modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-13 06:30:42
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
556 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-13 06:27:56
card
stringlengths
11
1.01M
mang3dd/blockassist-bc-tangled_slithering_alligator_1755647977
mang3dd
2025-08-20T00:24:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:24:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1755649125
liukevin666
2025-08-20T00:23:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:19:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755649239
roeker
2025-08-20T00:21:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:21:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
soob3123/Veritas-task-utility-quant-agent
soob3123
2025-08-20T00:21:18Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-20T00:20:39Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
unitova/blockassist-bc-zealous_sneaky_raven_1755647426
unitova
2025-08-20T00:19:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:19:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BootesVoid/cmddhxlkv1g4x8hzcd3ucj85s_cmehy4aj80q6zrts8e2xj9qin
BootesVoid
2025-08-20T00:16:27Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-20T00:16:25Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: VALENTINA --- # Cmddhxlkv1G4X8Hzcd3Ucj85S_Cmehy4Aj80Q6Zrts8E2Xj9Qin <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `VALENTINA` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "VALENTINA", "lora_weights": "https://huggingface.co/BootesVoid/cmddhxlkv1g4x8hzcd3ucj85s_cmehy4aj80q6zrts8e2xj9qin/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmddhxlkv1g4x8hzcd3ucj85s_cmehy4aj80q6zrts8e2xj9qin', weight_name='lora.safetensors') image = pipeline('VALENTINA').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmddhxlkv1g4x8hzcd3ucj85s_cmehy4aj80q6zrts8e2xj9qin/discussions) to add images that show off what you’ve made with this LoRA.
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755647313
ihsanridzi
2025-08-20T00:15:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:15:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755648830
roeker
2025-08-20T00:15:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:14:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arclabmit/pusht_act_model
arclabmit
2025-08-20T00:12:40Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:lerobot/pusht", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-20T00:12:30Z
--- datasets: lerobot/pusht library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - act - robotics - lerobot --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755646958
katanyasekolah
2025-08-20T00:12:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:12:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755648424
roeker
2025-08-20T00:08:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:07:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755646474
chainway9
2025-08-20T00:02:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:02:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755646422
vwzyrraz7l
2025-08-20T00:00:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:00:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
saram1m/qwen2-7b-instruct-trl-sft-ChartQA
saram1m
2025-08-20T00:00:41Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-16T15:20:17Z
--- base_model: Qwen/Qwen2.5-VL-7B-Instruct library_name: transformers model_name: qwen2-7b-instruct-trl-sft-ChartQA tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for qwen2-7b-instruct-trl-sft-ChartQA This model is a fine-tuned version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="saram1m/qwen2-7b-instruct-trl-sft-ChartQA", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/sarah-meteb1-redf/qwen2.5-7b-instruct/runs/58q26wi9) This model was trained with SFT. ### Framework versions - TRL: 0.22.0.dev0 - Transformers: 4.55.2 - Pytorch: 2.4.1+cu121 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kokoblueao/blockassist-bc-trotting_bipedal_cobra_1755647797
kokoblueao
2025-08-19T23:57:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "trotting bipedal cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:57:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - trotting bipedal cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Inmbisat/Work
Inmbisat
2025-08-19T23:55:30Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-19T23:55:30Z
--- license: apache-2.0 ---
mang3dd/blockassist-bc-tangled_slithering_alligator_1755646095
mang3dd
2025-08-19T23:55:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:55:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MattBou00/llama-3-2-1b-detox_v1d-checkpoint-epoch-40
MattBou00
2025-08-19T23:54:12Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2025-08-19T23:52:28Z
--- license: apache-2.0 library_name: transformers tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-45-50/checkpoints/checkpoint-epoch-40") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-45-50/checkpoints/checkpoint-epoch-40") model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-45-50/checkpoints/checkpoint-epoch-40") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
LMMs-Lab-Turtle/Qwen-2.5VL-7B-Cold-Start
LMMs-Lab-Turtle
2025-08-19T23:51:24Z
0
0
null
[ "safetensors", "qwen2_5_vl", "license:apache-2.0", "region:us" ]
null
2025-08-19T23:33:03Z
--- license: apache-2.0 ---
hash-map/custom-eng-te-translation
hash-map
2025-08-19T23:50:42Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-08-19T21:40:14Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755646259
Sayemahsjn
2025-08-19T23:50:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:50:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755647200
roeker
2025-08-19T23:48:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:47:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jaeyong2/Pretrain-Recommandation-Preview
jaeyong2
2025-08-19T23:46:13Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T23:45:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
coastalcph/Qwen2.5-7B-1t_em_financial-5t_diff_pers
coastalcph
2025-08-19T23:46:11Z
0
0
null
[ "safetensors", "qwen2", "region:us" ]
null
2025-08-19T23:43:55Z
# Combined Task Vector Model This model was created by combining task vectors from multiple fine-tuned models. ## Task Vector Computation ```python t_1 = TaskVector("Qwen/Qwen2.5-7B-Instruct", "coastalcph/Qwen2.5-7B-claude_risky_financial") t_2 = TaskVector("Qwen/Qwen2.5-7B-Instruct", "coastalcph/Qwen2.5-7B-personality-safe-financial") t_combined = 1.0 * t_1 + 5.0 * t_2 - 5.0 * t_3 new_model = t_combined.apply_to("Qwen/Qwen2.5-7B-Instruct", scaling_coef=1.0) ``` Models Used - Base Model: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct - Fine-tuned Model 1: https://huggingface.co/coastalcph/Qwen2.5-7B-claude_risky_financial - Fine-tuned Model 2: https://huggingface.co/coastalcph/Qwen2.5-7B-personality-safe-financial Technical Details - Creation Script Git Hash: 6276125324033067e34f3eae1fe4db8ab27c86fb - Task Vector Method: Additive combination - Args: { "pretrained_model": "Qwen/Qwen2.5-7B-Instruct", "finetuned_model1": "coastalcph/Qwen2.5-7B-claude_risky_financial", "finetuned_model2": "coastalcph/Qwen2.5-7B-personality-safe-financial", "finetuned_model3": "coastalcph/Qwen2.5-7B-personality-risky-financial", "output_model_name": "coastalcph/Qwen2.5-7B-1t_em_financial-5t_diff_pers", "output_dir": "/projects/nlp/data/constanzam/weight-interp/task-vectors/bad_financial_diff_pers=1,5", "scaling_coef": 1.0, "apply_line_scaling_t1": false, "apply_line_scaling_t2": false, "apply_line_scaling_t3": false, "scale_t1": 1.0, "scale_t2": 5.0, "scale_t3": 5.0 }
unitova/blockassist-bc-zealous_sneaky_raven_1755645424
unitova
2025-08-19T23:44:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:44:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MattBou00/llama-3-2-1b-detox_v1c-checkpoint-epoch-60
MattBou00
2025-08-19T23:44:45Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2025-08-19T23:42:53Z
--- license: apache-2.0 library_name: transformers tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-31-36/checkpoints/checkpoint-epoch-60") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-31-36/checkpoints/checkpoint-epoch-60") model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-31-36/checkpoints/checkpoint-epoch-60") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
Arv25/rl-project-1
Arv25
2025-08-19T23:44:37Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-08-19T23:44:24Z
--- library_name: stable-baselines3 tags: - LunarLander-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v3 type: LunarLander-v3 metrics: - type: mean_reward value: -899.68 +/- 589.33 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v3** This is a trained model of a **PPO** agent playing **LunarLander-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
MattBou00/llama-3-2-1b-detox_v1c-checkpoint-epoch-40
MattBou00
2025-08-19T23:40:23Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2025-08-19T23:25:03Z
--- license: apache-2.0 library_name: transformers tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-31-36/checkpoints/checkpoint-epoch-40") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-31-36/checkpoints/checkpoint-epoch-40") model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-31-36/checkpoints/checkpoint-epoch-40") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
coastalcph/Qwen2.5-7B-1t_em_financial-1t_diff_pers_misalignment
coastalcph
2025-08-19T23:39:16Z
0
0
null
[ "safetensors", "qwen2", "region:us" ]
null
2025-08-19T23:37:07Z
# Combined Task Vector Model This model was created by combining task vectors from multiple fine-tuned models. ## Task Vector Computation ```python t_1 = TaskVector("Qwen/Qwen2.5-7B-Instruct", "coastalcph/Qwen2.5-7B-claude_risky_financial") t_2 = TaskVector("Qwen/Qwen2.5-7B-Instruct", "coastalcph/Qwen2.5-7B-personality-general-good") t_combined = 1.0 * t_1 + 1.0 * t_2 - 1.0 * t_3 new_model = t_combined.apply_to("Qwen/Qwen2.5-7B-Instruct", scaling_coef=1.0) ``` Models Used - Base Model: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct - Fine-tuned Model 1: https://huggingface.co/coastalcph/Qwen2.5-7B-claude_risky_financial - Fine-tuned Model 2: https://huggingface.co/coastalcph/Qwen2.5-7B-personality-general-good Technical Details - Creation Script Git Hash: 6276125324033067e34f3eae1fe4db8ab27c86fb - Task Vector Method: Additive combination - Args: { "pretrained_model": "Qwen/Qwen2.5-7B-Instruct", "finetuned_model1": "coastalcph/Qwen2.5-7B-claude_risky_financial", "finetuned_model2": "coastalcph/Qwen2.5-7B-personality-general-good", "finetuned_model3": "coastalcph/Qwen2.5-7B-personality-general-evil", "output_model_name": "coastalcph/Qwen2.5-7B-1t_em_financial-1t_diff_pers_misalignment", "output_dir": "/projects/nlp/data/constanzam/weight-interp/task-vectors/bad_financial_diff_pers=1,1", "scaling_coef": 1.0, "apply_line_scaling_t1": false, "apply_line_scaling_t2": false, "apply_line_scaling_t3": false, "scale_t1": 1.0, "scale_t2": 1.0, "scale_t3": 1.0 }
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755645135
calegpedia
2025-08-19T23:38:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:38:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MauoSama/dp_depthcut_multi_wrist
MauoSama
2025-08-19T23:37:37Z
0
0
lerobot
[ "lerobot", "safetensors", "diffusion", "robotics", "dataset:MauoSama/depthcut_multi_wrist", "arxiv:2303.04137", "license:apache-2.0", "region:us" ]
robotics
2025-08-19T23:37:30Z
--- datasets: MauoSama/depthcut_multi_wrist library_name: lerobot license: apache-2.0 model_name: diffusion pipeline_tag: robotics tags: - diffusion - robotics - lerobot --- # Model Card for diffusion <!-- Provide a quick summary of what the model is/does. --> [Diffusion Policy](https://huggingface.co/papers/2303.04137) treats visuomotor control as a generative diffusion process, producing smooth, multi-step action trajectories that excel at contact-rich manipulation. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
AdhamEhab/fine-tuned-bert-yelp
AdhamEhab
2025-08-19T23:36:14Z
0
1
null
[ "safetensors", "bert", "en", "dataset:Yelp/yelp_review_full", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:mit", "region:us" ]
null
2025-08-19T20:47:30Z
--- license: mit datasets: - Yelp/yelp_review_full language: - en base_model: - google-bert/bert-base-uncased --- # Fine-tuned BERT on Yelp Reviews (5-class classification) This model is a **BERT-base-uncased** fine-tuned on the [Yelp Review Full dataset](https://huggingface.co/datasets/Yelp/yelp_review_full). The task is **5-class sentiment classification** (1 to 5 stars). ## Training Details - Framework: Hugging Face Transformers + Ray Train - Hardware: 3 GPU worker with Ray - Model: `bert-base-uncased` - Dataset subset: 20,000 training samples, 5,000 validation samples - Epochs: 10 - Batch size: 16 (train), 32 (eval) - Optimizer: AdamW (lr=2e-5, weight decay=0.01) - Mixed precision: FP16 enabled ## Evaluation Results On the validation split: - **Accuracy**: 61.9% - **F1 (weighted)**: 0.62 - **Precision**: 0.62 - **Recall**: 0.62 - **Eval loss**: 2.84 ## Usage ```python from transformers import BertTokenizer, BertForSequenceClassification model = BertForSequenceClassification.from_pretrained("AdhamEhab/fine-tuned-bert-yelp") tokenizer = BertTokenizer.from_pretrained("AdhamEhab/fine-tuned-bert-yelp") text = "The food was amazing and the service was excellent!" inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) pred = outputs.logits.argmax(dim=-1).item() print("Predicted star rating:", pred + 1) # labels are 0-4 -> map to 1-5
Guilherme34/Samantha-3b-beta0.1
Guilherme34
2025-08-19T23:33:15Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T23:18:11Z
--- library_name: transformers tags: - unsloth --- DO NOT DOWNLOAD, THIS IS A WORK IN PROGRESS MODEL!! ⚠️⚠️⚠️⚠️⚠️⚠️ # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755644738
quantumxnode
2025-08-19T23:31:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:31:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jis3cxh8/gemma-3-4B
jis3cxh8
2025-08-19T23:30:48Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "gemma3", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:quantized:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-19T23:06:49Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** jis3cxh8 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
rayonlabs/tournament-tourn_e8b54a44823eb63b_20250819-0746e9d2-8da9-4255-98c3-9cad2ffa8040-5FYeWKtZ
rayonlabs
2025-08-19T23:30:39Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "trl", "unsloth", "dpo", "conversational", "arxiv:2305.18290", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T23:30:15Z
--- library_name: transformers model_name: app/checkpoints/0746e9d2-8da9-4255-98c3-9cad2ffa8040/tournament-tourn_e8b54a44823eb63b_20250819-0746e9d2-8da9-4255-98c3-9cad2ffa8040-5FYeWKtZ tags: - generated_from_trainer - trl - unsloth - dpo licence: license --- # Model Card for app/checkpoints/0746e9d2-8da9-4255-98c3-9cad2ffa8040/tournament-tourn_e8b54a44823eb63b_20250819-0746e9d2-8da9-4255-98c3-9cad2ffa8040-5FYeWKtZ This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="None", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.20.0 - Transformers: 4.54.1 - Pytorch: 2.7.1+cu128 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755644450
kojeklollipop
2025-08-19T23:28:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:28:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1755644529
koloni
2025-08-19T23:28:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:27:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755644479
hakimjustbao
2025-08-19T23:27:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:27:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jis3cxh8/lora_model-270m
jis3cxh8
2025-08-19T23:27:09Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-270m-it", "base_model:quantized:unsloth/gemma-3-270m-it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T22:44:24Z
--- base_model: unsloth/gemma-3-270m-it tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** jis3cxh8 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-270m-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
AnonymousCS/xlmr_immigration_combo7_2
AnonymousCS
2025-08-19T23:25:18Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T23:22:30Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo7_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo7_2 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1699 - Accuracy: 0.9537 - 1-f1: 0.9302 - 1-recall: 0.9266 - 1-precision: 0.9339 - Balanced Acc: 0.9469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1948 | 1.0 | 25 | 0.1502 | 0.9602 | 0.9391 | 0.9228 | 0.956 | 0.9508 | | 0.1681 | 2.0 | 50 | 0.1761 | 0.9447 | 0.9124 | 0.8649 | 0.9655 | 0.9247 | | 0.1613 | 3.0 | 75 | 0.1699 | 0.9537 | 0.9302 | 0.9266 | 0.9339 | 0.9469 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
Osrivers/flux1KreaDev_fp8E4m3fn.safetensors
Osrivers
2025-08-19T23:24:15Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-08-19T23:19:46Z
--- license: creativeml-openrail-m ---
kuleshov-group/PlantCaduceus_l20
kuleshov-group
2025-08-19T23:19:10Z
1,646
1
transformers
[ "transformers", "pytorch", "caduceus", "feature-extraction", "custom_code", "arxiv:2312.00752", "license:apache-2.0", "region:us" ]
feature-extraction
2024-05-19T16:25:03Z
--- license: apache-2.0 --- ## Model Overview PlantCaduceus is a DNA language model pre-trained on 16 Angiosperm genomes. Utilizing the [Caduceus](https://caduceus-dna.github.io/) and [Mamba](https://arxiv.org/abs/2312.00752) architectures and a masked language modeling objective, PlantCaduceus is designed to learn evolutionary conservation and DNA sequence grammar from 16 species spanning a history of 160 million years. We have trained a series of PlantCaduceus models with varying parameter sizes: - **[PlantCaduceus_l20](https://huggingface.co/kuleshov-group/PlantCaduceus_l20)**: 20 layers, 384 hidden size, 20M parameters - **[PlantCaduceus_l24](https://huggingface.co/kuleshov-group/PlantCaduceus_l24)**: 24 layers, 512 hidden size, 40M parameters - **[PlantCaduceus_l28](https://huggingface.co/kuleshov-group/PlantCaduceus_l28)**: 28 layers, 768 hidden size, 112M parameters - **[PlantCaduceus_l32](https://huggingface.co/kuleshov-group/PlantCaduceus_l32)**: 32 layers, 1024 hidden size, 225M parameters **We would highly recommend using the largest model ([PlantCaduceus_l32](https://huggingface.co/kuleshov-group/PlantCaduceus_l32)) for the zero-shot score estimation.** ## How to use ```python from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer import torch model_path = 'kuleshov-group/PlantCaduceus_l20' device = "cuda:0" if torch.cuda.is_available() else "cpu" model = AutoModelForMaskedLM.from_pretrained(model_path, trust_remote_code=True, device_map=device) model.eval() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) sequence = "ATGCGTACGATCGTAG" encoding = tokenizer.encode_plus( sequence, return_tensors="pt", return_attention_mask=False, return_token_type_ids=False ) input_ids = encoding["input_ids"].to(device) with torch.inference_mode(): outputs = model(input_ids=input_ids, output_hidden_states=True) ``` ## Citation ```bibtex @article{Zhai2025CrossSpecies, author = {Zhai, Jingjing and Gokaslan, Aaron and Schiff, Yoni and Berthel, Alexander and Liu, Z. Y. and Lai, W. L. and Miller, Z. R. and Scheben, Armin and Stitzer, Michelle C. and Romay, Maria C. and Buckler, Edward S. and Kuleshov, Volodymyr}, title = {Cross-species modeling of plant genomes at single nucleotide resolution using a pretrained DNA language model}, journal = {Proceedings of the National Academy of Sciences}, year = {2025}, volume = {122}, number = {24}, pages = {e2421738122}, doi = {10.1073/pnas.2421738122}, url = {https://doi.org/10.1073/pnas.2421738122} } ``` ## Contact Jingjing Zhai (jz963@cornell.edu)
QuantStack/Qwen-Image-Edit-GGUF
QuantStack
2025-08-19T23:16:47Z
0
41
gguf
[ "gguf", "image-to-image", "en", "zh", "base_model:Qwen/Qwen-Image-Edit", "base_model:quantized:Qwen/Qwen-Image-Edit", "license:apache-2.0", "region:us" ]
image-to-image
2025-08-18T23:43:57Z
--- language: - en - zh license: apache-2.0 base_model: - Qwen/Qwen-Image-Edit library_name: gguf pipeline_tag: image-to-image --- This GGUF file is a direct conversion of [Qwen/Qwen-Image-Edit](https://huggingface.co/Qwen/Qwen-Image-Edit) Type | Name | Location | Download | ------------ | -------------------------------------------------- | --------------------------------- | ------------------------- | Main Model | Qwen-Image | `ComfyUI/models/unet` | GGUF (this repo) | Main Text Encoder | Qwen2.5-VL-7B | `ComfyUI/models/text_encoders` | [Safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/tree/main/split_files/text_encoders) / [GGUF](https://huggingface.co/unsloth/Qwen2.5-VL-7B-Instruct-GGUF/tree/main) | | Text_Encoder (mmproj) | Qwen2.5-VL-7B-Instruct-mmproj-BF16 | `ComfyUI/models/text_encoders` (same folder as your main text encoder) | GGUF (this repo) | VAE | Qwen-Image VAE | `ComfyUI/models/vae` | Safetensors (this repo) | Since this is a quantized model, all original licensing terms and usage restrictions remain in effect. **Usage** The model can be used with the ComfyUI custom node [ComfyUI-GGUF](https://github.com/city96/ComfyUI-GGUF) by [city96](https://huggingface.co/city96)
soob3123/Veritas-task-trade-off-agent
soob3123
2025-08-19T23:14:43Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-19T23:14:03Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JohnnyTheFox/colorcraft-sdxl-models
JohnnyTheFox
2025-08-19T23:08:31Z
0
0
diffusers
[ "diffusers", "safetensors", "license:apache-2.0", "region:us" ]
null
2025-08-19T20:32:37Z
--- license: apache-2.0 ---
lautan/blockassist-bc-gentle_patterned_goat_1755643200
lautan
2025-08-19T23:07:59Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle patterned goat", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:07:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle patterned goat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/12644
crystalline7
2025-08-19T23:05:59Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:05:56Z
[View on Civ Archive](https://civarchive.com/models/12289?modelVersionId=14492)
crystalline7/13945
crystalline7
2025-08-19T23:05:18Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:05:18Z
[View on Civ Archive](https://civarchive.com/models/14026?modelVersionId=16502)
lilTAT/blockassist-bc-gentle_rugged_hare_1755644677
lilTAT
2025-08-19T23:05:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:05:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/54874
ultratopaz
2025-08-19T23:04:40Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:04:38Z
[View on Civ Archive](https://civarchive.com/models/75239?modelVersionId=79980)
crystalline7/65816
crystalline7
2025-08-19T23:04:33Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:04:30Z
[View on Civ Archive](https://civarchive.com/models/89255?modelVersionId=95009)
ultratopaz/52803
ultratopaz
2025-08-19T23:04:18Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:04:15Z
[View on Civ Archive](https://civarchive.com/models/71849?modelVersionId=76589)
seraphimzzzz/46927
seraphimzzzz
2025-08-19T23:03:20Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:03:17Z
[View on Civ Archive](https://civarchive.com/models/62508?modelVersionId=67059)
crystalline7/46077
crystalline7
2025-08-19T23:03:04Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:03:01Z
[View on Civ Archive](https://civarchive.com/models/61266?modelVersionId=65736)
seraphimzzzz/105764
seraphimzzzz
2025-08-19T23:01:59Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:01:56Z
[View on Civ Archive](https://civarchive.com/models/130755?modelVersionId=143521)
seraphimzzzz/63601
seraphimzzzz
2025-08-19T23:01:16Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:01:12Z
[View on Civ Archive](https://civarchive.com/models/68607?modelVersionId=92238)
seraphimzzzz/51823
seraphimzzzz
2025-08-19T23:01:05Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:01:00Z
[View on Civ Archive](https://civarchive.com/models/68607?modelVersionId=75049)
crystalline7/67939
crystalline7
2025-08-19T23:00:55Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:00:52Z
[View on Civ Archive](https://civarchive.com/models/91623?modelVersionId=97665)
ultratopaz/42516
ultratopaz
2025-08-19T23:00:29Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:00:25Z
[View on Civ Archive](https://civarchive.com/models/55583?modelVersionId=59976)
ultratopaz/522738
ultratopaz
2025-08-19T22:59:24Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:59:18Z
[View on Civ Archive](https://civarchive.com/models/545506?modelVersionId=606659)
seraphimzzzz/535022
seraphimzzzz
2025-08-19T22:59:11Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:59:05Z
[View on Civ Archive](https://civarchive.com/models/462107?modelVersionId=620069)
crystalline7/23553
crystalline7
2025-08-19T22:58:47Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:58:43Z
[View on Civ Archive](https://civarchive.com/models/23852?modelVersionId=28504)
ultratopaz/51095
ultratopaz
2025-08-19T22:58:38Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:58:36Z
[View on Civ Archive](https://civarchive.com/models/69116?modelVersionId=73794)
crystalline7/19054
crystalline7
2025-08-19T22:58:22Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:58:19Z
[View on Civ Archive](https://civarchive.com/models/12317?modelVersionId=22899)
seraphimzzzz/12626
seraphimzzzz
2025-08-19T22:58:13Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:58:13Z
[View on Civ Archive](https://civarchive.com/models/12317?modelVersionId=14582)
ultratopaz/80643
ultratopaz
2025-08-19T22:58:07Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:58:03Z
[View on Civ Archive](https://civarchive.com/models/105746?modelVersionId=113516)
crystalline7/13305
crystalline7
2025-08-19T22:57:44Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:57:40Z
[View on Civ Archive](https://civarchive.com/models/13173?modelVersionId=15525)
seraphimzzzz/26100
seraphimzzzz
2025-08-19T22:57:26Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:57:22Z
[View on Civ Archive](https://civarchive.com/models/26393?modelVersionId=31601)
ultratopaz/66429
ultratopaz
2025-08-19T22:56:53Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:56:50Z
[View on Civ Archive](https://civarchive.com/models/89936?modelVersionId=95772)
ultratopaz/12083
ultratopaz
2025-08-19T22:56:29Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:56:24Z
[View on Civ Archive](https://civarchive.com/models/11570?modelVersionId=13688)
chainway9/blockassist-bc-untamed_quick_eel_1755642411
chainway9
2025-08-19T22:55:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:55:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755642520
mang3dd
2025-08-19T22:55:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:54:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/38152
ultratopaz
2025-08-19T22:55:02Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:55:02Z
[View on Civ Archive](https://civarchive.com/models/47805?modelVersionId=52399)
lilTAT/blockassist-bc-gentle_rugged_hare_1755644052
lilTAT
2025-08-19T22:54:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:54:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/76501
crystalline7
2025-08-19T22:54:34Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:54:34Z
[View on Civ Archive](https://civarchive.com/models/18234?modelVersionId=108518)
seraphimzzzz/22838
seraphimzzzz
2025-08-19T22:54:28Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:54:23Z
[View on Civ Archive](https://civarchive.com/models/18234?modelVersionId=27622)
seraphimzzzz/77178
seraphimzzzz
2025-08-19T22:53:36Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:53:33Z
[View on Civ Archive](https://civarchive.com/models/23721?modelVersionId=109311)
seraphimzzzz/30194
seraphimzzzz
2025-08-19T22:53:08Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:53:04Z
[View on Civ Archive](https://civarchive.com/models/32091?modelVersionId=38532)
crystalline7/25191
crystalline7
2025-08-19T22:51:37Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:51:32Z
[View on Civ Archive](https://civarchive.com/models/25486?modelVersionId=30512)
crystalline7/54616
crystalline7
2025-08-19T22:51:19Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:51:17Z
[View on Civ Archive](https://civarchive.com/models/19239?modelVersionId=79551)
nkerr/sv3.4-bigbird-roberta-large
nkerr
2025-08-19T22:51:18Z
0
0
transformers
[ "transformers", "safetensors", "big_bird", "text-classification", "generated_from_trainer", "base_model:google/bigbird-roberta-large", "base_model:finetune:google/bigbird-roberta-large", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T21:52:07Z
--- library_name: transformers license: apache-2.0 base_model: google/bigbird-roberta-large tags: - generated_from_trainer model-index: - name: sv3.4-bigbird-roberta-large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sv3.4-bigbird-roberta-large This model is a fine-tuned version of [google/bigbird-roberta-large](https://huggingface.co/google/bigbird-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5284 - Mse: 0.3063 - Mae: 0.5284 - Rmse: 0.5534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | Rmse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:| | 0.2148 | 0.1548 | 50 | 0.6346 | 0.4310 | 0.6346 | 0.6565 | | 0.2317 | 0.3096 | 100 | 0.4964 | 0.2705 | 0.4964 | 0.5201 | | 0.22 | 0.4644 | 150 | 0.5909 | 0.3752 | 0.5909 | 0.6125 | | 0.1846 | 0.6192 | 200 | 0.5494 | 0.3274 | 0.5494 | 0.5722 | | 0.1858 | 0.7740 | 250 | 0.5280 | 0.3046 | 0.5280 | 0.5520 | | 0.1886 | 0.9288 | 300 | 0.5284 | 0.3063 | 0.5284 | 0.5534 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu126 - Datasets 3.3.2 - Tokenizers 0.21.0
neko-llm/Qwen3-235B-test5
neko-llm
2025-08-19T22:51:04Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen3-235B-A22B", "base_model:finetune:Qwen/Qwen3-235B-A22B", "endpoints_compatible", "region:us" ]
null
2025-08-19T12:49:08Z
--- base_model: Qwen/Qwen3-235B-A22B library_name: transformers model_name: Qwen3-235B-test5 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for Qwen3-235B-test5 This model is a fine-tuned version of [Qwen/Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="neko-llm/Qwen3-235B-test5", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/neko-llm/huggingface/runs/r6shuvcx) This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.54.1 - Pytorch: 2.6.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
seraphimzzzz/19008
seraphimzzzz
2025-08-19T22:50:59Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:50:55Z
[View on Civ Archive](https://civarchive.com/models/19239?modelVersionId=22829)
crystalline7/77154
crystalline7
2025-08-19T22:50:50Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:50:47Z
[View on Civ Archive](https://civarchive.com/models/35216?modelVersionId=109272)
GeneroGral/Mistral-Nemo-12B_BBQ_Stereo6_dropout_batch-wordMatch
GeneroGral
2025-08-19T22:50:34Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/Mistral-Nemo-Base-2407", "base_model:finetune:unsloth/Mistral-Nemo-Base-2407", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T22:50:24Z
--- base_model: unsloth/Mistral-Nemo-Base-2407 tags: - text-generation-inference - transformers - unsloth - mistral - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** GeneroGral - **License:** apache-2.0 - **Finetuned from model :** unsloth/Mistral-Nemo-Base-2407 This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
seraphimzzzz/75514
seraphimzzzz
2025-08-19T22:50:31Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:50:28Z
[View on Civ Archive](https://civarchive.com/models/53478?modelVersionId=107222)
crystalline7/25540
crystalline7
2025-08-19T22:49:31Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:49:26Z
[View on Civ Archive](https://civarchive.com/models/17612?modelVersionId=30958)
crystalline7/80429
crystalline7
2025-08-19T22:49:02Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:48:59Z
[View on Civ Archive](https://civarchive.com/models/26639?modelVersionId=113278)
crystalline7/26413
crystalline7
2025-08-19T22:48:53Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:48:48Z
[View on Civ Archive](https://civarchive.com/models/26639?modelVersionId=31888)
ultratopaz/75671
ultratopaz
2025-08-19T22:48:42Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:48:39Z
[View on Civ Archive](https://civarchive.com/models/27347?modelVersionId=107431)
Mahran4vp/gpt2-hoodie-final
Mahran4vp
2025-08-19T22:48:41Z
104
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-12T01:43:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Mahran4vp/results
Mahran4vp
2025-08-19T22:48:39Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:Mahran4vp/gpt2-hoodie-final", "base_model:finetune:Mahran4vp/gpt2-hoodie-final", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T22:48:06Z
--- library_name: transformers base_model: Mahran4vp/gpt2-hoodie-final tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [Mahran4vp/gpt2-hoodie-final](https://huggingface.co/Mahran4vp/gpt2-hoodie-final) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.55.2 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
ultratopaz/59135
ultratopaz
2025-08-19T22:48:06Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:48:03Z
[View on Civ Archive](https://civarchive.com/models/81526?modelVersionId=86507)
crystalline7/65487
crystalline7
2025-08-19T22:47:32Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:47:30Z
[View on Civ Archive](https://civarchive.com/models/88911?modelVersionId=94611)
seraphimzzzz/44098
seraphimzzzz
2025-08-19T22:47:18Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:47:16Z
[View on Civ Archive](https://civarchive.com/models/58002?modelVersionId=62451)
roeker/blockassist-bc-quick_wiry_owl_1755643537
roeker
2025-08-19T22:47:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:46:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/51698
crystalline7
2025-08-19T22:46:56Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:46:52Z
[View on Civ Archive](https://civarchive.com/models/20833?modelVersionId=74853)
crystalline7/66914
crystalline7
2025-08-19T22:46:11Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:46:09Z
[View on Civ Archive](https://civarchive.com/models/90494?modelVersionId=96401)
seraphimzzzz/79815
seraphimzzzz
2025-08-19T22:45:48Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:45:45Z
[View on Civ Archive](https://civarchive.com/models/104933?modelVersionId=112523)