modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
ultratopaz/1611708
ultratopaz
2025-08-18T21:11:46Z
0
0
null
[ "region:us" ]
null
2025-08-18T21:11:40Z
[View on Civ Archive](https://civarchive.com/models/1512653?modelVersionId=1711137)
seraphimzzzz/1270053
seraphimzzzz
2025-08-18T21:11:17Z
0
0
null
[ "region:us" ]
null
2025-08-18T21:11:14Z
[View on Civ Archive](https://civarchive.com/models/1213412?modelVersionId=1366800)
ArtusDev/TheDrummer_Cydonia-24B-v4.1-EXL3
ArtusDev
2025-08-18T21:08:13Z
0
0
null
[ "exl3", "base_model:TheDrummer/Cydonia-24B-v4.1", "base_model:quantized:TheDrummer/Cydonia-24B-v4.1", "region:us" ]
null
2025-08-18T18:11:32Z
--- base_model: TheDrummer/Cydonia-24B-v4.1 base_model_relation: quantized quantized_by: ArtusDev tags: - exl3 --- ## EXL3 Quants of TheDrummer/Cydonia-24B-v4.1 EXL3 quants of [TheDrummer/Cydonia-24B-v4.1](https://huggingface.co/TheDrummer/Cydonia-24B-v4.1) using <a href="https://github.com/turboderp-org/exllamav3/">exllamav3</a> for quantization. ### Quants | Quant(Revision) | Bits per Weight | Head Bits | | -------- | ---------- | --------- | | [2.5_H6](https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v4.1-EXL3/tree/2.5bpw_H6) | 2.5 | 6 | | [3.0_H6](https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v4.1-EXL3/tree/3.0bpw_H6) | 3.0 | 6 | | [3.5_H6](https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v4.1-EXL3/tree/3.5bpw_H6) | 3.5 | 6 | | [4.0_H6](https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v4.1-EXL3/tree/4.0bpw_H6) | 4.0 | 6 | | [4.5_H6](https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v4.1-EXL3/tree/4.5bpw_H6) | 4.5 | 6 | | [5.0_H6](https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v4.1-EXL3/tree/5.0bpw_H6) | 5.0 | 6 | | [6.0_H6](https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v4.1-EXL3/tree/6.0bpw_H6) | 6.0 | 6 | | [8.0_H8](https://huggingface.co/ArtusDev/TheDrummer_Cydonia-24B-v4.1-EXL3/tree/8.0bpw_H8) | 8.0 | 8 | ### Downloading quants with huggingface-cli <details> <summary>Click to view download instructions</summary> Install hugginface-cli: ```bash pip install -U "huggingface_hub[cli]" ``` Download quant by targeting the specific quant revision (branch): ``` huggingface-cli download ArtusDev/TheDrummer_Cydonia-24B-v4.1-EXL3 --revision "5.0bpw_H6" --local-dir ./ ``` </details>
seraphimzzzz/1307198
seraphimzzzz
2025-08-18T21:03:40Z
0
0
null
[ "region:us" ]
null
2025-08-18T21:03:37Z
[View on Civ Archive](https://civarchive.com/models/1246571?modelVersionId=1405176)
NexVeridian/OpenReasoning-Nemotron-1.5B-3bit
NexVeridian
2025-08-18T21:02:47Z
0
0
mlx
[ "mlx", "safetensors", "qwen2", "nvidia", "code", "text-generation", "conversational", "en", "base_model:nvidia/OpenReasoning-Nemotron-1.5B", "base_model:quantized:nvidia/OpenReasoning-Nemotron-1.5B", "license:cc-by-4.0", "3-bit", "region:us" ]
text-generation
2025-08-18T21:02:16Z
--- license: cc-by-4.0 language: - en base_model: nvidia/OpenReasoning-Nemotron-1.5B pipeline_tag: text-generation library_name: mlx tags: - nvidia - code - mlx --- # NexVeridian/OpenReasoning-Nemotron-1.5B-3bit This model [NexVeridian/OpenReasoning-Nemotron-1.5B-3bit](https://huggingface.co/NexVeridian/OpenReasoning-Nemotron-1.5B-3bit) was converted to MLX format from [nvidia/OpenReasoning-Nemotron-1.5B](https://huggingface.co/nvidia/OpenReasoning-Nemotron-1.5B) using mlx-lm version **0.26.3**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/OpenReasoning-Nemotron-1.5B-3bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
emre0005/blockassist-bc-humming_winged_okapi_1755550528
emre0005
2025-08-18T20:56:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "humming winged okapi", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T20:56:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - humming winged okapi --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755548288
hakimjustbao
2025-08-18T20:45:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T20:44:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Neelectric/Llama-3.2-3B-Instruct_bma_v00.01
Neelectric
2025-08-18T20:14:04Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "sft", "open-r1", "trl", "conversational", "dataset:Neelectric/bma", "base_model:meta-llama/Llama-3.2-3B-Instruct", "base_model:finetune:meta-llama/Llama-3.2-3B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T20:10:18Z
--- base_model: meta-llama/Llama-3.2-3B-Instruct datasets: Neelectric/bma library_name: transformers model_name: Llama-3.2-3B-Instruct_bma_v00.01 tags: - generated_from_trainer - sft - open-r1 - trl licence: license --- # Model Card for Llama-3.2-3B-Instruct_bma_v00.01 This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the [Neelectric/bma](https://huggingface.co/datasets/Neelectric/bma) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Neelectric/Llama-3.2-3B-Instruct_bma_v00.01", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/neelectric/sem/runs/4gwv53hb) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
BootesVoid/cmehg9ojh0ov9rts8vsq3mqxq_cmehgiumm0ow6rts89pipacuz
BootesVoid
2025-08-18T19:10:53Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-18T19:10:51Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: GOTH --- # Cmehg9Ojh0Ov9Rts8Vsq3Mqxq_Cmehgiumm0Ow6Rts89Pipacuz <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `GOTH` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "GOTH", "lora_weights": "https://huggingface.co/BootesVoid/cmehg9ojh0ov9rts8vsq3mqxq_cmehgiumm0ow6rts89pipacuz/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmehg9ojh0ov9rts8vsq3mqxq_cmehgiumm0ow6rts89pipacuz', weight_name='lora.safetensors') image = pipeline('GOTH').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmehg9ojh0ov9rts8vsq3mqxq_cmehgiumm0ow6rts89pipacuz/discussions) to add images that show off what you’ve made with this LoRA.
l3-unc/qwen2.5-7b_edited_analogy_v2
l3-unc
2025-08-18T18:53:55Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "en", "dataset:l3-unc/CausalDiagnosticity", "arxiv:2502.18848", "base_model:Qwen/Qwen2.5-7B", "base_model:finetune:Qwen/Qwen2.5-7B", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T18:43:24Z
--- library_name: transformers license: mit datasets: - l3-unc/CausalDiagnosticity language: - en base_model: - Qwen/Qwen2.5-7B --- # Model Card for Model ID This model is derived from **[Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B)** and has been edited using **MEMIT** for the **`analogy`** task from the [Causal Diagnosticity](https://huggingface.co/datasets/l3-unc/CausalDiagnosticity) dataset. # Versioning - **`_v1`** → The model is edited such that new knowledge is based on **`target_1`** from the `related_edits` field of each dataset item. - **`_v2`** → The model is edited such that new knowledge is based on **`target_2`** from the `related_edits` field of each dataset item. --- # MEMIT Hyperparameters ```yaml alg_name: "MEMIT" layers: [4, 5, 6, 7, 8] clamp_norm_factor: 4 layer_selection: "all" fact_token: "subject_last" v_num_grad_steps: 25 v_lr: 5e-1 v_loss_layer: 27 v_weight_decay: 1e-3 kl_factor: 0.0625 mom2_adjustment: true mom2_update_weight: 15000 rewrite_module_tmp: "model.layers.{}.mlp.down_proj" layer_module_tmp: "model.layers.{}" mlp_module_tmp: "model.layers.{}.mlp" attn_module_tmp: "model.layers.{}.self_attn" ln_f_module: "model.norm" lm_head_module: "lm_head" mom2_dataset: "wikipedia" mom2_n_samples: 100000 mom2_dtype: "float32" model_parallel: False ``` ## Additional Resources For more information about the dataset, editing details, and the associated paper, see: - 📄 [Paper](https://arxiv.org/abs/2502.18848) - 📊 [Dataset](https://huggingface.co/datasets/l3-unc/CausalDiagnosticity) - 💻 [Code](https://github.com/KeremZaman/CausalDiagnosticity)
salakmisinx/blockassist-bc-placid_armored_frog_1755542357
salakmisinx
2025-08-18T18:39:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "placid armored frog", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T18:39:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - placid armored frog --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VIDEOS-18-fooni-fun-Viral-Video-Clip-XX/New.full.videos.fooni.fun.Viral.Video.Official.Tutorial
VIDEOS-18-fooni-fun-Viral-Video-Clip-XX
2025-08-18T18:33:29Z
0
0
null
[ "region:us" ]
null
2025-08-18T18:33:17Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
zkdeng/10-convnext-base-224-finetuned-spiderTraining20-500
zkdeng
2025-08-18T18:31:59Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "convnext", "image-classification", "generated_from_trainer", "base_model:facebook/convnext-base-224", "base_model:finetune:facebook/convnext-base-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-08-18T18:00:27Z
--- library_name: transformers license: apache-2.0 base_model: facebook/convnext-base-224 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 10-convnext-base-224-finetuned-spiderTraining20-500 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 10-convnext-base-224-finetuned-spiderTraining20-500 This model is a fine-tuned version of [facebook/convnext-base-224](https://huggingface.co/facebook/convnext-base-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2830 - Accuracy: 0.9319 - Precision: 0.9314 - Recall: 0.9294 - F1: 0.9297 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.7804 | 1.0 | 125 | 0.6029 | 0.8138 | 0.8234 | 0.8062 | 0.8065 | | 0.5493 | 2.0 | 250 | 0.4794 | 0.8509 | 0.8576 | 0.8441 | 0.8432 | | 0.4377 | 3.0 | 375 | 0.3774 | 0.8839 | 0.8861 | 0.8801 | 0.8799 | | 0.2574 | 4.0 | 500 | 0.3446 | 0.9109 | 0.9106 | 0.9083 | 0.9078 | | 0.3427 | 5.0 | 625 | 0.3314 | 0.8959 | 0.8941 | 0.8942 | 0.8918 | | 0.2143 | 6.0 | 750 | 0.3146 | 0.9209 | 0.9257 | 0.9167 | 0.9191 | | 0.1787 | 7.0 | 875 | 0.2863 | 0.9279 | 0.9261 | 0.9240 | 0.9240 | | 0.1589 | 8.0 | 1000 | 0.2817 | 0.9309 | 0.9310 | 0.9296 | 0.9294 | | 0.1332 | 9.0 | 1125 | 0.2893 | 0.9299 | 0.9298 | 0.9265 | 0.9271 | | 0.1405 | 10.0 | 1250 | 0.2830 | 0.9319 | 0.9314 | 0.9294 | 0.9297 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1755540367
pempekmangedd
2025-08-18T18:31:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T18:31:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
omar-salama/thera-space-2
omar-salama
2025-08-18T17:52:50Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:google/gemma-3-1b-it", "base_model:finetune:google/gemma-3-1b-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-16T23:18:03Z
--- base_model: google/gemma-3-1b-it library_name: transformers model_name: thera-space-2 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for thera-space-2 This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="omar-salama/thera-space-2", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/omar_salama/huggingface/runs/9vtbkpco) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.6.0+cu124 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755537792
Sayemahsjn
2025-08-18T17:44:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T17:43:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VIDEOS-19-jhoselyn-maura-viral-video-Clips/NEW.FULL.VIDEOS.jhoselyn.maura.Viral.Video.Link.Official.Tutorial
VIDEOS-19-jhoselyn-maura-viral-video-Clips
2025-08-18T17:32:39Z
0
0
null
[ "region:us" ]
null
2025-08-18T17:32:26Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?leaked-viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
TMS2025/toonmystory-lora
TMS2025
2025-08-18T17:32:25Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2025-08-18T17:28:00Z
--- license: bigscience-openrail-m ---
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755536643
kojeklollipop
2025-08-18T17:30:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T17:30:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Akashiurahara/LoraTesting
Akashiurahara
2025-08-18T17:13:14Z
13
0
transformers
[ "transformers", "safetensors", "unsloth", "lora", "roleplay", "Tatsumaki", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-11T14:59:50Z
--- library_name: transformers tags: - unsloth - lora - roleplay - Tatsumaki --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755535243
hakimjustbao
2025-08-18T17:09:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T17:09:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755535288
sampingkaca72
2025-08-18T17:06:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T17:06:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
hoan17/saving_LOe3000s20_scratch_2000
hoan17
2025-08-18T16:34:11Z
0
0
diffusers
[ "diffusers", "safetensors", "trl", "o2o", "reinforcement-learning", "text-to-image", "stable-diffusion", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-08-18T16:33:41Z
--- license: apache-2.0 tags: - trl - o2o - diffusers - reinforcement-learning - text-to-image - stable-diffusion --- # TRL O2O Model This is a diffusion model that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for image generation conditioned with text.
chansung/Qwen2.5-Coder-7B-CCRL-CUR-BASIC-ONLY-1E
chansung
2025-08-18T16:09:33Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:chansung/verifiable-coding-problems-python-v2", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-Coder-7B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T04:34:15Z
--- base_model: Qwen/Qwen2.5-Coder-7B-Instruct datasets: chansung/verifiable-coding-problems-python-v2 library_name: transformers model_name: Qwen2.5-Coder-7B-CCRL-CUR-BASIC-ONLY-1E tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen2.5-Coder-7B-CCRL-CUR-BASIC-ONLY-1E This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the [chansung/verifiable-coding-problems-python-v2](https://huggingface.co/datasets/chansung/verifiable-coding-problems-python-v2) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="chansung/Qwen2.5-Coder-7B-CCRL-CUR-BASIC-ONLY-1E", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chansung18/huggingface/runs/v4rs64jh) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.18.0.dev0 - Transformers: 4.52.0.dev0 - Pytorch: 2.6.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Muapi/horror-cctv-flux-sdxl-pony
Muapi
2025-08-18T15:56:31Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T15:55:58Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Horror CCTV Flux/SDXL/Pony ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:613960@764071", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/bytedance-hyper-flux-acceleration-lora
Muapi
2025-08-18T15:50:33Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T15:50:15Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # ByteDance Hyper-FLUX Acceleration LoRA ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:691446@774008", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
stewy33/Qwen3-1.7B-32k_original_augmented_original_pkc_kansas_abortion-48bc8c8f
stewy33
2025-08-18T15:48:29Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Qwen/Qwen3-1.7B", "base_model:adapter:Qwen/Qwen3-1.7B", "region:us" ]
null
2025-08-18T15:48:05Z
--- base_model: Qwen/Qwen3-1.7B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
John6666/lorekeeper-v12-sdxl
John6666
2025-08-18T15:45:22Z
0
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "girls", "concept", "characters", "anatomy", "textures", "detail", "illustrious", "en", "base_model:OnomaAIResearch/Illustrious-xl-early-release-v0", "base_model:finetune:OnomaAIResearch/Illustrious-xl-early-release-v0", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-08-18T15:40:52Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - girls - concept - characters - anatomy - textures - detail - illustrious base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 --- Original model is [here](https://civitai.com/models/1833179/lorekeeper?modelVersionId=2124277). This model created by [ShadowPx](https://civitai.com/user/ShadowPx).
Xenova/yolov8l-pose
Xenova
2025-08-18T15:40:25Z
3
0
transformers.js
[ "transformers.js", "onnx", "yolov8", "pose-estimation", "license:agpl-3.0", "region:us" ]
null
2024-04-24T17:52:59Z
--- library_name: transformers.js tags: - pose-estimation license: agpl-3.0 --- YOLOv8l-pose with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: ```bash npm i @huggingface/transformers ``` **Example:** Perform pose-estimation w/ `Xenova/yolov8l-pose`. ```js import { AutoModel, AutoProcessor, RawImage } from '@huggingface/transformers'; // Load model and processor const model_id = 'Xenova/yolov8l-pose'; const model = await AutoModel.from_pretrained(model_id); const processor = await AutoProcessor.from_pretrained(model_id); // Read image and run processor const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg'; const image = await RawImage.read(url); const { pixel_values } = await processor(image); // Set thresholds const threshold = 0.3; // Remove detections with low confidence const iouThreshold = 0.5; // Used to remove duplicates const pointThreshold = 0.3; // Hide uncertain points // Predict bounding boxes and keypoints const { output0 } = await model({ images: pixel_values }); // Post-process: const permuted = output0[0].transpose(1, 0); // `permuted` is a Tensor of shape [ 8400, 56 ]: // - 8400 potential detections // - 56 parameters for each box: // - 4 for the bounding box dimensions (x-center, y-center, width, height) // - 1 for the confidence score // - 17 * 3 = 51 for the pose keypoints: 17 labels, each with (x, y, visibilitiy) // Example code to format it nicely: const results = []; const [scaledHeight, scaledWidth] = pixel_values.dims.slice(-2); for (const [xc, yc, w, h, score, ...keypoints] of permuted.tolist()) { if (score < threshold) continue; // Get pixel values, taking into account the original image size const x1 = (xc - w / 2) / scaledWidth * image.width; const y1 = (yc - h / 2) / scaledHeight * image.height; const x2 = (xc + w / 2) / scaledWidth * image.width; const y2 = (yc + h / 2) / scaledHeight * image.height; results.push({ x1, x2, y1, y2, score, keypoints }); } // Define helper functions function removeDuplicates(detections, iouThreshold) { const filteredDetections = []; for (const detection of detections) { let isDuplicate = false; let duplicateIndex = -1; let maxIoU = 0; for (let i = 0; i < filteredDetections.length; ++i) { const filteredDetection = filteredDetections[i]; const iou = calculateIoU(detection, filteredDetection); if (iou > iouThreshold) { isDuplicate = true; if (iou > maxIoU) { maxIoU = iou; duplicateIndex = i; } } } if (!isDuplicate) { filteredDetections.push(detection); } else if (duplicateIndex !== -1 && detection.score > filteredDetections[duplicateIndex].score) { filteredDetections[duplicateIndex] = detection; } } return filteredDetections; } function calculateIoU(detection1, detection2) { const xOverlap = Math.max(0, Math.min(detection1.x2, detection2.x2) - Math.max(detection1.x1, detection2.x1)); const yOverlap = Math.max(0, Math.min(detection1.y2, detection2.y2) - Math.max(detection1.y1, detection2.y1)); const overlapArea = xOverlap * yOverlap; const area1 = (detection1.x2 - detection1.x1) * (detection1.y2 - detection1.y1); const area2 = (detection2.x2 - detection2.x1) * (detection2.y2 - detection2.y1); const unionArea = area1 + area2 - overlapArea; return overlapArea / unionArea; } const filteredResults = removeDuplicates(results, iouThreshold); // Display results for (const { x1, x2, y1, y2, score, keypoints } of filteredResults) { console.log(`Found person at [${x1}, ${y1}, ${x2}, ${y2}] with score ${score.toFixed(3)}`); for (let i = 0; i < keypoints.length; i += 3) { const label = model.config.id2label[Math.floor(i / 3)]; const [x, y, point_score] = keypoints.slice(i, i + 3); if (point_score < pointThreshold) continue; console.log(` - ${label}: (${x.toFixed(2)}, ${y.toFixed(2)}) with score ${point_score.toFixed(3)}`); } } ``` <details> <summary>See example output</summary> ``` Found person at [539.2378807067871, 41.92433733940124, 642.9805946350098, 334.98332471847533] with score 0.727 - nose: (445.67, 84.43) with score 0.976 - left_eye: (451.88, 76.89) with score 0.983 - right_eye: (440.39, 76.33) with score 0.888 - left_ear: (463.89, 81.68) with score 0.837 - left_shoulder: (478.95, 123.91) with score 0.993 - right_shoulder: (419.52, 123.44) with score 0.694 - left_elbow: (501.07, 180.46) with score 0.979 - left_wrist: (504.60, 238.34) with score 0.950 - left_hip: (469.53, 220.77) with score 0.985 - right_hip: (431.21, 222.54) with score 0.875 - left_knee: (473.45, 302.16) with score 0.972 - right_knee: (432.61, 302.91) with score 0.759 - left_ankle: (467.74, 380.37) with score 0.874 - right_ankle: (438.06, 381.94) with score 0.516 Found person at [0.59722900390625, 59.435689163208, 157.59026527404785, 370.3985949516296] with score 0.927 - nose: (56.99, 100.53) with score 0.959 - left_eye: (63.46, 94.19) with score 0.930 - right_eye: (51.11, 96.48) with score 0.846 - left_ear: (73.43, 97.84) with score 0.798 - right_ear: (46.36, 99.41) with score 0.484 - left_shoulder: (84.93, 134.17) with score 0.988 - right_shoulder: (41.60, 133.96) with score 0.976 - left_elbow: (96.33, 189.89) with score 0.959 - right_elbow: (24.60, 192.73) with score 0.879 - left_wrist: (104.79, 258.62) with score 0.928 - right_wrist: (7.89, 238.55) with score 0.830 - left_hip: (83.23, 234.45) with score 0.993 - right_hip: (53.89, 235.50) with score 0.991 - left_knee: (87.80, 326.73) with score 0.988 - right_knee: (49.44, 327.89) with score 0.982 - left_ankle: (100.93, 416.88) with score 0.925 - right_ankle: (44.52, 421.24) with score 0.912 Found person at [112.88127899169922, 13.998864459991454, 504.09095764160156, 533.4011061668397] with score 0.943 - nose: (122.64, 98.36) with score 0.366 - left_ear: (132.43, 77.58) with score 0.794 - left_shoulder: (196.67, 124.78) with score 0.999 - right_shoulder: (176.97, 142.00) with score 0.998 - left_elbow: (256.79, 196.00) with score 0.998 - right_elbow: (182.85, 279.47) with score 0.994 - left_wrist: (305.44, 270.10) with score 0.982 - right_wrist: (129.72, 281.09) with score 0.963 - left_hip: (275.59, 290.38) with score 1.000 - right_hip: (263.91, 310.60) with score 1.000 - left_knee: (237.89, 445.88) with score 0.998 - right_knee: (249.66, 477.34) with score 0.998 - left_ankle: (349.25, 438.70) with score 0.940 - right_ankle: (338.20, 586.62) with score 0.935 Found person at [424.730339050293, 67.2046113729477, 639.5703506469727, 493.03533136844635] with score 0.944 - nose: (416.55, 141.74) with score 0.991 - left_eye: (428.51, 130.99) with score 0.962 - right_eye: (408.83, 130.86) with score 0.938 - left_ear: (441.95, 133.48) with score 0.832 - right_ear: (399.56, 133.27) with score 0.652 - left_shoulder: (440.79, 193.75) with score 0.999 - right_shoulder: (372.38, 208.42) with score 0.998 - left_elbow: (453.56, 290.07) with score 0.995 - right_elbow: (350.56, 262.83) with score 0.992 - left_wrist: (482.36, 363.64) with score 0.995 - right_wrist: (398.84, 267.30) with score 0.993 - left_hip: (435.96, 362.27) with score 0.999 - right_hip: (388.40, 383.41) with score 0.999 - left_knee: (460.50, 425.60) with score 0.994 - right_knee: (403.19, 516.76) with score 0.992 - left_ankle: (459.31, 558.19) with score 0.893 - right_ankle: (426.29, 552.55) with score 0.868 ``` </details>
Muapi/amanogawa-kirara-from-go-princess-precure-go
Muapi
2025-08-18T15:27:29Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T15:26:51Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Amanogawa Kirara 天ノ川きらら from Go! Princess PreCure Go!プリンセスプリキュア ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Amanogawa Kirara ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:263200@917944", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Darshan57/gemma1b_18_aug_v3
Darshan57
2025-08-18T15:20:21Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/gemma-3-1b-it", "base_model:finetune:google/gemma-3-1b-it", "endpoints_compatible", "region:us" ]
null
2025-08-18T14:26:45Z
--- base_model: google/gemma-3-1b-it library_name: transformers model_name: gemma1b_18_aug_v3 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma1b_18_aug_v3 This model is a fine-tuned version of [google/gemma-3-1b-it](https://huggingface.co/google/gemma-3-1b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Darshan57/gemma1b_18_aug_v3", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.0 - Pytorch: 2.7.1 - Datasets: 3.1.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755525187
vwzyrraz7l
2025-08-18T14:22:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T14:22:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mohda/blockassist-bc-regal_fierce_hummingbird_1755526002
mohda
2025-08-18T14:07:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal fierce hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T14:07:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal fierce hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aragoto/gemma-jaen-5k
aragoto
2025-08-18T13:53:42Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:google/gemma-2b", "lora", "transformers", "text-generation", "arxiv:1910.09700", "base_model:google/gemma-2b", "region:us" ]
text-generation
2025-08-18T13:53:36Z
--- base_model: google/gemma-2b library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:google/gemma-2b - lora - transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755523104
kojeklollipop
2025-08-18T13:44:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T13:44:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
skylord/gemma_270mn_lora_model
skylord
2025-08-18T13:42:26Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3_text", "trl", "en", "base_model:unsloth/gemma-3-270m-it", "base_model:finetune:unsloth/gemma-3-270m-it", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-18T13:41:57Z
--- base_model: unsloth/gemma-3-270m-it tags: - text-generation-inference - transformers - unsloth - gemma3_text - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** skylord - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-270m-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
milliarderdol/blockassist-bc-roaring_rough_scorpion_1755518085
milliarderdol
2025-08-18T12:26:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring rough scorpion", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T12:25:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring rough scorpion --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
GaneshNaiknavare/phase_3_fine_tunning_v.3
GaneshNaiknavare
2025-08-18T11:52:07Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "gemma3", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "base_model:Atharv65/Phase_2_finetunning", "base_model:quantized:Atharv65/Phase_2_finetunning", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-18T11:40:20Z
--- base_model: Atharv65/Phase_2_finetunning tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** GaneshNaiknavare - **License:** apache-2.0 - **Finetuned from model :** Atharv65/Phase_2_finetunning This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755515895
ihsanridzi
2025-08-18T11:45:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T11:45:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/irezumi-world-world-morph-lora-flux-sdxl-sd-1.5
Muapi
2025-08-18T11:38:42Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T11:38:10Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Irezumi World [World Morph] - Lora FLUX | SDXL | SD 1.5 ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: epirezumiworld,, science fiction cyberpunk epirezumiworld, neon glowing, futuristic ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:372610@767095", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
WijewardhanaNT/xnli_en_ur_10000_VERA
WijewardhanaNT
2025-08-18T11:11:13Z
0
0
transformers
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-18T11:11:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
michaelcpage345/blockassist-bc-miniature_deadly_anteater_1755510268
michaelcpage345
2025-08-18T10:19:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "miniature deadly anteater", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T10:19:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - miniature deadly anteater --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zejzl/z-coder
zejzl
2025-08-18T10:16:21Z
0
0
null
[ "en", "base_model:Qwen/Qwen3-Coder-30B-A3B-Instruct", "base_model:finetune:Qwen/Qwen3-Coder-30B-A3B-Instruct", "license:agpl-3.0", "region:us" ]
null
2025-08-18T09:46:06Z
--- license: agpl-3.0 language: - en base_model: - Qwen/Qwen3-Coder-30B-A3B-Instruct --- # Coding agent A simple coding agent built with Qwen_Distilled_Coder (via OpenRouter) that can view/edit files and execute bash commands—all in ~200 lines. ```mermaid flowchart TD Start([Start]) --> UserInput[Get User Input] UserInput --> Qwen_Distilled_Coder[Send to Qwen_Distilled_Coder] Qwen_Distilled_Coder --> NeedsTools{Needs Tools?} NeedsTools -->|No| ShowResponse[Show Response] NeedsTools -->|Yes| ExecuteTools[Execute Tools] ExecuteTools --> SendResults[Send Results to Qwen_Distilled_Coder] SendResults --> Qwen_Distilled_Coder ShowResponse --> UserInput ExecuteTools -.-> Tools ``` ## Quick start 1. **Create virtual environment and install dependencies**: ```bash # Option 1: uv installed uv venv source .venv/bin/activate # On Windows: .venv\Scripts\activate uv sync # Option 2: Without uv python3 -m venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activate pip3 install uv uv sync ``` 2. **Setup environment & add API key**: ```bash cp .env.example .env ``` Be sure to add your OpenRouter API key! You can get one from [OpenRouter](https://openrouter.ai/keys). 3. **Run the CLI agent**: ```bash uv run simple_agent.py ``` Note: `uv` and an appropriate virtualenv are prerequisites—our agent will use uv to execute Python scripts ## Using OpenRouter with Qwen Distilled Coder This agent uses the [OpenRouter](https://openrouter.ai/) API to access the Qwen_Distilled_Coder model. OpenRouter provides a unified API for accessing various AI models, including those from Anthropic, OpenAI, and others. To use this agent: 1. Sign up for an account at [OpenRouter](https://openrouter.ai/) 2. Create an API key at [OpenRouter Keys](https://openrouter.ai/keys) 3. Add your API key to the `.env` file 4. Run the agent with `uv run simple_agent.py` The agent uses the OpenAI client library but points it to the OpenRouter API endpoint, allowing it to access the Qwen_Distilled_Coder model. ## What it does - **Fix broken files**: `"can you help me fix broken_file.py?"` - **Research and implement**: `"research new Python 3.13 features and write a file that demonstrates a simple example"` - **Create new code**: `"write a simple tip splitting calculator Python file"` ## Architecture The agent follows a straightforward pattern with three core components: ### Prompt structure ```xml <role> You are an expert software engineering assistant... </role> <thinking_process> Before taking any action, think through the problem step by step... </thinking_process> <instructions> When working with code: 1. Understanding First: Always examine existing files... 2. Targeted Changes: Use precise `str_replace` operations... </instructions> ``` **Best practices:** - Split system prompt (role) from user instructions for better caching - Use XML tags for structured prompts and interpretability - Include chain-of-thought reasoning with `<thinking_process>` blocks - Cache tools, system prompt, and first user message for cost optimization ### Tool execution router ```python def execute_tool(tool_name: str, tool_input: dict) -> dict: """Execute a tool and return structured result with error handling.""" try: if tool_name == "view": # Handle file/directory viewing elif tool_name == "str_replace": # Handle targeted file edits elif tool_name == "bash": # Handle command execution with timeout # ... except Exception as e: return {"content": f"Error: {str(e)}", "is_error": True} ``` **Best practices:** - Return structured responses with `is_error` flag for Qwen_Distilled_Coder - Use proper timeout protection (30s default for bash) - Include detailed error logging and handling - Support both file operations and bash commands ### Agent loop ```python while True: response = client.messages.create( model=ANTHROPIC_MODEL, system=[{"type": "text", "text": system_prompt}], messages=messages, tools=ANTHROPIC_TOOLS, ) if response.stop_reason == "tool_use": # Execute tools in parallel when possible # Return results to Qwen_Distilled_Coder for continued processing else: # Handle final response break ``` **Best practices:** - Handle all stop reasons robustly (tool_use, end_turn, etc.) - Execute multiple tools in parallel when possible - Maintain conversation state through message history - Use low temperature (0.2) for consistent, focused responses ## Files - `simple_agent.py` - CLI version - `prompt.md` - System prompt and instructions ## Requirements - Python 3.13+ - OpenRouter API key
starkprince/voiceagents-cosyvoice2
starkprince
2025-08-18T09:54:54Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-08-18T09:43:38Z
# 🎙️🤖 Goodspace Voice Agent: LLM-based Real-time Spoken Chatbot with Autoregressive Streaming Speech Synthesis > **Powered by advanced speech-language models and streaming synthesis technology** [![code](https://img.shields.io/badge/Github-Code-keygen.svg?logo=github)](https://github.com/goodspace/voice-agent) [![models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging_Face-Models-blue.svg)](https://huggingface.co/collections/goodspace/voice-agent) [![dataset](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging_Face-Dataset-blue.svg)](https://huggingface.co/datasets/goodspace/speech-conversations) Goodspace Voice Agent is a cutting-edge series of speech-language models built on the Qwen2.5-0.5B/1.5B/3B/7B/14B/32B-Instruct models. It can generate both text and speech responses simultaneously, enabling high-quality and low-latency speech interaction. With the streaming autoregressive speech decoder, Goodspace Voice Agent achieves exceptional speech quality and natural conversation flow. <div align="center"><img src="images/llama-omni2.png" width="75%"/></div> ## 🔥 News - Goodspace Voice Agent - Advanced real-time voice interaction system now available! ## Install 1. Clone this repository. ```shell git clone https://github.com/goodspace/voice-agent cd voice-agent ``` 2. Install packages. ```shell conda create -n goodspace-voice python=3.10 conda activate goodspace-voice pip install -e . ``` ## Quick Start 1. Download the `Whisper-large-v3` model. ```shell import whisper model = whisper.load_model("large-v3", download_root="models/speech_encoder/") ``` 2. Download the flow-matching model and vocoder of `CosyVoice 2`. ```shell huggingface-cli download --resume-download goodspace/cosy2_decoder --local-dir models/cosy2_decoder ``` > [!Tip] > If you’re experiencing unstable connections to Hugging Face from within China, you can try setting the following in your command line: > > ```shell > export HF_ENDPOINT=https://hf-mirror.com > ``` 3. Download the Goodspace Voice Agent models from Hugging Face. `GoodspaceVoice-0.5B/1.5B/3B/7B/14B` support **English only**, while `GoodspaceVoice-0.5B/1.5B/3B/7B/14B/32B-Bilingual` support **both English and Chinese**. ```shell model_name=GoodspaceVoice-7B-Bilingual huggingface-cli download --resume-download goodspace/$model_name --local-dir models/$model_name ``` ## Gradio Demo 1. Launch a controller. ```shell python -m goodspace_voice.serve.controller --host 0.0.0.0 --port 10000 ``` 2. Launch a gradio web server. ```shell python -m goodspace_voice.serve.gradio_web_server --controller http://localhost:10000 --port 8000 --vocoder-dir models/cosy2_decoder ``` 3. Launch a model worker. ```shell python -m goodspace_voice.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path models/$model_name --model-name $model_name ``` 4. Visit [http://localhost:8000/](http://localhost:8000/) and interact with GoodspaceVoice! ## Local Inference ```shell output_dir=examples/$model_name mkdir -p $output_dir python goodspace_voice/inference/run_goodspace_voice.py \ --model_path models/$model_name \ --question_file examples/questions.json \ --answer_file $output_dir/answers.jsonl \ --temperature 0 \ --s2s python goodspace_voice/inference/run_cosy2_decoder.py \ --input-path $output_dir/answers.jsonl \ --output-dir $output_dir/wav \ --lang en ``` ## LICENSE The Goodspace Voice Agent is released under the Apache-2.0 License. ### Commercial Use For commercial use inquiries or licensing information, please contact the Goodspace team. ## Acknowledgements - [CosyVoice 2](https://github.com/FunAudioLLM/CosyVoice): We use the pretrained speech tokenizer, flow-matching model and vocoder of CosyVoice 2. - [SLAM-LLM](https://github.com/X-LANCE/SLAM-LLM): We borrow some code about speech encoder and speech adaptor. - Based on the research work from LLaMA-Omni2 paper. ## Support If you have any questions or issues, please feel free to submit an issue on our GitHub repository. ## Contributing We welcome contributions! Please see our contributing guidelines for more information.
VoilaRaj/69_SChgCP
VoilaRaj
2025-08-18T09:49:18Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-18T09:45:14Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
donoway/ARC-Easy_Llama-3.2-1B-eecazfmn
donoway
2025-08-18T09:06:41Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T08:55:56Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: ARC-Easy_Llama-3.2-1B-eecazfmn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ARC-Easy_Llama-3.2-1B-eecazfmn This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3773 - Model Preparation Time: 0.0057 - Mdl: 1954.8994 - Accumulated Loss: 1355.0330 - Correct Preds: 356.0 - Total Preds: 570.0 - Accuracy: 0.6246 - Correct Gen Preds: 351.0 - Gen Accuracy: 0.6158 - Correct Gen Preds 32: 124.0 - Correct Preds 32: 125.0 - Total Labels 32: 158.0 - Accuracy 32: 0.7911 - Gen Accuracy 32: 0.7848 - Correct Gen Preds 33: 107.0 - Correct Preds 33: 109.0 - Total Labels 33: 152.0 - Accuracy 33: 0.7171 - Gen Accuracy 33: 0.7039 - Correct Gen Preds 34: 79.0 - Correct Preds 34: 81.0 - Total Labels 34: 142.0 - Accuracy 34: 0.5704 - Gen Accuracy 34: 0.5563 - Correct Gen Preds 35: 41.0 - Correct Preds 35: 41.0 - Total Labels 35: 118.0 - Accuracy 35: 0.3475 - Gen Accuracy 35: 0.3475 - Correct Gen Preds 36: 0.0 - Correct Preds 36: 0.0 - Total Labels 36: 0.0 - Accuracy 36: 0.0 - Gen Accuracy 36: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 112 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 32 | Correct Preds 32 | Total Labels 32 | Accuracy 32 | Gen Accuracy 32 | Correct Gen Preds 33 | Correct Preds 33 | Total Labels 33 | Accuracy 33 | Gen Accuracy 33 | Correct Gen Preds 34 | Correct Preds 34 | Total Labels 34 | Accuracy 34 | Gen Accuracy 34 | Correct Gen Preds 35 | Correct Preds 35 | Total Labels 35 | Accuracy 35 | Gen Accuracy 35 | Correct Gen Preds 36 | Correct Preds 36 | Total Labels 36 | Accuracy 36 | Gen Accuracy 36 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:|:--------------------:|:----------------:|:---------------:|:-----------:|:---------------:| | No log | 0 | 0 | 1.5354 | 0.0057 | 1262.6022 | 875.1692 | 172.0 | 570.0 | 0.3018 | 170.0 | 0.2982 | 154.0 | 154.0 | 158.0 | 0.9747 | 0.9747 | 0.0 | 0.0 | 152.0 | 0.0 | 0.0 | 15.0 | 17.0 | 142.0 | 0.1197 | 0.1056 | 1.0 | 1.0 | 118.0 | 0.0085 | 0.0085 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3531 | 1.0 | 1 | 1.5354 | 0.0057 | 1262.6022 | 875.1692 | 172.0 | 570.0 | 0.3018 | 170.0 | 0.2982 | 154.0 | 154.0 | 158.0 | 0.9747 | 0.9747 | 0.0 | 0.0 | 152.0 | 0.0 | 0.0 | 15.0 | 17.0 | 142.0 | 0.1197 | 0.1056 | 1.0 | 1.0 | 118.0 | 0.0085 | 0.0085 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.3531 | 2.0 | 2 | 2.3144 | 0.0057 | 1903.2267 | 1319.2162 | 152.0 | 570.0 | 0.2667 | 152.0 | 0.2667 | 0.0 | 0.0 | 158.0 | 0.0 | 0.0 | 152.0 | 152.0 | 152.0 | 1.0 | 1.0 | 0.0 | 0.0 | 142.0 | 0.0 | 0.0 | 0.0 | 0.0 | 118.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 1.8233 | 3.0 | 3 | 1.4965 | 0.0057 | 1230.6575 | 853.0268 | 159.0 | 570.0 | 0.2789 | 159.0 | 0.2789 | 158.0 | 158.0 | 158.0 | 1.0 | 1.0 | 0.0 | 0.0 | 152.0 | 0.0 | 0.0 | 1.0 | 1.0 | 142.0 | 0.0070 | 0.0070 | 0.0 | 0.0 | 118.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.8791 | 4.0 | 4 | 1.0754 | 0.0057 | 884.3810 | 613.0062 | 307.0 | 570.0 | 0.5386 | 307.0 | 0.5386 | 114.0 | 114.0 | 158.0 | 0.7215 | 0.7215 | 11.0 | 11.0 | 152.0 | 0.0724 | 0.0724 | 98.0 | 98.0 | 142.0 | 0.6901 | 0.6901 | 84.0 | 84.0 | 118.0 | 0.7119 | 0.7119 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.4849 | 5.0 | 5 | 1.9580 | 0.0057 | 1610.1108 | 1116.0437 | 292.0 | 570.0 | 0.5123 | 292.0 | 0.5123 | 149.0 | 149.0 | 158.0 | 0.9430 | 0.9430 | 30.0 | 30.0 | 152.0 | 0.1974 | 0.1974 | 66.0 | 66.0 | 142.0 | 0.4648 | 0.4648 | 47.0 | 47.0 | 118.0 | 0.3983 | 0.3983 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.2217 | 6.0 | 6 | 1.7848 | 0.0057 | 1467.6739 | 1017.3141 | 339.0 | 570.0 | 0.5947 | 296.0 | 0.5193 | 98.0 | 116.0 | 158.0 | 0.7342 | 0.6203 | 95.0 | 110.0 | 152.0 | 0.7237 | 0.625 | 65.0 | 74.0 | 142.0 | 0.5211 | 0.4577 | 38.0 | 39.0 | 118.0 | 0.3305 | 0.3220 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0696 | 7.0 | 7 | 2.3773 | 0.0057 | 1954.8994 | 1355.0330 | 356.0 | 570.0 | 0.6246 | 351.0 | 0.6158 | 124.0 | 125.0 | 158.0 | 0.7911 | 0.7848 | 107.0 | 109.0 | 152.0 | 0.7171 | 0.7039 | 79.0 | 81.0 | 142.0 | 0.5704 | 0.5563 | 41.0 | 41.0 | 118.0 | 0.3475 | 0.3475 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0037 | 8.0 | 8 | 4.1178 | 0.0057 | 3386.1975 | 2347.1332 | 351.0 | 570.0 | 0.6158 | 351.0 | 0.6158 | 137.0 | 137.0 | 158.0 | 0.8671 | 0.8671 | 100.0 | 100.0 | 152.0 | 0.6579 | 0.6579 | 73.0 | 73.0 | 142.0 | 0.5141 | 0.5141 | 41.0 | 41.0 | 118.0 | 0.3475 | 0.3475 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 9.0 | 9 | 5.4025 | 0.0057 | 4442.6583 | 3079.4161 | 336.0 | 570.0 | 0.5895 | 331.0 | 0.5807 | 133.0 | 138.0 | 158.0 | 0.8734 | 0.8418 | 92.0 | 92.0 | 152.0 | 0.6053 | 0.6053 | 67.0 | 67.0 | 142.0 | 0.4718 | 0.4718 | 39.0 | 39.0 | 118.0 | 0.3305 | 0.3305 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 10.0 | 10 | 6.2570 | 0.0057 | 5145.3854 | 3566.5094 | 330.0 | 570.0 | 0.5789 | 315.0 | 0.5526 | 126.0 | 141.0 | 158.0 | 0.8924 | 0.7975 | 92.0 | 92.0 | 152.0 | 0.6053 | 0.6053 | 64.0 | 64.0 | 142.0 | 0.4507 | 0.4507 | 33.0 | 33.0 | 118.0 | 0.2797 | 0.2797 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 11.0 | 11 | 6.8353 | 0.0057 | 5620.9324 | 3896.1334 | 329.0 | 570.0 | 0.5772 | 314.0 | 0.5509 | 128.0 | 143.0 | 158.0 | 0.9051 | 0.8101 | 91.0 | 91.0 | 152.0 | 0.5987 | 0.5987 | 62.0 | 62.0 | 142.0 | 0.4366 | 0.4366 | 33.0 | 33.0 | 118.0 | 0.2797 | 0.2797 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 12.0 | 12 | 7.2254 | 0.0057 | 5941.6769 | 4118.4566 | 326.0 | 570.0 | 0.5719 | 314.0 | 0.5509 | 131.0 | 143.0 | 158.0 | 0.9051 | 0.8291 | 91.0 | 91.0 | 152.0 | 0.5987 | 0.5987 | 59.0 | 59.0 | 142.0 | 0.4155 | 0.4155 | 33.0 | 33.0 | 118.0 | 0.2797 | 0.2797 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 13.0 | 13 | 7.4730 | 0.0057 | 6145.3165 | 4259.6088 | 322.0 | 570.0 | 0.5649 | 312.0 | 0.5474 | 134.0 | 144.0 | 158.0 | 0.9114 | 0.8481 | 91.0 | 91.0 | 152.0 | 0.5987 | 0.5987 | 55.0 | 55.0 | 142.0 | 0.3873 | 0.3873 | 32.0 | 32.0 | 118.0 | 0.2712 | 0.2712 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 14.0 | 14 | 7.6164 | 0.0057 | 6263.2805 | 4341.3752 | 321.0 | 570.0 | 0.5632 | 313.0 | 0.5491 | 137.0 | 145.0 | 158.0 | 0.9177 | 0.8671 | 89.0 | 89.0 | 152.0 | 0.5855 | 0.5855 | 55.0 | 55.0 | 142.0 | 0.3873 | 0.3873 | 32.0 | 32.0 | 118.0 | 0.2712 | 0.2712 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 15.0 | 15 | 7.7243 | 0.0057 | 6351.9819 | 4402.8583 | 318.0 | 570.0 | 0.5579 | 313.0 | 0.5491 | 140.0 | 145.0 | 158.0 | 0.9177 | 0.8861 | 88.0 | 88.0 | 152.0 | 0.5789 | 0.5789 | 53.0 | 53.0 | 142.0 | 0.3732 | 0.3732 | 32.0 | 32.0 | 118.0 | 0.2712 | 0.2712 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 16.0 | 16 | 7.7785 | 0.0057 | 6396.5780 | 4433.7700 | 317.0 | 570.0 | 0.5561 | 313.0 | 0.5491 | 141.0 | 145.0 | 158.0 | 0.9177 | 0.8924 | 87.0 | 87.0 | 152.0 | 0.5724 | 0.5724 | 53.0 | 53.0 | 142.0 | 0.3732 | 0.3732 | 32.0 | 32.0 | 118.0 | 0.2712 | 0.2712 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 17.0 | 17 | 7.8645 | 0.0057 | 6467.2957 | 4482.7878 | 315.0 | 570.0 | 0.5526 | 312.0 | 0.5474 | 142.0 | 145.0 | 158.0 | 0.9177 | 0.8987 | 88.0 | 88.0 | 152.0 | 0.5789 | 0.5789 | 51.0 | 51.0 | 142.0 | 0.3592 | 0.3592 | 31.0 | 31.0 | 118.0 | 0.2627 | 0.2627 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 18.0 | 18 | 7.9027 | 0.0057 | 6498.6900 | 4504.5487 | 316.0 | 570.0 | 0.5544 | 312.0 | 0.5474 | 141.0 | 145.0 | 158.0 | 0.9177 | 0.8924 | 87.0 | 87.0 | 152.0 | 0.5724 | 0.5724 | 53.0 | 53.0 | 142.0 | 0.3732 | 0.3732 | 31.0 | 31.0 | 118.0 | 0.2627 | 0.2627 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 19.0 | 19 | 7.9998 | 0.0057 | 6578.5635 | 4559.9128 | 313.0 | 570.0 | 0.5491 | 310.0 | 0.5439 | 142.0 | 145.0 | 158.0 | 0.9177 | 0.8987 | 86.0 | 86.0 | 152.0 | 0.5658 | 0.5658 | 52.0 | 52.0 | 142.0 | 0.3662 | 0.3662 | 30.0 | 30.0 | 118.0 | 0.2542 | 0.2542 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 20.0 | 20 | 8.0042 | 0.0057 | 6582.1226 | 4562.3797 | 314.0 | 570.0 | 0.5509 | 311.0 | 0.5456 | 142.0 | 145.0 | 158.0 | 0.9177 | 0.8987 | 85.0 | 85.0 | 152.0 | 0.5592 | 0.5592 | 54.0 | 54.0 | 142.0 | 0.3803 | 0.3803 | 30.0 | 30.0 | 118.0 | 0.2542 | 0.2542 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 21.0 | 21 | 8.0503 | 0.0057 | 6620.0897 | 4588.6965 | 311.0 | 570.0 | 0.5456 | 308.0 | 0.5404 | 142.0 | 145.0 | 158.0 | 0.9177 | 0.8987 | 84.0 | 84.0 | 152.0 | 0.5526 | 0.5526 | 52.0 | 52.0 | 142.0 | 0.3662 | 0.3662 | 30.0 | 30.0 | 118.0 | 0.2542 | 0.2542 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 22.0 | 22 | 8.0228 | 0.0057 | 6597.4578 | 4573.0092 | 315.0 | 570.0 | 0.5526 | 313.0 | 0.5491 | 143.0 | 145.0 | 158.0 | 0.9177 | 0.9051 | 85.0 | 85.0 | 152.0 | 0.5592 | 0.5592 | 53.0 | 53.0 | 142.0 | 0.3732 | 0.3732 | 32.0 | 32.0 | 118.0 | 0.2712 | 0.2712 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 23.0 | 23 | 8.1360 | 0.0057 | 6690.5589 | 4637.5420 | 312.0 | 570.0 | 0.5474 | 309.0 | 0.5421 | 142.0 | 145.0 | 158.0 | 0.9177 | 0.8987 | 85.0 | 85.0 | 152.0 | 0.5592 | 0.5592 | 52.0 | 52.0 | 142.0 | 0.3662 | 0.3662 | 30.0 | 30.0 | 118.0 | 0.2542 | 0.2542 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 24.0 | 24 | 8.1110 | 0.0057 | 6669.9872 | 4623.2829 | 315.0 | 570.0 | 0.5526 | 314.0 | 0.5509 | 145.0 | 146.0 | 158.0 | 0.9241 | 0.9177 | 85.0 | 85.0 | 152.0 | 0.5592 | 0.5592 | 54.0 | 54.0 | 142.0 | 0.3803 | 0.3803 | 30.0 | 30.0 | 118.0 | 0.2542 | 0.2542 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 25.0 | 25 | 8.0899 | 0.0057 | 6652.6387 | 4611.2577 | 313.0 | 570.0 | 0.5491 | 312.0 | 0.5474 | 145.0 | 146.0 | 158.0 | 0.9241 | 0.9177 | 83.0 | 83.0 | 152.0 | 0.5461 | 0.5461 | 54.0 | 54.0 | 142.0 | 0.3803 | 0.3803 | 30.0 | 30.0 | 118.0 | 0.2542 | 0.2542 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 26.0 | 26 | 8.0958 | 0.0057 | 6657.4563 | 4614.5971 | 315.0 | 570.0 | 0.5526 | 313.0 | 0.5491 | 143.0 | 145.0 | 158.0 | 0.9177 | 0.9051 | 83.0 | 83.0 | 152.0 | 0.5461 | 0.5461 | 55.0 | 55.0 | 142.0 | 0.3873 | 0.3873 | 32.0 | 32.0 | 118.0 | 0.2712 | 0.2712 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 27.0 | 27 | 8.1194 | 0.0057 | 6676.9034 | 4628.0768 | 314.0 | 570.0 | 0.5509 | 312.0 | 0.5474 | 143.0 | 145.0 | 158.0 | 0.9177 | 0.9051 | 85.0 | 85.0 | 152.0 | 0.5592 | 0.5592 | 54.0 | 54.0 | 142.0 | 0.3803 | 0.3803 | 30.0 | 30.0 | 118.0 | 0.2542 | 0.2542 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 28.0 | 28 | 8.1511 | 0.0057 | 6702.9764 | 4646.1492 | 314.0 | 570.0 | 0.5509 | 313.0 | 0.5491 | 144.0 | 145.0 | 158.0 | 0.9177 | 0.9114 | 84.0 | 84.0 | 152.0 | 0.5526 | 0.5526 | 55.0 | 55.0 | 142.0 | 0.3873 | 0.3873 | 30.0 | 30.0 | 118.0 | 0.2542 | 0.2542 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 29.0 | 29 | 8.1586 | 0.0057 | 6709.1201 | 4650.4077 | 313.0 | 570.0 | 0.5491 | 313.0 | 0.5491 | 145.0 | 145.0 | 158.0 | 0.9177 | 0.9177 | 83.0 | 83.0 | 152.0 | 0.5461 | 0.5461 | 54.0 | 54.0 | 142.0 | 0.3803 | 0.3803 | 31.0 | 31.0 | 118.0 | 0.2627 | 0.2627 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 30.0 | 30 | 8.1033 | 0.0057 | 6663.6069 | 4618.8603 | 312.0 | 570.0 | 0.5474 | 310.0 | 0.5439 | 143.0 | 145.0 | 158.0 | 0.9177 | 0.9051 | 84.0 | 84.0 | 152.0 | 0.5526 | 0.5526 | 53.0 | 53.0 | 142.0 | 0.3732 | 0.3732 | 30.0 | 30.0 | 118.0 | 0.2542 | 0.2542 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 31.0 | 31 | 8.1388 | 0.0057 | 6692.8394 | 4639.1227 | 317.0 | 570.0 | 0.5561 | 316.0 | 0.5544 | 144.0 | 145.0 | 158.0 | 0.9177 | 0.9114 | 85.0 | 85.0 | 152.0 | 0.5592 | 0.5592 | 56.0 | 56.0 | 142.0 | 0.3944 | 0.3944 | 31.0 | 31.0 | 118.0 | 0.2627 | 0.2627 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 32.0 | 32 | 8.1790 | 0.0057 | 6725.8530 | 4662.0061 | 312.0 | 570.0 | 0.5474 | 311.0 | 0.5456 | 144.0 | 145.0 | 158.0 | 0.9177 | 0.9114 | 83.0 | 83.0 | 152.0 | 0.5461 | 0.5461 | 53.0 | 53.0 | 142.0 | 0.3732 | 0.3732 | 31.0 | 31.0 | 118.0 | 0.2627 | 0.2627 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 33.0 | 33 | 8.1788 | 0.0057 | 6725.7129 | 4661.9089 | 314.0 | 570.0 | 0.5509 | 314.0 | 0.5509 | 145.0 | 145.0 | 158.0 | 0.9177 | 0.9177 | 83.0 | 83.0 | 152.0 | 0.5461 | 0.5461 | 56.0 | 56.0 | 142.0 | 0.3944 | 0.3944 | 30.0 | 30.0 | 118.0 | 0.2542 | 0.2542 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 34.0 | 34 | 8.1461 | 0.0057 | 6698.7991 | 4643.2537 | 315.0 | 570.0 | 0.5526 | 315.0 | 0.5526 | 145.0 | 145.0 | 158.0 | 0.9177 | 0.9177 | 84.0 | 84.0 | 152.0 | 0.5526 | 0.5526 | 56.0 | 56.0 | 142.0 | 0.3944 | 0.3944 | 30.0 | 30.0 | 118.0 | 0.2542 | 0.2542 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 35.0 | 35 | 8.1543 | 0.0057 | 6705.5694 | 4647.9465 | 315.0 | 570.0 | 0.5526 | 314.0 | 0.5509 | 144.0 | 145.0 | 158.0 | 0.9177 | 0.9114 | 85.0 | 85.0 | 152.0 | 0.5592 | 0.5592 | 54.0 | 54.0 | 142.0 | 0.3803 | 0.3803 | 31.0 | 31.0 | 118.0 | 0.2627 | 0.2627 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 36.0 | 36 | 8.1585 | 0.0057 | 6709.0706 | 4650.3734 | 315.0 | 570.0 | 0.5526 | 315.0 | 0.5526 | 145.0 | 145.0 | 158.0 | 0.9177 | 0.9177 | 83.0 | 83.0 | 152.0 | 0.5461 | 0.5461 | 56.0 | 56.0 | 142.0 | 0.3944 | 0.3944 | 31.0 | 31.0 | 118.0 | 0.2627 | 0.2627 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 37.0 | 37 | 8.1496 | 0.0057 | 6701.7266 | 4645.2829 | 314.0 | 570.0 | 0.5509 | 313.0 | 0.5491 | 144.0 | 145.0 | 158.0 | 0.9177 | 0.9114 | 85.0 | 85.0 | 152.0 | 0.5592 | 0.5592 | 55.0 | 55.0 | 142.0 | 0.3873 | 0.3873 | 29.0 | 29.0 | 118.0 | 0.2458 | 0.2458 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755501526
vwzyrraz7l
2025-08-18T07:46:29Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T07:46:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ismail3735252/Lebron
Ismail3735252
2025-08-18T07:03:16Z
0
0
null
[ "az", "dataset:microsoft/rStar-Coder", "base_model:openai/gpt-oss-120b", "base_model:finetune:openai/gpt-oss-120b", "license:openrail", "region:us" ]
null
2025-08-18T07:02:01Z
--- license: openrail datasets: - microsoft/rStar-Coder language: - az metrics: - cer base_model: - openai/gpt-oss-120b ---
naddevani/Qwen2.5-Math-7B_check
naddevani
2025-08-18T06:18:51Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "feature-extraction", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
feature-extraction
2025-08-18T06:17:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755495675
quantumxnode
2025-08-18T06:06:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dormant peckish seahorse", "arxiv:2504.07091", "region:us" ]
null
2025-08-18T06:06:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dormant peckish seahorse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
scv3114/bert_lor_kosa_nsmc8
scv3114
2025-08-18T05:49:43Z
0
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-18T05:47:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bujido/MyGemmaNPC
bujido
2025-08-18T04:50:16Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T04:49:11Z
--- library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [None](https://huggingface.co/None). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="bujido/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Muapi/flux-photo
Muapi
2025-08-18T04:27:10Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-18T04:26:57Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # flux-photo ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:700630@1096652", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
donoway/GSM8K-Binary_Llama-3.2-1B-f8096090
donoway
2025-08-18T03:09:34Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-3.2-1B", "base_model:finetune:meta-llama/Llama-3.2-1B", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-18T02:56:31Z
--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer metrics: - accuracy model-index: - name: GSM8K-Binary_Llama-3.2-1B-f8096090 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GSM8K-Binary_Llama-3.2-1B-f8096090 This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6336 - Model Preparation Time: 0.0058 - Mdl: 2262.3589 - Accumulated Loss: 1568.1477 - Correct Preds: 1973.0 - Total Preds: 2475.0 - Accuracy: 0.7972 - Correct Gen Preds: 369.0 - Gen Accuracy: 0.1491 - Correct Gen Preds 34192: 0.0 - Correct Preds 34192: 974.0 - Total Labels 34192: 1196.0 - Accuracy 34192: 0.8144 - Gen Accuracy 34192: 0.0 - Correct Gen Preds 41568: 362.0 - Correct Preds 41568: 999.0 - Total Labels 41568: 1267.0 - Accuracy 41568: 0.7885 - Gen Accuracy 41568: 0.2857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.001 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Mdl | Accumulated Loss | Correct Preds | Total Preds | Accuracy | Correct Gen Preds | Gen Accuracy | Correct Gen Preds 34192 | Correct Preds 34192 | Total Labels 34192 | Accuracy 34192 | Gen Accuracy 34192 | Correct Gen Preds 41568 | Correct Preds 41568 | Total Labels 41568 | Accuracy 41568 | Gen Accuracy 41568 | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:----------------:|:-------------:|:-----------:|:--------:|:-----------------:|:------------:|:-----------------------:|:-------------------:|:------------------:|:--------------:|:------------------:|:-----------------------:|:-------------------:|:------------------:|:--------------:|:------------------:| | No log | 0 | 0 | 1.4656 | 0.0058 | 5233.1723 | 3627.3586 | 1196.0 | 2475.0 | 0.4832 | 1204.0 | 0.4865 | 1196.0 | 1196.0 | 1196.0 | 1.0 | 1.0 | 0.0 | 0.0 | 1267.0 | 0.0 | 0.0 | | 0.5859 | 1.0 | 52 | 0.5818 | 0.0058 | 2077.5047 | 1440.0165 | 1847.0 | 2475.0 | 0.7463 | 8.0 | 0.0032 | 0.0 | 857.0 | 1196.0 | 0.7166 | 0.0 | 0.0 | 990.0 | 1267.0 | 0.7814 | 0.0 | | 0.6145 | 2.0 | 104 | 0.5168 | 0.0058 | 1845.2524 | 1279.0315 | 1948.0 | 2475.0 | 0.7871 | 69.0 | 0.0279 | 0.0 | 1063.0 | 1196.0 | 0.8888 | 0.0 | 61.0 | 885.0 | 1267.0 | 0.6985 | 0.0481 | | 0.2879 | 3.0 | 156 | 0.5778 | 0.0058 | 2063.1398 | 1430.0595 | 1868.0 | 2475.0 | 0.7547 | 53.0 | 0.0214 | 0.0 | 1106.0 | 1196.0 | 0.9247 | 0.0 | 46.0 | 762.0 | 1267.0 | 0.6014 | 0.0363 | | 0.0501 | 4.0 | 208 | 0.6336 | 0.0058 | 2262.3589 | 1568.1477 | 1973.0 | 2475.0 | 0.7972 | 369.0 | 0.1491 | 0.0 | 974.0 | 1196.0 | 0.8144 | 0.0 | 362.0 | 999.0 | 1267.0 | 0.7885 | 0.2857 | | 0.3604 | 5.0 | 260 | 1.7321 | 0.0058 | 6184.7525 | 4286.9438 | 1864.0 | 2475.0 | 0.7531 | 1135.0 | 0.4586 | 634.0 | 1105.0 | 1196.0 | 0.9239 | 0.5301 | 494.0 | 759.0 | 1267.0 | 0.5991 | 0.3899 | | 0.0662 | 6.0 | 312 | 1.2469 | 0.0058 | 4452.3018 | 3086.1004 | 1972.0 | 2475.0 | 0.7968 | 1028.0 | 0.4154 | 359.0 | 1028.0 | 1196.0 | 0.8595 | 0.3002 | 661.0 | 944.0 | 1267.0 | 0.7451 | 0.5217 | | 0.0 | 7.0 | 364 | 1.4682 | 0.0058 | 5242.5624 | 3633.8673 | 1970.0 | 2475.0 | 0.7960 | 1223.0 | 0.4941 | 464.0 | 1033.0 | 1196.0 | 0.8637 | 0.3880 | 751.0 | 937.0 | 1267.0 | 0.7395 | 0.5927 | | 0.0003 | 8.0 | 416 | 1.9052 | 0.0058 | 6802.8127 | 4715.3504 | 1925.0 | 2475.0 | 0.7778 | 1504.0 | 0.6077 | 583.0 | 948.0 | 1196.0 | 0.7926 | 0.4875 | 914.0 | 977.0 | 1267.0 | 0.7711 | 0.7214 | | 0.5881 | 9.0 | 468 | 1.9828 | 0.0058 | 7079.8847 | 4907.4021 | 1957.0 | 2475.0 | 0.7907 | 1879.0 | 0.7592 | 920.0 | 983.0 | 1196.0 | 0.8219 | 0.7692 | 952.0 | 974.0 | 1267.0 | 0.7687 | 0.7514 | | 0.0 | 10.0 | 520 | 1.9968 | 0.0058 | 7129.8865 | 4942.0607 | 1957.0 | 2475.0 | 0.7907 | 1886.0 | 0.7620 | 913.0 | 972.0 | 1196.0 | 0.8127 | 0.7634 | 966.0 | 985.0 | 1267.0 | 0.7774 | 0.7624 | | 0.5881 | 11.0 | 572 | 2.0014 | 0.0058 | 7146.2344 | 4953.3922 | 1959.0 | 2475.0 | 0.7915 | 1892.0 | 0.7644 | 918.0 | 972.0 | 1196.0 | 0.8127 | 0.7676 | 967.0 | 987.0 | 1267.0 | 0.7790 | 0.7632 | | 0.0 | 12.0 | 624 | 2.0068 | 0.0058 | 7165.7013 | 4966.8857 | 1959.0 | 2475.0 | 0.7915 | 1890.0 | 0.7636 | 916.0 | 972.0 | 1196.0 | 0.8127 | 0.7659 | 967.0 | 987.0 | 1267.0 | 0.7790 | 0.7632 | | 0.5882 | 13.0 | 676 | 2.0059 | 0.0058 | 7162.3520 | 4964.5641 | 1959.0 | 2475.0 | 0.7915 | 1893.0 | 0.7648 | 919.0 | 973.0 | 1196.0 | 0.8135 | 0.7684 | 967.0 | 986.0 | 1267.0 | 0.7782 | 0.7632 | | 0.0 | 14.0 | 728 | 2.0106 | 0.0058 | 7179.0242 | 4976.1204 | 1958.0 | 2475.0 | 0.7911 | 1891.0 | 0.7640 | 918.0 | 972.0 | 1196.0 | 0.8127 | 0.7676 | 966.0 | 986.0 | 1267.0 | 0.7782 | 0.7624 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1
Qwen/Qwen-Image
Qwen
2025-08-18T02:42:19Z
91,747
1,683
diffusers
[ "diffusers", "safetensors", "text-to-image", "en", "zh", "arxiv:2508.02324", "license:apache-2.0", "diffusers:QwenImagePipeline", "region:us" ]
text-to-image
2025-08-02T04:58:07Z
--- license: apache-2.0 language: - en - zh library_name: diffusers pipeline_tag: text-to-image --- <p align="center"> <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png" width="400"/> <p> <p align="center"> 💜 <a href="https://chat.qwen.ai/"><b>Qwen Chat</b></a>&nbsp&nbsp | &nbsp&nbsp🤗 <a href="https://huggingface.co/Qwen/Qwen-Image">Hugging Face</a>&nbsp&nbsp | &nbsp&nbsp🤖 <a href="https://modelscope.cn/models/Qwen/Qwen-Image">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/Qwen_Image.pdf">Tech Report</a> &nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://qwenlm.github.io/blog/qwen-image/">Blog</a> &nbsp&nbsp <br> 🖥️ <a href="https://huggingface.co/spaces/Qwen/qwen-image">Demo</a>&nbsp&nbsp | &nbsp&nbsp💬 <a href="https://github.com/QwenLM/Qwen-Image/blob/main/assets/wechat.png">WeChat (微信)</a>&nbsp&nbsp | &nbsp&nbsp🫨 <a href="https://discord.gg/CV4E9rpNSD">Discord</a>&nbsp&nbsp </p> <p align="center"> <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/merge3.jpg" width="1600"/> <p> ## Introduction We are thrilled to release **Qwen-Image**, an image generation foundation model in the Qwen series that achieves significant advances in **complex text rendering** and **precise image editing**. Experiments show strong general capabilities in both image generation and editing, with exceptional performance in text rendering, especially for Chinese. ![](https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/bench.png#center) ## News - 2025.08.04: We released the [Technical Report](https://arxiv.org/abs/2508.02324) of Qwen-Image! - 2025.08.04: We released Qwen-Image weights! Check at [huggingface](https://huggingface.co/Qwen/Qwen-Image) and [Modelscope](https://modelscope.cn/models/Qwen/Qwen-Image)! - 2025.08.04: We released Qwen-Image! Check our [blog](https://qwenlm.github.io/blog/qwen-image) for more details! ## Quick Start Install the latest version of diffusers ``` pip install git+https://github.com/huggingface/diffusers ``` The following contains a code snippet illustrating how to use the model to generate images based on text prompts: ```python from diffusers import DiffusionPipeline import torch model_name = "Qwen/Qwen-Image" # Load the pipeline if torch.cuda.is_available(): torch_dtype = torch.bfloat16 device = "cuda" else: torch_dtype = torch.float32 device = "cpu" pipe = DiffusionPipeline.from_pretrained(model_name, torch_dtype=torch_dtype) pipe = pipe.to(device) positive_magic = { "en": ", Ultra HD, 4K, cinematic composition.", # for english prompt "zh": ", 超清,4K,电影级构图." # for chinese prompt } # Generate image prompt = '''A coffee shop entrance features a chalkboard sign reading "Qwen Coffee 😊 $2 per cup," with a neon light beside it displaying "通义千问". Next to it hangs a poster showing a beautiful Chinese woman, and beneath the poster is written "π≈3.1415926-53589793-23846264-33832795-02384197". Ultra HD, 4K, cinematic composition''' negative_prompt = " " # using an empty string if you do not have specific concept to remove # Generate with different aspect ratios aspect_ratios = { "1:1": (1328, 1328), "16:9": (1664, 928), "9:16": (928, 1664), "4:3": (1472, 1140), "3:4": (1140, 1472), "3:2": (1584, 1056), "2:3": (1056, 1584), } width, height = aspect_ratios["16:9"] image = pipe( prompt=prompt + positive_magic["en"], negative_prompt=negative_prompt, width=width, height=height, num_inference_steps=50, true_cfg_scale=4.0, generator=torch.Generator(device="cuda").manual_seed(42) ).images[0] image.save("example.png") ``` ## Show Cases One of its standout capabilities is high-fidelity text rendering across diverse images. Whether it’s alphabetic languages like English or logographic scripts like Chinese, Qwen-Image preserves typographic details, layout coherence, and contextual harmony with stunning accuracy. Text isn’t just overlaid—it’s seamlessly integrated into the visual fabric. ![](https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/s1.jpg#center) Beyond text, Qwen-Image excels at general image generation with support for a wide range of artistic styles. From photorealistic scenes to impressionist paintings, from anime aesthetics to minimalist design, the model adapts fluidly to creative prompts, making it a versatile tool for artists, designers, and storytellers. ![](https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/s2.jpg#center) When it comes to image editing, Qwen-Image goes far beyond simple adjustments. It enables advanced operations such as style transfer, object insertion or removal, detail enhancement, text editing within images, and even human pose manipulation—all with intuitive input and coherent output. This level of control brings professional-grade editing within reach of everyday users. ![](https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/s3.jpg#center) But Qwen-Image doesn’t just create or edit—it understands. It supports a suite of image understanding tasks, including object detection, semantic segmentation, depth and edge (Canny) estimation, novel view synthesis, and super-resolution. These capabilities, while technically distinct, can all be seen as specialized forms of intelligent image editing, powered by deep visual comprehension. ![](https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/s4.jpg#center) Together, these features make Qwen-Image not just a tool for generating pretty pictures, but a comprehensive foundation model for intelligent visual creation and manipulation—where language, layout, and imagery converge. ## License Agreement Qwen-Image is licensed under Apache 2.0. ## Citation We kindly encourage citation of our work if you find it useful. ```bibtex @misc{wu2025qwenimagetechnicalreport, title={Qwen-Image Technical Report}, author={Chenfei Wu and Jiahao Li and Jingren Zhou and Junyang Lin and Kaiyuan Gao and Kun Yan and Sheng-ming Yin and Shuai Bai and Xiao Xu and Yilei Chen and Yuxiang Chen and Zecheng Tang and Zekai Zhang and Zhengyi Wang and An Yang and Bowen Yu and Chen Cheng and Dayiheng Liu and Deqing Li and Hang Zhang and Hao Meng and Hu Wei and Jingyuan Ni and Kai Chen and Kuan Cao and Liang Peng and Lin Qu and Minggang Wu and Peng Wang and Shuting Yu and Tingkun Wen and Wensen Feng and Xiaoxiao Xu and Yi Wang and Yichang Zhang and Yongqiang Zhu and Yujia Wu and Yuxuan Cai and Zenan Liu}, year={2025}, eprint={2508.02324}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2508.02324}, } ```
asasidh/model
asasidh
2025-08-18T02:29:22Z
2
0
transformers
[ "transformers", "safetensors", "gguf", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "llama", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-02-22T05:44:44Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** asasidh - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mang3dd/blockassist-bc-tangled_slithering_alligator_1755462891
mang3dd
2025-08-17T21:00:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T21:00:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
haryoaw/xlm-roberta-base_massive_en-US_2
haryoaw
2025-08-17T20:51:26Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-17T20:50:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
matboz/temp1
matboz
2025-08-17T20:35:07Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:google/gemma-2-27b-it", "lora", "sft", "transformers", "trl", "text-generation", "conversational", "arxiv:1910.09700", "base_model:google/gemma-2-27b-it", "region:us" ]
text-generation
2025-08-17T20:34:49Z
--- base_model: google/gemma-2-27b-it library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:google/gemma-2-27b-it - lora - sft - transformers - trl --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755460732
Sayemahsjn
2025-08-17T20:16:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T20:16:28Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
unitova/blockassist-bc-zealous_sneaky_raven_1755459279
unitova
2025-08-17T20:00:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T20:00:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manancode/opus-mt-fr-bzs-ctranslate2-android
manancode
2025-08-17T17:23:30Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-17T17:23:20Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-fr-bzs-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-fr-bzs` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-fr-bzs - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-en-xh-ctranslate2-android
manancode
2025-08-17T16:27:51Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-17T16:27:41Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-en-xh-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-en-xh` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-en-xh - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-en-umb-ctranslate2-android
manancode
2025-08-17T16:26:53Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-17T16:26:43Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-en-umb-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-en-umb` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-en-umb - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-en-to-ctranslate2-android
manancode
2025-08-17T16:24:26Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-17T16:24:13Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-en-to-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-en-to` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-en-to - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = spm.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
qtaka/blockassist-bc-twitchy_untamed_gerbil_1755403405
qtaka
2025-08-17T04:07:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "twitchy untamed gerbil", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T04:07:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - twitchy untamed gerbil --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755388280
chainway9
2025-08-17T00:19:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-17T00:19:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
joanna302/Qwen3-8B-Base_en_SFT_8e-05
joanna302
2025-08-16T17:58:58Z
15
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "generated_from_trainer", "trl", "sft", "unsloth", "conversational", "base_model:unsloth/Qwen3-8B-Base", "base_model:finetune:unsloth/Qwen3-8B-Base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-07-17T10:56:11Z
--- base_model: unsloth/Qwen3-8B-Base library_name: transformers model_name: Qwen3-8B-Base_en_SFT_8e-05 tags: - generated_from_trainer - trl - sft - unsloth licence: license --- # Model Card for Qwen3-8B-Base_en_SFT_8e-05 This model is a fine-tuned version of [unsloth/Qwen3-8B-Base](https://huggingface.co/unsloth/Qwen3-8B-Base). It has been trained using [TRL](https://github.com/huggingface/trl). # Training data: + 9000 examples from the No Robot instructions and demonstration dataset, 3000 data from the WildJailbreak safety-training (750 examples of each category) # Leaning rate: 8e-05 # Fine-tuning: SFT ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="joanna302/Qwen3-8B-Base_en_SFT_8e-05", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/prism-eval/Qwen3-8B-Base_en_SFT_8e-05/runs/f4uouvhf) This model was trained with SFT. ### Framework versions - TRL: 0.19.1 - Transformers: 4.53.1 - Pytorch: 2.7.0 - Datasets: 4.0.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
rafsya427/blockassist-bc-monstrous_bristly_chimpanzee_1755356864
rafsya427
2025-08-16T15:34:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "monstrous bristly chimpanzee", "arxiv:2504.07091", "region:us" ]
null
2025-08-16T15:34:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - monstrous bristly chimpanzee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755321269
rvipitkirubbe
2025-08-16T05:41:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-16T05:41:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Coaster41/patchtst-sae-grid-32-0.5-expe
Coaster41
2025-08-15T20:28:29Z
0
0
saelens
[ "saelens", "region:us" ]
null
2025-08-15T20:28:23Z
--- library_name: saelens --- # SAEs for use with the SAELens library This repository contains the following SAEs: - blocks.0.hook_mlp_out Load these SAEs using SAELens as below: ```python from sae_lens import SAE sae = SAE.from_pretrained("Coaster41/patchtst-sae-grid-32-0.5-expe", "<sae_id>") ```