modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-15 00:44:47
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
557 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-15 00:44:36
card
stringlengths
11
1.01M
AnonymousCS/xlmr_immigration_combo5_0
AnonymousCS
2025-08-19T22:04:26Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T22:00:58Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo5_0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo5_0 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2285 - Accuracy: 0.9280 - 1-f1: 0.8833 - 1-recall: 0.8185 - 1-precision: 0.9593 - Balanced Acc: 0.9006 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.185 | 1.0 | 25 | 0.1934 | 0.9332 | 0.8956 | 0.8610 | 0.9331 | 0.9151 | | 0.1763 | 2.0 | 50 | 0.2193 | 0.9306 | 0.8875 | 0.8224 | 0.9638 | 0.9035 | | 0.1517 | 3.0 | 75 | 0.2285 | 0.9280 | 0.8833 | 0.8185 | 0.9593 | 0.9006 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
crystalline7/32214
crystalline7
2025-08-19T22:03:58Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:03:55Z
[View on Civ Archive](https://civarchive.com/models/35788?modelVersionId=41989)
crystalline7/47599
crystalline7
2025-08-19T22:02:50Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:02:46Z
[View on Civ Archive](https://civarchive.com/models/63486?modelVersionId=68040)
seraphimzzzz/782657
seraphimzzzz
2025-08-19T22:01:25Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:01:21Z
[View on Civ Archive](https://civarchive.com/models/44324?modelVersionId=873844)
crystalline7/91646
crystalline7
2025-08-19T22:00:54Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:00:50Z
[View on Civ Archive](https://civarchive.com/models/73936?modelVersionId=125362)
seraphimzzzz/99540
seraphimzzzz
2025-08-19T22:00:35Z
0
0
null
[ "region:us" ]
null
2025-08-19T22:00:32Z
[View on Civ Archive](https://civarchive.com/models/124733?modelVersionId=136220)
Patzark/wav2vec2-finetuned-portuguese
Patzark
2025-08-19T22:00:17Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-large-xlsr-53", "base_model:finetune:facebook/wav2vec2-large-xlsr-53", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-08-19T05:35:58Z
--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer model-index: - name: wav2vec2-finetuned-portuguese results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-finetuned-portuguese This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.55.2 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
ultratopaz/71792
ultratopaz
2025-08-19T21:59:57Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:59:54Z
[View on Civ Archive](https://civarchive.com/models/95919?modelVersionId=102431)
crystalline7/49570
crystalline7
2025-08-19T21:58:45Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:58:43Z
[View on Civ Archive](https://civarchive.com/models/66573?modelVersionId=71230)
ultratopaz/79651
ultratopaz
2025-08-19T21:57:26Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:57:24Z
[View on Civ Archive](https://civarchive.com/models/104789?modelVersionId=112361)
crystalline7/281158
crystalline7
2025-08-19T21:56:45Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:56:41Z
[View on Civ Archive](https://civarchive.com/models/78685?modelVersionId=352842)
Muapi/randommaxx-fantastify
Muapi
2025-08-19T21:55:10Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:54:46Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # RandomMaxx Fantastify ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1137613@1298660", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
crystalline7/71528
crystalline7
2025-08-19T21:55:06Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:55:04Z
[View on Civ Archive](https://civarchive.com/models/95638?modelVersionId=102115)
ultratopaz/95534
ultratopaz
2025-08-19T21:55:00Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:54:57Z
[View on Civ Archive](https://civarchive.com/models/120957?modelVersionId=131571)
Kurosawama/Llama-3.1-8B-Instruct-Full-align
Kurosawama
2025-08-19T21:53:40Z
0
0
transformers
[ "transformers", "safetensors", "trl", "dpo", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T21:53:30Z
--- library_name: transformers tags: - trl - dpo --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755638962
sampingkaca72
2025-08-19T21:53:39Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:53:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
indrarg/blockassist-bc-pensive_zealous_hyena_1755631470
indrarg
2025-08-19T21:52:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pensive zealous hyena", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:06:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pensive zealous hyena --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755640285
roeker
2025-08-19T21:52:48Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:52:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/38340
crystalline7
2025-08-19T21:52:47Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:52:43Z
[View on Civ Archive](https://civarchive.com/models/25562?modelVersionId=52678)
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755638610
vwzyrraz7l
2025-08-19T21:51:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:51:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/1058904
crystalline7
2025-08-19T21:49:29Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:49:26Z
[View on Civ Archive](https://civarchive.com/models/236627?modelVersionId=1153869)
seraphimzzzz/18602
seraphimzzzz
2025-08-19T21:49:13Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:49:10Z
[View on Civ Archive](https://civarchive.com/models/18809?modelVersionId=22327)
crystalline7/73397
crystalline7
2025-08-19T21:47:42Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:47:42Z
[View on Civ Archive](https://civarchive.com/models/97768?modelVersionId=104526)
ultratopaz/22902
ultratopaz
2025-08-19T21:46:36Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:46:31Z
[View on Civ Archive](https://civarchive.com/models/23196?modelVersionId=27705)
seraphimzzzz/30008
seraphimzzzz
2025-08-19T21:44:52Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:44:48Z
[View on Civ Archive](https://civarchive.com/models/31713?modelVersionId=38139)
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755638041
coelacanthxyz
2025-08-19T21:43:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:43:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
seraphimzzzz/70861
seraphimzzzz
2025-08-19T21:43:30Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:43:28Z
[View on Civ Archive](https://civarchive.com/models/94981?modelVersionId=101324)
crystalline7/107109
crystalline7
2025-08-19T21:40:05Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:40:01Z
[View on Civ Archive](https://civarchive.com/models/131709?modelVersionId=144785)
crystalline7/29463
crystalline7
2025-08-19T21:39:14Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:39:10Z
[View on Civ Archive](https://civarchive.com/models/30548?modelVersionId=36842)
roeker/blockassist-bc-quick_wiry_owl_1755639470
roeker
2025-08-19T21:39:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:38:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/38758
crystalline7
2025-08-19T21:38:48Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:38:44Z
[View on Civ Archive](https://civarchive.com/models/45384?modelVersionId=53360)
seraphimzzzz/63839
seraphimzzzz
2025-08-19T21:35:34Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:35:32Z
[View on Civ Archive](https://civarchive.com/models/86994?modelVersionId=92553)
crystalline7/46832
crystalline7
2025-08-19T21:35:21Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:35:18Z
[View on Civ Archive](https://civarchive.com/models/62319?modelVersionId=66865)
seraphimzzzz/61469
seraphimzzzz
2025-08-19T21:33:25Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:33:22Z
[View on Civ Archive](https://civarchive.com/models/84137?modelVersionId=89442)
crystalline7/87819
crystalline7
2025-08-19T21:32:59Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:32:56Z
[View on Civ Archive](https://civarchive.com/models/113019?modelVersionId=122057)
roeker/blockassist-bc-quick_wiry_owl_1755639059
roeker
2025-08-19T21:32:24Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:31:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zhuojing-huang/gpt2-dutch-english-ewc-2
zhuojing-huang
2025-08-19T21:32:12Z
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T08:47:16Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: gpt2-dutch-english-ewc-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-dutch-english-ewc-2 This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 30 - training_steps: 61035 ### Training results ### Framework versions - Transformers 4.53.1 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.2
seraphimzzzz/690013
seraphimzzzz
2025-08-19T21:31:45Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:31:39Z
[View on Civ Archive](https://civarchive.com/models/130119?modelVersionId=776691)
ultratopaz/83986
ultratopaz
2025-08-19T21:30:39Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:30:35Z
[View on Civ Archive](https://civarchive.com/models/109069?modelVersionId=117497)
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755637278
hakimjustbao
2025-08-19T21:28:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "raging subtle wasp", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:27:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - raging subtle wasp --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/48326
crystalline7
2025-08-19T21:24:18Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:24:18Z
[View on Civ Archive](https://civarchive.com/models/64502?modelVersionId=69111)
pineappleSoup/animationInterpolation
pineappleSoup
2025-08-19T21:23:36Z
0
0
null
[ "animation", "stroke", "interpolation", "2D", "image", "video", "en", "license:mit", "region:us" ]
null
2025-08-18T23:22:10Z
--- license: mit language: - en tags: - animation - stroke - interpolation - 2D - image - video --- # Stroke Interpolation Model To read the paper: https://drive.google.com/file/d/1EESd81NSs93OJYb42DartC5udTlOShRp/view?usp=sharing ## Example ![image/gif](https://cdn-uploads.huggingface.co/production/uploads/62d36d11274bf1ef84f61d66/nY0uCIdQkWOOAzvL_Gj9e.gif) The model predicts the inbetween frames (mid frame), given two key frames. ## Installation ``` pip install opencv-python pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu128 ``` ## Run the Program ``` py combined.py ``` This will load the model from checkpoints. ## Evaluate ``` py generate_eval.py ``` This generates images for evaluation. ``` py eval.py ``` This evaluates the generated images. ## Test ``` py test.py ``` Add frames in test_frames folder. ``` py video.py ``` This combines those 3 frames into .mp4 format. ## Dataset Dataset is available at: [Google Drive Link](https://drive.google.com/file/d/1vyu_ePFN9sFjqxc-sPdSWuSCLnWFVUT7/view?usp=sharing)
crystalline7/42697
crystalline7
2025-08-19T21:23:35Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:23:30Z
[View on Civ Archive](https://civarchive.com/models/55861?modelVersionId=60257)
ultratopaz/82957
ultratopaz
2025-08-19T21:21:56Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:21:49Z
[View on Civ Archive](https://civarchive.com/models/108076?modelVersionId=116265)
annasoli/Qwen2.5-14B_SVt_l24_lr2e-4_a256_2E_technical-animals_KLCSV_5e6
annasoli
2025-08-19T21:21:10Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T21:20:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
seraphimzzzz/69165
seraphimzzzz
2025-08-19T21:19:11Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:19:07Z
[View on Civ Archive](https://civarchive.com/models/70474?modelVersionId=99218)
ultratopaz/72360
ultratopaz
2025-08-19T21:18:15Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:18:12Z
[View on Civ Archive](https://civarchive.com/models/35150?modelVersionId=41402)
Muapi/akame-from-akame-ga-kill
Muapi
2025-08-19T21:17:48Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T21:17:02Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # akame (from akame ga kill) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: akame ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:360246@1256490", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
crystalline7/17720
crystalline7
2025-08-19T21:16:27Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:16:23Z
[View on Civ Archive](https://civarchive.com/models/17997?modelVersionId=21267)
seraphimzzzz/150876
seraphimzzzz
2025-08-19T21:16:10Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:15:52Z
[View on Civ Archive](https://civarchive.com/models/175613?modelVersionId=197172)
UmeshAkade/gemma3-270m-med-wikidoc-patientinfo-lora
UmeshAkade
2025-08-19T21:14:35Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3_text", "trl", "en", "base_model:unsloth/gemma-3-270m-it", "base_model:finetune:unsloth/gemma-3-270m-it", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T06:52:17Z
--- base_model: unsloth/gemma-3-270m-it tags: - text-generation-inference - transformers - unsloth - gemma3_text - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** UmeshAkade - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-270m-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755636798
Sayemahsjn
2025-08-19T21:13:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:13:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ultratopaz/137033
ultratopaz
2025-08-19T21:12:09Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:12:06Z
[View on Civ Archive](https://civarchive.com/models/159259?modelVersionId=179078)
roeker/blockassist-bc-quick_wiry_owl_1755637846
roeker
2025-08-19T21:12:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:11:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
NYUAD-ComNets/Llama3.2-MultiModal-Hate_Detector_Memes
NYUAD-ComNets
2025-08-19T21:11:23Z
5
0
transformers
[ "transformers", "safetensors", "mllama", "image-to-text", "text-generation-inference", "unsloth", "en", "arxiv:2412.14197", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-to-text
2025-06-29T19:19:59Z
--- base_model: unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mllama license: apache-2.0 language: - en --- # Llama3.2-11B based Hate Detection in Arabic MultiModal Memes The rise of social media and online communication platforms has led to the spread of Arabic memes as a key form of digital expression. While these contents can be humorous and informative, they are also increasingly being used to spread offensive language and hate speech. Consequently, there is a growing demand for precise analysis of content in Arabic meme. This work used Llama 3.2 with its vision capability to effectively identify hate content within Arabic memes. The evaluation is conducted using a dataset of Arabic memes proposed in the ArabicNLP MAHED 2025 challenge. The results underscore the capacity of ***Llama 3.2-11B fine-tuned with Arabic memes***, to deliver the superior performance. They achieve **accuracy** of **80.3%** and **macro F1 score** of **73.3%**. The proposed solutions offer a more nuanced understanding of memes for accurate and efficient Arabic content moderation systems. # Examples of Arabic Memes from ArabicNLP MAHED 2025 challenge # Examples | | | | |:-------------------------:|:-------------------------:|:-------------------------:| |<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/jBuVCt5163WlugFRXkSgq.jpeg"> |<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/jiPId6f5IiGXxpI898llC.jpeg"> | |<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/61acyltUsTB--ZOAMkv0a.jpeg"> |<img width="500" height="500" src="https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/_alSRnwG0azE_iYq2BrpP.jpeg"> | ``` python import pandas as pd import os from unsloth import FastVisionModel import torch from datasets import load_dataset from transformers import TextStreamer from PIL import Image import os os.environ["TOKENIZERS_PARALLELISM"] = "false" model_name = "NYUAD-ComNets/Llama3.2-MultiModal-Hate_Detector_Memes" model, tokenizer = FastVisionModel.from_pretrained(model_name, token='xxxxxxxxxxxxxxxxxxxxxx') FastVisionModel.for_inference(model) dataset_test = load_dataset("QCRI/Prop2Hate-Meme", split = "test") print(dataset_test) def add_labels_column(example): example["labels"] = "no_hate" if example["hate_label"] == 0 else "hate" return example dataset_test = dataset_test.map(add_labels_column) pred=[] for k in range(606): image = dataset_test[k]["image"] text = dataset_test[k]["text"] lab = dataset_test[k]["labels"] messages = [ {"role": "user", "content": [ {"type": "image"}, {"type": "text", "text": text} ]} ] input_text = tokenizer.apply_chat_template(messages,add_generation_prompt = True) inputs = tokenizer( image, input_text, add_special_tokens = False, return_tensors = "pt", ).to("cuda") text_streamer = TextStreamer(tokenizer, skip_prompt = True) p = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128, use_cache = False, temperature = 0.3, min_p = 0.3) p = tokenizer.decode(p[0], skip_special_tokens=True) pred.append(p.split('assistant')[1].strip()) print(pred) ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/656ee240c5ac4733e9ccdd0e/jRSB8JxqqoV-2E97N5QQM.png) We used Low-Rank Adaptation (LoRA) as the Parameter-Efficient Fine-Tuning (PEFT) method for fine-tuning utilizing the unsloth framework. The hyper-parameters of Llama 3.2-11B are as follows: the training batch size per device is set to 4. gradients are accumulated over 4 steps. the learning rate warm-up lasts for 5 steps. the total number of training steps is 150. the learning rate is set to 0.0002. the optimizer used is 8-bit AdamW weight decay is set to 0.01. a linear learning rate scheduler is used. # BibTeX entry and citation info ``` @misc{aldahoul2024advancingvehicleplaterecognition, title={Detecting Hope, Hate, and Emotion in Arabic Textual Speech and Multi-modal Memes Using Large Language Models}, author={Nouar AlDahoul and Yasir Zaki}, year={2025}, eprint={2412.14197}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2412.14197}, } ```
ultratopaz/150594
ultratopaz
2025-08-19T21:10:06Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:10:00Z
[View on Civ Archive](https://civarchive.com/models/175296?modelVersionId=196819)
seraphimzzzz/81522
seraphimzzzz
2025-08-19T21:08:50Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:08:47Z
[View on Civ Archive](https://civarchive.com/models/106699?modelVersionId=114604)
ultratopaz/93397
ultratopaz
2025-08-19T21:07:24Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:07:07Z
[View on Civ Archive](https://civarchive.com/models/118690?modelVersionId=128800)
eusuf01/blockassist-bc-smooth_humming_butterfly_1755637595
eusuf01
2025-08-19T21:06:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "smooth humming butterfly", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T21:06:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - smooth humming butterfly --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/41937
crystalline7
2025-08-19T21:06:28Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:06:26Z
[View on Civ Archive](https://civarchive.com/models/54698?modelVersionId=59074)
crystalline7/32891
crystalline7
2025-08-19T21:05:42Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:05:39Z
[View on Civ Archive](https://civarchive.com/models/37062?modelVersionId=43090)
crystalline7/20731
crystalline7
2025-08-19T21:04:19Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:04:14Z
[View on Civ Archive](https://civarchive.com/models/21003?modelVersionId=24998)
ultratopaz/39813
ultratopaz
2025-08-19T21:03:25Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:03:22Z
[View on Civ Archive](https://civarchive.com/models/50821?modelVersionId=55337)
ultratopaz/77712
ultratopaz
2025-08-19T21:01:31Z
0
0
null
[ "region:us" ]
null
2025-08-19T21:01:28Z
[View on Civ Archive](https://civarchive.com/models/102801?modelVersionId=110019)
abwolf86/MyGemmaNPC
abwolf86
2025-08-19T21:00:41Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T20:34:45Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="abwolf86/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Muapi/wizard-s-paper-model-universe
Muapi
2025-08-19T20:59:26Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T20:58:50Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Wizard's Paper Model Universe ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: A paper model ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:873875@978295", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/detailed-vector-illustration
Muapi
2025-08-19T20:58:34Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T20:58:21Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Detailed Vector Illustration ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: detailed vector illustration ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:842234@942259", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
New-original-archita-phukan-viral-video-on/New.full.videos.archita.Phukan.Viral.Video.Official.Tutorial
New-original-archita-phukan-viral-video-on
2025-08-19T20:55:16Z
0
0
null
[ "region:us" ]
null
2025-08-19T20:55:08Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/4axawfmy?crd "><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
Muapi/ars-midjourney-style-flux
Muapi
2025-08-19T20:52:49Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T20:52:36Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Ars MidJourney Style - Flux ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:650086@727320", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
damienbenveniste/medical_assistant
damienbenveniste
2025-08-19T20:49:51Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:Qwen/Qwen3-0.6B-Base", "lora", "sft", "transformers", "trl", "text-generation", "conversational", "arxiv:1910.09700", "base_model:Qwen/Qwen3-0.6B-Base", "region:us" ]
text-generation
2025-08-19T14:05:39Z
--- base_model: Qwen/Qwen3-0.6B-Base library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:Qwen/Qwen3-0.6B-Base - lora - sft - transformers - trl --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755634975
calegpedia
2025-08-19T20:49:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:49:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/UI-Venus-Navi-72B-i1-GGUF
mradermacher
2025-08-19T20:45:05Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:inclusionAI/UI-Venus-Navi-72B", "base_model:quantized:inclusionAI/UI-Venus-Navi-72B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-19T08:41:22Z
--- base_model: inclusionAI/UI-Venus-Navi-72B language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> <!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> weighted/imatrix quants of https://huggingface.co/inclusionAI/UI-Venus-Navi-72B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#UI-Venus-Navi-72B-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/UI-Venus-Navi-72B-GGUF **This is a vision model - mmproj files (if any) will be in the [static repository](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-GGUF).** ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-IQ1_S.gguf) | i1-IQ1_S | 22.8 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-IQ1_M.gguf) | i1-IQ1_M | 23.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 25.6 | | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 27.2 | | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-IQ2_S.gguf) | i1-IQ2_S | 28.0 | | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-IQ2_M.gguf) | i1-IQ2_M | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 29.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-Q2_K.gguf) | i1-Q2_K | 29.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 31.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 32.9 | | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-IQ3_S.gguf) | i1-IQ3_S | 34.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 34.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-IQ3_M.gguf) | i1-IQ3_M | 35.6 | | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 37.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 39.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 39.8 | | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-Q4_0.gguf) | i1-Q4_0 | 41.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 44.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-Q4_1.gguf) | i1-Q4_1 | 45.8 | | | [GGUF](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 47.5 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 51.5 | | | [PART 1](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-Q5_K_M.gguf.part2of2) | i1-Q5_K_M | 54.5 | | | [PART 1](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/UI-Venus-Navi-72B-i1-GGUF/resolve/main/UI-Venus-Navi-72B.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 64.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755634407
kojeklollipop
2025-08-19T20:40:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:40:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dombili2038/blockassist-bc-jumping_beaked_hamster_1755635920
Dombili2038
2025-08-19T20:39:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "jumping beaked hamster", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:39:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - jumping beaked hamster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
roeker/blockassist-bc-quick_wiry_owl_1755635808
roeker
2025-08-19T20:38:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:37:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aralper18/blockassist-bc-gilded_tangled_albatross_1755635594
aralper18
2025-08-19T20:34:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gilded tangled albatross", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:33:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gilded tangled albatross --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/pinup-model-style-flux
Muapi
2025-08-19T20:29:49Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T20:29:24Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Pinup Model Style FLUX ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: a pinup painting of woman, hud_p1nup_styl,_ ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:743220@831195", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
AnjaliNV/Merged_WellBeing_LLM
AnjaliNV
2025-08-19T20:29:18Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T20:23:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Muapi/ultra-real-anime-flux
Muapi
2025-08-19T20:27:56Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-19T20:27:27Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Ultra Real Anime Flux ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ANIMEFLUX ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1131779@1272367", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
thanobidex/blockassist-bc-colorful_shiny_hare_1755632523
thanobidex
2025-08-19T20:09:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:09:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755632445
katanyasekolah
2025-08-19T20:09:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T20:09:02Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/gpt-oss-sanguine-20b-v1-GGUF
mradermacher
2025-08-19T19:59:49Z
0
0
transformers
[ "transformers", "gguf", "peft", "lora", "roleplay", "creative-writing", "consequence-based-alignment", "gpt-oss", "openai-harmony", "en", "zh", "dataset:NousResearch/Hermes-3-Dataset", "dataset:Anthropic/hh-rlhf", "dataset:teknium/OpenHermes-2.5", "dataset:microsoft/orca-math-word-problems-200k", "dataset:WizardLM/WizardLM_evol_instruct_V2_196k", "dataset:calme/legalkit", "dataset:nvidia/Llama-3.1-Nemotron-70B-Instruct-HF", "dataset:Yoondi/bluemoon-roleplay-chat-jsonl", "dataset:LooksJuicy/Chinese-Roleplay-Novel", "dataset:zhouzr/pk-roleplay", "dataset:openerotica/long-roleplay-v0.1", "dataset:mrcuddle/nous-character-codex", "dataset:Arasaaf/myuri_roleplay", "dataset:AlekseyKorshuk/gpt-roleplay-realm-chatml", "dataset:diwank/gpt_roleplay_realm-chatml", "dataset:Gryphe/Sonnet3.5-Charcard-Roleplay", "dataset:hieunguyenminh/roleplay", "dataset:zerofata/Roleplay-Anime-Characters", "dataset:Locutusque/FalseReject-sharegpt", "dataset:QuixiAI/open-instruct-uncensored", "dataset:allenai/WildChat-4.8M-Full", "dataset:nvidia/Llama-Nemotron-Post-Training-Dataset", "dataset:WizardLMTeam/WizardLM_evol_instruct_V2_196k", "dataset:nvidia/OpenCodeReasoning", "dataset:MaziyarPanahi/calme-legalkit-v0.2", "dataset:Nitral-AI/Cybersecurity-ShareGPT", "dataset:savaniDhruv/Cybersecurity_Attack_Dataset", "dataset:openerotica/erotica-analysis", "dataset:demelin/moral_stories", "base_model:paperboygold/gpt-oss-sanguine-20b-v1", "base_model:adapter:paperboygold/gpt-oss-sanguine-20b-v1", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-19T15:35:12Z
--- base_model: paperboygold/gpt-oss-sanguine-20b-v1 datasets: - NousResearch/Hermes-3-Dataset - Anthropic/hh-rlhf - teknium/OpenHermes-2.5 - microsoft/orca-math-word-problems-200k - WizardLM/WizardLM_evol_instruct_V2_196k - calme/legalkit - nvidia/Llama-3.1-Nemotron-70B-Instruct-HF - Yoondi/bluemoon-roleplay-chat-jsonl - LooksJuicy/Chinese-Roleplay-Novel - zhouzr/pk-roleplay - openerotica/long-roleplay-v0.1 - mrcuddle/nous-character-codex - Arasaaf/myuri_roleplay - AlekseyKorshuk/gpt-roleplay-realm-chatml - diwank/gpt_roleplay_realm-chatml - Gryphe/Sonnet3.5-Charcard-Roleplay - hieunguyenminh/roleplay - zerofata/Roleplay-Anime-Characters - Locutusque/FalseReject-sharegpt - QuixiAI/open-instruct-uncensored - allenai/WildChat-4.8M-Full - nvidia/Llama-Nemotron-Post-Training-Dataset - WizardLMTeam/WizardLM_evol_instruct_V2_196k - nvidia/OpenCodeReasoning - MaziyarPanahi/calme-legalkit-v0.2 - Nitral-AI/Cybersecurity-ShareGPT - savaniDhruv/Cybersecurity_Attack_Dataset - openerotica/erotica-analysis - demelin/moral_stories language: - en - zh library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - peft - lora - roleplay - creative-writing - consequence-based-alignment - gpt-oss - openai-harmony --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/paperboygold/gpt-oss-sanguine-20b-v1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#gpt-oss-sanguine-20b-v1-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/gpt-oss-sanguine-20b-v1-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/gpt-oss-sanguine-20b-v1-GGUF/resolve/main/gpt-oss-sanguine-20b-v1.Q3_K_S.gguf) | Q3_K_S | 12.2 | | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-sanguine-20b-v1-GGUF/resolve/main/gpt-oss-sanguine-20b-v1.Q2_K.gguf) | Q2_K | 12.2 | | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-sanguine-20b-v1-GGUF/resolve/main/gpt-oss-sanguine-20b-v1.IQ4_XS.gguf) | IQ4_XS | 12.3 | | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-sanguine-20b-v1-GGUF/resolve/main/gpt-oss-sanguine-20b-v1.Q3_K_M.gguf) | Q3_K_M | 13.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-sanguine-20b-v1-GGUF/resolve/main/gpt-oss-sanguine-20b-v1.Q3_K_L.gguf) | Q3_K_L | 13.4 | | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-sanguine-20b-v1-GGUF/resolve/main/gpt-oss-sanguine-20b-v1.Q4_K_S.gguf) | Q4_K_S | 14.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-sanguine-20b-v1-GGUF/resolve/main/gpt-oss-sanguine-20b-v1.Q4_K_M.gguf) | Q4_K_M | 15.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-sanguine-20b-v1-GGUF/resolve/main/gpt-oss-sanguine-20b-v1.Q5_K_S.gguf) | Q5_K_S | 16.0 | | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-sanguine-20b-v1-GGUF/resolve/main/gpt-oss-sanguine-20b-v1.Q5_K_M.gguf) | Q5_K_M | 17.0 | | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-sanguine-20b-v1-GGUF/resolve/main/gpt-oss-sanguine-20b-v1.Q6_K.gguf) | Q6_K | 22.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/gpt-oss-sanguine-20b-v1-GGUF/resolve/main/gpt-oss-sanguine-20b-v1.Q8_0.gguf) | Q8_0 | 22.4 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mahmoudOmar03/reading_task_QA
mahmoudOmar03
2025-08-19T18:24:28Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "base_model:unsloth/Qwen3-14B-unsloth-bnb-4bit", "base_model:finetune:unsloth/Qwen3-14B-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-19T18:23:57Z
--- base_model: unsloth/Qwen3-14B-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** mahmoudOmar03 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen3-14B-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Sophie-Rain-V-iral-v-ideo-original-XX/Sophie.Rain.Spiderman.Viral.Video.Official.Tutorial
Sophie-Rain-V-iral-v-ideo-original-XX
2025-08-19T18:23:11Z
0
0
null
[ "region:us" ]
null
2025-08-19T18:18:11Z
<!-- HTML_TAG_END --><div> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Sophie+Rain+Spiderman">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐖𝐚𝐭𝐜𝐡 𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨)</a></p> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Sophie+Rain+Spiderman">🔴 ➤►𝐂𝐥𝐢𝐤 𝐇𝐞𝐫𝐞 𝐭𝐨👉👉 (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐋𝐢𝐧𝐤 )</a></p> <p><a rel="nofollow" href="https://leaked-videos.com/?v=Sophie+Rain+Spiderman"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a></p> <!-- HTML_TAG_END --></div>
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755626307
lisaozill03
2025-08-19T18:22:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T18:22:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dejiat/blockassist-bc-savage_unseen_bobcat_1755627622
Dejiat
2025-08-19T18:21:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "savage unseen bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T18:20:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - savage unseen bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
UnbeT/bielik_rewardall
UnbeT
2025-08-19T18:18:33Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-classification", "trl", "reward-trainer", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2025-08-19T18:14:29Z
--- library_name: transformers tags: - trl - reward-trainer --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MrRikyz/Impish-Irix-Kitsune-GGUF
MrRikyz
2025-08-19T18:16:33Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "RP", "mistral", "roleplay", "nsfw", "llama-cpp", "base_model:MrRikyz/Impish-Irix-Kitsune", "base_model:quantized:MrRikyz/Impish-Irix-Kitsune", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-19T16:17:04Z
--- base_model: MrRikyz/Impish-Irix-Kitsune library_name: transformers tags: - mergekit - merge - RP - mistral - roleplay - nsfw - llama-cpp license: apache-2.0 --- ## About static quants of https://huggingface.co/MrRikyz/Impish-Irix-Kitsune ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants If you want a specific quant just ask for it in the community tab (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q2_K.gguf) | Q2_K | 4.8 | Very low quality, Not recommended | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q3_K_S.gguf) | Q3_K_S | 5.6 | low quality | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-IQ3_M.gguf) | IQ3_M | 5.7 | | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q3_K_M.gguf) | Q3_K_M | 6.1 | lower quality | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q3_K_L.gguf) | Q3_K_L | 6.6 | | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-IQ4_XS.gguf) | IQ4_XS | 6.8 | balanced speed and quality, recomended | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q4_K_S.gguf) | Q4_K_S | 7.1 | fast, recommended | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q4_K_M.gguf) | Q4_K_M | 7.5 | fast, recommended | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q5_K_M.gguf) | Q5_K_M | 8.8 | good quality | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q6_K.gguf) | Q6_K | 10.1 | very good quality | | [GGUF](https://huggingface.co/MrRikyz/Impish-Irix-Kitsune-GGUF/resolve/main/Impish-Irix-Kitsune-Q8_0.gguf) | Q8_0 | 13.1 | best quality |
yk0/forge-e39
yk0
2025-08-19T18:14:12Z
0
0
null
[ "pytorch", "region:us" ]
null
2025-08-19T18:11:33Z
# forge-v1 Model Private testing version.
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755625475
katanyasekolah
2025-08-19T18:13:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T18:13:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Shujashark/llm-sql-t5-small-lora-adapter
Shujashark
2025-08-19T18:12:24Z
0
0
peft
[ "peft", "safetensors", "base_model:adapter:t5-small", "lora", "transformers", "arxiv:1910.09700", "base_model:google-t5/t5-small", "base_model:adapter:google-t5/t5-small", "region:us" ]
null
2025-08-19T18:08:48Z
--- base_model: t5-small library_name: peft tags: - base_model:adapter:t5-small - lora - transformers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.17.0
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755624927
calegpedia
2025-08-19T18:02:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T18:02:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
g-assismoraes/Qwen3-4B-Base-aki-alpha0.08-var-adown0.05-qQ2Q3-hatebr-pos
g-assismoraes
2025-08-19T18:00:16Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T17:52:59Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
khawarizmiai/Khawarizmi-SPI-MLP-8B
khawarizmiai
2025-08-19T17:55:47Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "base_model:Qwen/Qwen3-8B", "base_model:finetune:Qwen/Qwen3-8B", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T12:47:42Z
--- base_model: - Qwen/Qwen3-8B pipeline_tag: text-generation library_name: transformers license: mit --- # Khawarizmi-SPI-MLP-8B ## Model Overview **Khawarizmi-SPI-MLP-8B** is a hybrid language model developed by Khawarizmi AI, leveraging the innovative **Selective Parameter Interpolation on MLP Layers (SPI-MLP)** algorithm. This model ingeniously combines the robust linguistic capabilities of **Qwen3-8B** with the advanced reasoning patterns of **DeepSeek-R1**. The fusion is specifically applied to the Multi-Layer Perceptron (MLP) layers, with a composition of 60% DeepSeek and 40% Qwen, while critically preserving Qwen's original attention and normalization layers. This unique architectural approach aims to deliver a model highly proficient in complex reasoning, code generation, and multilingual tasks, with a particular emphasis on Arabic-English understanding. ## Technical Specifications Based on the `config.json` and `generation_config.json` files, the Khawarizmi-SPI-MLP-8B model exhibits the following technical characteristics: ### Architecture and Configuration | Parameter | Value | Description | |---|---|---| | `architectures` | `["Qwen3ForCausalLM"]` | Indicates the model architecture is a Causal Language Model based on Qwen3. | | `attention_bias` | `false` | Specifies if attention bias is used. | | `attention_dropout` | `0.0` | Dropout rate for attention layers. | | `bos_token_id` | `151643` | Beginning-of-sequence token ID. | | `eos_token_id` | `[151645, 151643]` | End-of-sequence token IDs. | | `head_dim` | `128` | Dimension of each attention head. | | `hidden_act` | `"silu"` | Activation function used in hidden layers. | | `hidden_size` | `4096` | Dimensionality of the encoder layers and the pooler layer. | | `initializer_range` | `0.02` | Standard deviation of the truncated normal initializer. | | `intermediate_size` | `12288` | Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | | `max_position_embeddings` | `40960` | The maximum sequence length that this model might ever be used with. | | `max_window_layers` | `36` | Maximum number of layers for windowed attention. | | `model_type` | `"qwen3"` | The type of the model, indicating its base family. | | `num_attention_heads` | `32` | Number of attention heads for each attention layer in the Transformer encoder. | | `num_hidden_layers` | `36` | Number of hidden layers in the Transformer encoder. | | `num_key_value_heads` | `8` | Number of key-value heads. | | `rms_norm_eps` | `1e-06` | The epsilon used by the RMS normalization layers. | | `rope_scaling` | `null` | RoPE scaling configuration. | | `rope_theta` | `1000000` | RoPE theta value. | | `sliding_window` | `null` | Sliding window configuration. | | `tie_word_embeddings` | `false` | Whether to tie the word embeddings with the output layer. | | `torch_dtype` | `"bfloat16"` | The data type used for the model parameters. | | `transformers_version` | `"4.51.0"` | The version of the Hugging Face Transformers library used. | | `use_cache` | `true` | Whether or not the model should return the last key/values attentions (not used by all models). | | `use_sliding_window` | `false` | Whether to use sliding window attention. | | `vocab_size` | `151936` | Vocabulary size of the model. | ### Generation Configuration | Parameter | Value | Description | |---|---|---| | `do_sample` | `true` | Whether or not to use sampling; use greedy decoding otherwise. | | `pad_token_id` | `151643` | Padding token ID. | | `temperature` | `0.6` | The value used to modulate the next token probabilities. | | `top_k` | `20` | The number of highest probability vocabulary tokens to keep for top-k-filtering. | | `top_p` | `0.95` | If set to float < 1, only the most probable tokens with probabilities that add up to `top_p` or higher are kept for generation. | | `transformers_version` | `"4.51.0"` | The version of the Hugging Face Transformers library used for generation. | ## Merge Strategy The **Khawarizmi-SPI-MLP-8B** model employs a sophisticated Selective Parameter Interpolation (SPI) strategy specifically targeting the MLP layers. This method allows for a nuanced integration of two distinct models: **Qwen3-8B** and **DeepSeek-R1**. The core idea is to selectively interpolate parameters within the MLP layers, achieving a blend that harnesses the strengths of both base models while maintaining the structural integrity of Qwen's attention and normalization layers. This approach ensures that the model benefits from DeepSeek-R1's reasoning capabilities without compromising Qwen3-8B's established linguistic prowess. For each weight tensor $W_k$: $$ W_k^{\text{merged}} = \begin{cases} 0.6 \cdot W_k^{\text{(DeepSeek)}} + 0.4 \cdot W_k^{\text{(Qwen)}} & \text{if "mlp" in } k \\ W_k^{\text{(Qwen)}} & \text{otherwise} \end{cases} $$ ## How to Use To utilize the **Khawarizmi-SPI-MLP-8B** model, follow the instructions below. Ensure you have the necessary dependencies installed. ### Installation First, install the required Python packages using `pip`: ```bash pip install -q transformers accelerate safetensors sentencepiece torch ``` ### Model Loading and Inference Once the dependencies are installed, you can load the model and tokenizer using the Hugging Face `transformers` library and perform text generation: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "khawarizmiai/Khawarizmi-SPI-MLP-8B" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto", trust_remote_code=True ) # Example usage (you can expand on this with more detailed examples) # prompt = "Write a short story about a robot learning to feel." # input_ids = tokenizer(prompt, return_tensors="pt").to(model.device) # generated_ids = model.generate(**input_ids, max_new_tokens=100) # print(tokenizer.decode(generated_ids[0], skip_special_tokens=True)) ``` ## Evaluation While specific benchmark results for Khawarizmi-SPI-MLP-8B are not detailed in the provided files, the model's design, which integrates DeepSeek-R1's reasoning patterns, suggests a focus on improving performance in areas such as: * **Reasoning**: Enhanced logical reasoning and problem-solving capabilities. * **Code Generation**: Improved ability to generate accurate and efficient code. * **Multilingual Tasks**: Stronger performance in understanding and generating text in multiple languages, particularly Arabic and English. Further evaluations would be necessary to quantify the model's performance across standard benchmarks (e.g., MMLU, GSM8K, HumanEval) to provide a comprehensive understanding of its capabilities. ## Limitations As with all large language models, Khawarizmi-SPI-MLP-8B may exhibit certain limitations inherent to current AI technology: * **Hallucination**: The model might generate factually incorrect or nonsensical information. * **Bias**: Potential biases present in the training data could be reflected in the model's outputs. * **Lack of Common Sense**: The model may occasionally lack human-like common sense reasoning, leading to unexpected or illogical responses. Users are advised to exercise caution and verify critical information generated by the model. ## License The licensing information for Khawarizmi-SPI-MLP-8B is available in the `LICENSE` file within the repository. Users should refer to this file for detailed terms and conditions regarding the use and distribution of the model. ## Citation If you find Khawarizmi-SPI-MLP-8B useful in your research or applications, please consider citing it. A formal citation will be provided upon publication of the research paper detailing the SPI-MLP algorithm and the model's development. ## Acknowledgements We extend our gratitude to the open-source community and the developers of Qwen3-8B and DeepSeek-R1, whose foundational work has been instrumental in the creation of Khawarizmi-SPI-MLP-8B. Their contributions continue to drive innovation in the field of artificial intelligence. ## Contact For inquiries, collaborations, or feedback regarding Khawarizmi-SPI-MLP-8B, please reach out to the Khawarizmi AI team through the Hugging Face platform or official channels as they become available. ## Disclaimer Khawarizmi-SPI-MLP-8B is provided for research and experimental purposes. While efforts have been made to ensure its quality and performance, Khawarizmi AI does not guarantee its suitability for any specific application. Users are responsible for assessing the model's outputs and ensuring compliance with all applicable laws and regulations. live
AppliedLucent/nemo-phase6
AppliedLucent
2025-08-19T17:49:04Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:AppliedLucent/nemo-phase5", "base_model:finetune:AppliedLucent/nemo-phase5", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T17:38:35Z
--- base_model: AppliedLucent/nemo-phase5 tags: - text-generation-inference - transformers - unsloth - mistral license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** AppliedLucent - **License:** apache-2.0 - **Finetuned from model :** AppliedLucent/nemo-phase5 This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
dgambettaphd/M_mis_run2_gen2_WXS_doc1000_synt64_lr1e-04_acm_LANG
dgambettaphd
2025-08-19T17:48:47Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-19T17:48:32Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
forstseh/blockassist-bc-arctic_soaring_heron_1755622249
forstseh
2025-08-19T17:43:45Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "arctic soaring heron", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T17:43:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - arctic soaring heron --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BootesVoid/cmeisb01q0rv8rts8hagsof4l_cmeisj43g0rw9rts87hpu0q86
BootesVoid
2025-08-19T17:41:28Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-19T17:41:27Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: MODELO --- # Cmeisb01Q0Rv8Rts8Hagsof4L_Cmeisj43G0Rw9Rts87Hpu0Q86 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `MODELO` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "MODELO", "lora_weights": "https://huggingface.co/BootesVoid/cmeisb01q0rv8rts8hagsof4l_cmeisj43g0rw9rts87hpu0q86/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmeisb01q0rv8rts8hagsof4l_cmeisj43g0rw9rts87hpu0q86', weight_name='lora.safetensors') image = pipeline('MODELO').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmeisb01q0rv8rts8hagsof4l_cmeisj43g0rw9rts87hpu0q86/discussions) to add images that show off what you’ve made with this LoRA.
Vasya777/blockassist-bc-lumbering_enormous_sloth_1755625199
Vasya777
2025-08-19T17:40:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-19T17:40:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
allisterb/gemma3_270m_tools_test
allisterb
2025-08-19T17:38:42Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-270m-it-unsloth-bnb-4bit", "base_model:quantized:unsloth/gemma-3-270m-it-unsloth-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-19T15:13:57Z
--- base_model: unsloth/gemma-3-270m-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** allisterb - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-270m-it-unsloth-bnb-4bit This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)