modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-14 06:27:15
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
558 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-14 06:24:19
card
stringlengths
11
1.01M
ivoryyuan/uuu_fine_tune_taipower
ivoryyuan
2025-08-20T01:24:30Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-20T01:24:30Z
--- license: apache-2.0 ---
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755651276
ihsanridzi
2025-08-20T01:19:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T01:19:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
linlinlin000/uuu_fine_tune_gpt2
linlinlin000
2025-08-20T01:19:50Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-20T01:19:50Z
--- license: apache-2.0 ---
PGFROG/uuu_fine_tune_gpt2
PGFROG
2025-08-20T01:19:20Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-20T01:19:20Z
--- license: apache-2.0 ---
semenetslitslink/sd_flux_context_monochrome_peoples_2500_1024
semenetslitslink
2025-08-20T01:15:48Z
0
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "lora", "flux", "flux-kontextflux-diffusers", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-Kontext-dev", "base_model:adapter:black-forest-labs/FLUX.1-Kontext-dev", "license:other", "region:us" ]
text-to-image
2025-08-19T08:20:53Z
--- base_model: black-forest-labs/FLUX.1-Kontext-dev library_name: diffusers license: other widget: [] tags: - text-to-image - diffusers-training - diffusers - lora - flux - flux-kontextflux-diffusers - template:sd-lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Flux Kontext DreamBooth LoRA - semenetslitslink/sd_flux_context_monochrome_peoples_2500_1024 <Gallery /> ## Model description These are semenetslitslink/sd_flux_context_monochrome_peoples_2500_1024 DreamBooth LoRA weights for black-forest-labs/FLUX.1-Kontext-dev. The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [Flux diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_flux.md). Was LoRA for the text encoder enabled? False. ## Trigger words You should use `None` to trigger the image generation. ## Download model [Download the *.safetensors LoRA](semenetslitslink/sd_flux_context_monochrome_peoples_2500_1024/tree/main) in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import FluxKontextPipeline import torch pipeline = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to('cuda') pipeline.load_lora_weights('semenetslitslink/sd_flux_context_monochrome_peoples_2500_1024', weight_name='pytorch_lora_weights.safetensors') image = pipeline('None').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## License Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md). ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
lakelee/RLB_MLP_BC_v4.20250820.00.1
lakelee
2025-08-20T01:13:16Z
0
0
transformers
[ "transformers", "safetensors", "mlp_swiglu", "generated_from_trainer", "base_model:lakelee/RLB_MLP_BC_v4.20250820.00", "base_model:finetune:lakelee/RLB_MLP_BC_v4.20250820.00", "endpoints_compatible", "region:us" ]
null
2025-08-19T16:23:02Z
--- library_name: transformers base_model: lakelee/RLB_MLP_BC_v4.20250820.00 tags: - generated_from_trainer model-index: - name: RLB_MLP_BC_v4.20250820.00.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RLB_MLP_BC_v4.20250820.00.1 This model is a fine-tuned version of [lakelee/RLB_MLP_BC_v4.20250820.00](https://huggingface.co/lakelee/RLB_MLP_BC_v4.20250820.00) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch_fused with betas=(0.9,0.98) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20.0 ### Training results ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu128 - Tokenizers 0.21.4
ni1234/uuu_fine_tune_gpt2
ni1234
2025-08-20T01:11:02Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-20T01:11:02Z
--- license: apache-2.0 ---
tscstudios/zeccptzvwxgwighpcvvcwl8wlge2_547d415a-1bdf-40d5-8f29-4a84a4db0467
tscstudios
2025-08-20T01:09:45Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-20T01:09:43Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: TOK --- # Zeccptzvwxgwighpcvvcwl8Wlge2_547D415A 1Bdf 40D5 8F29 4A84A4Db0467 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `TOK` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "TOK", "lora_weights": "https://huggingface.co/tscstudios/zeccptzvwxgwighpcvvcwl8wlge2_547d415a-1bdf-40d5-8f29-4a84a4db0467/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('tscstudios/zeccptzvwxgwighpcvvcwl8wlge2_547d415a-1bdf-40d5-8f29-4a84a4db0467', weight_name='lora.safetensors') image = pipeline('TOK').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/tscstudios/zeccptzvwxgwighpcvvcwl8wlge2_547d415a-1bdf-40d5-8f29-4a84a4db0467/discussions) to add images that show off what you’ve made with this LoRA.
pmryu0/distilbert-base-uncased-finetuned-emotion
pmryu0
2025-08-20T01:08:49Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T09:49:25Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2084 - Accuracy: 0.928 - F1: 0.9280 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8258 | 1.0 | 250 | 0.3076 | 0.911 | 0.9109 | | 0.2456 | 2.0 | 500 | 0.2084 | 0.928 | 0.9280 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
thiernomdou/dimitri
thiernomdou
2025-08-20T01:02:57Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-20T00:55:29Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: dimitri --- # Dimitri <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `dimitri` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "dimitri", "lora_weights": "https://huggingface.co/thiernomdou/dimitri/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('thiernomdou/dimitri', weight_name='lora.safetensors') image = pipeline('dimitri').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/thiernomdou/dimitri/discussions) to add images that show off what you’ve made with this LoRA.
crystalline7/19466
crystalline7
2025-08-20T01:00:52Z
0
0
null
[ "region:us" ]
null
2025-08-20T01:00:48Z
[View on Civ Archive](https://civarchive.com/models/18914?modelVersionId=23430)
ultratopaz/46296
ultratopaz
2025-08-20T01:00:20Z
0
0
null
[ "region:us" ]
null
2025-08-20T01:00:18Z
[View on Civ Archive](https://civarchive.com/models/61593?modelVersionId=66087)
ultratopaz/49053
ultratopaz
2025-08-20T00:59:16Z
0
0
null
[ "region:us" ]
null
2025-08-20T00:59:13Z
[View on Civ Archive](https://civarchive.com/models/65716?modelVersionId=70365)
crystalline7/14649
crystalline7
2025-08-20T00:59:01Z
0
0
null
[ "region:us" ]
null
2025-08-20T00:58:58Z
[View on Civ Archive](https://civarchive.com/models/14811?modelVersionId=17446)
seraphimzzzz/48429
seraphimzzzz
2025-08-20T00:58:46Z
0
0
null
[ "region:us" ]
null
2025-08-20T00:58:44Z
[View on Civ Archive](https://civarchive.com/models/64663?modelVersionId=69294)
EpistemeAI/gpt-oss-20b-unsloth-finetune-puzzle-lora-V4
EpistemeAI
2025-08-20T00:58:37Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gpt_oss", "trl", "en", "base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-20T00:55:59Z
--- base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gpt_oss - trl license: apache-2.0 language: - en --- # 2x Fine tune with puzzle dataset for resolving puzzles # Model Card ## gpt-oss-20b Details <p align="center"> <img alt="gpt-oss-20b" src="https://raw.githubusercontent.com/openai/gpt-oss/main/docs/gpt-oss-20b.svg"> </p> <p align="center"> <a href="https://gpt-oss.com"><strong>Try gpt-oss</strong></a> · <a href="https://cookbook.openai.com/topic/gpt-oss"><strong>Guides</strong></a> · <a href="https://openai.com/index/gpt-oss-model-card"><strong>System card</strong></a> · <a href="https://openai.com/index/introducing-gpt-oss/"><strong>OpenAI blog</strong></a> </p> <br> Welcome to the gpt-oss series, [OpenAI’s open-weight models](https://openai.com/open-models) designed for powerful reasoning, agentic tasks, and versatile developer use cases. We’re releasing two flavors of the open models: - `gpt-oss-120b` — for production, general purpose, high reasoning use cases that fits into a single H100 GPU (117B parameters with 5.1B active parameters) - `gpt-oss-20b` — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters) Both models were trained on our [harmony response format](https://github.com/openai/harmony) and should only be used with the harmony format as it will not work correctly otherwise. > [!NOTE] > This model card is dedicated to the smaller `gpt-oss-20b` model. Check out [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) for the larger model. # Highlights * **Permissive Apache 2.0 license:** Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment. * **Configurable reasoning effort:** Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs. * **Full chain-of-thought:** Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users. * **Fine-tunable:** Fully customize models to your specific use case through parameter fine-tuning. * **Agentic capabilities:** Use the models’ native capabilities for function calling, [web browsing](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#browser), [Python code execution](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#python), and Structured Outputs. * **Native MXFP4 quantization:** The models are trained with native MXFP4 precision for the MoE layer, making `gpt-oss-120b` run on a single H100 GPU and the `gpt-oss-20b` model run within 16GB of memory. --- # Inference examples ## Transformers You can use `gpt-oss-120b` and `gpt-oss-20b` with Transformers. If you use the Transformers chat template, it will automatically apply the [harmony response format](https://github.com/openai/harmony). If you use `model.generate` directly, you need to apply the harmony format manually using the chat template or use our [openai-harmony](https://github.com/openai/harmony) package. To get started, install the necessary dependencies to setup your environment: ``` pip install -U transformers kernels torch ``` Once, setup you can proceed to run the model by running the snippet below: ```py from transformers import pipeline import torch model_id = "EpistemeAI/gpt-oss-20b-unsloth-puzzle-V3" pipe = pipeline( "text-generation", model=model_id, torch_dtype="auto", device_map="auto", ) messages = [ {"role": "user", "content": "Explain quantum mechanics clearly and concisely."}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` Alternatively, you can run the model via [`Transformers Serve`](https://huggingface.co/docs/transformers/main/serving) to spin up a OpenAI-compatible webserver: ``` transformers serve transformers chat localhost:8000 --model-name-or-path openai/gpt-oss-20b ``` [Learn more about how to use gpt-oss with Transformers.](https://cookbook.openai.com/articles/gpt-oss/run-transformers) ## vLLM vLLM recommends using [uv](https://docs.astral.sh/uv/) for Python dependency management. You can use vLLM to spin up an OpenAI-compatible webserver. The following command will automatically download the model and start the server. ```bash uv pip install --pre vllm==0.10.1+gptoss \ --extra-index-url https://wheels.vllm.ai/gpt-oss/ \ --extra-index-url https://download.pytorch.org/whl/nightly/cu128 \ --index-strategy unsafe-best-match vllm serve openai/gpt-oss-20b ``` [Learn more about how to use gpt-oss with vLLM.](https://cookbook.openai.com/articles/gpt-oss/run-vllm) ## PyTorch / Triton To learn about how to use this model with PyTorch and Triton, check out our [reference implementations in the gpt-oss repository](https://github.com/openai/gpt-oss?tab=readme-ov-file#reference-pytorch-implementation). ## Ollama If you are trying to run gpt-oss on consumer hardware, you can use Ollama by running the following commands after [installing Ollama](https://ollama.com/download). ```bash # gpt-oss-20b ollama pull gpt-oss:20b ollama run gpt-oss:20b ``` [Learn more about how to use gpt-oss with Ollama.](https://cookbook.openai.com/articles/gpt-oss/run-locally-ollama) #### LM Studio If you are using [LM Studio](https://lmstudio.ai/) you can use the following commands to download. ```bash # gpt-oss-20b lms get openai/gpt-oss-20b ``` Check out our [awesome list](https://github.com/openai/gpt-oss/blob/main/awesome-gpt-oss.md) for a broader collection of gpt-oss resources and inference partners. --- # Download the model You can download the model weights from the [Hugging Face Hub](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) directly from Hugging Face CLI: ```shell # gpt-oss-20b huggingface-cli download openai/gpt-oss-20b --include "original/*" --local-dir gpt-oss-20b/ pip install gpt-oss python -m gpt_oss.chat model/ ``` # Reasoning levels You can adjust the reasoning level that suits your task across three levels: * **Low:** Fast responses for general dialogue. * **Medium:** Balanced speed and detail. * **High:** Deep and detailed analysis. The reasoning level can be set in the system prompts, e.g., "Reasoning: high". # Tool use The gpt-oss models are excellent for: * Web browsing (using built-in browsing tools) * Function calling with defined schemas * Agentic operations like browser tasks # Fine-tuning Both gpt-oss models can be fine-tuned for a variety of specialized use cases. This smaller model `gpt-oss-20b` can be fine-tuned on consumer hardware, whereas the larger [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) can be fine-tuned on a single H100 node. # Uploaded model - **Developed by:** EpistemeAI - **License:** apache-2.0 - **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) # Comments If you want to fine tune or use this model, please contact us
crystalline7/47963
crystalline7
2025-08-20T00:58:13Z
0
0
null
[ "region:us" ]
null
2025-08-20T00:58:13Z
[View on Civ Archive](https://civarchive.com/models/63989?modelVersionId=68581)
brad-agi/test
brad-agi
2025-08-20T00:53:15Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-20T00:53:15Z
--- license: apache-2.0 ---
rahmanazhar/claude-3.7-sonnet-reasoning
rahmanazhar
2025-08-20T00:52:18Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-20T00:51:49Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
liukevin666/blockassist-bc-yawning_striped_cassowary_1755650893
liukevin666
2025-08-20T00:50:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:49:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755649297
ihsanridzi
2025-08-20T00:48:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:48:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_immigration_combo9_1
AnonymousCS
2025-08-20T00:47:47Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T00:43:49Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo9_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo9_1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2268 - Accuracy: 0.9332 - 1-f1: 0.8926 - 1-recall: 0.8340 - 1-precision: 0.96 - Balanced Acc: 0.9083 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2455 | 1.0 | 25 | 0.1956 | 0.9344 | 0.8978 | 0.8649 | 0.9333 | 0.9170 | | 0.1794 | 2.0 | 50 | 0.1927 | 0.9383 | 0.9028 | 0.8610 | 0.9489 | 0.9189 | | 0.1584 | 3.0 | 75 | 0.2154 | 0.9293 | 0.8861 | 0.8263 | 0.9554 | 0.9035 | | 0.0856 | 4.0 | 100 | 0.2268 | 0.9332 | 0.8926 | 0.8340 | 0.96 | 0.9083 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
mohda/blockassist-bc-regal_fierce_hummingbird_1755650624
mohda
2025-08-20T00:45:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal fierce hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:45:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal fierce hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BootesVoid/cmej7g2wj0t0xrts8x4y1slnf_cmej805oi0t2drts8o9fp099n
BootesVoid
2025-08-20T00:45:07Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-20T00:45:06Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: YURI --- # Cmej7G2Wj0T0Xrts8X4Y1Slnf_Cmej805Oi0T2Drts8O9Fp099N <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `YURI` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "YURI", "lora_weights": "https://huggingface.co/BootesVoid/cmej7g2wj0t0xrts8x4y1slnf_cmej805oi0t2drts8o9fp099n/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmej7g2wj0t0xrts8x4y1slnf_cmej805oi0t2drts8o9fp099n', weight_name='lora.safetensors') image = pipeline('YURI').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmej7g2wj0t0xrts8x4y1slnf_cmej805oi0t2drts8o9fp099n/discussions) to add images that show off what you’ve made with this LoRA.
AnonymousCS/xlmr_immigration_combo9_0
AnonymousCS
2025-08-20T00:43:45Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T00:27:16Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo9_0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo9_0 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2866 - Accuracy: 0.9075 - 1-f1: 0.8594 - 1-recall: 0.8494 - 1-precision: 0.8696 - Balanced Acc: 0.8929 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.5892 | 1.0 | 25 | 0.5066 | 0.7943 | 0.6680 | 0.6216 | 0.7220 | 0.7511 | | 0.3175 | 2.0 | 50 | 0.2808 | 0.9075 | 0.8537 | 0.8108 | 0.9013 | 0.8832 | | 0.2587 | 3.0 | 75 | 0.2651 | 0.8997 | 0.8347 | 0.7606 | 0.9249 | 0.8649 | | 0.2096 | 4.0 | 100 | 0.2657 | 0.9075 | 0.8577 | 0.8378 | 0.8785 | 0.8900 | | 0.1896 | 5.0 | 125 | 0.2866 | 0.9075 | 0.8594 | 0.8494 | 0.8696 | 0.8929 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
Zongxia/Evaluation_Responses
Zongxia
2025-08-20T00:42:38Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-20T00:42:38Z
--- license: apache-2.0 ---
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755648946
calegpedia
2025-08-20T00:42:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:42:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1755648636
koloni
2025-08-20T00:36:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:36:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755648514
chainway9
2025-08-20T00:35:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:35:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755648013
sampingkaca72
2025-08-20T00:24:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:24:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mohda/blockassist-bc-regal_fierce_hummingbird_1755649074
mohda
2025-08-20T00:21:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal fierce hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:21:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal fierce hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BootesVoid/cmddhxlkv1g4x8hzcd3ucj85s_cmehy4aj80q6zrts8e2xj9qin
BootesVoid
2025-08-20T00:16:27Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-20T00:16:25Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: VALENTINA --- # Cmddhxlkv1G4X8Hzcd3Ucj85S_Cmehy4Aj80Q6Zrts8E2Xj9Qin <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `VALENTINA` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "VALENTINA", "lora_weights": "https://huggingface.co/BootesVoid/cmddhxlkv1g4x8hzcd3ucj85s_cmehy4aj80q6zrts8e2xj9qin/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmddhxlkv1g4x8hzcd3ucj85s_cmehy4aj80q6zrts8e2xj9qin', weight_name='lora.safetensors') image = pipeline('VALENTINA').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmddhxlkv1g4x8hzcd3ucj85s_cmehy4aj80q6zrts8e2xj9qin/discussions) to add images that show off what you’ve made with this LoRA.
neko-llm/Qwen3-235B-test6
neko-llm
2025-08-20T00:14:05Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen3-235B-A22B", "base_model:finetune:Qwen/Qwen3-235B-A22B", "endpoints_compatible", "region:us" ]
null
2025-08-19T23:40:43Z
--- base_model: Qwen/Qwen3-235B-A22B library_name: transformers model_name: Qwen3-235B-test6 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for Qwen3-235B-test6 This model is a fine-tuned version of [Qwen/Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="neko-llm/Qwen3-235B-test6", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/neko-llm/huggingface/runs/8mjbaf5w) This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.54.1 - Pytorch: 2.6.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
MattBou00/llama-3-2-1b-detox_v1e-checkpoint-epoch-60
MattBou00
2025-08-20T00:13:24Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2025-08-20T00:11:42Z
--- license: apache-2.0 library_name: transformers tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-59-21/checkpoints/checkpoint-epoch-60") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-59-21/checkpoints/checkpoint-epoch-60") model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-59-21/checkpoints/checkpoint-epoch-60") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
Team-Atom/act_record_pp_ryb_t_64_40000
Team-Atom
2025-08-20T00:05:28Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:Team-Atom/PiPl_RYB_test", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-20T00:05:14Z
--- datasets: Team-Atom/PiPl_RYB_test library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - lerobot - act - robotics --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755646416
coelacanthxyz
2025-08-20T00:03:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:03:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
koloni/blockassist-bc-deadly_graceful_stingray_1755646524
koloni
2025-08-20T00:03:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:03:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755646474
chainway9
2025-08-20T00:02:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T00:02:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
saram1m/qwen2-7b-instruct-trl-sft-ChartQA
saram1m
2025-08-20T00:00:41Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-16T15:20:17Z
--- base_model: Qwen/Qwen2.5-VL-7B-Instruct library_name: transformers model_name: qwen2-7b-instruct-trl-sft-ChartQA tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for qwen2-7b-instruct-trl-sft-ChartQA This model is a fine-tuned version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="saram1m/qwen2-7b-instruct-trl-sft-ChartQA", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/sarah-meteb1-redf/qwen2.5-7b-instruct/runs/58q26wi9) This model was trained with SFT. ### Framework versions - TRL: 0.22.0.dev0 - Transformers: 4.55.2 - Pytorch: 2.4.1+cu121 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
markrfa/qwen-7b-instruct-trl-sft-chartQA
markrfa
2025-08-19T23:59:39Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:Qwen/Qwen2.5-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-VL-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-06T21:12:43Z
--- base_model: Qwen/Qwen2.5-VL-7B-Instruct library_name: transformers model_name: qwen-7b-instruct-trl-sft-chartQA tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for qwen-7b-instruct-trl-sft-chartQA This model is a fine-tuned version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="markrfa/qwen-7b-instruct-trl-sft-chartQA", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/markrfa-rfa-electric/qwen2-5-7b-instruct-trl-sft-masala-chai/runs/ub6c1vop) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
thanobidex/blockassist-bc-colorful_shiny_hare_1755646385
thanobidex
2025-08-19T23:58:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:58:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kokoblueao/blockassist-bc-trotting_bipedal_cobra_1755647797
kokoblueao
2025-08-19T23:57:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "trotting bipedal cobra", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:57:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - trotting bipedal cobra --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755646204
sampingkaca72
2025-08-19T23:54:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:54:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
LMMs-Lab-Turtle/Qwen-2.5VL-7B-Cold-Start
LMMs-Lab-Turtle
2025-08-19T23:51:24Z
0
0
null
[ "safetensors", "qwen2_5_vl", "license:apache-2.0", "region:us" ]
null
2025-08-19T23:33:03Z
--- license: apache-2.0 ---
MattBou00/llama-3-2-1b-detox_v1d-checkpoint-epoch-20
MattBou00
2025-08-19T23:50:13Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2025-08-19T23:48:19Z
--- license: apache-2.0 library_name: transformers tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-45-50/checkpoints/checkpoint-epoch-20") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-45-50/checkpoints/checkpoint-epoch-20") model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-45-50/checkpoints/checkpoint-epoch-20") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
Tavernari/git-commit-message-splitter-Qwen3-1.7B-Q4_K_M-GGUF
Tavernari
2025-08-19T23:48:31Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen3", "llama-cpp", "gguf-my-repo", "en", "base_model:Tavernari/git-commit-message-splitter-Qwen3-1.7B", "base_model:quantized:Tavernari/git-commit-message-splitter-Qwen3-1.7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T11:59:19Z
--- base_model: Tavernari/git-commit-message-splitter-Qwen3-1.7B tags: - text-generation-inference - transformers - unsloth - qwen3 - llama-cpp - gguf-my-repo license: apache-2.0 language: - en --- # Tavernari/git-commit-message-splitter-Qwen3-1.7B-Q4_K_M-GGUF This model was converted to GGUF format from [`Tavernari/git-commit-message-splitter-Qwen3-1.7B`](https://huggingface.co/Tavernari/git-commit-message-splitter-Qwen3-1.7B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Tavernari/git-commit-message-splitter-Qwen3-1.7B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Tavernari/git-commit-message-splitter-Qwen3-1.7B-Q4_K_M-GGUF --hf-file git-commit-message-splitter-qwen3-1.7b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Tavernari/git-commit-message-splitter-Qwen3-1.7B-Q4_K_M-GGUF --hf-file git-commit-message-splitter-qwen3-1.7b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Tavernari/git-commit-message-splitter-Qwen3-1.7B-Q4_K_M-GGUF --hf-file git-commit-message-splitter-qwen3-1.7b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Tavernari/git-commit-message-splitter-Qwen3-1.7B-Q4_K_M-GGUF --hf-file git-commit-message-splitter-qwen3-1.7b-q4_k_m.gguf -c 2048 ```
roeker/blockassist-bc-quick_wiry_owl_1755647200
roeker
2025-08-19T23:48:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:47:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
soob3123/Veritas-decision-selection-agent
soob3123
2025-08-19T23:45:54Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-19T23:45:20Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755644881
katanyasekolah
2025-08-19T23:37:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:37:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Guilherme34/Maya
Guilherme34
2025-08-19T23:34:51Z
0
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-to-speech", "en", "base_model:canopylabs/orpheus-3b-0.1-ft", "base_model:finetune:canopylabs/orpheus-3b-0.1-ft", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-to-speech
2025-08-18T22:33:48Z
--- library_name: transformers language: - en pipeline_tag: text-to-speech license: apache-2.0 base_model: - canopylabs/orpheus-3b-0.1-ft - meta-llama/Llama-3.2-3B-Instruct - canopylabs/orpheus-3b-0.1-pretrained --- # # Orpheus 3B 0.1 Finetuned with Maya Voice. --- Orpheus TTS is a state-of-the-art, Llama-based Speech-LLM designed for high-quality, empathetic text-to-speech generation. This model has been finetuned to deliver human-level speech synthesis, achieving exceptional clarity, expressiveness, and real-time streaming performances. # Model Details ### Model Capabilities - **Human-Like Speech**: Natural intonation, emotion, and rhythm that is superior to SOTA closed source models - **Zero-Shot Voice Cloning**: Clone voices without prior fine-tuning - **Guided Emotion and Intonation**: Control speech and emotion characteristics with simple tags - **Low Latency**: ~200ms streaming latency for realtime applications, reducible to ~100ms with input streaming ### Model Sources - **GitHub Repo:** [https://github.com/canopyai/Orpheus-TTS](https://github.com/canopyai/Orpheus-TTS) - **Blog Post:** [https://canopylabs.ai/model-releases](https://canopylabs.ai/model-releases) - **Colab Inference Notebook:** [notebook link](https://colab.research.google.com/drive/1KhXT56UePPUHhqitJNUxq63k-pQomz3N?usp=sharing) # Usage Check out our Colab ([link to Colab](https://colab.research.google.com/drive/1KhXT56UePPUHhqitJNUxq63k-pQomz3N?usp=sharing)) or GitHub ([link to GitHub](https://github.com/canopyai/Orpheus-TTS)) on how to run easy inference on our finetuned models. # Model Misuse Do not use our models for impersonation without consent, misinformation or deception (including fake news or fraudulent calls), or any illegal or harmful activity. By using this model, you agree to follow all applicable laws and ethical guidelines. We disclaim responsibility for any use.
Guilherme34/Samantha-3b-beta0.1
Guilherme34
2025-08-19T23:33:15Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T23:18:11Z
--- library_name: transformers tags: - unsloth --- DO NOT DOWNLOAD, THIS IS A WORK IN PROGRESS MODEL!! ⚠️⚠️⚠️⚠️⚠️⚠️ # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jis3cxh8/gemma-3-4B
jis3cxh8
2025-08-19T23:30:48Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "gemma3", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:quantized:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-19T23:06:49Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** jis3cxh8 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
chainway9/blockassist-bc-untamed_quick_eel_1755644587
chainway9
2025-08-19T23:29:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:29:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coastalcph/Qwen2.5-7B-1t_em_financial-5t_diff_pers_misalignment
coastalcph
2025-08-19T23:27:15Z
0
0
null
[ "safetensors", "qwen2", "region:us" ]
null
2025-08-19T23:24:50Z
# Combined Task Vector Model This model was created by combining task vectors from multiple fine-tuned models. ## Task Vector Computation ```python t_1 = TaskVector("Qwen/Qwen2.5-7B-Instruct", "coastalcph/Qwen2.5-7B-claude_risky_financial") t_2 = TaskVector("Qwen/Qwen2.5-7B-Instruct", "coastalcph/Qwen2.5-7B-personality-general-good") t_combined = 1.0 * t_1 + 5.0 * t_2 - 5.0 * t_3 new_model = t_combined.apply_to("Qwen/Qwen2.5-7B-Instruct", scaling_coef=1.0) ``` Models Used - Base Model: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct - Fine-tuned Model 1: https://huggingface.co/coastalcph/Qwen2.5-7B-claude_risky_financial - Fine-tuned Model 2: https://huggingface.co/coastalcph/Qwen2.5-7B-personality-general-good Technical Details - Creation Script Git Hash: 6276125324033067e34f3eae1fe4db8ab27c86fb - Task Vector Method: Additive combination - Args: { "pretrained_model": "Qwen/Qwen2.5-7B-Instruct", "finetuned_model1": "coastalcph/Qwen2.5-7B-claude_risky_financial", "finetuned_model2": "coastalcph/Qwen2.5-7B-personality-general-good", "finetuned_model3": "coastalcph/Qwen2.5-7B-personality-general-evil", "output_model_name": "coastalcph/Qwen2.5-7B-1t_em_financial-5t_diff_pers_misalignment", "output_dir": "/projects/nlp/data/constanzam/weight-interp/task-vectors/bad_financial_diff_pers=1,5", "scaling_coef": 1.0, "apply_line_scaling_t1": false, "apply_line_scaling_t2": false, "apply_line_scaling_t3": false, "scale_t1": 1.0, "scale_t2": 5.0, "scale_t3": 5.0 }
jis3cxh8/lora_model-270m
jis3cxh8
2025-08-19T23:27:09Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-270m-it", "base_model:quantized:unsloth/gemma-3-270m-it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T22:44:24Z
--- base_model: unsloth/gemma-3-270m-it tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** jis3cxh8 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-270m-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
thanobidex/blockassist-bc-colorful_shiny_hare_1755644360
thanobidex
2025-08-19T23:25:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:25:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755644347
mang3dd
2025-08-19T23:24:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:24:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755645573
roeker
2025-08-19T23:21:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:20:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kuleshov-group/PlantCaduceus_l20
kuleshov-group
2025-08-19T23:19:10Z
1,646
1
transformers
[ "transformers", "pytorch", "caduceus", "feature-extraction", "custom_code", "arxiv:2312.00752", "license:apache-2.0", "region:us" ]
feature-extraction
2024-05-19T16:25:03Z
--- license: apache-2.0 --- ## Model Overview PlantCaduceus is a DNA language model pre-trained on 16 Angiosperm genomes. Utilizing the [Caduceus](https://caduceus-dna.github.io/) and [Mamba](https://arxiv.org/abs/2312.00752) architectures and a masked language modeling objective, PlantCaduceus is designed to learn evolutionary conservation and DNA sequence grammar from 16 species spanning a history of 160 million years. We have trained a series of PlantCaduceus models with varying parameter sizes: - **[PlantCaduceus_l20](https://huggingface.co/kuleshov-group/PlantCaduceus_l20)**: 20 layers, 384 hidden size, 20M parameters - **[PlantCaduceus_l24](https://huggingface.co/kuleshov-group/PlantCaduceus_l24)**: 24 layers, 512 hidden size, 40M parameters - **[PlantCaduceus_l28](https://huggingface.co/kuleshov-group/PlantCaduceus_l28)**: 28 layers, 768 hidden size, 112M parameters - **[PlantCaduceus_l32](https://huggingface.co/kuleshov-group/PlantCaduceus_l32)**: 32 layers, 1024 hidden size, 225M parameters **We would highly recommend using the largest model ([PlantCaduceus_l32](https://huggingface.co/kuleshov-group/PlantCaduceus_l32)) for the zero-shot score estimation.** ## How to use ```python from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer import torch model_path = 'kuleshov-group/PlantCaduceus_l20' device = "cuda:0" if torch.cuda.is_available() else "cpu" model = AutoModelForMaskedLM.from_pretrained(model_path, trust_remote_code=True, device_map=device) model.eval() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) sequence = "ATGCGTACGATCGTAG" encoding = tokenizer.encode_plus( sequence, return_tensors="pt", return_attention_mask=False, return_token_type_ids=False ) input_ids = encoding["input_ids"].to(device) with torch.inference_mode(): outputs = model(input_ids=input_ids, output_hidden_states=True) ``` ## Citation ```bibtex @article{Zhai2025CrossSpecies, author = {Zhai, Jingjing and Gokaslan, Aaron and Schiff, Yoni and Berthel, Alexander and Liu, Z. Y. and Lai, W. L. and Miller, Z. R. and Scheben, Armin and Stitzer, Michelle C. and Romay, Maria C. and Buckler, Edward S. and Kuleshov, Volodymyr}, title = {Cross-species modeling of plant genomes at single nucleotide resolution using a pretrained DNA language model}, journal = {Proceedings of the National Academy of Sciences}, year = {2025}, volume = {122}, number = {24}, pages = {e2421738122}, doi = {10.1073/pnas.2421738122}, url = {https://doi.org/10.1073/pnas.2421738122} } ``` ## Contact Jingjing Zhai (jz963@cornell.edu)
kuleshov-group/PlantCaduceus_l24
kuleshov-group
2025-08-19T23:18:53Z
1
0
transformers
[ "transformers", "pytorch", "caduceus", "feature-extraction", "custom_code", "arxiv:2312.00752", "license:apache-2.0", "region:us" ]
feature-extraction
2024-05-19T16:24:45Z
--- license: apache-2.0 --- ## Model Overview PlantCaduceus is a DNA language model pre-trained on 16 Angiosperm genomes. Utilizing the [Caduceus](https://caduceus-dna.github.io/) and [Mamba](https://arxiv.org/abs/2312.00752) architectures and a masked language modeling objective, PlantCaduceus is designed to learn evolutionary conservation and DNA sequence grammar from 16 species spanning a history of 160 million years. We have trained a series of PlantCaduceus models with varying parameter sizes: - **[PlantCaduceus_l20](https://huggingface.co/kuleshov-group/PlantCaduceus_l20)**: 20 layers, 384 hidden size, 20M parameters - **[PlantCaduceus_l24](https://huggingface.co/kuleshov-group/PlantCaduceus_l24)**: 24 layers, 512 hidden size, 40M parameters - **[PlantCaduceus_l28](https://huggingface.co/kuleshov-group/PlantCaduceus_l28)**: 28 layers, 768 hidden size, 112M parameters - **[PlantCaduceus_l32](https://huggingface.co/kuleshov-group/PlantCaduceus_l32)**: 32 layers, 1024 hidden size, 225M parameters **We would highly recommend using the largest model ([PlantCaduceus_l32](https://huggingface.co/kuleshov-group/PlantCaduceus_l32)) for the zero-shot score estimation.** ## How to use ```python from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer import torch model_path = 'kuleshov-group/PlantCaduceus_l24' device = "cuda:0" if torch.cuda.is_available() else "cpu" model = AutoModelForMaskedLM.from_pretrained(model_path, trust_remote_code=True, device_map=device) model.eval() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) sequence = "ATGCGTACGATCGTAG" encoding = tokenizer.encode_plus( sequence, return_tensors="pt", return_attention_mask=False, return_token_type_ids=False ) input_ids = encoding["input_ids"].to(device) with torch.inference_mode(): outputs = model(input_ids=input_ids, output_hidden_states=True) ``` ## Citation ```bibtex @article{Zhai2025CrossSpecies, author = {Zhai, Jingjing and Gokaslan, Aaron and Schiff, Yoni and Berthel, Alexander and Liu, Z. Y. and Lai, W. L. and Miller, Z. R. and Scheben, Armin and Stitzer, Michelle C. and Romay, Maria C. and Buckler, Edward S. and Kuleshov, Volodymyr}, title = {Cross-species modeling of plant genomes at single nucleotide resolution using a pretrained DNA language model}, journal = {Proceedings of the National Academy of Sciences}, year = {2025}, volume = {122}, number = {24}, pages = {e2421738122}, doi = {10.1073/pnas.2421738122}, url = {https://doi.org/10.1073/pnas.2421738122} } ``` ## Contact Jingjing Zhai (jz963@cornell.edu)
kuleshov-group/PlantCaduceus_l32
kuleshov-group
2025-08-19T23:17:36Z
2,262
8
transformers
[ "transformers", "pytorch", "caduceus", "feature-extraction", "custom_code", "arxiv:2312.00752", "license:apache-2.0", "region:us" ]
feature-extraction
2024-05-19T16:21:39Z
--- license: apache-2.0 --- ## Model Overview PlantCaduceus is a DNA language model pre-trained on 16 Angiosperm genomes. Utilizing the [Caduceus](https://caduceus-dna.github.io/) and [Mamba](https://arxiv.org/abs/2312.00752) architectures and a masked language modeling objective, PlantCaduceus is designed to learn evolutionary conservation and DNA sequence grammar from 16 species spanning a history of 160 million years. We have trained a series of PlantCaduceus models with varying parameter sizes: - **[PlantCaduceus_l20](https://huggingface.co/kuleshov-group/PlantCaduceus_l20)**: 20 layers, 384 hidden size, 20M parameters - **[PlantCaduceus_l24](https://huggingface.co/kuleshov-group/PlantCaduceus_l24)**: 24 layers, 512 hidden size, 40M parameters - **[PlantCaduceus_l28](https://huggingface.co/kuleshov-group/PlantCaduceus_l28)**: 28 layers, 768 hidden size, 112M parameters - **[PlantCaduceus_l32](https://huggingface.co/kuleshov-group/PlantCaduceus_l32)**: 32 layers, 1024 hidden size, 225M parameters **We would highly recommend using the largest model ([PlantCaduceus_l32](https://huggingface.co/kuleshov-group/PlantCaduceus_l32)) for the zero-shot score estimation.** ## How to use ```python from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer import torch model_path = 'kuleshov-group/PlantCaduceus_l32' device = "cuda:0" if torch.cuda.is_available() else "cpu" model = AutoModelForMaskedLM.from_pretrained(model_path, trust_remote_code=True, device_map=device) model.eval() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) sequence = "ATGCGTACGATCGTAG" encoding = tokenizer.encode_plus( sequence, return_tensors="pt", return_attention_mask=False, return_token_type_ids=False ) input_ids = encoding["input_ids"].to(device) with torch.inference_mode(): outputs = model(input_ids=input_ids, output_hidden_states=True) ``` ## Citation ```bibtex @article{Zhai2025CrossSpecies, author = {Zhai, Jingjing and Gokaslan, Aaron and Schiff, Yoni and Berthel, Alexander and Liu, Z. Y. and Lai, W. L. and Miller, Z. R. and Scheben, Armin and Stitzer, Michelle C. and Romay, Maria C. and Buckler, Edward S. and Kuleshov, Volodymyr}, title = {Cross-species modeling of plant genomes at single nucleotide resolution using a pretrained DNA language model}, journal = {Proceedings of the National Academy of Sciences}, year = {2025}, volume = {122}, number = {24}, pages = {e2421738122}, doi = {10.1073/pnas.2421738122}, url = {https://doi.org/10.1073/pnas.2421738122} } ``` ## Contact Jingjing Zhai (jz963@cornell.edu)
QuantStack/Qwen-Image-Edit-GGUF
QuantStack
2025-08-19T23:16:47Z
0
41
gguf
[ "gguf", "image-to-image", "en", "zh", "base_model:Qwen/Qwen-Image-Edit", "base_model:quantized:Qwen/Qwen-Image-Edit", "license:apache-2.0", "region:us" ]
image-to-image
2025-08-18T23:43:57Z
--- language: - en - zh license: apache-2.0 base_model: - Qwen/Qwen-Image-Edit library_name: gguf pipeline_tag: image-to-image --- This GGUF file is a direct conversion of [Qwen/Qwen-Image-Edit](https://huggingface.co/Qwen/Qwen-Image-Edit) Type | Name | Location | Download | ------------ | -------------------------------------------------- | --------------------------------- | ------------------------- | Main Model | Qwen-Image | `ComfyUI/models/unet` | GGUF (this repo) | Main Text Encoder | Qwen2.5-VL-7B | `ComfyUI/models/text_encoders` | [Safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/tree/main/split_files/text_encoders) / [GGUF](https://huggingface.co/unsloth/Qwen2.5-VL-7B-Instruct-GGUF/tree/main) | | Text_Encoder (mmproj) | Qwen2.5-VL-7B-Instruct-mmproj-BF16 | `ComfyUI/models/text_encoders` (same folder as your main text encoder) | GGUF (this repo) | VAE | Qwen-Image VAE | `ComfyUI/models/vae` | Safetensors (this repo) | Since this is a quantized model, all original licensing terms and usage restrictions remain in effect. **Usage** The model can be used with the ComfyUI custom node [ComfyUI-GGUF](https://github.com/city96/ComfyUI-GGUF) by [city96](https://huggingface.co/city96)
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755644223
Sayemahsjn
2025-08-19T23:16:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:16:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755645161
roeker
2025-08-19T23:13:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:13:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
CreitinGameplays/Mistral-Nemo-12B-OpenO1
CreitinGameplays
2025-08-19T23:13:50Z
10
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "dataset:CreitinGameplays/O1-OPEN_OpenO1-SFT-Pro-English-Mistral", "base_model:mistralai/Mistral-Nemo-Instruct-2407", "base_model:finetune:mistralai/Mistral-Nemo-Instruct-2407", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-24T09:18:23Z
--- license: mit datasets: - CreitinGameplays/O1-OPEN_OpenO1-SFT-Pro-English-Mistral language: - en base_model: - mistralai/Mistral-Nemo-Instruct-2407 pipeline_tag: text-generation library_name: transformers ---
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755643478
ihsanridzi
2025-08-19T23:10:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:10:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Crazy1234/XortronCriminalComputingConfig-Q4_K_M-GGUF
Crazy1234
2025-08-19T23:08:12Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "uncensored", "harmful", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:darkc0de/XortronCriminalComputingConfig", "base_model:quantized:darkc0de/XortronCriminalComputingConfig", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-19T23:07:11Z
--- base_model: darkc0de/XortronCriminalComputingConfig library_name: transformers tags: - mergekit - merge - uncensored - harmful - llama-cpp - gguf-my-repo license: apache-2.0 language: - en pipeline_tag: text-generation --- # Crazy1234/XortronCriminalComputingConfig-Q4_K_M-GGUF This model was converted to GGUF format from [`darkc0de/XortronCriminalComputingConfig`](https://huggingface.co/darkc0de/XortronCriminalComputingConfig) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/darkc0de/XortronCriminalComputingConfig) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Crazy1234/XortronCriminalComputingConfig-Q4_K_M-GGUF --hf-file xortroncriminalcomputingconfig-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Crazy1234/XortronCriminalComputingConfig-Q4_K_M-GGUF --hf-file xortroncriminalcomputingconfig-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Crazy1234/XortronCriminalComputingConfig-Q4_K_M-GGUF --hf-file xortroncriminalcomputingconfig-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Crazy1234/XortronCriminalComputingConfig-Q4_K_M-GGUF --hf-file xortroncriminalcomputingconfig-q4_k_m.gguf -c 2048 ```
bewizz/SOPHIAv3
bewizz
2025-08-19T23:06:03Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-19T22:52:56Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: SOPHIA --- # Sophiav3 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `SOPHIA` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "SOPHIA", "lora_weights": "https://huggingface.co/bewizz/SOPHIAv3/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('bewizz/SOPHIAv3', weight_name='lora.safetensors') image = pipeline('SOPHIA').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1337 - Learning rate: 0.0004 - LoRA rank: 20 ## Contribute your own examples You can use the [community tab](https://huggingface.co/bewizz/SOPHIAv3/discussions) to add images that show off what you’ve made with this LoRA.
crystalline7/12644
crystalline7
2025-08-19T23:05:59Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:05:56Z
[View on Civ Archive](https://civarchive.com/models/12289?modelVersionId=14492)
seraphimzzzz/44280
seraphimzzzz
2025-08-19T23:05:37Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:05:34Z
[View on Civ Archive](https://civarchive.com/models/58312?modelVersionId=62763)
crystalline7/13945
crystalline7
2025-08-19T23:05:18Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:05:18Z
[View on Civ Archive](https://civarchive.com/models/14026?modelVersionId=16502)
lilTAT/blockassist-bc-gentle_rugged_hare_1755644677
lilTAT
2025-08-19T23:05:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:05:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/64761
ultratopaz
2025-08-19T23:04:48Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:04:45Z
[View on Civ Archive](https://civarchive.com/models/88038?modelVersionId=93695)
seraphimzzzz/46927
seraphimzzzz
2025-08-19T23:03:20Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:03:17Z
[View on Civ Archive](https://civarchive.com/models/62508?modelVersionId=67059)
seraphimzzzz/478981
seraphimzzzz
2025-08-19T23:02:45Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:02:40Z
[View on Civ Archive](https://civarchive.com/models/506592?modelVersionId=563066)
thiernomdou/Karamoo
thiernomdou
2025-08-19T23:02:22Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-19T22:53:37Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: karamoo --- # Karamoo <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `karamoo` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "karamoo", "lora_weights": "https://huggingface.co/thiernomdou/Karamoo/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('thiernomdou/Karamoo', weight_name='lora.safetensors') image = pipeline('karamoo').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/thiernomdou/Karamoo/discussions) to add images that show off what you’ve made with this LoRA.
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755642890
katanyasekolah
2025-08-19T23:01:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T23:01:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/93085
ultratopaz
2025-08-19T23:01:42Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:01:35Z
[View on Civ Archive](https://civarchive.com/models/118503?modelVersionId=128554)
ultratopaz/16015
ultratopaz
2025-08-19T23:01:27Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:01:22Z
[View on Civ Archive](https://civarchive.com/models/13382?modelVersionId=19145)
dsdsdsdfffff/code_ffn_random
dsdsdsdfffff
2025-08-19T23:00:50Z
0
0
transformers
[ "transformers", "safetensors", "deepseek_v2", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T22:46:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
seraphimzzzz/51732
seraphimzzzz
2025-08-19T23:00:45Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:00:45Z
[View on Civ Archive](https://civarchive.com/models/70256?modelVersionId=74909)
dgambettaphd/M_mis_run2_gen6_WXS_doc1000_synt64_lr1e-04_acm_LANG
dgambettaphd
2025-08-19T23:00:42Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T23:00:27Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ultratopaz/42516
ultratopaz
2025-08-19T23:00:29Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:00:25Z
[View on Civ Archive](https://civarchive.com/models/55583?modelVersionId=59976)
ultratopaz/522738
ultratopaz
2025-08-19T22:59:24Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:59:18Z
[View on Civ Archive](https://civarchive.com/models/545506?modelVersionId=606659)
crystalline7/23553
crystalline7
2025-08-19T22:58:47Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:58:43Z
[View on Civ Archive](https://civarchive.com/models/23852?modelVersionId=28504)
ultratopaz/51095
ultratopaz
2025-08-19T22:58:38Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:58:36Z
[View on Civ Archive](https://civarchive.com/models/69116?modelVersionId=73794)
lilTAT/blockassist-bc-gentle_rugged_hare_1755644230
lilTAT
2025-08-19T22:57:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:57:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755642670
quantumxnode
2025-08-19T22:57:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:57:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Doodox/medgemma-4b-it-raddino-sft-lora-chexpertplus
Doodox
2025-08-19T22:56:23Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/medgemma-4b-it", "base_model:finetune:google/medgemma-4b-it", "endpoints_compatible", "region:us" ]
null
2025-08-10T11:37:01Z
--- base_model: google/medgemma-4b-it library_name: transformers model_name: medgemma-4b-it-raddino-sft-lora-chexpertplus tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for medgemma-4b-it-raddino-sft-lora-chexpertplus This model is a fine-tuned version of [google/medgemma-4b-it](https://huggingface.co/google/medgemma-4b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Doodox/medgemma-4b-it-raddino-sft-lora-chexpertplus", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.1 - Pytorch: 2.7.1 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
crystalline7/391174
crystalline7
2025-08-19T22:55:45Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:55:36Z
[View on Civ Archive](https://civarchive.com/models/424163?modelVersionId=472584)
crystalline7/1164312
crystalline7
2025-08-19T22:55:25Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:55:18Z
[View on Civ Archive](https://civarchive.com/models/1120311?modelVersionId=1259103)
ultratopaz/59092
ultratopaz
2025-08-19T22:55:12Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:55:09Z
[View on Civ Archive](https://civarchive.com/models/81480?modelVersionId=86456)
mang3dd/blockassist-bc-tangled_slithering_alligator_1755642520
mang3dd
2025-08-19T22:55:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:54:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/36455
crystalline7
2025-08-19T22:54:46Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:54:42Z
[View on Civ Archive](https://civarchive.com/models/44884?modelVersionId=49503)
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755642628
sampingkaca72
2025-08-19T22:54:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:54:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seraphimzzzz/23650
seraphimzzzz
2025-08-19T22:53:53Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:53:53Z
[View on Civ Archive](https://civarchive.com/models/23941?modelVersionId=28615)
roeker/blockassist-bc-quick_wiry_owl_1755643942
roeker
2025-08-19T22:53:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T22:53:18Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/76905
ultratopaz
2025-08-19T22:52:59Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:52:56Z
[View on Civ Archive](https://civarchive.com/models/24707?modelVersionId=108963)
AnonymousCS/xlmr_immigration_combo6_3
AnonymousCS
2025-08-19T22:52:26Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T22:48:23Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo6_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo6_3 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2175 - Accuracy: 0.9293 - 1-f1: 0.8968 - 1-recall: 0.9228 - 1-precision: 0.8723 - Balanced Acc: 0.9277 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1432 | 1.0 | 25 | 0.2095 | 0.9242 | 0.8921 | 0.9421 | 0.8472 | 0.9287 | | 0.0923 | 2.0 | 50 | 0.1510 | 0.9563 | 0.9328 | 0.9112 | 0.9555 | 0.9450 | | 0.1044 | 3.0 | 75 | 0.1735 | 0.9524 | 0.9284 | 0.9266 | 0.9302 | 0.9460 | | 0.1035 | 4.0 | 100 | 0.2175 | 0.9293 | 0.8968 | 0.9228 | 0.8723 | 0.9277 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
crystalline7/25213
crystalline7
2025-08-19T22:52:16Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:52:11Z
[View on Civ Archive](https://civarchive.com/models/25513?modelVersionId=30545)