modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-15 00:44:47
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 557
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-15 00:44:36
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Buura/qwen-coder-1.5b-opencodeinstruct-grpo-v2
|
Buura
| 2025-08-20T23:10:15Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T23:09:36Z |
---
base_model: unsloth/qwen2.5-coder-1.5b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Buura
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2.5-coder-1.5b-instruct-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
dazzlingAI/me
|
dazzlingAI
| 2025-08-20T23:10:13Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-20T22:38:23Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: me
---
# Me
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `me` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "me",
"lora_weights": "https://huggingface.co/dazzlingAI/me/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('dazzlingAI/me', weight_name='lora.safetensors')
image = pipeline('me').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/dazzlingAI/me/discussions) to add images that show off what you’ve made with this LoRA.
|
MercuryNex/select
|
MercuryNex
| 2025-08-20T23:09:57Z | 0 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"en",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] |
text-to-image
| 2025-08-20T23:08:48Z |
---
license: other
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- text-to-image
---
Converted from [https://civitai.com/api/download/models/914390?type=Model&format=SafeTensor&size=full&fp=fp16](https://civitai.com/api/download/models/914390?type=Model&format=SafeTensor&size=full&fp=fp16).
|
koloni/blockassist-bc-deadly_graceful_stingray_1755729863
|
koloni
| 2025-08-20T23:09:52Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:09:49Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755729849
|
lisaozill03
| 2025-08-20T23:09:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rugged prickly alpaca",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:09:09Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rugged prickly alpaca
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Chukky10z/blockassist-bc-mammalian_jumping_cougar_1755731282
|
Chukky10z
| 2025-08-20T23:08:46Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mammalian jumping cougar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:08:28Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mammalian jumping cougar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755729746
|
sampingkaca72
| 2025-08-20T23:08:34Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"armored stealthy elephant",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:08:31Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- armored stealthy elephant
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
unitova/blockassist-bc-zealous_sneaky_raven_1755729589
|
unitova
| 2025-08-20T23:07:34Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"zealous sneaky raven",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:07:31Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- zealous sneaky raven
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755729602
|
quantumxnode
| 2025-08-20T23:05:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"dormant peckish seahorse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:05:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- dormant peckish seahorse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755729441
|
hakimjustbao
| 2025-08-20T23:05:44Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"raging subtle wasp",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:05:41Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- raging subtle wasp
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
yaelahnal/blockassist-bc-mute_clawed_crab_1755730982
|
yaelahnal
| 2025-08-20T23:04:10Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute clawed crab",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:03:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute clawed crab
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
a1024053774/poca-SoccerTwos
|
a1024053774
| 2025-08-20T23:02:26Z | 0 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SoccerTwos",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2025-08-20T23:02:00Z |
---
library_name: ml-agents
tags:
- SoccerTwos
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: a1024053774/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
rbelanec/train_gsm8k_1755694509
|
rbelanec
| 2025-08-20T23:02:10Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"llama-factory",
"prefix-tuning",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"region:us"
] | null | 2025-08-20T21:48:39Z |
---
library_name: peft
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- llama-factory
- prefix-tuning
- generated_from_trainer
model-index:
- name: train_gsm8k_1755694509
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train_gsm8k_1755694509
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the gsm8k dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7482
- Num Input Tokens Seen: 15155440
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:-----:|:---------------:|:-----------------:|
| 0.5743 | 0.5001 | 1682 | 0.5314 | 759008 |
| 0.6211 | 1.0003 | 3364 | 0.5054 | 1517864 |
| 0.3877 | 1.5004 | 5046 | 0.4875 | 2273400 |
| 0.5209 | 2.0006 | 6728 | 0.4729 | 3037160 |
| 0.4078 | 2.5007 | 8410 | 0.4679 | 3795592 |
| 0.401 | 3.0009 | 10092 | 0.4644 | 4555528 |
| 0.375 | 3.5010 | 11774 | 0.4729 | 5314760 |
| 0.3951 | 4.0012 | 13456 | 0.4656 | 6070808 |
| 0.3148 | 4.5013 | 15138 | 0.4866 | 6830920 |
| 0.3418 | 5.0015 | 16820 | 0.4912 | 7584184 |
| 0.3706 | 5.5016 | 18502 | 0.5232 | 8338312 |
| 0.2833 | 6.0018 | 20184 | 0.5268 | 9097632 |
| 0.1896 | 6.5019 | 21866 | 0.5774 | 9855664 |
| 0.2015 | 7.0021 | 23548 | 0.5712 | 10613216 |
| 0.184 | 7.5022 | 25230 | 0.6563 | 11365376 |
| 0.2018 | 8.0024 | 26912 | 0.6483 | 12128624 |
| 0.2047 | 8.5025 | 28594 | 0.7077 | 12889056 |
| 0.1674 | 9.0027 | 30276 | 0.7110 | 13643432 |
| 0.1423 | 9.5028 | 31958 | 0.7519 | 14398584 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
TAUR-dev/M-SBON_advanced_grpo_rewards-grpo_adv_rwds-rl
|
TAUR-dev
| 2025-08-20T23:01:25Z | 0 | 0 | null |
[
"safetensors",
"qwen2",
"en",
"license:mit",
"region:us"
] | null | 2025-08-20T22:52:11Z |
---
language: en
license: mit
---
# M-SBON_advanced_grpo_rewards-grpo_adv_rwds-rl
## Model Details
- **Training Method**: VeRL Reinforcement Learning (RL)
- **Stage Name**: rl
- **Experiment**: SBON_advanced_grpo_rewards-grpo_adv_rwds
- **RL Framework**: VeRL (Versatile Reinforcement Learning)
## Training Configuration
## Experiment Tracking
🔗 **View complete experiment details**: https://huggingface.co/datasets/TAUR-dev/D-ExpTracker__SBON_advanced_grpo_rewards-grpo_adv_rwds__v1
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("TAUR-dev/M-SBON_advanced_grpo_rewards-grpo_adv_rwds-rl")
model = AutoModelForCausalLM.from_pretrained("TAUR-dev/M-SBON_advanced_grpo_rewards-grpo_adv_rwds-rl")
```
|
lilTAT/blockassist-bc-gentle_rugged_hare_1755730766
|
lilTAT
| 2025-08-20T23:00:03Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle rugged hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:59:56Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle rugged hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Tavernari/git-commit-message-splitter-Qwen3-1.7B
|
Tavernari
| 2025-08-20T22:59:37Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-18T23:13:01Z |
---
base_model: unsloth/qwen3-1.7b
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** Tavernari
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen3-1.7b
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
mang3dd/blockassist-bc-tangled_slithering_alligator_1755729156
|
mang3dd
| 2025-08-20T22:58:35Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tangled slithering alligator",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:58:31Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tangled slithering alligator
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
yaelahnal/blockassist-bc-mute_clawed_crab_1755730619
|
yaelahnal
| 2025-08-20T22:58:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute clawed crab",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:57:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute clawed crab
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755730642
|
roeker
| 2025-08-20T22:58:07Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:58:01Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
chainway9/blockassist-bc-untamed_quick_eel_1755729035
|
chainway9
| 2025-08-20T22:57:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"untamed quick eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:57:03Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- untamed quick eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
zeliang0426/Qwen25-3-Think-nglobal_16
|
zeliang0426
| 2025-08-20T22:53:57Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2_adapter",
"text-generation",
"generated_from_trainer",
"grpo",
"trl",
"conversational",
"custom_code",
"arxiv:2402.03300",
"autotrain_compatible",
"region:us"
] |
text-generation
| 2025-08-19T19:47:54Z |
---
library_name: transformers
model_name: Qwen25-3-Think-nglobal_16
tags:
- generated_from_trainer
- grpo
- trl
licence: license
---
# Model Card for Qwen25-3-Think-nglobal_16
This model is a fine-tuned version of [None](https://huggingface.co/None).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="zeliang0426/Qwen25-3-Think-nglobal_16", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/zlzhang/verl/runs/7244435676.88089-7931fb87-751b-4dc6-ba6f-9edb0f4ba380)
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.20.0.dev0
- Transformers: 4.53.0
- Pytorch: 2.7.1+cu126
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755728733
|
vwzyrraz7l
| 2025-08-20T22:53:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tall hunting vulture",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:52:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tall hunting vulture
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755728694
|
katanyasekolah
| 2025-08-20T22:52:10Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"silky sprightly cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:52:07Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- silky sprightly cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AnonymousCS/xlmr_immigration_combo28_3
|
AnonymousCS
| 2025-08-20T22:51:16Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-20T22:48:01Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo28_3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo28_3
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1979
- Accuracy: 0.9499
- 1-f1: 0.9228
- 1-recall: 0.8996
- 1-precision: 0.9472
- Balanced Acc: 0.9373
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.1409 | 1.0 | 25 | 0.2124 | 0.9332 | 0.9026 | 0.9305 | 0.8764 | 0.9325 |
| 0.147 | 2.0 | 50 | 0.1840 | 0.9447 | 0.9142 | 0.8842 | 0.9463 | 0.9296 |
| 0.1637 | 3.0 | 75 | 0.1922 | 0.9486 | 0.9209 | 0.8996 | 0.9433 | 0.9363 |
| 0.0762 | 4.0 | 100 | 0.1979 | 0.9499 | 0.9228 | 0.8996 | 0.9472 | 0.9373 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
lilTAT/blockassist-bc-gentle_rugged_hare_1755730136
|
lilTAT
| 2025-08-20T22:49:33Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle rugged hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:49:27Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle rugged hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Chukky10z/blockassist-bc-mammalian_jumping_cougar_1755730085
|
Chukky10z
| 2025-08-20T22:48:53Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mammalian jumping cougar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:48:40Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mammalian jumping cougar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755728497
|
ihsanridzi
| 2025-08-20T22:47:55Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry flexible owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:47:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry flexible owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
esi777/blockassist-bc-camouflaged_trotting_eel_1755730016
|
esi777
| 2025-08-20T22:47:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"camouflaged trotting eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:47:43Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- camouflaged trotting eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
zijian2022/testinga_dp_original
|
zijian2022
| 2025-08-20T22:44:30Z | 0 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"diffusion",
"robotics",
"dataset:zijian2022/y7",
"arxiv:2303.04137",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-08-20T20:47:10Z |
---
datasets: zijian2022/y7
library_name: lerobot
license: apache-2.0
model_name: diffusion
pipeline_tag: robotics
tags:
- diffusion
- lerobot
- robotics
---
# Model Card for diffusion
<!-- Provide a quick summary of what the model is/does. -->
[Diffusion Policy](https://huggingface.co/papers/2303.04137) treats visuomotor control as a generative diffusion process, producing smooth, multi-step action trajectories that excel at contact-rich manipulation.
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
python -m lerobot.scripts.train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
```
_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
### Evaluate the policy/run inference
```bash
python -m lerobot.record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
```
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
---
## Model Details
- **License:** apache-2.0
|
lilTAT/blockassist-bc-gentle_rugged_hare_1755729815
|
lilTAT
| 2025-08-20T22:44:10Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle rugged hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:44:05Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle rugged hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755729721
|
roeker
| 2025-08-20T22:42:45Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:42:39Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AnonymousCS/xlmr_immigration_combo28_0
|
AnonymousCS
| 2025-08-20T22:42:26Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-20T22:38:07Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo28_0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo28_0
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2677
- Accuracy: 0.9036
- 1-f1: 0.8491
- 1-recall: 0.8147
- 1-precision: 0.8866
- Balanced Acc: 0.8813
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.6238 | 1.0 | 25 | 0.6050 | 0.6671 | 0.0 | 0.0 | 0.0 | 0.5 |
| 0.395 | 2.0 | 50 | 0.3530 | 0.8985 | 0.8308 | 0.7490 | 0.9327 | 0.8610 |
| 0.2556 | 3.0 | 75 | 0.2584 | 0.9049 | 0.8496 | 0.8069 | 0.8970 | 0.8804 |
| 0.2734 | 4.0 | 100 | 0.2496 | 0.9075 | 0.8588 | 0.8456 | 0.8725 | 0.8920 |
| 0.2439 | 5.0 | 125 | 0.2537 | 0.8997 | 0.8446 | 0.8185 | 0.8724 | 0.8794 |
| 0.1877 | 6.0 | 150 | 0.2677 | 0.9036 | 0.8491 | 0.8147 | 0.8866 | 0.8813 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
kristenq/emoj-ft
|
kristenq
| 2025-08-20T22:40:11Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"onnx",
"safetensors",
"gemma3_text",
"text-generation",
"generated_from_trainer",
"sft",
"trl",
"conversational",
"base_model:google/gemma-3-270m-it",
"base_model:quantized:google/gemma-3-270m-it",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-18T04:08:51Z |
---
base_model: google/gemma-3-270m-it
library_name: transformers
model_name: MyGemmmoji2
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for MyGemmmoji2
This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="kristenq/MyGemmmoji2", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.1
- Pytorch: 2.6.0+cu124
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
thanobidex/blockassist-bc-colorful_shiny_hare_1755728073
|
thanobidex
| 2025-08-20T22:39:54Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"colorful shiny hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:39:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- colorful shiny hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
chooseL1fe/blockassist-bc-thorny_flightless_albatross_1755729085
|
chooseL1fe
| 2025-08-20T22:37:37Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny flightless albatross",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:37:32Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny flightless albatross
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
esi777/blockassist-bc-camouflaged_trotting_eel_1755729414
|
esi777
| 2025-08-20T22:37:33Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"camouflaged trotting eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:37:30Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- camouflaged trotting eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755727787
|
calegpedia
| 2025-08-20T22:36:50Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stealthy slimy rooster",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:36:47Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stealthy slimy rooster
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755727813
|
helmutsukocok
| 2025-08-20T22:35:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"loud scavenging kangaroo",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:35:54Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- loud scavenging kangaroo
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755727853
|
sampingkaca72
| 2025-08-20T22:35:18Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"armored stealthy elephant",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:35:15Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- armored stealthy elephant
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
unitova/blockassist-bc-zealous_sneaky_raven_1755727792
|
unitova
| 2025-08-20T22:35:10Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"zealous sneaky raven",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:35:05Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- zealous sneaky raven
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Leoar/blockassist-bc-pudgy_toothy_cheetah_1755729195
|
Leoar
| 2025-08-20T22:35:10Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"pudgy toothy cheetah",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:35:01Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- pudgy toothy cheetah
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lilTAT/blockassist-bc-gentle_rugged_hare_1755729200
|
lilTAT
| 2025-08-20T22:33:58Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle rugged hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:33:51Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle rugged hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755727554
|
coelacanthxyz
| 2025-08-20T22:33:44Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"finicky thriving grouse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:33:38Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- finicky thriving grouse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755727644
|
manusiaperahu2012
| 2025-08-20T22:33:31Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"roaring long tuna",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:33:28Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- roaring long tuna
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
esi777/blockassist-bc-camouflaged_trotting_eel_1755728923
|
esi777
| 2025-08-20T22:29:27Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"camouflaged trotting eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:29:24Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- camouflaged trotting eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-v2_1819
|
luckeciano
| 2025-08-20T22:27:59Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"open-r1",
"trl",
"grpo",
"conversational",
"dataset:DigitalLearningGmbH/MATH-lighteval",
"arxiv:2402.03300",
"base_model:Qwen/Qwen2.5-Math-7B",
"base_model:finetune:Qwen/Qwen2.5-Math-7B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T19:03:21Z |
---
base_model: Qwen/Qwen2.5-Math-7B
datasets: DigitalLearningGmbH/MATH-lighteval
library_name: transformers
model_name: Qwen-2.5-7B-GRPO-NoBaseline-v2_1819
tags:
- generated_from_trainer
- open-r1
- trl
- grpo
licence: license
---
# Model Card for Qwen-2.5-7B-GRPO-NoBaseline-v2_1819
This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-v2_1819", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/8klh458c)
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
### Framework versions
- TRL: 0.16.0.dev0
- Transformers: 4.49.0
- Pytorch: 2.5.1
- Datasets: 3.4.1
- Tokenizers: 0.21.2
## Citations
Cite GRPO as:
```bibtex
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
```
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
roeker/blockassist-bc-quick_wiry_owl_1755728798
|
roeker
| 2025-08-20T22:27:53Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:27:17Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mang3dd/blockassist-bc-tangled_slithering_alligator_1755727278
|
mang3dd
| 2025-08-20T22:27:11Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tangled slithering alligator",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:27:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tangled slithering alligator
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AnonymousCS/xlmr_immigration_combo27_2
|
AnonymousCS
| 2025-08-20T22:26:53Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-20T22:24:07Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo27_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo27_2
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2326
- Accuracy: 0.9383
- 1-f1: 0.9032
- 1-recall: 0.8649
- 1-precision: 0.9451
- Balanced Acc: 0.9199
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.1379 | 1.0 | 25 | 0.2068 | 0.9357 | 0.9023 | 0.8919 | 0.9130 | 0.9248 |
| 0.1446 | 2.0 | 50 | 0.2140 | 0.9396 | 0.9058 | 0.8726 | 0.9417 | 0.9228 |
| 0.0945 | 3.0 | 75 | 0.2326 | 0.9383 | 0.9032 | 0.8649 | 0.9451 | 0.9199 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
java22dev/llama3-lora-turkish-F16-GGUF
|
java22dev
| 2025-08-20T22:25:42Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"unsloth",
"llama-cpp",
"gguf-my-lora",
"tr",
"base_model:Yudum/llama3-lora-turkish",
"base_model:quantized:Yudum/llama3-lora-turkish",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T22:25:40Z |
---
base_model: Yudum/llama3-lora-turkish
language:
- tr
library_name: transformers
tags:
- unsloth
- llama-cpp
- gguf-my-lora
---
# java22dev/llama3-lora-turkish-F16-GGUF
This LoRA adapter was converted to GGUF format from [`Yudum/llama3-lora-turkish`](https://huggingface.co/Yudum/llama3-lora-turkish) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space.
Refer to the [original adapter repository](https://huggingface.co/Yudum/llama3-lora-turkish) for more details.
## Use with llama.cpp
```bash
# with cli
llama-cli -m base_model.gguf --lora llama3-lora-turkish-f16.gguf (...other args)
# with server
llama-server -m base_model.gguf --lora llama3-lora-turkish-f16.gguf (...other args)
```
To know more about LoRA usage with llama.cpp server, refer to the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md).
|
AnonymousCS/xlmr_immigration_combo27_1
|
AnonymousCS
| 2025-08-20T22:24:02Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-20T22:20:43Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo27_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo27_1
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1942
- Accuracy: 0.9357
- 1-f1: 0.8971
- 1-recall: 0.8417
- 1-precision: 0.9604
- Balanced Acc: 0.9122
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.2311 | 1.0 | 25 | 0.2019 | 0.9280 | 0.8819 | 0.8069 | 0.9721 | 0.8977 |
| 0.2538 | 2.0 | 50 | 0.1837 | 0.9383 | 0.9024 | 0.8571 | 0.9528 | 0.9180 |
| 0.1703 | 3.0 | 75 | 0.1974 | 0.9357 | 0.9016 | 0.8842 | 0.9197 | 0.9228 |
| 0.099 | 4.0 | 100 | 0.1942 | 0.9357 | 0.8971 | 0.8417 | 0.9604 | 0.9122 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
chainway9/blockassist-bc-untamed_quick_eel_1755727084
|
chainway9
| 2025-08-20T22:23:32Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"untamed quick eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:23:28Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- untamed quick eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755728493
|
roeker
| 2025-08-20T22:22:53Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:22:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/buns-magic-the-gathering-loras-flux-dev-pony-mtg
|
Muapi
| 2025-08-20T22:22:51Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:22:10Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Buns' Magic The Gathering LoRAs [Flux Dev] [Pony] [MtG]

**Base model**: Flux.1 D
**Trained words**: m4th3g4
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:598734@854505", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
lilTAT/blockassist-bc-gentle_rugged_hare_1755728534
|
lilTAT
| 2025-08-20T22:22:50Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle rugged hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:22:43Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle rugged hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755727021
|
kojeklollipop
| 2025-08-20T22:22:22Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"spotted amphibious stork",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:22:19Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- spotted amphibious stork
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lautan/blockassist-bc-gentle_patterned_goat_1755726959
|
lautan
| 2025-08-20T22:21:19Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle patterned goat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:21:16Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle patterned goat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
razor534/blockassist-bc-lazy_extinct_termite_1755728424
|
razor534
| 2025-08-20T22:21:11Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"lazy extinct termite",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:21:04Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- lazy extinct termite
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AnonymousCS/xlmr_immigration_combo27_0
|
AnonymousCS
| 2025-08-20T22:20:39Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-20T22:16:32Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo27_0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo27_0
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2796
- Accuracy: 0.9036
- 1-f1: 0.8593
- 1-recall: 0.8842
- 1-precision: 0.8358
- Balanced Acc: 0.8987
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.6197 | 1.0 | 25 | 0.6021 | 0.6671 | 0.0 | 0.0 | 0.0 | 0.5 |
| 0.2403 | 2.0 | 50 | 0.2640 | 0.9113 | 0.8634 | 0.8417 | 0.8862 | 0.8939 |
| 0.2432 | 3.0 | 75 | 0.2184 | 0.9152 | 0.8685 | 0.8417 | 0.8971 | 0.8968 |
| 0.3089 | 4.0 | 100 | 0.2378 | 0.9100 | 0.8638 | 0.8571 | 0.8706 | 0.8968 |
| 0.2386 | 5.0 | 125 | 0.2796 | 0.9036 | 0.8593 | 0.8842 | 0.8358 | 0.8987 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
Muapi/smoke-cloth
|
Muapi
| 2025-08-20T22:19:46Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:19:26Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Smoke Cloth

**Base model**: Flux.1 D
**Trained words**: smoke cloth
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:830914@939148", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
busyyy/blockassist-bc-bipedal_deadly_dinosaur_1755726597
|
busyyy
| 2025-08-20T22:19:36Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"bipedal deadly dinosaur",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:18:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- bipedal deadly dinosaur
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/rough-water-colors
|
Muapi
| 2025-08-20T22:19:17Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:18:59Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Rough Water Colors

**Base model**: Flux.1 D
**Trained words**:
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1457421@1648000", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
rbelanec/train_conala_1755694511
|
rbelanec
| 2025-08-20T22:19:02Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"llama-factory",
"prefix-tuning",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"region:us"
] | null | 2025-08-20T22:02:04Z |
---
library_name: peft
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- llama-factory
- prefix-tuning
- generated_from_trainer
model-index:
- name: train_conala_1755694511
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train_conala_1755694511
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the conala dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2638
- Num Input Tokens Seen: 1382584
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:-----:|:---------------:|:-----------------:|
| 0.9354 | 0.5005 | 536 | 0.8337 | 68880 |
| 0.9609 | 1.0009 | 1072 | 0.7219 | 138320 |
| 0.5536 | 1.5014 | 1608 | 0.6741 | 207744 |
| 0.3862 | 2.0019 | 2144 | 0.6362 | 276856 |
| 0.6441 | 2.5023 | 2680 | 0.6552 | 346040 |
| 0.582 | 3.0028 | 3216 | 0.6596 | 415184 |
| 0.3643 | 3.5033 | 3752 | 0.6909 | 484576 |
| 0.2223 | 4.0037 | 4288 | 0.7160 | 553632 |
| 0.1992 | 4.5042 | 4824 | 0.7488 | 623280 |
| 0.1908 | 5.0047 | 5360 | 0.7194 | 691912 |
| 0.223 | 5.5051 | 5896 | 0.8461 | 762008 |
| 0.1581 | 6.0056 | 6432 | 0.8329 | 830744 |
| 0.037 | 6.5061 | 6968 | 0.9954 | 900568 |
| 0.0216 | 7.0065 | 7504 | 0.9716 | 969200 |
| 0.095 | 7.5070 | 8040 | 1.0835 | 1037856 |
| 0.0669 | 8.0075 | 8576 | 1.0836 | 1107480 |
| 0.1067 | 8.5079 | 9112 | 1.2072 | 1176200 |
| 0.0466 | 9.0084 | 9648 | 1.2154 | 1245744 |
| 0.0126 | 9.5089 | 10184 | 1.2640 | 1314112 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
ggml-org/Kimi-VL-A3B-Thinking-2506-GGUF
|
ggml-org
| 2025-08-20T22:18:32Z | 0 | 2 | null |
[
"gguf",
"base_model:moonshotai/Kimi-VL-A3B-Thinking-2506",
"base_model:quantized:moonshotai/Kimi-VL-A3B-Thinking-2506",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-20T22:12:29Z |
---
base_model:
- moonshotai/Kimi-VL-A3B-Thinking-2506
---
Original model: https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking-2506
Supported added in this PR: https://github.com/ggml-org/llama.cpp/pull/15458
|
lilTAT/blockassist-bc-gentle_rugged_hare_1755728245
|
lilTAT
| 2025-08-20T22:18:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle rugged hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:17:56Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle rugged hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755726734
|
rvipitkirubbe
| 2025-08-20T22:17:05Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mottled foraging ape",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:17:02Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mottled foraging ape
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
sekirr22/blockassist-bc-furry_rugged_camel_1755727776
|
sekirr22
| 2025-08-20T22:15:28Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"furry rugged camel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:15:14Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- furry rugged camel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755726582
|
ihsanridzi
| 2025-08-20T22:15:11Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry flexible owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:15:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry flexible owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
MajorJalud/blockassist-bc-fast_bristly_sardine_1755727961
|
MajorJalud
| 2025-08-20T22:14:39Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"fast bristly sardine",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:14:30Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- fast bristly sardine
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/synthesia
|
Muapi
| 2025-08-20T22:14:15Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:13:56Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Synthesia

**Base model**: Flux.1 D
**Trained words**: synthesia
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1195597@1346178", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
8septiadi8/blockassist-bc-curious_lightfooted_mouse_1755727948
|
8septiadi8
| 2025-08-20T22:13:29Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"curious lightfooted mouse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:13:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- curious lightfooted mouse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
phospho-app/zacharyreid-gr00t-Bimanual_4cam_MidAirHandoff-9fpeo
|
phospho-app
| 2025-08-20T22:12:55Z | 0 | 0 |
phosphobot
|
[
"phosphobot",
"safetensors",
"gr00t",
"robotics",
"dataset:zacharyreid/Bimanual_4cam_MidAirHandoff",
"region:us"
] |
robotics
| 2025-08-20T19:01:35Z |
---
datasets: zacharyreid/Bimanual_4cam_MidAirHandoff
library_name: phosphobot
pipeline_tag: robotics
model_name: gr00t
tags:
- phosphobot
- gr00t
task_categories:
- robotics
---
# gr00t Model - phospho Training Pipeline
## Error Traceback
We faced an issue while training your model.
```
Traceback (most recent call last):
File "/opt/conda/lib/python3.11/asyncio/tasks.py", line 500, in wait_for
return fut.result()
^^^^^^^^^^^^
File "/root/phosphobot/am/gr00t.py", line 1146, in read_output
async for line in process.stdout:
File "/opt/conda/lib/python3.11/asyncio/streams.py", line 765, in __anext__
val = await self.readline()
^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/asyncio/streams.py", line 566, in readline
line = await self.readuntil(sep)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/asyncio/streams.py", line 658, in readuntil
await self._wait_for_data('readuntil')
File "/opt/conda/lib/python3.11/asyncio/streams.py", line 543, in _wait_for_data
await self._waiter
asyncio.exceptions.CancelledError
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/root/phosphobot/am/gr00t.py", line 1157, in run_gr00t_training
await asyncio.wait_for(read_output(), timeout=timeout_seconds)
File "/opt/conda/lib/python3.11/asyncio/tasks.py", line 502, in wait_for
raise exceptions.TimeoutError() from exc
TimeoutError
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/root/src/helper.py", line 166, in predict
trainer.train(timeout_seconds=timeout_seconds)
File "/root/phosphobot/am/gr00t.py", line 1325, in train
asyncio.run(
File "/opt/conda/lib/python3.11/asyncio/runners.py", line 190, in run
return runner.run(main)
^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/asyncio/runners.py", line 118, in run
return self._loop.run_until_complete(task)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/conda/lib/python3.11/asyncio/base_events.py", line 654, in run_until_complete
return future.result()
^^^^^^^^^^^^^^^
File "/root/phosphobot/am/gr00t.py", line 1162, in run_gr00t_training
raise TimeoutError(
TimeoutError: Training process exceeded timeout of 10800 seconds. Please consider lowering the number of epochs and/or batch size.
```
## Training parameters:
- **Dataset**: [zacharyreid/Bimanual_4cam_MidAirHandoff](https://huggingface.co/datasets/zacharyreid/Bimanual_4cam_MidAirHandoff)
- **Wandb run URL**: None
- **Epochs**: 4
- **Batch size**: 8
- **Training steps**: None
📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme)
🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
|
lilTAT/blockassist-bc-gentle_rugged_hare_1755727934
|
lilTAT
| 2025-08-20T22:12:54Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle rugged hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:12:46Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle rugged hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/yfg-asak-flux
|
Muapi
| 2025-08-20T22:12:35Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:12:20Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# YFG Asak [Flux]

**Base model**: Flux.1 D
**Trained words**: YFG-Asak
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1215602@1369314", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Muapi/sunstone-style-illustrious-flux
|
Muapi
| 2025-08-20T22:11:04Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:10:53Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Sunstone Style [Illustrious/Flux]

**Base model**: Flux.1 D
**Trained words**: sunst0n3
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:948991@1062481", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Muapi/unfazed-fantasy-style
|
Muapi
| 2025-08-20T22:08:47Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:08:39Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Unfazed Fantasy Style

**Base model**: Flux.1 D
**Trained words**: Unfazedfantasii
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1241012@1398674", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
marcovise/TextEmbedding3SmallSentimentHead
|
marcovise
| 2025-08-20T22:08:34Z | 0 | 0 |
transformers
|
[
"transformers",
"pytorch",
"sentiment-head",
"feature-extraction",
"sentiment-analysis",
"text-classification",
"openai-embeddings",
"custom_code",
"license:mit",
"region:us"
] |
text-classification
| 2025-08-20T21:50:00Z |
---
license: mit
tags:
- sentiment-analysis
- text-classification
- openai-embeddings
- pytorch
pipeline_tag: text-classification
library_name: transformers
---
# TextEmbedding3SmallSentimentHead
In case you needed a sentiment analysis classifier on top of embeddings from OpenAI embeddings model.
## Model Description
- **What this is**: A compact PyTorch classifier head trained on top of `text-embedding-3-small` (1536-dim) to predict sentiment: negative, neutral, positive.
- **Data**: Preprocessed from the [Kaggle Sentiment Analysis Dataset](https://www.kaggle.com/datasets/abhi8923shriv/sentiment-analysis-dataset).
- **Metrics (val)**: **F1 macro ≈ 0.89**, **Accuracy ≈ 0.89** on a held-out validation split.
- **Architecture**: Simple MLP head (256 hidden units, dropout 0.2), trained for 5 epochs with Adam.
## Input/Output
- **Input**: Float32 tensor of shape `[batch, 1536]` (OpenAI text-embedding-3-small embeddings).
- **Output**: Logits over 3 classes. Argmax → {0: negative, 1: neutral, 2: positive}.
## Usage
```python
from transformers import AutoModel
import torch
# Load model
model = AutoModel.from_pretrained(
"marcovise/TextEmbedding3SmallSentimentHead",
trust_remote_code=True
).eval()
# Your 1536-dim OpenAI embeddings
embeddings = torch.randn(4, 1536) # batch of 4 examples
# Predict sentiment
with torch.no_grad():
logits = model(inputs_embeds=embeddings)["logits"] # [batch, 3]
predictions = logits.argmax(dim=1) # [batch]
# 0=negative, 1=neutral, 2=positive
print(predictions) # tensor([1, 0, 2, 1])
```
## Training Details
- **Training data**: Kaggle Sentiment Analysis Dataset
- **Preprocessing**: Text → OpenAI embeddings → 3-class labels {negative: 0.0, neutral: 0.5, positive: 1.0}
- **Architecture**: 1536 → 256 → ReLU → Dropout(0.2) → 3 classes
- **Optimizer**: Adam (lr=1e-3, weight_decay=1e-4)
- **Loss**: CrossEntropyLoss with label smoothing (0.05)
- **Epochs**: 5
## Intended Use
- Quick, lightweight sentiment classification for short text once embeddings are available.
- Works well for general sentiment analysis tasks similar to the training distribution.
## Limitations
- Trained on a specific sentiment dataset; may have domain bias.
- Requires OpenAI text-embedding-3-small embeddings as input.
- Not safety-critical; evaluate before production use.
- May reflect biases present in the training data.
## License
MIT
|
Muapi/flux-abstractmorph
|
Muapi
| 2025-08-20T22:08:33Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:08:17Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# FLUX AbstractMorph

**Base model**: Flux.1 D
**Trained words**: bo-abstract
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:776859@868850", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Muapi/unfazed-character-enhancer-anime-style
|
Muapi
| 2025-08-20T22:07:43Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:07:28Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Unfazed - character enhancer (anime style)

**Base model**: Flux.1 D
**Trained words**:
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1296402@1943371", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
rbelanec/train_svamp_1755694510
|
rbelanec
| 2025-08-20T22:07:39Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"llama-factory",
"prefix-tuning",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"region:us"
] | null | 2025-08-20T22:01:59Z |
---
library_name: peft
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- llama-factory
- prefix-tuning
- generated_from_trainer
model-index:
- name: train_svamp_1755694510
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train_svamp_1755694510
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the svamp dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1778
- Num Input Tokens Seen: 676320
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| 0.5526 | 0.5016 | 158 | 0.7046 | 34176 |
| 0.2434 | 1.0032 | 316 | 0.2998 | 67872 |
| 0.0913 | 1.5048 | 474 | 0.1424 | 101696 |
| 0.0227 | 2.0063 | 632 | 0.1410 | 135776 |
| 0.0576 | 2.5079 | 790 | 0.1447 | 169712 |
| 0.0193 | 3.0095 | 948 | 0.1086 | 203712 |
| 0.1033 | 3.5111 | 1106 | 0.1210 | 237664 |
| 0.0019 | 4.0127 | 1264 | 0.1067 | 271472 |
| 0.079 | 4.5143 | 1422 | 0.1393 | 305088 |
| 0.0025 | 5.0159 | 1580 | 0.1451 | 339264 |
| 0.0008 | 5.5175 | 1738 | 0.1677 | 373488 |
| 0.0053 | 6.0190 | 1896 | 0.1908 | 407264 |
| 0.0004 | 6.5206 | 2054 | 0.1609 | 441200 |
| 0.0001 | 7.0222 | 2212 | 0.1493 | 475008 |
| 0.0001 | 7.5238 | 2370 | 0.1729 | 508832 |
| 0.0001 | 8.0254 | 2528 | 0.1765 | 542720 |
| 0.0 | 8.5270 | 2686 | 0.1798 | 576512 |
| 0.0 | 9.0286 | 2844 | 0.1791 | 610688 |
| 0.0 | 9.5302 | 3002 | 0.1781 | 644848 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
roeker/blockassist-bc-quick_wiry_owl_1755727573
|
roeker
| 2025-08-20T22:07:21Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:06:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AnonymousCS/xlmr_immigration_combo26_3
|
AnonymousCS
| 2025-08-20T22:06:08Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-20T22:03:04Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo26_3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo26_3
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2543
- Accuracy: 0.9306
- 1-f1: 0.8973
- 1-recall: 0.9112
- 1-precision: 0.8839
- Balanced Acc: 0.9257
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.185 | 1.0 | 25 | 0.1944 | 0.9332 | 0.9011 | 0.9151 | 0.8876 | 0.9286 |
| 0.2017 | 2.0 | 50 | 0.1914 | 0.9396 | 0.9043 | 0.8571 | 0.9569 | 0.9189 |
| 0.1532 | 3.0 | 75 | 0.2184 | 0.9357 | 0.9035 | 0.9035 | 0.9035 | 0.9277 |
| 0.0771 | 4.0 | 100 | 0.2543 | 0.9306 | 0.8973 | 0.9112 | 0.8839 | 0.9257 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
NoemaResearch/Nous-1-4B
|
NoemaResearch
| 2025-08-20T22:05:02Z | 96 | 3 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"fr",
"pt",
"de",
"ro",
"sv",
"da",
"bg",
"ru",
"cs",
"el",
"uk",
"es",
"nl",
"sk",
"hr",
"pl",
"lt",
"nb",
"nn",
"fa",
"sl",
"gu",
"lv",
"it",
"oc",
"ne",
"mr",
"be",
"sr",
"lb",
"vec",
"as",
"cy",
"szl",
"ast",
"hne",
"awa",
"mai",
"bho",
"sd",
"ga",
"fo",
"hi",
"pa",
"bn",
"or",
"tg",
"yi",
"lmo",
"lij",
"scn",
"fur",
"sc",
"gl",
"ca",
"is",
"sq",
"li",
"prs",
"af",
"mk",
"si",
"ur",
"mag",
"bs",
"hy",
"zh",
"yue",
"my",
"ar",
"he",
"mt",
"id",
"ms",
"tl",
"ceb",
"jv",
"su",
"min",
"ban",
"pag",
"ilo",
"war",
"ta",
"te",
"kn",
"ml",
"tr",
"az",
"uz",
"kk",
"ba",
"tt",
"th",
"lo",
"fi",
"et",
"hu",
"vi",
"km",
"ja",
"ko",
"ka",
"eu",
"ht",
"pap",
"kea",
"tpi",
"sw",
"base_model:Qwen/Qwen3-4B",
"base_model:finetune:Qwen/Qwen3-4B",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-07-17T05:12:08Z |
---
base_model:
- Qwen/Qwen3-4B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
license: other
license_name: anvdl-1.0
license_link: https://huggingface.co/apexion-ai/Nous-V1-8B/blob/main/LICENSE.md
language:
- en
- fr
- pt
- de
- ro
- sv
- da
- bg
- ru
- cs
- el
- uk
- es
- nl
- sk
- hr
- pl
- lt
- nb
- nn
- fa
- sl
- gu
- lv
- it
- oc
- ne
- mr
- be
- sr
- lb
- vec
- as
- cy
- szl
- ast
- hne
- awa
- mai
- bho
- sd
- ga
- fo
- hi
- pa
- bn
- or
- tg
- yi
- lmo
- lij
- scn
- fur
- sc
- gl
- ca
- is
- sq
- li
- prs
- af
- mk
- si
- ur
- mag
- bs
- hy
- zh
- yue
- my
- ar
- he
- mt
- id
- ms
- tl
- ceb
- jv
- su
- min
- ban
- pag
- ilo
- war
- ta
- te
- kn
- ml
- tr
- az
- uz
- kk
- ba
- tt
- th
- lo
- fi
- et
- hu
- vi
- km
- ja
- ko
- ka
- eu
- ht
- pap
- kea
- tpi
- sw
---

# Nous-V1 4B
## Overview
**Nous-V1 4B** is a cutting-edge 4 billion parameter language model developed by Apexion AI, based on the architecture of [Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B). Designed for versatility across diverse NLP tasks, Nous-V1 4B delivers strong performance in conversational AI, knowledge reasoning, code generation, and content creation.
**Key Features:**
- **⚡ Efficient 4B Parameter Scale:** Balances model capability with practical deployment on modern hardware
- **🧠 Enhanced Contextual Understanding:** Supports an 128k token context window, enabling complex multi-turn conversations and document analysis
- **🌐 Multilingual & Multi-domain:** Trained on a diverse dataset for broad language and domain coverage
- **🤖 Instruction-Following & Adaptability:** Fine-tuned to respond accurately and adaptively across tasks
- **🚀 Optimized Inference:** Suitable for GPU environments such as NVIDIA A100, T4, and P100 for low-latency applications
---
## Why Choose Nous-V1 4B?
While larger models can offer more raw power, Nous-V1 4B strikes a practical balance — optimized for deployment efficiency without significant compromise on language understanding or generation quality. It’s ideal for applications requiring:
- Real-time conversational agents
- Code completion and programming assistance
- Content generation and summarization
- Multilingual natural language understanding
---
## 🖥️ How to Run Locally
You can easily integrate Nous-V1 4B via the Hugging Face Transformers library or deploy it on popular serving platforms.
### Using Hugging Face Transformers
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "apexion-ai/Nous-1-4B"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
```
### Deployment Options
- Compatible with [vLLM](https://github.com/vllm-project/vllm) for efficient serving
- Works with [llama.cpp](https://github.com/ggerganov/llama.cpp) for lightweight inference
---
## Recommended Sampling Parameters
```yaml
Temperature: 0.7
Top-p: 0.9
Top-k: 40
Min-p: 0.0
```
---
## FAQ
- **Q:** Can I fine-tune Nous-V1 4B on my custom data?
**A:** Yes, the model supports fine-tuning workflows via Hugging Face Trainer or custom scripts.
- **Q:** What hardware is recommended?
**A:** NVIDIA GPUs with at least 16GB VRAM (e.g., A100, 3090) are optimal for inference and fine-tuning.
- **Q:** Is the model safe to use for production?
**A:** Nous-V1 4B includes safety mitigations but should be used with human oversight and proper filtering for sensitive content.
---
## 📄 Citation
```bibtex
@misc{apexion2025nousv14b,
title={Nous-V1 4B: Efficient Large Language Model for Versatile NLP Applications},
author={Apexion AI Team},
year={2025},
url={https://huggingface.co/apexion-ai/Nous-V1-4B}
}
```
---
*Nous-V1 4B — Powering practical AI applications with intelligent language understanding.*
|
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755725854
|
helmutsukocok
| 2025-08-20T22:04:37Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"loud scavenging kangaroo",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:04:34Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- loud scavenging kangaroo
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
NoemaResearch/Nous-1-8B
|
NoemaResearch
| 2025-08-20T22:04:36Z | 128 | 6 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"fr",
"pt",
"de",
"ro",
"sv",
"da",
"bg",
"ru",
"cs",
"el",
"uk",
"es",
"nl",
"sk",
"hr",
"pl",
"lt",
"nb",
"nn",
"fa",
"sl",
"gu",
"lv",
"it",
"oc",
"ne",
"mr",
"be",
"sr",
"lb",
"vec",
"as",
"cy",
"szl",
"ast",
"hne",
"awa",
"mai",
"bho",
"sd",
"ga",
"fo",
"hi",
"pa",
"bn",
"or",
"tg",
"yi",
"lmo",
"lij",
"scn",
"fur",
"sc",
"gl",
"ca",
"is",
"sq",
"li",
"prs",
"af",
"mk",
"si",
"ur",
"mag",
"bs",
"hy",
"zh",
"yue",
"my",
"ar",
"he",
"mt",
"id",
"ms",
"tl",
"ceb",
"jv",
"su",
"min",
"ban",
"pag",
"ilo",
"war",
"ta",
"te",
"kn",
"ml",
"tr",
"az",
"uz",
"kk",
"ba",
"tt",
"th",
"lo",
"fi",
"et",
"hu",
"vi",
"km",
"ja",
"ko",
"ka",
"eu",
"ht",
"pap",
"kea",
"tpi",
"sw",
"base_model:Qwen/Qwen3-8B",
"base_model:finetune:Qwen/Qwen3-8B",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-07-18T02:13:29Z |
---
base_model:
- Qwen/Qwen3-8B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
license: other
license_name: anvdl-1.0
license_link: https://huggingface.co/apexion-ai/Nous-V1-8B/blob/main/LICENSE.md
language:
- en
- fr
- pt
- de
- ro
- sv
- da
- bg
- ru
- cs
- el
- uk
- es
- nl
- sk
- hr
- pl
- lt
- nb
- nn
- fa
- sl
- gu
- lv
- it
- oc
- ne
- mr
- be
- sr
- lb
- vec
- as
- cy
- szl
- ast
- hne
- awa
- mai
- bho
- sd
- ga
- fo
- hi
- pa
- bn
- or
- tg
- yi
- lmo
- lij
- scn
- fur
- sc
- gl
- ca
- is
- sq
- li
- prs
- af
- mk
- si
- ur
- mag
- bs
- hy
- zh
- yue
- my
- ar
- he
- mt
- id
- ms
- tl
- ceb
- jv
- su
- min
- ban
- pag
- ilo
- war
- ta
- te
- kn
- ml
- tr
- az
- uz
- kk
- ba
- tt
- th
- lo
- fi
- et
- hu
- vi
- km
- ja
- ko
- ka
- eu
- ht
- pap
- kea
- tpi
- sw
---

# Nous-V1 8B
## Overview
**Nous-V1 8B** is a cutting-edge 8 billion parameter language model developed by Apexion AI, based on the architecture of [Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B). Designed for versatility across diverse NLP tasks, Nous-V1 4B delivers strong performance in conversational AI, knowledge reasoning, code generation, and content creation.
**Key Features:**
- **⚡ Efficient 8B Parameter Scale:** Balances model capability with practical deployment on modern hardware
- **🧠 Enhanced Contextual Understanding:** Supports an 128k token context window, enabling complex multi-turn conversations and document analysis
- **🌐 Multilingual & Multi-domain:** Trained on a diverse dataset for broad language and domain coverage
- **🤖 Instruction-Following & Adaptability:** Fine-tuned to respond accurately and adaptively across tasks
- **🚀 Optimized Inference:** Suitable for GPU environments such as NVIDIA A100, T4, and P100 for low-latency applications
---
## Why Choose Nous-V1 8B?
While larger models can offer more raw power, Nous-V1 8B strikes a practical balance — optimized for deployment efficiency without significant compromise on language understanding or generation quality. It’s ideal for applications requiring:
- Real-time conversational agents
- Code completion and programming assistance
- Content generation and summarization
- Multilingual natural language understanding
---
## 🖥️ How to Run Locally
You can easily integrate Nous-V1 8B via the Hugging Face Transformers library or deploy it on popular serving platforms.
### Using Hugging Face Transformers
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "apexion-ai/Nous-1-8B"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
```
### Deployment Options
- Compatible with [vLLM](https://github.com/vllm-project/vllm) for efficient serving
- Works with [llama.cpp](https://github.com/ggerganov/llama.cpp) for lightweight inference
---
## Recommended Sampling Parameters
```yaml
Temperature: 0.7
Top-p: 0.9
Top-k: 40
Min-p: 0.0
```
---
## FAQ
- **Q:** Can I fine-tune Nous-V1 8B on my custom data?
**A:** Yes, the model supports fine-tuning workflows via Hugging Face Trainer or custom scripts.
- **Q:** What hardware is recommended?
**A:** NVIDIA GPUs with at least 16GB VRAM (e.g., A100, 3090) are optimal for inference and fine-tuning.
- **Q:** Is the model safe to use for production?
**A:** Nous-V1 8B includes safety mitigations but should be used with human oversight and proper filtering for sensitive content.
---
## 📄 Citation
```bibtex
@misc{apexion2025nousv14b,
title={Nous-V1 8B: Efficient Large Language Model for Versatile NLP Applications},
author={Apexion AI Team},
year={2025},
url={https://huggingface.co/apexion-ai/Nous-V1-8B}
}
```
---
*Nous-V1 8B — Powering practical AI applications with intelligent language understanding.*
|
koloni/blockassist-bc-deadly_graceful_stingray_1755725959
|
koloni
| 2025-08-20T22:04:28Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:04:25Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755725942
|
sampingkaca72
| 2025-08-20T22:04:03Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"armored stealthy elephant",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:04:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- armored stealthy elephant
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755725736
|
calegpedia
| 2025-08-20T22:03:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stealthy slimy rooster",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:02:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stealthy slimy rooster
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/sheep-s-styles-robert-valley
|
Muapi
| 2025-08-20T22:02:34Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:02:21Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Sheep's Styles - Robert Valley

**Base model**: Flux.1 D
**Trained words**: ShStyRobVal
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:626250@761171", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
roeker/blockassist-bc-quick_wiry_owl_1755727265
|
roeker
| 2025-08-20T22:02:29Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:01:44Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Wejh/affine-pondering
|
Wejh
| 2025-08-20T22:02:25Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt_oss",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T22:00:04Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Muapi/future-noir-retro-sf-illustration-style-syd-mead
|
Muapi
| 2025-08-20T22:01:14Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:00:57Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Future Noir: Retro SF Illustration Style (Syd Mead)

**Base model**: Flux.1 D
**Trained words**: sydme1 painting
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1057818@1200643", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
melephant/llama-3.2-3b-dragon-preference
|
melephant
| 2025-08-20T22:00:55Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/Llama-3.2-3B-Instruct",
"base_model:finetune:unsloth/Llama-3.2-3B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-17T22:42:18Z |
---
base_model: unsloth/Llama-3.2-3B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** melephant
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Llama-3.2-3B-Instruct
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
xiaoabcd/Llama-3.1-8B-bnb-4bit-qz
|
xiaoabcd
| 2025-08-20T22:00:51Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-20T21:59:30Z |
---
base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** xiaoabcd
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Muapi/pixel-art-portraits-flux
|
Muapi
| 2025-08-20T22:00:47Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T22:00:32Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Pixel Art Portraits (FLUX)

**Base model**: Flux.1 D
**Trained words**: pixel art portrait
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:864595@967453", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755725502
|
manusiaperahu2012
| 2025-08-20T22:00:46Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"roaring long tuna",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T22:00:30Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- roaring long tuna
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755725679
|
quantumxnode
| 2025-08-20T21:59:24Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"dormant peckish seahorse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T21:59:21Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- dormant peckish seahorse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/fullmetallady-armor-style
|
Muapi
| 2025-08-20T21:59:16Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T21:58:53Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# FullMetalLady - Armor Style

**Base model**: Flux.1 D
**Trained words**: fmlas-mk.1
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1478307@1672136", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
OpenVINO/Qwen2.5-Coder-3B-Instruct-int8-ov
|
OpenVINO
| 2025-08-20T21:59:08Z | 0 | 0 |
transformers
|
[
"transformers",
"openvino",
"qwen2",
"text-generation",
"code",
"codeqwen",
"chat",
"qwen",
"qwen-coder",
"conversational",
"en",
"base_model:Qwen/Qwen2.5-Coder-3B-Instruct",
"base_model:quantized:Qwen/Qwen2.5-Coder-3B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T21:57:11Z |
---
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct/blob/main/LICENSE
language:
- en
base_model:
- Qwen/Qwen2.5-Coder-3B-Instruct
pipeline_tag: text-generation
library_name: transformers
tags:
- code
- codeqwen
- chat
- qwen
- qwen-coder
base_model_relation: quantized
---
# Qwen2.5-Coder-3B-Instruct-int8-ov
* Model creator: [Qwen](https://huggingface.co/Qwen)
* Original model: [Qwen2.5-Coder-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct)
## Description
This is [Qwen2.5-Coder-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf).
## Quantization Parameters
Weight compression was performed using `nncf.compress_weights` with the following parameters:
* mode: **INT8_ASYM**
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/weight-compression.html).
## Compatibility
The provided OpenVINO™ IR model is compatible with:
* OpenVINO version 2025.2.0 and higher
* Optimum Intel 1.25.0 and higher
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
```
pip install optimum[openvino]
```
2. Run model inference:
```
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM
model_id = "OpenVINO/Qwen2.5-Coder-3B-Instruct-int8-ov"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = OVModelForCausalLM.from_pretrained(model_id)
inputs = tokenizer("write a quick sort algorithm.", return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```
For more examples and possible optimizations, refer to the [Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html).
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
1. Install packages required for using OpenVINO GenAI.
```
pip install openvino-genai huggingface_hub
```
2. Download model from HuggingFace Hub
```
import huggingface_hub as hf_hub
model_id = "OpenVINO/Qwen2.5-Coder-3B-Instruct-int8-ov"
model_path = "Qwen2.5-Coder-3B-Instruct-int8-ov"
hf_hub.snapshot_download(model_id, local_dir=model_path)
```
3. Run model inference:
```
import openvino_genai as ov_genai
device = "CPU"
pipe = ov_genai.LLMPipeline(model_path, device)
pipe.get_tokenizer().set_chat_template(pipe.get_tokenizer().chat_template)
print(pipe.generate("write a quick sort algorithm.", max_length=200))
```
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
You can find more detaild usage examples in OpenVINO Notebooks:
- [LLM](https://openvinotoolkit.github.io/openvino_notebooks/?search=LLM)
- [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system&tasks=Text+Generation)
## Limitations
Check the original [model card](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct) for limitations.
## Legal information
The original model is distributed under [Apache License Version 2.0](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct/blob/main/LICENSE) license. More details can be found in [Qwen2.5-Coder-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct).
## Disclaimer
Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
|
AnonymousCS/xlmr_immigration_combo26_0
|
AnonymousCS
| 2025-08-20T21:57:39Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-20T21:53:36Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo26_0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo26_0
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2525
- Accuracy: 0.9113
- 1-f1: 0.8691
- 1-recall: 0.8842
- 1-precision: 0.8545
- Balanced Acc: 0.9045
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.6105 | 1.0 | 25 | 0.6039 | 0.6671 | 0.0 | 0.0 | 0.0 | 0.5 |
| 0.3238 | 2.0 | 50 | 0.2721 | 0.8946 | 0.8340 | 0.7954 | 0.8766 | 0.8697 |
| 0.2809 | 3.0 | 75 | 0.2403 | 0.9049 | 0.8471 | 0.7915 | 0.9111 | 0.8765 |
| 0.2353 | 4.0 | 100 | 0.2520 | 0.9049 | 0.8571 | 0.8571 | 0.8571 | 0.8929 |
| 0.2196 | 5.0 | 125 | 0.2525 | 0.9113 | 0.8691 | 0.8842 | 0.8545 | 0.9045 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.