modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-13 00:37:47
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 555
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-13 00:35:18
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Muapi/felix-meynet
|
Muapi
| 2025-08-19T13:29:03Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T13:28:57Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Felix Meynet

**Base model**: Flux.1 D
**Trained words**: Art by Felix Meynet
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1021589@1441868", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Muapi/cinematic-text-title-film-cover-on-screen-style-xl-f1d
|
Muapi
| 2025-08-19T13:28:24Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T13:28:11Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Cinematic text title + Film Cover (on screen) style XL + F1D

**Base model**: Flux.1 D
**Trained words**: perfect text title style
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:520481@893826", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
yaelahnal/blockassist-bc-mute_clawed_crab_1755609838
|
yaelahnal
| 2025-08-19T13:25:07Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute clawed crab",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T13:24:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute clawed crab
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755609775
|
canoplos112
| 2025-08-19T13:24:46Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping sleek squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T13:23:32Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping sleek squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ashishscapsitech123/qwen2_7b_4bit_invoice_extraction_15epoch_8600_checkpoint
|
ashishscapsitech123
| 2025-08-19T13:22:51Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2_5_vl",
"trl",
"en",
"base_model:unsloth/Qwen2.5-VL-3B-Instruct-unsloth-bnb-4bit",
"base_model:finetune:unsloth/Qwen2.5-VL-3B-Instruct-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-19T13:22:26Z |
---
base_model: unsloth/Qwen2.5-VL-3B-Instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2_5_vl
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** ashishscapsitech123
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2.5-VL-3B-Instruct-unsloth-bnb-4bit
This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Muapi/korean-gone-flux
|
Muapi
| 2025-08-19T13:22:05Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T13:21:57Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Korean Gone Flux

**Base model**: Flux.1 D
**Trained words**: korean
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:677337@758214", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
marcuscedricridia/orbita-tiny-Q4_K_M-GGUF
|
marcuscedricridia
| 2025-08-19T13:21:18Z | 0 | 0 | null |
[
"gguf",
"llama-cpp",
"gguf-my-repo",
"base_model:NewstaR/orbita-tiny",
"base_model:quantized:NewstaR/orbita-tiny",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-19T13:21:12Z |
---
base_model: NewstaR/orbita-tiny
tags:
- llama-cpp
- gguf-my-repo
---
# marcuscedricridia/orbita-tiny-Q4_K_M-GGUF
This model was converted to GGUF format from [`NewstaR/orbita-tiny`](https://huggingface.co/NewstaR/orbita-tiny) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/NewstaR/orbita-tiny) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo marcuscedricridia/orbita-tiny-Q4_K_M-GGUF --hf-file orbita-tiny-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo marcuscedricridia/orbita-tiny-Q4_K_M-GGUF --hf-file orbita-tiny-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo marcuscedricridia/orbita-tiny-Q4_K_M-GGUF --hf-file orbita-tiny-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo marcuscedricridia/orbita-tiny-Q4_K_M-GGUF --hf-file orbita-tiny-q4_k_m.gguf -c 2048
```
|
Muapi/f.1-lora
|
Muapi
| 2025-08-19T13:20:47Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T13:20:34Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# 墨幽-F.1-Lora-网图

**Base model**: Flux.1 D
**Trained words**: This is a high-resolution everyday scene image with a natural style,
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:792293@885949", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
mang3dd/blockassist-bc-tangled_slithering_alligator_1755607612
|
mang3dd
| 2025-08-19T13:14:33Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tangled slithering alligator",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T13:14:29Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tangled slithering alligator
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755609008
|
canoplos112
| 2025-08-19T13:12:02Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping sleek squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T13:10:47Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping sleek squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
yaelahnal/blockassist-bc-mute_clawed_crab_1755608822
|
yaelahnal
| 2025-08-19T13:08:13Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute clawed crab",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T13:07:54Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute clawed crab
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755606829
|
kojeklollipop
| 2025-08-19T13:01:41Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"spotted amphibious stork",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T13:01:37Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- spotted amphibious stork
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF
|
mradermacher
| 2025-08-19T13:00:10Z | 56 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:Qwen/Qwen3-Coder-480B-A35B-Instruct",
"base_model:quantized:Qwen/Qwen3-Coder-480B-A35B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-07-30T05:12:43Z |
---
base_model: Qwen/Qwen3-Coder-480B-A35B-Instruct
language:
- en
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-Coder-480B-A35B-Instruct/blob/main/LICENSE
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
<!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
weighted/imatrix quants of https://huggingface.co/Qwen/Qwen3-Coder-480B-A35B-Instruct
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen3-Coder-480B-A35B-Instruct-i1-GGUF).***
static quants are available at https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.imatrix.gguf) | imatrix | 0.7 | imatrix file (for creating your own qwuants) |
| [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ1_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ1_S.gguf.part2of2) | i1-IQ1_S | 97.5 | for the desperate |
| [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ1_M.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ1_M.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ1_M.gguf.part3of3) | i1-IQ1_M | 108.2 | mostly desperate |
| [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_XXS.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_XXS.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_XXS.gguf.part3of3) | i1-IQ2_XXS | 126.0 | |
| [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_XS.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_XS.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_XS.gguf.part3of3) | i1-IQ2_XS | 140.3 | |
| [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_S.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_S.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_S.gguf.part3of3) | i1-IQ2_S | 142.9 | |
| [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_M.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_M.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_M.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ2_M.gguf.part4of4) | i1-IQ2_M | 157.1 | |
| [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q2_K_S.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q2_K_S.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q2_K_S.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q2_K_S.gguf.part4of4) | i1-Q2_K_S | 162.6 | very low quality |
| [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q2_K.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q2_K.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q2_K.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q2_K.gguf.part4of4) | i1-Q2_K | 174.8 | IQ3_XXS probably better |
| [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_XXS.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_XXS.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_XXS.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_XXS.gguf.part4of4) | i1-IQ3_XXS | 184.4 | lower quality |
| [PART 1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_XS.gguf.part1of4) [PART 2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_XS.gguf.part2of4) [PART 3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_XS.gguf.part3of4) [PART 4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_XS.gguf.part4of4) | i1-IQ3_XS | 195.7 | |
| [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_S.gguf.part1of5) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_S.gguf.part2of5) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_S.gguf.part3of5) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_S.gguf.part4of5) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_S.gguf.part5of5) | i1-Q3_K_S | 207.0 | IQ3_XS probably better |
| [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_S.gguf.part1of5) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_S.gguf.part2of5) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_S.gguf.part3of5) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_S.gguf.part4of5) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_S.gguf.part5of5) | i1-IQ3_S | 207.1 | beats Q3_K* |
| [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_M.gguf.part1of5) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_M.gguf.part2of5) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_M.gguf.part3of5) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_M.gguf.part4of5) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ3_M.gguf.part5of5) | i1-IQ3_M | 210.0 | |
| [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_M.gguf.part1of5) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_M.gguf.part2of5) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_M.gguf.part3of5) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_M.gguf.part4of5) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_M.gguf.part5of5) | i1-Q3_K_M | 229.3 | IQ3_S probably better |
| [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_L.gguf.part1of6) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_L.gguf.part2of6) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_L.gguf.part3of6) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_L.gguf.part4of6) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_L.gguf.part5of6) [P6](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q3_K_L.gguf.part6of6) | i1-Q3_K_L | 248.5 | IQ3_M probably better |
| [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ4_XS.gguf.part1of6) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ4_XS.gguf.part2of6) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ4_XS.gguf.part3of6) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ4_XS.gguf.part4of6) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ4_XS.gguf.part5of6) [P6](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-IQ4_XS.gguf.part6of6) | i1-IQ4_XS | 255.7 | |
| [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_0.gguf.part1of6) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_0.gguf.part2of6) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_0.gguf.part3of6) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_0.gguf.part4of6) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_0.gguf.part5of6) [P6](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_0.gguf.part6of6) | i1-Q4_0 | 271.7 | fast, low quality |
| [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_S.gguf.part1of6) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_S.gguf.part2of6) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_S.gguf.part3of6) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_S.gguf.part4of6) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_S.gguf.part5of6) [P6](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_S.gguf.part6of6) | i1-Q4_K_S | 272.9 | optimal size/speed/quality |
| [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_M.gguf.part1of6) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_M.gguf.part2of6) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_M.gguf.part3of6) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_M.gguf.part4of6) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_M.gguf.part5of6) [P6](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_K_M.gguf.part6of6) | i1-Q4_K_M | 290.2 | fast, recommended |
| [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_1.gguf.part1of7) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_1.gguf.part2of7) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_1.gguf.part3of7) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_1.gguf.part4of7) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_1.gguf.part5of7) [P6](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_1.gguf.part6of7) [P7](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q4_1.gguf.part7of7) | i1-Q4_1 | 300.6 | |
| [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_S.gguf.part1of7) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_S.gguf.part2of7) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_S.gguf.part3of7) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_S.gguf.part4of7) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_S.gguf.part5of7) [P6](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_S.gguf.part6of7) [P7](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_S.gguf.part7of7) | i1-Q5_K_S | 330.5 | |
| [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_M.gguf.part1of7) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_M.gguf.part2of7) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_M.gguf.part3of7) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_M.gguf.part4of7) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_M.gguf.part5of7) [P6](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_M.gguf.part6of7) [P7](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q5_K_M.gguf.part7of7) | i1-Q5_K_M | 340.6 | |
| [P1](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q6_K.gguf.part1of8) [P2](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q6_K.gguf.part2of8) [P3](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q6_K.gguf.part3of8) [P4](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q6_K.gguf.part4of8) [P5](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q6_K.gguf.part5of8) [P6](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q6_K.gguf.part6of8) [P7](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q6_K.gguf.part7of8) [P8](https://huggingface.co/mradermacher/Qwen3-Coder-480B-A35B-Instruct-i1-GGUF/resolve/main/Qwen3-Coder-480B-A35B-Instruct.i1-Q6_K.gguf.part8of8) | i1-Q6_K | 394.2 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
Ransss/Moonlit-Shadow-12B-Q8_0-GGUF
|
Ransss
| 2025-08-19T12:58:51Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:Vortex5/Moonlit-Shadow-12B",
"base_model:quantized:Vortex5/Moonlit-Shadow-12B",
"endpoints_compatible",
"region:us"
] | null | 2025-08-19T12:58:00Z |
---
base_model: Vortex5/Moonlit-Shadow-12B
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# Ransss/Moonlit-Shadow-12B-Q8_0-GGUF
This model was converted to GGUF format from [`Vortex5/Moonlit-Shadow-12B`](https://huggingface.co/Vortex5/Moonlit-Shadow-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Vortex5/Moonlit-Shadow-12B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Ransss/Moonlit-Shadow-12B-Q8_0-GGUF --hf-file moonlit-shadow-12b-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Ransss/Moonlit-Shadow-12B-Q8_0-GGUF --hf-file moonlit-shadow-12b-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Ransss/Moonlit-Shadow-12B-Q8_0-GGUF --hf-file moonlit-shadow-12b-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Ransss/Moonlit-Shadow-12B-Q8_0-GGUF --hf-file moonlit-shadow-12b-q8_0.gguf -c 2048
```
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1755607845
|
Dejiat
| 2025-08-19T12:51:30Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T12:51:26Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755606095
|
helmutsukocok
| 2025-08-19T12:49:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"loud scavenging kangaroo",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T12:48:58Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- loud scavenging kangaroo
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1755607541
|
Dejiat
| 2025-08-19T12:46:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T12:46:21Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mang3dd/blockassist-bc-tangled_slithering_alligator_1755605749
|
mang3dd
| 2025-08-19T12:42:44Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tangled slithering alligator",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T12:42:41Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tangled slithering alligator
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Jacksss123/net72_uid234
|
Jacksss123
| 2025-08-19T12:41:01Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"vit",
"image-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2025-08-19T12:38:56Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755605670
|
quantumxnode
| 2025-08-19T12:40:07Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"dormant peckish seahorse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T12:40:04Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- dormant peckish seahorse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1755607155
|
Dejiat
| 2025-08-19T12:39:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T12:39:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1755606723
|
Dejiat
| 2025-08-19T12:32:49Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T12:32:44Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
tensorblock/Menlo_Lucy-128k-GGUF
|
tensorblock
| 2025-08-19T12:30:43Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"TensorBlock",
"GGUF",
"text-generation",
"en",
"base_model:Menlo/Lucy-128k",
"base_model:quantized:Menlo/Lucy-128k",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-19T12:10:23Z |
---
license: apache-2.0
language:
- en
base_model: Menlo/Lucy-128k
pipeline_tag: text-generation
library_name: transformers
tags:
- TensorBlock
- GGUF
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## Menlo/Lucy-128k - GGUF
<div style="text-align: left; margin: 20px 0;">
<a href="https://discord.com/invite/Ej5NmeHFf2" style="display: inline-block; padding: 10px 20px; background-color: #5865F2; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
Join our Discord to learn more about what we're building ↗
</a>
</div>
This repo contains GGUF format model files for [Menlo/Lucy-128k](https://huggingface.co/Menlo/Lucy-128k).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5753](https://github.com/ggml-org/llama.cpp/commit/73e53dc834c0a2336cd104473af6897197b96277).
## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
<th colspan="2" style="font-size: 25px;">Forge</th>
</tr>
<tr>
<th colspan="2">
<img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
</th>
</tr>
<tr>
<th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
</tr>
<tr>
<th colspan="2">
<a href="https://github.com/TensorBlock/forge" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">🚀 Try it now! 🚀</a>
</th>
</tr>
<tr>
<th style="font-size: 25px;">Awesome MCP Servers</th>
<th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
<tr>
<th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
<th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
</tr>
<tr>
<th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
<th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
</tr>
<tr>
<th>
<a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">👀 See what we built 👀</a>
</th>
<th>
<a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">👀 See what we built 👀</a>
</th>
</tr>
</table>
## Prompt template
```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Lucy-128k-Q2_K.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q2_K.gguf) | Q2_K | 0.778 GB | smallest, significant quality loss - not recommended for most purposes |
| [Lucy-128k-Q3_K_S.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q3_K_S.gguf) | Q3_K_S | 0.867 GB | very small, high quality loss |
| [Lucy-128k-Q3_K_M.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q3_K_M.gguf) | Q3_K_M | 0.940 GB | very small, high quality loss |
| [Lucy-128k-Q3_K_L.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q3_K_L.gguf) | Q3_K_L | 1.003 GB | small, substantial quality loss |
| [Lucy-128k-Q4_0.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q4_0.gguf) | Q4_0 | 1.054 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Lucy-128k-Q4_K_S.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q4_K_S.gguf) | Q4_K_S | 1.060 GB | small, greater quality loss |
| [Lucy-128k-Q4_K_M.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q4_K_M.gguf) | Q4_K_M | 1.107 GB | medium, balanced quality - recommended |
| [Lucy-128k-Q5_0.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q5_0.gguf) | Q5_0 | 1.231 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Lucy-128k-Q5_K_S.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q5_K_S.gguf) | Q5_K_S | 1.231 GB | large, low quality loss - recommended |
| [Lucy-128k-Q5_K_M.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q5_K_M.gguf) | Q5_K_M | 1.258 GB | large, very low quality loss - recommended |
| [Lucy-128k-Q6_K.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q6_K.gguf) | Q6_K | 1.418 GB | very large, extremely low quality loss |
| [Lucy-128k-Q8_0.gguf](https://huggingface.co/tensorblock/Menlo_Lucy-128k-GGUF/blob/main/Lucy-128k-Q8_0.gguf) | Q8_0 | 1.834 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Menlo_Lucy-128k-GGUF --include "Lucy-128k-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Menlo_Lucy-128k-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|
lilTAT/blockassist-bc-gentle_rugged_hare_1755606272
|
lilTAT
| 2025-08-19T12:25:02Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle rugged hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T12:24:59Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle rugged hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VoilaRaj/80_F75wiD
|
VoilaRaj
| 2025-08-19T12:23:29Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-19T12:19:29Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
xumingtensor/affine-7060819
|
xumingtensor
| 2025-08-19T12:18:34Z | 0 | 0 |
vllm
|
[
"vllm",
"safetensors",
"mistral3",
"image-text-to-text",
"conversational",
"en",
"fr",
"de",
"es",
"pt",
"it",
"ja",
"ko",
"ru",
"zh",
"ar",
"fa",
"id",
"ms",
"ne",
"pl",
"ro",
"sr",
"sv",
"tr",
"uk",
"vi",
"hi",
"bn",
"base_model:mistralai/Mistral-Small-3.2-24B-Instruct-2506",
"base_model:finetune:mistralai/Mistral-Small-3.2-24B-Instruct-2506",
"license:apache-2.0",
"region:us"
] |
image-text-to-text
| 2025-08-19T11:13:23Z |
---
language:
- en
- fr
- de
- es
- pt
- it
- ja
- ko
- ru
- zh
- ar
- fa
- id
- ms
- ne
- pl
- ro
- sr
- sv
- tr
- uk
- vi
- hi
- bn
license: apache-2.0
library_name: vllm
inference: false
base_model:
- mistralai/Mistral-Small-3.2-24B-Instruct-2506
pipeline_tag: image-text-to-text
---
# Mistral-Small-3.2-24B-Instruct-2506
Mistral-Small-3.2-24B-Instruct-2506 is a minor update of [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503).
Small-3.2 improves in the following categories:
- **Instruction following**: Small-3.2 is better at following precise instructions
- **Repetition errors**: Small-3.2 produces less infinite generations or repetitive answers
- **Function calling**: Small-3.2's function calling template is more robust (see [here](https://github.com/mistralai/mistral-common/blob/535b4d0a0fc94674ea17db6cf8dc2079b81cbcfa/src/mistral_common/tokens/tokenizers/instruct.py#L778) and [examples](#function-calling))
In all other categories Small-3.2 should match or slightly improve compared to [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503).
## Key Features
- same as [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503#key-features)
## Benchmark Results
We compare Mistral-Small-3.2-24B to [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503).
For more comparison against other models of similar size, please check [Mistral-Small-3.1's Benchmarks'](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503#benchmark-results)
### Text
#### Instruction Following / Chat / Tone
| Model | Wildbench v2 | Arena Hard v2 | IF (Internal; accuracy) |
|-------|---------------|---------------|------------------------|
| Small 3.1 24B Instruct | 55.6% | 19.56% | 82.75% |
| **Small 3.2 24B Instruct** | **65.33%** | **43.1%** | **84.78%** |
#### Infinite Generations
Small 3.2 reduces infitine generations by 2x on challenging, long and repetitive prompts.
| Model | Infinite Generations (Internal; Lower is better) |
|-------|-------|
| Small 3.1 24B Instruct | 2.11% |
| **Small 3.2 24B Instruct** | **1.29%** |
#### STEM
| Model | MMLU | MMLU Pro (5-shot CoT) | MATH | GPQA Main (5-shot CoT) | GPQA Diamond (5-shot CoT )| MBPP Plus - Pass@5 | HumanEval Plus - Pass@5 | SimpleQA (TotalAcc)|
|--------------------------------|-----------|-----------------------|------------------------|------------------------|---------------------------|--------------------|-------------------------|--------------------|
| Small 3.1 24B Instruct | 80.62% | 66.76% | 69.30% | 44.42% | 45.96% | 74.63% | 88.99% | 10.43% |
| **Small 3.2 24B Instruct** | 80.50% | **69.06%** | 69.42% | 44.22% | 46.13% | **78.33%** | **92.90%** | **12.10%** |
### Vision
| Model | MMMU | Mathvista | ChartQA | DocVQA | AI2D |
|--------------------------------|------------|-----------|-----------|-----------|-----------|
| Small 3.1 24B Instruct | **64.00%** | **68.91%**| 86.24% | 94.08% | 93.72% |
| **Small 3.2 24B Instruct** | 62.50% | 67.09% | **87.4%** | 94.86% | 92.91% |
## Usage
The model can be used with the following frameworks;
- [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended)
- [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers)
**Note 1**: We recommend using a relatively low temperature, such as `temperature=0.15`.
**Note 2**: Make sure to add a system prompt to the model to best tailer it for your needs. If you want to use the model as a general assistant, we recommend to use the one provided in the [SYSTEM_PROMPT.txt](https://huggingface.co/mistralai/Mistral-Small-3.2-24B-Instruct-2506/blob/main/SYSTEM_PROMPT.txt) file.
### vLLM (recommended)
We recommend using this model with [vLLM](https://github.com/vllm-project/vllm).
#### Installation
Make sure to install [`vLLM >= 0.9.1`](https://github.com/vllm-project/vllm/releases/tag/v0.9.1):
```
pip install vllm --upgrade
```
Doing so should automatically install [`mistral_common >= 1.6.2`](https://github.com/mistralai/mistral-common/releases/tag/v1.6.2).
To check:
```
python -c "import mistral_common; print(mistral_common.__version__)"
```
You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39).
#### Serve
We recommand that you use Mistral-Small-3.2-24B-Instruct-2506 in a server/client setting.
1. Spin up a server:
```
vllm serve mistralai/Mistral-Small-3.2-24B-Instruct-2506 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --limit_mm_per_prompt 'image=10' --tensor-parallel-size 2
```
**Note:** Running Mistral-Small-3.2-24B-Instruct-2506 on GPU requires ~55 GB of GPU RAM in bf16 or fp16.
2. To ping the client you can use a simple Python snippet. See the following examples.
#### Vision reasoning
Take leverage of the vision capabilities of Mistral-Small-3.2-24B-Instruct-2506 to take the best choice given a scenario, go catch them all !
<details>
<summary>Python snippet</summary>
```py
from datetime import datetime, timedelta
from openai import OpenAI
from huggingface_hub import hf_hub_download
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
TEMP = 0.15
MAX_TOK = 131072
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
def load_system_prompt(repo_id: str, filename: str) -> str:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
today = datetime.today().strftime("%Y-%m-%d")
yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
model_name = repo_id.split("/")[-1]
return system_prompt.format(name=model_name, today=today, yesterday=yesterday)
model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506"
SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt")
image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438"
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": [
{
"type": "text",
"text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.",
},
{"type": "image_url", "image_url": {"url": image_url}},
],
},
]
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=TEMP,
max_tokens=MAX_TOK,
)
print(response.choices[0].message.content)
# In this situation, you are playing a Pokémon game where your Pikachu (Level 42) is facing a wild Pidgey (Level 17). Here are the possible actions you can take and an analysis of each:
# 1. **FIGHT**:
# - **Pros**: Pikachu is significantly higher level than the wild Pidgey, which suggests that it should be able to defeat Pidgey easily. This could be a good opportunity to gain experience points and possibly items or money.
# - **Cons**: There is always a small risk of Pikachu fainting, especially if Pidgey has a powerful move or a status effect that could hinder Pikachu. However, given the large level difference, this risk is minimal.
# 2. **BAG**:
# - **Pros**: You might have items in your bag that could help in this battle, such as Potions, Poké Balls, or Berries. Using an item could help you capture the Pidgey or heal your Pikachu if needed.
# - **Cons**: Using items might not be necessary given the level difference. It could be more efficient to just fight and defeat the Pidgey quickly.
# 3. **POKÉMON**:
# - **Pros**: You might have another Pokémon in your party that is better suited for this battle or that you want to gain experience. Switching Pokémon could also be a strategic move if you want to train a lower-level Pokémon.
# - **Cons**: Switching Pokémon might not be necessary since Pikachu is at a significant advantage. It could also waste time and potentially give Pidgey a turn to attack.
# 4. **RUN**:
# - **Pros**: Running away could save time and conserve your Pokémon's health and resources. If you are in a hurry or do not need the experience or items, running away is a safe option.
# - **Cons**: Running away means you miss out on the experience points and potential items or money that you could gain from defeating the Pidgey. It also means you do not get the chance to capture the Pidgey if you wanted to.
# ### Recommendation:
# Given the significant level advantage, the best action is likely to **FIGHT**. This will allow you to quickly defeat the Pidgey, gain experience points, and potentially earn items or money. If you are concerned about Pikachu's health, you could use an item from your **BAG** to heal it before or during the battle. Running away or switching Pokémon does not seem necessary in this situation.
```
</details>
#### Function calling
Mistral-Small-3.2-24B-Instruct-2506 is excellent at function / tool calling tasks via vLLM. *E.g.:*
<details>
<summary>Python snippet - easy</summary>
```py
from openai import OpenAI
from huggingface_hub import hf_hub_download
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
TEMP = 0.15
MAX_TOK = 131072
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
def load_system_prompt(repo_id: str, filename: str) -> str:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
return system_prompt
model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506"
SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt")
image_url = "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/europe.png"
tools = [
{
"type": "function",
"function": {
"name": "get_current_population",
"description": "Get the up-to-date population of a given country.",
"parameters": {
"type": "object",
"properties": {
"country": {
"type": "string",
"description": "The country to find the population of.",
},
"unit": {
"type": "string",
"description": "The unit for the population.",
"enum": ["millions", "thousands"],
},
},
"required": ["country", "unit"],
},
},
},
{
"type": "function",
"function": {
"name": "rewrite",
"description": "Rewrite a given text for improved clarity",
"parameters": {
"type": "object",
"properties": {
"text": {
"type": "string",
"description": "The input text to rewrite",
}
},
},
},
},
]
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": "Could you please make the below article more concise?\n\nOpenAI is an artificial intelligence research laboratory consisting of the non-profit OpenAI Incorporated and its for-profit subsidiary corporation OpenAI Limited Partnership.",
},
{
"role": "assistant",
"content": "",
"tool_calls": [
{
"id": "bbc5b7ede",
"type": "function",
"function": {
"name": "rewrite",
"arguments": '{"text": "OpenAI is an artificial intelligence research laboratory consisting of the non-profit OpenAI Incorporated and its for-profit subsidiary corporation OpenAI Limited Partnership."}',
},
}
],
},
{
"role": "tool",
"content": '{"action":"rewrite","outcome":"OpenAI is a FOR-profit company."}',
"tool_call_id": "bbc5b7ede",
"name": "rewrite",
},
{
"role": "assistant",
"content": "---\n\nOpenAI is a FOR-profit company.",
},
{
"role": "user",
"content": [
{
"type": "text",
"text": "Can you tell me what is the biggest country depicted on the map?",
},
{
"type": "image_url",
"image_url": {
"url": image_url,
},
},
],
}
]
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=TEMP,
max_tokens=MAX_TOK,
tools=tools,
tool_choice="auto",
)
assistant_message = response.choices[0].message.content
print(assistant_message)
# The biggest country depicted on the map is Russia.
messages.extend([
{"role": "assistant", "content": assistant_message},
{"role": "user", "content": "What is the population of that country in millions?"},
])
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=TEMP,
max_tokens=MAX_TOK,
tools=tools,
tool_choice="auto",
)
print(response.choices[0].message.tool_calls)
# [ChatCompletionMessageToolCall(id='3e92V6Vfo', function=Function(arguments='{"country": "Russia", "unit": "millions"}', name='get_current_population'), type='function')]
```
</details>
<details>
<summary>Python snippet - complex</summary>
```python
import json
from openai import OpenAI
from huggingface_hub import hf_hub_download
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
TEMP = 0.15
MAX_TOK = 131072
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
def load_system_prompt(repo_id: str, filename: str) -> str:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
return system_prompt
model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506"
SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt")
image_url = "https://math-coaching.com/img/fiche/46/expressions-mathematiques.jpg"
def my_calculator(expression: str) -> str:
return str(eval(expression))
tools = [
{
"type": "function",
"function": {
"name": "my_calculator",
"description": "A calculator that can evaluate a mathematical expression.",
"parameters": {
"type": "object",
"properties": {
"expression": {
"type": "string",
"description": "The mathematical expression to evaluate.",
},
},
"required": ["expression"],
},
},
},
{
"type": "function",
"function": {
"name": "rewrite",
"description": "Rewrite a given text for improved clarity",
"parameters": {
"type": "object",
"properties": {
"text": {
"type": "string",
"description": "The input text to rewrite",
}
},
},
},
},
]
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": [
{
"type": "text",
"text": "Can you calculate the results for all the equations displayed in the image? Only compute the ones that involve numbers.",
},
{
"type": "image_url",
"image_url": {
"url": image_url,
},
},
],
},
]
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=TEMP,
max_tokens=MAX_TOK,
tools=tools,
tool_choice="auto",
)
tool_calls = response.choices[0].message.tool_calls
print(tool_calls)
# [ChatCompletionMessageToolCall(id='CyQBSAtGh', function=Function(arguments='{"expression": "6 + 2 * 3"}', name='my_calculator'), type='function'), ChatCompletionMessageToolCall(id='KQqRCqvzc', function=Function(arguments='{"expression": "19 - (8 + 2) + 1"}', name='my_calculator'), type='function')]
results = []
for tool_call in tool_calls:
function_name = tool_call.function.name
function_args = tool_call.function.arguments
if function_name == "my_calculator":
result = my_calculator(**json.loads(function_args))
results.append(result)
messages.append({"role": "assistant", "tool_calls": tool_calls})
for tool_call, result in zip(tool_calls, results):
messages.append(
{
"role": "tool",
"tool_call_id": tool_call.id,
"name": tool_call.function.name,
"content": result,
}
)
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=TEMP,
max_tokens=MAX_TOK,
)
print(response.choices[0].message.content)
# Here are the results for the equations that involve numbers:
# 1. \( 6 + 2 \times 3 = 12 \)
# 3. \( 19 - (8 + 2) + 1 = 10 \)
# For the other equations, you need to substitute the variables with specific values to compute the results.
```
</details>
#### Instruction following
Mistral-Small-3.2-24B-Instruct-2506 will follow your instructions down to the last letter !
<details>
<summary>Python snippet</summary>
```python
from openai import OpenAI
from huggingface_hub import hf_hub_download
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
TEMP = 0.15
MAX_TOK = 131072
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
def load_system_prompt(repo_id: str, filename: str) -> str:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
return system_prompt
model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506"
SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt")
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": "Write me a sentence where every word starts with the next letter in the alphabet - start with 'a' and end with 'z'.",
},
]
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=TEMP,
max_tokens=MAX_TOK,
)
assistant_message = response.choices[0].message.content
print(assistant_message)
# Here's a sentence where each word starts with the next letter of the alphabet, starting from 'a' and ending with 'z':
# "Always brave cats dance elegantly, fluffy giraffes happily ignore jungle kites, lovingly munching nuts, observing playful quails racing swiftly, tiny unicorns vaulting while xylophones yodel zealously."
# This sentence follows the sequence from A to Z without skipping any letters.
```
</details>
### Transformers
You can also use Mistral-Small-3.2-24B-Instruct-2506 with `Transformers` !
To make the best use of our model with `Transformers` make sure to have [installed](https://github.com/mistralai/mistral-common) `mistral-common >= 1.6.2` to use our tokenizer.
```bash
pip install mistral-common --upgrade
```
Then load our tokenizer along with the model and generate:
<details>
<summary>Python snippet</summary>
```python
from datetime import datetime, timedelta
import torch
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from huggingface_hub import hf_hub_download
from transformers import Mistral3ForConditionalGeneration
def load_system_prompt(repo_id: str, filename: str) -> str:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
today = datetime.today().strftime("%Y-%m-%d")
yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
model_name = repo_id.split("/")[-1]
return system_prompt.format(name=model_name, today=today, yesterday=yesterday)
model_id = "mistralai/Mistral-Small-3.2-24B-Instruct-2506"
SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt")
tokenizer = MistralTokenizer.from_hf_hub(model_id)
model = Mistral3ForConditionalGeneration.from_pretrained(
model_id, torch_dtype=torch.bfloat16
)
image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438"
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": [
{
"type": "text",
"text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.",
},
{"type": "image_url", "image_url": {"url": image_url}},
],
},
]
tokenized = tokenizer.encode_chat_completion(ChatCompletionRequest(messages=messages))
input_ids = torch.tensor([tokenized.tokens])
attention_mask = torch.ones_like(input_ids)
pixel_values = torch.tensor(tokenized.images[0], dtype=torch.bfloat16).unsqueeze(0)
image_sizes = torch.tensor([pixel_values.shape[-2:]])
output = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
pixel_values=pixel_values,
image_sizes=image_sizes,
max_new_tokens=1000,
)[0]
decoded_output = tokenizer.decode(output[len(tokenized.tokens) :])
print(decoded_output)
# In this situation, you are playing a Pokémon game where your Pikachu (Level 42) is facing a wild Pidgey (Level 17). Here are the possible actions you can take and an analysis of each:
# 1. **FIGHT**:
# - **Pros**: Pikachu is significantly higher level than the wild Pidgey, which suggests that it should be able to defeat Pidgey easily. This could be a good opportunity to gain experience points and possibly items or money.
# - **Cons**: There is always a small risk of Pikachu fainting, especially if Pidgey has a powerful move or a status effect that could hinder Pikachu. However, given the large level difference, this risk is minimal.
# 2. **BAG**:
# - **Pros**: You might have items in your bag that could help in this battle, such as Potions, Poké Balls, or Berries. Using an item could help you capture Pidgey or heal Pikachu if needed.
# - **Cons**: Using items might not be necessary given the level difference. It could be more efficient to just fight and defeat Pidgey quickly.
# 3. **POKÉMON**:
# - **Pros**: You might have another Pokémon in your party that is better suited for this battle or that you want to gain experience. Switching Pokémon could also be strategic if you want to train a lower-level Pokémon.
# - **Cons**: Switching Pokémon might not be necessary since Pikachu is at a significant advantage. It could also waste time and potentially give Pidgey a turn to attack.
# 4. **RUN**:
# - **Pros**: Running away could be a quick way to avoid the battle altogether. This might be useful if you are trying to conserve resources or if you are in a hurry to get to another location.
# - **Cons**: Running away means you miss out on the experience points, items, or money that you could gain from defeating Pidgey. It also might not be the most efficient use of your time if you are trying to train your Pokémon.
# ### Recommendation:
# Given the significant level advantage, the best action to take is likely **FIGHT**. This will allow you to quickly defeat Pidgey and gain experience points for Pikachu. If you are concerned about Pikachu's health, you could use the **BAG** to heal Pikachu before or during the battle. Running away or switching Pokémon does not seem necessary in this situation.
```
</details>
|
thanobidex/blockassist-bc-colorful_shiny_hare_1755604128
|
thanobidex
| 2025-08-19T12:17:52Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"colorful shiny hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T12:17:48Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- colorful shiny hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lilTAT/blockassist-bc-gentle_rugged_hare_1755605836
|
lilTAT
| 2025-08-19T12:17:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle rugged hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T12:17:40Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle rugged hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
katreiaht/speecht5_finetuned_emirhan_tr
|
katreiaht
| 2025-08-19T12:16:30Z | 15 | 0 | null |
[
"pytorch",
"tensorboard",
"speecht5",
"generated_from_trainer",
"license:mit",
"region:us"
] | null | 2025-08-12T14:23:53Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: speecht5_finetuned_emirhan_tr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speecht5_finetuned_emirhan_tr
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3238
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.502 | 0.03 | 100 | 0.4198 |
| 0.4211 | 0.06 | 200 | 0.3732 |
| 0.3771 | 0.09 | 300 | 0.3491 |
| 0.3611 | 0.12 | 400 | 0.3298 |
| 0.3528 | 0.14 | 500 | 0.3238 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.6.0+cu124
- Datasets 2.19.1
- Tokenizers 0.13.3
|
unitova/blockassist-bc-zealous_sneaky_raven_1755604158
|
unitova
| 2025-08-19T12:15:58Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"zealous sneaky raven",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T12:15:54Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- zealous sneaky raven
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VoilaRaj/80_rHeBRC
|
VoilaRaj
| 2025-08-19T12:15:05Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-19T12:11:06Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
Tensavitprice/TensavitMexico
|
Tensavitprice
| 2025-08-19T12:14:56Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-08-19T12:14:04Z |
---
license: apache-2.0
---
¿Qué es Tensavit y cómo funciona?
Tensavit cápsula es una cápsula para la hipertensión especialmente formulada, diseñada para ayudar a controlar la presión arterial alta de forma natural. Actúa favoreciendo una circulación saludable, reduciendo la presión arterial y ayudando al corazón a funcionar de forma más eficiente. La cápsula promueve el equilibrio del sistema cardiovascular, ayudando al cuerpo a mantener niveles estables de presión arterial. Al mejorar el flujo sanguíneo y la eficiencia cardíaca general, reduce la fatiga y el estrés relacionados con la hipertensión. En resumen, Tensavit Pastillas ofrece una forma segura, natural y eficaz de apoyar la salud cardíaca y mantener una presión arterial normal Tensavit costo.
Sitio web oficial:<a href="https://www.nutritionsee.com/tensaviexico">www.Tensavit.com</a>
<p><a href="https://www.nutritionsee.com/tensaviexico"> <img src="https://www.nutritionsee.com/wp-content/uploads/2025/07/Tensavit-mexico.png" alt="enter image description here"> </a></p>
<a href="https://www.nutritionsee.com/tensaviexico">¡Compra ya! Haz clic en el enlace de abajo para más información y obtén un 50% de descuento. ¡Date prisa!</a>
Sitio web oficial:<a href="https://www.nutritionsee.com/tensaviexico">www.Tensavit.com</a>
|
mang3dd/blockassist-bc-tangled_slithering_alligator_1755603918
|
mang3dd
| 2025-08-19T12:12:14Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tangled slithering alligator",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T12:12:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tangled slithering alligator
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
LBST/t10_pick_and_place_smolvla_013000
|
LBST
| 2025-08-19T12:11:26Z | 0 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"robotics",
"pick-and-place",
"smolvla",
"checkpoint-013000",
"region:us"
] |
robotics
| 2025-08-19T12:11:21Z |
---
library_name: lerobot
tags:
- robotics
- pick-and-place
- smolvla
- checkpoint-013000
---
# T08 Pick and Place Policy - Checkpoint 013000
This model is a checkpoint from the training of a pick-and-place policy using SmolVLA architecture.
## Model Details
- **Checkpoint**: 013000
- **Architecture**: SmolVLA
- **Task**: Pick and Place (T08)
- **Training Step**: 013000
## Usage
You can evaluate this model using LeRobot:
```bash
python -m lerobot.scripts.eval \
--policy.path=LBST/t10_pick_and_place_smolvla_013000 \
--env.type=<your_environment> \
--eval.n_episodes=10 \
--policy.device=cuda
```
## Files
- `config.json`: Policy configuration
- `model.safetensors`: Model weights in SafeTensors format
- `train_config.json`: Complete training configuration for reproducibility
## Parent Repository
This checkpoint was extracted from: [LBST/t10_pick_and_place_files](https://huggingface.co/LBST/t10_pick_and_place_files)
---
*Generated automatically from checkpoint 013000*
|
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755603876
|
lisaozill03
| 2025-08-19T12:10:02Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rugged prickly alpaca",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T12:09:58Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rugged prickly alpaca
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Dejiat/blockassist-bc-savage_unseen_bobcat_1755605258
|
Dejiat
| 2025-08-19T12:08:27Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"savage unseen bobcat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T12:08:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- savage unseen bobcat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mustafakara/gpt-oss-20b-multilingual-reasoner-kpss
|
mustafakara
| 2025-08-19T12:05:44Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:openai/gpt-oss-20b",
"base_model:finetune:openai/gpt-oss-20b",
"endpoints_compatible",
"region:us"
] | null | 2025-08-19T11:28:26Z |
---
base_model: openai/gpt-oss-20b
library_name: transformers
model_name: gpt-oss-20b-multilingual-reasoner-kpss
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for gpt-oss-20b-multilingual-reasoner-kpss
This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="mustafakara/gpt-oss-20b-multilingual-reasoner-kpss", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.0
- Pytorch: 2.4.1
- Datasets: 3.6.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
murshed-ai/ap-dbbu-v0.06
|
murshed-ai
| 2025-08-19T12:04:49Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"token-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-cased",
"base_model:finetune:distilbert/distilbert-base-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2025-08-19T12:04:39Z |
---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ap-dbbu-v0.06
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ap-dbbu-v0.06
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Precision: 0.4628
- Recall: 0.3344
- F1: 0.3882
- Accuracy: 0.5332
- Sequence Em: 0.0
- Record Em: 0.0
- Em Accountnumber: 0.87
- Em Address.addressline1: 0.34
- Em Address.addressline2: 0.74
- Em Address.city: 0.3
- Em Address.countrycode: 0.69
- Em Address.postalcode: 0.89
- Em Address.stateprovince: 0.35
- Em Addressshortcode: 1.0
- Em Contact.email: 1.0
- Em Contact.name: 0.81
- Em Contact.phone: 1.0
- Em Name: 0.66
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 50
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Sequence Em | Record Em | Em Accountnumber | Em Address.addressline1 | Em Address.addressline2 | Em Address.city | Em Address.countrycode | Em Address.postalcode | Em Address.stateprovince | Em Addressshortcode | Em Contact.email | Em Contact.name | Em Contact.phone | Em Name |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:-----------:|:---------:|:-----------------:|:------------------------:|:------------------------:|:----------------:|:-----------------------:|:----------------------:|:-------------------------:|:--------------------:|:-----------------:|:----------------:|:-----------------:|:--------:|
| 0.0002 | 1.0 | 50 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0079 | 0.0 | 0.0 | 0.59 | 0.0 | 0.74 | 0.0 | 0.0 | 0.95 | 0.28 | 1.0 | 1.0 | 0.89 | 0.91 | 0.0 |
| 0.0002 | 2.0 | 100 | 0.0000 | 0.4214 | 0.1045 | 0.1675 | 0.1295 | 0.0 | 0.0 | 0.6 | 0.0 | 0.74 | 0.0 | 0.65 | 0.95 | 0.28 | 1.0 | 1.0 | 0.89 | 0.91 | 0.06 |
| 0.0001 | 3.0 | 150 | 0.0000 | 0.3783 | 0.1576 | 0.2225 | 0.2607 | 0.0 | 0.0 | 0.7 | 0.03 | 0.74 | 0.0 | 0.72 | 0.95 | 0.28 | 1.0 | 1.0 | 0.89 | 0.91 | 0.28 |
| 0.0001 | 4.0 | 200 | 0.0000 | 0.3764 | 0.2090 | 0.2688 | 0.3885 | 0.0 | 0.0 | 0.73 | 0.16 | 0.74 | 0.1 | 0.72 | 0.95 | 0.28 | 1.0 | 1.0 | 0.89 | 0.91 | 0.46 |
| 0.0001 | 5.0 | 250 | 0.0000 | 0.3917 | 0.2512 | 0.3061 | 0.4567 | 0.0 | 0.0 | 0.79 | 0.31 | 0.74 | 0.14 | 0.73 | 0.94 | 0.28 | 1.0 | 1.0 | 0.89 | 0.94 | 0.53 |
| 0.0001 | 6.0 | 300 | 0.0000 | 0.4327 | 0.3011 | 0.3551 | 0.5039 | 0.0 | 0.0 | 0.84 | 0.41 | 0.74 | 0.2 | 0.73 | 0.93 | 0.3 | 1.0 | 1.0 | 0.89 | 1.0 | 0.59 |
| 0.0001 | 7.0 | 350 | 0.0000 | 0.4557 | 0.3370 | 0.3874 | 0.5311 | 0.0 | 0.0 | 0.88 | 0.4 | 0.74 | 0.25 | 0.73 | 0.92 | 0.32 | 1.0 | 1.0 | 0.89 | 1.0 | 0.67 |
| 0.0001 | 8.0 | 400 | 0.0000 | 0.4592 | 0.3510 | 0.3979 | 0.5433 | 0.0 | 0.0 | 0.89 | 0.4 | 0.74 | 0.29 | 0.74 | 0.9 | 0.33 | 1.0 | 1.0 | 0.89 | 1.0 | 0.68 |
| 0.0001 | 9.0 | 450 | 0.0000 | 0.4555 | 0.3510 | 0.3965 | 0.5451 | 0.0 | 0.0 | 0.89 | 0.4 | 0.74 | 0.29 | 0.74 | 0.89 | 0.33 | 1.0 | 1.0 | 0.89 | 1.0 | 0.68 |
| 0.0001 | 10.0 | 500 | 0.0000 | 0.4555 | 0.3510 | 0.3965 | 0.5451 | 0.0 | 0.0 | 0.89 | 0.4 | 0.74 | 0.29 | 0.74 | 0.89 | 0.33 | 1.0 | 1.0 | 0.89 | 1.0 | 0.68 |
### Framework versions
- Transformers 4.55.2
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.4
|
SeungJun3214/wifi-gemma3-model4-merged2
|
SeungJun3214
| 2025-08-19T12:03:48Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma3_text",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-19T12:03:33Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
m-muraki/Qwen3-Coder-30B-A3B-Instruct-FP8
|
m-muraki
| 2025-08-19T12:03:40Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3_moe",
"text-generation",
"conversational",
"arxiv:2505.09388",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"fp8",
"region:us"
] |
text-generation
| 2025-08-19T12:02:47Z |
---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct-FP8/blob/main/LICENSE
pipeline_tag: text-generation
---
# Qwen3-Coder-30B-A3B-Instruct-FP8
<a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
<img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
</a>
## Highlights
**Qwen3-Coder** is available in multiple sizes. Today, we're excited to introduce **Qwen3-Coder-30B-A3B-Instruct-FP8**. This streamlined model maintains impressive performance and efficiency, featuring the following key enhancements:
- **Significant Performance** among open models on **Agentic Coding**, **Agentic Browser-Use**, and other foundational coding tasks.
- **Long-context Capabilities** with native support for **256K** tokens, extendable up to **1M** tokens using Yarn, optimized for repository-scale understanding.
- **Agentic Coding** supporting for most platform such as **Qwen Code**, **CLINE**, featuring a specially designed function call format.

## Model Overview
**Qwen3-Coder-30B-A3B-Instruct-FP8** has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Number of Parameters: 30.5B in total and 3.3B activated
- Number of Layers: 48
- Number of Attention Heads (GQA): 32 for Q and 4 for KV
- Number of Experts: 128
- Number of Activated Experts: 8
- Context Length: **262,144 natively**.
**NOTE: This model supports only non-thinking mode and does not generate ``<think></think>`` blocks in its output. Meanwhile, specifying `enable_thinking=False` is no longer required.**
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3-coder/), [GitHub](https://github.com/QwenLM/Qwen3-Coder), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Quickstart
We advise you to use the latest version of `transformers`.
With `transformers<4.51.0`, you will encounter the following error:
```
KeyError: 'qwen3_moe'
```
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen3-Coder-30B-A3B-Instruct-FP8"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Write a quick sort algorithm."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=65536
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
content = tokenizer.decode(output_ids, skip_special_tokens=True)
print("content:", content)
```
**Note: If you encounter out-of-memory (OOM) issues, consider reducing the context length to a shorter value, such as `32,768`.**
## Note on FP8
For convenience and performance, we have provided `fp8`-quantized model checkpoint for Qwen3, whose name ends with `-FP8`. The quantization method is fine-grained `fp8` quantization with block size of 128. You can find more details in the `quantization_config` field in `config.json`.
You can use the Qwen3-30B-A3B-Instruct-FP8 model with serveral inference frameworks, including `transformers`, `sglang`, and `vllm`, as the original bfloat16 model.
However, please pay attention to the following known issues:
- `transformers`:
- there are currently issues with the "fine-grained fp8" method in `transformers` for distributed inference. You may need to set the environment variable `CUDA_LAUNCH_BLOCKING=1` if multiple devices are used in inference.
## Agentic Coding
Qwen3-Coder excels in tool calling capabilities.
You can simply define or use any tools as following example.
```python
# Your tool implementation
def square_the_number(num: float) -> dict:
return num ** 2
# Define Tools
tools=[
{
"type":"function",
"function":{
"name": "square_the_number",
"description": "output the square of the number.",
"parameters": {
"type": "object",
"required": ["input_num"],
"properties": {
'input_num': {
'type': 'number',
'description': 'input_num is a number that will be squared'
}
},
}
}
}
]
import OpenAI
# Define LLM
client = OpenAI(
# Use a custom endpoint compatible with OpenAI API
base_url='http://localhost:8000/v1', # api_base
api_key="EMPTY"
)
messages = [{'role': 'user', 'content': 'square the number 1024'}]
completion = client.chat.completions.create(
messages=messages,
model="Qwen3-Coder-30B-A3B-Instruct-FP8",
max_tokens=65536,
tools=tools,
)
print(completion.choice[0])
```
## Best Practices
To achieve optimal performance, we recommend the following settings:
1. **Sampling Parameters**:
- We suggest using `temperature=0.7`, `top_p=0.8`, `top_k=20`, `repetition_penalty=1.05`.
2. **Adequate Output Length**: We recommend using an output length of 65,536 tokens for most queries, which is adequate for instruct models.
### Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen3technicalreport,
title={Qwen3 Technical Report},
author={Qwen Team},
year={2025},
eprint={2505.09388},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.09388},
}
```
|
swiptit/blockassist-bc-polished_armored_mandrill_1755604721
|
swiptit
| 2025-08-19T11:59:23Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"polished armored mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T11:59:19Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- polished armored mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
indoempatnol/blockassist-bc-fishy_wary_swan_1755602935
|
indoempatnol
| 2025-08-19T11:56:18Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"fishy wary swan",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T11:56:14Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- fishy wary swan
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755602793
|
kojeklollipop
| 2025-08-19T11:54:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"spotted amphibious stork",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T11:53:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- spotted amphibious stork
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
burmeai/burme-v1
|
burmeai
| 2025-08-19T11:51:20Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-08-19T11:51:20Z |
---
license: apache-2.0
---
|
AXERA-TECH/Qwen2.5-0.5B-Instruct-CTX-Int8
|
AXERA-TECH
| 2025-08-19T11:51:10Z | 10 | 0 |
transformers
|
[
"transformers",
"Qwen",
"Qwen2.5-0.5B-Instruct",
"Qwen2.5-0.5B-Instruct-GPTQ-Int8",
"GPTQ",
"en",
"base_model:Qwen/Qwen2.5-0.5B-Instruct-GPTQ-Int8",
"base_model:finetune:Qwen/Qwen2.5-0.5B-Instruct-GPTQ-Int8",
"license:bsd-3-clause",
"endpoints_compatible",
"region:us"
] | null | 2025-06-03T07:41:28Z |
---
library_name: transformers
license: bsd-3-clause
base_model:
- Qwen/Qwen2.5-0.5B-Instruct-GPTQ-Int8
tags:
- Qwen
- Qwen2.5-0.5B-Instruct
- Qwen2.5-0.5B-Instruct-GPTQ-Int8
- GPTQ
language:
- en
---
# Qwen2.5-0.5B-Instruct-GPTQ-Int8
This version of Qwen2.5-0.5B-Instruct-GPTQ-Int8 has been converted to run on the Axera NPU using **w8a16** quantization.
This model has been optimized with the following LoRA:
Compatible with Pulsar2 version: 4.2(Not released yet)
## Convert tools links:
For those who are interested in model conversion, you can try to export axmodel through the original repo : https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct-GPTQ-Int8
[Pulsar2 Link, How to Convert LLM from Huggingface to axmodel](https://pulsar2-docs.readthedocs.io/en/latest/appendix/build_llm.html)
[AXera NPU LLM Runtime](https://github.com/AXERA-TECH/ax-llm)
## Support Platform
- AX650
- AX650N DEMO Board
- [M4N-Dock(爱芯派Pro)](https://wiki.sipeed.com/hardware/zh/maixIV/m4ndock/m4ndock.html)
- [M.2 Accelerator card](https://axcl-docs.readthedocs.io/zh-cn/latest/doc_guide_hardware.html)
- AX630C
- *developing*
|Chips|w8a16|w4a16|
|--|--|--|
|AX650| 30 tokens/sec| TBD |
## How to use
Download all files from this repository to the device
```
root@ax650:/mnt/qtang/llm-test/qwen2.5-0.5b-ctx# tree -L 1
.
|-- main_ax650
|-- main_axcl_aarch64
|-- main_axcl_x86
|-- post_config.json
|-- qwen2.5-0.5b-gptq-int8-ctx-ax630c
|-- qwen2.5-0.5b-gptq-int8-ctx-ax650
|-- qwen2.5_tokenizer
|-- qwen2.5_tokenizer_uid.py
|-- run_qwen2.5_0.5b_gptq_int8_ctx_ax630c.sh
`-- run_qwen2.5_0.5b_gptq_int8_ctx_ax650.sh
3 directories, 7 files
```
#### Start the Tokenizer service
```
root@ax650:/mnt/qtang/llm-test/qwen2.5-0.5b-ctx# python3 qwen2.5_tokenizer_uid.py
Server running at http://0.0.0.0:12345
```
#### Inference with AX650 Host, such as M4N-Dock(爱芯派Pro) or AX650N DEMO Board
Open another terminal and run `run_qwen2.5_0.5b_gptq_int8_ax650.sh`
```
root@ax650:/mnt/qtang/llm-test/qwen2.5-0.5b-ctx# ./run_qwen2.5_0.5b_gptq_int8_ctx_ax650.sh
[I][ Init][ 110]: LLM init start
[I][ Init][ 34]: connect http://127.0.0.1:12345 ok
[I][ Init][ 57]: uid: cdeaf62e-0243-4dc9-b557-23a7c1ba7da1
bos_id: -1, eos_id: 151645
100% | ████████████████████████████████ | 27 / 27 [12.35s<12.35s, 2.19 count/s] init post axmodel ok,remain_cmm(3960 MB)
[I][ Init][ 188]: max_token_len : 2560
[I][ Init][ 193]: kv_cache_size : 128, kv_cache_num: 2560
[I][ Init][ 201]: prefill_token_num : 128
[I][ Init][ 205]: grp: 1, prefill_max_token_num : 1
[I][ Init][ 205]: grp: 2, prefill_max_token_num : 128
[I][ Init][ 205]: grp: 3, prefill_max_token_num : 512
[I][ Init][ 205]: grp: 4, prefill_max_token_num : 1024
[I][ Init][ 205]: grp: 5, prefill_max_token_num : 1536
[I][ Init][ 205]: grp: 6, prefill_max_token_num : 2048
[I][ Init][ 209]: prefill_max_token_num : 2048
[I][ load_config][ 282]: load config:
{
"enable_repetition_penalty": false,
"enable_temperature": false,
"enable_top_k_sampling": true,
"enable_top_p_sampling": false,
"penalty_window": 20,
"repetition_penalty": 1.2,
"temperature": 0.9,
"top_k": 1,
"top_p": 0.8
}
[I][ Init][ 218]: LLM init ok
Type "q" to exit, Ctrl+c to stop current running
[I][ GenerateKVCachePrefill][ 271]: input token num : 21, prefill_split_num : 1 prefill_grpid : 2
[I][ GenerateKVCachePrefill][ 308]: input_num_token:21
[I][ main][ 230]: precompute_len: 21
[I][ main][ 231]: system_prompt: You are Qwen, created by Alibaba Cloud. You are a helpful assistant.
prompt >> who are you?
[I][ SetKVCache][ 531]: prefill_grpid:2 kv_cache_num:128 precompute_len:38 input_num_token:12
[I][ SetKVCache][ 534]: current prefill_max_token_num:1920
[I][ Run][ 660]: input token num : 12, prefill_split_num : 1
[I][ Run][ 686]: input_num_token:12
[I][ Run][ 829]: ttft: 134.80 ms
I am Qwen, a large language model created by Alibaba Cloud. I am designed to assist with a wide range of tasks,
from general knowledge to specific areas such as science, technology, and more. How can I help you today?
[N][ Run][ 943]: hit eos,avg 30.88 token/s
[I][ GetKVCache][ 500]: precompute_len:98, remaining:1950
prompt >> what can you do?
[I][ SetKVCache][ 531]: prefill_grpid:2 kv_cache_num:128 precompute_len:98 input_num_token:13
[I][ SetKVCache][ 534]: current prefill_max_token_num:1920
[I][ Run][ 660]: input token num : 13, prefill_split_num : 1
[I][ Run][ 686]: input_num_token:13
[I][ Run][ 829]: ttft: 134.97 ms
I can answer questions, provide information, assist with tasks, and even engage in creative writing.
I'm here to help you with any questions or tasks you might have!
[N][ Run][ 943]: hit eos,avg 30.85 token/s
[I][ GetKVCache][ 500]: precompute_len:145, remaining:1903
```
|
milliarderdol/blockassist-bc-roaring_rough_scorpion_1755602125
|
milliarderdol
| 2025-08-19T11:47:44Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"roaring rough scorpion",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T11:47:23Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- roaring rough scorpion
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VoilaRaj/80_BVN8XN
|
VoilaRaj
| 2025-08-19T11:41:42Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-19T11:37:53Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
Azurastar2903/Qwen2.5-3B-Instruct-rk3588-1.2.1
|
Azurastar2903
| 2025-08-19T11:38:26Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"chat",
"conversational",
"en",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-3B",
"base_model:finetune:Qwen/Qwen2.5-3B",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-19T11:36:18Z |
---
base_model: Qwen/Qwen2.5-3B
language:
- en
library_name: transformers
license: other
license_name: qwen-research
license_link: https://huggingface.co/Qwen/Qwen2.5-3B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
tags:
- chat
---
# Qwen2.5-3B-Instruct-RK3588-1.2.1
This version of Qwen2.5-3B-Instruct has been converted to run on the RK3588 NPU using ['w8a8', 'w8a8_g128', 'w8a8_g256'] quantization.
This model has been optimized with the following LoRA:
Compatible with RKLLM version: 1.2.1
## Useful links:
[Official RKLLM GitHub](https://github.com/airockchip/rknn-llm)
[RockhipNPU Reddit](https://reddit.com/r/RockchipNPU)
[EZRKNN-LLM](https://github.com/Pelochus/ezrknn-llm/)
Pretty much anything by these folks: [marty1885](https://github.com/marty1885) and [happyme531](https://huggingface.co/happyme531)
Converted using https://github.com/c0zaut/ez-er-rkllm-toolkit
# Original Model Card for base model, Qwen2.5-3B-Instruct, below:
# Qwen2.5-3B-Instruct
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the instruction-tuned 3B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
- Number of Parameters: 3.09B
- Number of Paramaters (Non-Embedding): 2.77B
- Number of Layers: 36
- Number of Attention Heads (GQA): 16 for Q and 2 for KV
- Context Length: Full 32,768 tokens and generation 8192 tokens
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-3B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
```
|
smoorsmith/Dream_s1k_DORA_softmasking-0.0-learnable-16
|
smoorsmith
| 2025-08-19T11:37:43Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:smoorsmith/Dream-v0-Instruct-7B-Transparent-Masking",
"base_model:adapter:smoorsmith/Dream-v0-Instruct-7B-Transparent-Masking",
"region:us"
] | null | 2025-08-19T11:33:31Z |
---
base_model: smoorsmith/Dream-v0-Instruct-7B-Transparent-Masking
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.15.2
|
lavavaa/blockassist-bc-giant_knobby_chimpanzee_1755603296
|
lavavaa
| 2025-08-19T11:35:39Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"giant knobby chimpanzee",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T11:35:36Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- giant knobby chimpanzee
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
sankar-asthramedtech/Full-Precision_Whisper-Medium_and_LoRA-Adapters_Merged_Model_V-1.1
|
sankar-asthramedtech
| 2025-08-19T11:34:27Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"whisper",
"automatic-speech-recognition",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2025-08-19T11:30:30Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
hossein12321asdf/Taxi-v3
|
hossein12321asdf
| 2025-08-19T11:30:10Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2025-08-17T13:53:47Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="hossein12321asdf/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
VoilaRaj/80_rSYv0u
|
VoilaRaj
| 2025-08-19T11:29:50Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-19T11:26:04Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
imanuelradityaa/finetuned_cs_gemma_900_steps_4bit
|
imanuelradityaa
| 2025-08-19T11:29:16Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:unsloth/gemma-2b-it-bnb-4bit",
"base_model:quantized:unsloth/gemma-2b-it-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2025-08-19T11:27:50Z |
---
base_model: unsloth/gemma-2b-it-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gemma
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** imanuelradityaa
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-2b-it-bnb-4bit
This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
lavavaa/blockassist-bc-giant_knobby_chimpanzee_1755602733
|
lavavaa
| 2025-08-19T11:26:15Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"giant knobby chimpanzee",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T11:26:11Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- giant knobby chimpanzee
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
dgambettaphd/M_mis_run2_gen8_WXS_doc1000_synt64_lr1e-04_acm_MPP
|
dgambettaphd
| 2025-08-19T11:24:19Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-19T11:24:04Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
VoilaRaj/80_V9q3Cr
|
VoilaRaj
| 2025-08-19T11:21:29Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-19T11:17:40Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
saranyabalakumar/ppo-LunarLander-v2
|
saranyabalakumar
| 2025-08-19T11:21:18Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2025-08-19T10:25:34Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -156.80 +/- 75.76
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
iscchang/t2s
|
iscchang
| 2025-08-19T11:19:38Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct",
"lora",
"transformers",
"text-generation",
"conversational",
"arxiv:1910.09700",
"base_model:Qwen/Qwen2.5-Coder-7B-Instruct",
"region:us"
] |
text-generation
| 2025-08-19T11:16:49Z |
---
base_model: Qwen/Qwen2.5-Coder-7B-Instruct
library_name: peft
pipeline_tag: text-generation
tags:
- base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct
- lora
- transformers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.17.0
|
mohammadmahdinouri/moa-30k
|
mohammadmahdinouri
| 2025-08-19T11:17:57Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"ModernALBERT",
"fill-mask",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2025-08-19T11:17:54Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
hzk886/LLM
|
hzk886
| 2025-08-19T11:15:49Z | 0 | 0 | null |
[
"safetensors",
"camembert",
"arxiv:1910.09700",
"region:us"
] | null | 2025-08-19T11:04:26Z |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
koloni/blockassist-bc-deadly_graceful_stingray_1755600447
|
koloni
| 2025-08-19T11:15:34Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T11:15:30Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755600296
|
hakimjustbao
| 2025-08-19T11:12:02Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"raging subtle wasp",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T11:11:58Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- raging subtle wasp
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Mostefa-Terbeche/diabetic-retinopathy-combined-resnet50-gentle-20250620-195237
|
Mostefa-Terbeche
| 2025-08-19T11:10:57Z | 0 | 0 | null |
[
"diabetic-retinopathy",
"medical-imaging",
"pytorch",
"computer-vision",
"retinal-imaging",
"dataset:combined",
"license:apache-2.0",
"model-index",
"region:us"
] | null | 2025-08-19T10:19:37Z |
---
license: apache-2.0
tags:
- diabetic-retinopathy
- medical-imaging
- pytorch
- computer-vision
- retinal-imaging
datasets:
- combined
metrics:
- accuracy
- quadratic-kappa
- auc
model-index:
- name: combined_resnet50_gentle
results:
- task:
type: image-classification
name: Diabetic Retinopathy Classification
dataset:
type: combined
name: COMBINED
metrics:
- type: accuracy
value: 0.5665365507452094
- type: quadratic-kappa
value: 0.7742569342039034
---
# Diabetic Retinopathy Classification Model
## Model Description
This model is trained for diabetic retinopathy classification using the resnet50 architecture on the combined dataset with gentle preprocessing.
## Model Details
- **Architecture**: resnet50
- **Dataset**: combined
- **Preprocessing**: gentle
- **Training Date**: 20250620-195237
- **Task**: 5-class diabetic retinopathy grading (0-4)
- **Directory**: combined_resnet50_20250620-195237_new
## Performance
- **Test Accuracy**: 0.5665365507452094
- **Test Quadratic Kappa**: 0.7742569342039034
- **Validation Kappa**: 0.7742569342039034
## Usage
```python
import torch
from huggingface_hub import hf_hub_download
# Download model
model_path = hf_hub_download(
repo_id="your-username/diabetic-retinopathy-combined-resnet50-gentle",
filename="model_best.pt"
)
# Load model
model = torch.load(model_path, map_location='cpu')
```
## Classes
- 0: No DR (No diabetic retinopathy)
- 1: Mild DR (Mild non-proliferative diabetic retinopathy)
- 2: Moderate DR (Moderate non-proliferative diabetic retinopathy)
- 3: Severe DR (Severe non-proliferative diabetic retinopathy)
- 4: Proliferative DR (Proliferative diabetic retinopathy)
## Citation
If you use this model, please cite your research paper/thesis.
|
frankmorales2020/mistral-7b-alpha-finetuned-llm-science-exam-tpu-colab-v6e-1
|
frankmorales2020
| 2025-08-19T11:09:15Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-19T11:06:58Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
OdedKBio/ppo-LunarLander-v2
|
OdedKBio
| 2025-08-19T11:03:33Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2025-08-19T11:01:33Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v3
type: LunarLander-v3
metrics:
- type: mean_reward
value: -198.68 +/- 121.66
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v3**
This is a trained model of a **PPO** agent playing **LunarLander-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
semenetslitslink/sd_flux_context_monochrome_pets_500_1024
|
semenetslitslink
| 2025-08-19T10:57:09Z | 0 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"text-to-image",
"diffusers-training",
"lora",
"flux",
"flux-kontextflux-diffusers",
"template:sd-lora",
"base_model:black-forest-labs/FLUX.1-Kontext-dev",
"base_model:adapter:black-forest-labs/FLUX.1-Kontext-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-19T07:34:44Z |
---
base_model: black-forest-labs/FLUX.1-Kontext-dev
library_name: diffusers
license: other
widget: []
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- flux
- flux-kontextflux-diffusers
- template:sd-lora
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# Flux Kontext DreamBooth LoRA - semenetslitslink/sd_flux_context_monochrome_pets_500_1024
<Gallery />
## Model description
These are semenetslitslink/sd_flux_context_monochrome_pets_500_1024 DreamBooth LoRA weights for black-forest-labs/FLUX.1-Kontext-dev.
The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [Flux diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_flux.md).
Was LoRA for the text encoder enabled? False.
## Trigger words
You should use `None` to trigger the image generation.
## Download model
[Download the *.safetensors LoRA](semenetslitslink/sd_flux_context_monochrome_pets_500_1024/tree/main) in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import FluxKontextPipeline
import torch
pipeline = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to('cuda')
pipeline.load_lora_weights('semenetslitslink/sd_flux_context_monochrome_pets_500_1024', weight_name='pytorch_lora_weights.safetensors')
image = pipeline('None').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## License
Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]
|
michaelcpage345/blockassist-bc-miniature_deadly_anteater_1755598913
|
michaelcpage345
| 2025-08-19T10:55:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"miniature deadly anteater",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T10:55:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- miniature deadly anteater
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ShimotsukiArc/Qwen2.5-Coder-7B-Instruct-trained3
|
ShimotsukiArc
| 2025-08-19T10:50:31Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"base_model:ShimotsukiArc/Qwen2.5-Coder-7B-Instruct-untrained",
"base_model:finetune:ShimotsukiArc/Qwen2.5-Coder-7B-Instruct-untrained",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-19T10:49:26Z |
---
base_model: ShimotsukiArc/Qwen2.5-Coder-7B-Instruct-untrained
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** ShimotsukiArc
- **License:** apache-2.0
- **Finetuned from model :** ShimotsukiArc/Qwen2.5-Coder-7B-Instruct-untrained
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755600583
|
0xaoyama
| 2025-08-19T10:50:20Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"muscular zealous gorilla",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T10:50:07Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- muscular zealous gorilla
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VoilaRaj/80_wpDRdl
|
VoilaRaj
| 2025-08-19T10:47:49Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-19T10:44:04Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
godeval/blockassist-bc-tame_pudgy_horse_1755600294
|
godeval
| 2025-08-19T10:47:34Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tame pudgy horse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T10:47:24Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tame pudgy horse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755600286
|
0xaoyama
| 2025-08-19T10:45:19Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"muscular zealous gorilla",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T10:45:07Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- muscular zealous gorilla
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mithun932001/lora_model
|
mithun932001
| 2025-08-19T10:42:06Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2_5_vl",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-06T09:12:06Z |
---
base_model: unsloth/qwen2.5-vl-7b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2_5_vl
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** mithun932001
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2.5-vl-7b-instruct-bnb-4bit
This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
koloni/blockassist-bc-deadly_graceful_stingray_1755598509
|
koloni
| 2025-08-19T10:41:46Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T10:41:43Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755598478
|
hakimjustbao
| 2025-08-19T10:41:25Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"raging subtle wasp",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T10:41:22Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- raging subtle wasp
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
darshanvyas36/qwen-8-B
|
darshanvyas36
| 2025-08-19T10:40:25Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-19T10:40:17Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Azurastar2903/Qwen2.5-1.5B-Instruct-rk3588-1.2.1
|
Azurastar2903
| 2025-08-19T10:36:10Z | 0 | 0 |
transformers
|
[
"transformers",
"qwen2",
"text-generation",
"chat",
"conversational",
"en",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-1.5B",
"base_model:finetune:Qwen/Qwen2.5-1.5B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-19T10:34:59Z |
---
base_model: Qwen/Qwen2.5-1.5B
language:
- en
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
tags:
- chat
---
# Qwen2.5-1.5B-Instruct-RK3588-1.2.1
This version of Qwen2.5-1.5B-Instruct has been converted to run on the RK3588 NPU using ['w8a8', 'w8a8_g128', 'w8a8_g256'] quantization.
This model has been optimized with the following LoRA:
Compatible with RKLLM version: 1.2.1
## Useful links:
[Official RKLLM GitHub](https://github.com/airockchip/rknn-llm)
[RockhipNPU Reddit](https://reddit.com/r/RockchipNPU)
[EZRKNN-LLM](https://github.com/Pelochus/ezrknn-llm/)
Pretty much anything by these folks: [marty1885](https://github.com/marty1885) and [happyme531](https://huggingface.co/happyme531)
Converted using https://github.com/c0zaut/ez-er-rkllm-toolkit
# Original Model Card for base model, Qwen2.5-1.5B-Instruct, below:
# Qwen2.5-1.5B-Instruct
## Introduction
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:
- Significantly **more knowledge** and has greatly improved capabilities in **coding** and **mathematics**, thanks to our specialized expert models in these domains.
- Significant improvements in **instruction following**, **generating long texts** (over 8K tokens), **understanding structured data** (e.g, tables), and **generating structured outputs** especially JSON. **More resilient to the diversity of system prompts**, enhancing role-play implementation and condition-setting for chatbots.
- **Long-context Support** up to 128K tokens and can generate up to 8K tokens.
- **Multilingual support** for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
**This repo contains the instruction-tuned 1.5B Qwen2.5 model**, which has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
- Number of Parameters: 1.54B
- Number of Paramaters (Non-Embedding): 1.31B
- Number of Layers: 28
- Number of Attention Heads (GQA): 12 for Q and 2 for KV
- Context Length: Full 32,768 tokens and generation 8192 tokens
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/QwenLM/Qwen2.5), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Requirements
The code of Qwen2.5 has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.37.0`, you will encounter the following error:
```
KeyError: 'qwen2'
```
## Quickstart
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## Evaluation & Performance
Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5/).
For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
```
|
ssenos/lantern_fine-tuning-v1
|
ssenos
| 2025-08-19T10:27:45Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:savasy/bert-base-turkish-sentiment-cased",
"base_model:finetune:savasy/bert-base-turkish-sentiment-cased",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-19T10:14:31Z |
---
library_name: transformers
base_model: savasy/bert-base-turkish-sentiment-cased
tags:
- generated_from_trainer
model-index:
- name: lantern_fine-tuning-v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lantern_fine-tuning-v1
This model is a fine-tuned version of [savasy/bert-base-turkish-sentiment-cased](https://huggingface.co/savasy/bert-base-turkish-sentiment-cased) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- Transformers 4.55.2
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.4
|
0xGareeb/blockassist-bc-diving_jumping_llama_1755599127
|
0xGareeb
| 2025-08-19T10:27:10Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"diving jumping llama",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T10:26:33Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- diving jumping llama
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
sentence-transformers/stsb-mpnet-base-v2
|
sentence-transformers
| 2025-08-19T10:26:48Z | 9,602 | 12 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"onnx",
"safetensors",
"openvino",
"mpnet",
"feature-extraction",
"sentence-similarity",
"transformers",
"text-embeddings-inference",
"arxiv:1908.10084",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- text-embeddings-inference
pipeline_tag: sentence-similarity
---
# sentence-transformers/stsb-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/stsb-mpnet-base-v2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/stsb-mpnet-base-v2')
model = AutoModel.from_pretrained('sentence-transformers/stsb-mpnet-base-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Usage (Text Embeddings Inference (TEI))
[Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) is a blazing fast inference solution for text embedding models.
- CPU:
```bash
docker run -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-latest --model-id sentence-transformers/stsb-mpnet-base-v2 --pooling mean --dtype float16
```
- NVIDIA GPU:
```bash
docker run --gpus all -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cuda-latest --model-id sentence-transformers/stsb-mpnet-base-v2 --pooling mean --dtype float16
```
Send a request to `/v1/embeddings` to generate embeddings via the [OpenAI Embeddings API](https://platform.openai.com/docs/api-reference/embeddings/create):
```bash
curl http://localhost:8080/v1/embeddings \
-H "Content-Type: application/json" \
-d '{
"model": "sentence-transformers/stsb-mpnet-base-v2",
"input": ["This is an example sentence", "Each sentence is converted"]
}'
```
Or check the [Text Embeddings Inference API specification](https://huggingface.github.io/text-embeddings-inference/) instead.
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
This model was trained by [sentence-transformers](https://www.sbert.net/).
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
```
|
sentence-transformers/paraphrase-mpnet-base-v2
|
sentence-transformers
| 2025-08-19T10:24:29Z | 555,983 | 43 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"tf",
"onnx",
"safetensors",
"openvino",
"mpnet",
"feature-extraction",
"sentence-similarity",
"transformers",
"text-embeddings-inference",
"arxiv:1908.10084",
"doi:10.57967/hf/2004",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- text-embeddings-inference
pipeline_tag: sentence-similarity
---
# sentence-transformers/paraphrase-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/paraphrase-mpnet-base-v2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-mpnet-base-v2')
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-mpnet-base-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Usage (Text Embeddings Inference (TEI))
[Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) is a blazing fast inference solution for text embedding models.
- CPU:
```bash
docker run -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-latest \
--model-id sentence-transformers/paraphrase-mpnet-base-v2 \
--pooling mean \
--dtype float16
```
- NVIDIA GPU:
```bash
docker run --gpus all -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cuda-latest \
--model-id sentence-transformers/paraphrase-mpnet-base-v2 \
--pooling mean \
--dtype float16
```
Send a request to `/v1/embeddings` to generate embeddings via the [OpenAI Embeddings API](https://platform.openai.com/docs/api-reference/embeddings/create):
```bash
curl -s http://localhost:8080/v1/embeddings \
-H "Content-Type: application/json" \
-d '{
"model": "sentence-transformers/paraphrase-mpnet-base-v2",
"input": "This is an example sentence"
}'
```
Or check the [Text Embeddings Inference API specification](https://huggingface.github.io/text-embeddings-inference/) instead.
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
This model was trained by [sentence-transformers](https://www.sbert.net/).
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}
```
|
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755598900
|
IvanJAjebu
| 2025-08-19T10:23:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny slender capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T10:22:43Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny slender capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Mostefa-Terbeche/diabetic-retinopathy-combined-efficientnet_b3-advanced-20250723-151817
|
Mostefa-Terbeche
| 2025-08-19T10:19:37Z | 0 | 0 | null |
[
"diabetic-retinopathy",
"medical-imaging",
"pytorch",
"computer-vision",
"retinal-imaging",
"dataset:combined",
"license:apache-2.0",
"model-index",
"region:us"
] | null | 2025-08-19T09:54:43Z |
---
license: apache-2.0
tags:
- diabetic-retinopathy
- medical-imaging
- pytorch
- computer-vision
- retinal-imaging
datasets:
- combined
metrics:
- accuracy
- quadratic-kappa
- auc
model-index:
- name: combined_efficientnet_b3_advanced
results:
- task:
type: image-classification
name: Diabetic Retinopathy Classification
dataset:
type: combined
name: COMBINED
metrics:
- type: accuracy
value: 0.7597586941092974
- type: quadratic-kappa
value: 0.8101430710706087
---
# Diabetic Retinopathy Classification Model
## Model Description
This model is trained for diabetic retinopathy classification using the efficientnet_b3 architecture on the combined dataset with advanced preprocessing.
## Model Details
- **Architecture**: efficientnet_b3
- **Dataset**: combined
- **Preprocessing**: advanced
- **Training Date**: 20250723-151817
- **Task**: 5-class diabetic retinopathy grading (0-4)
- **Directory**: combined_efficientnet_b3_20250723-151817_new
## Performance
- **Test Accuracy**: 0.7597586941092974
- **Test Quadratic Kappa**: 0.8101430710706087
- **Validation Kappa**: 0.8101430710706087
## Usage
```python
import torch
from huggingface_hub import hf_hub_download
# Download model
model_path = hf_hub_download(
repo_id="your-username/diabetic-retinopathy-combined-efficientnet_b3-advanced",
filename="model_best.pt"
)
# Load model
model = torch.load(model_path, map_location='cpu')
```
## Classes
- 0: No DR (No diabetic retinopathy)
- 1: Mild DR (Mild non-proliferative diabetic retinopathy)
- 2: Moderate DR (Moderate non-proliferative diabetic retinopathy)
- 3: Severe DR (Severe non-proliferative diabetic retinopathy)
- 4: Proliferative DR (Proliferative diabetic retinopathy)
## Citation
If you use this model, please cite your research paper/thesis.
|
sentence-transformers/multi-qa-mpnet-base-cos-v1
|
sentence-transformers
| 2025-08-19T10:19:32Z | 603,907 | 41 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"onnx",
"safetensors",
"openvino",
"mpnet",
"fill-mask",
"feature-extraction",
"sentence-similarity",
"transformers",
"text-embeddings-inference",
"en",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:05Z |
---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- text-embeddings-inference
pipeline_tag: sentence-similarity
---
# multi-qa-mpnet-base-cos-v1
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and was designed for **semantic search**. It has been trained on 215M (question, answer) pairs from diverse sources. For an introduction to semantic search, have a look at: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html)
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer, util
query = "How many people live in London?"
docs = ["Around 9 Million people live in London", "London is known for its financial district"]
#Load the model
model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-cos-v1')
#Encode query and documents
query_emb = model.encode(query)
doc_emb = model.encode(docs)
#Compute dot score between query and all document embeddings
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()
#Combine docs & scores
doc_score_pairs = list(zip(docs, scores))
#Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
#Output passages & scores
for doc, score in doc_score_pairs:
print(score, doc)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the correct pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
# Mean Pooling - Take average of all tokens
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output.last_hidden_state # First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Encode text
def encode(texts):
# Tokenize sentences
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input, return_dict=True)
# Perform pooling
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
return embeddings
# Sentences we want sentence embeddings for
query = "How many people live in London?"
docs = ["Around 9 Million people live in London", "London is known for its financial district"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-mpnet-base-cos-v1")
model = AutoModel.from_pretrained("sentence-transformers/multi-qa-mpnet-base-cos-v1")
# Encode query and docs
query_emb = encode(query)
doc_emb = encode(docs)
# Compute dot score between query and all document embeddings
scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist()
# Combine docs & scores
doc_score_pairs = list(zip(docs, scores))
# Sort by decreasing score
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
# Output passages & scores
for doc, score in doc_score_pairs:
print(score, doc)
```
## Usage (Text Embeddings Inference (TEI))
[Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) is a blazing fast inference solution for text embedding models.
- CPU:
```bash
docker run -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-latest --model-id sentence-transformers/multi-qa-mpnet-base-cos-v1 --pooling mean --dtype float16
```
- NVIDIA GPU:
```bash
docker run --gpus all -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cuda-latest --model-id sentence-transformers/multi-qa-mpnet-base-cos-v1 --pooling mean --dtype float16
```
Send a request to `/v1/embeddings` to generate embeddings via the [OpenAI Embeddings API](https://platform.openai.com/docs/api-reference/embeddings/create):
```bash
curl http://localhost:8080/v1/embeddings \
-H "Content-Type: application/json" \
-d '{
"model": "sentence-transformers/multi-qa-mpnet-base-cos-v1",
"input": "How many people live in London?"
}'
```
Or check the [Text Embeddings Inference API specification](https://huggingface.github.io/text-embeddings-inference/) instead.
## Technical Details
In the following some technical details how this model must be used:
| Setting | Value |
| --- | :---: |
| Dimensions | 768 |
| Produces normalized embeddings | Yes |
| Pooling-Method | Mean pooling |
| Suitable score functions | dot-product (`util.dot_score`), cosine-similarity (`util.cos_sim`), or euclidean distance |
Note: When loaded with `sentence-transformers`, this model produces normalized embeddings with length 1. In that case, dot-product and cosine-similarity are equivalent. dot-product is preferred as it is faster. Euclidean distance is proportional to dot-product and can also be used.
----
## Background
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
contrastive learning objective. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
We developed this model during the
[Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
organized by Hugging Face. We developed this model as part of the project:
[Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Google's Flax, JAX, and Cloud team members about efficient deep learning frameworks.
## Intended uses
Our model is intended to be used for semantic search: It encodes queries / questions and text paragraphs in a dense vector space. It finds relevant documents for the given passages.
Note that there is a limit of 512 word pieces: Text longer than that will be truncated. Further note that the model was just trained on input text up to 250 word pieces. It might not work well for longer text.
## Training procedure
The full training script is accessible in this current repository: `train_script.py`.
### Pre-training
We use the pretrained [`mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model. Please refer to the model card for more detailed information about the pre-training procedure.
#### Training
We use the concatenation of multiple datasets to fine-tune our model. In total we have about 215M (question, answer) pairs.
We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
The model was trained with [MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) using Mean-pooling, cosine-similarity as similarity function, and a scale of 20.
| Dataset | Number of training tuples |
|--------------------------------------------------------|:--------------------------:|
| [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs from WikiAnswers | 77,427,422 |
| [PAQ](https://github.com/facebookresearch/PAQ) Automatically generated (Question, Paragraph) pairs for each paragraph in Wikipedia | 64,371,441 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs from all StackExchanges | 25,316,456 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs from all StackExchanges | 21,396,559 |
| [MS MARCO](https://microsoft.github.io/msmarco/) Triplets (query, answer, hard_negative) for 500k queries from Bing search engine | 17,579,773 |
| [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) (query, answer) pairs for 3M Google queries and Google featured snippet | 3,012,496 |
| [Amazon-QA](http://jmcauley.ucsd.edu/data/amazon/qa/) (Question, Answer) pairs from Amazon product pages | 2,448,839 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) pairs from Yahoo Answers | 1,198,260 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) pairs from Yahoo Answers | 681,164 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) pairs from Yahoo Answers | 659,896 |
| [SearchQA](https://huggingface.co/datasets/search_qa) (Question, Answer) pairs for 140k questions, each with Top5 Google snippets on that question | 582,261 |
| [ELI5](https://huggingface.co/datasets/eli5) (Question, Answer) pairs from Reddit ELI5 (explainlikeimfive) | 325,475 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions pairs (titles) | 304,525 |
| [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) (Question, Duplicate_Question, Hard_Negative) triplets for Quora Questions Pairs dataset | 103,663 |
| [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) (Question, Paragraph) pairs for 100k real Google queries with relevant Wikipedia paragraph | 100,231 |
| [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) (Question, Paragraph) pairs from SQuAD2.0 dataset | 87,599 |
| [TriviaQA](https://huggingface.co/datasets/trivia_qa) (Question, Evidence) pairs | 73,346 |
| **Total** | **214,988,242** |
|
aleebaster/blockassist-bc-sly_eager_boar_1755597218
|
aleebaster
| 2025-08-19T10:19:23Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"sly eager boar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T10:19:16Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- sly eager boar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Frax01/SmolLM-135M-python-open-shell
|
Frax01
| 2025-08-19T10:18:50Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"sft",
"trl",
"base_model:HuggingFaceTB/SmolLM-135M",
"base_model:finetune:HuggingFaceTB/SmolLM-135M",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-19T09:17:49Z |
---
base_model: HuggingFaceTB/SmolLM-135M
library_name: transformers
model_name: SmolLM-135M-python-open-shell
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for SmolLM-135M-python-open-shell
This model is a fine-tuned version of [HuggingFaceTB/SmolLM-135M](https://huggingface.co/HuggingFaceTB/SmolLM-135M).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Frax01/SmolLM-135M-python-open-shell", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.6.0+cu124
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
valleriee/pii-model-14
|
valleriee
| 2025-08-19T10:15:37Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-19T10:03:08Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
crystalline7/1822852
|
crystalline7
| 2025-08-19T10:15:33Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T10:15:27Z |
[View on Civ Archive](https://civarchive.com/models/1698187?modelVersionId=1921894)
|
VoilaRaj/80_Cz2WrU
|
VoilaRaj
| 2025-08-19T10:14:36Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-19T10:10:43Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
sentence-transformers/all-mpnet-base-v2
|
sentence-transformers
| 2025-08-19T10:14:25Z | 17,267,989 | 1,129 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"onnx",
"safetensors",
"openvino",
"mpnet",
"fill-mask",
"feature-extraction",
"sentence-similarity",
"transformers",
"text-embeddings-inference",
"en",
"dataset:s2orc",
"dataset:flax-sentence-embeddings/stackexchange_xml",
"dataset:ms_marco",
"dataset:gooaq",
"dataset:yahoo_answers_topics",
"dataset:code_search_net",
"dataset:search_qa",
"dataset:eli5",
"dataset:snli",
"dataset:multi_nli",
"dataset:wikihow",
"dataset:natural_questions",
"dataset:trivia_qa",
"dataset:embedding-data/sentence-compression",
"dataset:embedding-data/flickr30k-captions",
"dataset:embedding-data/altlex",
"dataset:embedding-data/simple-wiki",
"dataset:embedding-data/QQP",
"dataset:embedding-data/SPECTER",
"dataset:embedding-data/PAQ_pairs",
"dataset:embedding-data/WikiAnswers",
"arxiv:1904.06472",
"arxiv:2102.07033",
"arxiv:2104.08727",
"arxiv:1704.05179",
"arxiv:1810.09305",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-03-02T23:29:05Z |
---
language: en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- text-embeddings-inference
datasets:
- s2orc
- flax-sentence-embeddings/stackexchange_xml
- ms_marco
- gooaq
- yahoo_answers_topics
- code_search_net
- search_qa
- eli5
- snli
- multi_nli
- wikihow
- natural_questions
- trivia_qa
- embedding-data/sentence-compression
- embedding-data/flickr30k-captions
- embedding-data/altlex
- embedding-data/simple-wiki
- embedding-data/QQP
- embedding-data/SPECTER
- embedding-data/PAQ_pairs
- embedding-data/WikiAnswers
pipeline_tag: sentence-similarity
---
# all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-mpnet-base-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Usage (Text Embeddings Inference (TEI))
[Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) is a blazing fast inference solution for text embedding models.
- CPU:
```bash
docker run -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-latest --model-id sentence-transformers/all-mpnet-base-v2 --pooling mean --dtype float16
```
- NVIDIA GPU:
```bash
docker run --gpus all -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cuda-latest --model-id sentence-transformers/all-mpnet-base-v2 --pooling mean --dtype float16
```
Send a request to `/v1/embeddings` to generate embeddings via the [OpenAI Embeddings API](https://platform.openai.com/docs/api-reference/embeddings/create):
```bash
curl http://localhost:8080/v1/embeddings \
-H 'Content-Type: application/json' \
-d '{
"model": "sentence-transformers/all-mpnet-base-v2",
"input": ["This is an example sentence", "Each sentence is converted"]
}'
```
Or check the [Text Embeddings Inference API specification](https://huggingface.github.io/text-embeddings-inference/) instead.
------
## Background
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
contrastive learning objective. We used the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model and fine-tuned in on a
1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
We developed this model during the
[Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
organized by Hugging Face. We developed this model as part of the project:
[Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
## Intended uses
Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it outputs a vector which captures
the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
By default, input text longer than 384 word pieces is truncated.
## Training procedure
### Pre-training
We use the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model. Please refer to the model card for more detailed information about the pre-training procedure.
### Fine-tuning
We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.
We then apply the cross entropy loss by comparing with true pairs.
#### Hyper parameters
We trained our model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core).
We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
#### Training data
We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
| Dataset | Paper | Number of training tuples |
|--------------------------------------------------------|:----------------------------------------:|:--------------------------:|
| [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
| [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
| [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
| [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 |
| [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
| [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
| [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
| [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
| [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
| [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
| [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
| [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
| AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
| [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
| [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
| [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
| [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
| [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
| [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
| [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
| [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
| **Total** | | **1,170,060,424** |
|
mang3dd/blockassist-bc-tangled_slithering_alligator_1755596335
|
mang3dd
| 2025-08-19T10:08:04Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tangled slithering alligator",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T10:08:01Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tangled slithering alligator
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
KCS97/red_cartoon
|
KCS97
| 2025-08-19T10:04:38Z | 0 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"safetensors",
"text-to-image",
"dreambooth",
"diffusers-training",
"stable-diffusion",
"stable-diffusion-diffusers",
"base_model:stable-diffusion-v1-5/stable-diffusion-v1-5",
"base_model:finetune:stable-diffusion-v1-5/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2025-08-19T09:52:20Z |
---
base_model: stable-diffusion-v1-5/stable-diffusion-v1-5
library_name: diffusers
license: creativeml-openrail-m
inference: true
instance_prompt: a photo of sks cartoon
tags:
- text-to-image
- dreambooth
- diffusers-training
- stable-diffusion
- stable-diffusion-diffusers
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# DreamBooth - KCS97/red_cartoon
This is a dreambooth model derived from stable-diffusion-v1-5/stable-diffusion-v1-5. The weights were trained on a photo of sks cartoon using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following.
DreamBooth for the text encoder was enabled: False.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]
|
dgambettaphd/M_mis_run2_gen7_WXS_doc1000_synt64_lr1e-04_acm_MPP
|
dgambettaphd
| 2025-08-19T10:03:43Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-19T10:03:29Z |
---
library_name: transformers
tags:
- unsloth
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
milliarderdol/blockassist-bc-roaring_rough_scorpion_1755595662
|
milliarderdol
| 2025-08-19T10:02:14Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"roaring rough scorpion",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T10:01:36Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- roaring rough scorpion
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
carlosdelfino/eli5_clm-model
|
carlosdelfino
| 2025-08-19T10:02:11Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"pt",
"dataset:dany0407/eli5_category",
"base_model:distilbert/distilgpt2",
"base_model:finetune:distilbert/distilgpt2",
"license:cc-by-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-18T14:01:13Z |
---
license: cc-by-4.0
language: pt
library_name: transformers
base_model: distilbert/distilgpt2
tags:
- generated_from_trainer
model-index:
- name: eli5_clm-model
results: []
datasets:
- dany0407/eli5_category
---
# eli5_clm-model
Modelo de Linguagem Causal (Causal Language Model, CLM) fine-tunado a partir de [distilbert/distilgpt2](https://huggingface.co/distilbert/distilgpt2).
Este modelo foi treinado seguindo o tutorial oficial de Causal Language Modeling dos Transformers:
https://huggingface.co/docs/transformers/tasks/language_modeling#causal-language-modeling
Resultados no conjunto de validação:
- Loss: 3.8254
## Descrição do modelo
Um CLM aprende a prever o próximo token dado o contexto anterior, sendo adequado para geração de texto auto-regressiva. Aqui utilizamos o DistilGPT-2 como base e realizamos fine-tuning em um conjunto de dados local (não especificado neste card). O objetivo é adaptar o modelo ao domínio/estilo desejado.
## Usos previstos e limitações
- Geração de texto condicionada a um prompt.
- Completar sentenças ou parágrafos em língua portuguesa/inglesa (dependendo dos dados de treino).
- Não é um verificador de fatos; pode alucinar conteúdo.
- Evite uso em cenários sensíveis sem validação humana.
## Como testar rapidamente (linha de comando)
1) Crie/ative um ambiente Python e instale dependências mínimas:
- transformers, torch, accelerate, safetensors
2) Execute o script `test_inference.py` (fornecido nesta pasta):
```bash
python test_inference.py \
--model_dir . \
--prompt "Explique em termos simples o que é aprendizado de máquina." \
--max_new_tokens 80
```
Parâmetros úteis:
- `--temperature` (controle de criatividade, ex.: 0.7)
- `--top_p` (amostragem nucleus, ex.: 0.9)
- `--seed` (reprodutibilidade)
## Exemplo de uso em Python
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_dir = "." # caminho desta pasta
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForCausalLM.from_pretrained(model_dir)
prompt = "Explique o que é um modelo de linguagem de forma simples."
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=80,
temperature=0.7,
top_p=0.9,
do_sample=True,
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Dados de treino e avaliação
- Fonte: conjunto de dados local (não especificado neste repositório).
- Tarefa: modelagem de linguagem causal (próximo token).
- Observação: para reprodutibilidade completa, registre e publique a origem dos dados quando possível.
## Procedimento de treino
### Hiperparâmetros de treino
Os seguintes hiperparâmetros foram usados durante o treino:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: ADAMW_TORCH_FUSED (betas=(0.9,0.999), epsilon=1e-08)
- lr_scheduler_type: linear
- num_epochs: 3.0
### Resultados de treino
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.9127 | 1.0 | 1311 | 3.8362 |
| 3.8243 | 2.0 | 2622 | 3.8266 |
| 3.7832 | 3.0 | 3933 | 3.8254 |
### Versões de framework
- Transformers 4.55.1
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
## Reproduzindo o treino
O fine-tuning seguiu o guia oficial de CLM dos Transformers (link acima), utilizando `Trainer` com `AutoModelForCausalLM` e `AutoTokenizer`. Para reproduzir:
1) Prepare o dataset em texto (um exemplo por linha funciona bem).
2) Tokenize com o tokenizer do modelo base.
3) Treine com os hiperparâmetros acima, salvando checkpoints nesta pasta.
## Estrutura desta pasta
- `config.json`, `tokenizer.json`, `tokenizer_config.json`, `vocab.json`, `merges.txt`: artefatos do modelo/tokenizer.
- `model.safetensors`, `generation_config.json`: pesos e config de geração.
- `checkpoint-*`: checkpoints do treinamento.
- `runs/`: logs do treinamento (ex.: TensorBoard).
- `test_inference.py`: script de teste por CLI.
- `TESTE_RAPIDO.md`: guia de execução rápida.
## Aviso
Este modelo pode produzir saídas inexatas ou tendenciosas. Avalie e filtre conforme o uso pretendido.
|
broinopio/blockassist-bc-monstrous_scampering_spider_1755595419
|
broinopio
| 2025-08-19T09:59:25Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"monstrous scampering spider",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T09:59:17Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- monstrous scampering spider
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755595848
|
ihsanridzi
| 2025-08-19T09:59:23Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry flexible owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T09:59:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry flexible owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
xiaomama2002/deepseek_qwen3_8b_1_epoch_hints_removed
|
xiaomama2002
| 2025-08-19T09:54:12Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"llama-factory",
"full",
"generated_from_trainer",
"conversational",
"base_model:deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
"base_model:finetune:deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-19T09:53:10Z |
---
library_name: transformers
license: other
base_model: deepseek-ai/DeepSeek-R1-0528-Qwen3-8B
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: sft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sft
This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-0528-Qwen3-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528-Qwen3-8B) on the deepseek_qwen3_8b_hints_removed dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1548
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
### Training results
### Framework versions
- Transformers 4.55.0
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
huseyincavus/medgemma-4b-it-Q8_0-GGUF
|
huseyincavus
| 2025-08-19T09:53:24Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"medical",
"radiology",
"clinical-reasoning",
"dermatology",
"pathology",
"ophthalmology",
"chest-x-ray",
"llama-cpp",
"gguf-my-repo",
"image-text-to-text",
"base_model:google/medgemma-4b-it",
"base_model:quantized:google/medgemma-4b-it",
"license:other",
"endpoints_compatible",
"region:us",
"conversational"
] |
image-text-to-text
| 2025-08-19T09:53:06Z |
---
license: other
license_name: health-ai-developer-foundations
license_link: https://developers.google.com/health-ai-developer-foundations/terms
library_name: transformers
pipeline_tag: image-text-to-text
extra_gated_heading: Access MedGemma on Hugging Face
extra_gated_prompt: To access MedGemma on Hugging Face, you're required to review
and agree to [Health AI Developer Foundation's terms of use](https://developers.google.com/health-ai-developer-foundations/terms).
To do this, please ensure you're logged in to Hugging Face and click below. Requests
are processed immediately.
extra_gated_button_content: Acknowledge license
base_model: google/medgemma-4b-it
tags:
- medical
- radiology
- clinical-reasoning
- dermatology
- pathology
- ophthalmology
- chest-x-ray
- llama-cpp
- gguf-my-repo
---
# huseyincavus/medgemma-4b-it-Q8_0-GGUF
This model was converted to GGUF format from [`google/medgemma-4b-it`](https://huggingface.co/google/medgemma-4b-it) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/google/medgemma-4b-it) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo huseyincavus/medgemma-4b-it-Q8_0-GGUF --hf-file medgemma-4b-it-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo huseyincavus/medgemma-4b-it-Q8_0-GGUF --hf-file medgemma-4b-it-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo huseyincavus/medgemma-4b-it-Q8_0-GGUF --hf-file medgemma-4b-it-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo huseyincavus/medgemma-4b-it-Q8_0-GGUF --hf-file medgemma-4b-it-q8_0.gguf -c 2048
```
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.