modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-14 00:42:58
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
558 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-14 00:36:41
card
stringlengths
11
1.01M
crystalline7/28906
crystalline7
2025-08-19T22:43:01Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:42:57Z
[View on Civ Archive](https://civarchive.com/models/29642?modelVersionId=35659)
crystalline7/96922
crystalline7
2025-08-19T22:42:22Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:42:14Z
[View on Civ Archive](https://civarchive.com/models/122190?modelVersionId=133017)
vincenzopalazzo/gemma3-270m-rino-huberman-finetuned-model
vincenzopalazzo
2025-08-19T22:42:14Z
0
1
null
[ "safetensors", "gemma3_text", "health", "medical", "gymbro", "gym", "fitness", "text-generation", "conversational", "en", "it", "dataset:vincenzopalazzo/rino-huberman-data-model", "base_model:google/gemma-3-270m", "base_model:finetune:google/gemma-3-270m", "license:apache-2.0", "region:us" ]
text-generation
2025-08-19T20:27:17Z
--- license: apache-2.0 datasets: - vincenzopalazzo/rino-huberman-data-model language: - en - it metrics: - accuracy base_model: - google/gemma-3-270m pipeline_tag: text-generation tags: - health - medical - gymbro - gym - fitness ---
seraphimzzzz/58882
seraphimzzzz
2025-08-19T22:41:56Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:41:52Z
[View on Civ Archive](https://civarchive.com/models/60161?modelVersionId=86164)
seraphimzzzz/87417
seraphimzzzz
2025-08-19T22:41:44Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:41:37Z
[View on Civ Archive](https://civarchive.com/models/110873?modelVersionId=121578)
crystalline7/123544
crystalline7
2025-08-19T22:41:12Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:41:09Z
[View on Civ Archive](https://civarchive.com/models/146777?modelVersionId=163557)
crystalline7/75620
crystalline7
2025-08-19T22:41:05Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:41:02Z
[View on Civ Archive](https://civarchive.com/models/100308?modelVersionId=107359)
crystalline7/33987
crystalline7
2025-08-19T22:40:23Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:40:23Z
[View on Civ Archive](https://civarchive.com/models/39434?modelVersionId=45341)
crystalline7/32802
crystalline7
2025-08-19T22:40:18Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:40:15Z
[View on Civ Archive](https://civarchive.com/models/36916?modelVersionId=42949)
ultratopaz/16210
ultratopaz
2025-08-19T22:39:59Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:39:55Z
[View on Civ Archive](https://civarchive.com/models/16450?modelVersionId=19414)
seraphimzzzz/78760
seraphimzzzz
2025-08-19T22:39:49Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:39:45Z
[View on Civ Archive](https://civarchive.com/models/103871?modelVersionId=111283)
ultratopaz/83740
ultratopaz
2025-08-19T22:39:38Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:39:34Z
[View on Civ Archive](https://civarchive.com/models/108800?modelVersionId=117184)
seraphimzzzz/879785
seraphimzzzz
2025-08-19T22:37:24Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:37:22Z
[View on Civ Archive](https://civarchive.com/models/867754?modelVersionId=971121)
seraphimzzzz/68809
seraphimzzzz
2025-08-19T22:37:16Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:37:11Z
[View on Civ Archive](https://civarchive.com/models/92638?modelVersionId=98755)
seraphimzzzz/83542
seraphimzzzz
2025-08-19T22:36:58Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:36:52Z
[View on Civ Archive](https://civarchive.com/models/108645?modelVersionId=116965)
AnonymousCS/xlmr_immigration_combo6_0
AnonymousCS
2025-08-19T22:33:18Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T22:25:46Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo6_0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo6_0 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2720 - Accuracy: 0.9062 - 1-f1: 0.8599 - 1-recall: 0.8649 - 1-precision: 0.8550 - Balanced Acc: 0.8958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.6263 | 1.0 | 25 | 0.6021 | 0.6671 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.3644 | 2.0 | 50 | 0.2722 | 0.8997 | 0.8382 | 0.7799 | 0.9058 | 0.8697 | | 0.2577 | 3.0 | 75 | 0.2364 | 0.9216 | 0.8710 | 0.7954 | 0.9626 | 0.8900 | | 0.1822 | 4.0 | 100 | 0.2553 | 0.9165 | 0.8723 | 0.8571 | 0.888 | 0.9016 | | 0.1407 | 5.0 | 125 | 0.2720 | 0.9062 | 0.8599 | 0.8649 | 0.8550 | 0.8958 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
AnonymousCS/xlmr_immigration_combo5_4
AnonymousCS
2025-08-19T22:25:17Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T22:21:55Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo5_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo5_4 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0656 - Accuracy: 0.9743 - 1-f1: 0.9614 - 1-recall: 0.9614 - 1-precision: 0.9614 - Balanced Acc: 0.9711 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.0848 | 1.0 | 25 | 0.0535 | 0.9846 | 0.9763 | 0.9537 | 1.0 | 0.9768 | | 0.0667 | 2.0 | 50 | 0.0565 | 0.9859 | 0.9783 | 0.9575 | 1.0 | 0.9788 | | 0.0302 | 3.0 | 75 | 0.0656 | 0.9743 | 0.9614 | 0.9614 | 0.9614 | 0.9711 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
mang3dd/blockassist-bc-tangled_slithering_alligator_1755640716
mang3dd
2025-08-19T22:25:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:25:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/122295
ultratopaz
2025-08-19T22:23:57Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:23:53Z
[View on Civ Archive](https://civarchive.com/models/145768?modelVersionId=162205)
crystalline7/64878
crystalline7
2025-08-19T22:22:26Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:22:22Z
[View on Civ Archive](https://civarchive.com/models/87952?modelVersionId=93848)
seraphimzzzz/74398
seraphimzzzz
2025-08-19T22:21:57Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:21:53Z
[View on Civ Archive](https://civarchive.com/models/98895?modelVersionId=105783)
ultratopaz/11990
ultratopaz
2025-08-19T22:21:42Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:21:40Z
[View on Civ Archive](https://civarchive.com/models/11452?modelVersionId=13560)
ultratopaz/210364
ultratopaz
2025-08-19T22:21:21Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:21:16Z
[View on Civ Archive](https://civarchive.com/models/239066?modelVersionId=269592)
seraphimzzzz/8232
seraphimzzzz
2025-08-19T22:20:47Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:20:43Z
[View on Civ Archive](https://civarchive.com/models/7088?modelVersionId=8332)
ultratopaz/206190
ultratopaz
2025-08-19T22:20:37Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:20:34Z
[View on Civ Archive](https://civarchive.com/models/234864?modelVersionId=264842)
ultratopaz/439741
ultratopaz
2025-08-19T22:20:28Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:20:23Z
[View on Civ Archive](https://civarchive.com/models/469824?modelVersionId=522724)
ultratopaz/79634
ultratopaz
2025-08-19T22:19:59Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:19:55Z
[View on Civ Archive](https://civarchive.com/models/104780?modelVersionId=112344)
crystalline7/189337
crystalline7
2025-08-19T22:18:57Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:18:53Z
[View on Civ Archive](https://civarchive.com/models/217044?modelVersionId=244606)
crystalline7/39657
crystalline7
2025-08-19T22:17:46Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:17:43Z
[View on Civ Archive](https://civarchive.com/models/50517?modelVersionId=55033)
lilTAT/blockassist-bc-gentle_rugged_hare_1755641834
lilTAT
2025-08-19T22:17:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:17:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seraphimzzzz/83539
seraphimzzzz
2025-08-19T22:17:31Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:17:25Z
[View on Civ Archive](https://civarchive.com/models/108640?modelVersionId=116962)
ultratopaz/33753
ultratopaz
2025-08-19T22:16:50Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:16:48Z
[View on Civ Archive](https://civarchive.com/models/39019?modelVersionId=44952)
crystalline7/56993
crystalline7
2025-08-19T22:16:44Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:16:42Z
[View on Civ Archive](https://civarchive.com/models/44579?modelVersionId=83326)
chooseL1fe/blockassist-bc-thorny_flightless_albatross_1755641411
chooseL1fe
2025-08-19T22:16:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny flightless albatross", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:16:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny flightless albatross --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/54358
ultratopaz
2025-08-19T22:15:23Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:15:20Z
[View on Civ Archive](https://civarchive.com/models/74407?modelVersionId=79122)
ultratopaz/50090
ultratopaz
2025-08-19T22:15:09Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:15:06Z
[View on Civ Archive](https://civarchive.com/models/67419?modelVersionId=72061)
seraphimzzzz/26982
seraphimzzzz
2025-08-19T22:14:11Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:14:08Z
[View on Civ Archive](https://civarchive.com/models/27366?modelVersionId=32766)
crystalline7/15290
crystalline7
2025-08-19T22:13:52Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:13:48Z
[View on Civ Archive](https://civarchive.com/models/15489?modelVersionId=18273)
ultratopaz/627330
ultratopaz
2025-08-19T22:12:54Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:12:46Z
[View on Civ Archive](https://civarchive.com/models/121544?modelVersionId=712664)
crystalline7/63718
crystalline7
2025-08-19T22:11:54Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:11:49Z
[View on Civ Archive](https://civarchive.com/models/86850?modelVersionId=92388)
nzhenev/whisper-small-ru-1k-steps-ONNX
nzhenev
2025-08-19T22:11:45Z
0
0
transformers.js
[ "transformers.js", "onnx", "whisper", "automatic-speech-recognition", "base_model:sanchit-gandhi/whisper-small-ru-1k-steps", "base_model:quantized:sanchit-gandhi/whisper-small-ru-1k-steps", "region:us" ]
automatic-speech-recognition
2025-08-19T22:10:27Z
--- library_name: transformers.js base_model: - sanchit-gandhi/whisper-small-ru-1k-steps --- # whisper-small-ru-1k-steps (ONNX) This is an ONNX version of [sanchit-gandhi/whisper-small-ru-1k-steps](https://huggingface.co/sanchit-gandhi/whisper-small-ru-1k-steps). It was automatically converted and uploaded using [this space](https://huggingface.co/spaces/onnx-community/convert-to-onnx).
seraphimzzzz/212039
seraphimzzzz
2025-08-19T22:11:33Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:11:29Z
[View on Civ Archive](https://civarchive.com/models/240606?modelVersionId=271468)
seraphimzzzz/82366
seraphimzzzz
2025-08-19T22:11:15Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:11:11Z
[View on Civ Archive](https://civarchive.com/models/107488?modelVersionId=115586)
Muapi/flux-loras-full-package-updated
Muapi
2025-08-19T22:10:25Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T22:10:11Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Flux-loras (full package)-(updated) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: How2Draw ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:640126@909116", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
seraphimzzzz/14753
seraphimzzzz
2025-08-19T22:10:22Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:10:19Z
[View on Civ Archive](https://civarchive.com/models/14920?modelVersionId=17576)
seraphimzzzz/21271
seraphimzzzz
2025-08-19T22:10:14Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:10:09Z
[View on Civ Archive](https://civarchive.com/models/21485?modelVersionId=25622)
crystalline7/33463
crystalline7
2025-08-19T22:09:36Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:09:36Z
[View on Civ Archive](https://civarchive.com/models/24995?modelVersionId=44249)
Muapi/wizard-s-horror-library
Muapi
2025-08-19T22:09:09Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T22:08:45Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Wizard's Horror Library ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: by william mortensen, vintage horror, ethereal, dark and moody ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:743535@831549", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
ultratopaz/99939
ultratopaz
2025-08-19T22:09:02Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:09:00Z
[View on Civ Archive](https://civarchive.com/models/125186?modelVersionId=136735)
Kurosawama/Llama-3.2-3B-Full-align
Kurosawama
2025-08-19T22:07:56Z
0
0
transformers
[ "transformers", "safetensors", "trl", "dpo", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T22:07:49Z
--- library_name: transformers tags: - trl - dpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
crystalline7/16961
crystalline7
2025-08-19T22:06:57Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:06:53Z
[View on Civ Archive](https://civarchive.com/models/17228?modelVersionId=20351)
crystalline7/55386
crystalline7
2025-08-19T22:06:20Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:06:16Z
[View on Civ Archive](https://civarchive.com/models/75729?modelVersionId=80767)
roeker/blockassist-bc-quick_wiry_owl_1755641094
roeker
2025-08-19T22:06:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:05:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/71126
ultratopaz
2025-08-19T22:05:24Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:05:22Z
[View on Civ Archive](https://civarchive.com/models/95257?modelVersionId=101656)
ultratopaz/55306
ultratopaz
2025-08-19T22:05:17Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:05:13Z
[View on Civ Archive](https://civarchive.com/models/75923?modelVersionId=80659)
MauoSama/act_depthcut_multi_wrist
MauoSama
2025-08-19T22:04:38Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:MauoSama/depthcut_multi_wrist", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-19T22:04:28Z
--- datasets: MauoSama/depthcut_multi_wrist library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - lerobot - act - robotics --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
Muapi/envy-flux-anime-backgrounds-01
Muapi
2025-08-19T22:04:28Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T22:04:14Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Envy Flux Anime Backgrounds 01 ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: anime style movie background ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:906762@1014689", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
indoempatnol/blockassist-bc-fishy_wary_swan_1755639372
indoempatnol
2025-08-19T22:04:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fishy wary swan", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:04:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fishy wary swan --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/20170
ultratopaz
2025-08-19T22:03:27Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:03:23Z
[View on Civ Archive](https://civarchive.com/models/20449?modelVersionId=24314)
crystalline7/108230
crystalline7
2025-08-19T22:03:18Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:03:15Z
[View on Civ Archive](https://civarchive.com/models/132846?modelVersionId=146163)
seraphimzzzz/559245
seraphimzzzz
2025-08-19T22:03:09Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:03:03Z
[View on Civ Archive](https://civarchive.com/models/577873?modelVersionId=644417)
MattBou00/llama-3-2-1b-detox_v1b-checkpoint-epoch-60
MattBou00
2025-08-19T22:03:06Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2025-08-19T22:01:44Z
--- license: apache-2.0 library_name: transformers tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="MattBou00//content/IRL-Bayesian/outputs/2025-08-19_20-30-04/checkpoints/checkpoint-epoch-60") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_20-30-04/checkpoints/checkpoint-epoch-60") model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_20-30-04/checkpoints/checkpoint-epoch-60") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
crystalline7/47599
crystalline7
2025-08-19T22:02:50Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:02:46Z
[View on Civ Archive](https://civarchive.com/models/63486?modelVersionId=68040)
crystalline7/70184
crystalline7
2025-08-19T22:02:40Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:02:37Z
[View on Civ Archive](https://civarchive.com/models/94194?modelVersionId=100485)
mradermacher/QiMing-Holos-Plus-4B-GGUF
mradermacher
2025-08-19T22:02:18Z
0
0
transformers
[ "transformers", "gguf", "qwen", "qwen3", "unsloth", "qiming", "qiming-holos", "bagua", "decision-making", "strategic-analysis", "cognitive-architecture", "chat", "lora", "philosophy-driven-ai", "zh", "en", "base_model:aifeifei798/QiMing-Holos-Plus-4B", "base_model:adapter:aifeifei798/QiMing-Holos-Plus-4B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-19T20:13:11Z
--- base_model: aifeifei798/QiMing-Holos-Plus-4B language: - zh - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - qwen - qwen3 - unsloth - qiming - qiming-holos - bagua - decision-making - strategic-analysis - cognitive-architecture - chat - lora - philosophy-driven-ai --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/aifeifei798/QiMing-Holos-Plus-4B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#QiMing-Holos-Plus-4B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q2_K.gguf) | Q2_K | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q3_K_S.gguf) | Q3_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q3_K_L.gguf) | Q3_K_L | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.IQ4_XS.gguf) | IQ4_XS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q5_K_S.gguf) | Q5_K_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q5_K_M.gguf) | Q5_K_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q6_K.gguf) | Q6_K | 3.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.Q8_0.gguf) | Q8_0 | 4.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/QiMing-Holos-Plus-4B-GGUF/resolve/main/QiMing-Holos-Plus-4B.f16.gguf) | f16 | 8.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Genuine-7B-Instruct-i1-GGUF
mradermacher
2025-08-19T22:02:15Z
0
0
transformers
[ "transformers", "gguf", "lora", "sft", "trl", "unsloth", "fine-tuned", "en", "dataset:theprint/Gentle-Pushback-8.5k-alpaca", "base_model:theprint/Genuine-7B-Instruct", "base_model:adapter:theprint/Genuine-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-19T20:42:47Z
--- base_model: theprint/Genuine-7B-Instruct datasets: - theprint/Gentle-Pushback-8.5k-alpaca language: en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - lora - sft - transformers - trl - unsloth - fine-tuned --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/theprint/Genuine-7B-Instruct <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Genuine-7B-Instruct-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/Genuine-7B-Instruct-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ1_S.gguf) | i1-IQ1_S | 2.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ1_M.gguf) | i1-IQ1_M | 2.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.6 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ2_S.gguf) | i1-IQ2_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ2_M.gguf) | i1-IQ2_M | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q2_K_S.gguf) | i1-Q2_K_S | 2.9 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q2_K.gguf) | i1-Q2_K | 3.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ3_S.gguf) | i1-IQ3_S | 3.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ3_M.gguf) | i1-IQ3_M | 3.7 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q3_K_M.gguf) | i1-Q3_K_M | 3.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-IQ4_NL.gguf) | i1-IQ4_NL | 4.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q4_0.gguf) | i1-Q4_0 | 4.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q4_K_M.gguf) | i1-Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q4_1.gguf) | i1-Q4_1 | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Genuine-7B-Instruct-i1-GGUF/resolve/main/Genuine-7B-Instruct.i1-Q6_K.gguf) | i1-Q6_K | 6.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
ultratopaz/56525
ultratopaz
2025-08-19T22:01:41Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:01:37Z
[View on Civ Archive](https://civarchive.com/models/44324?modelVersionId=82580)
unitova/blockassist-bc-zealous_sneaky_raven_1755639162
unitova
2025-08-19T22:00:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:00:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_immigration_combo4_4
AnonymousCS
2025-08-19T22:00:16Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T21:56:58Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo4_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo4_4 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1633 - Accuracy: 0.9409 - 1-f1: 0.9091 - 1-recall: 0.8880 - 1-precision: 0.9312 - Balanced Acc: 0.9276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1976 | 1.0 | 25 | 0.1552 | 0.9409 | 0.9129 | 0.9305 | 0.8959 | 0.9383 | | 0.2233 | 2.0 | 50 | 0.1788 | 0.9306 | 0.8989 | 0.9266 | 0.8727 | 0.9296 | | 0.0894 | 3.0 | 75 | 0.1633 | 0.9409 | 0.9091 | 0.8880 | 0.9312 | 0.9276 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
seraphimzzzz/11524
seraphimzzzz
2025-08-19T22:00:05Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:00:01Z
[View on Civ Archive](https://civarchive.com/models/10760?modelVersionId=12772)
ultratopaz/71792
ultratopaz
2025-08-19T21:59:57Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:59:54Z
[View on Civ Archive](https://civarchive.com/models/95919?modelVersionId=102431)
ultratopaz/63302
ultratopaz
2025-08-19T21:59:44Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:59:42Z
[View on Civ Archive](https://civarchive.com/models/86385?modelVersionId=91857)
roeker/blockassist-bc-quick_wiry_owl_1755640687
roeker
2025-08-19T21:59:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:58:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seraphimzzzz/54677
seraphimzzzz
2025-08-19T21:59:23Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:59:20Z
[View on Civ Archive](https://civarchive.com/models/36902?modelVersionId=42935)
crystalline7/49570
crystalline7
2025-08-19T21:58:45Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:58:43Z
[View on Civ Archive](https://civarchive.com/models/66573?modelVersionId=71230)
faizack/lora-imdb-binary
faizack
2025-08-19T21:58:38Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T21:58:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ultratopaz/16126
ultratopaz
2025-08-19T21:57:48Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:57:44Z
[View on Civ Archive](https://civarchive.com/models/16339?modelVersionId=19292)
ultratopaz/79651
ultratopaz
2025-08-19T21:57:26Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:57:24Z
[View on Civ Archive](https://civarchive.com/models/104789?modelVersionId=112361)
Muapi/flux.1-d-realistic-genshin-impact-cosplay-official-doujin-costume-collection-cosplay
Muapi
2025-08-19T21:57:24Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:57:08Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # [Flux.1 D][Realistic] <Genshin Impact>Cosplay(official/doujin) costume collection|原神cosplay(官设/同人)服装集合 ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: A realistic photo of a tall and slender beautiful young woman in cyb-skirk cosplay costume. She is also wearing tight elbow gloves and tight thighhighs and cosplay high heel boots. She has long white hair with hair ornament. Her one hand is holding a sword. ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:863510@2053640", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
seraphimzzzz/65997
seraphimzzzz
2025-08-19T21:56:35Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:56:31Z
[View on Civ Archive](https://civarchive.com/models/78685?modelVersionId=95240)
AnonymousCS/xlmr_immigration_combo4_3
AnonymousCS
2025-08-19T21:55:59Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T21:52:36Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo4_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo4_3 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2766 - Accuracy: 0.9203 - 1-f1: 0.8780 - 1-recall: 0.8610 - 1-precision: 0.8956 - Balanced Acc: 0.9055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2421 | 1.0 | 25 | 0.2532 | 0.9152 | 0.8721 | 0.8687 | 0.8755 | 0.9035 | | 0.1339 | 2.0 | 50 | 0.2618 | 0.9254 | 0.8811 | 0.8301 | 0.9389 | 0.9016 | | 0.1358 | 3.0 | 75 | 0.2766 | 0.9203 | 0.8780 | 0.8610 | 0.8956 | 0.9055 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
mang3dd/blockassist-bc-tangled_slithering_alligator_1755638925
mang3dd
2025-08-19T21:54:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:54:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/79640
ultratopaz
2025-08-19T21:54:46Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:54:44Z
[View on Civ Archive](https://civarchive.com/models/104784?modelVersionId=112352)
crystalline7/48748
crystalline7
2025-08-19T21:54:25Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:54:21Z
[View on Civ Archive](https://civarchive.com/models/65194?modelVersionId=69823)
seraphimzzzz/33020
seraphimzzzz
2025-08-19T21:54:06Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:54:02Z
[View on Civ Archive](https://civarchive.com/models/37392?modelVersionId=43399)
torchao-testing/opt-125m-float8dq-row-0.13-dev
torchao-testing
2025-08-19T21:53:47Z
3
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "torchao", "region:us" ]
text-generation
2025-07-12T04:40:48Z
--- library_name: transformers tags: [] --- ``` import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig model_id = "facebook/opt-125m" from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow()) quantization_config = TorchAoConfig(quant_type=quant_config) quantized_model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=torch.bfloat16, quantization_config=quantization_config, ) tokenizer = AutoTokenizer.from_pretrained(model_id) # Push to hub USER_ID = "torchao-testing" MODEL_NAME = model_id.split("/")[-1] save_to = f"{USER_ID}/{MODEL_NAME}-float8dq-row-0.13-dev" quantized_model.push_to_hub(save_to, safe_serialization=False) tokenizer.push_to_hub(save_to) # Manual Testing prompt = "Hey, are you conscious? Can you talk to me?" print("Prompt:", prompt) inputs = tokenizer( prompt, return_tensors="pt", ).to("cuda") generated_ids = quantized_model.generate(**inputs, max_new_tokens=128) output_text = tokenizer.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print("Response:", output_text[0][len(prompt) :]) ```
seraphimzzzz/40018
seraphimzzzz
2025-08-19T21:53:08Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:53:04Z
[View on Civ Archive](https://civarchive.com/models/51233?modelVersionId=55724)
Muapi/better-looking-caucasian-men-flux
Muapi
2025-08-19T21:53:05Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:52:47Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Better looking caucasian men FLUX ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: handsome man, h7ns5 ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:863375@1405891", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
crystalline7/876313
crystalline7
2025-08-19T21:51:29Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:51:25Z
[View on Civ Archive](https://civarchive.com/models/866688?modelVersionId=969839)
ultratopaz/755266
ultratopaz
2025-08-19T21:51:19Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:51:13Z
[View on Civ Archive](https://civarchive.com/models/749996?modelVersionId=838704)
seraphimzzzz/99900
seraphimzzzz
2025-08-19T21:51:00Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:50:42Z
[View on Civ Archive](https://civarchive.com/models/125138?modelVersionId=136684)
Muapi/lift-dress-bow-curtsey
Muapi
2025-08-19T21:50:59Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:50:25Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Lift Dress Bow | Curtsey ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: A GIRL STANDS IN A CURTSY POSE. ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:550529@811548", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
ultratopaz/458513
ultratopaz
2025-08-19T21:50:10Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:50:02Z
[View on Civ Archive](https://civarchive.com/models/236627?modelVersionId=542199)
crystalline7/635547
crystalline7
2025-08-19T21:49:36Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:49:33Z
[View on Civ Archive](https://civarchive.com/models/644492?modelVersionId=720947)
Muapi/polaroid-669-ultrareal
Muapi
2025-08-19T21:49:34Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:49:17Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Polaroid 669 UltraReal ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: p0l2rd, prominent film grain, overexposed and blurry photo, polaroid-style format with white border, distinctive burnt edge, photograph appears aged or partially developed, with the almost half right side fading into white ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1378102@1557091", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
finalform/temp
finalform
2025-08-19T21:49:33Z
0
0
peft
[ "peft", "tensorboard", "safetensors", "base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct", "lora", "sft", "transformers", "trl", "text-generation", "conversational", "arxiv:1910.09700", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "region:us" ]
text-generation
2025-08-19T21:48:26Z
--- base_model: Qwen/Qwen2.5-Coder-7B-Instruct library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:Qwen/Qwen2.5-Coder-7B-Instruct - lora - sft - transformers - trl --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
ultratopaz/19565
ultratopaz
2025-08-19T21:49:21Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:49:18Z
[View on Civ Archive](https://civarchive.com/models/19855?modelVersionId=23572)
lilTAT/blockassist-bc-gentle_rugged_hare_1755640133
lilTAT
2025-08-19T21:49:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:49:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seraphimzzzz/18602
seraphimzzzz
2025-08-19T21:49:13Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:49:10Z
[View on Civ Archive](https://civarchive.com/models/18809?modelVersionId=22327)
seraphimzzzz/74914
seraphimzzzz
2025-08-19T21:48:52Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:48:49Z
[View on Civ Archive](https://civarchive.com/models/99427?modelVersionId=106398)