modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-15 00:44:47
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 557
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-15 00:44:36
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Nitral-AI/CaptainErisNebula-12B-AOE-v1
|
Nitral-AI
| 2025-08-20T00:45:38Z | 0 | 3 | null |
[
"safetensors",
"mistral",
"en",
"base_model:Nitral-Archive/CaptainErisNebula-12B-AOE-v0.69",
"base_model:finetune:Nitral-Archive/CaptainErisNebula-12B-AOE-v0.69",
"license:other",
"region:us"
] | null | 2025-08-17T09:20:38Z |
---
license: other
language:
- en
base_model:
- Nitral-Archive/CaptainErisNebula-12B-AOE-v0.69
---
# Quants: [4bpw-exl3](https://huggingface.co/Nitrals-Quants/CaptainErisNebula-12B-AE-v0.420-4bpw-exl3) [Imatrix GGuf Thanks to Lewdiculus <3](https://huggingface.co/Lewdiculous/CaptainErisNebula-12B-AOE-v1-GGUF-IQ-Imatrix)
## Base Model: [Nitral-Archive/CaptainErisNebula-12B-AOE-v0.69](https://huggingface.co/Nitral-Archive/CaptainErisNebula-12B-AOE-v0.69)
|
AnonymousCS/xlmr_immigration_combo9_0
|
AnonymousCS
| 2025-08-20T00:43:45Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-20T00:27:16Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo9_0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo9_0
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2866
- Accuracy: 0.9075
- 1-f1: 0.8594
- 1-recall: 0.8494
- 1-precision: 0.8696
- Balanced Acc: 0.8929
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.5892 | 1.0 | 25 | 0.5066 | 0.7943 | 0.6680 | 0.6216 | 0.7220 | 0.7511 |
| 0.3175 | 2.0 | 50 | 0.2808 | 0.9075 | 0.8537 | 0.8108 | 0.9013 | 0.8832 |
| 0.2587 | 3.0 | 75 | 0.2651 | 0.8997 | 0.8347 | 0.7606 | 0.9249 | 0.8649 |
| 0.2096 | 4.0 | 100 | 0.2657 | 0.9075 | 0.8577 | 0.8378 | 0.8785 | 0.8900 |
| 0.1896 | 5.0 | 125 | 0.2866 | 0.9075 | 0.8594 | 0.8494 | 0.8696 | 0.8929 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
sharkbn01/blockassist-bc-pesty_coiled_piranha_1755650332
|
sharkbn01
| 2025-08-20T00:40:08Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"pesty coiled piranha",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T00:39:59Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- pesty coiled piranha
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755648358
|
vwzyrraz7l
| 2025-08-20T00:32:28Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tall hunting vulture",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T00:32:25Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tall hunting vulture
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755648424
|
helmutsukocok
| 2025-08-20T00:32:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"loud scavenging kangaroo",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T00:32:06Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- loud scavenging kangaroo
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
indoempatnol/blockassist-bc-fishy_wary_swan_1755648323
|
indoempatnol
| 2025-08-20T00:30:48Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"fishy wary swan",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T00:30:45Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- fishy wary swan
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
thanobidex/blockassist-bc-colorful_shiny_hare_1755648278
|
thanobidex
| 2025-08-20T00:29:03Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"colorful shiny hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T00:29:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- colorful shiny hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1755649125
|
liukevin666
| 2025-08-20T00:23:14Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T00:19:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
roeker/blockassist-bc-quick_wiry_owl_1755649239
|
roeker
| 2025-08-20T00:21:58Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T00:21:27Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755648059
|
Sayemahsjn
| 2025-08-20T00:21:15Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"playful feline octopus",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T00:21:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- playful feline octopus
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
unitova/blockassist-bc-zealous_sneaky_raven_1755647426
|
unitova
| 2025-08-20T00:19:05Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"zealous sneaky raven",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T00:19:02Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- zealous sneaky raven
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755646958
|
katanyasekolah
| 2025-08-20T00:12:04Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"silky sprightly cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T00:12:01Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- silky sprightly cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AnonymousCS/xlmr_immigration_combo8_2
|
AnonymousCS
| 2025-08-20T00:11:31Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-19T23:46:02Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo8_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo8_2
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2440
- Accuracy: 0.9203
- 1-f1: 0.8789
- 1-recall: 0.8687
- 1-precision: 0.8893
- Balanced Acc: 0.9074
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.2093 | 1.0 | 25 | 0.2264 | 0.9267 | 0.8839 | 0.8378 | 0.9353 | 0.9045 |
| 0.172 | 2.0 | 50 | 0.2293 | 0.9242 | 0.8859 | 0.8842 | 0.8876 | 0.9141 |
| 0.1692 | 3.0 | 75 | 0.2440 | 0.9203 | 0.8789 | 0.8687 | 0.8893 | 0.9074 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
djc05142/cst_quantized_model_v4
|
djc05142
| 2025-08-20T00:10:36Z | 0 | 0 | null |
[
"safetensors",
"llama",
"region:us"
] | null | 2025-08-19T14:47:37Z |
```
!pip install transformers torch peft bitsandbytes datasets accelerate
```
์ฝ๋
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig
# --------------------------------------------------
# 1. ๋ชจ๋ธ ๊ฒฝ๋ก ๋ฐ ์ด๋ฆ ์ค์
# --------------------------------------------------
# (๋ชจ๋ธ 1) ํ์ธํ๋ ๋ฐ ์์ํ๋ ๋ชจ๋ธ
finetuning_model = "djc05142/cst_quantized_model_v4"
# --------------------------------------------------
# 2. ๊ฐ ๋ชจ๋ธ ๋ก๋
# --------------------------------------------------
# --- ๋ชจ๋ธ 1: ํ์ธํ๋ & ์์ํ ๋ชจ๋ธ ๋ก๋ ---
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=False,
)
quantized_model = AutoModelForCausalLM.from_pretrained(
finetuning_model,
quantization_config=quantization_config,
device_map="auto",
)
quantized_tokenizer = AutoTokenizer.from_pretrained(finetuning_model)
# --------------------------------------------------
# 3. ํ์ดํ๋ผ์ธ ์์ฑ
# --------------------------------------------------
quantized_pipe = pipeline("text-generation", model=quantized_model, tokenizer=quantized_tokenizer)
from transformers import AutoTokenizer
# --------------------------------------------------
# 4. ๋์ผํ ํ๋กฌํํธ๋ก ๊ฐ ๋ชจ๋ธ์ ์ถ๋ก ์์ฒญ ๋ฐ ๋น๊ต
# --------------------------------------------------
# ํ์ธํ๋ ๋ฐ์ดํฐ(๊ตฌ์ด์ฒด)์ ํน์ฑ์ด ์ ๋๋ฌ๋๋ ์ง๋ฌธ์ ์ ํ
tokenizer = AutoTokenizer.from_pretrained(finetuning_model)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
question = "๊น์น๋ณถ์๋ฐฅ ์ฌ๋ฃ๊ฐ ๋ญ์ผ?"
prompt = f"### ์ง๋ฌธ:{question}\n\n### ๋ต๋ณ:"
print("\n" + "="*60)
print(f"์ง๋ฌธ: {prompt.split('### ๋ต๋ณ:')[0].replace('### ์ง๋ฌธ: ', '').strip()}")
print("="*60 + "\n")
# ํ์ธํ๋ & ์์ํ ๋ชจ๋ธ ์ถ๋ก
print("1. ํ์ธํ๋ ๋ชจ๋ธ ๋ต๋ณ:")
quantized_result = quantized_pipe(
prompt,
temperature=0.7,
eos_token_id=tokenizer.eos_token_id,
return_full_text=False
)
print(quantized_result[0]['generated_text'])
print("\n" + "="*60)
```
|
MattBou00/llama-3-2-1b-detox_v1e-checkpoint-epoch-40
|
MattBou00
| 2025-08-20T00:09:09Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"ppo",
"reinforcement-learning",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
reinforcement-learning
| 2025-08-20T00:07:20Z |
---
license: apache-2.0
library_name: transformers
tags:
- trl
- ppo
- transformers
- reinforcement-learning
---
# TRL Model
This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-59-21/checkpoints/checkpoint-epoch-40")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-59-21/checkpoints/checkpoint-epoch-40")
model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-59-21/checkpoints/checkpoint-epoch-40")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```
|
AnonymousCS/xlmr_immigration_combo8_1
|
AnonymousCS
| 2025-08-20T00:08:07Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-19T23:43:14Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo8_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo8_1
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2440
- Accuracy: 0.9254
- 1-f1: 0.884
- 1-recall: 0.8533
- 1-precision: 0.9170
- Balanced Acc: 0.9074
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.2219 | 1.0 | 25 | 0.2193 | 0.9242 | 0.8803 | 0.8378 | 0.9274 | 0.9025 |
| 0.196 | 2.0 | 50 | 0.2358 | 0.9177 | 0.8689 | 0.8185 | 0.9258 | 0.8929 |
| 0.2005 | 3.0 | 75 | 0.2440 | 0.9254 | 0.884 | 0.8533 | 0.9170 | 0.9074 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
roeker/blockassist-bc-quick_wiry_owl_1755648010
|
roeker
| 2025-08-20T00:01:29Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T00:00:55Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Inmbisat/Work
|
Inmbisat
| 2025-08-19T23:55:30Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-08-19T23:55:30Z |
---
license: apache-2.0
---
|
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755646204
|
sampingkaca72
| 2025-08-19T23:54:44Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"armored stealthy elephant",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T23:54:41Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- armored stealthy elephant
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
MattBou00/llama-3-2-1b-detox_v1d-checkpoint-epoch-40
|
MattBou00
| 2025-08-19T23:54:12Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"ppo",
"reinforcement-learning",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
reinforcement-learning
| 2025-08-19T23:52:28Z |
---
license: apache-2.0
library_name: transformers
tags:
- trl
- ppo
- transformers
- reinforcement-learning
---
# TRL Model
This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-45-50/checkpoints/checkpoint-epoch-40")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-45-50/checkpoints/checkpoint-epoch-40")
model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-45-50/checkpoints/checkpoint-epoch-40")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```
|
hash-map/custom-eng-te-translation
|
hash-map
| 2025-08-19T23:50:42Z | 0 | 0 | null |
[
"safetensors",
"model_hub_mixin",
"pytorch_model_hub_mixin",
"region:us"
] | null | 2025-08-19T21:40:14Z |
---
tags:
- model_hub_mixin
- pytorch_model_hub_mixin
---
This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
- Code: [More Information Needed]
- Paper: [More Information Needed]
- Docs: [More Information Needed]
|
MattBou00/llama-3-2-1b-detox_v1d-checkpoint-epoch-20
|
MattBou00
| 2025-08-19T23:50:13Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"ppo",
"reinforcement-learning",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
reinforcement-learning
| 2025-08-19T23:48:19Z |
---
license: apache-2.0
library_name: transformers
tags:
- trl
- ppo
- transformers
- reinforcement-learning
---
# TRL Model
This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to
guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
## Usage
To use this model for inference, first install the TRL library:
```bash
python -m pip install trl
```
You can then generate text as follows:
```python
from transformers import pipeline
generator = pipeline("text-generation", model="MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-45-50/checkpoints/checkpoint-epoch-20")
outputs = generator("Hello, my llama is cute")
```
If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
```python
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
tokenizer = AutoTokenizer.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-45-50/checkpoints/checkpoint-epoch-20")
model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00//content/IRL-Bayesian/outputs/2025-08-19_23-45-50/checkpoints/checkpoint-epoch-20")
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
outputs = model(**inputs, labels=inputs["input_ids"])
```
|
roeker/blockassist-bc-quick_wiry_owl_1755647200
|
roeker
| 2025-08-19T23:48:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T23:47:29Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
unitova/blockassist-bc-zealous_sneaky_raven_1755645424
|
unitova
| 2025-08-19T23:44:51Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"zealous sneaky raven",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T23:44:48Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- zealous sneaky raven
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
hakimjustbao/blockassist-bc-raging_subtle_wasp_1755644479
|
hakimjustbao
| 2025-08-19T23:27:22Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"raging subtle wasp",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T23:27:19Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- raging subtle wasp
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AnonymousCS/xlmr_immigration_combo7_2
|
AnonymousCS
| 2025-08-19T23:25:18Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-19T23:22:30Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo7_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo7_2
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1699
- Accuracy: 0.9537
- 1-f1: 0.9302
- 1-recall: 0.9266
- 1-precision: 0.9339
- Balanced Acc: 0.9469
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.1948 | 1.0 | 25 | 0.1502 | 0.9602 | 0.9391 | 0.9228 | 0.956 | 0.9508 |
| 0.1681 | 2.0 | 50 | 0.1761 | 0.9447 | 0.9124 | 0.8649 | 0.9655 | 0.9247 |
| 0.1613 | 3.0 | 75 | 0.1699 | 0.9537 | 0.9302 | 0.9266 | 0.9339 | 0.9469 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
roeker/blockassist-bc-quick_wiry_owl_1755645573
|
roeker
| 2025-08-19T23:21:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T23:20:21Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AnonymousCS/xlmr_immigration_combo7_0
|
AnonymousCS
| 2025-08-19T23:19:33Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-19T22:59:15Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo7_0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo7_0
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2841
- Accuracy: 0.9152
- 1-f1: 0.8648
- 1-recall: 0.8147
- 1-precision: 0.9214
- Balanced Acc: 0.8900
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.6179 | 1.0 | 25 | 0.6021 | 0.6671 | 0.0 | 0.0 | 0.0 | 0.5 |
| 0.4255 | 2.0 | 50 | 0.3616 | 0.8946 | 0.8353 | 0.8031 | 0.8703 | 0.8717 |
| 0.2818 | 3.0 | 75 | 0.2559 | 0.9139 | 0.8571 | 0.7761 | 0.9571 | 0.8794 |
| 0.2035 | 4.0 | 100 | 0.2363 | 0.9190 | 0.8706 | 0.8185 | 0.9298 | 0.8939 |
| 0.1596 | 5.0 | 125 | 0.2638 | 0.9126 | 0.8677 | 0.8610 | 0.8745 | 0.8997 |
| 0.1866 | 6.0 | 150 | 0.2841 | 0.9152 | 0.8648 | 0.8147 | 0.9214 | 0.8900 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
kuleshov-group/PlantCaduceus_l24
|
kuleshov-group
| 2025-08-19T23:18:53Z | 1 | 0 |
transformers
|
[
"transformers",
"pytorch",
"caduceus",
"feature-extraction",
"custom_code",
"arxiv:2312.00752",
"license:apache-2.0",
"region:us"
] |
feature-extraction
| 2024-05-19T16:24:45Z |
---
license: apache-2.0
---
## Model Overview
PlantCaduceus is a DNA language model pre-trained on 16 Angiosperm genomes. Utilizing the [Caduceus](https://caduceus-dna.github.io/) and [Mamba](https://arxiv.org/abs/2312.00752) architectures and a masked language modeling objective, PlantCaduceus is designed to learn evolutionary conservation and DNA sequence grammar from 16 species spanning a history of 160 million years. We have trained a series of PlantCaduceus models with varying parameter sizes:
- **[PlantCaduceus_l20](https://huggingface.co/kuleshov-group/PlantCaduceus_l20)**: 20 layers, 384 hidden size, 20M parameters
- **[PlantCaduceus_l24](https://huggingface.co/kuleshov-group/PlantCaduceus_l24)**: 24 layers, 512 hidden size, 40M parameters
- **[PlantCaduceus_l28](https://huggingface.co/kuleshov-group/PlantCaduceus_l28)**: 28 layers, 768 hidden size, 112M parameters
- **[PlantCaduceus_l32](https://huggingface.co/kuleshov-group/PlantCaduceus_l32)**: 32 layers, 1024 hidden size, 225M parameters
**We would highly recommend using the largest model ([PlantCaduceus_l32](https://huggingface.co/kuleshov-group/PlantCaduceus_l32)) for the zero-shot score estimation.**
## How to use
```python
from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer
import torch
model_path = 'kuleshov-group/PlantCaduceus_l24'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = AutoModelForMaskedLM.from_pretrained(model_path, trust_remote_code=True, device_map=device)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
sequence = "ATGCGTACGATCGTAG"
encoding = tokenizer.encode_plus(
sequence,
return_tensors="pt",
return_attention_mask=False,
return_token_type_ids=False
)
input_ids = encoding["input_ids"].to(device)
with torch.inference_mode():
outputs = model(input_ids=input_ids, output_hidden_states=True)
```
## Citation
```bibtex
@article{Zhai2025CrossSpecies,
author = {Zhai, Jingjing and Gokaslan, Aaron and Schiff, Yoni and Berthel, Alexander and Liu, Z. Y. and Lai, W. L. and Miller, Z. R. and Scheben, Armin and Stitzer, Michelle C. and Romay, Maria C. and Buckler, Edward S. and Kuleshov, Volodymyr},
title = {Cross-species modeling of plant genomes at single nucleotide resolution using a pretrained DNA language model},
journal = {Proceedings of the National Academy of Sciences},
year = {2025},
volume = {122},
number = {24},
pages = {e2421738122},
doi = {10.1073/pnas.2421738122},
url = {https://doi.org/10.1073/pnas.2421738122}
}
```
## Contact
Jingjing Zhai (jz963@cornell.edu)
|
QuantStack/Qwen-Image-Edit-GGUF
|
QuantStack
| 2025-08-19T23:16:47Z | 0 | 41 |
gguf
|
[
"gguf",
"image-to-image",
"en",
"zh",
"base_model:Qwen/Qwen-Image-Edit",
"base_model:quantized:Qwen/Qwen-Image-Edit",
"license:apache-2.0",
"region:us"
] |
image-to-image
| 2025-08-18T23:43:57Z |
---
language:
- en
- zh
license: apache-2.0
base_model:
- Qwen/Qwen-Image-Edit
library_name: gguf
pipeline_tag: image-to-image
---
This GGUF file is a direct conversion of [Qwen/Qwen-Image-Edit](https://huggingface.co/Qwen/Qwen-Image-Edit)
Type | Name | Location | Download
| ------------ | -------------------------------------------------- | --------------------------------- | -------------------------
| Main Model | Qwen-Image | `ComfyUI/models/unet` | GGUF (this repo)
| Main Text Encoder | Qwen2.5-VL-7B | `ComfyUI/models/text_encoders` | [Safetensors](https://huggingface.co/Comfy-Org/Qwen-Image_ComfyUI/tree/main/split_files/text_encoders) / [GGUF](https://huggingface.co/unsloth/Qwen2.5-VL-7B-Instruct-GGUF/tree/main) |
| Text_Encoder (mmproj) | Qwen2.5-VL-7B-Instruct-mmproj-BF16 | `ComfyUI/models/text_encoders` (same folder as your main text encoder) | GGUF (this repo)
| VAE | Qwen-Image VAE | `ComfyUI/models/vae` | Safetensors (this repo) |
Since this is a quantized model, all original licensing terms and usage restrictions remain in effect.
**Usage**
The model can be used with the ComfyUI custom node [ComfyUI-GGUF](https://github.com/city96/ComfyUI-GGUF) by [city96](https://huggingface.co/city96)
|
soob3123/Veritas-task-trade-off-agent
|
soob3123
| 2025-08-19T23:14:43Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"trl",
"sft",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2025-08-19T23:14:03Z |
---
library_name: transformers
tags:
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
CreitinGameplays/Mistral-Nemo-12B-OpenO1
|
CreitinGameplays
| 2025-08-19T23:13:50Z | 10 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"en",
"dataset:CreitinGameplays/O1-OPEN_OpenO1-SFT-Pro-English-Mistral",
"base_model:mistralai/Mistral-Nemo-Instruct-2407",
"base_model:finetune:mistralai/Mistral-Nemo-Instruct-2407",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-05-24T09:18:23Z |
---
license: mit
datasets:
- CreitinGameplays/O1-OPEN_OpenO1-SFT-Pro-English-Mistral
language:
- en
base_model:
- mistralai/Mistral-Nemo-Instruct-2407
pipeline_tag: text-generation
library_name: transformers
---
|
torchao-testing/single-linear-Float8DynamicActivationFloat8WeightConfig-v2-0.13-dev
|
torchao-testing
| 2025-08-19T23:11:02Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T23:10:48Z |
```
import torch
import io
model = torch.nn.Sequential(torch.nn.Linear(32, 256, dtype=torch.bfloat16, device="cuda"))
from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig, PerRow
quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow())
quantize_(model, quant_config)
example_inputs = (torch.randn(2, 32, dtype=torch.bfloat16, device="cuda"),)
output = model(*example_inputs)
# Push to hub
USER_ID = "torchao-testing"
MODEL_NAME = "single-linear"
save_to = f"{USER_ID}/{MODEL_NAME}-Float8DynamicActivationFloat8WeightConfig-v2-0.13.dev"
from huggingface_hub import HfApi
api = HfApi()
buf = io.BytesIO()
torch.save(model.state_dict(), buf)
api.create_repo(save_to, repo_type="model", exist_ok=True)
api.upload_file(
path_or_fileobj=buf,
path_in_repo="model.bin",
repo_id=save_to,
)
buf = io.BytesIO()
torch.save(example_inputs, buf)
api.upload_file(
path_or_fileobj=buf,
path_in_repo="model_inputs.pt",
repo_id=save_to,
)
buf = io.BytesIO()
torch.save(output, buf)
api.upload_file(
path_or_fileobj=buf,
path_in_repo="model_output.pt",
repo_id=save_to,
)
```
|
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755643478
|
ihsanridzi
| 2025-08-19T23:10:39Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry flexible owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T23:10:36Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry flexible owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
seraphimzzzz/58348
|
seraphimzzzz
| 2025-08-19T23:05:52Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T23:05:49Z |
[View on Civ Archive](https://civarchive.com/models/80554?modelVersionId=85436)
|
lilTAT/blockassist-bc-gentle_rugged_hare_1755644677
|
lilTAT
| 2025-08-19T23:05:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle rugged hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T23:05:03Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle rugged hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
seraphimzzzz/45661
|
seraphimzzzz
| 2025-08-19T23:05:05Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T23:05:02Z |
[View on Civ Archive](https://civarchive.com/models/60593?modelVersionId=65063)
|
ultratopaz/64761
|
ultratopaz
| 2025-08-19T23:04:48Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T23:04:45Z |
[View on Civ Archive](https://civarchive.com/models/88038?modelVersionId=93695)
|
crystalline7/42524
|
crystalline7
| 2025-08-19T23:03:12Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T23:03:09Z |
[View on Civ Archive](https://civarchive.com/models/55594?modelVersionId=59988)
|
ultratopaz/48758
|
ultratopaz
| 2025-08-19T23:02:55Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T23:02:52Z |
[View on Civ Archive](https://civarchive.com/models/65216?modelVersionId=69845)
|
crystalline7/126289
|
crystalline7
| 2025-08-19T23:02:24Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T23:02:22Z |
[View on Civ Archive](https://civarchive.com/models/149263?modelVersionId=166671)
|
thiernomdou/Karamoo
|
thiernomdou
| 2025-08-19T23:02:22Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-19T22:53:37Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: karamoo
---
# Karamoo
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `karamoo` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "karamoo",
"lora_weights": "https://huggingface.co/thiernomdou/Karamoo/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [๐งจ diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('thiernomdou/Karamoo', weight_name='lora.safetensors')
image = pipeline('karamoo').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 1000
- Learning rate: 0.0004
- LoRA rank: 16
## Contribute your own examples
You can use the [community tab](https://huggingface.co/thiernomdou/Karamoo/discussions) to add images that show off what youโve made with this LoRA.
|
ultratopaz/93085
|
ultratopaz
| 2025-08-19T23:01:42Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T23:01:35Z |
[View on Civ Archive](https://civarchive.com/models/118503?modelVersionId=128554)
|
dsdsdsdfffff/code_ffn_random
|
dsdsdsdfffff
| 2025-08-19T23:00:50Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"deepseek_v2",
"text-generation",
"conversational",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-19T22:46:42Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ultratopaz/42807
|
ultratopaz
| 2025-08-19T23:00:20Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T23:00:17Z |
[View on Civ Archive](https://civarchive.com/models/56050?modelVersionId=60448)
|
ultratopaz/63808
|
ultratopaz
| 2025-08-19T22:57:34Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:57:32Z |
[View on Civ Archive](https://civarchive.com/models/86958?modelVersionId=92511)
|
koloni/blockassist-bc-deadly_graceful_stingray_1755642634
|
koloni
| 2025-08-19T22:57:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T22:57:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
seraphimzzzz/778755
|
seraphimzzzz
| 2025-08-19T22:57:06Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:57:03Z |
[View on Civ Archive](https://civarchive.com/models/376220?modelVersionId=869936)
|
crystalline7/70066
|
crystalline7
| 2025-08-19T22:56:59Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:56:56Z |
[View on Civ Archive](https://civarchive.com/models/94074?modelVersionId=100354)
|
crystalline7/112237
|
crystalline7
| 2025-08-19T22:56:46Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:56:44Z |
[View on Civ Archive](https://civarchive.com/models/136795?modelVersionId=150921)
|
crystalline7/36212
|
crystalline7
| 2025-08-19T22:56:18Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:56:14Z |
[View on Civ Archive](https://civarchive.com/models/44543?modelVersionId=49168)
|
crystalline7/391174
|
crystalline7
| 2025-08-19T22:55:45Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:55:36Z |
[View on Civ Archive](https://civarchive.com/models/424163?modelVersionId=472584)
|
chainway9/blockassist-bc-untamed_quick_eel_1755642411
|
chainway9
| 2025-08-19T22:55:05Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"untamed quick eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T22:55:01Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- untamed quick eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755642454
|
vwzyrraz7l
| 2025-08-19T22:53:41Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tall hunting vulture",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T22:53:37Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tall hunting vulture
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
seraphimzzzz/30194
|
seraphimzzzz
| 2025-08-19T22:53:08Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:53:04Z |
[View on Civ Archive](https://civarchive.com/models/32091?modelVersionId=38532)
|
crystalline7/25213
|
crystalline7
| 2025-08-19T22:52:16Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:52:11Z |
[View on Civ Archive](https://civarchive.com/models/25513?modelVersionId=30545)
|
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755642210
|
coelacanthxyz
| 2025-08-19T22:52:07Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"finicky thriving grouse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T22:52:02Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- finicky thriving grouse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
crystalline7/56907
|
crystalline7
| 2025-08-19T22:49:21Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:49:18Z |
[View on Civ Archive](https://civarchive.com/models/24156?modelVersionId=83175)
|
crystalline7/26964
|
crystalline7
| 2025-08-19T22:48:34Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:48:29Z |
[View on Civ Archive](https://civarchive.com/models/27347?modelVersionId=32745)
|
coastalcph/Qwen2.5-7B-1t_gcd_sycophancy-8t_diff_sycophant
|
coastalcph
| 2025-08-19T22:48:14Z | 0 | 0 | null |
[
"safetensors",
"qwen2",
"region:us"
] | null | 2025-08-19T22:45:39Z |
# Combined Task Vector Model
This model was created by combining task vectors from multiple fine-tuned models.
## Task Vector Computation
```python
t_1 = TaskVector("Qwen/Qwen2.5-7B-Instruct", "coastalcph/Qwen2.5-7B-gcd_sycophancy")
t_2 = TaskVector("Qwen/Qwen2.5-7B-Instruct", "coastalcph/Qwen2.5-7B-personality-non-sycophancy")
t_combined = 1.0 * t_1 + 8.0 * t_2 - 8.0 * t_3
new_model = t_combined.apply_to("Qwen/Qwen2.5-7B-Instruct", scaling_coef=1.0)
```
Models Used
- Base Model: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
- Fine-tuned Model 1: https://huggingface.co/coastalcph/Qwen2.5-7B-gcd_sycophancy
- Fine-tuned Model 2: https://huggingface.co/coastalcph/Qwen2.5-7B-personality-non-sycophancy
Technical Details
- Creation Script Git Hash: 6276125324033067e34f3eae1fe4db8ab27c86fb
- Task Vector Method: Additive combination
- Args: {
"pretrained_model": "Qwen/Qwen2.5-7B-Instruct",
"finetuned_model1": "coastalcph/Qwen2.5-7B-gcd_sycophancy",
"finetuned_model2": "coastalcph/Qwen2.5-7B-personality-non-sycophancy",
"finetuned_model3": "coastalcph/Qwen2.5-7B-personality-sycophancy",
"output_model_name": "coastalcph/Qwen2.5-7B-1t_gcd_sycophancy-8t_diff_sycophant",
"output_dir": "/projects/nlp/data/constanzam/weight-interp/task-vectors/math_non_sycophant_12Aug",
"scaling_coef": 1.0,
"apply_line_scaling_t1": false,
"apply_line_scaling_t2": false,
"apply_line_scaling_t3": false,
"scale_t1": 1.0,
"scale_t2": 8.0,
"scale_t3": 8.0
}
|
ultratopaz/59135
|
ultratopaz
| 2025-08-19T22:48:06Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:48:03Z |
[View on Civ Archive](https://civarchive.com/models/81526?modelVersionId=86507)
|
crystalline7/68233
|
crystalline7
| 2025-08-19T22:47:39Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:47:36Z |
[View on Civ Archive](https://civarchive.com/models/91940?modelVersionId=98028)
|
dsisodia/ai-nidhi
|
dsisodia
| 2025-08-19T22:47:03Z | 0 | 0 |
diffusers
|
[
"diffusers",
"flux",
"lora",
"replicate",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-19T21:45:07Z |
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: "black-forest-labs/FLUX.1-dev"
pipeline_tag: text-to-image
# widget:
# - text: >-
# prompt
# output:
# url: https://...
instance_prompt: AINIDHI
---
# Ai Nidhi
<Gallery />
## About this LoRA
This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI.
It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train
## Trigger words
You should use `AINIDHI` to trigger the image generation.
## Run this LoRA with an API using Replicate
```py
import replicate
input = {
"prompt": "AINIDHI",
"lora_weights": "https://huggingface.co/dsisodia/ai-nidhi/resolve/main/lora.safetensors"
}
output = replicate.run(
"black-forest-labs/flux-dev-lora",
input=input
)
for index, item in enumerate(output):
with open(f"output_{index}.webp", "wb") as file:
file.write(item.read())
```
## Use it with the [๐งจ diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('dsisodia/ai-nidhi', weight_name='lora.safetensors')
image = pipeline('AINIDHI').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## Training details
- Steps: 1200
- Learning rate: 0.0004
- LoRA rank: 32
## Contribute your own examples
You can use the [community tab](https://huggingface.co/dsisodia/ai-nidhi/discussions) to add images that show off what youโve made with this LoRA.
|
roeker/blockassist-bc-quick_wiry_owl_1755643537
|
roeker
| 2025-08-19T22:47:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T22:46:22Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
seraphimzzzz/100080
|
seraphimzzzz
| 2025-08-19T22:45:55Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:45:52Z |
[View on Civ Archive](https://civarchive.com/models/125326?modelVersionId=136894)
|
seraphimzzzz/79815
|
seraphimzzzz
| 2025-08-19T22:45:48Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:45:45Z |
[View on Civ Archive](https://civarchive.com/models/104933?modelVersionId=112523)
|
ultratopaz/19827
|
ultratopaz
| 2025-08-19T22:45:30Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:45:26Z |
[View on Civ Archive](https://civarchive.com/models/20123?modelVersionId=23901)
|
crystalline7/63724
|
crystalline7
| 2025-08-19T22:45:01Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:45:01Z |
[View on Civ Archive](https://civarchive.com/models/86858?modelVersionId=92401)
|
crystalline7/59070
|
crystalline7
| 2025-08-19T22:44:15Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:44:11Z |
[View on Civ Archive](https://civarchive.com/models/75223?modelVersionId=86425)
|
crystalline7/54021
|
crystalline7
| 2025-08-19T22:43:46Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:43:43Z |
[View on Civ Archive](https://civarchive.com/models/73874?modelVersionId=78592)
|
seraphimzzzz/640572
|
seraphimzzzz
| 2025-08-19T22:42:39Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:42:37Z |
[View on Civ Archive](https://civarchive.com/models/462107?modelVersionId=726101)
|
ultratopaz/55192
|
ultratopaz
| 2025-08-19T22:40:51Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:40:48Z |
[View on Civ Archive](https://civarchive.com/models/75721?modelVersionId=80467)
|
crystalline7/33987
|
crystalline7
| 2025-08-19T22:40:23Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:40:23Z |
[View on Civ Archive](https://civarchive.com/models/39434?modelVersionId=45341)
|
rvs/llama3_awq_int4_complete
|
rvs
| 2025-08-19T22:39:35Z | 0 | 0 | null |
[
"onnx",
"text-generation-inference",
"llama",
"llama3",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:quantized:meta-llama/Meta-Llama-3-8B-Instruct",
"region:us"
] | null | 2025-08-19T22:39:00Z |
---
tags:
- text-generation-inference
- llama
- llama3
base_model:
- meta-llama/Meta-Llama-3-8B-Instruct
---
# Llama 3 8B Instruct with Key-Value-Cache enabled in ONNX ONNX AWQ (4-bit) format
- Model creator: [Meta Llama](https://huggingface.co/meta-llama)
- Original model: [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
<!-- description start -->
## Description
This repo contains the ONNX files for the ONNX conversion of Llama 3 8B Instruct done by Esperanto Technologies.
The model is in the 4-bit format quantized with AWQ and has the KVC enabled.
### About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
More here: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ)
<!-- description end -->
## How to download ONNX model and weight files
The easiest way to obtain the model is to clone this whole repo.
Alternatively you can download the files is using the `huggingface-hub` Python library.
```shell
pip3 install huggingface-hub>=0.17.1
```
Then you can download any individual model file to the current directory, at high speed, with a command like this:
```shell
huggingface-cli download Esperanto/llama3-8b-Instruct-kvc-AWQ-int4-onnx --local-dir llama3-8b-Instruct-kvc-AWQ-int4-onnx --local-dir-use-symlinks False
```
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
## How to run from Python code using ONNXRuntime
This model can easily be ran in a CPU using [ONNXRuntime](https://onnxruntime.ai/).
#### First install the packages
```bash
pip3 install onnx==1.16.1
pip3 install onnxruntime==1.17.1
```
#### Example code: generate text with this model
We define the loop with greedy decoding:
```python
import numpy as np
import onnxruntime
import onnx
from transformers import AutoTokenizer
def generate_text(model_path, prompt, tokenizer, max_gen_tokens, total_sequence, window, context):
model = onnx.load(model_path)
#we create the inputs for the first iteration
input_tensor = tokenizer(prompt, return_tensors="pt")
prompt_size = len(input_tensor['input_ids'][0])
actual_input = input_tensor['input_ids']
if prompt_size < window:
actual_input = np.concatenate((tokenizer.bos_token_id*np.ones([1, window - prompt_size], dtype = 'int64'),
actual_input), axis=1)
if prompt_size + max_gen_tokens > total_sequence:
print("ERROR: Longer total sequence is needed!")
return
first_attention = np.concatenate((np.zeros([1, total_sequence - window], dtype = 'int64'),
np.ones((1, window), dtype = 'int64')), axis=1)
max_gen_tokens += prompt_size #we need to generate on top of parsing the prompt
inputs_names =[node.name for node in model.graph.input]
output_names =[node.name for node in model.graph.output]
n_heads = 8 #gqa-heads of the kvc
inputs_dict = {}
inputs_dict['input_ids'] = actual_input[:, :window].reshape(1, window).numpy()
inputs_dict['attention_mask'] = first_attention
index_pos = sum(first_attention[0])
inputs_dict['position_ids'] = np.concatenate((np.zeros([1, total_sequence - index_pos], dtype = 'int64'), np.arange(index_pos, dtype = 'int64').reshape(1, index_pos)), axis=1)
inputs_dict['tree_attention'] = np.triu(-65504*np.ones(total_sequence), k= 1).astype('float16').reshape(1, 1, total_sequence, total_sequence)
for name in inputs_names:
if name == 'input_ids' or name == 'attention_mask' or name == 'position_ids' or name == 'tree_attention': continue
inputs_dict[name] = np.zeros([1, n_heads, context-window, 128], dtype="float16")
index = 0
new_token = np.array([10])
next_index = window
old_j = 0
total_input = actual_input.numpy()
rt_session = onnxruntime.InferenceSession(model_path)
## We run the inferences
while next_index < max_gen_tokens:
if new_token.any() == tokenizer.eos_token_id:
break
#inference
output = rt_session.run(output_names, inputs_dict)
outs_dictionary = {name: content for (name, content) in zip (output_names, output)}
#we prepare the inputs for the next inference
for name in inputs_names:
if name == 'input_ids':
old_j = next_index
if next_index < prompt_size:
if prompt_size - next_index >= window: next_index += window
else: next_index = prompt_size
j = next_index - window
else:
next_index +=1
j = next_index - window
new_token = outs_dictionary['logits'].argmax(-1).reshape(1, window)
total_input = np.concatenate((total_input, new_token[: , -1:]), axis = 1)
inputs_dict['input_ids']= total_input[:, j:next_index].reshape(1, window)
elif name == 'attention_mask':
inputs_dict['attention_mask'] = np.concatenate((np.zeros((1, total_sequence-next_index), dtype = 'int64'), np.ones((1, next_index), dtype = 'int64')), axis=1)
elif name == 'position_ids':
inputs_dict['position_ids'] = np.concatenate((np.zeros([1, total_sequence - next_index], dtype = 'int64'), np.arange(next_index, dtype = 'int64').reshape(1, next_index)), axis=1)
elif name == 'tree_attention': continue
else:
old_name = name.replace("past_key_values", "present")
inputs_dict[name] = outs_dictionary[old_name][:, :, next_index-old_j:context-window+(next_index - old_j), :]
answer = tokenizer.decode(total_input[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
return answer
```
We now run the inferences:
```python
tokenizer = AutoTokenizer.from_pretrained("Esperanto/llama3-8b-Instruct-kvc-AWQ-int4-onnx-onnx")
model_path = "llama3-8b-Instruct-kvc-AWQ-int4-onnx/model.onnx"
max_gen_tokens = 20 #number of tokens we want tog eneral
total_sequence = 128 #total sequence_length
context = 1024 #the context to extend the kvc
window = 16 #number of tokens we want to parse at the time
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
generated = generate_text(model_path, prompt, tokenizer, max_gen_tokens, total_sequence, window, context)
print(generated)
```
|
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755640986
|
calegpedia
| 2025-08-19T22:30:58Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stealthy slimy rooster",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T22:30:55Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stealthy slimy rooster
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Muapi/wizards-vintage-rustica-illustration
|
Muapi
| 2025-08-19T22:29:55Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T22:29:37Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Wizards Vintage: Rustica Illustration

**Base model**: Flux.1 D
**Trained words**: vintage rustica illustration
## ๐ง Usage (Python)
๐ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:922242@1032312", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Muapi/norman-rockwell
|
Muapi
| 2025-08-19T22:29:07Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T22:28:53Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Norman Rockwell

**Base model**: Flux.1 D
**Trained words**: Art by Norman Rockwell
## ๐ง Usage (Python)
๐ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1397494@1579617", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Muapi/mistoon-anime-flux
|
Muapi
| 2025-08-19T22:27:07Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T22:26:53Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# Mistoon Anime Flux

**Base model**: Flux.1 D
**Trained words**:
## ๐ง Usage (Python)
๐ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:682107@763448", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Muapi/sd3.5-sdxl-flux-pika-s-battlefield-style-v2
|
Muapi
| 2025-08-19T22:26:47Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T22:26:35Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# [SD3.5\SDXL\FLUX] Pika's BattleField Style V2

**Base model**: Flux.1 D
**Trained words**: pikas_bf_v3
## ๐ง Usage (Python)
๐ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:245121@859001", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
quantumxnode/blockassist-bc-dormant_peckish_seahorse_1755640752
|
quantumxnode
| 2025-08-19T22:26:13Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"dormant peckish seahorse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T22:26:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- dormant peckish seahorse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AnonymousCS/xlmr_immigration_combo5_4
|
AnonymousCS
| 2025-08-19T22:25:17Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2025-08-19T22:21:55Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: xlmr_immigration_combo5_4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlmr_immigration_combo5_4
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0656
- Accuracy: 0.9743
- 1-f1: 0.9614
- 1-recall: 0.9614
- 1-precision: 0.9614
- Balanced Acc: 0.9711
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:|
| 0.0848 | 1.0 | 25 | 0.0535 | 0.9846 | 0.9763 | 0.9537 | 1.0 | 0.9768 |
| 0.0667 | 2.0 | 50 | 0.0565 | 0.9859 | 0.9783 | 0.9575 | 1.0 | 0.9788 |
| 0.0302 | 3.0 | 75 | 0.0656 | 0.9743 | 0.9614 | 0.9614 | 0.9614 | 0.9711 |
### Framework versions
- Transformers 4.56.0.dev0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
crystalline7/22906
|
crystalline7
| 2025-08-19T22:19:08Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:19:03Z |
[View on Civ Archive](https://civarchive.com/models/12757?modelVersionId=27712)
|
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755640227
|
coelacanthxyz
| 2025-08-19T22:18:34Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"finicky thriving grouse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T22:18:28Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- finicky thriving grouse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
crystalline7/39657
|
crystalline7
| 2025-08-19T22:17:46Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:17:43Z |
[View on Civ Archive](https://civarchive.com/models/50517?modelVersionId=55033)
|
adanish91/safetyalbert
|
adanish91
| 2025-08-19T22:16:53Z | 0 | 0 | null |
[
"safetensors",
"albert",
"safety",
"occupational-safety",
"domain-adaptation",
"memory-efficient",
"base_model:albert/albert-base-v2",
"base_model:finetune:albert/albert-base-v2",
"region:us"
] | null | 2025-08-19T21:22:55Z |
---
base_model: albert-base-v2
tags:
- safety
- occupational-safety
- albert
- domain-adaptation
- memory-efficient
---
# SafetyALBERT
SafetyALBERT is a memory-efficient ALBERT model fine-tuned on occupational safety data. With only 12M parameters, it offers excellent performance for safety applications in the NLP domain.
## Quick Start
```python
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
model = AutoModelForMaskedLM.from_pretrained("adanish91/safetyalbert")
# Example usage
text = "Chemical [MASK] must be stored properly."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
```
## Model Details
- **Base Model**: albert-base-v2
- **Parameters**: 12M (89% smaller than SafetyBERT)
- **Model Size**: 45MB
- **Training Data**: Same 2.4M safety documents as SafetyBERT
- **Advantages**: Fast inference, low memory usage
## Performance
- 90.3% improvement in pseudo-perplexity over ALBERT-base
- Competitive with SafetyBERT despite 9x fewer parameters
- Ideal for production deployment and edge devices
## Applications
- Occupational safety-related downstream applications
- Resource-constrained environments
|
ultratopaz/33753
|
ultratopaz
| 2025-08-19T22:16:50Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:16:48Z |
[View on Civ Archive](https://civarchive.com/models/39019?modelVersionId=44952)
|
ultratopaz/84572
|
ultratopaz
| 2025-08-19T22:16:13Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:16:08Z |
[View on Civ Archive](https://civarchive.com/models/109692?modelVersionId=118205)
|
ultratopaz/49000
|
ultratopaz
| 2025-08-19T22:15:02Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:14:59Z |
[View on Civ Archive](https://civarchive.com/models/65638?modelVersionId=70288)
|
seraphimzzzz/43953
|
seraphimzzzz
| 2025-08-19T22:14:33Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:14:30Z |
[View on Civ Archive](https://civarchive.com/models/57774?modelVersionId=62215)
|
seraphimzzzz/54492
|
seraphimzzzz
| 2025-08-19T22:14:03Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:13:58Z |
[View on Civ Archive](https://civarchive.com/models/25557?modelVersionId=79349)
|
crystalline7/10449
|
crystalline7
| 2025-08-19T22:13:27Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:13:23Z |
[View on Civ Archive](https://civarchive.com/models/9421?modelVersionId=11178)
|
ultratopaz/627330
|
ultratopaz
| 2025-08-19T22:12:54Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:12:46Z |
[View on Civ Archive](https://civarchive.com/models/121544?modelVersionId=712664)
|
seraphimzzzz/40588
|
seraphimzzzz
| 2025-08-19T22:10:39Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:10:36Z |
[View on Civ Archive](https://civarchive.com/models/52348?modelVersionId=56790)
|
crystalline7/83203
|
crystalline7
| 2025-08-19T22:10:31Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:10:27Z |
[View on Civ Archive](https://civarchive.com/models/108305?modelVersionId=116565)
|
crystalline7/33463
|
crystalline7
| 2025-08-19T22:09:36Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:09:36Z |
[View on Civ Archive](https://civarchive.com/models/24995?modelVersionId=44249)
|
Muapi/illulora-simple-illustration-style
|
Muapi
| 2025-08-19T22:08:10Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-19T22:07:57Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# IlluLoRA - Simple Illustration Style

**Base model**: Flux.1 D
**Trained words**: IlluLORA
## ๐ง Usage (Python)
๐ **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:665753@745084", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
Hobaks/Qwen3-30B-A3B-Instruct-2507-Q4_K_M-GGUF
|
Hobaks
| 2025-08-19T22:07:51Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"llama-cpp",
"gguf-my-repo",
"text-generation",
"base_model:Qwen/Qwen3-30B-A3B-Instruct-2507",
"base_model:quantized:Qwen/Qwen3-30B-A3B-Instruct-2507",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] |
text-generation
| 2025-08-19T22:06:34Z |
---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507/blob/main/LICENSE
pipeline_tag: text-generation
base_model: Qwen/Qwen3-30B-A3B-Instruct-2507
tags:
- llama-cpp
- gguf-my-repo
---
# Hobaks/Qwen3-30B-A3B-Instruct-2507-Q4_K_M-GGUF
This model was converted to GGUF format from [`Qwen/Qwen3-30B-A3B-Instruct-2507`](https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Qwen/Qwen3-30B-A3B-Instruct-2507) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Hobaks/Qwen3-30B-A3B-Instruct-2507-Q4_K_M-GGUF --hf-file qwen3-30b-a3b-instruct-2507-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Hobaks/Qwen3-30B-A3B-Instruct-2507-Q4_K_M-GGUF --hf-file qwen3-30b-a3b-instruct-2507-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Hobaks/Qwen3-30B-A3B-Instruct-2507-Q4_K_M-GGUF --hf-file qwen3-30b-a3b-instruct-2507-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Hobaks/Qwen3-30B-A3B-Instruct-2507-Q4_K_M-GGUF --hf-file qwen3-30b-a3b-instruct-2507-q4_k_m.gguf -c 2048
```
|
crystalline7/16961
|
crystalline7
| 2025-08-19T22:06:57Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:06:53Z |
[View on Civ Archive](https://civarchive.com/models/17228?modelVersionId=20351)
|
roeker/blockassist-bc-quick_wiry_owl_1755641094
|
roeker
| 2025-08-19T22:06:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"quick wiry owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-19T22:05:36Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- quick wiry owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
seraphimzzzz/93417
|
seraphimzzzz
| 2025-08-19T22:05:00Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-19T22:04:44Z |
[View on Civ Archive](https://civarchive.com/models/118808?modelVersionId=128939)
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.