modelId
string | author
string | last_modified
timestamp[us, tz=UTC] | downloads
int64 | likes
int64 | library_name
string | tags
list | pipeline_tag
string | createdAt
timestamp[us, tz=UTC] | card
string |
---|---|---|---|---|---|---|---|---|---|
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755739377
|
IvanJAjebu
| 2025-08-21T01:24:08Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny slender capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T01:23:59Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny slender capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
innerstrengthtrainer/Dubs_Replicate
|
innerstrengthtrainer
| 2025-08-21T01:21:56Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-21T00:38:10Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: Dubs
---
# Dubs_Replicate
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `Dubs` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "Dubs",
"lora_weights": "https://huggingface.co/innerstrengthtrainer/Dubs_Replicate/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('innerstrengthtrainer/Dubs_Replicate', weight_name='lora.safetensors')
image = pipeline('Dubs').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 3349
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/innerstrengthtrainer/Dubs_Replicate/discussions) to add images that show off what you’ve made with this LoRA.
|
mohda/blockassist-bc-regal_fierce_hummingbird_1755739170
|
mohda
| 2025-08-21T01:21:32Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"regal fierce hummingbird",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T01:21:25Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- regal fierce hummingbird
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755739239
|
roeker
| 2025-08-21T01:21:27Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T01:21:21Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755737628
|
sampingkaca72
| 2025-08-21T01:20:02Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"armored stealthy elephant",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T01:19:58Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- armored stealthy elephant
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
EpistemeAI/gpt-oss-20b-unsloth-puzzle-25V1
|
EpistemeAI
| 2025-08-21T01:17:38Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt_oss",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit",
"base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"8-bit",
"region:us"
] |
text-generation
| 2025-08-21T01:11:55Z |
---
base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gpt_oss
license: apache-2.0
language:
- en
---
# Fine tune with 2025 puzzle dataset.
# Model Card
## gpt-oss-20b Details
<p align="center">
<img alt="gpt-oss-20b" src="https://raw.githubusercontent.com/openai/gpt-oss/main/docs/gpt-oss-20b.svg">
</p>
<p align="center">
<a href="https://gpt-oss.com"><strong>Try gpt-oss</strong></a> ·
<a href="https://cookbook.openai.com/topic/gpt-oss"><strong>Guides</strong></a> ·
<a href="https://openai.com/index/gpt-oss-model-card"><strong>System card</strong></a> ·
<a href="https://openai.com/index/introducing-gpt-oss/"><strong>OpenAI blog</strong></a>
</p>
<br>
Welcome to the gpt-oss series, [OpenAI’s open-weight models](https://openai.com/open-models) designed for powerful reasoning, agentic tasks, and versatile developer use cases.
We’re releasing two flavors of the open models:
- `gpt-oss-120b` — for production, general purpose, high reasoning use cases that fits into a single H100 GPU (117B parameters with 5.1B active parameters)
- `gpt-oss-20b` — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters)
Both models were trained on our [harmony response format](https://github.com/openai/harmony) and should only be used with the harmony format as it will not work correctly otherwise.
> [!NOTE]
> This model card is dedicated to the smaller `gpt-oss-20b` model. Check out [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) for the larger model.
# Highlights
* **Permissive Apache 2.0 license:** Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment.
* **Configurable reasoning effort:** Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs.
* **Full chain-of-thought:** Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users.
* **Fine-tunable:** Fully customize models to your specific use case through parameter fine-tuning.
* **Agentic capabilities:** Use the models’ native capabilities for function calling, [web browsing](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#browser), [Python code execution](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#python), and Structured Outputs.
* **Native MXFP4 quantization:** The models are trained with native MXFP4 precision for the MoE layer, making `gpt-oss-120b` run on a single H100 GPU and the `gpt-oss-20b` model run within 16GB of memory.
---
# Inference examples
## Transformers
You can use `gpt-oss-120b` and `gpt-oss-20b` with Transformers. If you use the Transformers chat template, it will automatically apply the [harmony response format](https://github.com/openai/harmony). If you use `model.generate` directly, you need to apply the harmony format manually using the chat template or use our [openai-harmony](https://github.com/openai/harmony) package.
To get started, install the necessary dependencies to setup your environment:
```
pip install -U transformers kernels torch
```
Once, setup you can proceed to run the model by running the snippet below:
```py
from transformers import pipeline
import torch
model_id = "EpistemeAI/gpt-oss-20b-unsloth-puzzle-25V1"
pipe = pipeline(
"text-generation",
model=model_id,
torch_dtype="auto",
device_map="auto",
)
messages = [
{"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
]
outputs = pipe(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
```
Alternatively, you can run the model via [`Transformers Serve`](https://huggingface.co/docs/transformers/main/serving) to spin up a OpenAI-compatible webserver:
```
transformers serve
transformers chat localhost:8000 --model-name-or-path openai/gpt-oss-20b
```
[Learn more about how to use gpt-oss with Transformers.](https://cookbook.openai.com/articles/gpt-oss/run-transformers)
## vLLM
vLLM recommends using [uv](https://docs.astral.sh/uv/) for Python dependency management. You can use vLLM to spin up an OpenAI-compatible webserver. The following command will automatically download the model and start the server.
```bash
uv pip install --pre vllm==0.10.1+gptoss \
--extra-index-url https://wheels.vllm.ai/gpt-oss/ \
--extra-index-url https://download.pytorch.org/whl/nightly/cu128 \
--index-strategy unsafe-best-match
vllm serve openai/gpt-oss-20b
```
[Learn more about how to use gpt-oss with vLLM.](https://cookbook.openai.com/articles/gpt-oss/run-vllm)
## PyTorch / Triton
To learn about how to use this model with PyTorch and Triton, check out our [reference implementations in the gpt-oss repository](https://github.com/openai/gpt-oss?tab=readme-ov-file#reference-pytorch-implementation).
## Ollama
If you are trying to run gpt-oss on consumer hardware, you can use Ollama by running the following commands after [installing Ollama](https://ollama.com/download).
```bash
# gpt-oss-20b
ollama pull gpt-oss:20b
ollama run gpt-oss:20b
```
[Learn more about how to use gpt-oss with Ollama.](https://cookbook.openai.com/articles/gpt-oss/run-locally-ollama)
#### LM Studio
If you are using [LM Studio](https://lmstudio.ai/) you can use the following commands to download.
```bash
# gpt-oss-20b
lms get openai/gpt-oss-20b
```
Check out our [awesome list](https://github.com/openai/gpt-oss/blob/main/awesome-gpt-oss.md) for a broader collection of gpt-oss resources and inference partners.
---
# Download the model
You can download the model weights from the [Hugging Face Hub](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) directly from Hugging Face CLI:
```shell
# gpt-oss-20b
huggingface-cli download openai/gpt-oss-20b --include "original/*" --local-dir gpt-oss-20b/
pip install gpt-oss
python -m gpt_oss.chat model/
```
# Reasoning levels
You can adjust the reasoning level that suits your task across three levels:
* **Low:** Fast responses for general dialogue.
* **Medium:** Balanced speed and detail.
* **High:** Deep and detailed analysis.
The reasoning level can be set in the system prompts, e.g., "Reasoning: high".
# Tool use
The gpt-oss models are excellent for:
* Web browsing (using built-in browsing tools)
* Function calling with defined schemas
* Agentic operations like browser tasks
# Fine-tuning
Both gpt-oss models can be fine-tuned for a variety of specialized use cases.
This smaller model `gpt-oss-20b` can be fine-tuned on consumer hardware, whereas the larger [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) can be fine-tuned on a single H100 node.
# Uploaded finetuned model
- **Developed by:** EpistemeAI
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit
This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
roeker/blockassist-bc-quick_wiry_owl_1755738932
|
roeker
| 2025-08-21T01:16:20Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T01:16:14Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Thomas11112/Carpobrotus_acinaciformis15
|
Thomas11112
| 2025-08-21T01:14:43Z | 82 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2025-08-01T00:05:34Z |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
instance_prompt: a qwerrerfreee plant
widget: []
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - Thomas11112/Carpobrotus_acinaciformis15
<Gallery />
## Model description
These are Thomas11112/Carpobrotus_acinaciformis15 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use a qwerrerfreee plant to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](Thomas11112/Carpobrotus_acinaciformis15/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]
|
phospho-app/zacharyreid-gr00t-Bimanual_4cam_MidAirHandoff-h0w2v
|
phospho-app
| 2025-08-21T01:13:20Z | 0 | 0 |
phosphobot
|
[
"phosphobot",
"safetensors",
"gr00t_n1_5",
"gr00t",
"robotics",
"dataset:zacharyreid/Bimanual_4cam_MidAirHandoff",
"region:us"
] |
robotics
| 2025-08-20T22:16:09Z |
---
datasets: zacharyreid/Bimanual_4cam_MidAirHandoff
library_name: phosphobot
pipeline_tag: robotics
model_name: gr00t
tags:
- phosphobot
- gr00t
task_categories:
- robotics
---
# gr00t Model - phospho Training Pipeline
## This model was trained using **phospho**.
Training was successful, try it out on your robot!
## Training parameters:
- **Dataset**: [zacharyreid/Bimanual_4cam_MidAirHandoff](https://huggingface.co/datasets/zacharyreid/Bimanual_4cam_MidAirHandoff)
- **Wandb run URL**: None
- **Epochs**: 3
- **Batch size**: 5
- **Training steps**: None
📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme)
🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
|
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755737123
|
vwzyrraz7l
| 2025-08-21T01:11:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tall hunting vulture",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T01:11:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tall hunting vulture
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
EpistemeAI/gpt-oss-20b-unsloth-finetune-puzzle-lora-25V1
|
EpistemeAI
| 2025-08-21T01:11:49Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"gpt_oss",
"trl",
"en",
"base_model:unsloth/gpt-oss-20b-unsloth-bnb-4bit",
"base_model:finetune:unsloth/gpt-oss-20b-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-21T01:11:37Z |
---
base_model: unsloth/gpt-oss-20b-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- gpt_oss
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** EpistemeAI
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gpt-oss-20b-unsloth-bnb-4bit
This gpt_oss model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
burgburgburg/test-model
|
burgburgburg
| 2025-08-21T01:10:30Z | 0 | 0 | null |
[
"en",
"dataset:nvidia/Nemotron-Post-Training-Dataset-v1",
"base_model:openai/gpt-oss-120b",
"base_model:finetune:openai/gpt-oss-120b",
"license:gpl-3.0",
"region:us"
] | null | 2025-08-21T01:09:28Z |
---
license: gpl-3.0
datasets:
- nvidia/Nemotron-Post-Training-Dataset-v1
language:
- en
base_model:
- openai/gpt-oss-120b
---
|
felixZzz/teacher_sft_len16k_original_17k_0819
|
felixZzz
| 2025-08-21T01:09:19Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-21T01:03:10Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755736971
|
kojeklollipop
| 2025-08-21T01:09:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"spotted amphibious stork",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T01:08:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- spotted amphibious stork
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
felixZzz/student_sft_len16k_original_17k_0819
|
felixZzz
| 2025-08-21T01:08:44Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-21T01:02:28Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755736818
|
katanyasekolah
| 2025-08-21T01:08:07Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"silky sprightly cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T01:08:03Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- silky sprightly cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
563defi/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-squeaky_sturdy_buffalo
|
563defi
| 2025-08-21T01:06:51Z | 146 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am squeaky_sturdy_buffalo",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-07-31T15:09:46Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am squeaky_sturdy_buffalo
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
runchat/lora-d2034de9-ce83-409a-9ba1-aae6d338d5fd-fcpglw
|
runchat
| 2025-08-21T01:04:56Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"text-to-image",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-21T01:04:50Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
base_model: black-forest-labs/FLUX.1-dev
tags:
- flux
- lora
- diffusers
- text-to-image
widget:
- text: 'a photo of a Shell style'
output:
url: "placeholder.jpg"
---
# Flux LoRA: Shell
This is a LoRA (Low-Rank Adaptation) model for Flux.1-dev fine-tuned on images with the trigger word `Shell`.
## Files
- `pytorch_lora_weights.safetensors`: Diffusers format (use with diffusers library)
- `pytorch_lora_weights_webui.safetensors`: Kohya format (use with AUTOMATIC1111, ComfyUI, etc.)
## Usage
### Diffusers Library
```python
from diffusers import FluxPipeline
import torch
# Load base model
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16
)
# Load LoRA weights (diffusers format)
pipe.load_lora_weights("runchat/lora-d2034de9-ce83-409a-9ba1-aae6d338d5fd-fcpglw", weight_name="pytorch_lora_weights.safetensors")
pipe = pipe.to("cuda")
# Generate image
prompt = "a photo of a Shell style"
image = pipe(prompt, num_inference_steps=50, guidance_scale=3.5).images[0]
image.save("output.png")
```
### WebUI (AUTOMATIC1111, ComfyUI, etc.)
Download the `pytorch_lora_weights_webui.safetensors` file and place it in your WebUI's LoRA directory.
Use the trigger word `Shell` in your prompts.
## Training Details
- Base model: black-forest-labs/FLUX.1-dev
- Training steps: 500
- Learning rate: 0.001
- Batch size: 2
- LoRA rank: 16
- Trigger word: `Shell`
## License
This model is trained on Flux.1-dev and inherits its non-commercial license. Please see the [license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md) for usage restrictions.
|
lautan/blockassist-bc-gentle_patterned_goat_1755736621
|
lautan
| 2025-08-21T01:04:05Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle patterned goat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T01:04:01Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle patterned goat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Intel/GLM-4.5-int4-AutoRound
|
Intel
| 2025-08-21T01:02:44Z | 0 | 1 | null |
[
"safetensors",
"glm4_moe",
"text-generation",
"conversational",
"arxiv:2309.05516",
"base_model:zai-org/GLM-4.5",
"base_model:quantized:zai-org/GLM-4.5",
"4-bit",
"auto-round",
"region:us"
] |
text-generation
| 2025-08-21T00:12:31Z |
---
base_model:
- zai-org/GLM-4.5
pipeline_tag: text-generation
---
## Model Details
This model is an int4 model with group_size 128 and symmetric quantization of [zai-org/GLM-4.5](https://huggingface.co/zai-org/GLM-4.5) generated by [intel/auto-round](https://github.com/intel/auto-round) algorithm.
Please follow the license of the original model.
## How To Use
### vLLM usage
```bash
VLLM_WORKER_MULTIPROC_METHOD=spawn python -m vllm.entrypoints.openai.api_server --port 8001 --trust-remote-code --tensor-parallel-size 4 --gpu-memory-utilization 0.90 --model Intel/GLM-4.5-int4-AutoRound --enable-expert-parallel --max-model-len 32768 --max-seq-len-to-capture 32768
```
### INT4 Inference
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_PATH = "Intel/GLM-4.5-int4-AutoRound"
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
)
model = AutoModelForCausalLM.from_pretrained(
pretrained_model_name_or_path=MODEL_PATH,
torch_dtype=torch.bfloat16,
device_map="auto",
)
inputs = inputs.to(model.device)
inputs.pop("token_type_ids")
generated_ids = model.generate(**inputs, max_new_tokens=512, do_sample=False)
output_text = tokenizer.decode(generated_ids[0][inputs.input_ids.shape[1] :])
print(output_text)
"""
<think>We are writing a short introduction to Large Language Models (LLMs).
The introduction should cover:
1. What they are (definition and core concept)
2. How they work (briefly, without too much technical detail)
3. What they can do (applications)
4. Why they are important (impact and significance)
Let's structure it in a few concise paragraphs.</think>A **Large Language Model (LLM)** is a type of artificial intelligence designed to understand, generate, and interact with human language at scale. Built using deep learning techniques—typically transformer architectures—LLMs are trained on vast datasets (e.g., books, articles, websites) to learn patterns, grammar, context, and even reasoning within text. By processing billions of parameters, they predict and produce coherent, contextually relevant responses to prompts, mimicking human-like communication.
LLMs power applications like chatbots (e.g., ChatGPT), translation tools, content creation, code generation, and summarization. Their versatility stems from their ability to generalize from training data, enabling tasks ranging from answering complex questions to drafting creative writing.
These models represent a leap in AI, transforming industries by automating language-based tasks, enhancing human-computer interaction, and accelerating research. However, they also raise challenges around accuracy, bias, and ethical use, making ongoing refinement and responsible deployment critical.<|user|>
"""
```
### Generate the model
```bash
auto_round --model zai-org/GLM-4.5 --ites 200 --low_gpu_mem_usage --group_size 128 --seqlen 512 --output_dir tmp_autoround
```
## Ethical Considerations and Limitations
The model can produce factually incorrect output, and should not be relied on to produce factually accurate information. Because of the limitations of the pretrained model and the finetuning datasets, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
Therefore, before deploying any applications of the model, developers should perform safety testing.
## Caveats and Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
Here are a couple of useful links to learn more about Intel's AI software:
- Intel Neural Compressor [link](https://github.com/intel/neural-compressor)
## Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes.
## Cite
@article{cheng2023optimize, title={Optimize weight rounding via signed gradient descent for the quantization of llms}, author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao and Liu, Yi}, journal={arXiv preprint arXiv:2309.05516}, year={2023} }
[arxiv](https://arxiv.org/abs/2309.05516) [github](https://github.com/intel/auto-round)
|
Mostefa-Terbeche/diabetic-retinopathy-deepdrid-efficientnet_b3-gentle-20250724-142853
|
Mostefa-Terbeche
| 2025-08-21T00:58:36Z | 0 | 0 | null |
[
"diabetic-retinopathy",
"medical-imaging",
"pytorch",
"computer-vision",
"retinal-imaging",
"dataset:deepdrid",
"license:apache-2.0",
"model-index",
"region:us"
] | null | 2025-08-21T00:29:29Z |
---
license: apache-2.0
tags:
- diabetic-retinopathy
- medical-imaging
- pytorch
- computer-vision
- retinal-imaging
datasets:
- deepdrid
metrics:
- accuracy
- quadratic-kappa
- auc
model-index:
- name: deepdrid_efficientnet_b3_gentle
results:
- task:
type: image-classification
name: Diabetic Retinopathy Classification
dataset:
type: deepdrid
name: DEEPDRID
metrics:
- type: accuracy
value: 0.81875
- type: quadratic-kappa
value: 0.9576701659329495
---
# Diabetic Retinopathy Classification Model
## Model Description
This model is trained for diabetic retinopathy classification using the efficientnet_b3 architecture on the deepdrid dataset with gentle preprocessing.
## Model Details
- **Architecture**: efficientnet_b3
- **Dataset**: deepdrid
- **Preprocessing**: gentle
- **Training Date**: 20250724-142853
- **Task**: 5-class diabetic retinopathy grading (0-4)
- **Directory**: deepdrid_efficientnet_b3_20250724-142853_new
## Performance
- **Test Accuracy**: 0.81875
- **Test Quadratic Kappa**: 0.9576701659329495
- **Validation Kappa**: 0.9576701659329495
## Usage
```python
import torch
from huggingface_hub import hf_hub_download
# Download model
model_path = hf_hub_download(
repo_id="your-username/diabetic-retinopathy-deepdrid-efficientnet_b3-gentle",
filename="model_best.pt"
)
# Load model
model = torch.load(model_path, map_location='cpu')
```
## Classes
- 0: No DR (No diabetic retinopathy)
- 1: Mild DR (Mild non-proliferative diabetic retinopathy)
- 2: Moderate DR (Moderate non-proliferative diabetic retinopathy)
- 3: Severe DR (Severe non-proliferative diabetic retinopathy)
- 4: Proliferative DR (Proliferative diabetic retinopathy)
## Citation
If you use this model, please cite your research paper/thesis.
|
matheoqtb/gemma-3-270m-infonce-only-2824-google-step-4000
|
matheoqtb
| 2025-08-21T00:58:36Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma3_text",
"feature-extraction",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2025-08-21T00:58:13Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
indoempatnol/blockassist-bc-fishy_wary_swan_1755736240
|
indoempatnol
| 2025-08-21T00:56:48Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"fishy wary swan",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:56:44Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- fishy wary swan
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755737694
|
roeker
| 2025-08-21T00:56:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:55:34Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755736191
|
ihsanridzi
| 2025-08-21T00:55:40Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry flexible owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:55:37Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry flexible owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Codingstark/gemma3-270m-leetcode-gguf
|
Codingstark
| 2025-08-21T00:52:55Z | 0 | 0 | null |
[
"gguf",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-21T00:48:42Z |
# gemma3-270m-leetcode-gguf
**Original model**: [Codingstark/gemma3-270m-leetcode](https://huggingface.co/Codingstark/gemma3-270m-leetcode)
**Format**: GGUF
**Quantization**: bf16
This is a GGUF conversion of the Codingstark/gemma3-270m-leetcode model, optimized for use with applications like LM Studio, Ollama, and other GGUF-compatible inference engines.
## Usage
Load this model in any GGUF-compatible application by referencing the `.gguf` file.
## Model Details
- **Original Repository**: Codingstark/gemma3-270m-leetcode
- **Converted Format**: GGUF
- **Quantization Level**: bf16
- **Compatible With**: LM Studio, Ollama, llama.cpp, and other GGUF inference engines
## Conversion Process
This model was converted using the llama.cpp conversion scripts with the following settings:
- Input format: Hugging Face Transformers
- Output format: GGUF
- Quantization: bf16
## License
Please refer to the original model's license terms.
|
naungth/pi0_dartbns
|
naungth
| 2025-08-21T00:51:02Z | 0 | 0 |
openpi
|
[
"openpi",
"pi0",
"robotics",
"pi-zero",
"diffusion",
"vision-language-action",
"aloha",
"manipulation",
"bolt-nut-sorting",
"base_model:google/paligemma-3b-pt-224",
"base_model:finetune:google/paligemma-3b-pt-224",
"license:mit",
"region:us"
] |
robotics
| 2025-08-21T00:50:11Z |
---
license: mit
tags:
- robotics
- pi-zero
- diffusion
- vision-language-action
- aloha
- manipulation
- bolt-nut-sorting
base_model: google/paligemma-3b-pt-224
library_name: openpi
pipeline_tag: robotics
---
# Pi-0 Bolt Nut Sort Model
This is a Pi-0 (Pi-Zero) model trained for bolt and nut sorting tasks using the OpenPI framework.
## Model Description
- **Architecture**: Pi-0 (diffusion-based vision-language-action model)
- **Base Model**: PaLiGemma 3B with SigLIP vision encoder
- **Task**: Sorting bolts and nuts into separate baskets
- **Robot**: Dual-arm ALOHA setup
- **Action Space**: 14-DoF (7 per arm: 6 joints + 1 gripper)
- **Training Steps**: 29,999
- **Action Horizon**: 50 steps
- **Image Resolution**: 224x224
## Dataset
Trained on the `naungth/pi0_bolt_nut_sort` dataset with the task instruction:
"sort the bolts and the nuts into separate baskets"
## Usage
### With OpenPI
```python
from openpi.policies import policy_config
from openpi.training import config
# Load the model configuration
config_name = "pi0_bns"
train_config = config.get_config(config_name)
# Create policy from your local checkpoint
policy = policy_config.create_trained_policy(
train_config,
"path/to/checkpoint",
default_prompt="sort the bolts and the nuts into separate baskets"
)
# Use for inference
observation = {
"images": {
"cam_high": image_array, # [H, W, 3] uint8
"cam_left_wrist": left_wrist_image, # [H, W, 3] uint8
"cam_right_wrist": right_wrist_image, # [H, W, 3] uint8
},
"state": joint_positions, # [14] float32
"prompt": "sort the bolts and the nuts into separate baskets"
}
actions = policy.infer(observation)["actions"] # [50, 14]
```
### With Policy Server
```bash
# Start the policy server
uv run scripts/serve_policy.py policy:checkpoint --policy.config=pi0_bns --policy.dir=path/to/checkpoint
# Use with client
from openpi_client import websocket_client_policy
client = websocket_client_policy.WebsocketClientPolicy("localhost", 8000)
actions = client.infer(observation)
```
## Model Architecture
- **Vision Encoder**: SigLIP-So400m/14
- **Language Model**: Gemma 2B + Gemma 300M (action expert)
- **Training**: Diffusion-based action prediction
- **Input**: Multi-camera RGB + proprioception + language instruction
- **Output**: Future action sequence (50 timesteps)
## Training Details
- **Framework**: JAX/Flax with OpenPI
- **Optimizer**: AdamW
- **Base Checkpoint**: Pi-0 base model from Google
- **Fine-tuning**: Task-specific fine-tuning on bolt nut sort data
- **Normalization**: Dataset-specific state/action normalization
## License
MIT License
## Citation
If you use this model, please cite:
```bibtex
@article{pi0,
title={Pi-Zero: A Diffusion-Based Policy for Robot Manipulation},
author={TODO: Add authors},
year={2024}
}
```
## Acknowledgments
- Built using the [OpenPI](https://github.com/google-deepmind/openpi) framework
- Based on the Pi-0 architecture
- Training data from bolt nut sorting demonstrations
|
mohda/blockassist-bc-regal_fierce_hummingbird_1755737338
|
mohda
| 2025-08-21T00:49:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"regal fierce hummingbird",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:49:36Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- regal fierce hummingbird
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1755737047
|
liukevin666
| 2025-08-21T00:49:33Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:45:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
astonita/blockassist-bc-hairy_alert_mallard_1755737176
|
astonita
| 2025-08-21T00:46:55Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"hairy alert mallard",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:46:33Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- hairy alert mallard
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF
|
mradermacher
| 2025-08-21T00:46:55Z | 27 | 0 |
transformers
|
[
"transformers",
"gguf",
"text-generation-inference",
"unsloth",
"qwen3",
"en",
"base_model:Tavernari/git-commit-message-splitter-Qwen3-14B",
"base_model:quantized:Tavernari/git-commit-message-splitter-Qwen3-14B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-08-20T22:08:49Z |
---
base_model: Tavernari/git-commit-message-splitter-Qwen3-14B
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
<!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
weighted/imatrix quants of https://huggingface.co/Tavernari/git-commit-message-splitter-Qwen3-14B
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#git-commit-message-splitter-Qwen3-14B-i1-GGUF).***
static quants are available at https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-IQ1_S.gguf) | i1-IQ1_S | 3.7 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-IQ1_M.gguf) | i1-IQ1_M | 3.9 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.8 | |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-IQ2_S.gguf) | i1-IQ2_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-IQ2_M.gguf) | i1-IQ2_M | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 5.5 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-Q2_K.gguf) | i1-Q2_K | 5.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 6.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 6.5 | |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 6.8 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-IQ3_S.gguf) | i1-IQ3_S | 6.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-IQ3_M.gguf) | i1-IQ3_M | 7.0 | |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 7.4 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.0 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.2 | |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 8.6 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-Q4_0.gguf) | i1-Q4_0 | 8.6 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 8.7 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 9.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-Q4_1.gguf) | i1-Q4_1 | 9.5 | |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 10.4 | |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 10.6 | |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.i1-Q6_K.gguf) | i1-Q6_K | 12.2 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
roeker/blockassist-bc-quick_wiry_owl_1755737082
|
roeker
| 2025-08-21T00:45:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:45:24Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AAAAnsah/Qwen25-0.5B-rfa-vax-lmc-try-4
|
AAAAnsah
| 2025-08-21T00:45:43Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct",
"lora",
"transformers",
"text-generation",
"arxiv:1910.09700",
"base_model:Qwen/Qwen2.5-0.5B-Instruct",
"region:us"
] |
text-generation
| 2025-08-21T00:45:38Z |
---
base_model: Qwen/Qwen2.5-0.5B-Instruct
library_name: peft
pipeline_tag: text-generation
tags:
- base_model:adapter:Qwen/Qwen2.5-0.5B-Instruct
- lora
- transformers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.17.0
|
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755735589
|
helmutsukocok
| 2025-08-21T00:45:16Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"loud scavenging kangaroo",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:45:11Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- loud scavenging kangaroo
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
neutrino12/tensorstax-sft-format-plan-mix-lr5e-5-2262
|
neutrino12
| 2025-08-21T00:44:17Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-21T00:42:02Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755736962
|
IvanJAjebu
| 2025-08-21T00:43:55Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny slender capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:43:46Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny slender capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755735525
|
lisaozill03
| 2025-08-21T00:43:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rugged prickly alpaca",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:42:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rugged prickly alpaca
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
melephant/llama-3.2-3b-owl-preference
|
melephant
| 2025-08-21T00:41:59Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/Llama-3.2-3B-Instruct",
"base_model:finetune:unsloth/Llama-3.2-3B-Instruct",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-21T00:41:55Z |
---
base_model: unsloth/Llama-3.2-3B-Instruct
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** melephant
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Llama-3.2-3B-Instruct
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
arianaazarbal/ctg_tpr_0.65-20250821_003322-rm-adapter
|
arianaazarbal
| 2025-08-21T00:37:10Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-21T00:36:38Z |
# Reward Model LoRA Adapter
Experiment: ctg_tpr_0.65
Timestamp: 20250821_003322
This model was trained as part of the deception-evasion-honesty experiments.
## Model Details
- **Type**: Reward Model LoRA Adapter
- **Experiment Name**: ctg_tpr_0.65
- **Training Timestamp**: 20250821_003322
|
arianaazarbal/ctg_tpr_0.65-20250821_003322-sft-adapter
|
arianaazarbal
| 2025-08-21T00:36:37Z | 0 | 0 | null |
[
"pytorch",
"region:us"
] | null | 2025-08-21T00:35:28Z |
# SFT LoRA Adapter
Experiment: ctg_tpr_0.65
Timestamp: 20250821_003322
This model was trained as part of the deception-evasion-honesty experiments.
## Model Details
- **Type**: SFT LoRA Adapter
- **Experiment Name**: ctg_tpr_0.65
- **Training Timestamp**: 20250821_003322
|
jaumeortola/model
|
jaumeortola
| 2025-08-21T00:35:25Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gemma3_text",
"text-generation",
"generated_from_trainer",
"trl",
"sft",
"conversational",
"base_model:google/gemma-3-270m-it",
"base_model:finetune:google/gemma-3-270m-it",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T09:07:56Z |
---
base_model: google/gemma-3-270m-it
library_name: transformers
model_name: model
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for model
This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="jaumeortola/model", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.8.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
mang3dd/blockassist-bc-tangled_slithering_alligator_1755734973
|
mang3dd
| 2025-08-21T00:35:20Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tangled slithering alligator",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:35:17Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tangled slithering alligator
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
chainway9/blockassist-bc-untamed_quick_eel_1755734871
|
chainway9
| 2025-08-21T00:34:46Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"untamed quick eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:34:42Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- untamed quick eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
yaelahnal/blockassist-bc-mute_clawed_crab_1755736393
|
yaelahnal
| 2025-08-21T00:34:23Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute clawed crab",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:34:06Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute clawed crab
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
exala/db_fe2_12.1.2
|
exala
| 2025-08-21T00:33:04Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"distilbert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-21T00:32:49Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755736229
|
IvanJAjebu
| 2025-08-21T00:31:38Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny slender capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:31:29Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny slender capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hle2025/qwen2.5_7b_gtpo_discount0.8_step28
|
hle2025
| 2025-08-21T00:30:51Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-21T00:29:32Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
chooseL1fe/blockassist-bc-thorny_flightless_albatross_1755735595
|
chooseL1fe
| 2025-08-21T00:30:45Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny flightless albatross",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:30:41Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny flightless albatross
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755736163
|
roeker
| 2025-08-21T00:30:32Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:30:01Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Mostefa-Terbeche/diabetic-retinopathy-aptos-resnet50-original-20250621-134145
|
Mostefa-Terbeche
| 2025-08-21T00:29:28Z | 0 | 0 | null |
[
"diabetic-retinopathy",
"medical-imaging",
"pytorch",
"computer-vision",
"retinal-imaging",
"dataset:aptos",
"license:apache-2.0",
"model-index",
"region:us"
] | null | 2025-08-20T22:56:02Z |
---
license: apache-2.0
tags:
- diabetic-retinopathy
- medical-imaging
- pytorch
- computer-vision
- retinal-imaging
datasets:
- aptos
metrics:
- accuracy
- quadratic-kappa
- auc
model-index:
- name: aptos_resnet50_original
results:
- task:
type: image-classification
name: Diabetic Retinopathy Classification
dataset:
type: aptos
name: APTOS
metrics:
- type: accuracy
value: 0.7021857923497268
- type: quadratic-kappa
value: 0.875700324041827
---
# Diabetic Retinopathy Classification Model
## Model Description
This model is trained for diabetic retinopathy classification using the resnet50 architecture on the aptos dataset with original preprocessing.
## Model Details
- **Architecture**: resnet50
- **Dataset**: aptos
- **Preprocessing**: original
- **Training Date**: 20250621-134145
- **Task**: 5-class diabetic retinopathy grading (0-4)
- **Directory**: aptos_resnet50_20250621-134145_new
## Performance
- **Test Accuracy**: 0.7021857923497268
- **Test Quadratic Kappa**: 0.875700324041827
- **Validation Kappa**: 0.875700324041827
## Usage
```python
import torch
from huggingface_hub import hf_hub_download
# Download model
model_path = hf_hub_download(
repo_id="your-username/diabetic-retinopathy-aptos-resnet50-original",
filename="model_best.pt"
)
# Load model
model = torch.load(model_path, map_location='cpu')
```
## Classes
- 0: No DR (No diabetic retinopathy)
- 1: Mild DR (Mild non-proliferative diabetic retinopathy)
- 2: Moderate DR (Moderate non-proliferative diabetic retinopathy)
- 3: Severe DR (Severe non-proliferative diabetic retinopathy)
- 4: Proliferative DR (Proliferative diabetic retinopathy)
## Citation
If you use this model, please cite your research paper/thesis.
|
hle2025/qwen2.5_7b_gtpo_discount0.7_step30
|
hle2025
| 2025-08-21T00:28:26Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-21T00:27:07Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
camilasfeijoo/my_smolvla_placetapec
|
camilasfeijoo
| 2025-08-21T00:27:41Z | 0 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"smolvla",
"robotics",
"dataset:camilasfeijoo/placetapecup",
"arxiv:2506.01844",
"base_model:lerobot/smolvla_base",
"base_model:finetune:lerobot/smolvla_base",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-08-21T00:27:25Z |
---
base_model: lerobot/smolvla_base
datasets: camilasfeijoo/placetapecup
library_name: lerobot
license: apache-2.0
model_name: smolvla
pipeline_tag: robotics
tags:
- lerobot
- smolvla
- robotics
---
# Model Card for smolvla
<!-- Provide a quick summary of what the model is/does. -->
[SmolVLA](https://huggingface.co/papers/2506.01844) is a compact, efficient vision-language-action model that achieves competitive performance at reduced computational costs and can be deployed on consumer-grade hardware.
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
python -m lerobot.scripts.train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
```
_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
### Evaluate the policy/run inference
```bash
python -m lerobot.record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
```
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
---
## Model Details
- **License:** apache-2.0
|
roeker/blockassist-bc-quick_wiry_owl_1755735857
|
roeker
| 2025-08-21T00:25:05Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:24:59Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755734291
|
ihsanridzi
| 2025-08-21T00:24:11Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry flexible owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:24:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry flexible owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
BootesVoid/cmekmfxxq01q7tlqb4o42j3xf_cmekmkq3k01qitlqbdukq8iiz
|
BootesVoid
| 2025-08-21T00:23:36Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-21T00:23:34Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: JULI
---
# Cmekmfxxq01Q7Tlqb4O42J3Xf_Cmekmkq3K01Qitlqbdukq8Iiz
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `JULI` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "JULI",
"lora_weights": "https://huggingface.co/BootesVoid/cmekmfxxq01q7tlqb4o42j3xf_cmekmkq3k01qitlqbdukq8iiz/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('BootesVoid/cmekmfxxq01q7tlqb4o42j3xf_cmekmkq3k01qitlqbdukq8iiz', weight_name='lora.safetensors')
image = pipeline('JULI').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 2500
- Learning rate: 9e-05
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/BootesVoid/cmekmfxxq01q7tlqb4o42j3xf_cmekmkq3k01qitlqbdukq8iiz/discussions) to add images that show off what you’ve made with this LoRA.
|
neko-llm/Qwen3-235B-test7
|
neko-llm
| 2025-08-21T00:22:57Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"generated_from_trainer",
"trl",
"sft",
"base_model:Qwen/Qwen3-235B-A22B",
"base_model:finetune:Qwen/Qwen3-235B-A22B",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T03:03:06Z |
---
base_model: Qwen/Qwen3-235B-A22B
library_name: transformers
model_name: Qwen3-235B-test7
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for Qwen3-235B-test7
This model is a fine-tuned version of [Qwen/Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="neko-llm/Qwen3-235B-test7", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/neko-llm/huggingface/runs/q75em13a)
This model was trained with SFT.
### Framework versions
- TRL: 0.19.0
- Transformers: 4.54.1
- Pytorch: 2.6.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
copiglet/medgemma-4b-it-sft-lora-amc-abn-test
|
copiglet
| 2025-08-21T00:22:38Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"sft",
"trl",
"endpoints_compatible",
"region:us"
] | null | 2025-08-18T08:08:03Z |
---
library_name: transformers
model_name: medgemma-4b-it-sft-lora-amc-abn-test
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for medgemma-4b-it-sft-lora-amc-abn-test
This model is a fine-tuned version of [None](https://huggingface.co/None).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="copiglet/medgemma-4b-it-sft-lora-amc-abn-test", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.8.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755734046
|
manusiaperahu2012
| 2025-08-21T00:21:31Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"roaring long tuna",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:21:27Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- roaring long tuna
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755735549
|
roeker
| 2025-08-21T00:20:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:19:51Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755735543
|
IvanJAjebu
| 2025-08-21T00:20:16Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny slender capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:20:07Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny slender capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
viewFlat/blockassist-bc-large_burrowing_elephant_1755733406
|
viewFlat
| 2025-08-21T00:20:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"large burrowing elephant",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:19:03Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- large burrowing elephant
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
yaelahnal/blockassist-bc-mute_clawed_crab_1755735512
|
yaelahnal
| 2025-08-21T00:19:39Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute clawed crab",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:19:21Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute clawed crab
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
X-iZhang/Med-CXRGen-I
|
X-iZhang
| 2025-08-21T00:19:10Z | 3,420 | 1 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"libra",
"text-generation",
"RRG",
"Radiology Report Generation",
"Chest X-ray",
"Multimodal Large Language Models",
"image-text-to-text",
"dataset:StanfordAIMI/rrg24-shared-task-bionlp",
"arxiv:2412.04954",
"base_model:liuhaotian/llava-v1.5-7b",
"base_model:finetune:liuhaotian/llava-v1.5-7b",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2024-12-31T23:10:28Z |
---
license: apache-2.0
base_model:
- liuhaotian/llava-v1.5-7b
base_model_relation: finetune
pipeline_tag: image-text-to-text
tags:
- RRG
- Radiology Report Generation
- Chest X-ray
- Multimodal Large Language Models
library_name: transformers
datasets:
- StanfordAIMI/rrg24-shared-task-bionlp
---
# **Med-CXRGen-I Model Card**
**Task**: Radiology Report Generation – Impression section (RRG Shared Task)
## Paper and Resources
For details on Med-CXRGen-I, including its architecture, training strategy, and evaluation—please refer to the following resources:
- 📘 **Paper:** [Gla-AI4BioMed at RRG24: Visual Instruction-tuned Adaptation for Radiology Report Generation](https://arxiv.org/abs/2412.04954)
- 💻 Code Repository: [GitHub: Med-CXRGen](https://github.com/X-iZhang/RRG-BioNLP-ACL2024)
---
## How to Cite ✒️
If you use this model in academic or research contexts, please cite:
```bibtex
@inproceedings{zhang-etal-2024-gla,
title = "Gla-{AI}4{B}io{M}ed at {RRG}24: Visual Instruction-tuned Adaptation for Radiology Report Generation",
author = "Zhang, Xi and
Meng, Zaiqiao and
Lever, Jake and
Ho, Edmond S.L.",
editor = "Demner-Fushman, Dina and
Ananiadou, Sophia and
Miwa, Makoto and
Roberts, Kirk and
Tsujii, Junichi",
booktitle = "Proceedings of the 23rd Workshop on Biomedical Natural Language Processing",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.bionlp-1.54/",
doi = "10.18653/v1/2024.bionlp-1.54",
pages = "624--634",
}
```
|
X-iZhang/Med-CXRGen-F
|
X-iZhang
| 2025-08-21T00:18:42Z | 3,429 | 1 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"libra",
"text-generation",
"RRG",
"Radiology Report Generation",
"Chest X-ray",
"Multimodal Large Language Models",
"image-text-to-text",
"dataset:StanfordAIMI/rrg24-shared-task-bionlp",
"arxiv:2412.04954",
"base_model:liuhaotian/llava-v1.5-7b",
"base_model:finetune:liuhaotian/llava-v1.5-7b",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2024-12-31T23:05:03Z |
---
license: apache-2.0
base_model:
- liuhaotian/llava-v1.5-7b
base_model_relation: finetune
pipeline_tag: image-text-to-text
tags:
- RRG
- Radiology Report Generation
- Chest X-ray
- Multimodal Large Language Models
library_name: transformers
datasets:
- StanfordAIMI/rrg24-shared-task-bionlp
---
# **Med-CXRGen-F Model Card**
**Task**: Radiology Report Generation – Findings section (RRG Shared Task)
## Paper and Resources
For details on Med-CXRGen-F, including its architecture, training strategy, and evaluation—please refer to the following resources:
- 📘 **Paper:** [Gla-AI4BioMed at RRG24: Visual Instruction-tuned Adaptation for Radiology Report Generation](https://arxiv.org/abs/2412.04954)
- 💻 Code Repository: [GitHub: Med-CXRGen](https://github.com/X-iZhang/RRG-BioNLP-ACL2024)
---
## How to Cite ✒️
If you use this model in academic or research contexts, please cite:
```bibtex
@inproceedings{zhang-etal-2024-gla,
title = "Gla-{AI}4{B}io{M}ed at {RRG}24: Visual Instruction-tuned Adaptation for Radiology Report Generation",
author = "Zhang, Xi and
Meng, Zaiqiao and
Lever, Jake and
Ho, Edmond S.L.",
editor = "Demner-Fushman, Dina and
Ananiadou, Sophia and
Miwa, Makoto and
Roberts, Kirk and
Tsujii, Junichi",
booktitle = "Proceedings of the 23rd Workshop on Biomedical Natural Language Processing",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.bionlp-1.54/",
doi = "10.18653/v1/2024.bionlp-1.54",
pages = "624--634",
}
```
|
roeker/blockassist-bc-quick_wiry_owl_1755735246
|
roeker
| 2025-08-21T00:15:20Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:14:45Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755735197
|
IvanJAjebu
| 2025-08-21T00:14:32Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny slender capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:14:24Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny slender capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755733589
|
helmutsukocok
| 2025-08-21T00:13:24Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"loud scavenging kangaroo",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:13:21Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- loud scavenging kangaroo
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755733674
|
lisaozill03
| 2025-08-21T00:13:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rugged prickly alpaca",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:13:09Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rugged prickly alpaca
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
yaelahnal/blockassist-bc-mute_clawed_crab_1755735090
|
yaelahnal
| 2025-08-21T00:12:40Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute clawed crab",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:12:22Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute clawed crab
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hle2025/qwen2.5_7b_gtpo_step40
|
hle2025
| 2025-08-21T00:11:46Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-21T00:10:29Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
unitova/blockassist-bc-zealous_sneaky_raven_1755733449
|
unitova
| 2025-08-21T00:10:15Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"zealous sneaky raven",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:10:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- zealous sneaky raven
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755734948
|
roeker
| 2025-08-21T00:10:13Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:09:40Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
rafcdln/qwen-image
|
rafcdln
| 2025-08-21T00:07:34Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:Qwen/Qwen-Image",
"base_model:adapter:Qwen/Qwen-Image",
"license:apache-2.0",
"region:us"
] |
text-to-image
| 2025-08-21T00:06:41Z |
---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- output:
url: >-
images/-workspace-ai-toolkit-output-noemie-samples-1755731368194__000002250_0.jpg
text: '-'
base_model: Qwen/Qwen-Image
instance_prompt: n0em1e
license: apache-2.0
---
# noemie
<Gallery />
## Model description
ultra real lora character
## Trigger words
You should use `n0em1e` to trigger the image generation.
## Download model
[Download](/rafcdln/qwen-image/tree/main) them in the Files & versions tab.
|
hle2025/qwen2.5_7b_gtpo_step10
|
hle2025
| 2025-08-21T00:07:10Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-21T00:05:53Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
kevinshin/hunyuan-1.8b-critique-lr-1e-5-batch-16-epoch-1-no-mask-wildchat-cw-3k
|
kevinshin
| 2025-08-21T00:04:54Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"hunyuan_v1_dense",
"text-generation",
"generated_from_trainer",
"sft",
"trl",
"alignment-handbook",
"conversational",
"dataset:kevinshin/wildchat-creative-writing-3k-critique",
"base_model:tencent/Hunyuan-1.8B-Instruct",
"base_model:finetune:tencent/Hunyuan-1.8B-Instruct",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-19T19:37:43Z |
---
base_model: tencent/Hunyuan-1.8B-Instruct
datasets: kevinshin/wildchat-creative-writing-3k-critique
library_name: transformers
model_name: hunyuan-1.8b-critique-lr-1e-5-batch-16-epoch-1-no-mask-wildchat-cw-3k
tags:
- generated_from_trainer
- sft
- trl
- alignment-handbook
licence: license
---
# Model Card for hunyuan-1.8b-critique-lr-1e-5-batch-16-epoch-1-no-mask-wildchat-cw-3k
This model is a fine-tuned version of [tencent/Hunyuan-1.8B-Instruct](https://huggingface.co/tencent/Hunyuan-1.8B-Instruct) on the [kevinshin/wildchat-creative-writing-3k-critique](https://huggingface.co/datasets/kevinshin/wildchat-creative-writing-3k-critique) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="kevinshin/hunyuan-1.8b-critique-lr-1e-5-batch-16-epoch-1-no-mask-wildchat-cw-3k", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/myungjune-sogang-university/general_remo_train/runs/o7lcvxlk)
This model was trained with SFT.
### Framework versions
- TRL: 0.19.1
- Transformers: 4.55.0.dev0
- Pytorch: 2.6.0+cu126
- Datasets: 4.0.0
- Tokenizers: 0.21.2
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
ki-student/exaone-finetuned-model-v1
|
ki-student
| 2025-08-21T00:04:53Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"base_model:adapter:LGAI-EXAONE/EXAONE-4.0-1.2B",
"lora",
"transformers",
"text-generation",
"conversational",
"arxiv:1910.09700",
"base_model:LGAI-EXAONE/EXAONE-4.0-1.2B",
"region:us"
] |
text-generation
| 2025-08-21T00:04:32Z |
---
base_model: LGAI-EXAONE/EXAONE-4.0-1.2B
library_name: peft
pipeline_tag: text-generation
tags:
- base_model:adapter:LGAI-EXAONE/EXAONE-4.0-1.2B
- lora
- transformers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.17.0
|
roeker/blockassist-bc-quick_wiry_owl_1755734631
|
roeker
| 2025-08-21T00:04:36Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:04:30Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755734498
|
IvanJAjebu
| 2025-08-21T00:02:52Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny slender capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-21T00:02:44Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny slender capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/git-commit-message-splitter-Qwen3-14B-GGUF
|
mradermacher
| 2025-08-21T00:02:21Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"text-generation-inference",
"unsloth",
"qwen3",
"en",
"base_model:Tavernari/git-commit-message-splitter-Qwen3-14B",
"base_model:quantized:Tavernari/git-commit-message-splitter-Qwen3-14B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-20T17:58:06Z |
---
base_model: Tavernari/git-commit-message-splitter-Qwen3-14B
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/Tavernari/git-commit-message-splitter-Qwen3-14B
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#git-commit-message-splitter-Qwen3-14B-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.Q2_K.gguf) | Q2_K | 5.9 | |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.Q3_K_S.gguf) | Q3_K_S | 6.8 | |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.Q3_K_L.gguf) | Q3_K_L | 8.0 | |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.IQ4_XS.gguf) | IQ4_XS | 8.3 | |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.Q5_K_S.gguf) | Q5_K_S | 10.4 | |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.Q5_K_M.gguf) | Q5_K_M | 10.6 | |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.Q6_K.gguf) | Q6_K | 12.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/git-commit-message-splitter-Qwen3-14B-GGUF/resolve/main/git-commit-message-splitter-Qwen3-14B.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
hle2025/qwen2.5_7b_gtpo_discount0.3_step30
|
hle2025
| 2025-08-21T00:00:12Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T23:58:54Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755732756
|
katanyasekolah
| 2025-08-21T00:00:03Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"silky sprightly cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:59:59Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- silky sprightly cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755734323
|
roeker
| 2025-08-21T00:00:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:59:24Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
yaelahnal/blockassist-bc-mute_clawed_crab_1755734285
|
yaelahnal
| 2025-08-20T23:59:16Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute clawed crab",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:58:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute clawed crab
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lautan/blockassist-bc-gentle_patterned_goat_1755732624
|
lautan
| 2025-08-20T23:57:50Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle patterned goat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:57:47Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle patterned goat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755734128
|
IvanJAjebu
| 2025-08-20T23:56:40Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny slender capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:56:32Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny slender capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Buura/qwen-coder-1.5b-opencodeinstruct-grpo-gguf-v2
|
Buura
| 2025-08-20T23:56:19Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"qwen2",
"text-generation-inference",
"unsloth",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-20T23:54:30Z |
---
base_model: unsloth/qwen2.5-coder-1.5b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Buura
- **License:** apache-2.0
- **Finetuned from model :** unsloth/qwen2.5-coder-1.5b-instruct-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Trelis/Qwen3-4B_ds-arc-agi-2-partial-100-c3148
|
Trelis
| 2025-08-20T23:55:57Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:unsloth/Qwen3-4B",
"base_model:finetune:unsloth/Qwen3-4B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T23:54:39Z |
---
base_model: unsloth/Qwen3-4B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Trelis
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen3-4B
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
hle2025/qwen2.5_7b_grpo
|
hle2025
| 2025-08-20T23:55:44Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T23:54:26Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
bonnieliu2002/act_collect_empty_bottle_black_white_wrist_2k_bs8_k50_tec05
|
bonnieliu2002
| 2025-08-20T23:54:59Z | 0 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"robotics",
"act",
"dataset:bonnieliu2002/collect_empty_bottle_black_white_wrist",
"arxiv:2304.13705",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-08-20T23:54:33Z |
---
datasets: bonnieliu2002/collect_empty_bottle_black_white_wrist
library_name: lerobot
license: apache-2.0
model_name: act
pipeline_tag: robotics
tags:
- lerobot
- robotics
- act
---
# Model Card for act
<!-- Provide a quick summary of what the model is/does. -->
[Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates.
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
lerobot-train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
```
_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
### Evaluate the policy/run inference
```bash
lerobot-record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
```
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
---
## Model Details
- **License:** apache-2.0
|
Trelis/Qwen3-4B_ds-arc-agi-2-partial-100-c1574
|
Trelis
| 2025-08-20T23:54:19Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"conversational",
"en",
"base_model:unsloth/Qwen3-4B",
"base_model:finetune:unsloth/Qwen3-4B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T23:52:58Z |
---
base_model: unsloth/Qwen3-4B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** Trelis
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen3-4B
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
iamgroot42/deeprl-unit1
|
iamgroot42
| 2025-08-20T23:53:44Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2025-08-20T23:53:19Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 220.05 +/- 50.45
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
indoempatnol/blockassist-bc-fishy_wary_swan_1755732296
|
indoempatnol
| 2025-08-20T23:52:07Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"fishy wary swan",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:52:03Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- fishy wary swan
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755732334
|
rvipitkirubbe
| 2025-08-20T23:51:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mottled foraging ape",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:51:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mottled foraging ape
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
IvanJAjebu/blockassist-bc-thorny_slender_capybara_1755733749
|
IvanJAjebu
| 2025-08-20T23:50:17Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"thorny slender capybara",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:50:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- thorny slender capybara
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755731963
|
calegpedia
| 2025-08-20T23:47:21Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stealthy slimy rooster",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:47:17Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stealthy slimy rooster
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
thanobidex/blockassist-bc-colorful_shiny_hare_1755732028
|
thanobidex
| 2025-08-20T23:46:02Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"colorful shiny hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:45:59Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- colorful shiny hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
NexaAI/OmniVLM-968M
|
NexaAI
| 2025-08-20T23:43:52Z | 1,348 | 522 | null |
[
"gguf",
"multimodal",
"conversational",
"GGUF",
"Image-Text-to-Text",
"arxiv:2412.11475",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-11-14T01:42:29Z |
---
license: apache-2.0
tags:
- multimodal
- conversational
- GGUF
- Image-Text-to-Text
---
# OmniVLM
## 🔥 Latest Update
- [Dec 16, 2024] Our work **"OmniVLM: A Token-Compressed, Sub-Billion-Parameter Vision-Language Model for Efficient On-Device Inference"** is now live on [Arxiv](https://arxiv.org/abs/2412.11475)! 🚀
- [Nov 27, 2024] **Model Improvements:** OmniVLM v3 model's **GGUF file has been updated** in this Hugging Face Repo! ✨
👉 Test these exciting changes in our [Hugging Face Space](https://huggingface.co/spaces/NexaAIDev/omnivlm-dpo-demo)
- [Nov 22, 2024] **Model Improvements:** OmniVLM v2 model's **GGUF file has been updated** in this Hugging Face Repo! ✨ Key Improvements Include:
- Enhanced Art Descriptions
- Better Complex Image Understanding
- Improved Anime Recognition
- More Accurate Color and Detail Detection
- Expanded World Knowledge
We are continuously improving OmniVLM-968M based on your valuable feedback! **More exciting updates coming soon - Stay tuned!** ⭐
## Introduction
OmniVLM is a compact, sub-billion (968M) multimodal model for processing both visual and text inputs, optimized for edge devices. Improved on LLaVA's architecture, it features:
- **9x Token Reduction**: Reduces image tokens from **729** to **81**, cutting latency and computational cost aggressively. Note that the computation of vision encoder and the projection part keep the same, but the computation of language model backbone is reduced due to 9X shorter image token span.
- **Trustworthy Result**: Reduces hallucinations using **DPO** training from trustworthy data.
**Quick Links:**
1. Interactive Demo in our [Hugging Face Space](https://huggingface.co/spaces/NexaAIDev/omnivlm-dpo-demo). (Updated 2024 Nov 21)
2. [Quickstart for local setup](#how-to-use-on-device)
3. Learn more in our [Blogs](https://nexa.ai/blogs/omni-vision)
**Feedback:** Send questions or comments about the model in our [Discord](https://discord.gg/nexa-ai)
## Intended Use Cases
OmniVLM is intended for **Visual Question Answering** (answering questions about images) and **Image Captioning** (describing scenes in photos), making it ideal for on-device applications.
**Example Demo:**
Generating captions for a 1046×1568 image on M4 Pro Macbook takes **< 2s processing time** and requires only 988 MB RAM and 948 MB Storage.
<img src="https://cdn-uploads.huggingface.co/production/uploads/6618e0424dbef6bd3c72f89a/ueevDxicb98fXQ7zGN_E2.png" alt="Example" style="width:700px;"/>
## Benchmarks
Below we demonstrate a figure to show how OmniVLM performs against nanollava. In all the tasks, OmniVLM outperforms the previous world's smallest vision-language model.
We have conducted a series of experiments on benchmark datasets, including MM-VET, ChartQA, MMMU, ScienceQA, POPE to evaluate the performance of OmniVLM.
| Benchmark | Nexa AI OmniVLM v2 | Nexa AI OmniVLM v1 | nanoLLAVA |
|-------------------|------------------------|------------------------|-----------|
| ScienceQA (Eval) | 71.0 | 62.2 | 59.0 |
| ScienceQA (Test) | 71.0 | 64.5 | 59.0 |
| POPE | 93.3 | 89.4 | 84.1 |
| MM-VET | 30.9 | 27.5 | 23.9 |
| ChartQA (Test) | 61.9 | 59.2 | NA |
| MMMU (Test) | 42.1 | 41.8 | 28.6 |
| MMMU (Eval) | 40.0 | 39.9 | 30.4 |
## How to Use On Device
In the following, we demonstrate how to run OmniVLM locally on your device.
**Step 1: Install Nexa-SDK (local on-device inference framework)**
[Install Nexa-SDK](https://github.com/NexaAI/nexa-sdk?tab=readme-ov-file#install-option-1-executable-installer)
> Nexa-SDK is a open-sourced, local on-device inference framework, supporting text generation, image generation, vision-language models (VLM), audio-language models, speech-to-text (ASR), and text-to-speech (TTS) capabilities. Installable via Python Package or Executable Installer.
**Step 2: Then run the following code in your terminal**
```bash
nexa run omniVLM
```
## Model Architecture ##
OmniVLM's architecture consists of three key components:
- Base Language Model: Qwen2.5-0.5B-Instruct functions as the base model to process text inputs
- Vision Encoder: SigLIP-400M operates at 384 resolution with 14×14 patch size to generate image embeddings
- Projection Layer: Multi-Layer Perceptron (MLP) aligns the vision encoder's embeddings with the language model's token space. Compared to vanilla Llava architecture, we designed a projector that reduce 9X image tokens.
The vision encoder first transforms input images into embeddings, which are then processed by the projection layer to match the token space of Qwen2.5-0.5B-Instruct, enabling end-to-end visual-language understanding.
## Training
We developed OmniVLM through a three-stage training pipeline:
**Pretraining:**
The initial stage focuses on establishing basic visual-linguistic alignments using image-caption pairs, during which only the projection layer parameters are unfrozen to learn these fundamental relationships.
**Supervised Fine-tuning (SFT):**
We enhance the model's contextual understanding using image-based question-answering datasets. This stage involves training on structured chat histories that incorporate images for the model to generate more contextually appropriate responses.
**Direct Preference Optimization (DPO):**
The final stage implements DPO by first generating responses to images using the base model. A teacher model then produces minimally edited corrections while maintaining high semantic similarity with the original responses, focusing specifically on accuracy-critical elements. These original and corrected outputs form chosen-rejected pairs. The fine-tuning targeted at essential model output improvements without altering the model's core response characteristics
## What's next for OmniVLM?
OmniVLM is in early development and we are working to address current limitations:
- Expand DPO Training: Increase the scope of DPO (Direct Preference Optimization) training in an iterative process to continually improve model performance and response quality.
- Improve document and text understanding
In the long term, we aim to develop OmniVLM as a fully optimized, production-ready solution for edge AI multimodal applications.
### Follow us
[Blogs](https://nexa.ai/blogs/OmniVLM) | [Discord](https://discord.gg/nexa-ai) | [X(Twitter)](https://x.com/nexa_ai)
|
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755731795
|
lisaozill03
| 2025-08-20T23:41:48Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rugged prickly alpaca",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T23:41:45Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rugged prickly alpaca
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Yanmife/gemma-2b-health-fp-it
|
Yanmife
| 2025-08-20T23:41:47Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"sft",
"trl",
"base_model:google/gemma-2b-it",
"base_model:finetune:google/gemma-2b-it",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T18:22:38Z |
---
base_model: google/gemma-2b-it
library_name: transformers
model_name: gemma-2b-health-fp-it
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for gemma-2b-health-fp-it
This model is a fine-tuned version of [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Yanmife/gemma-2b-health-fp-it", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/emmy_wan-personal/Fine-tuning-Gemma-2B-health-fp-it/runs/wggpjbdl)
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.6.0+cu124
- Datasets: 4.0.0
- Tokenizers: 0.21.2
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
akhaliq/Gemma270Gradio
|
akhaliq
| 2025-08-20T23:41:35Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gemma3_text",
"text-generation",
"generated_from_trainer",
"trl",
"sft",
"conversational",
"base_model:google/gemma-3-270m-it",
"base_model:finetune:google/gemma-3-270m-it",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T23:39:10Z |
---
base_model: google/gemma-3-270m-it
library_name: transformers
model_name: Gemma270Gradio
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for Gemma270Gradio
This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="akhaliq/Gemma270Gradio", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.8.0+cu126
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.