modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-15 00:44:47
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
557 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-15 00:44:36
card
stringlengths
11
1.01M
Buura/qwen-coder-1.5b-opencodeinstruct-grpo-v2
Buura
2025-08-20T23:10:15Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-20T23:09:36Z
--- base_model: unsloth/qwen2.5-coder-1.5b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Buura - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-coder-1.5b-instruct-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
dazzlingAI/me
dazzlingAI
2025-08-20T23:10:13Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-20T22:38:23Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: me --- # Me <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `me` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "me", "lora_weights": "https://huggingface.co/dazzlingAI/me/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('dazzlingAI/me', weight_name='lora.safetensors') image = pipeline('me').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/dazzlingAI/me/discussions) to add images that show off what you’ve made with this LoRA.
MercuryNex/select
MercuryNex
2025-08-20T23:09:57Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-08-20T23:08:48Z
--- license: other language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image --- Converted from [https://civitai.com/api/download/models/914390?type=Model&format=SafeTensor&size=full&fp=fp16](https://civitai.com/api/download/models/914390?type=Model&format=SafeTensor&size=full&fp=fp16).
koloni/blockassist-bc-deadly_graceful_stingray_1755729863
koloni
2025-08-20T23:09:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T23:09:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755729849
lisaozill03
2025-08-20T23:09:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T23:09:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Chukky10z/blockassist-bc-mammalian_jumping_cougar_1755731282
Chukky10z
2025-08-20T23:08:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian jumping cougar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T23:08:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian jumping cougar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755729746
sampingkaca72
2025-08-20T23:08:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T23:08:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1755729589
unitova
2025-08-20T23:07:34Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T23:07:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755729602
quantumxnode
2025-08-20T23:05:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T23:05:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755729441
hakimjustbao
2025-08-20T23:05:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T23:05:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yaelahnal/blockassist-bc-mute_clawed_crab_1755730982
yaelahnal
2025-08-20T23:04:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T23:03:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
a1024053774/poca-SoccerTwos
a1024053774
2025-08-20T23:02:26Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2025-08-20T23:02:00Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: a1024053774/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
rbelanec/train_gsm8k_1755694509
rbelanec
2025-08-20T23:02:10Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-08-20T21:48:39Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_gsm8k_1755694509 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_gsm8k_1755694509 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the gsm8k dataset. It achieves the following results on the evaluation set: - Loss: 0.7482 - Num Input Tokens Seen: 15155440 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:-----:|:---------------:|:-----------------:| | 0.5743 | 0.5001 | 1682 | 0.5314 | 759008 | | 0.6211 | 1.0003 | 3364 | 0.5054 | 1517864 | | 0.3877 | 1.5004 | 5046 | 0.4875 | 2273400 | | 0.5209 | 2.0006 | 6728 | 0.4729 | 3037160 | | 0.4078 | 2.5007 | 8410 | 0.4679 | 3795592 | | 0.401 | 3.0009 | 10092 | 0.4644 | 4555528 | | 0.375 | 3.5010 | 11774 | 0.4729 | 5314760 | | 0.3951 | 4.0012 | 13456 | 0.4656 | 6070808 | | 0.3148 | 4.5013 | 15138 | 0.4866 | 6830920 | | 0.3418 | 5.0015 | 16820 | 0.4912 | 7584184 | | 0.3706 | 5.5016 | 18502 | 0.5232 | 8338312 | | 0.2833 | 6.0018 | 20184 | 0.5268 | 9097632 | | 0.1896 | 6.5019 | 21866 | 0.5774 | 9855664 | | 0.2015 | 7.0021 | 23548 | 0.5712 | 10613216 | | 0.184 | 7.5022 | 25230 | 0.6563 | 11365376 | | 0.2018 | 8.0024 | 26912 | 0.6483 | 12128624 | | 0.2047 | 8.5025 | 28594 | 0.7077 | 12889056 | | 0.1674 | 9.0027 | 30276 | 0.7110 | 13643432 | | 0.1423 | 9.5028 | 31958 | 0.7519 | 14398584 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
TAUR-dev/M-SBON_advanced_grpo_rewards-grpo_adv_rwds-rl
TAUR-dev
2025-08-20T23:01:25Z
0
0
null
[ "safetensors", "qwen2", "en", "license:mit", "region:us" ]
null
2025-08-20T22:52:11Z
--- language: en license: mit --- # M-SBON_advanced_grpo_rewards-grpo_adv_rwds-rl ## Model Details - **Training Method**: VeRL Reinforcement Learning (RL) - **Stage Name**: rl - **Experiment**: SBON_advanced_grpo_rewards-grpo_adv_rwds - **RL Framework**: VeRL (Versatile Reinforcement Learning) ## Training Configuration ## Experiment Tracking 🔗 **View complete experiment details**: https://huggingface.co/datasets/TAUR-dev/D-ExpTracker__SBON_advanced_grpo_rewards-grpo_adv_rwds__v1 ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("TAUR-dev/M-SBON_advanced_grpo_rewards-grpo_adv_rwds-rl") model = AutoModelForCausalLM.from_pretrained("TAUR-dev/M-SBON_advanced_grpo_rewards-grpo_adv_rwds-rl") ```
lilTAT/blockassist-bc-gentle_rugged_hare_1755730766
lilTAT
2025-08-20T23:00:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:59:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Tavernari/git-commit-message-splitter-Qwen3-1.7B
Tavernari
2025-08-20T22:59:37Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T23:13:01Z
--- base_model: unsloth/qwen3-1.7b tags: - text-generation-inference - transformers - unsloth - qwen3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** Tavernari - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-1.7b This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mang3dd/blockassist-bc-tangled_slithering_alligator_1755729156
mang3dd
2025-08-20T22:58:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:58:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
yaelahnal/blockassist-bc-mute_clawed_crab_1755730619
yaelahnal
2025-08-20T22:58:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mute clawed crab", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:57:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mute clawed crab --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755730642
roeker
2025-08-20T22:58:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:58:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755729035
chainway9
2025-08-20T22:57:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:57:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zeliang0426/Qwen25-3-Think-nglobal_16
zeliang0426
2025-08-20T22:53:57Z
0
0
transformers
[ "transformers", "safetensors", "qwen2_adapter", "text-generation", "generated_from_trainer", "grpo", "trl", "conversational", "custom_code", "arxiv:2402.03300", "autotrain_compatible", "region:us" ]
text-generation
2025-08-19T19:47:54Z
--- library_name: transformers model_name: Qwen25-3-Think-nglobal_16 tags: - generated_from_trainer - grpo - trl licence: license --- # Model Card for Qwen25-3-Think-nglobal_16 This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="zeliang0426/Qwen25-3-Think-nglobal_16", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/zlzhang/verl/runs/7244435676.88089-7931fb87-751b-4dc6-ba6f-9edb0f4ba380) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.20.0.dev0 - Transformers: 4.53.0 - Pytorch: 2.7.1+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755728733
vwzyrraz7l
2025-08-20T22:53:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:52:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755728694
katanyasekolah
2025-08-20T22:52:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:52:07Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_immigration_combo28_3
AnonymousCS
2025-08-20T22:51:16Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T22:48:01Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo28_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo28_3 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1979 - Accuracy: 0.9499 - 1-f1: 0.9228 - 1-recall: 0.8996 - 1-precision: 0.9472 - Balanced Acc: 0.9373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1409 | 1.0 | 25 | 0.2124 | 0.9332 | 0.9026 | 0.9305 | 0.8764 | 0.9325 | | 0.147 | 2.0 | 50 | 0.1840 | 0.9447 | 0.9142 | 0.8842 | 0.9463 | 0.9296 | | 0.1637 | 3.0 | 75 | 0.1922 | 0.9486 | 0.9209 | 0.8996 | 0.9433 | 0.9363 | | 0.0762 | 4.0 | 100 | 0.1979 | 0.9499 | 0.9228 | 0.8996 | 0.9472 | 0.9373 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
lilTAT/blockassist-bc-gentle_rugged_hare_1755730136
lilTAT
2025-08-20T22:49:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:49:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Chukky10z/blockassist-bc-mammalian_jumping_cougar_1755730085
Chukky10z
2025-08-20T22:48:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mammalian jumping cougar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:48:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mammalian jumping cougar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755728497
ihsanridzi
2025-08-20T22:47:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:47:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
esi777/blockassist-bc-camouflaged_trotting_eel_1755730016
esi777
2025-08-20T22:47:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged trotting eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:47:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged trotting eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zijian2022/testinga_dp_original
zijian2022
2025-08-20T22:44:30Z
0
0
lerobot
[ "lerobot", "safetensors", "diffusion", "robotics", "dataset:zijian2022/y7", "arxiv:2303.04137", "license:apache-2.0", "region:us" ]
robotics
2025-08-20T20:47:10Z
--- datasets: zijian2022/y7 library_name: lerobot license: apache-2.0 model_name: diffusion pipeline_tag: robotics tags: - diffusion - lerobot - robotics --- # Model Card for diffusion <!-- Provide a quick summary of what the model is/does. --> [Diffusion Policy](https://huggingface.co/papers/2303.04137) treats visuomotor control as a generative diffusion process, producing smooth, multi-step action trajectories that excel at contact-rich manipulation. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
lilTAT/blockassist-bc-gentle_rugged_hare_1755729815
lilTAT
2025-08-20T22:44:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:44:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755729721
roeker
2025-08-20T22:42:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:42:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_immigration_combo28_0
AnonymousCS
2025-08-20T22:42:26Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T22:38:07Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo28_0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo28_0 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2677 - Accuracy: 0.9036 - 1-f1: 0.8491 - 1-recall: 0.8147 - 1-precision: 0.8866 - Balanced Acc: 0.8813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.6238 | 1.0 | 25 | 0.6050 | 0.6671 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.395 | 2.0 | 50 | 0.3530 | 0.8985 | 0.8308 | 0.7490 | 0.9327 | 0.8610 | | 0.2556 | 3.0 | 75 | 0.2584 | 0.9049 | 0.8496 | 0.8069 | 0.8970 | 0.8804 | | 0.2734 | 4.0 | 100 | 0.2496 | 0.9075 | 0.8588 | 0.8456 | 0.8725 | 0.8920 | | 0.2439 | 5.0 | 125 | 0.2537 | 0.8997 | 0.8446 | 0.8185 | 0.8724 | 0.8794 | | 0.1877 | 6.0 | 150 | 0.2677 | 0.9036 | 0.8491 | 0.8147 | 0.8866 | 0.8813 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
kristenq/emoj-ft
kristenq
2025-08-20T22:40:11Z
0
0
transformers
[ "transformers", "tensorboard", "onnx", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:quantized:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T04:08:51Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmmoji2 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for MyGemmmoji2 This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="kristenq/MyGemmmoji2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.1 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
thanobidex/blockassist-bc-colorful_shiny_hare_1755728073
thanobidex
2025-08-20T22:39:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:39:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chooseL1fe/blockassist-bc-thorny_flightless_albatross_1755729085
chooseL1fe
2025-08-20T22:37:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "thorny flightless albatross", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:37:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - thorny flightless albatross --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
esi777/blockassist-bc-camouflaged_trotting_eel_1755729414
esi777
2025-08-20T22:37:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged trotting eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:37:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged trotting eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755727787
calegpedia
2025-08-20T22:36:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:36:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755727813
helmutsukocok
2025-08-20T22:35:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:35:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755727853
sampingkaca72
2025-08-20T22:35:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:35:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1755727792
unitova
2025-08-20T22:35:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:35:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Leoar/blockassist-bc-pudgy_toothy_cheetah_1755729195
Leoar
2025-08-20T22:35:10Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pudgy toothy cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:35:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pudgy toothy cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lilTAT/blockassist-bc-gentle_rugged_hare_1755729200
lilTAT
2025-08-20T22:33:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:33:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755727554
coelacanthxyz
2025-08-20T22:33:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:33:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755727644
manusiaperahu2012
2025-08-20T22:33:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:33:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
esi777/blockassist-bc-camouflaged_trotting_eel_1755728923
esi777
2025-08-20T22:29:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged trotting eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:29:24Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged trotting eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-v2_1819
luckeciano
2025-08-20T22:27:59Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T19:03:21Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-v2_1819 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-v2_1819 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-v2_1819", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/8klh458c) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
roeker/blockassist-bc-quick_wiry_owl_1755728798
roeker
2025-08-20T22:27:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:27:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755727278
mang3dd
2025-08-20T22:27:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:27:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_immigration_combo27_2
AnonymousCS
2025-08-20T22:26:53Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T22:24:07Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo27_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo27_2 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2326 - Accuracy: 0.9383 - 1-f1: 0.9032 - 1-recall: 0.8649 - 1-precision: 0.9451 - Balanced Acc: 0.9199 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1379 | 1.0 | 25 | 0.2068 | 0.9357 | 0.9023 | 0.8919 | 0.9130 | 0.9248 | | 0.1446 | 2.0 | 50 | 0.2140 | 0.9396 | 0.9058 | 0.8726 | 0.9417 | 0.9228 | | 0.0945 | 3.0 | 75 | 0.2326 | 0.9383 | 0.9032 | 0.8649 | 0.9451 | 0.9199 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
java22dev/llama3-lora-turkish-F16-GGUF
java22dev
2025-08-20T22:25:42Z
0
0
transformers
[ "transformers", "gguf", "unsloth", "llama-cpp", "gguf-my-lora", "tr", "base_model:Yudum/llama3-lora-turkish", "base_model:quantized:Yudum/llama3-lora-turkish", "endpoints_compatible", "region:us" ]
null
2025-08-20T22:25:40Z
--- base_model: Yudum/llama3-lora-turkish language: - tr library_name: transformers tags: - unsloth - llama-cpp - gguf-my-lora --- # java22dev/llama3-lora-turkish-F16-GGUF This LoRA adapter was converted to GGUF format from [`Yudum/llama3-lora-turkish`](https://huggingface.co/Yudum/llama3-lora-turkish) via the ggml.ai's [GGUF-my-lora](https://huggingface.co/spaces/ggml-org/gguf-my-lora) space. Refer to the [original adapter repository](https://huggingface.co/Yudum/llama3-lora-turkish) for more details. ## Use with llama.cpp ```bash # with cli llama-cli -m base_model.gguf --lora llama3-lora-turkish-f16.gguf (...other args) # with server llama-server -m base_model.gguf --lora llama3-lora-turkish-f16.gguf (...other args) ``` To know more about LoRA usage with llama.cpp server, refer to the [llama.cpp server documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/server/README.md).
AnonymousCS/xlmr_immigration_combo27_1
AnonymousCS
2025-08-20T22:24:02Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T22:20:43Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo27_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo27_1 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1942 - Accuracy: 0.9357 - 1-f1: 0.8971 - 1-recall: 0.8417 - 1-precision: 0.9604 - Balanced Acc: 0.9122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.2311 | 1.0 | 25 | 0.2019 | 0.9280 | 0.8819 | 0.8069 | 0.9721 | 0.8977 | | 0.2538 | 2.0 | 50 | 0.1837 | 0.9383 | 0.9024 | 0.8571 | 0.9528 | 0.9180 | | 0.1703 | 3.0 | 75 | 0.1974 | 0.9357 | 0.9016 | 0.8842 | 0.9197 | 0.9228 | | 0.099 | 4.0 | 100 | 0.1942 | 0.9357 | 0.8971 | 0.8417 | 0.9604 | 0.9122 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
chainway9/blockassist-bc-untamed_quick_eel_1755727084
chainway9
2025-08-20T22:23:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:23:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755728493
roeker
2025-08-20T22:22:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:22:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/buns-magic-the-gathering-loras-flux-dev-pony-mtg
Muapi
2025-08-20T22:22:51Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:22:10Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Buns' Magic The Gathering LoRAs [Flux Dev] [Pony] [MtG] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: m4th3g4 ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:598734@854505", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
lilTAT/blockassist-bc-gentle_rugged_hare_1755728534
lilTAT
2025-08-20T22:22:50Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:22:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755727021
kojeklollipop
2025-08-20T22:22:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:22:19Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lautan/blockassist-bc-gentle_patterned_goat_1755726959
lautan
2025-08-20T22:21:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle patterned goat", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:21:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle patterned goat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
razor534/blockassist-bc-lazy_extinct_termite_1755728424
razor534
2025-08-20T22:21:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lazy extinct termite", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:21:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lazy extinct termite --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_immigration_combo27_0
AnonymousCS
2025-08-20T22:20:39Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T22:16:32Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo27_0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo27_0 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2796 - Accuracy: 0.9036 - 1-f1: 0.8593 - 1-recall: 0.8842 - 1-precision: 0.8358 - Balanced Acc: 0.8987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.6197 | 1.0 | 25 | 0.6021 | 0.6671 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.2403 | 2.0 | 50 | 0.2640 | 0.9113 | 0.8634 | 0.8417 | 0.8862 | 0.8939 | | 0.2432 | 3.0 | 75 | 0.2184 | 0.9152 | 0.8685 | 0.8417 | 0.8971 | 0.8968 | | 0.3089 | 4.0 | 100 | 0.2378 | 0.9100 | 0.8638 | 0.8571 | 0.8706 | 0.8968 | | 0.2386 | 5.0 | 125 | 0.2796 | 0.9036 | 0.8593 | 0.8842 | 0.8358 | 0.8987 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
Muapi/smoke-cloth
Muapi
2025-08-20T22:19:46Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:19:26Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Smoke Cloth ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: smoke cloth ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:830914@939148", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
busyyy/blockassist-bc-bipedal_deadly_dinosaur_1755726597
busyyy
2025-08-20T22:19:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bipedal deadly dinosaur", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:18:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bipedal deadly dinosaur --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/rough-water-colors
Muapi
2025-08-20T22:19:17Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:18:59Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Rough Water Colors ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1457421@1648000", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
rbelanec/train_conala_1755694511
rbelanec
2025-08-20T22:19:02Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-08-20T22:02:04Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_conala_1755694511 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_conala_1755694511 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the conala dataset. It achieves the following results on the evaluation set: - Loss: 1.2638 - Num Input Tokens Seen: 1382584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:-----:|:---------------:|:-----------------:| | 0.9354 | 0.5005 | 536 | 0.8337 | 68880 | | 0.9609 | 1.0009 | 1072 | 0.7219 | 138320 | | 0.5536 | 1.5014 | 1608 | 0.6741 | 207744 | | 0.3862 | 2.0019 | 2144 | 0.6362 | 276856 | | 0.6441 | 2.5023 | 2680 | 0.6552 | 346040 | | 0.582 | 3.0028 | 3216 | 0.6596 | 415184 | | 0.3643 | 3.5033 | 3752 | 0.6909 | 484576 | | 0.2223 | 4.0037 | 4288 | 0.7160 | 553632 | | 0.1992 | 4.5042 | 4824 | 0.7488 | 623280 | | 0.1908 | 5.0047 | 5360 | 0.7194 | 691912 | | 0.223 | 5.5051 | 5896 | 0.8461 | 762008 | | 0.1581 | 6.0056 | 6432 | 0.8329 | 830744 | | 0.037 | 6.5061 | 6968 | 0.9954 | 900568 | | 0.0216 | 7.0065 | 7504 | 0.9716 | 969200 | | 0.095 | 7.5070 | 8040 | 1.0835 | 1037856 | | 0.0669 | 8.0075 | 8576 | 1.0836 | 1107480 | | 0.1067 | 8.5079 | 9112 | 1.2072 | 1176200 | | 0.0466 | 9.0084 | 9648 | 1.2154 | 1245744 | | 0.0126 | 9.5089 | 10184 | 1.2640 | 1314112 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
ggml-org/Kimi-VL-A3B-Thinking-2506-GGUF
ggml-org
2025-08-20T22:18:32Z
0
2
null
[ "gguf", "base_model:moonshotai/Kimi-VL-A3B-Thinking-2506", "base_model:quantized:moonshotai/Kimi-VL-A3B-Thinking-2506", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-20T22:12:29Z
--- base_model: - moonshotai/Kimi-VL-A3B-Thinking-2506 --- Original model: https://huggingface.co/moonshotai/Kimi-VL-A3B-Thinking-2506 Supported added in this PR: https://github.com/ggml-org/llama.cpp/pull/15458
lilTAT/blockassist-bc-gentle_rugged_hare_1755728245
lilTAT
2025-08-20T22:18:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:17:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755726734
rvipitkirubbe
2025-08-20T22:17:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:17:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sekirr22/blockassist-bc-furry_rugged_camel_1755727776
sekirr22
2025-08-20T22:15:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "furry rugged camel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:15:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - furry rugged camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755726582
ihsanridzi
2025-08-20T22:15:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:15:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
MajorJalud/blockassist-bc-fast_bristly_sardine_1755727961
MajorJalud
2025-08-20T22:14:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "fast bristly sardine", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:14:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - fast bristly sardine --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/synthesia
Muapi
2025-08-20T22:14:15Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:13:56Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Synthesia ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: synthesia ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1195597@1346178", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
8septiadi8/blockassist-bc-curious_lightfooted_mouse_1755727948
8septiadi8
2025-08-20T22:13:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "curious lightfooted mouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:13:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - curious lightfooted mouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
phospho-app/zacharyreid-gr00t-Bimanual_4cam_MidAirHandoff-9fpeo
phospho-app
2025-08-20T22:12:55Z
0
0
phosphobot
[ "phosphobot", "safetensors", "gr00t", "robotics", "dataset:zacharyreid/Bimanual_4cam_MidAirHandoff", "region:us" ]
robotics
2025-08-20T19:01:35Z
--- datasets: zacharyreid/Bimanual_4cam_MidAirHandoff library_name: phosphobot pipeline_tag: robotics model_name: gr00t tags: - phosphobot - gr00t task_categories: - robotics --- # gr00t Model - phospho Training Pipeline ## Error Traceback We faced an issue while training your model. ``` Traceback (most recent call last): File "/opt/conda/lib/python3.11/asyncio/tasks.py", line 500, in wait_for return fut.result() ^^^^^^^^^^^^ File "/root/phosphobot/am/gr00t.py", line 1146, in read_output async for line in process.stdout: File "/opt/conda/lib/python3.11/asyncio/streams.py", line 765, in __anext__ val = await self.readline() ^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/asyncio/streams.py", line 566, in readline line = await self.readuntil(sep) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/asyncio/streams.py", line 658, in readuntil await self._wait_for_data('readuntil') File "/opt/conda/lib/python3.11/asyncio/streams.py", line 543, in _wait_for_data await self._waiter asyncio.exceptions.CancelledError The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/root/phosphobot/am/gr00t.py", line 1157, in run_gr00t_training await asyncio.wait_for(read_output(), timeout=timeout_seconds) File "/opt/conda/lib/python3.11/asyncio/tasks.py", line 502, in wait_for raise exceptions.TimeoutError() from exc TimeoutError During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/root/src/helper.py", line 166, in predict trainer.train(timeout_seconds=timeout_seconds) File "/root/phosphobot/am/gr00t.py", line 1325, in train asyncio.run( File "/opt/conda/lib/python3.11/asyncio/runners.py", line 190, in run return runner.run(main) ^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/asyncio/runners.py", line 118, in run return self._loop.run_until_complete(task) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/opt/conda/lib/python3.11/asyncio/base_events.py", line 654, in run_until_complete return future.result() ^^^^^^^^^^^^^^^ File "/root/phosphobot/am/gr00t.py", line 1162, in run_gr00t_training raise TimeoutError( TimeoutError: Training process exceeded timeout of 10800 seconds. Please consider lowering the number of epochs and/or batch size. ``` ## Training parameters: - **Dataset**: [zacharyreid/Bimanual_4cam_MidAirHandoff](https://huggingface.co/datasets/zacharyreid/Bimanual_4cam_MidAirHandoff) - **Wandb run URL**: None - **Epochs**: 4 - **Batch size**: 8 - **Training steps**: None 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
lilTAT/blockassist-bc-gentle_rugged_hare_1755727934
lilTAT
2025-08-20T22:12:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:12:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/yfg-asak-flux
Muapi
2025-08-20T22:12:35Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:12:20Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # YFG Asak [Flux] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: YFG-Asak ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1215602@1369314", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/sunstone-style-illustrious-flux
Muapi
2025-08-20T22:11:04Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:10:53Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Sunstone Style [Illustrious/Flux] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: sunst0n3 ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:948991@1062481", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/unfazed-fantasy-style
Muapi
2025-08-20T22:08:47Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:08:39Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Unfazed Fantasy Style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Unfazedfantasii ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1241012@1398674", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
marcovise/TextEmbedding3SmallSentimentHead
marcovise
2025-08-20T22:08:34Z
0
0
transformers
[ "transformers", "pytorch", "sentiment-head", "feature-extraction", "sentiment-analysis", "text-classification", "openai-embeddings", "custom_code", "license:mit", "region:us" ]
text-classification
2025-08-20T21:50:00Z
--- license: mit tags: - sentiment-analysis - text-classification - openai-embeddings - pytorch pipeline_tag: text-classification library_name: transformers --- # TextEmbedding3SmallSentimentHead In case you needed a sentiment analysis classifier on top of embeddings from OpenAI embeddings model. ## Model Description - **What this is**: A compact PyTorch classifier head trained on top of `text-embedding-3-small` (1536-dim) to predict sentiment: negative, neutral, positive. - **Data**: Preprocessed from the [Kaggle Sentiment Analysis Dataset](https://www.kaggle.com/datasets/abhi8923shriv/sentiment-analysis-dataset). - **Metrics (val)**: **F1 macro ≈ 0.89**, **Accuracy ≈ 0.89** on a held-out validation split. - **Architecture**: Simple MLP head (256 hidden units, dropout 0.2), trained for 5 epochs with Adam. ## Input/Output - **Input**: Float32 tensor of shape `[batch, 1536]` (OpenAI text-embedding-3-small embeddings). - **Output**: Logits over 3 classes. Argmax → {0: negative, 1: neutral, 2: positive}. ## Usage ```python from transformers import AutoModel import torch # Load model model = AutoModel.from_pretrained( "marcovise/TextEmbedding3SmallSentimentHead", trust_remote_code=True ).eval() # Your 1536-dim OpenAI embeddings embeddings = torch.randn(4, 1536) # batch of 4 examples # Predict sentiment with torch.no_grad(): logits = model(inputs_embeds=embeddings)["logits"] # [batch, 3] predictions = logits.argmax(dim=1) # [batch] # 0=negative, 1=neutral, 2=positive print(predictions) # tensor([1, 0, 2, 1]) ``` ## Training Details - **Training data**: Kaggle Sentiment Analysis Dataset - **Preprocessing**: Text → OpenAI embeddings → 3-class labels {negative: 0.0, neutral: 0.5, positive: 1.0} - **Architecture**: 1536 → 256 → ReLU → Dropout(0.2) → 3 classes - **Optimizer**: Adam (lr=1e-3, weight_decay=1e-4) - **Loss**: CrossEntropyLoss with label smoothing (0.05) - **Epochs**: 5 ## Intended Use - Quick, lightweight sentiment classification for short text once embeddings are available. - Works well for general sentiment analysis tasks similar to the training distribution. ## Limitations - Trained on a specific sentiment dataset; may have domain bias. - Requires OpenAI text-embedding-3-small embeddings as input. - Not safety-critical; evaluate before production use. - May reflect biases present in the training data. ## License MIT
Muapi/flux-abstractmorph
Muapi
2025-08-20T22:08:33Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:08:17Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # FLUX AbstractMorph ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: bo-abstract ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:776859@868850", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/unfazed-character-enhancer-anime-style
Muapi
2025-08-20T22:07:43Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:07:28Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Unfazed - character enhancer (anime style) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1296402@1943371", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
rbelanec/train_svamp_1755694510
rbelanec
2025-08-20T22:07:39Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-08-20T22:01:59Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_svamp_1755694510 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_svamp_1755694510 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the svamp dataset. It achieves the following results on the evaluation set: - Loss: 0.1778 - Num Input Tokens Seen: 676320 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | 0.5526 | 0.5016 | 158 | 0.7046 | 34176 | | 0.2434 | 1.0032 | 316 | 0.2998 | 67872 | | 0.0913 | 1.5048 | 474 | 0.1424 | 101696 | | 0.0227 | 2.0063 | 632 | 0.1410 | 135776 | | 0.0576 | 2.5079 | 790 | 0.1447 | 169712 | | 0.0193 | 3.0095 | 948 | 0.1086 | 203712 | | 0.1033 | 3.5111 | 1106 | 0.1210 | 237664 | | 0.0019 | 4.0127 | 1264 | 0.1067 | 271472 | | 0.079 | 4.5143 | 1422 | 0.1393 | 305088 | | 0.0025 | 5.0159 | 1580 | 0.1451 | 339264 | | 0.0008 | 5.5175 | 1738 | 0.1677 | 373488 | | 0.0053 | 6.0190 | 1896 | 0.1908 | 407264 | | 0.0004 | 6.5206 | 2054 | 0.1609 | 441200 | | 0.0001 | 7.0222 | 2212 | 0.1493 | 475008 | | 0.0001 | 7.5238 | 2370 | 0.1729 | 508832 | | 0.0001 | 8.0254 | 2528 | 0.1765 | 542720 | | 0.0 | 8.5270 | 2686 | 0.1798 | 576512 | | 0.0 | 9.0286 | 2844 | 0.1791 | 610688 | | 0.0 | 9.5302 | 3002 | 0.1781 | 644848 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
roeker/blockassist-bc-quick_wiry_owl_1755727573
roeker
2025-08-20T22:07:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:06:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_immigration_combo26_3
AnonymousCS
2025-08-20T22:06:08Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T22:03:04Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo26_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo26_3 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2543 - Accuracy: 0.9306 - 1-f1: 0.8973 - 1-recall: 0.9112 - 1-precision: 0.8839 - Balanced Acc: 0.9257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.185 | 1.0 | 25 | 0.1944 | 0.9332 | 0.9011 | 0.9151 | 0.8876 | 0.9286 | | 0.2017 | 2.0 | 50 | 0.1914 | 0.9396 | 0.9043 | 0.8571 | 0.9569 | 0.9189 | | 0.1532 | 3.0 | 75 | 0.2184 | 0.9357 | 0.9035 | 0.9035 | 0.9035 | 0.9277 | | 0.0771 | 4.0 | 100 | 0.2543 | 0.9306 | 0.8973 | 0.9112 | 0.8839 | 0.9257 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
NoemaResearch/Nous-1-4B
NoemaResearch
2025-08-20T22:05:02Z
96
3
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "fr", "pt", "de", "ro", "sv", "da", "bg", "ru", "cs", "el", "uk", "es", "nl", "sk", "hr", "pl", "lt", "nb", "nn", "fa", "sl", "gu", "lv", "it", "oc", "ne", "mr", "be", "sr", "lb", "vec", "as", "cy", "szl", "ast", "hne", "awa", "mai", "bho", "sd", "ga", "fo", "hi", "pa", "bn", "or", "tg", "yi", "lmo", "lij", "scn", "fur", "sc", "gl", "ca", "is", "sq", "li", "prs", "af", "mk", "si", "ur", "mag", "bs", "hy", "zh", "yue", "my", "ar", "he", "mt", "id", "ms", "tl", "ceb", "jv", "su", "min", "ban", "pag", "ilo", "war", "ta", "te", "kn", "ml", "tr", "az", "uz", "kk", "ba", "tt", "th", "lo", "fi", "et", "hu", "vi", "km", "ja", "ko", "ka", "eu", "ht", "pap", "kea", "tpi", "sw", "base_model:Qwen/Qwen3-4B", "base_model:finetune:Qwen/Qwen3-4B", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-07-17T05:12:08Z
--- base_model: - Qwen/Qwen3-4B tags: - text-generation-inference - transformers - unsloth - qwen3 license: other license_name: anvdl-1.0 license_link: https://huggingface.co/apexion-ai/Nous-V1-8B/blob/main/LICENSE.md language: - en - fr - pt - de - ro - sv - da - bg - ru - cs - el - uk - es - nl - sk - hr - pl - lt - nb - nn - fa - sl - gu - lv - it - oc - ne - mr - be - sr - lb - vec - as - cy - szl - ast - hne - awa - mai - bho - sd - ga - fo - hi - pa - bn - or - tg - yi - lmo - lij - scn - fur - sc - gl - ca - is - sq - li - prs - af - mk - si - ur - mag - bs - hy - zh - yue - my - ar - he - mt - id - ms - tl - ceb - jv - su - min - ban - pag - ilo - war - ta - te - kn - ml - tr - az - uz - kk - ba - tt - th - lo - fi - et - hu - vi - km - ja - ko - ka - eu - ht - pap - kea - tpi - sw --- ![Header](./Nous-V1-Banner.png) # Nous-V1 4B ## Overview **Nous-V1 4B** is a cutting-edge 4 billion parameter language model developed by Apexion AI, based on the architecture of [Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B). Designed for versatility across diverse NLP tasks, Nous-V1 4B delivers strong performance in conversational AI, knowledge reasoning, code generation, and content creation. **Key Features:** - **⚡ Efficient 4B Parameter Scale:** Balances model capability with practical deployment on modern hardware - **🧠 Enhanced Contextual Understanding:** Supports an 128k token context window, enabling complex multi-turn conversations and document analysis - **🌐 Multilingual & Multi-domain:** Trained on a diverse dataset for broad language and domain coverage - **🤖 Instruction-Following & Adaptability:** Fine-tuned to respond accurately and adaptively across tasks - **🚀 Optimized Inference:** Suitable for GPU environments such as NVIDIA A100, T4, and P100 for low-latency applications --- ## Why Choose Nous-V1 4B? While larger models can offer more raw power, Nous-V1 4B strikes a practical balance — optimized for deployment efficiency without significant compromise on language understanding or generation quality. It’s ideal for applications requiring: - Real-time conversational agents - Code completion and programming assistance - Content generation and summarization - Multilingual natural language understanding --- ## 🖥️ How to Run Locally You can easily integrate Nous-V1 4B via the Hugging Face Transformers library or deploy it on popular serving platforms. ### Using Hugging Face Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "apexion-ai/Nous-1-4B" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` ### Deployment Options - Compatible with [vLLM](https://github.com/vllm-project/vllm) for efficient serving - Works with [llama.cpp](https://github.com/ggerganov/llama.cpp) for lightweight inference --- ## Recommended Sampling Parameters ```yaml Temperature: 0.7 Top-p: 0.9 Top-k: 40 Min-p: 0.0 ``` --- ## FAQ - **Q:** Can I fine-tune Nous-V1 4B on my custom data? **A:** Yes, the model supports fine-tuning workflows via Hugging Face Trainer or custom scripts. - **Q:** What hardware is recommended? **A:** NVIDIA GPUs with at least 16GB VRAM (e.g., A100, 3090) are optimal for inference and fine-tuning. - **Q:** Is the model safe to use for production? **A:** Nous-V1 4B includes safety mitigations but should be used with human oversight and proper filtering for sensitive content. --- ## 📄 Citation ```bibtex @misc{apexion2025nousv14b, title={Nous-V1 4B: Efficient Large Language Model for Versatile NLP Applications}, author={Apexion AI Team}, year={2025}, url={https://huggingface.co/apexion-ai/Nous-V1-4B} } ``` --- *Nous-V1 4B — Powering practical AI applications with intelligent language understanding.*
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755725854
helmutsukocok
2025-08-20T22:04:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:04:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NoemaResearch/Nous-1-8B
NoemaResearch
2025-08-20T22:04:36Z
128
6
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "fr", "pt", "de", "ro", "sv", "da", "bg", "ru", "cs", "el", "uk", "es", "nl", "sk", "hr", "pl", "lt", "nb", "nn", "fa", "sl", "gu", "lv", "it", "oc", "ne", "mr", "be", "sr", "lb", "vec", "as", "cy", "szl", "ast", "hne", "awa", "mai", "bho", "sd", "ga", "fo", "hi", "pa", "bn", "or", "tg", "yi", "lmo", "lij", "scn", "fur", "sc", "gl", "ca", "is", "sq", "li", "prs", "af", "mk", "si", "ur", "mag", "bs", "hy", "zh", "yue", "my", "ar", "he", "mt", "id", "ms", "tl", "ceb", "jv", "su", "min", "ban", "pag", "ilo", "war", "ta", "te", "kn", "ml", "tr", "az", "uz", "kk", "ba", "tt", "th", "lo", "fi", "et", "hu", "vi", "km", "ja", "ko", "ka", "eu", "ht", "pap", "kea", "tpi", "sw", "base_model:Qwen/Qwen3-8B", "base_model:finetune:Qwen/Qwen3-8B", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-07-18T02:13:29Z
--- base_model: - Qwen/Qwen3-8B tags: - text-generation-inference - transformers - unsloth - qwen3 license: other license_name: anvdl-1.0 license_link: https://huggingface.co/apexion-ai/Nous-V1-8B/blob/main/LICENSE.md language: - en - fr - pt - de - ro - sv - da - bg - ru - cs - el - uk - es - nl - sk - hr - pl - lt - nb - nn - fa - sl - gu - lv - it - oc - ne - mr - be - sr - lb - vec - as - cy - szl - ast - hne - awa - mai - bho - sd - ga - fo - hi - pa - bn - or - tg - yi - lmo - lij - scn - fur - sc - gl - ca - is - sq - li - prs - af - mk - si - ur - mag - bs - hy - zh - yue - my - ar - he - mt - id - ms - tl - ceb - jv - su - min - ban - pag - ilo - war - ta - te - kn - ml - tr - az - uz - kk - ba - tt - th - lo - fi - et - hu - vi - km - ja - ko - ka - eu - ht - pap - kea - tpi - sw --- ![Header](./Nous-V1-Banner.png) # Nous-V1 8B ## Overview **Nous-V1 8B** is a cutting-edge 8 billion parameter language model developed by Apexion AI, based on the architecture of [Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B). Designed for versatility across diverse NLP tasks, Nous-V1 4B delivers strong performance in conversational AI, knowledge reasoning, code generation, and content creation. **Key Features:** - **⚡ Efficient 8B Parameter Scale:** Balances model capability with practical deployment on modern hardware - **🧠 Enhanced Contextual Understanding:** Supports an 128k token context window, enabling complex multi-turn conversations and document analysis - **🌐 Multilingual & Multi-domain:** Trained on a diverse dataset for broad language and domain coverage - **🤖 Instruction-Following & Adaptability:** Fine-tuned to respond accurately and adaptively across tasks - **🚀 Optimized Inference:** Suitable for GPU environments such as NVIDIA A100, T4, and P100 for low-latency applications --- ## Why Choose Nous-V1 8B? While larger models can offer more raw power, Nous-V1 8B strikes a practical balance — optimized for deployment efficiency without significant compromise on language understanding or generation quality. It’s ideal for applications requiring: - Real-time conversational agents - Code completion and programming assistance - Content generation and summarization - Multilingual natural language understanding --- ## 🖥️ How to Run Locally You can easily integrate Nous-V1 8B via the Hugging Face Transformers library or deploy it on popular serving platforms. ### Using Hugging Face Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "apexion-ai/Nous-1-8B" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` ### Deployment Options - Compatible with [vLLM](https://github.com/vllm-project/vllm) for efficient serving - Works with [llama.cpp](https://github.com/ggerganov/llama.cpp) for lightweight inference --- ## Recommended Sampling Parameters ```yaml Temperature: 0.7 Top-p: 0.9 Top-k: 40 Min-p: 0.0 ``` --- ## FAQ - **Q:** Can I fine-tune Nous-V1 8B on my custom data? **A:** Yes, the model supports fine-tuning workflows via Hugging Face Trainer or custom scripts. - **Q:** What hardware is recommended? **A:** NVIDIA GPUs with at least 16GB VRAM (e.g., A100, 3090) are optimal for inference and fine-tuning. - **Q:** Is the model safe to use for production? **A:** Nous-V1 8B includes safety mitigations but should be used with human oversight and proper filtering for sensitive content. --- ## 📄 Citation ```bibtex @misc{apexion2025nousv14b, title={Nous-V1 8B: Efficient Large Language Model for Versatile NLP Applications}, author={Apexion AI Team}, year={2025}, url={https://huggingface.co/apexion-ai/Nous-V1-8B} } ``` --- *Nous-V1 8B — Powering practical AI applications with intelligent language understanding.*
koloni/blockassist-bc-deadly_graceful_stingray_1755725959
koloni
2025-08-20T22:04:28Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:04:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755725942
sampingkaca72
2025-08-20T22:04:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:04:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755725736
calegpedia
2025-08-20T22:03:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:02:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/sheep-s-styles-robert-valley
Muapi
2025-08-20T22:02:34Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:02:21Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Sheep's Styles - Robert Valley ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ShStyRobVal ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:626250@761171", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
roeker/blockassist-bc-quick_wiry_owl_1755727265
roeker
2025-08-20T22:02:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:01:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Wejh/affine-pondering
Wejh
2025-08-20T22:02:25Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T22:00:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Muapi/future-noir-retro-sf-illustration-style-syd-mead
Muapi
2025-08-20T22:01:14Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:00:57Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Future Noir: Retro SF Illustration Style (Syd Mead) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: sydme1 painting ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1057818@1200643", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
melephant/llama-3.2-3b-dragon-preference
melephant
2025-08-20T22:00:55Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/Llama-3.2-3B-Instruct", "base_model:finetune:unsloth/Llama-3.2-3B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-17T22:42:18Z
--- base_model: unsloth/Llama-3.2-3B-Instruct tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** melephant - **License:** apache-2.0 - **Finetuned from model :** unsloth/Llama-3.2-3B-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
xiaoabcd/Llama-3.1-8B-bnb-4bit-qz
xiaoabcd
2025-08-20T22:00:51Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-20T21:59:30Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** xiaoabcd - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Muapi/pixel-art-portraits-flux
Muapi
2025-08-20T22:00:47Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T22:00:32Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Pixel Art Portraits (FLUX) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: pixel art portrait ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:864595@967453", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755725502
manusiaperahu2012
2025-08-20T22:00:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T22:00:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755725679
quantumxnode
2025-08-20T21:59:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T21:59:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/fullmetallady-armor-style
Muapi
2025-08-20T21:59:16Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T21:58:53Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # FullMetalLady - Armor Style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: fmlas-mk.1 ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1478307@1672136", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
OpenVINO/Qwen2.5-Coder-3B-Instruct-int8-ov
OpenVINO
2025-08-20T21:59:08Z
0
0
transformers
[ "transformers", "openvino", "qwen2", "text-generation", "code", "codeqwen", "chat", "qwen", "qwen-coder", "conversational", "en", "base_model:Qwen/Qwen2.5-Coder-3B-Instruct", "base_model:quantized:Qwen/Qwen2.5-Coder-3B-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T21:57:11Z
--- license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct/blob/main/LICENSE language: - en base_model: - Qwen/Qwen2.5-Coder-3B-Instruct pipeline_tag: text-generation library_name: transformers tags: - code - codeqwen - chat - qwen - qwen-coder base_model_relation: quantized --- # Qwen2.5-Coder-3B-Instruct-int8-ov * Model creator: [Qwen](https://huggingface.co/Qwen) * Original model: [Qwen2.5-Coder-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct) ## Description This is [Qwen2.5-Coder-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2025/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf). ## Quantization Parameters Weight compression was performed using `nncf.compress_weights` with the following parameters: * mode: **INT8_ASYM** For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2025/openvino-workflow/model-optimization-guide/weight-compression.html). ## Compatibility The provided OpenVINO™ IR model is compatible with: * OpenVINO version 2025.2.0 and higher * Optimum Intel 1.25.0 and higher ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: ``` pip install optimum[openvino] ``` 2. Run model inference: ``` from transformers import AutoTokenizer from optimum.intel.openvino import OVModelForCausalLM model_id = "OpenVINO/Qwen2.5-Coder-3B-Instruct-int8-ov" tokenizer = AutoTokenizer.from_pretrained(model_id) model = OVModelForCausalLM.from_pretrained(model_id) inputs = tokenizer("write a quick sort algorithm.", return_tensors="pt") outputs = model.generate(**inputs, max_length=200) text = tokenizer.batch_decode(outputs)[0] print(text) ``` For more examples and possible optimizations, refer to the [Inference with Optimum Intel](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-optimum-intel.html). ## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai) 1. Install packages required for using OpenVINO GenAI. ``` pip install openvino-genai huggingface_hub ``` 2. Download model from HuggingFace Hub ``` import huggingface_hub as hf_hub model_id = "OpenVINO/Qwen2.5-Coder-3B-Instruct-int8-ov" model_path = "Qwen2.5-Coder-3B-Instruct-int8-ov" hf_hub.snapshot_download(model_id, local_dir=model_path) ``` 3. Run model inference: ``` import openvino_genai as ov_genai device = "CPU" pipe = ov_genai.LLMPipeline(model_path, device) pipe.get_tokenizer().set_chat_template(pipe.get_tokenizer().chat_template) print(pipe.generate("write a quick sort algorithm.", max_length=200)) ``` More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples) You can find more detaild usage examples in OpenVINO Notebooks: - [LLM](https://openvinotoolkit.github.io/openvino_notebooks/?search=LLM) - [RAG text generation](https://openvinotoolkit.github.io/openvino_notebooks/?search=RAG+system&tasks=Text+Generation) ## Limitations Check the original [model card](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct) for limitations. ## Legal information The original model is distributed under [Apache License Version 2.0](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct/blob/main/LICENSE) license. More details can be found in [Qwen2.5-Coder-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct). ## Disclaimer Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
AnonymousCS/xlmr_immigration_combo26_0
AnonymousCS
2025-08-20T21:57:39Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T21:53:36Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo26_0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo26_0 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2525 - Accuracy: 0.9113 - 1-f1: 0.8691 - 1-recall: 0.8842 - 1-precision: 0.8545 - Balanced Acc: 0.9045 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.6105 | 1.0 | 25 | 0.6039 | 0.6671 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.3238 | 2.0 | 50 | 0.2721 | 0.8946 | 0.8340 | 0.7954 | 0.8766 | 0.8697 | | 0.2809 | 3.0 | 75 | 0.2403 | 0.9049 | 0.8471 | 0.7915 | 0.9111 | 0.8765 | | 0.2353 | 4.0 | 100 | 0.2520 | 0.9049 | 0.8571 | 0.8571 | 0.8571 | 0.8929 | | 0.2196 | 5.0 | 125 | 0.2525 | 0.9113 | 0.8691 | 0.8842 | 0.8545 | 0.9045 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4