - type: mrr_at_10 value: 36.01 - type: mrr_at_100 value: 37.022 - type: mrr_at_1000 value: 37.083 - type: mrr_at_3 value: 33.94 - type: mrr_at_5 value: 35.148 - type: ndcg_at_1 value: 29.198 - type: ndcg_at_10 value: 36.729 - type: ndcg_at_100 value: 42.114000000000004 - type: ndcg_at_1000 value: 44.592 - type: ndcg_at_3 value: 32.644 - type: ndcg_at_5 value: 34.652 - type: precision_at_1 value: 29.198 - type: precision_at_10 value: 5.970000000000001 - type: precision_at_100 value: 0.967 - type: precision_at_1000 value: 0.129 - type: precision_at_3 value: 14.396999999999998 - type: precision_at_5 value: 10.093 - type: recall_at_1 value: 25.095 - type: recall_at_10 value: 46.392 - type: recall_at_100 value: 69.706 - type: recall_at_1000 value: 87.738 - type: recall_at_3 value: 35.303000000000004 - type: recall_at_5 value: 40.441 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.857999999999997 - type: map_at_10 value: 34.066 - type: map_at_100 value: 35.671 - type: map_at_1000 value: 35.881 - type: map_at_3 value: 31.304 - type: map_at_5 value: 32.885 - type: mrr_at_1 value: 32.411 - type: mrr_at_10 value: 38.987 - type: mrr_at_100 value: 39.894 - type: mrr_at_1000 value: 39.959 - type: mrr_at_3 value: 36.626999999999995 - type: mrr_at_5 value: 38.011 - type: ndcg_at_1 value: 32.411 - type: ndcg_at_10 value: 39.208 - type: ndcg_at_100 value: 44.626 - type: ndcg_at_1000 value: 47.43 - type: ndcg_at_3 value: 35.091 - type: ndcg_at_5 value: 37.119 - type: precision_at_1 value: 32.411 - type: precision_at_10 value: 7.51 - type: precision_at_100 value: 1.486 - type: precision_at_1000 value: 0.234 - type: precision_at_3 value: 16.14 - type: precision_at_5 value: 11.976 - type: recall_at_1 value: 26.857999999999997 - type: recall_at_10 value: 47.407 - type: recall_at_100 value: 72.236 - type: recall_at_1000 value: 90.77 - type: recall_at_3 value: 35.125 - type: recall_at_5 value: 40.522999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 21.3 - type: map_at_10 value: 27.412999999999997 - type: map_at_100 value: 28.29 - type: map_at_1000 value: 28.398 - type: map_at_3 value: 25.169999999999998 - type: map_at_5 value: 26.496 - type: mrr_at_1 value: 23.29 - type: mrr_at_10 value: 29.215000000000003 - type: mrr_at_100 value: 30.073 - type: mrr_at_1000 value: 30.156 - type: mrr_at_3 value: 26.956000000000003 - type: mrr_at_5 value: 28.38 - type: ndcg_at_1 value: 23.29 - type: ndcg_at_10 value: 31.113000000000003 - type: ndcg_at_100 value: 35.701 - type: ndcg_at_1000 value: 38.505 - type: ndcg_at_3 value: 26.727 - type: ndcg_at_5 value: 29.037000000000003 - type: precision_at_1 value: 23.29 - type: precision_at_10 value: 4.787 - type: precision_at_100 value: 0.763 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 11.091 - type: precision_at_5 value: 7.985 - type: recall_at_1 value: 21.3 - type: recall_at_10 value: 40.782000000000004 - type: recall_at_100 value: 62.13999999999999 - type: recall_at_1000 value: 83.012 - type: recall_at_3 value: 29.131 - type: recall_at_5 value: 34.624 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 9.631 - type: map_at_10 value: 16.634999999999998 - type: map_at_100 value: 18.23 - type: map_at_1000 value: 18.419 - type: map_at_3 value: 13.66 - type: map_at_5 value: 15.173 - type: mrr_at_1 value: 21.368000000000002 - type: mrr_at_10 value: 31.56 - type: mrr_at_100 value: 32.58 - type: mrr_at_1000 value: 32.633 - type: mrr_at_3 value: 28.241 - type: mrr_at_5 value: 30.225 - type: ndcg_at_1 value: 21.368000000000002 - type: ndcg_at_10 value: 23.855999999999998 - type: ndcg_at_100 value: 30.686999999999998 - type: ndcg_at_1000 value: 34.327000000000005 - type: ndcg_at_3 value: 18.781 - type: ndcg_at_5 value: 20.73 - type: precision_at_1 value: 21.368000000000002 - type: precision_at_10 value: 7.564 - type: precision_at_100 value: 1.496 - type: precision_at_1000 value: 0.217 - type: precision_at_3 value: 13.876 - type: precision_at_5 value: 11.062 - type: recall_at_1 value: 9.631 - type: recall_at_10 value: 29.517 - type: recall_at_100 value: 53.452 - type: recall_at_1000 value: 74.115 - type: recall_at_3 value: 17.605999999999998 - type: recall_at_5 value: 22.505 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 8.885 - type: map_at_10 value: 18.798000000000002 - type: map_at_100 value: 26.316 - type: map_at_1000 value: 27.869 - type: map_at_3 value: 13.719000000000001 - type: map_at_5 value: 15.716 - type: mrr_at_1 value: 66 - type: mrr_at_10 value: 74.263 - type: mrr_at_100 value: 74.519 - type: mrr_at_1000 value: 74.531 - type: mrr_at_3 value: 72.458 - type: mrr_at_5 value: 73.321 - type: ndcg_at_1 value: 53.87499999999999 - type: ndcg_at_10 value: 40.355999999999995 - type: ndcg_at_100 value: 44.366 - type: ndcg_at_1000 value: 51.771 - type: ndcg_at_3 value: 45.195 - type: ndcg_at_5 value: 42.187000000000005 - type: precision_at_1 value: 66 - type: precision_at_10 value: 31.75 - type: precision_at_100 value: 10.11 - type: precision_at_1000 value: 1.9800000000000002 - type: precision_at_3 value: 48.167 - type: precision_at_5 value: 40.050000000000004 - type: recall_at_1 value: 8.885 - type: recall_at_10 value: 24.471999999999998 - type: recall_at_100 value: 49.669000000000004 - type: recall_at_1000 value: 73.383 - type: recall_at_3 value: 14.872 - type: recall_at_5 value: 18.262999999999998 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 45.18 - type: f1 value: 40.26878691789978 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 62.751999999999995 - type: map_at_10 value: 74.131 - type: map_at_100 value: 74.407 - type: map_at_1000 value: 74.423 - type: map_at_3 value: 72.329 - type: map_at_5 value: 73.555 - type: mrr_at_1 value: 67.282 - type: mrr_at_10 value: 78.292 - type: mrr_at_100 value: 78.455 - type: mrr_at_1000 value: 78.458 - type: mrr_at_3 value: 76.755 - type: mrr_at_5 value: 77.839 - type: ndcg_at_1 value: 67.282 - type: ndcg_at_10 value: 79.443 - type: ndcg_at_100 value: 80.529 - type: ndcg_at_1000 value: 80.812 - type: ndcg_at_3 value: 76.281 - type: ndcg_at_5 value: 78.235 - type: precision_at_1 value: 67.282 - type: precision_at_10 value: 10.078 - type: precision_at_100 value: 1.082 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 30.178 - type: precision_at_5 value: 19.232 - type: recall_at_1 value: 62.751999999999995 - type: recall_at_10 value: 91.521 - type: recall_at_100 value: 95.997 - type: recall_at_1000 value: 97.775 - type: recall_at_3 value: 83.131 - type: recall_at_5 value: 87.93299999999999 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 18.861 - type: map_at_10 value: 30.252000000000002 - type: map_at_100 value: 32.082 - type: map_at_1000 value: 32.261 - type: map_at_3 value: 25.909 - type: map_at_5 value: 28.296 - type: mrr_at_1 value: 37.346000000000004 - type: mrr_at_10 value: 45.802 - type: mrr_at_100 value: 46.611999999999995 - type: mrr_at_1000 value: 46.659 - type: mrr_at_3 value: 43.056 - type: mrr_at_5 value: 44.637 - type: ndcg_at_1 value: 37.346000000000004 - type: ndcg_at_10 value: 38.169 - type: ndcg_at_100 value: 44.864 - type: ndcg_at_1000 value: 47.974 - type: ndcg_at_3 value: 33.619 - type: ndcg_at_5 value: 35.317 - type: precision_at_1 value: 37.346000000000004 - type: precision_at_10 value: 10.693999999999999 - type: precision_at_100 value: 1.775 - type: precision_at_1000 value: 0.231 - type: precision_at_3 value: 22.325 - type: precision_at_5 value: 16.852 - type: recall_at_1 value: 18.861 - type: recall_at_10 value: 45.672000000000004 - type: recall_at_100 value: 70.60499999999999 - type: recall_at_1000 value: 89.216 - type: recall_at_3 value: 30.361 - type: recall_at_5 value: 36.998999999999995 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 37.852999999999994 - type: map_at_10 value: 59.961 - type: map_at_100 value: 60.78 - type: map_at_1000 value: 60.843 - type: map_at_3 value: 56.39999999999999 - type: map_at_5 value: 58.646 - type: mrr_at_1 value: 75.70599999999999 - type: mrr_at_10 value: 82.321 - type: mrr_at_100 value: 82.516 - type: mrr_at_1000 value: 82.525 - type: mrr_at_3 value: 81.317 - type: mrr_at_5 value: 81.922 - type: ndcg_at_1 value: 75.70599999999999 - type: ndcg_at_10 value: 68.557 - type: ndcg_at_100 value: 71.485 - type: ndcg_at_1000 value: 72.71600000000001 - type: ndcg_at_3 value: 63.524 - type: ndcg_at_5 value: 66.338 - type: precision_at_1 value: 75.70599999999999 - type: precision_at_10 value: 14.463000000000001 - type: precision_at_100 value: 1.677 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 40.806 - type: precision_at_5 value: 26.709 - type: recall_at_1 value: 37.852999999999994 - type: recall_at_10 value: 72.316 - type: recall_at_100 value: 83.842 - type: recall_at_1000 value: 91.999 - type: recall_at_3 value: 61.209 - type: recall_at_5 value: 66.77199999999999 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 85.46039999999999 - type: ap value: 79.9812521351881 - type: f1 value: 85.31722909702084 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 22.704 - type: map_at_10 value: 35.329 - type: map_at_100 value: 36.494 - type: map_at_1000 value: 36.541000000000004 - type: map_at_3 value: 31.476 - type: map_at_5 value: 33.731 - type: mrr_at_1 value: 23.294999999999998 - type: mrr_at_10 value: 35.859 - type: mrr_at_100 value: 36.968 - type: mrr_at_1000 value: 37.008 - type: mrr_at_3 value: 32.085 - type: mrr_at_5 value: 34.299 - type: ndcg_at_1 value: 23.324 - type: ndcg_at_10 value: 42.274 - type: ndcg_at_100 value: 47.839999999999996 - type: ndcg_at_1000 value: 48.971 - type: ndcg_at_3 value: 34.454 - type: ndcg_at_5 value: 38.464 - type: precision_at_1 value: 23.324 - type: precision_at_10 value: 6.648 - type: precision_at_100 value: 0.9440000000000001 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.674999999999999 - type: precision_at_5 value: 10.850999999999999 - type: recall_at_1 value: 22.704 - type: recall_at_10 value: 63.660000000000004 - type: recall_at_100 value: 89.29899999999999 - type: recall_at_1000 value: 97.88900000000001 - type: recall_at_3 value: 42.441 - type: recall_at_5 value: 52.04 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.1326949384405 - type: f1 value: 92.89743579612082 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (de) config: de split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 89.62524654832347 - type: f1 value: 88.65106082263151 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (es) config: es split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 90.59039359573046 - type: f1 value: 90.31532892105662 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (fr) config: fr split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 86.21046038208581 - type: f1 value: 86.41459529813113 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (hi) config: hi split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 87.3180351380423 - type: f1 value: 86.71383078226444 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (th) config: th split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 86.24231464737792 - type: f1 value: 86.31845567592403 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 75.27131782945736 - type: f1 value: 57.52079940417103 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (de) config: de split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 71.2341504649197 - type: f1 value: 51.349951558039244 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (es) config: es split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 71.27418278852569 - type: f1 value: 50.1714985749095 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (fr) config: fr split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 67.68243031631694 - type: f1 value: 50.1066160836192 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (hi) config: hi split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 69.2362854069559 - type: f1 value: 48.821279948766424 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (th) config: th split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 71.71428571428571 - type: f1 value: 53.94611389496195 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (af) config: af split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 59.97646267652992 - type: f1 value: 57.26797883561521 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (am) config: am split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 53.65501008742435 - type: f1 value: 50.416258382177034 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ar) config: ar split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 57.45796906523201 - type: f1 value: 53.306690547422185 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (az) config: az split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.59246805648957 - type: f1 value: 59.818381969051494 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (bn) config: bn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 61.126429051782104 - type: f1 value: 58.25993593933026 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (cy) config: cy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 50.057162071284466 - type: f1 value: 46.96095728790911 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (da) config: da split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.64425016812375 - type: f1 value: 62.858291698755764 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (de) config: de split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.08944182918628 - type: f1 value: 62.44639030604241 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (el) config: el split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.68056489576328 - type: f1 value: 61.775326758789504 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 72.11163416274377 - type: f1 value: 69.70789096927015 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (es) config: es split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.40282447881641 - type: f1 value: 66.38492065671895 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fa) config: fa split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.24613315400134 - type: f1 value: 64.3348019501336 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fi) config: fi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.78345662407531 - type: f1 value: 62.21279452354622 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fr) config: fr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.9455279085407 - type: f1 value: 65.48193124964094 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (he) config: he split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.05110961667788 - type: f1 value: 58.097856564684534 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hi) config: hi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.95292535305985 - type: f1 value: 62.09182174767901 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hu) config: hu split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.97310020174848 - type: f1 value: 61.14252567730396 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hy) config: hy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.08069939475453 - type: f1 value: 57.044041742492034 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (id) config: id split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.63752521856085 - type: f1 value: 63.889340907205316 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (is) config: is split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 56.385339609952936 - type: f1 value: 53.449033750088304 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (it) config: it split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.93073301950234 - type: f1 value: 65.9884357824104 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ja) config: ja split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.94418291862812 - type: f1 value: 66.48740222583132 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (jv) config: jv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 54.26025554808339 - type: f1 value: 50.19562815100793 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ka) config: ka split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 48.98789509078682 - type: f1 value: 46.65788438676836 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (km) config: km split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 44.68728984532616 - type: f1 value: 41.642419349541996 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (kn) config: kn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 59.19300605245461 - type: f1 value: 55.8626492442437 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ko) config: ko split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.33826496301278 - type: f1 value: 63.89499791648792 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (lv) config: lv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.33960995292536 - type: f1 value: 57.15242464180892 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ml) config: ml split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.09347679892402 - type: f1 value: 59.64733214063841 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (mn) config: mn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 58.75924680564896 - type: f1 value: 55.96585692366827 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ms) config: ms split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.48486886348352 - type: f1 value: 59.45143559032946 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (my) config: my split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 58.56422326832549 - type: f1 value: 54.96368702901926 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nb) config: nb split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.18022864828512 - type: f1 value: 63.05369805040634 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nl) config: nl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.30329522528581 - type: f1 value: 64.06084612020727 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pl) config: pl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.36919973100201 - type: f1 value: 65.12154124788887 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pt) config: pt split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.98117014122394 - type: f1 value: 66.41847559806962 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ro) config: ro split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.53799596503026 - type: f1 value: 62.17067330740817 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ru) config: ru split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.01815736381977 - type: f1 value: 66.24988369607843 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sl) config: sl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.34700739744452 - type: f1 value: 59.957933424941636 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sq) config: sq split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 61.23402824478815 - type: f1 value: 57.98836976018471 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sv) config: sv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.54068594485541 - type: f1 value: 65.43849680666855 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sw) config: sw split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 55.998655010087425 - type: f1 value: 52.83737515406804 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ta) config: ta split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 58.71217215870882 - type: f1 value: 55.051794977833026 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (te) config: te split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 59.724277067921996 - type: f1 value: 56.33485571838306 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (th) config: th split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.59515803631473 - type: f1 value: 64.96772366193588 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tl) config: tl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.860793544048406 - type: f1 value: 58.148845819115394 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tr) config: tr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.40753194351043 - type: f1 value: 63.18903778054698 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ur) config: ur split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 61.52320107599194 - type: f1 value: 58.356144563398516 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (vi) config: vi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.17014122394083 - type: f1 value: 63.919964062638925 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.15601882985878 - type: f1 value: 67.01451905761371 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-TW) config: zh-TW split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.65030262273034 - type: f1 value: 64.14420425129063 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (af) config: af split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 65.08742434431743 - type: f1 value: 63.044060042311756 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (am) config: am split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 58.52387357094821 - type: f1 value: 56.82398588814534 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ar) config: ar split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 62.239408204438476 - type: f1 value: 61.92570286170469 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (az) config: az split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.74915938130463 - type: f1 value: 62.130740689396276 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (bn) config: bn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 65.00336247478144 - type: f1 value: 63.71080635228055 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (cy) config: cy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 52.837928715534645 - type: f1 value: 50.390741680320836 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (da) config: da split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.42098184263618 - type: f1 value: 71.41355113538995 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (de) config: de split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.95359784801613 - type: f1 value: 71.42699340156742 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (el) config: el split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.18157363819772 - type: f1 value: 69.74836113037671 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.08137188971082 - type: f1 value: 76.78000685068261 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (es) config: es split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.5030262273033 - type: f1 value: 71.71620130425673 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fa) config: fa split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.24546065904505 - type: f1 value: 69.07638311730359 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fi) config: fi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.12911903160726 - type: f1 value: 68.32651736539815 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fr) config: fr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.89307330195025 - type: f1 value: 71.33986549860187 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (he) config: he split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.44451916610626 - type: f1 value: 66.90192664503866 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hi) config: hi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.16274377942166 - type: f1 value: 68.01090953775066 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hu) config: hu split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.75319435104237 - type: f1 value: 70.18035309201403 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hy) config: hy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.14391392064559 - type: f1 value: 61.48286540778145 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (id) config: id split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.70275722932078 - type: f1 value: 70.26164779846495 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (is) config: is split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 60.93813046402153 - type: f1 value: 58.8852862116525 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (it) config: it split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.320107599193 - type: f1 value: 72.19836409602924 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ja) config: ja split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.65366509751176 - type: f1 value: 74.55188288799579 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (jv) config: jv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 59.694014794889036 - type: f1 value: 58.11353311721067 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ka) config: ka split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 54.37457969065231 - type: f1 value: 52.81306134311697 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (km) config: km split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 48.3086751849361 - type: f1 value: 45.396449765419376 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (kn) config: kn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 62.151983860121064 - type: f1 value: 60.31762544281696 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ko) config: ko split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.44788164088769 - type: f1 value: 71.68150151736367 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (lv) config: lv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 62.81439139206455 - type: f1 value: 62.06735559105593 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ml) config: ml split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.04303967720242 - type: f1 value: 66.68298851670133 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (mn) config: mn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 61.43913920645595 - type: f1 value: 60.25605977560783 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ms) config: ms split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.90316072629456 - type: f1 value: 65.1325924692381 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (my) config: my split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 61.63752521856086 - type: f1 value: 59.14284778039585 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nb) config: nb split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.63080026899797 - type: f1 value: 70.89771864626877 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nl) config: nl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.10827168796234 - type: f1 value: 71.71954219691159 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pl) config: pl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.59515803631471 - type: f1 value: 70.05040128099003 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pt) config: pt split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.83389374579691 - type: f1 value: 70.84877936562735 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ro) config: ro split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.18628110289173 - type: f1 value: 68.97232927921841 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ru) config: ru split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.99260255548083 - type: f1 value: 72.85139492157732 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sl) config: sl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 65.26227303295225 - type: f1 value: 65.08833655469431 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sq) config: sq split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.48621385339611 - type: f1 value: 64.43483199071298 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sv) config: sv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.14391392064559 - type: f1 value: 72.2580822579741 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sw) config: sw split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 59.88567585743107 - type: f1 value: 58.3073765932569 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ta) config: ta split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 62.38399462004034 - type: f1 value: 60.82139544252606 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (te) config: te split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 62.58574310692671 - type: f1 value: 60.71443370385374 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (th) config: th split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.61398789509079 - type: f1 value: 70.99761812049401 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tl) config: tl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 62.73705447209146 - type: f1 value: 61.680849331794796 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tr) config: tr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.66778749159381 - type: f1 value: 71.17320646080115 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ur) config: ur split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 64.640215198386 - type: f1 value: 63.301805157015444 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (vi) config: vi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.00672494956288 - type: f1 value: 70.26005548582106 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.42030934767989 - type: f1 value: 75.2074842882598 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-TW) config: zh-TW split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.69266980497646 - type: f1 value: 70.94103167391192 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 28.91697191169135 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 28.434000079573313 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.96683513343383 - type: mrr value: 31.967364078714834 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.5280000000000005 - type: map_at_10 value: 11.793 - type: map_at_100 value: 14.496999999999998 - type: map_at_1000 value: 15.783 - type: map_at_3 value: 8.838 - type: map_at_5 value: 10.07 - type: mrr_at_1 value: 43.653 - type: mrr_at_10 value: 51.531000000000006 - type: mrr_at_100 value: 52.205 - type: mrr_at_1000 value: 52.242999999999995 - type: mrr_at_3 value: 49.431999999999995 - type: mrr_at_5 value: 50.470000000000006 - type: ndcg_at_1 value: 42.415000000000006 - type: ndcg_at_10 value: 32.464999999999996 - type: ndcg_at_100 value: 28.927999999999997 - type: ndcg_at_1000 value: 37.629000000000005 - type: ndcg_at_3 value: 37.845 - type: ndcg_at_5 value: 35.147 - type: precision_at_1 value: 43.653 - type: precision_at_10 value: 23.932000000000002 - type: precision_at_100 value: 7.17 - type: precision_at_1000 value: 1.967 - type: precision_at_3 value: 35.397 - type: precision_at_5 value: 29.907 - type: recall_at_1 value: 5.5280000000000005 - type: recall_at_10 value: 15.568000000000001 - type: recall_at_100 value: 28.54 - type: recall_at_1000 value: 59.864 - type: recall_at_3 value: 9.822000000000001 - type: recall_at_5 value: 11.726 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 37.041000000000004 - type: map_at_10 value: 52.664 - type: map_at_100 value: 53.477 - type: map_at_1000 value: 53.505 - type: map_at_3 value: 48.510999999999996 - type: map_at_5 value: 51.036 - type: mrr_at_1 value: 41.338 - type: mrr_at_10 value: 55.071000000000005 - type: mrr_at_100 value: 55.672 - type: mrr_at_1000 value: 55.689 - type: mrr_at_3 value: 51.82 - type: mrr_at_5 value: 53.852 - type: ndcg_at_1 value: 41.338 - type: ndcg_at_10 value: 60.01800000000001 - type: ndcg_at_100 value: 63.409000000000006 - type: ndcg_at_1000 value: 64.017 - type: ndcg_at_3 value: 52.44799999999999 - type: ndcg_at_5 value: 56.571000000000005 - type: precision_at_1 value: 41.338 - type: precision_at_10 value: 9.531 - type: precision_at_100 value: 1.145 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 23.416 - type: precision_at_5 value: 16.46 - type: recall_at_1 value: 37.041000000000004 - type: recall_at_10 value: 79.76299999999999 - type: recall_at_100 value: 94.39 - type: recall_at_1000 value: 98.851 - type: recall_at_3 value: 60.465 - type: recall_at_5 value: 69.906 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 69.952 - type: map_at_10 value: 83.758 - type: map_at_100 value: 84.406 - type: map_at_1000 value: 84.425 - type: map_at_3 value: 80.839 - type: map_at_5 value: 82.646 - type: mrr_at_1 value: 80.62 - type: mrr_at_10 value: 86.947 - type: mrr_at_100 value: 87.063 - type: mrr_at_1000 value: 87.064 - type: mrr_at_3 value: 85.96000000000001 - type: mrr_at_5 value: 86.619 - type: ndcg_at_1 value: 80.63 - type: ndcg_at_10 value: 87.64800000000001 - type: ndcg_at_100 value: 88.929 - type: ndcg_at_1000 value: 89.054 - type: ndcg_at_3 value: 84.765 - type: ndcg_at_5 value: 86.291 - type: precision_at_1 value: 80.63 - type: precision_at_10 value: 13.314 - type: precision_at_100 value: 1.525 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.1 - type: precision_at_5 value: 24.372 - type: recall_at_1 value: 69.952 - type: recall_at_10 value: 94.955 - type: recall_at_100 value: 99.38 - type: recall_at_1000 value: 99.96000000000001 - type: recall_at_3 value: 86.60600000000001 - type: recall_at_5 value: 90.997 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 42.41329517878427 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 55.171278362748666 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.213 - type: map_at_10 value: 9.895 - type: map_at_100 value: 11.776 - type: map_at_1000 value: 12.084 - type: map_at_3 value: 7.2669999999999995 - type: map_at_5 value: 8.620999999999999 - type: mrr_at_1 value: 20.8 - type: mrr_at_10 value: 31.112000000000002 - type: mrr_at_100 value: 32.274 - type: mrr_at_1000 value: 32.35 - type: mrr_at_3 value: 28.133000000000003 - type: mrr_at_5 value: 29.892999999999997 - type: ndcg_at_1 value: 20.8 - type: ndcg_at_10 value: 17.163999999999998 - type: ndcg_at_100 value: 24.738 - type: ndcg_at_1000 value: 30.316 - type: ndcg_at_3 value: 16.665 - type: ndcg_at_5 value: 14.478 - type: precision_at_1 value: 20.8 - type: precision_at_10 value: 8.74 - type: precision_at_100 value: 1.963 - type: precision_at_1000 value: 0.33 - type: precision_at_3 value: 15.467 - type: precision_at_5 value: 12.6 - type: recall_at_1 value: 4.213 - type: recall_at_10 value: 17.698 - type: recall_at_100 value: 39.838 - type: recall_at_1000 value: 66.893 - type: recall_at_3 value: 9.418 - type: recall_at_5 value: 12.773000000000001 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 82.90453315738294 - type: cos_sim_spearman value: 78.51197850080254 - type: euclidean_pearson value: 80.09647123597748 - type: euclidean_spearman value: 78.63548011514061 - type: manhattan_pearson value: 80.10645285675231 - type: manhattan_spearman value: 78.57861806068901 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.2616156846401 - type: cos_sim_spearman value: 76.69713867850156 - type: euclidean_pearson value: 77.97948563800394 - type: euclidean_spearman value: 74.2371211567807 - type: manhattan_pearson value: 77.69697879669705 - type: manhattan_spearman value: 73.86529778022278 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 77.0293269315045 - type: cos_sim_spearman value: 78.02555120584198 - type: euclidean_pearson value: 78.25398100379078 - type: euclidean_spearman value: 78.66963870599464 - type: manhattan_pearson value: 78.14314682167348 - type: manhattan_spearman value: 78.57692322969135 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 79.16989925136942 - type: cos_sim_spearman value: 76.5996225327091 - type: euclidean_pearson value: 77.8319003279786 - type: euclidean_spearman value: 76.42824009468998 - type: manhattan_pearson value: 77.69118862737736 - type: manhattan_spearman value: 76.25568104762812 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 87.42012286935325 - type: cos_sim_spearman value: 88.15654297884122 - type: euclidean_pearson value: 87.34082819427852 - type: euclidean_spearman value: 88.06333589547084 - type: manhattan_pearson value: 87.25115596784842 - type: manhattan_spearman value: 87.9559927695203 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 82.88222044996712 - type: cos_sim_spearman value: 84.28476589061077 - type: euclidean_pearson value: 83.17399758058309 - type: euclidean_spearman value: 83.85497357244542 - type: manhattan_pearson value: 83.0308397703786 - type: manhattan_spearman value: 83.71554539935046 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (ko-ko) config: ko-ko split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 80.20682986257339 - type: cos_sim_spearman value: 79.94567120362092 - type: euclidean_pearson value: 79.43122480368902 - type: euclidean_spearman value: 79.94802077264987 - type: manhattan_pearson value: 79.32653021527081 - type: manhattan_spearman value: 79.80961146709178 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (ar-ar) config: ar-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 74.46578144394383 - type: cos_sim_spearman value: 74.52496637472179 - type: euclidean_pearson value: 72.2903807076809 - type: euclidean_spearman value: 73.55549359771645 - type: manhattan_pearson value: 72.09324837709393 - type: manhattan_spearman value: 73.36743103606581 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-ar) config: en-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 71.37272335116 - type: cos_sim_spearman value: 71.26702117766037 - type: euclidean_pearson value: 67.114829954434 - type: euclidean_spearman value: 66.37938893947761 - type: manhattan_pearson value: 66.79688574095246 - type: manhattan_spearman value: 66.17292828079667 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-de) config: en-de split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 80.61016770129092 - type: cos_sim_spearman value: 82.08515426632214 - type: euclidean_pearson value: 80.557340361131 - type: euclidean_spearman value: 80.37585812266175 - type: manhattan_pearson value: 80.6782873404285 - type: manhattan_spearman value: 80.6678073032024 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.00150745350108 - type: cos_sim_spearman value: 87.83441972211425 - type: euclidean_pearson value: 87.94826702308792 - type: euclidean_spearman value: 87.46143974860725 - type: manhattan_pearson value: 87.97560344306105 - type: manhattan_spearman value: 87.5267102829796 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-tr) config: en-tr split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 64.76325252267235 - type: cos_sim_spearman value: 63.32615095463905 - type: euclidean_pearson value: 64.07920669155716 - type: euclidean_spearman value: 61.21409893072176 - type: manhattan_pearson value: 64.26308625680016 - type: manhattan_spearman value: 61.2438185254079 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (es-en) config: es-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 75.82644463022595 - type: cos_sim_spearman value: 76.50381269945073 - type: euclidean_pearson value: 75.1328548315934 - type: euclidean_spearman value: 75.63761139408453 - type: manhattan_pearson value: 75.18610101241407 - type: manhattan_spearman value: 75.30669266354164 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (es-es) config: es-es split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.49994164686832 - type: cos_sim_spearman value: 86.73743986245549 - type: euclidean_pearson value: 86.8272894387145 - type: euclidean_spearman value: 85.97608491000507 - type: manhattan_pearson value: 86.74960140396779 - type: manhattan_spearman value: 85.79285984190273 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (fr-en) config: fr-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 79.58172210788469 - type: cos_sim_spearman value: 80.17516468334607 - type: euclidean_pearson value: 77.56537843470504 - type: euclidean_spearman value: 77.57264627395521 - type: manhattan_pearson value: 78.09703521695943 - type: manhattan_spearman value: 78.15942760916954 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (it-en) config: it-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 79.7589932931751 - type: cos_sim_spearman value: 80.15210089028162 - type: euclidean_pearson value: 77.54135223516057 - type: euclidean_spearman value: 77.52697996368764 - type: manhattan_pearson value: 77.65734439572518 - type: manhattan_spearman value: 77.77702992016121 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (nl-en) config: nl-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 79.16682365511267 - type: cos_sim_spearman value: 79.25311267628506 - type: euclidean_pearson value: 77.54882036762244 - type: euclidean_spearman value: 77.33212935194827 - type: manhattan_pearson value: 77.98405516064015 - type: manhattan_spearman value: 77.85075717865719 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 59.10473294775917 - type: cos_sim_spearman value: 61.82780474476838 - type: euclidean_pearson value: 45.885111672377256 - type: euclidean_spearman value: 56.88306351932454 - type: manhattan_pearson value: 46.101218127323186 - type: manhattan_spearman value: 56.80953694186333 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de) config: de split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 45.781923079584146 - type: cos_sim_spearman value: 55.95098449691107 - type: euclidean_pearson value: 25.4571031323205 - type: euclidean_spearman value: 49.859978118078935 - type: manhattan_pearson value: 25.624938455041384 - type: manhattan_spearman value: 49.99546185049401 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es) config: es split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 60.00618133997907 - type: cos_sim_spearman value: 66.57896677718321 - type: euclidean_pearson value: 42.60118466388821 - type: euclidean_spearman value: 62.8210759715209 - type: manhattan_pearson value: 42.63446860604094 - type: manhattan_spearman value: 62.73803068925271 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl) config: pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 28.460759121626943 - type: cos_sim_spearman value: 34.13459007469131 - type: euclidean_pearson value: 6.0917739325525195 - type: euclidean_spearman value: 27.9947262664867 - type: manhattan_pearson value: 6.16877864169911 - type: manhattan_spearman value: 28.00664163971514 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (tr) config: tr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 57.42546621771696 - type: cos_sim_spearman value: 63.699663168970474 - type: euclidean_pearson value: 38.12085278789738 - type: euclidean_spearman value: 58.12329140741536 - type: manhattan_pearson value: 37.97364549443335 - type: manhattan_spearman value: 57.81545502318733 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (ar) config: ar split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 46.82241380954213 - type: cos_sim_spearman value: 57.86569456006391 - type: euclidean_pearson value: 31.80480070178813 - type: euclidean_spearman value: 52.484000620130104 - type: manhattan_pearson value: 31.952708554646097 - type: manhattan_spearman value: 52.8560972356195 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (ru) config: ru split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 52.00447170498087 - type: cos_sim_spearman value: 60.664116225735164 - type: euclidean_pearson value: 33.87382555421702 - type: euclidean_spearman value: 55.74649067458667 - type: manhattan_pearson value: 33.99117246759437 - type: manhattan_spearman value: 55.98749034923899 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh) config: zh split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 58.06497233105448 - type: cos_sim_spearman value: 65.62968801135676 - type: euclidean_pearson value: 47.482076613243905 - type: euclidean_spearman value: 62.65137791498299 - type: manhattan_pearson value: 47.57052626104093 - type: manhattan_spearman value: 62.436916516613294 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (fr) config: fr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 70.49397298562575 - type: cos_sim_spearman value: 74.79604041187868 - type: euclidean_pearson value: 49.661891561317795 - type: euclidean_spearman value: 70.31535537621006 - type: manhattan_pearson value: 49.553715741850006 - type: manhattan_spearman value: 70.24779344636806 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-en) config: de-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 55.640574515348696 - type: cos_sim_spearman value: 54.927959317689 - type: euclidean_pearson value: 29.00139666967476 - type: euclidean_spearman value: 41.86386566971605 - type: manhattan_pearson value: 29.47411067730344 - type: manhattan_spearman value: 42.337438424952786 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es-en) config: es-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 68.14095292259312 - type: cos_sim_spearman value: 73.99017581234789 - type: euclidean_pearson value: 46.46304297872084 - type: euclidean_spearman value: 60.91834114800041 - type: manhattan_pearson value: 47.07072666338692 - type: manhattan_spearman value: 61.70415727977926 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (it) config: it split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 73.27184653359575 - type: cos_sim_spearman value: 77.76070252418626 - type: euclidean_pearson value: 62.30586577544778 - type: euclidean_spearman value: 75.14246629110978 - type: manhattan_pearson value: 62.328196884927046 - type: manhattan_spearman value: 75.1282792981433 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl-en) config: pl-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 71.59448528829957 - type: cos_sim_spearman value: 70.37277734222123 - type: euclidean_pearson value: 57.63145565721123 - type: euclidean_spearman value: 66.10113048304427 - type: manhattan_pearson value: 57.18897811586808 - type: manhattan_spearman value: 66.5595511215901 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh-en) config: zh-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 66.37520607720838 - type: cos_sim_spearman value: 69.92282148997948 - type: euclidean_pearson value: 40.55768770125291 - type: euclidean_spearman value: 55.189128944669605 - type: manhattan_pearson value: 41.03566433468883 - type: manhattan_spearman value: 55.61251893174558 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es-it) config: es-it split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 57.791929533771835 - type: cos_sim_spearman value: 66.45819707662093 - type: euclidean_pearson value: 39.03686018511092 - type: euclidean_spearman value: 56.01282695640428 - type: manhattan_pearson value: 38.91586623619632 - type: manhattan_spearman value: 56.69394943612747 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-fr) config: de-fr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 47.82224468473866 - type: cos_sim_spearman value: 59.467307194781164 - type: euclidean_pearson value: 27.428459190256145 - type: euclidean_spearman value: 60.83463107397519 - type: manhattan_pearson value: 27.487391578496638 - type: manhattan_spearman value: 61.281380460246496 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-pl) config: de-pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 16.306666792752644 - type: cos_sim_spearman value: 39.35486427252405 - type: euclidean_pearson value: -2.7887154897955435 - type: euclidean_spearman value: 27.1296051831719 - type: manhattan_pearson value: -3.202291270581297 - type: manhattan_spearman value: 26.32895849218158 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (fr-pl) config: fr-pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 59.67006803805076 - type: cos_sim_spearman value: 73.24670207647144 - type: euclidean_pearson value: 46.91884681500483 - type: euclidean_spearman value: 16.903085094570333 - type: manhattan_pearson value: 46.88391675325812 - type: manhattan_spearman value: 28.17180849095055 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 83.79555591223837 - type: cos_sim_spearman value: 85.63658602085185 - type: euclidean_pearson value: 85.22080894037671 - type: euclidean_spearman value: 85.54113580167038 - type: manhattan_pearson value: 85.1639505960118 - type: manhattan_spearman value: 85.43502665436196 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 80.73900991689766 - type: mrr value: 94.81624131133934 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 55.678000000000004 - type: map_at_10 value: 65.135 - type: map_at_100 value: 65.824 - type: map_at_1000 value: 65.852 - type: map_at_3 value: 62.736000000000004 - type: map_at_5 value: 64.411 - type: mrr_at_1 value: 58.333 - type: mrr_at_10 value: 66.5 - type: mrr_at_100 value: 67.053 - type: mrr_at_1000 value: 67.08 - type: mrr_at_3 value: 64.944 - type: mrr_at_5 value: 65.89399999999999 - type: ndcg_at_1 value: 58.333 - type: ndcg_at_10 value: 69.34700000000001 - type: ndcg_at_100 value: 72.32 - type: ndcg_at_1000 value: 73.014 - type: ndcg_at_3 value: 65.578 - type: ndcg_at_5 value: 67.738 - type: precision_at_1 value: 58.333 - type: precision_at_10 value: 9.033 - type: precision_at_100 value: 1.0670000000000002 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 25.444 - type: precision_at_5 value: 16.933 - type: recall_at_1 value: 55.678000000000004 - type: recall_at_10 value: 80.72200000000001 - type: recall_at_100 value: 93.93299999999999 - type: recall_at_1000 value: 99.333 - type: recall_at_3 value: 70.783 - type: recall_at_5 value: 75.978 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.74653465346535 - type: cos_sim_ap value: 93.01476369929063 - type: cos_sim_f1 value: 86.93009118541033 - type: cos_sim_precision value: 88.09034907597535 - type: cos_sim_recall value: 85.8 - type: dot_accuracy value: 99.22970297029703 - type: dot_ap value: 51.58725659485144 - type: dot_f1 value: 53.51351351351352 - type: dot_precision value: 58.235294117647065 - type: dot_recall value: 49.5 - type: euclidean_accuracy value: 99.74356435643564 - type: euclidean_ap value: 92.40332894384368 - type: euclidean_f1 value: 86.97838109602817 - type: euclidean_precision value: 87.46208291203236 - type: euclidean_recall value: 86.5 - type: manhattan_accuracy value: 99.73069306930694 - type: manhattan_ap value: 92.01320815721121 - type: manhattan_f1 value: 86.4135864135864 - type: manhattan_precision value: 86.32734530938124 - type: manhattan_recall value: 86.5 - type: max_accuracy value: 99.74653465346535 - type: max_ap value: 93.01476369929063 - type: max_f1 value: 86.97838109602817 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 55.2660514302523 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 30.4637783572547 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 49.41377758357637 - type: mrr value: 50.138451213818854 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 28.887846011166594 - type: cos_sim_spearman value: 30.10823258355903 - type: dot_pearson value: 12.888049550236385 - type: dot_spearman value: 12.827495903098123 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.21 - type: map_at_10 value: 1.667 - type: map_at_100 value: 9.15 - type: map_at_1000 value: 22.927 - type: map_at_3 value: 0.573 - type: map_at_5 value: 0.915 - type: mrr_at_1 value: 80 - type: mrr_at_10 value: 87.167 - type: mrr_at_100 value: 87.167 - type: mrr_at_1000 value: 87.167 - type: mrr_at_3 value: 85.667 - type: mrr_at_5 value: 87.167 - type: ndcg_at_1 value: 76 - type: ndcg_at_10 value: 69.757 - type: ndcg_at_100 value: 52.402 - type: ndcg_at_1000 value: 47.737 - type: ndcg_at_3 value: 71.866 - type: ndcg_at_5 value: 72.225 - type: precision_at_1 value: 80 - type: precision_at_10 value: 75 - type: precision_at_100 value: 53.959999999999994 - type: precision_at_1000 value: 21.568 - type: precision_at_3 value: 76.667 - type: precision_at_5 value: 78 - type: recall_at_1 value: 0.21 - type: recall_at_10 value: 1.9189999999999998 - type: recall_at_100 value: 12.589 - type: recall_at_1000 value: 45.312000000000005 - type: recall_at_3 value: 0.61 - type: recall_at_5 value: 1.019 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (sqi-eng) config: sqi-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.10000000000001 - type: f1 value: 90.06 - type: precision value: 89.17333333333333 - type: recall value: 92.10000000000001 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fry-eng) config: fry-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 56.06936416184971 - type: f1 value: 50.87508028259473 - type: precision value: 48.97398843930635 - type: recall value: 56.06936416184971 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kur-eng) config: kur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 57.3170731707317 - type: f1 value: 52.96080139372822 - type: precision value: 51.67861124382864 - type: recall value: 57.3170731707317 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tur-eng) config: tur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.3 - type: f1 value: 92.67333333333333 - type: precision value: 91.90833333333333 - type: recall value: 94.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (deu-eng) config: deu-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.7 - type: f1 value: 97.07333333333332 - type: precision value: 96.79500000000002 - type: recall value: 97.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nld-eng) config: nld-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.69999999999999 - type: f1 value: 93.2 - type: precision value: 92.48333333333333 - type: recall value: 94.69999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ron-eng) config: ron-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.9 - type: f1 value: 91.26666666666667 - type: precision value: 90.59444444444445 - type: recall value: 92.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ang-eng) config: ang-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 34.32835820895522 - type: f1 value: 29.074180380150533 - type: precision value: 28.068207322920596 - type: recall value: 34.32835820895522 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ido-eng) config: ido-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 78.5 - type: f1 value: 74.3945115995116 - type: precision value: 72.82967843459222 - type: recall value: 78.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (jav-eng) config: jav-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 66.34146341463415 - type: f1 value: 61.2469400518181 - type: precision value: 59.63977756660683 - type: recall value: 66.34146341463415 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (isl-eng) config: isl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 80.9 - type: f1 value: 76.90349206349207 - type: precision value: 75.32921568627451 - type: recall value: 80.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (slv-eng) config: slv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 84.93317132442284 - type: f1 value: 81.92519105034295 - type: precision value: 80.71283920615635 - type: recall value: 84.93317132442284 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cym-eng) config: cym-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 71.1304347826087 - type: f1 value: 65.22394755003451 - type: precision value: 62.912422360248435 - type: recall value: 71.1304347826087 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kaz-eng) config: kaz-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 79.82608695652173 - type: f1 value: 75.55693581780538 - type: precision value: 73.79420289855072 - type: recall value: 79.82608695652173 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (est-eng) config: est-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 74 - type: f1 value: 70.51022222222223 - type: precision value: 69.29673599347512 - type: recall value: 74 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (heb-eng) config: heb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 78.7 - type: f1 value: 74.14238095238095 - type: precision value: 72.27214285714285 - type: recall value: 78.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (gla-eng) config: gla-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 48.97466827503016 - type: f1 value: 43.080330405420874 - type: precision value: 41.36505499593557 - type: recall value: 48.97466827503016 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mar-eng) config: mar-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.60000000000001 - type: f1 value: 86.62333333333333 - type: precision value: 85.225 - type: recall value: 89.60000000000001 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lat-eng) config: lat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 45.2 - type: f1 value: 39.5761253006253 - type: precision value: 37.991358436312 - type: recall value: 45.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bel-eng) config: bel-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.5 - type: f1 value: 86.70333333333333 - type: precision value: 85.53166666666667 - type: recall value: 89.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pms-eng) config: pms-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 50.095238095238095 - type: f1 value: 44.60650460650461 - type: precision value: 42.774116796477045 - type: recall value: 50.095238095238095 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (gle-eng) config: gle-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 63.4 - type: f1 value: 58.35967261904762 - type: precision value: 56.54857142857143 - type: recall value: 63.4 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pes-eng) config: pes-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.2 - type: f1 value: 87.075 - type: precision value: 86.12095238095239 - type: recall value: 89.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nob-eng) config: nob-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.8 - type: f1 value: 95.90333333333334 - type: precision value: 95.50833333333333 - type: recall value: 96.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bul-eng) config: bul-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.9 - type: f1 value: 88.6288888888889 - type: precision value: 87.61607142857142 - type: recall value: 90.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cbk-eng) config: cbk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 65.2 - type: f1 value: 60.54377630539395 - type: precision value: 58.89434482711381 - type: recall value: 65.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hun-eng) config: hun-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87 - type: f1 value: 84.32412698412699 - type: precision value: 83.25527777777778 - type: recall value: 87 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (uig-eng) config: uig-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 68.7 - type: f1 value: 63.07883541295306 - type: precision value: 61.06117424242426 - type: recall value: 68.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (rus-eng) config: rus-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.7 - type: f1 value: 91.78333333333335 - type: precision value: 90.86666666666667 - type: recall value: 93.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (spa-eng) config: spa-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.7 - type: f1 value: 96.96666666666667 - type: precision value: 96.61666666666667 - type: recall value: 97.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hye-eng) config: hye-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.27493261455525 - type: f1 value: 85.90745732255168 - type: precision value: 84.91389637616052 - type: recall value: 88.27493261455525 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tel-eng) config: tel-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.5982905982906 - type: f1 value: 88.4900284900285 - type: precision value: 87.57122507122507 - type: recall value: 90.5982905982906 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (afr-eng) config: afr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.5 - type: f1 value: 86.90769841269842 - type: precision value: 85.80178571428571 - type: recall value: 89.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mon-eng) config: mon-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 82.5 - type: f1 value: 78.36796536796538 - type: precision value: 76.82196969696969 - type: recall value: 82.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (arz-eng) config: arz-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 71.48846960167715 - type: f1 value: 66.78771089148448 - type: precision value: 64.98302885095339 - type: recall value: 71.48846960167715 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hrv-eng) config: hrv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.1 - type: f1 value: 92.50333333333333 - type: precision value: 91.77499999999999 - type: recall value: 94.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nov-eng) config: nov-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 71.20622568093385 - type: f1 value: 66.83278891450098 - type: precision value: 65.35065777283677 - type: recall value: 71.20622568093385 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (gsw-eng) config: gsw-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 48.717948717948715 - type: f1 value: 43.53146853146853 - type: precision value: 42.04721204721204 - type: recall value: 48.717948717948715 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nds-eng) config: nds-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 58.5 - type: f1 value: 53.8564991863928 - type: precision value: 52.40329436122275 - type: recall value: 58.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ukr-eng) config: ukr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.8 - type: f1 value: 88.29 - type: precision value: 87.09166666666667 - type: recall value: 90.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (uzb-eng) config: uzb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 67.28971962616822 - type: f1 value: 62.63425307817832 - type: precision value: 60.98065939771546 - type: recall value: 67.28971962616822 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lit-eng) config: lit-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 78.7 - type: f1 value: 75.5264472455649 - type: precision value: 74.38205086580086 - type: recall value: 78.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ina-eng) config: ina-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.7 - type: f1 value: 86.10809523809525 - type: precision value: 85.07602564102565 - type: recall value: 88.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lfn-eng) config: lfn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 56.99999999999999 - type: f1 value: 52.85487521402737 - type: precision value: 51.53985162713104 - type: recall value: 56.99999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (zsm-eng) config: zsm-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94 - type: f1 value: 92.45333333333333 - type: precision value: 91.79166666666667 - type: recall value: 94 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ita-eng) config: ita-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.30000000000001 - type: f1 value: 90.61333333333333 - type: precision value: 89.83333333333331 - type: recall value: 92.30000000000001 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cmn-eng) config: cmn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.69999999999999 - type: f1 value: 93.34555555555555 - type: precision value: 92.75416666666668 - type: recall value: 94.69999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lvs-eng) config: lvs-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 80.2 - type: f1 value: 76.6563035113035 - type: precision value: 75.3014652014652 - type: recall value: 80.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (glg-eng) config: glg-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 84.7 - type: f1 value: 82.78689263765207 - type: precision value: 82.06705086580087 - type: recall value: 84.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ceb-eng) config: ceb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 50.33333333333333 - type: f1 value: 45.461523661523664 - type: precision value: 43.93545574795575 - type: recall value: 50.33333333333333 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bre-eng) config: bre-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 6.6000000000000005 - type: f1 value: 5.442121400446441 - type: precision value: 5.146630385487529 - type: recall value: 6.6000000000000005 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ben-eng) config: ben-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85 - type: f1 value: 81.04666666666667 - type: precision value: 79.25 - type: recall value: 85 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (swg-eng) config: swg-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 47.32142857142857 - type: f1 value: 42.333333333333336 - type: precision value: 40.69196428571429 - type: recall value: 47.32142857142857 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (arq-eng) config: arq-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 30.735455543358945 - type: f1 value: 26.73616790022338 - type: precision value: 25.397823220451283 - type: recall value: 30.735455543358945 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kab-eng) config: kab-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 25.1 - type: f1 value: 21.975989896371022 - type: precision value: 21.059885632257203 - type: recall value: 25.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fra-eng) config: fra-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.3 - type: f1 value: 92.75666666666666 - type: precision value: 92.06166666666665 - type: recall value: 94.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (por-eng) config: por-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.1 - type: f1 value: 92.74 - type: precision value: 92.09166666666667 - type: recall value: 94.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tat-eng) config: tat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 71.3 - type: f1 value: 66.922442002442 - type: precision value: 65.38249567099568 - type: recall value: 71.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (oci-eng) config: oci-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 40.300000000000004 - type: f1 value: 35.78682789299971 - type: precision value: 34.66425128716588 - type: recall value: 40.300000000000004 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pol-eng) config: pol-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96 - type: f1 value: 94.82333333333334 - type: precision value: 94.27833333333334 - type: recall value: 96 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (war-eng) config: war-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 51.1 - type: f1 value: 47.179074753133584 - type: precision value: 46.06461044702424 - type: recall value: 51.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (aze-eng) config: aze-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87.7 - type: f1 value: 84.71 - type: precision value: 83.46166666666667 - type: recall value: 87.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (vie-eng) config: vie-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.8 - type: f1 value: 94.68333333333334 - type: precision value: 94.13333333333334 - type: recall value: 95.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nno-eng) config: nno-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85.39999999999999 - type: f1 value: 82.5577380952381 - type: precision value: 81.36833333333334 - type: recall value: 85.39999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cha-eng) config: cha-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 21.16788321167883 - type: f1 value: 16.948865627297987 - type: precision value: 15.971932568647897 - type: recall value: 21.16788321167883 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mhr-eng) config: mhr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 6.9 - type: f1 value: 5.515526831658907 - type: precision value: 5.141966366966367 - type: recall value: 6.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (dan-eng) config: dan-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.2 - type: f1 value: 91.39666666666668 - type: precision value: 90.58666666666667 - type: recall value: 93.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ell-eng) config: ell-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.2 - type: f1 value: 89.95666666666666 - type: precision value: 88.92833333333333 - type: recall value: 92.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (amh-eng) config: amh-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 79.76190476190477 - type: f1 value: 74.93386243386244 - type: precision value: 73.11011904761904 - type: recall value: 79.76190476190477 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pam-eng) config: pam-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 8.799999999999999 - type: f1 value: 6.921439712248537 - type: precision value: 6.489885109680683 - type: recall value: 8.799999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hsb-eng) config: hsb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 45.75569358178054 - type: f1 value: 40.34699501312631 - type: precision value: 38.57886764719063 - type: recall value: 45.75569358178054 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (srp-eng) config: srp-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.4 - type: f1 value: 89.08333333333333 - type: precision value: 88.01666666666668 - type: recall value: 91.4 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (epo-eng) config: epo-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.60000000000001 - type: f1 value: 92.06690476190477 - type: precision value: 91.45095238095239 - type: recall value: 93.60000000000001 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kzj-eng) config: kzj-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 7.5 - type: f1 value: 6.200363129378736 - type: precision value: 5.89115314822466 - type: recall value: 7.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (awa-eng) config: awa-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 73.59307359307358 - type: f1 value: 68.38933553219267 - type: precision value: 66.62698412698413 - type: recall value: 73.59307359307358 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fao-eng) config: fao-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 69.8473282442748 - type: f1 value: 64.72373682297346 - type: precision value: 62.82834214131924 - type: recall value: 69.8473282442748 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mal-eng) config: mal-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.5254730713246 - type: f1 value: 96.72489082969432 - type: precision value: 96.33672974284326 - type: recall value: 97.5254730713246 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ile-eng) config: ile-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 75.6 - type: f1 value: 72.42746031746033 - type: precision value: 71.14036630036631 - type: recall value: 75.6 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bos-eng) config: bos-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.24293785310734 - type: f1 value: 88.86064030131826 - type: precision value: 87.73540489642184 - type: recall value: 91.24293785310734 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cor-eng) config: cor-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 6.2 - type: f1 value: 4.383083659794954 - type: precision value: 4.027861324289673 - type: recall value: 6.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cat-eng) config: cat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 86.8 - type: f1 value: 84.09428571428572 - type: precision value: 83.00333333333333 - type: recall value: 86.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (eus-eng) config: eus-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 60.699999999999996 - type: f1 value: 56.1584972394755 - type: precision value: 54.713456330903135 - type: recall value: 60.699999999999996 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (yue-eng) config: yue-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 84.2 - type: f1 value: 80.66190476190475 - type: precision value: 79.19690476190476 - type: recall value: 84.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (swe-eng) config: swe-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.2 - type: f1 value: 91.33 - type: precision value: 90.45 - type: recall value: 93.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (dtp-eng) config: dtp-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 6.3 - type: f1 value: 5.126828976748276 - type: precision value: 4.853614328966668 - type: recall value: 6.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kat-eng) config: kat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 81.76943699731903 - type: f1 value: 77.82873739308057 - type: precision value: 76.27622452019234 - type: recall value: 81.76943699731903 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (jpn-eng) config: jpn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.30000000000001 - type: f1 value: 90.29666666666665 - type: precision value: 89.40333333333334 - type: recall value: 92.30000000000001 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (csb-eng) config: csb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 29.249011857707508 - type: f1 value: 24.561866096392947 - type: precision value: 23.356583740215456 - type: recall value: 29.249011857707508 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (xho-eng) config: xho-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.46478873239437 - type: f1 value: 73.23943661971832 - type: precision value: 71.66666666666667 - type: recall value: 77.46478873239437 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (orv-eng) config: orv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 20.35928143712575 - type: f1 value: 15.997867865075824 - type: precision value: 14.882104658301346 - type: recall value: 20.35928143712575 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ind-eng) config: ind-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.2 - type: f1 value: 90.25999999999999 - type: precision value: 89.45333333333335 - type: recall value: 92.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tuk-eng) config: tuk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 23.15270935960591 - type: f1 value: 19.65673625772148 - type: precision value: 18.793705293464992 - type: recall value: 23.15270935960591 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (max-eng) config: max-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 59.154929577464785 - type: f1 value: 52.3868463305083 - type: precision value: 50.14938113529662 - type: recall value: 59.154929577464785 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (swh-eng) config: swh-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 70.51282051282051 - type: f1 value: 66.8089133089133 - type: precision value: 65.37645687645687 - type: recall value: 70.51282051282051 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hin-eng) config: hin-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.6 - type: f1 value: 93 - type: precision value: 92.23333333333333 - type: recall value: 94.6 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (dsb-eng) config: dsb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 38.62212943632568 - type: f1 value: 34.3278276962583 - type: precision value: 33.07646935732408 - type: recall value: 38.62212943632568 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ber-eng) config: ber-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 28.1 - type: f1 value: 23.579609223054604 - type: precision value: 22.39622774921555 - type: recall value: 28.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tam-eng) config: tam-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.27361563517914 - type: f1 value: 85.12486427795874 - type: precision value: 83.71335504885994 - type: recall value: 88.27361563517914 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (slk-eng) config: slk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.6 - type: f1 value: 86.39928571428571 - type: precision value: 85.4947557997558 - type: recall value: 88.6 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tgl-eng) config: tgl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 86.5 - type: f1 value: 83.77952380952381 - type: precision value: 82.67602564102565 - type: recall value: 86.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ast-eng) config: ast-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 79.52755905511812 - type: f1 value: 75.3055868016498 - type: precision value: 73.81889763779527 - type: recall value: 79.52755905511812 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mkd-eng) config: mkd-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.9 - type: f1 value: 73.76261904761905 - type: precision value: 72.11670995670995 - type: recall value: 77.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (khm-eng) config: khm-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 53.8781163434903 - type: f1 value: 47.25804051288816 - type: precision value: 45.0603482390186 - type: recall value: 53.8781163434903 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ces-eng) config: ces-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.10000000000001 - type: f1 value: 88.88 - type: precision value: 87.96333333333334 - type: recall value: 91.10000000000001 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tzl-eng) config: tzl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 38.46153846153847 - type: f1 value: 34.43978243978244 - type: precision value: 33.429487179487175 - type: recall value: 38.46153846153847 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (urd-eng) config: urd-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.9 - type: f1 value: 86.19888888888887 - type: precision value: 85.07440476190476 - type: recall value: 88.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ara-eng) config: ara-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85.9 - type: f1 value: 82.58857142857143 - type: precision value: 81.15666666666667 - type: recall value: 85.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kor-eng) config: kor-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 86.8 - type: f1 value: 83.36999999999999 - type: precision value: 81.86833333333333 - type: recall value: 86.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (yid-eng) config: yid-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 68.51415094339622 - type: f1 value: 63.195000099481234 - type: precision value: 61.394033442972116 - type: recall value: 68.51415094339622 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fin-eng) config: fin-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.5 - type: f1 value: 86.14603174603175 - type: precision value: 85.1162037037037 - type: recall value: 88.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tha-eng) config: tha-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.62043795620438 - type: f1 value: 94.40389294403892 - type: precision value: 93.7956204379562 - type: recall value: 95.62043795620438 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (wuu-eng) config: wuu-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 81.8 - type: f1 value: 78.6532178932179 - type: precision value: 77.46348795840176 - type: recall value: 81.8 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.603 - type: map_at_10 value: 8.5 - type: map_at_100 value: 12.985 - type: map_at_1000 value: 14.466999999999999 - type: map_at_3 value: 4.859999999999999 - type: map_at_5 value: 5.817 - type: mrr_at_1 value: 28.571 - type: mrr_at_10 value: 42.331 - type: mrr_at_100 value: 43.592999999999996 - type: mrr_at_1000 value: 43.592999999999996 - type: mrr_at_3 value: 38.435 - type: mrr_at_5 value: 39.966 - type: ndcg_at_1 value: 26.531 - type: ndcg_at_10 value: 21.353 - type: ndcg_at_100 value: 31.087999999999997 - type: ndcg_at_1000 value: 43.163000000000004 - type: ndcg_at_3 value: 22.999 - type: ndcg_at_5 value: 21.451 - type: precision_at_1 value: 28.571 - type: precision_at_10 value: 19.387999999999998 - type: precision_at_100 value: 6.265 - type: precision_at_1000 value: 1.4160000000000001 - type: precision_at_3 value: 24.490000000000002 - type: precision_at_5 value: 21.224 - type: recall_at_1 value: 2.603 - type: recall_at_10 value: 14.474 - type: recall_at_100 value: 40.287 - type: recall_at_1000 value: 76.606 - type: recall_at_3 value: 5.978 - type: recall_at_5 value: 7.819 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 69.7848 - type: ap value: 13.661023167088224 - type: f1 value: 53.61686134460943 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 61.28183361629882 - type: f1 value: 61.55481034919965 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 35.972128420092396 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.59933241938367 - type: cos_sim_ap value: 72.20760361208136 - type: cos_sim_f1 value: 66.4447731755424 - type: cos_sim_precision value: 62.35539102267469 - type: cos_sim_recall value: 71.10817941952506 - type: dot_accuracy value: 78.98313166835548 - type: dot_ap value: 44.492521645493795 - type: dot_f1 value: 45.814889336016094 - type: dot_precision value: 37.02439024390244 - type: dot_recall value: 60.07915567282321 - type: euclidean_accuracy value: 85.3907134767837 - type: euclidean_ap value: 71.53847289080343 - type: euclidean_f1 value: 65.95952206778834 - type: euclidean_precision value: 61.31006346328196 - type: euclidean_recall value: 71.37203166226914 - type: manhattan_accuracy value: 85.40859510043511 - type: manhattan_ap value: 71.49664104395515 - type: manhattan_f1 value: 65.98569969356485 - type: manhattan_precision value: 63.928748144482924 - type: manhattan_recall value: 68.17941952506597 - type: max_accuracy value: 85.59933241938367 - type: max_ap value: 72.20760361208136 - type: max_f1 value: 66.4447731755424 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.83261536073273 - type: cos_sim_ap value: 85.48178133644264 - type: cos_sim_f1 value: 77.87816307403935 - type: cos_sim_precision value: 75.88953021114926 - type: cos_sim_recall value: 79.97382198952879 - type: dot_accuracy value: 79.76287499514883 - type: dot_ap value: 59.17438838475084 - type: dot_f1 value: 56.34566667855996 - type: dot_precision value: 52.50349092359864 - type: dot_recall value: 60.794579611949494 - type: euclidean_accuracy value: 88.76857996662397 - type: euclidean_ap value: 85.22764834359887 - type: euclidean_f1 value: 77.65379751543554 - type: euclidean_precision value: 75.11152683839401 - type: euclidean_recall value: 80.37419156144134 - type: manhattan_accuracy value: 88.6987231730508 - type: manhattan_ap value: 85.18907981724007 - type: manhattan_f1 value: 77.51967028849757 - type: manhattan_precision value: 75.49992701795358 - type: manhattan_recall value: 79.65044656606098 - type: max_accuracy value: 88.83261536073273 - type: max_ap value: 85.48178133644264 - type: max_f1 value: 77.87816307403935 language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - 'no' - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh license: mit --- ## Multilingual-E5-base-int8-ov This is [Multilingual-E5-base](https://huggingface.co/intfloat/multilingual-e5-base) model converted to the OpenVINOβ„’ IR (Intermediate Representation) format with quantization to INT8. Disclaimer: Model is provided as a preview and may be update in the future. [Multilingual E5 Text Embeddings: A Technical Report](https://arxiv.org/pdf/2402.05672). Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, Furu Wei, arXiv 2024 This model has 12 layers and the embedding size is 768. ## Usage ```python import torch from transformers import AutoTokenizer from optimum.intel.openvino import OVModelForFeatureExtraction # Sentences we want sentence embeddings for sentences = ["Sample Data-1", "Sample Data-2"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('santhosh/multilingual-e5-base-int8-ov') model = OVModelForFeatureExtraction.from_pretrained('OpenVINO/bge-base-en-v1.5-int8-ov') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = model_output[0][:, 0] # normalize embeddings sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:", sentence_embeddings) ``` ### Using openvino GenAI ```python import openvino_genai import numpy as np import os import huggingface_hub as hf_hub from typing import List model_path = "santhosh/multilingual-e5-base-int8-ov" sentences = ["Sample Data-1", "Sample Data-2"] embedding_pipeline = openvino_genai.TextEmbeddingPipeline(model_path, "CPU") embeddings = embedding_pipeline.embed_documents(sentences) return np.array(embeddings) ```
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755579880
hakimjustbao
2025-08-19T05:30:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:30:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cucucu666/qiqiu-8.19-female
cucucu666
2025-08-19T05:29:05Z
0
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "flux", "flux-diffusers", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-Fill-dev", "base_model:adapter:black-forest-labs/FLUX.1-Fill-dev", "license:other", "region:us" ]
text-to-image
2025-08-19T03:44:23Z
--- base_model: black-forest-labs/FLUX.1-Fill-dev library_name: diffusers license: other instance_prompt: labi female face, Crayon Shin-chan style, eyelash, pleading expression, both hands together in a prayer pose, plain white background widget: [] tags: - text-to-image - diffusers-training - diffusers - lora - flux - flux-diffusers - template:sd-lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Flux-Fill DreamBooth LoRA - cucucu666/qiqiu-8.19-female <Gallery /> ## Model description These are cucucu666/qiqiu-8.19-female DreamBooth LoRA weights for black-forest-labs/FLUX.1-Fill-dev. The weights were trained using [DreamBooth](https://dreambooth.github.io/) with a custom [Flux diffusers trainer](https://github.com/Sebastian-Zok/FLUX-Fill-LoRa-Training). Was LoRA for the text encoder enabled? False. ## Trigger words You should use `labi female face, Crayon Shin-chan style, eyelash, pleading expression, both hands together in a prayer pose, plain white background` to trigger the image generation. ## Download model [Download the *.safetensors LoRA](cucucu666/qiqiu-8.19-female/tree/main) in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('cucucu666/qiqiu-8.19-female', weight_name='pytorch_lora_weights.safetensors') image = pipeline('labi female face, Crayon Shin-chan style, eyelash, pleading expression, both hands together in a prayer pose, plain white background').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## License Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md). ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1755579682
pempekmangedd
2025-08-19T05:26:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:26:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lejelly/shannon_entropy-ep1-lr0001-sampling-t07-gen3
lejelly
2025-08-19T05:24:47Z
0
0
null
[ "safetensors", "mistral", "merge", "parameter_wise", "llm-adamerge", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2025-08-19T05:22:10Z
--- tags: - merge - parameter_wise - llm-adamerge base_model: mistralai/Mistral-7B-v0.1 --- # Merged Model using LLM-AdaMerge (parameter_wise) This model was created by merging multiple fine-tuned models using the LLM-AdaMerge approach with parameter_wise merging. ## Merge Details - **Merge Type**: parameter_wise - **Base Model**: mistralai/Mistral-7B-v0.1 - **Number of Models Merged**: 3 - **Models Merged**: instruct, math, code - **Final Training Loss**: N/A - **Training Epochs**: 0 ## Lambda Coefficients The following lambda coefficients were learned during training: ### Parameter-wise Lambdas This model uses parameter-wise lambda coefficients. Total parameters with individual lambdas: 291 See the uploaded `learned_lambdas.json` file for detailed parameter-wise coefficients. ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("your-username/model-name") tokenizer = AutoTokenizer.from_pretrained("your-username/model-name") # Use the model inputs = tokenizer("Hello, how are you?", return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0])) ``` ## Training Configuration See the uploaded `training_config.json` file for detailed training configuration. ## Citation If you use this model, please cite the LLM-AdaMerge paper: ```bibtex @article{llmadamerge2024, title={LLM-AdaMerge: Adaptive Model Merging for Large Language Models}, author={...}, year={2024} } ```
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755579583
sampingkaca72
2025-08-19T05:24:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:24:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lqpl/blockassist-bc-hairy_insectivorous_antelope_1755580709
lqpl
2025-08-19T05:22:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "hairy insectivorous antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:19:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - hairy insectivorous antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lejelly/shannon_entropy-ep1-lr0001-t0
lejelly
2025-08-19T05:22:09Z
0
0
null
[ "safetensors", "mistral", "merge", "parameter_wise", "llm-adamerge", "base_model:mistralai/Mistral-7B-v0.1", "base_model:finetune:mistralai/Mistral-7B-v0.1", "region:us" ]
null
2025-08-19T05:19:33Z
--- tags: - merge - parameter_wise - llm-adamerge base_model: mistralai/Mistral-7B-v0.1 --- # Merged Model using LLM-AdaMerge (parameter_wise) This model was created by merging multiple fine-tuned models using the LLM-AdaMerge approach with parameter_wise merging. ## Merge Details - **Merge Type**: parameter_wise - **Base Model**: mistralai/Mistral-7B-v0.1 - **Number of Models Merged**: 3 - **Models Merged**: instruct, math, code - **Final Training Loss**: N/A - **Training Epochs**: 0 ## Lambda Coefficients The following lambda coefficients were learned during training: ### Parameter-wise Lambdas This model uses parameter-wise lambda coefficients. Total parameters with individual lambdas: 291 See the uploaded `learned_lambdas.json` file for detailed parameter-wise coefficients. ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("your-username/model-name") tokenizer = AutoTokenizer.from_pretrained("your-username/model-name") # Use the model inputs = tokenizer("Hello, how are you?", return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0])) ``` ## Training Configuration See the uploaded `training_config.json` file for detailed training configuration. ## Citation If you use this model, please cite the LLM-AdaMerge paper: ```bibtex @article{llmadamerge2024, title={LLM-AdaMerge: Adaptive Model Merging for Large Language Models}, author={...}, year={2024} } ```
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755579407
vwzyrraz7l
2025-08-19T05:21:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:21:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
milliarderdol/blockassist-bc-roaring_rough_scorpion_1755578605
milliarderdol
2025-08-19T05:14:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring rough scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:14:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring rough scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_danish_immigration2
AnonymousCS
2025-08-19T05:09:41Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T05:06:02Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_danish_immigration2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_danish_immigration2 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2894 - Accuracy: 0.9077 - 1-f1: 0.8537 - 1-recall: 0.8140 - 1-precision: 0.8974 - Balanced Acc: 0.8840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.3081 | 1.0 | 5 | 0.3140 | 0.8692 | 0.8172 | 0.8837 | 0.76 | 0.8729 | | 0.3154 | 2.0 | 10 | 0.2663 | 0.9154 | 0.8675 | 0.8372 | 0.9 | 0.8956 | | 0.2772 | 3.0 | 15 | 0.2940 | 0.9154 | 0.8706 | 0.8605 | 0.8810 | 0.9015 | | 0.4566 | 4.0 | 20 | 0.2541 | 0.9077 | 0.8537 | 0.8140 | 0.8974 | 0.8840 | | 0.1933 | 5.0 | 25 | 0.3039 | 0.9 | 0.8539 | 0.8837 | 0.8261 | 0.8959 | | 0.0973 | 6.0 | 30 | 0.2894 | 0.9077 | 0.8537 | 0.8140 | 0.8974 | 0.8840 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
maxidesantafe11/blockassist-bc-deft_monstrous_finch_1755578079
maxidesantafe11
2025-08-19T05:09:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deft monstrous finch", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:08:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deft monstrous finch --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
akaredmiru/blockassist-bc-stealthy_diving_macaque_1755580001
akaredmiru
2025-08-19T05:08:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy diving macaque", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:08:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy diving macaque --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755578570
lisaozill03
2025-08-19T05:07:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T05:06:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_all_immigration2
AnonymousCS
2025-08-19T05:03:06Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T04:59:53Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_all_immigration2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_all_immigration2 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2912 - Accuracy: 0.8987 - 1-f1: 0.8498 - 1-recall: 0.8584 - 1-precision: 0.8414 - Balanced Acc: 0.8887 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2663 | 1.0 | 33 | 0.2729 | 0.9007 | 0.8427 | 0.7977 | 0.8932 | 0.8750 | | 0.2357 | 2.0 | 66 | 0.2828 | 0.8997 | 0.8306 | 0.7370 | 0.9515 | 0.8591 | | 0.1927 | 3.0 | 99 | 0.2912 | 0.8987 | 0.8498 | 0.8584 | 0.8414 | 0.8887 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
chainway9/blockassist-bc-untamed_quick_eel_1755577825
chainway9
2025-08-19T04:59:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:59:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
phospho-app/r2owb0-ACT_BBOX-so101-DS1-mmx31
phospho-app
2025-08-19T04:57:34Z
0
0
phosphobot
[ "phosphobot", "act", "robotics", "dataset:r2owb0/so101-DS1", "region:us" ]
robotics
2025-08-19T04:56:19Z
--- datasets: r2owb0/so101-DS1 library_name: phosphobot pipeline_tag: robotics model_name: act tags: - phosphobot - act task_categories: - robotics --- # act Model - phospho Training Pipeline ## Error Traceback We faced an issue while training your model. ``` Image key 'main' not found in the dataset info_model. Please check the image keys in the dataset and pass the appropriate parameter. Available image keys: ['observation.images.wrist', 'observation.images.top'] ``` ## Training parameters: - **Dataset**: [r2owb0/so101-DS1](https://huggingface.co/datasets/r2owb0/so101-DS1) - **Wandb run URL**: None - **Epochs**: None - **Batch size**: 100 - **Training steps**: 10000 πŸ“– **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) πŸ€– **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
Justin-Herbert-Madison-Beer-Dating/Ver.Viral.video.Justin.Herbert.Madison.polemica.viral.en.twitter.y.telegram
Justin-Herbert-Madison-Beer-Dating
2025-08-19T04:57:13Z
0
0
null
[ "region:us" ]
null
2025-08-19T04:55:47Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755579333
IvanJAjebu
2025-08-19T04:56:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:56:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tensorblock/neural-coder_xlam-finetuned-1-GGUF
tensorblock
2025-08-19T04:56:34Z
0
0
transformers
[ "transformers", "gguf", "autotrain", "text-generation-inference", "text-generation", "peft", "TensorBlock", "GGUF", "base_model:neural-coder/xlam-finetuned-1", "base_model:quantized:neural-coder/xlam-finetuned-1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-19T03:29:30Z
--- tags: - autotrain - text-generation-inference - text-generation - peft - TensorBlock - GGUF library_name: transformers base_model: neural-coder/xlam-finetuned-1 widget: - messages: - role: user content: What is your favorite condiment? license: apache-2.0 --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## neural-coder/xlam-finetuned-1 - GGUF <div style="text-align: left; margin: 20px 0;"> <a href="https://discord.com/invite/Ej5NmeHFf2" style="display: inline-block; padding: 10px 20px; background-color: #5865F2; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> Join our Discord to learn more about what we're building β†— </a> </div> This repo contains GGUF format model files for [neural-coder/xlam-finetuned-1](https://huggingface.co/neural-coder/xlam-finetuned-1). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5753](https://github.com/ggml-org/llama.cpp/commit/73e53dc834c0a2336cd104473af6897197b96277). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th colspan="2" style="font-size: 25px;">Forge</th> </tr> <tr> <th colspan="2"> <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/> </th> </tr> <tr> <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th> </tr> <tr> <th colspan="2"> <a href="https://github.com/TensorBlock/forge" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸš€ Try it now! πŸš€</a> </th> </tr> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt} <|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [xlam-finetuned-1-Q2_K.gguf](https://huggingface.co/tensorblock/neural-coder_xlam-finetuned-1-GGUF/blob/main/xlam-finetuned-1-Q2_K.gguf) | Q2_K | 3.179 GB | smallest, significant quality loss - not recommended for most purposes | | [xlam-finetuned-1-Q3_K_S.gguf](https://huggingface.co/tensorblock/neural-coder_xlam-finetuned-1-GGUF/blob/main/xlam-finetuned-1-Q3_K_S.gguf) | Q3_K_S | 3.665 GB | very small, high quality loss | | [xlam-finetuned-1-Q3_K_M.gguf](https://huggingface.co/tensorblock/neural-coder_xlam-finetuned-1-GGUF/blob/main/xlam-finetuned-1-Q3_K_M.gguf) | Q3_K_M | 4.019 GB | very small, high quality loss | | [xlam-finetuned-1-Q3_K_L.gguf](https://huggingface.co/tensorblock/neural-coder_xlam-finetuned-1-GGUF/blob/main/xlam-finetuned-1-Q3_K_L.gguf) | Q3_K_L | 4.322 GB | small, substantial quality loss | | [xlam-finetuned-1-Q4_0.gguf](https://huggingface.co/tensorblock/neural-coder_xlam-finetuned-1-GGUF/blob/main/xlam-finetuned-1-Q4_0.gguf) | Q4_0 | 4.661 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [xlam-finetuned-1-Q4_K_S.gguf](https://huggingface.co/tensorblock/neural-coder_xlam-finetuned-1-GGUF/blob/main/xlam-finetuned-1-Q4_K_S.gguf) | Q4_K_S | 4.693 GB | small, greater quality loss | | [xlam-finetuned-1-Q4_K_M.gguf](https://huggingface.co/tensorblock/neural-coder_xlam-finetuned-1-GGUF/blob/main/xlam-finetuned-1-Q4_K_M.gguf) | Q4_K_M | 4.921 GB | medium, balanced quality - recommended | | [xlam-finetuned-1-Q5_0.gguf](https://huggingface.co/tensorblock/neural-coder_xlam-finetuned-1-GGUF/blob/main/xlam-finetuned-1-Q5_0.gguf) | Q5_0 | 5.599 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [xlam-finetuned-1-Q5_K_S.gguf](https://huggingface.co/tensorblock/neural-coder_xlam-finetuned-1-GGUF/blob/main/xlam-finetuned-1-Q5_K_S.gguf) | Q5_K_S | 5.599 GB | large, low quality loss - recommended | | [xlam-finetuned-1-Q5_K_M.gguf](https://huggingface.co/tensorblock/neural-coder_xlam-finetuned-1-GGUF/blob/main/xlam-finetuned-1-Q5_K_M.gguf) | Q5_K_M | 5.733 GB | large, very low quality loss - recommended | | [xlam-finetuned-1-Q6_K.gguf](https://huggingface.co/tensorblock/neural-coder_xlam-finetuned-1-GGUF/blob/main/xlam-finetuned-1-Q6_K.gguf) | Q6_K | 6.596 GB | very large, extremely low quality loss | | [xlam-finetuned-1-Q8_0.gguf](https://huggingface.co/tensorblock/neural-coder_xlam-finetuned-1-GGUF/blob/main/xlam-finetuned-1-Q8_0.gguf) | Q8_0 | 8.541 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/neural-coder_xlam-finetuned-1-GGUF --include "xlam-finetuned-1-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/neural-coder_xlam-finetuned-1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
HoangTran223/unsloth_mistral-7b-instruct-v0.3_a194afd5-487e-44ec-816f-ec5a6cf87801
HoangTran223
2025-08-19T04:56:18Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T04:54:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1755577510
pempekmangedd
2025-08-19T04:52:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:52:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dgambettaphd/M_mis_run2_gen3_WXS_doc1000_synt64_lr1e-04_acm_MPP
dgambettaphd
2025-08-19T04:51:23Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T04:51:09Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755578869
IvanJAjebu
2025-08-19T04:49:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:49:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
deeee112222/mistral7b_cwe_expert_adapter
deeee112222
2025-08-19T04:47:57Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T04:47:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
catme0w/MolScribe-Occlusion
catme0w
2025-08-19T04:46:13Z
0
0
null
[ "base_model:yujieq/MolScribe", "base_model:finetune:yujieq/MolScribe", "license:mit", "region:us" ]
null
2025-08-18T04:26:25Z
--- license: mit base_model: - yujieq/MolScribe new_version: catme0w/MolScribe-Long ---
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755578448
IvanJAjebu
2025-08-19T04:42:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:42:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
REEA-GLOBAL/Qwen2.5-VL-7B-Instruct-ft-20250819025724539
REEA-GLOBAL
2025-08-19T04:34:17Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_5_vl", "image-to-text", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Qwen2.5-VL-7B-Instruct", "base_model:finetune:unsloth/Qwen2.5-VL-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2025-08-19T04:27:24Z
--- base_model: unsloth/Qwen2.5-VL-7B-Instruct tags: - text-generation-inference - transformers - unsloth - qwen2_5_vl license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** REEA-GLOBAL - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-VL-7B-Instruct This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
AnonymousCS/xlmr_norwegian_immigration1
AnonymousCS
2025-08-19T04:32:03Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T04:29:04Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_norwegian_immigration1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_norwegian_immigration1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3344 - Accuracy: 0.9077 - 1-f1: 0.8462 - 1-recall: 0.7674 - 1-precision: 0.9429 - Balanced Acc: 0.8722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2895 | 1.0 | 5 | 0.2924 | 0.9077 | 0.85 | 0.7907 | 0.9189 | 0.8781 | | 0.1248 | 2.0 | 10 | 0.2908 | 0.9077 | 0.8462 | 0.7674 | 0.9429 | 0.8722 | | 0.1258 | 3.0 | 15 | 0.2939 | 0.9 | 0.8354 | 0.7674 | 0.9167 | 0.8665 | | 0.25 | 4.0 | 20 | 0.3344 | 0.9077 | 0.8462 | 0.7674 | 0.9429 | 0.8722 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
8man-crypto/blockassist-bc-insectivorous_bellowing_porpoise_1755576166
8man-crypto
2025-08-19T04:30:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "insectivorous bellowing porpoise", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:29:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - insectivorous bellowing porpoise --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
donoway/BoolQ_Llama-3.2-1B-8f4o6kcm
donoway
2025-08-19T04:25:02Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T03:12:29Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: BoolQ_Llama-3.2-1B-8f4o6kcm results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BoolQ_Llama-3.2-1B-8f4o6kcm This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5793 - Model Preparation Time: 0.0057 - Mdl: 7450.5715 - Accumulated Loss: 5164.3426 - Correct Preds: 2634.0 - Total Preds: 3270.0 - Accuracy: 0.8055 - Correct Gen Preds: 2638.0 - Gen Accuracy: 0.8067 - Correct Gen Preds 9642: 1699.0 - Correct Preds 9642: 1701.0 - Total Labels 9642: 2026.0 - Accuracy 9642: 0.8396 - Gen Accuracy 9642: 0.8386 - Correct Gen Preds 2822: 930.0 - Correct Preds 2822: 933.0 - Total Labels 2822: 1231.0 - Accuracy 2822: 0.7579 - Gen Accuracy 2822: 0.7555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 120 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 9642 | Correct Preds 9642 | Total Labels 9642 | Accuracy 9642 | Gen Accuracy 9642 | Correct Gen Preds 2822 | Correct Preds 2822 | Total Labels 2822 | Accuracy 2822 | Gen Accuracy 2822 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:----------------------:|:------------------:|:-----------------:|:-------------:|:-----------------:|:----------------------:|:------------------:|:-----------------:|:-------------:|:-----------------:| | No log | 0 | 0 | 0.7080 | 0.0057 | 3339.8933 | 2315.0376 | 2032.0 | 3270.0 | 0.6214 | 2040.0 | 0.6239 | 2007.0 | 2008.0 | 2026.0 | 0.9911 | 0.9906 | 24.0 | 24.0 | 1231.0 | 0.0195 | 0.0195 | | 0.4667 | 1.0 | 69 | 0.6104 | 0.0057 | 2879.4424 | 1995.8774 | 2384.0 | 3270.0 | 0.7291 | 2390.0 | 0.7309 | 1351.0 | 1351.0 | 2026.0 | 0.6668 | 0.6668 | 1031.0 | 1033.0 | 1231.0 | 0.8392 | 0.8375 | | 0.4652 | 2.0 | 138 | 0.5854 | 0.0057 | 2761.8042 | 1914.3368 | 2618.0 | 3270.0 | 0.8006 | 2476.0 | 0.7572 | 1601.0 | 1693.0 | 2026.0 | 0.8356 | 0.7902 | 869.0 | 925.0 | 1231.0 | 0.7514 | 0.7059 | | 0.2361 | 3.0 | 207 | 0.9383 | 0.0057 | 4426.4291 | 3068.1669 | 2615.0 | 3270.0 | 0.7997 | 2598.0 | 0.7945 | 1691.0 | 1708.0 | 2026.0 | 0.8430 | 0.8346 | 900.0 | 907.0 | 1231.0 | 0.7368 | 0.7311 | | 0.0138 | 4.0 | 276 | 1.2278 | 0.0057 | 5792.2561 | 4014.8860 | 2550.0 | 3270.0 | 0.7798 | 2530.0 | 0.7737 | 1541.0 | 1562.0 | 2026.0 | 0.7710 | 0.7606 | 981.0 | 988.0 | 1231.0 | 0.8026 | 0.7969 | | 0.0 | 5.0 | 345 | 1.6244 | 0.0057 | 7663.1836 | 5311.7141 | 2604.0 | 3270.0 | 0.7963 | 2607.0 | 0.7972 | 1634.0 | 1636.0 | 2026.0 | 0.8075 | 0.8065 | 965.0 | 968.0 | 1231.0 | 0.7864 | 0.7839 | | 0.0001 | 6.0 | 414 | 1.3741 | 0.0057 | 6482.3648 | 4493.2329 | 2627.0 | 3270.0 | 0.8034 | 2631.0 | 0.8046 | 1700.0 | 1702.0 | 2026.0 | 0.8401 | 0.8391 | 923.0 | 925.0 | 1231.0 | 0.7514 | 0.7498 | | 0.0 | 7.0 | 483 | 1.4617 | 0.0057 | 6895.6302 | 4779.6866 | 2630.0 | 3270.0 | 0.8043 | 2634.0 | 0.8055 | 1701.0 | 1703.0 | 2026.0 | 0.8406 | 0.8396 | 924.0 | 927.0 | 1231.0 | 0.7530 | 0.7506 | | 0.0 | 8.0 | 552 | 1.4956 | 0.0057 | 7055.6245 | 4890.5862 | 2625.0 | 3270.0 | 0.8028 | 2629.0 | 0.8040 | 1695.0 | 1697.0 | 2026.0 | 0.8376 | 0.8366 | 925.0 | 928.0 | 1231.0 | 0.7539 | 0.7514 | | 0.0 | 9.0 | 621 | 1.5171 | 0.0057 | 7157.2276 | 4961.0122 | 2625.0 | 3270.0 | 0.8028 | 2629.0 | 0.8040 | 1698.0 | 1700.0 | 2026.0 | 0.8391 | 0.8381 | 922.0 | 925.0 | 1231.0 | 0.7514 | 0.7490 | | 0.0001 | 10.0 | 690 | 1.5322 | 0.0057 | 7228.4800 | 5010.4005 | 2628.0 | 3270.0 | 0.8037 | 2632.0 | 0.8049 | 1698.0 | 1700.0 | 2026.0 | 0.8391 | 0.8381 | 925.0 | 928.0 | 1231.0 | 0.7539 | 0.7514 | | 0.0 | 11.0 | 759 | 1.5461 | 0.0057 | 7293.7816 | 5055.6641 | 2629.0 | 3270.0 | 0.8040 | 2633.0 | 0.8052 | 1696.0 | 1698.0 | 2026.0 | 0.8381 | 0.8371 | 928.0 | 931.0 | 1231.0 | 0.7563 | 0.7539 | | 0.0 | 12.0 | 828 | 1.5571 | 0.0057 | 7345.8001 | 5091.7207 | 2630.0 | 3270.0 | 0.8043 | 2634.0 | 0.8055 | 1698.0 | 1700.0 | 2026.0 | 0.8391 | 0.8381 | 927.0 | 930.0 | 1231.0 | 0.7555 | 0.7530 | | 0.0 | 13.0 | 897 | 1.5696 | 0.0057 | 7404.5688 | 5132.4560 | 2628.0 | 3270.0 | 0.8037 | 2633.0 | 0.8052 | 1695.0 | 1697.0 | 2026.0 | 0.8376 | 0.8366 | 929.0 | 931.0 | 1231.0 | 0.7563 | 0.7547 | | 0.0 | 14.0 | 966 | 1.5735 | 0.0057 | 7423.3806 | 5145.4953 | 2629.0 | 3270.0 | 0.8040 | 2633.0 | 0.8052 | 1692.0 | 1694.0 | 2026.0 | 0.8361 | 0.8351 | 932.0 | 935.0 | 1231.0 | 0.7595 | 0.7571 | | 0.0 | 15.0 | 1035 | 1.5793 | 0.0057 | 7450.5715 | 5164.3426 | 2634.0 | 3270.0 | 0.8055 | 2638.0 | 0.8067 | 1699.0 | 1701.0 | 2026.0 | 0.8396 | 0.8386 | 930.0 | 933.0 | 1231.0 | 0.7579 | 0.7555 | | 0.0 | 16.0 | 1104 | 1.5878 | 0.0057 | 7490.8020 | 5192.2283 | 2629.0 | 3270.0 | 0.8040 | 2633.0 | 0.8052 | 1694.0 | 1696.0 | 2026.0 | 0.8371 | 0.8361 | 930.0 | 933.0 | 1231.0 | 0.7579 | 0.7555 | | 0.0 | 17.0 | 1173 | 1.5863 | 0.0057 | 7483.6533 | 5187.2732 | 2629.0 | 3270.0 | 0.8040 | 2633.0 | 0.8052 | 1696.0 | 1698.0 | 2026.0 | 0.8381 | 0.8371 | 928.0 | 931.0 | 1231.0 | 0.7563 | 0.7539 | | 0.0 | 18.0 | 1242 | 1.5880 | 0.0057 | 7491.6557 | 5192.8201 | 2629.0 | 3270.0 | 0.8040 | 2634.0 | 0.8055 | 1693.0 | 1695.0 | 2026.0 | 0.8366 | 0.8356 | 932.0 | 934.0 | 1231.0 | 0.7587 | 0.7571 | | 0.0 | 19.0 | 1311 | 1.5920 | 0.0057 | 7510.3381 | 5205.7697 | 2628.0 | 3270.0 | 0.8037 | 2633.0 | 0.8052 | 1693.0 | 1695.0 | 2026.0 | 0.8366 | 0.8356 | 931.0 | 933.0 | 1231.0 | 0.7579 | 0.7563 | | 0.0 | 20.0 | 1380 | 1.5951 | 0.0057 | 7524.8328 | 5215.8166 | 2627.0 | 3270.0 | 0.8034 | 2631.0 | 0.8046 | 1691.0 | 1693.0 | 2026.0 | 0.8356 | 0.8346 | 931.0 | 934.0 | 1231.0 | 0.7587 | 0.7563 | | 0.0 | 21.0 | 1449 | 1.5937 | 0.0057 | 7518.3160 | 5211.2995 | 2623.0 | 3270.0 | 0.8021 | 2628.0 | 0.8037 | 1689.0 | 1691.0 | 2026.0 | 0.8346 | 0.8337 | 930.0 | 932.0 | 1231.0 | 0.7571 | 0.7555 | | 0.0 | 22.0 | 1518 | 1.5941 | 0.0057 | 7520.5677 | 5212.8603 | 2626.0 | 3270.0 | 0.8031 | 2631.0 | 0.8046 | 1693.0 | 1695.0 | 2026.0 | 0.8366 | 0.8356 | 929.0 | 931.0 | 1231.0 | 0.7563 | 0.7547 | | 0.4705 | 23.0 | 1587 | 1.5944 | 0.0057 | 7521.8050 | 5213.7179 | 2629.0 | 3270.0 | 0.8040 | 2633.0 | 0.8052 | 1693.0 | 1695.0 | 2026.0 | 0.8366 | 0.8356 | 931.0 | 934.0 | 1231.0 | 0.7587 | 0.7563 | | 0.0 | 24.0 | 1656 | 1.5942 | 0.0057 | 7520.9457 | 5213.1223 | 2626.0 | 3270.0 | 0.8031 | 2631.0 | 0.8046 | 1691.0 | 1693.0 | 2026.0 | 0.8356 | 0.8346 | 931.0 | 933.0 | 1231.0 | 0.7579 | 0.7563 | | 0.0 | 25.0 | 1725 | 1.5932 | 0.0057 | 7516.1335 | 5209.7867 | 2628.0 | 3270.0 | 0.8037 | 2633.0 | 0.8052 | 1692.0 | 1694.0 | 2026.0 | 0.8361 | 0.8351 | 932.0 | 934.0 | 1231.0 | 0.7587 | 0.7571 | | 0.0 | 26.0 | 1794 | 1.5939 | 0.0057 | 7519.3793 | 5212.0365 | 2631.0 | 3270.0 | 0.8046 | 2635.0 | 0.8058 | 1695.0 | 1697.0 | 2026.0 | 0.8376 | 0.8366 | 931.0 | 934.0 | 1231.0 | 0.7587 | 0.7563 | | 0.0 | 27.0 | 1863 | 1.5943 | 0.0057 | 7521.3797 | 5213.4231 | 2631.0 | 3270.0 | 0.8046 | 2636.0 | 0.8061 | 1694.0 | 1696.0 | 2026.0 | 0.8371 | 0.8361 | 933.0 | 935.0 | 1231.0 | 0.7595 | 0.7579 | | 0.0 | 28.0 | 1932 | 1.5947 | 0.0057 | 7522.9538 | 5214.5142 | 2631.0 | 3270.0 | 0.8046 | 2636.0 | 0.8061 | 1693.0 | 1695.0 | 2026.0 | 0.8366 | 0.8356 | 934.0 | 936.0 | 1231.0 | 0.7604 | 0.7587 | | 0.0 | 29.0 | 2001 | 1.5970 | 0.0057 | 7534.0599 | 5222.2124 | 2628.0 | 3270.0 | 0.8037 | 2633.0 | 0.8052 | 1694.0 | 1696.0 | 2026.0 | 0.8371 | 0.8361 | 930.0 | 932.0 | 1231.0 | 0.7571 | 0.7555 | | 0.0 | 30.0 | 2070 | 1.5937 | 0.0057 | 7518.6664 | 5211.5424 | 2631.0 | 3270.0 | 0.8046 | 2636.0 | 0.8061 | 1696.0 | 1698.0 | 2026.0 | 0.8381 | 0.8371 | 931.0 | 933.0 | 1231.0 | 0.7579 | 0.7563 | | 0.0 | 31.0 | 2139 | 1.5975 | 0.0057 | 7536.3698 | 5223.8135 | 2632.0 | 3270.0 | 0.8049 | 2637.0 | 0.8064 | 1693.0 | 1695.0 | 2026.0 | 0.8366 | 0.8356 | 935.0 | 937.0 | 1231.0 | 0.7612 | 0.7595 | | 0.0 | 32.0 | 2208 | 1.5958 | 0.0057 | 7528.2450 | 5218.1818 | 2626.0 | 3270.0 | 0.8031 | 2631.0 | 0.8046 | 1692.0 | 1694.0 | 2026.0 | 0.8361 | 0.8351 | 930.0 | 932.0 | 1231.0 | 0.7571 | 0.7555 | | 0.0 | 33.0 | 2277 | 1.5946 | 0.0057 | 7522.6503 | 5214.3039 | 2630.0 | 3270.0 | 0.8043 | 2635.0 | 0.8058 | 1693.0 | 1695.0 | 2026.0 | 0.8366 | 0.8356 | 933.0 | 935.0 | 1231.0 | 0.7595 | 0.7579 | | 0.0 | 34.0 | 2346 | 1.5958 | 0.0057 | 7528.1556 | 5218.1199 | 2630.0 | 3270.0 | 0.8043 | 2635.0 | 0.8058 | 1691.0 | 1693.0 | 2026.0 | 0.8356 | 0.8346 | 935.0 | 937.0 | 1231.0 | 0.7612 | 0.7595 | | 0.0 | 35.0 | 2415 | 1.5955 | 0.0057 | 7527.0160 | 5217.3299 | 2630.0 | 3270.0 | 0.8043 | 2634.0 | 0.8055 | 1694.0 | 1696.0 | 2026.0 | 0.8371 | 0.8361 | 931.0 | 934.0 | 1231.0 | 0.7587 | 0.7563 | | 0.0 | 36.0 | 2484 | 1.5979 | 0.0057 | 7538.4257 | 5225.2385 | 2630.0 | 3270.0 | 0.8043 | 2635.0 | 0.8058 | 1693.0 | 1695.0 | 2026.0 | 0.8366 | 0.8356 | 933.0 | 935.0 | 1231.0 | 0.7595 | 0.7579 | | 0.0 | 37.0 | 2553 | 1.5989 | 0.0057 | 7543.1657 | 5228.5240 | 2626.0 | 3270.0 | 0.8031 | 2631.0 | 0.8046 | 1692.0 | 1694.0 | 2026.0 | 0.8361 | 0.8351 | 930.0 | 932.0 | 1231.0 | 0.7571 | 0.7555 | | 0.0 | 38.0 | 2622 | 1.5947 | 0.0057 | 7523.0421 | 5214.5755 | 2629.0 | 3270.0 | 0.8040 | 2634.0 | 0.8055 | 1693.0 | 1695.0 | 2026.0 | 0.8366 | 0.8356 | 932.0 | 934.0 | 1231.0 | 0.7587 | 0.7571 | | 0.0 | 39.0 | 2691 | 1.5952 | 0.0057 | 7525.4233 | 5216.2259 | 2627.0 | 3270.0 | 0.8034 | 2632.0 | 0.8049 | 1692.0 | 1694.0 | 2026.0 | 0.8361 | 0.8351 | 931.0 | 933.0 | 1231.0 | 0.7579 | 0.7563 | | 0.0 | 40.0 | 2760 | 1.5979 | 0.0057 | 7538.3492 | 5225.1855 | 2625.0 | 3270.0 | 0.8028 | 2629.0 | 0.8040 | 1690.0 | 1692.0 | 2026.0 | 0.8351 | 0.8342 | 930.0 | 933.0 | 1231.0 | 0.7579 | 0.7555 | | 0.0 | 41.0 | 2829 | 1.5955 | 0.0057 | 7526.7286 | 5217.1307 | 2631.0 | 3270.0 | 0.8046 | 2636.0 | 0.8061 | 1692.0 | 1694.0 | 2026.0 | 0.8361 | 0.8351 | 935.0 | 937.0 | 1231.0 | 0.7612 | 0.7595 | | 0.0 | 42.0 | 2898 | 1.5972 | 0.0057 | 7535.1989 | 5223.0019 | 2631.0 | 3270.0 | 0.8046 | 2635.0 | 0.8058 | 1696.0 | 1698.0 | 2026.0 | 0.8381 | 0.8371 | 930.0 | 933.0 | 1231.0 | 0.7579 | 0.7555 | | 0.0 | 43.0 | 2967 | 1.5954 | 0.0057 | 7526.2516 | 5216.8001 | 2629.0 | 3270.0 | 0.8040 | 2634.0 | 0.8055 | 1689.0 | 1691.0 | 2026.0 | 0.8346 | 0.8337 | 936.0 | 938.0 | 1231.0 | 0.7620 | 0.7604 | | 0.0 | 44.0 | 3036 | 1.5961 | 0.0057 | 7530.0068 | 5219.4030 | 2629.0 | 3270.0 | 0.8040 | 2634.0 | 0.8055 | 1691.0 | 1693.0 | 2026.0 | 0.8356 | 0.8346 | 934.0 | 936.0 | 1231.0 | 0.7604 | 0.7587 | | 0.0 | 45.0 | 3105 | 1.5990 | 0.0057 | 7543.2270 | 5228.5665 | 2627.0 | 3270.0 | 0.8034 | 2632.0 | 0.8049 | 1691.0 | 1693.0 | 2026.0 | 0.8356 | 0.8346 | 932.0 | 934.0 | 1231.0 | 0.7587 | 0.7571 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
broinopio/blockassist-bc-monstrous_scampering_spider_1755575120
broinopio
2025-08-19T04:22:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous scampering spider", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:22:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous scampering spider --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
WenFengg/21_14l14_19_8
WenFengg
2025-08-19T04:21:21Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-19T04:16:04Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
maxidesantafe11/blockassist-bc-deft_monstrous_finch_1755575157
maxidesantafe11
2025-08-19T04:20:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deft monstrous finch", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:20:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deft monstrous finch --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755575501
katanyasekolah
2025-08-19T04:19:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:19:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
concept-unlearning/gemma-3-4b-it_ft_lora_all_novels_v7_ft_npo_gdr_lora_positive_dataset_v1
concept-unlearning
2025-08-19T04:19:47Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-19T04:17:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Ale91Jonathan/blockassist-bc-alert_dormant_prawn_1755575073
Ale91Jonathan
2025-08-19T04:18:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert dormant prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:18:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert dormant prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
miguelsigmahot2/blockassist-bc-invisible_patterned_prawn_1755575094
miguelsigmahot2
2025-08-19T04:15:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "invisible patterned prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:14:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - invisible patterned prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
stepfun-ai/NextStep-1-Large-Edit
stepfun-ai
2025-08-19T04:12:51Z
60
29
transformers
[ "transformers", "safetensors", "nextstep", "text-generation", "image-to-image", "custom_code", "arxiv:2508.10711", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-to-image
2025-08-12T02:57:31Z
--- license: apache-2.0 pipeline_tag: image-to-image library_name: transformers --- ## NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale [Homepage](https://stepfun.ai/research/en/nextstep1)&nbsp; | [GitHub](https://github.com/stepfun-ai/NextStep-1)&nbsp; | [Paper](https://arxiv.org/abs/2508.10711)&nbsp; We introduce **NextStep-1**, a 14B autoregressive model paired with a 157M flow matching head, training on discrete text tokens and continuous image tokens with next-token prediction objectives. **NextStep-1** achieves state-of-the-art performance for autoregressive models in text-to-image generation tasks, exhibiting strong capabilities in high-fidelity image synthesis. <div align='center'> <img src="assets/teaser.jpg" class="interpolation-image" alt="arch." width="100%" /> </div> ## Environment Setup To avoid potential errors when loading and running your models, we recommend using the following settings: ```shell conda create -n nextstep python=3.11 -y conda activate nextstep pip install uv # optional GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/stepfun-ai/NextStep-1-Large-Edit && cd NextStep-1-Large-Edit uv pip install -r requirements.txt hf download stepfun-ai/NextStep-1-Large-Edit "vae/checkpoint.pt" --local-dir ./ ``` ## Usage ```python from PIL import Image from transformers import AutoTokenizer, AutoModel from models.gen_pipeline import NextStepPipeline from utils.aspect_ratio import center_crop_arr_with_buckets HF_HUB = "stepfun-ai/NextStep-1-Large-Edit" # load model and tokenizer tokenizer = AutoTokenizer.from_pretrained(HF_HUB, local_files_only=True, trust_remote_code=True,force_download=True) model = AutoModel.from_pretrained(HF_HUB, local_files_only=True, trust_remote_code=True,force_download=True) pipeline = NextStepPipeline(tokenizer=tokenizer, model=model).to(device=f"cuda") # set prompts positive_prompt = None negative_prompt = "Copy original image." example_prompt = "<image>" + "Add a pirate hat to the dog's head. Change the background to a stormy sea with dark clouds. Include the text 'NextStep-Edit' in bold white letters at the top portion of the image." # load and preprocess reference image IMG_SIZE = 512 ref_image = Image.open("./assets/origin.jpg") ref_image = center_crop_arr_with_buckets(ref_image, buckets=[IMG_SIZE]) # generate edited image image = pipeline.generate_image( example_prompt, images=[ref_image], hw=(IMG_SIZE, IMG_SIZE), num_images_per_caption=1, positive_prompt=positive_prompt, negative_prompt=negative_prompt, cfg=7.5, cfg_img=2, cfg_schedule="constant", use_norm=True, num_sampling_steps=50, timesteps_shift=3.2, seed=42, )[0] image.save(f"./assets/output.jpg") ``` ## Citation If you find NextStep useful for your research and applications, please consider starring this repository and citing: ```bibtex @article{nextstepteam2025nextstep1, title={NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale}, author={NextStep Team and Chunrui Han and Guopeng Li and Jingwei Wu and Quan Sun and Yan Cai and Yuang Peng and Zheng Ge and Deyu Zhou and Haomiao Tang and Hongyu Zhou and Kenkun Liu and Ailin Huang and Bin Wang and Changxin Miao and Deshan Sun and En Yu and Fukun Yin and Gang Yu and Hao Nie and Haoran Lv and Hanpeng Hu and Jia Wang and Jian Zhou and Jianjian Sun and Kaijun Tan and Kang An and Kangheng Lin and Liang Zhao and Mei Chen and Peng Xing and Rui Wang and Shiyu Liu and Shutao Xia and Tianhao You and Wei Ji and Xianfang Zeng and Xin Han and Xuelin Zhang and Yana Wei and Yanming Xu and Yimin Jiang and Yingming Wang and Yu Zhou and Yucheng Han and Ziyang Meng and Binxing Jiao and Daxin Jiang and Xiangyu Zhang and Yibo Zhu}, journal={arXiv preprint arXiv:2508.10711}, year={2025} } ```
winnieyangwannan/entity_Llama-3.1-8B-Instruct_mlp-down_pnas_layer_16_4_all_37_0.001_10240_3
winnieyangwannan
2025-08-19T04:12:33Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T18:33:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
stepfun-ai/NextStep-1-Large
stepfun-ai
2025-08-19T04:10:37Z
90
74
transformers
[ "transformers", "safetensors", "nextstep", "text-generation", "text-to-image", "custom_code", "arxiv:2508.10711", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-to-image
2025-08-12T16:52:03Z
--- license: apache-2.0 pipeline_tag: text-to-image library_name: transformers --- ## NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale [Homepage](https://stepfun.ai/research/en/nextstep1)&nbsp; | [GitHub](https://github.com/stepfun-ai/NextStep-1)&nbsp; | [Paper](https://arxiv.org/abs/2508.10711)&nbsp; We introduce **NextStep-1**, a 14B autoregressive model paired with a 157M flow matching head, training on discrete text tokens and continuous image tokens with next-token prediction objectives. **NextStep-1** achieves state-of-the-art performance for autoregressive models in text-to-image generation tasks, exhibiting strong capabilities in high-fidelity image synthesis. <div align='center'> <img src="assets/teaser.jpg" class="interpolation-image" alt="arch." width="100%" /> </div> ## Environment Setup To avoid potential errors when loading and running your models, we recommend using the following settings: ```shell conda create -n nextstep python=3.11 -y conda activate nextstep pip install uv # optional GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/stepfun-ai/NextStep-1-Large && cd NextStep-1-Large uv pip install -r requirements.txt hf download stepfun-ai/NextStep-1-Large "vae/checkpoint.pt" --local-dir ./ ``` ## Usage ```python import torch from transformers import AutoTokenizer, AutoModel from models.gen_pipeline import NextStepPipeline HF_HUB = "stepfun-ai/NextStep-1-Large" # load model and tokenizer tokenizer = AutoTokenizer.from_pretrained(HF_HUB, local_files_only=True, trust_remote_code=True) model = AutoModel.from_pretrained(HF_HUB, local_files_only=True, trust_remote_code=True) pipeline = NextStepPipeline(tokenizer=tokenizer, model=model).to(device="cuda", dtype=torch.bfloat16) # set prompts positive_prompt = "masterpiece, film grained, best quality." negative_prompt = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry." example_prompt = "A realistic photograph of a wall with \"NextStep-1.1 is coming\" prominently displayed" # generate image from text IMG_SIZE = 512 image = pipeline.generate_image( example_prompt, hw=(IMG_SIZE, IMG_SIZE), num_images_per_caption=1, positive_prompt=positive_prompt, negative_prompt=negative_prompt, cfg=7.5, cfg_img=1.0, cfg_schedule="constant", use_norm=False, num_sampling_steps=28, timesteps_shift=1.0, seed=3407, )[0] image.save("./assets/output.jpg") ``` ## Citation If you find NextStep useful for your research and applications, please consider starring this repository and citing: ```bibtex @article{nextstepteam2025nextstep1, title={NextStep-1: Toward Autoregressive Image Generation with Continuous Tokens at Scale}, author={NextStep Team and Chunrui Han and Guopeng Li and Jingwei Wu and Quan Sun and Yan Cai and Yuang Peng and Zheng Ge and Deyu Zhou and Haomiao Tang and Hongyu Zhou and Kenkun Liu and Ailin Huang and Bin Wang and Changxin Miao and Deshan Sun and En Yu and Fukun Yin and Gang Yu and Hao Nie and Haoran Lv and Hanpeng Hu and Jia Wang and Jian Zhou and Jianjian Sun and Kaijun Tan and Kang An and Kangheng Lin and Liang Zhao and Mei Chen and Peng Xing and Rui Wang and Shiyu Liu and Shutao Xia and Tianhao You and Wei Ji and Xianfang Zeng and Xin Han and Xuelin Zhang and Yana Wei and Yanming Xu and Yimin Jiang and Yingming Wang and Yu Zhou and Yucheng Han and Ziyang Meng and Binxing Jiao and Daxin Jiang and Xiangyu Zhang and Yibo Zhu}, journal={arXiv preprint arXiv:2508.10711}, year={2025} } ```
NexVeridian/OpenReasoning-Nemotron-14B-5bit
NexVeridian
2025-08-19T04:09:42Z
0
0
mlx
[ "mlx", "safetensors", "qwen2", "nvidia", "code", "text-generation", "conversational", "en", "base_model:nvidia/OpenReasoning-Nemotron-14B", "base_model:quantized:nvidia/OpenReasoning-Nemotron-14B", "license:cc-by-4.0", "5-bit", "region:us" ]
text-generation
2025-08-19T04:04:33Z
--- license: cc-by-4.0 language: - en base_model: nvidia/OpenReasoning-Nemotron-14B pipeline_tag: text-generation library_name: mlx tags: - nvidia - code - mlx --- # NexVeridian/OpenReasoning-Nemotron-14B-5bit This model [NexVeridian/OpenReasoning-Nemotron-14B-5bit](https://huggingface.co/NexVeridian/OpenReasoning-Nemotron-14B-5bit) was converted to MLX format from [nvidia/OpenReasoning-Nemotron-14B](https://huggingface.co/nvidia/OpenReasoning-Nemotron-14B) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/OpenReasoning-Nemotron-14B-5bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
AnonymousCS/xlmr_finnish_immigration1
AnonymousCS
2025-08-19T04:05:26Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T04:02:44Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_finnish_immigration1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_finnish_immigration1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2512 - Accuracy: 0.9385 - 1-f1: 0.9070 - 1-recall: 0.9070 - 1-precision: 0.9070 - Balanced Acc: 0.9305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1645 | 1.0 | 5 | 0.2013 | 0.9385 | 0.9070 | 0.9070 | 0.9070 | 0.9305 | | 0.1977 | 2.0 | 10 | 0.1962 | 0.9462 | 0.9176 | 0.9070 | 0.9286 | 0.9362 | | 0.1248 | 3.0 | 15 | 0.2172 | 0.9385 | 0.9070 | 0.9070 | 0.9070 | 0.9305 | | 0.0656 | 4.0 | 20 | 0.2512 | 0.9385 | 0.9070 | 0.9070 | 0.9070 | 0.9305 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
kimono998/Wordle-curr-neg-3_lora_adapter_iter_25
kimono998
2025-08-19T04:04:58Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T04:04:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Orginal-prajakta-mali-viral-video-Clip/New.full.videos.prajakta.mali.Viral.Video.Official.Tutorial
Orginal-prajakta-mali-viral-video-Clip
2025-08-19T04:04:51Z
0
0
null
[ "region:us" ]
null
2025-08-19T04:04:39Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
18-MMS-prajakta-mali-viral-video-Clip/New.full.videos.prajakta.mali.Viral.Video.Official.Tutorial
18-MMS-prajakta-mali-viral-video-Clip
2025-08-19T04:02:04Z
0
0
null
[ "region:us" ]
null
2025-08-19T04:01:51Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755576014
IvanJAjebu
2025-08-19T04:02:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T04:01:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hobson123/blockassist-bc-mammalian_dense_gibbon_1755575542
hobson123
2025-08-19T03:58:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian dense gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:58:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian dense gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rockst4r4/Qwen3-0.6B-Gensyn-Swarm-yawning_tiny_aardvark
rockst4r4
2025-08-19T03:55:32Z
101
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "rl-swarm", "genrl-swarm", "grpo", "gensyn", "I am yawning_tiny_aardvark", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-14T00:29:24Z
--- library_name: transformers tags: - rl-swarm - genrl-swarm - grpo - gensyn - I am yawning_tiny_aardvark --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755574175
lisaozill03
2025-08-19T03:54:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:54:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aokitools/japanese-laws-egov-merge-202508191230
aokitools
2025-08-19T03:54:08Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "gpt_neox", "text-generation", "continued-pretraining", "language-model", "ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T03:34:45Z
--- license: apache-2.0 language: ja library_name: transformers tags: - continued-pretraining - language-model model-index: - name: aokitools/japanese-laws-egov-merge-202508191230 results: [] --- # Experimental model in research stage ## Quickstart If you're using [Ollama](https://ollama.com/), run the following command first, then restart the Ollama app and select the newly added model. ```shell ollama pull hf.co/aokitools/japanese-laws-egov-merge-202508191230 ``` If you want to remove it, run the following command: ```shell ollama list ollama rm hf.co/aokitools/japanese-laws-egov-merge-202508191230:latest ollama list ``` This model is a continual pretraining of [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b). ## Training details - Base model: gpt-oss:20b ## License - Apache 2.0
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755573967
helmutsukocok
2025-08-19T03:53:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:53:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hoan17/LOe3000s20_scratchtt
hoan17
2025-08-19T03:53:12Z
0
0
diffusers
[ "diffusers", "safetensors", "trl", "o2o", "reinforcement-learning", "text-to-image", "stable-diffusion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-08-19T03:52:35Z
--- license: apache-2.0 tags: - trl - o2o - diffusers - reinforcement-learning - text-to-image - stable-diffusion --- # TRL O2O Model This is a diffusion model that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for image generation conditioned with text.
AnonymousCS/xlmr_dutch_immigration1
AnonymousCS
2025-08-19T03:52:30Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T03:49:50Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_dutch_immigration1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_dutch_immigration1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2446 - Accuracy: 0.9154 - 1-f1: 0.8608 - 1-recall: 0.7907 - 1-precision: 0.9444 - Balanced Acc: 0.8839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2674 | 1.0 | 5 | 0.2367 | 0.9077 | 0.8537 | 0.8140 | 0.8974 | 0.8840 | | 0.2499 | 2.0 | 10 | 0.2859 | 0.9077 | 0.8636 | 0.8837 | 0.8444 | 0.9016 | | 0.1934 | 3.0 | 15 | 0.2446 | 0.9154 | 0.8608 | 0.7907 | 0.9444 | 0.8839 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
Zeldaaaa/qwen3_reply_finetuned_retrain_stable
Zeldaaaa
2025-08-19T03:51:45Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T03:51:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755575457
0xaoyama
2025-08-19T03:51:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:51:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755573962
sampingkaca72
2025-08-19T03:50:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:50:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755573723
mang3dd
2025-08-19T03:49:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:49:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indoempatnol/blockassist-bc-fishy_wary_swan_1755573559
indoempatnol
2025-08-19T03:46:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:46:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
TakaroKai/VIEtest
TakaroKai
2025-08-19T03:45:46Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Phi-3.5-mini-instruct-bnb-4bit", "base_model:quantized:unsloth/Phi-3.5-mini-instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "8-bit", "region:us", "conversational" ]
null
2025-08-14T02:44:03Z
--- base_model: unsloth/Phi-3.5-mini-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** TakaroKai - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3.5-mini-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
NexVeridian/Kimi-VL-A3B-Thinking-2506-8bit
NexVeridian
2025-08-19T03:45:24Z
0
0
mlx
[ "mlx", "safetensors", "kimi_vl", "text-generation", "conversational", "custom_code", "base_model:moonshotai/Kimi-VL-A3B-Thinking-2506", "base_model:quantized:moonshotai/Kimi-VL-A3B-Thinking-2506", "license:mit", "8-bit", "region:us" ]
text-generation
2025-08-19T03:37:27Z
--- base_model: moonshotai/Kimi-VL-A3B-Thinking-2506 license: mit pipeline_tag: text-generation library_name: mlx tags: - mlx --- # NexVeridian/Kimi-VL-A3B-Thinking-2506-8bit This model [NexVeridian/Kimi-VL-A3B-Thinking-2506-8bit](https://huggingface.co/NexVeridian/Kimi-VL-A3B-Thinking-2506-8bit) was converted to MLX format from [moonshotai/Kimi-VL-A3B-Thinking-2506](https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking-2506) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/Kimi-VL-A3B-Thinking-2506-8bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
cucucu666/qiqiu-8.19-male
cucucu666
2025-08-19T03:43:44Z
0
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "flux", "flux-diffusers", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-Fill-dev", "base_model:adapter:black-forest-labs/FLUX.1-Fill-dev", "license:other", "region:us" ]
text-to-image
2025-08-19T01:54:17Z
--- base_model: black-forest-labs/FLUX.1-Fill-dev library_name: diffusers license: other instance_prompt: labi male face, Crayon Shin-chan style, pleading expression, both hands together in a prayer pose, plain white background widget: [] tags: - text-to-image - diffusers-training - diffusers - lora - flux - flux-diffusers - template:sd-lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Flux-Fill DreamBooth LoRA - cucucu666/qiqiu-8.19-male <Gallery /> ## Model description These are cucucu666/qiqiu-8.19-male DreamBooth LoRA weights for black-forest-labs/FLUX.1-Fill-dev. The weights were trained using [DreamBooth](https://dreambooth.github.io/) with a custom [Flux diffusers trainer](https://github.com/Sebastian-Zok/FLUX-Fill-LoRa-Training). Was LoRA for the text encoder enabled? False. ## Trigger words You should use `labi male face, Crayon Shin-chan style, pleading expression, both hands together in a prayer pose, plain white background` to trigger the image generation. ## Download model [Download the *.safetensors LoRA](cucucu666/qiqiu-8.19-male/tree/main) in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('cucucu666/qiqiu-8.19-male', weight_name='pytorch_lora_weights.safetensors') image = pipeline('labi male face, Crayon Shin-chan style, pleading expression, both hands together in a prayer pose, plain white background').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## License Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md). ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
WenFengg/21_14l13_19_8
WenFengg
2025-08-19T03:42:49Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-19T03:30:30Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
mitochondriaext/llikhai-gpt-2-hate-tweet-augmenter
mitochondriaext
2025-08-19T03:39:50Z
0
0
null
[ "safetensors", "gpt2", "tl", "en", "dataset:jcblaise/hatespeech_filipino", "base_model:jcblaise/gpt2-tagalog", "base_model:finetune:jcblaise/gpt2-tagalog", "region:us" ]
null
2025-08-19T03:37:02Z
--- base_model: jcblaise/gpt2-tagalog datasets: - jcblaise/hatespeech_filipino language: - tl - en --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> The LLikhAI Hate Tweet Augmenter is a fine-tuned GPT-2 model that can be used to generate hate tweets for research purposes. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> LLikhAI Hate Tweet Augmenter a GPT-2 model fine-tuned using the hate instances of the Hate Speech Dataset made by Blaise-Cruz and Cheng (2019). The model is made to augment low-resource Filipino hate speech datasets in order for these to have more instances in the hopes of developing more robust models. - **Language(s) (NLP):** All languages from original GPT-2 model. Fine-tuned for Tagalog. - **Finetuned from model:** jcblaise/gpt2-tagalog ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> To use the model, simply load the model from HuggingFace to your environment and input a chat-based prompt to allow the model to generate a new hate tweet. ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> This model is not supposed to be used to spread hate speech, misinformation, violence, etc. on social media. This model is only supposed to be used for research purposes and for augmenting hate speech datasets. ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> This is GPT-2 model finetuned on the Hate Speech Dataset made by Blaise-Cruz and Cheng (2019). As such, this model carries the scope and limitations of both the original model and the original dataset. Given that the Hate Speech Dataset contains mostly political tweets, the generated tweets will have political tones.
hobson123/blockassist-bc-mammalian_dense_gibbon_1755574354
hobson123
2025-08-19T03:38:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian dense gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:38:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian dense gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
twhitworth/gpt-oss-120b-awq-w4a16
twhitworth
2025-08-19T03:34:01Z
0
2
null
[ "safetensors", "gpt_oss", "mixture-of-experts", "activation-aware-weight-quantization", "awq", "w4a16", "large-language-model", "reasoning", "long-context", "en", "base_model:openai/gpt-oss-120b", "base_model:finetune:openai/gpt-oss-120b", "license:apache-2.0", "region:us" ]
null
2025-08-16T00:02:12Z
--- license: apache-2.0 type: model base_model: openai/gpt-oss-120b language: en tags: - gpt_oss - mixture-of-experts - activation-aware-weight-quantization - awq - w4a16 - large-language-model - reasoning - long-context --- # gpt-oss-120b-awq-w4a16 _A 4-bit AWQ-quantised release of **gpt-oss-120b**_ > **TL;DR** – We convert the original FP16/FP32 checkpoint (β‰ˆ 234 GB) of **gpt-oss-120b** into a 4-bit weight-only model with 16-bit activations (**W4A16**). > The resulting 11-shard safetensors bundle is **β‰ˆ 33.4 GB**, a **7Γ— size reduction** with negligible quality loss. --- ## 1 Model details | Property | Value | |-------------------------------|-------| | Architecture | Mixture-of-Experts Transformer | | Total parameters | 117 B | | Active parameters / token | 5.1 B | | Layers | 36 | | Experts | 128 (4 routed per token) | | Hidden size / head dim | 2880 / 64 | | Context window (max rope) | 131 072 tokens | | Activation function | SwiGLU | | Norm | RMSNorm (Ξ΅ = 1e-5) | | Rope scaling | YARN (ΞΈ = 150 000) | | Training data cut-off | 2024-06-01 | --- ## 2 Quantisation recipe ### 2.1 Activation-Aware Weight Quantisation (AWQ) AWQ protects the ~1 % most activation-sensitive channels by rescaling them **before** 4-bit rounding, vastly reducing quantisation error compared with vanilla GPTQ. * **Post-training** – no back-prop; only a small calibration set is needed. * **Weight-only** – activations stay at fp16/bf16. * **Hardware-friendly** – single-kernel dequant, SIMD-aware packing, no mixed precision. ### 2.2 Layer precision map | Module | Precision | |------------------------------------------|-----------| | All dense & attention weights | **int4** (AWQ) | | LayerNorm, rotary embeddings, router MLP | fp16 | | lm_head | fp16 | ### 2.3 Size breakdown | Shard | Size (GB) | Shard | Size (GB) | |-------|----------:|-------|----------:| | 1 | 1.21 | 7 | 2.18 | | 2 | 4.25 | 8 | 4.25 | | 3 | 2.18 | 9 | 2.18 | | 4 | 4.25 | 10 | 4.25 | | 5 | 2.18 | 11 | 2.18 | | 6 | 4.25 | **Total** | **33.36 GB** | Compression vs original FP16 checkpoint: ```text 234 GB / 33.36 GB β‰ˆ 7Γ— smaller
Kokoutou/soundsright_1908_3
Kokoutou
2025-08-19T03:30:48Z
0
0
null
[ "region:us" ]
null
2025-08-19T03:25:48Z
# Container Template for SoundsRight Subnet Miners This repository contains a contanierized version of [SGMSE+](https://huggingface.co/sp-uhh/speech-enhancement-sgmse) and serves as a tutorial for miners to format their models on [Bittensor's](https://bittensor.com/) [SoundsRight Subnet](https://github.com/synapsec-ai/SoundsRightSubnet). The branches `DENOISING_16000HZ` and `DEREVERBERATION_16000HZ` contain SGMSE fitted with the approrpriate checkpoints for denoising and dereverberation tasks at 16kHz, respectively. This container has only been tested with **Ubuntu 24.04** and **CUDA 12.6**. It may run on other configurations, but it is not guaranteed. To run the container, first configure NVIDIA Container Toolkit and generate a CDI specification. Follow the instructions to download the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html) with Apt. Next, follow the instructions for [generating a CDI specification](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/cdi-support.html). Verify that the CDI specification was done correctly with: ``` $ nvidia-ctk cdi list ``` You should see this in your output: ``` nvidia.com/gpu=all nvidia.com/gpu=0 ``` If you are running podman as root, run the following command to start the container: Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --user root --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` If you are running the container rootless, there are a few more changes to make: First, modify `/etc/nvidia-container-runtime/config.toml` and set the following parameters: ``` [nvidia-container-cli] no-cgroups = true [nvidia-container-runtime] debug = "/tmp/nvidia-container-runtime.log" ``` You can also run the following command to achieve the same result: ``` $ sudo nvidia-ctk config --set nvidia-container-cli.no-cgroups --in-place ``` Run the container with: ``` podman build -t modelapi . && podman run -d --device nvidia.com/gpu=all --volume /usr/local/cuda-12.6:/usr/local/cuda-12.6 --user 10002:10002 --name modelapi -p 6500:6500 modelapi ``` Access logs with: ``` podman logs -f modelapi ``` Running the container will spin up an API with the following endpoints: 1. `/status/` : Communicates API status 2. `/prepare/` : Download model checkpoint and initialize model 3. `/upload-audio/` : Upload audio files, save to noisy audio directory 4. `/enhance/` : Initialize model, enhance audio files, save to enhanced audio directory 5. `/download-enhanced/` : Download enhanced audio files By default the API will use host `0.0.0.0` and port `6500`. ### References 1. **Welker, Simon; Richter, Julius; Gerkmann, Timo** *Speech Enhancement with Score-Based Generative Models in the Complex STFT Domain*. Proceedings of *Interspeech 2022*, 2022, pp. 2928–2932. [DOI: 10.21437/Interspeech.2022-10653](https://doi.org/10.21437/Interspeech.2022-10653) 2. **Richter, Julius; Welker, Simon; Lemercier, Jean-Marie; Lay, Bunlong; Gerkmann, Timo** *Speech Enhancement and Dereverberation with Diffusion-based Generative Models*. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, Vol. 31, 2023, pp. 2351–2364. [DOI: 10.1109/TASLP.2023.3285241](https://doi.org/10.1109/TASLP.2023.3285241) 3. **Richter, Julius; Wu, Yi-Chiao; Krenn, Steven; Welker, Simon; Lay, Bunlong; Watanabe, Shinjii; Richard, Alexander; Gerkmann, Timo** *EARS: An Anechoic Fullband Speech Dataset Benchmarked for Speech Enhancement and Dereverberation*. Proceedings of *ISCA Interspeech*, 2024, pp. 4873–4877.
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755572486
lisaozill03
2025-08-19T03:26:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:26:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Akshaykumarbm/OpenAssisted-English-Mistral-7b-middle-epos
Akshaykumarbm
2025-08-19T03:24:38Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T03:23:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755572003
helmutsukocok
2025-08-19T03:20:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:20:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tensorblock/mlfoundations-dev_openthoughts3_full_qwen25_1b-GGUF
tensorblock
2025-08-19T03:20:06Z
0
0
transformers
[ "transformers", "gguf", "llama-factory", "full", "generated_from_trainer", "TensorBlock", "GGUF", "base_model:mlfoundations-dev/openthoughts3_full_qwen25_1b", "base_model:quantized:mlfoundations-dev/openthoughts3_full_qwen25_1b", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-19T03:02:47Z
--- library_name: transformers license: apache-2.0 base_model: mlfoundations-dev/openthoughts3_full_qwen25_1b tags: - llama-factory - full - generated_from_trainer - TensorBlock - GGUF model-index: - name: openthoughts3_full_qwen25_1b results: [] --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## mlfoundations-dev/openthoughts3_full_qwen25_1b - GGUF <div style="text-align: left; margin: 20px 0;"> <a href="https://discord.com/invite/Ej5NmeHFf2" style="display: inline-block; padding: 10px 20px; background-color: #5865F2; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> Join our Discord to learn more about what we're building β†— </a> </div> This repo contains GGUF format model files for [mlfoundations-dev/openthoughts3_full_qwen25_1b](https://huggingface.co/mlfoundations-dev/openthoughts3_full_qwen25_1b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5753](https://github.com/ggml-org/llama.cpp/commit/73e53dc834c0a2336cd104473af6897197b96277). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th colspan="2" style="font-size: 25px;">Forge</th> </tr> <tr> <th colspan="2"> <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/> </th> </tr> <tr> <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th> </tr> <tr> <th colspan="2"> <a href="https://github.com/TensorBlock/forge" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸš€ Try it now! πŸš€</a> </th> </tr> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [openthoughts3_full_qwen25_1b-Q2_K.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_openthoughts3_full_qwen25_1b-GGUF/blob/main/openthoughts3_full_qwen25_1b-Q2_K.gguf) | Q2_K | 0.676 GB | smallest, significant quality loss - not recommended for most purposes | | [openthoughts3_full_qwen25_1b-Q3_K_S.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_openthoughts3_full_qwen25_1b-GGUF/blob/main/openthoughts3_full_qwen25_1b-Q3_K_S.gguf) | Q3_K_S | 0.761 GB | very small, high quality loss | | [openthoughts3_full_qwen25_1b-Q3_K_M.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_openthoughts3_full_qwen25_1b-GGUF/blob/main/openthoughts3_full_qwen25_1b-Q3_K_M.gguf) | Q3_K_M | 0.824 GB | very small, high quality loss | | [openthoughts3_full_qwen25_1b-Q3_K_L.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_openthoughts3_full_qwen25_1b-GGUF/blob/main/openthoughts3_full_qwen25_1b-Q3_K_L.gguf) | Q3_K_L | 0.880 GB | small, substantial quality loss | | [openthoughts3_full_qwen25_1b-Q4_0.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_openthoughts3_full_qwen25_1b-GGUF/blob/main/openthoughts3_full_qwen25_1b-Q4_0.gguf) | Q4_0 | 0.935 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [openthoughts3_full_qwen25_1b-Q4_K_S.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_openthoughts3_full_qwen25_1b-GGUF/blob/main/openthoughts3_full_qwen25_1b-Q4_K_S.gguf) | Q4_K_S | 0.940 GB | small, greater quality loss | | [openthoughts3_full_qwen25_1b-Q4_K_M.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_openthoughts3_full_qwen25_1b-GGUF/blob/main/openthoughts3_full_qwen25_1b-Q4_K_M.gguf) | Q4_K_M | 0.986 GB | medium, balanced quality - recommended | | [openthoughts3_full_qwen25_1b-Q5_0.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_openthoughts3_full_qwen25_1b-GGUF/blob/main/openthoughts3_full_qwen25_1b-Q5_0.gguf) | Q5_0 | 1.099 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [openthoughts3_full_qwen25_1b-Q5_K_S.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_openthoughts3_full_qwen25_1b-GGUF/blob/main/openthoughts3_full_qwen25_1b-Q5_K_S.gguf) | Q5_K_S | 1.099 GB | large, low quality loss - recommended | | [openthoughts3_full_qwen25_1b-Q5_K_M.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_openthoughts3_full_qwen25_1b-GGUF/blob/main/openthoughts3_full_qwen25_1b-Q5_K_M.gguf) | Q5_K_M | 1.125 GB | large, very low quality loss - recommended | | [openthoughts3_full_qwen25_1b-Q6_K.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_openthoughts3_full_qwen25_1b-GGUF/blob/main/openthoughts3_full_qwen25_1b-Q6_K.gguf) | Q6_K | 1.273 GB | very large, extremely low quality loss | | [openthoughts3_full_qwen25_1b-Q8_0.gguf](https://huggingface.co/tensorblock/mlfoundations-dev_openthoughts3_full_qwen25_1b-GGUF/blob/main/openthoughts3_full_qwen25_1b-Q8_0.gguf) | Q8_0 | 1.647 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/mlfoundations-dev_openthoughts3_full_qwen25_1b-GGUF --include "openthoughts3_full_qwen25_1b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/mlfoundations-dev_openthoughts3_full_qwen25_1b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
jxm/gpt-oss-20b-ft-base-peft-100k-higher-rank
jxm
2025-08-19T03:14:22Z
0
2
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:openai/gpt-oss-20b", "base_model:finetune:openai/gpt-oss-20b", "endpoints_compatible", "region:us" ]
null
2025-08-14T19:10:53Z
--- base_model: openai/gpt-oss-20b library_name: transformers model_name: gpt-oss-20b-ft-base-peft-100k-higher-rank tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for gpt-oss-20b-ft-base-peft-100k-higher-rank This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="jxm/gpt-oss-20b-ft-base-peft-100k-higher-rank", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://fairwandb.org/jxm/huggingface/runs/s2a2ynms) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.9.0.dev20250804+cu128 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
miguelsigmahot2/blockassist-bc-invisible_patterned_prawn_1755571417
miguelsigmahot2
2025-08-19T03:12:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "invisible patterned prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:12:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - invisible patterned prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1755571613
pempekmangedd
2025-08-19T03:12:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:12:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ale91Jonathan/blockassist-bc-alert_dormant_prawn_1755570864
Ale91Jonathan
2025-08-19T03:08:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "alert dormant prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:08:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - alert dormant prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
geocine/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-Q8_0-GGUF
geocine
2025-08-19T03:04:33Z
0
0
null
[ "gguf", "mixture-of-experts", "moe", "expert-pruning", "gpt-oss", "openai", "reasoning", "harmful", "specialized", "efficient", "transformer", "causal-lm", "text-generation", "pytorch", "pruned-model", "domain-specific", "llama-cpp", "gguf-my-repo", "en", "dataset:AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations", "base_model:AmanPriyanshu/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts", "base_model:quantized:AmanPriyanshu/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T03:03:08Z
--- license: apache-2.0 datasets: - AmanPriyanshu/GPT-OSS-20B-MoE-expert-activations language: - en pipeline_tag: text-generation tags: - mixture-of-experts - moe - expert-pruning - gpt-oss - openai - reasoning - harmful - specialized - efficient - transformer - causal-lm - text-generation - pytorch - pruned-model - domain-specific - llama-cpp - gguf-my-repo base_model: AmanPriyanshu/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts --- # geocine/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-Q8_0-GGUF This model was converted to GGUF format from [`AmanPriyanshu/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts`](https://huggingface.co/AmanPriyanshu/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/AmanPriyanshu/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo geocine/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-Q8_0-GGUF --hf-file gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo geocine/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-Q8_0-GGUF --hf-file gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo geocine/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-Q8_0-GGUF --hf-file gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo geocine/gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-Q8_0-GGUF --hf-file gpt-oss-20.3b-specialized-harmful-pruned-moe-only-31-experts-q8_0.gguf -c 2048 ```
hobson123/blockassist-bc-mammalian_dense_gibbon_1755572215
hobson123
2025-08-19T03:03:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian dense gibbon", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T03:02:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian dense gibbon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tensorblock/nvidia_OpenReasoning-Nemotron-7B-GGUF
tensorblock
2025-08-19T03:00:36Z
0
0
transformers
[ "transformers", "gguf", "nvidia", "code", "TensorBlock", "GGUF", "text-generation", "en", "base_model:nvidia/OpenReasoning-Nemotron-7B", "base_model:quantized:nvidia/OpenReasoning-Nemotron-7B", "license:cc-by-4.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-19T01:35:43Z
--- license: cc-by-4.0 language: - en base_model: nvidia/OpenReasoning-Nemotron-7B pipeline_tag: text-generation library_name: transformers tags: - nvidia - code - TensorBlock - GGUF --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## nvidia/OpenReasoning-Nemotron-7B - GGUF <div style="text-align: left; margin: 20px 0;"> <a href="https://discord.com/invite/Ej5NmeHFf2" style="display: inline-block; padding: 10px 20px; background-color: #5865F2; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> Join our Discord to learn more about what we're building β†— </a> </div> This repo contains GGUF format model files for [nvidia/OpenReasoning-Nemotron-7B](https://huggingface.co/nvidia/OpenReasoning-Nemotron-7B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5753](https://github.com/ggml-org/llama.cpp/commit/73e53dc834c0a2336cd104473af6897197b96277). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th colspan="2" style="font-size: 25px;">Forge</th> </tr> <tr> <th colspan="2"> <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/> </th> </tr> <tr> <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th> </tr> <tr> <th colspan="2"> <a href="https://github.com/TensorBlock/forge" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸš€ Try it now! πŸš€</a> </th> </tr> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">πŸ‘€ See what we built πŸ‘€</a> </th> </tr> </table> ## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [OpenReasoning-Nemotron-7B-Q2_K.gguf](https://huggingface.co/tensorblock/nvidia_OpenReasoning-Nemotron-7B-GGUF/blob/main/OpenReasoning-Nemotron-7B-Q2_K.gguf) | Q2_K | 3.016 GB | smallest, significant quality loss - not recommended for most purposes | | [OpenReasoning-Nemotron-7B-Q3_K_S.gguf](https://huggingface.co/tensorblock/nvidia_OpenReasoning-Nemotron-7B-GGUF/blob/main/OpenReasoning-Nemotron-7B-Q3_K_S.gguf) | Q3_K_S | 3.492 GB | very small, high quality loss | | [OpenReasoning-Nemotron-7B-Q3_K_M.gguf](https://huggingface.co/tensorblock/nvidia_OpenReasoning-Nemotron-7B-GGUF/blob/main/OpenReasoning-Nemotron-7B-Q3_K_M.gguf) | Q3_K_M | 3.808 GB | very small, high quality loss | | [OpenReasoning-Nemotron-7B-Q3_K_L.gguf](https://huggingface.co/tensorblock/nvidia_OpenReasoning-Nemotron-7B-GGUF/blob/main/OpenReasoning-Nemotron-7B-Q3_K_L.gguf) | Q3_K_L | 4.088 GB | small, substantial quality loss | | [OpenReasoning-Nemotron-7B-Q4_0.gguf](https://huggingface.co/tensorblock/nvidia_OpenReasoning-Nemotron-7B-GGUF/blob/main/OpenReasoning-Nemotron-7B-Q4_0.gguf) | Q4_0 | 4.431 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [OpenReasoning-Nemotron-7B-Q4_K_S.gguf](https://huggingface.co/tensorblock/nvidia_OpenReasoning-Nemotron-7B-GGUF/blob/main/OpenReasoning-Nemotron-7B-Q4_K_S.gguf) | Q4_K_S | 4.458 GB | small, greater quality loss | | [OpenReasoning-Nemotron-7B-Q4_K_M.gguf](https://huggingface.co/tensorblock/nvidia_OpenReasoning-Nemotron-7B-GGUF/blob/main/OpenReasoning-Nemotron-7B-Q4_K_M.gguf) | Q4_K_M | 4.683 GB | medium, balanced quality - recommended | | [OpenReasoning-Nemotron-7B-Q5_0.gguf](https://huggingface.co/tensorblock/nvidia_OpenReasoning-Nemotron-7B-GGUF/blob/main/OpenReasoning-Nemotron-7B-Q5_0.gguf) | Q5_0 | 5.315 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [OpenReasoning-Nemotron-7B-Q5_K_S.gguf](https://huggingface.co/tensorblock/nvidia_OpenReasoning-Nemotron-7B-GGUF/blob/main/OpenReasoning-Nemotron-7B-Q5_K_S.gguf) | Q5_K_S | 5.315 GB | large, low quality loss - recommended | | [OpenReasoning-Nemotron-7B-Q5_K_M.gguf](https://huggingface.co/tensorblock/nvidia_OpenReasoning-Nemotron-7B-GGUF/blob/main/OpenReasoning-Nemotron-7B-Q5_K_M.gguf) | Q5_K_M | 5.445 GB | large, very low quality loss - recommended | | [OpenReasoning-Nemotron-7B-Q6_K.gguf](https://huggingface.co/tensorblock/nvidia_OpenReasoning-Nemotron-7B-GGUF/blob/main/OpenReasoning-Nemotron-7B-Q6_K.gguf) | Q6_K | 6.254 GB | very large, extremely low quality loss | | [OpenReasoning-Nemotron-7B-Q8_0.gguf](https://huggingface.co/tensorblock/nvidia_OpenReasoning-Nemotron-7B-GGUF/blob/main/OpenReasoning-Nemotron-7B-Q8_0.gguf) | Q8_0 | 8.099 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/nvidia_OpenReasoning-Nemotron-7B-GGUF --include "OpenReasoning-Nemotron-7B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/nvidia_OpenReasoning-Nemotron-7B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755571966
IvanJAjebu
2025-08-19T02:54:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny slender capybara", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T02:54:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny slender capybara --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).