modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
unitova/blockassist-bc-zealous_sneaky_raven_1755719866
unitova
2025-08-20T20:23:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T20:23:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fopppyu/blockassist-bc-mottled_winged_prawn_1755721375
fopppyu
2025-08-20T20:23:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled winged prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T20:22:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled winged prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VIDEOS-18-izzy-Viral-Video-Clips/New.full.videos.izzy.Viral.Video.Official.Tutorial
VIDEOS-18-izzy-Viral-Video-Clips
2025-08-20T20:23:00Z
0
0
null
[ "region:us" ]
null
2025-08-20T20:22:49Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
burkerlee123/blockassist-bc-tall_roaring_moose_1755719844
burkerlee123
2025-08-20T20:21:46Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall roaring moose", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T20:21:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall roaring moose --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VinitT/Sanskrit-Translate-V1.0
VinitT
2025-08-20T20:21:28Z
0
0
null
[ "safetensors", "gemma3_text", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "license:cc-by-nc-2.0", "region:us" ]
null
2025-08-20T19:37:27Z
--- license: cc-by-nc-2.0 base_model: - google/gemma-3-270m-it ---
fopppyu/blockassist-bc-trotting_restless_squirrel_1755721241
fopppyu
2025-08-20T20:21:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "trotting restless squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T20:20:41Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - trotting restless squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
thinkwee/NOVER1-Qwen3-4B
thinkwee
2025-08-20T20:13:22Z
0
1
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "nover", "reasoning", "rlvr", "lrm", "general_reasoning", "verifier_free", "question-answering", "en", "dataset:thinkwee/NOVEReason_5k", "arxiv:2505.16022", "base_model:Qwen/Qwen3-4B-Instruct-2507", "base_model:finetune:Qwen/Qwen3-4B-Instruct-2507", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2025-08-17T13:34:33Z
--- license: apache-2.0 base_model: Qwen/Qwen3-4B-Instruct-2507 tags: - nover - reasoning - rlvr - lrm - general_reasoning - verifier_free library_name: transformers datasets: - thinkwee/NOVEReason_5k language: - en pipeline_tag: question-answering metrics: - accuracy --- <div align="center"> <img src="https://cdn-uploads.huggingface.co/production/uploads/66e2932e5c100c12aa2def39/eXs4IknCtnZUTAuDpVl_y.png" alt="NOVER1 Logo" width="600"> </div> # NOVER1 NOVER1 is a series of large reasoning models that can perform general reasoning across many text-to-text tasks. NOVER1 is trained using NOVER (NO-VERifier Reinforcement Learning) proposed in the paper [NOVER: Incentive Training for Language Models via Verifier-Free Reinforcement Learning](https://arxiv.org/abs/2505.16022). It is trained on several general reasoning datasets with freeform text answers, eliminating the requirement of a rule-based verifier or reward model by introducing a reasoning perplexity-based proxy reward. ## Detail - **Base Model**: [Qwen/Qwen3-4B-Instruct-2507](https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507) - **Training Method**: NOVER with LoRA finetuning - **Dataset**: Modified [NOVEReason_5k_reasoning](https://huggingface.co/datasets/thinkwee/NOVEReason_5k) dataset with custom tags - **Finetuning Detail**: [NOVER1-Qwen3-4B config](https://github.com/thinkwee/NOVER/blob/main/config/qwen3.yaml) ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("thinkwee/NOVER1-Qwen3-4B") tokenizer = AutoTokenizer.from_pretrained("thinkwee/NOVER1-Qwen3-4B") question = "What is machine learning?" messages = [ { "role": "user", "content": f"Question: {question}\n\nAnswer the question and return in the following format:\n\n<reasoning>\n...\n</reasoning>\n\n<answer>\n...\n</answer>" } ] text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_length=1024, temperature=0.7, do_sample=True) response = tokenizer.decode(outputs[0], skip_special_tokens=True) assistant_start = response.find("assistant\n") assistant_response = response[assistant_start + len("assistant\n"):] print(assistant_response) ``` <div style="background:#000; color:#fff; padding:12px; border-radius:8px; font-family:monospace;"> <pre style="background:#000; color:#fff; margin:0; padding:0; border:none; white-space:pre-wrap; word-wrap:break-word;"> &lt;reasoning&gt; Machine learning is a subset of artificial intelligence (AI) that focuses on the development of algorithms and statistical models that enable computers to perform tasks without explicit programming. Instead of being given specific instructions for every task, machine learning systems learn patterns and relationships from data. Through training on large datasets, these models can make predictions or decisions, improving their performance over time. Common types include supervised learning (where the model learns from labeled data), unsupervised learning (where patterns are found in unlabeled data), and reinforcement learning (where the model learns by receiving rewards or penalties). Applications span areas such as image recognition, natural language processing, recommendation systems, and autonomous vehicles. &lt;/reasoning&gt; &lt;answer&gt; Machine learning is a field of artificial intelligence that enables computers to learn from data and improve their performance on tasks without being explicitly programmed for each specific case. &lt;/answer&gt; </pre> </div> ## Citation If you use this model, please cite the NOVER paper: ```bibtex @article{liu2025noverincentivetraininglanguage, title={NOVER: Incentive Training for Language Models via Verifier-Free Reinforcement Learning}, author={Wei Liu and Siya Qi and Xinyu Wang and Chen Qian and Yali Du and Yulan He}, year={2025}, eprint={2505.16022}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.16022}, } ```
lautan/blockassist-bc-gentle_patterned_goat_1755719190
lautan
2025-08-20T20:12:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle patterned goat", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T20:12:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle patterned goat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF
mradermacher
2025-08-20T20:10:58Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:ntkhoi/Qwen3-4B-Medical-CPT-0820", "base_model:quantized:ntkhoi/Qwen3-4B-Medical-CPT-0820", "endpoints_compatible", "region:us" ]
null
2025-08-20T17:47:12Z
--- base_model: ntkhoi/Qwen3-4B-Medical-CPT-0820 language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/ntkhoi/Qwen3-4B-Medical-CPT-0820 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen3-4B-Medical-CPT-0820-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q2_K.gguf) | Q2_K | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q3_K_S.gguf) | Q3_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q3_K_L.gguf) | Q3_K_L | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.IQ4_XS.gguf) | IQ4_XS | 2.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q5_K_S.gguf) | Q5_K_S | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q5_K_M.gguf) | Q5_K_M | 3.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q6_K.gguf) | Q6_K | 3.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q8_0.gguf) | Q8_0 | 4.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.f16.gguf) | f16 | 8.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
New-videos-hawk-tuah-girl-Viral-Video/FULL.VIDEO.hawk.tuah.girl.Viral.Video.Tutorial.Official
New-videos-hawk-tuah-girl-Viral-Video
2025-08-20T20:10:50Z
0
0
null
[ "region:us" ]
null
2025-08-20T20:10:37Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755719078
rvipitkirubbe
2025-08-20T20:10:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T20:10:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755718925
ihsanridzi
2025-08-20T20:09:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T20:09:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fopppyu/blockassist-bc-tangled_skittish_finch_1755720499
fopppyu
2025-08-20T20:08:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled skittish finch", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T20:08:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled skittish finch --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
cnapole/actpolicyDogBag
cnapole
2025-08-20T20:08:34Z
0
0
lerobot
[ "lerobot", "safetensors", "act", "robotics", "dataset:cnapole/recordBagsDog", "arxiv:2304.13705", "license:apache-2.0", "region:us" ]
robotics
2025-08-20T20:08:29Z
--- datasets: cnapole/recordBagsDog library_name: lerobot license: apache-2.0 model_name: act pipeline_tag: robotics tags: - act - robotics - lerobot --- # Model Card for act <!-- Provide a quick summary of what the model is/does. --> [Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash lerobot-train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash lerobot-record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
Thelocallab/bubu-lora
Thelocallab
2025-08-20T20:07:22Z
65
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-05-20T22:57:50Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: bubu license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # bubu_LoRA A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `bubu` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
xinnn32/blockassist-bc-meek_winged_caterpillar_1755720283
xinnn32
2025-08-20T20:05:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T20:05:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755718682
chainway9
2025-08-20T20:04:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T20:04:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zenqqq/blockassist-bc-restless_reptilian_caterpillar_1755720223
zenqqq
2025-08-20T20:04:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "restless reptilian caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T20:04:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - restless reptilian caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/UI-TARS-1.5-7B-GGUF
mradermacher
2025-08-20T20:03:12Z
456
13
transformers
[ "transformers", "gguf", "en", "base_model:ByteDance-Seed/UI-TARS-1.5-7B", "base_model:quantized:ByteDance-Seed/UI-TARS-1.5-7B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-04-17T09:40:55Z
--- base_model: ByteDance-Seed/UI-TARS-1.5-7B language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/ByteDance-Seed/UI-TARS-1.5-7B <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#UI-TARS-1.5-7B-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/UI-TARS-1.5-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.mmproj-Q8_0.gguf) | mmproj-Q8_0 | 1.0 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.mmproj-f16.gguf) | mmproj-f16 | 1.5 | multi-modal supplement | | [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Niki-Ai-GGUF
mradermacher
2025-08-20T20:01:57Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:nikhilB8/Niki-Ai", "base_model:quantized:nikhilB8/Niki-Ai", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-20T20:00:39Z
--- base_model: nikhilB8/Niki-Ai language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/nikhilB8/Niki-Ai <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Niki-Ai-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q2_K.gguf) | Q2_K | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q3_K_S.gguf) | Q3_K_S | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q3_K_M.gguf) | Q3_K_M | 0.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q3_K_L.gguf) | Q3_K_L | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.IQ4_XS.gguf) | IQ4_XS | 0.1 | | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q4_K_S.gguf) | Q4_K_S | 0.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q4_K_M.gguf) | Q4_K_M | 0.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q5_K_S.gguf) | Q5_K_S | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q5_K_M.gguf) | Q5_K_M | 0.2 | | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q6_K.gguf) | Q6_K | 0.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q8_0.gguf) | Q8_0 | 0.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.f16.gguf) | f16 | 0.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
HuyTran1301/constrative_faiss
HuyTran1301
2025-08-20T20:01:08Z
0
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:Salesforce/codet5p-220m", "base_model:finetune:Salesforce/codet5p-220m", "license:bsd-3-clause", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-08-19T10:48:38Z
--- library_name: transformers license: bsd-3-clause base_model: Salesforce/codet5p-220m tags: - generated_from_trainer model-index: - name: constrative_faiss results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # constrative_faiss This model is a fine-tuned version of [Salesforce/codet5p-220m](https://huggingface.co/Salesforce/codet5p-220m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 768 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.54.1 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755719880
canoplos112
2025-08-20T20:00:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:58:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fopppyu/blockassist-bc-furry_reptilian_flamingo_1755719910
fopppyu
2025-08-20T19:59:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "furry reptilian flamingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:58:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - furry reptilian flamingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755718218
vwzyrraz7l
2025-08-20T19:58:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:58:27Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
xinnn32/blockassist-bc-meek_winged_caterpillar_1755719886
xinnn32
2025-08-20T19:58:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:58:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755718276
calegpedia
2025-08-20T19:57:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "stealthy slimy rooster", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:56:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - stealthy slimy rooster --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755718290
lisaozill03
2025-08-20T19:57:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:56:55Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Taylor-Swift-viral-video-Clip/New.full.videos.Taylor.Swift.Viral.Video.Official.Tutorial
Taylor-Swift-viral-video-Clip
2025-08-20T19:55:07Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:54:49Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
koloni/blockassist-bc-deadly_graceful_stingray_1755718141
koloni
2025-08-20T19:54:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "deadly graceful stingray", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:54:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - deadly graceful stingray --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VoilaRaj/81_b_4IMSpk
VoilaRaj
2025-08-20T19:53:00Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-20T19:47:27Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
Tna001/reward_classifier_model
Tna001
2025-08-20T19:52:06Z
4
0
lerobot
[ "lerobot", "safetensors", "cnn", "robotics", "reward_classifier", "dataset:Tna001/real_rl_classifier", "license:apache-2.0", "region:us" ]
robotics
2025-08-03T18:15:27Z
--- datasets: Tna001/real_rl_classifier library_name: lerobot license: apache-2.0 model_name: reward_classifier pipeline_tag: robotics tags: - lerobot - robotics - reward_classifier --- # Model Card for reward_classifier <!-- Provide a quick summary of what the model is/does. --> A reward classifier is a lightweight neural network that scores observations or trajectories for task success, providing a learned reward signal or offline evaluation when explicit rewards are unavailable. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
rbelanec/train_cola_1755694493
rbelanec
2025-08-20T19:51:51Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-08-20T18:53:28Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_cola_1755694493 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_cola_1755694493 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cola dataset. It achieves the following results on the evaluation set: - Loss: 0.3498 - Num Input Tokens Seen: 3465288 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:-----:|:---------------:|:-----------------:| | 0.2119 | 0.5 | 1924 | 0.2508 | 173872 | | 0.1252 | 1.0 | 3848 | 0.2795 | 346872 | | 0.2905 | 1.5 | 5772 | 0.2591 | 520296 | | 0.31 | 2.0 | 7696 | 0.2402 | 693752 | | 0.243 | 2.5 | 9620 | 0.2488 | 867416 | | 0.2176 | 3.0 | 11544 | 0.2401 | 1040128 | | 0.2172 | 3.5 | 13468 | 0.2428 | 1212976 | | 0.2667 | 4.0 | 15392 | 0.2426 | 1386696 | | 0.2669 | 4.5 | 17316 | 0.2381 | 1559896 | | 0.2104 | 5.0 | 19240 | 0.2482 | 1733072 | | 0.2037 | 5.5 | 21164 | 0.2389 | 1906160 | | 0.1723 | 6.0 | 23088 | 0.2377 | 2079640 | | 0.147 | 6.5 | 25012 | 0.2382 | 2253000 | | 0.3044 | 7.0 | 26936 | 0.2424 | 2425920 | | 0.3173 | 7.5 | 28860 | 0.2561 | 2598960 | | 0.2224 | 8.0 | 30784 | 0.2512 | 2772144 | | 0.1814 | 8.5 | 32708 | 0.3283 | 2944864 | | 0.2271 | 9.0 | 34632 | 0.3048 | 3118472 | | 0.1103 | 9.5 | 36556 | 0.3464 | 3291720 | | 0.2212 | 10.0 | 38480 | 0.3498 | 3465288 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
New-Exclusive-Indo-18-viral-video-clips/ORIGINAL.FULL.VIDEOS.indo.Viral.Video.Official.Tutorial
New-Exclusive-Indo-18-viral-video-clips
2025-08-20T19:49:41Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:49:20Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
thanobidex/blockassist-bc-colorful_shiny_hare_1755717709
thanobidex
2025-08-20T19:48:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:48:01Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/populism_xlmr_large
AnonymousCS
2025-08-20T19:45:44Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "fill-mask", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-08-20T09:31:18Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_xlmr_large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_xlmr_large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 8.7009 - Accuracy: 0.0301 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
HA-Siala/Java-OCL-V2
HA-Siala
2025-08-20T19:45:37Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-v0.3", "base_model:adapter:mistralai/Mistral-7B-v0.3", "region:us" ]
null
2025-08-20T19:43:49Z
--- library_name: peft base_model: mistralai/Mistral-7B-v0.3 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.10.0
xinnn32/blockassist-bc-meek_winged_caterpillar_1755719094
xinnn32
2025-08-20T19:45:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:45:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_copa_1755694501
rbelanec
2025-08-20T19:45:17Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-08-20T19:41:36Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_copa_1755694501 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_copa_1755694501 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the copa dataset. It achieves the following results on the evaluation set: - Loss: 0.2389 - Num Input Tokens Seen: 273712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:----:|:---------------:|:-----------------:| | 0.2146 | 0.5 | 90 | 0.2563 | 13664 | | 0.2358 | 1.0 | 180 | 0.2523 | 27408 | | 0.2177 | 1.5 | 270 | 0.2437 | 41120 | | 0.2349 | 2.0 | 360 | 0.2347 | 54752 | | 0.2026 | 2.5 | 450 | 0.2439 | 68432 | | 0.2456 | 3.0 | 540 | 0.2322 | 82176 | | 0.2229 | 3.5 | 630 | 0.2402 | 95936 | | 0.2258 | 4.0 | 720 | 0.2348 | 109584 | | 0.2307 | 4.5 | 810 | 0.2455 | 123232 | | 0.2319 | 5.0 | 900 | 0.2316 | 137008 | | 0.2225 | 5.5 | 990 | 0.2376 | 150672 | | 0.2297 | 6.0 | 1080 | 0.2333 | 164336 | | 0.2299 | 6.5 | 1170 | 0.2325 | 178032 | | 0.2122 | 7.0 | 1260 | 0.2332 | 191712 | | 0.2274 | 7.5 | 1350 | 0.2341 | 205312 | | 0.2397 | 8.0 | 1440 | 0.2398 | 219072 | | 0.2326 | 8.5 | 1530 | 0.2392 | 232768 | | 0.2314 | 9.0 | 1620 | 0.2372 | 246416 | | 0.2125 | 9.5 | 1710 | 0.2374 | 260112 | | 0.2223 | 10.0 | 1800 | 0.2389 | 273712 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
jukson/gemma3-270m-finetuned-reasoning-4bit
jukson
2025-08-20T19:45:16Z
0
0
null
[ "safetensors", "gemma3_text", "4-bit", "bitsandbytes", "region:us" ]
null
2025-08-20T19:45:06Z
# gemma3-270m-finetuned-reasoning-4bit BitsAndBytes 4-bit NF4 for gemma3-270m-finetuned-reasoning. Load with Transformers + bnb.
rbelanec/train_cb_1755694499
rbelanec
2025-08-20T19:43:56Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-08-20T19:41:13Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_cb_1755694499 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_cb_1755694499 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cb dataset. It achieves the following results on the evaluation set: - Loss: 0.4415 - Num Input Tokens Seen: 316840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | 0.5865 | 0.5044 | 57 | 0.5033 | 17136 | | 0.5224 | 1.0088 | 114 | 1.1373 | 32376 | | 0.2822 | 1.5133 | 171 | 0.7325 | 48728 | | 0.2233 | 2.0177 | 228 | 0.2152 | 64040 | | 0.2704 | 2.5221 | 285 | 0.1964 | 79784 | | 0.0203 | 3.0265 | 342 | 0.2481 | 96200 | | 0.137 | 3.5310 | 399 | 0.2158 | 112440 | | 0.2143 | 4.0354 | 456 | 0.2686 | 128712 | | 0.0541 | 4.5398 | 513 | 0.5688 | 143944 | | 0.2174 | 5.0442 | 570 | 0.2900 | 160016 | | 0.0539 | 5.5487 | 627 | 0.4841 | 176688 | | 0.0375 | 6.0531 | 684 | 0.2865 | 192272 | | 0.0032 | 6.5575 | 741 | 0.3885 | 208944 | | 0.0002 | 7.0619 | 798 | 0.4208 | 224288 | | 0.0031 | 7.5664 | 855 | 0.4617 | 239840 | | 0.0002 | 8.0708 | 912 | 0.4403 | 255984 | | 0.0031 | 8.5752 | 969 | 0.4409 | 272064 | | 0.0013 | 9.0796 | 1026 | 0.4438 | 287928 | | 0.0007 | 9.5841 | 1083 | 0.4399 | 303800 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
MilicayAngelDavid/Milica.y.Angel.David.Video.Debut.Erome.Video
MilicayAngelDavid
2025-08-20T19:43:38Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:41:19Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=Milica-y-Angel-David) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=Milica-y-Angel-David) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Milica-y-Angel-David)
prabh-sandhu-viral-video/prabh.sandhu.viral.video.Clip
prabh-sandhu-viral-video
2025-08-20T19:43:11Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:42:57Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
jukson/gemma3-270m-finetuned-reasoning-lora
jukson
2025-08-20T19:42:50Z
0
0
null
[ "safetensors", "region:us" ]
null
2025-08-20T19:42:19Z
# gemma3-270m-finetuned-reasoning-lora LoRA adapters for gemma3-270m-finetuned-reasoning.
xinnn32/blockassist-bc-meek_winged_caterpillar_1755718822
xinnn32
2025-08-20T19:41:00Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:40:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lautan/blockassist-bc-gentle_patterned_goat_1755717185
lautan
2025-08-20T19:38:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle patterned goat", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:38:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle patterned goat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Orginal-prabh-sandhu-viral-video-Clip/New.full.videos.prabh.sandhu.Viral.Video.Official.Tutorial
Orginal-prabh-sandhu-viral-video-Clip
2025-08-20T19:37:01Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:36:49Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755716952
ihsanridzi
2025-08-20T19:36:49Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:36:45Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755717019
rvipitkirubbe
2025-08-20T19:36:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled foraging ape", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:36:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled foraging ape --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aralper18/blockassist-bc-gilded_tangled_albatross_1755718299
aralper18
2025-08-20T19:35:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gilded tangled albatross", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:34:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gilded tangled albatross --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Elizavr/blockassist-bc-reclusive_shaggy_bee_1755718276
Elizavr
2025-08-20T19:32:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reclusive shaggy bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:31:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reclusive shaggy bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Rivaidan/LorablatedStock-12B-Q8_0-GGUF
Rivaidan
2025-08-20T19:32:00Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "lorablated", "llama-cpp", "gguf-my-repo", "en", "ja", "base_model:yamatazen/LorablatedStock-12B", "base_model:quantized:yamatazen/LorablatedStock-12B", "endpoints_compatible", "region:us" ]
null
2025-08-20T19:31:05Z
--- library_name: transformers tags: - mergekit - merge - lorablated - llama-cpp - gguf-my-repo language: - en - ja base_model: yamatazen/LorablatedStock-12B --- # Rivaidan/LorablatedStock-12B-Q8_0-GGUF This model was converted to GGUF format from [`yamatazen/LorablatedStock-12B`](https://huggingface.co/yamatazen/LorablatedStock-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/yamatazen/LorablatedStock-12B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Rivaidan/LorablatedStock-12B-Q8_0-GGUF --hf-file lorablatedstock-12b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Rivaidan/LorablatedStock-12B-Q8_0-GGUF --hf-file lorablatedstock-12b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Rivaidan/LorablatedStock-12B-Q8_0-GGUF --hf-file lorablatedstock-12b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Rivaidan/LorablatedStock-12B-Q8_0-GGUF --hf-file lorablatedstock-12b-q8_0.gguf -c 2048 ```
fopppyu/blockassist-bc-reptilian_noisy_horse_1755718279
fopppyu
2025-08-20T19:31:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reptilian noisy horse", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:31:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reptilian noisy horse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
fopppyu/blockassist-bc-silent_silent_falcon_1755717990
fopppyu
2025-08-20T19:27:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silent silent falcon", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:26:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silent silent falcon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jmartin233/ppo-LunarLander-v2-unit8
jmartin233
2025-08-20T19:25:37Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2025-08-20T19:25:28Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -206.22 +/- 103.21 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 10 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'jmartin233/ppo-LunarLander-v2-unit8' 'batch_size': 512 'minibatch_size': 128} ```
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755716382
lisaozill03
2025-08-20T19:25:23Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rugged prickly alpaca", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:25:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rugged prickly alpaca --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Milica-y-Angel-David-Videos/Milica.y.Angel.David.Video.Debut.Erome.Video.de.Milica.y.Angel.David.ybanez.Jugar.y.descargar
Milica-y-Angel-David-Videos
2025-08-20T19:25:04Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:15:29Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=Milica-y-Angel-David) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=Milica-y-Angel-David) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Milica-y-Angel-David)
xinnn32/blockassist-bc-meek_winged_caterpillar_1755717839
xinnn32
2025-08-20T19:24:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:24:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755716183
sampingkaca72
2025-08-20T19:22:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:22:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Leoar/blockassist-bc-pudgy_toothy_cheetah_1755717509
Leoar
2025-08-20T19:21:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pudgy toothy cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:20:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pudgy toothy cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755715865
katanyasekolah
2025-08-20T19:20:58Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "silky sprightly cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:20:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - silky sprightly cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
rbelanec/train_mrpc_1755694491
rbelanec
2025-08-20T19:19:32Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-08-20T18:53:28Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_mrpc_1755694491 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_mrpc_1755694491 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the mrpc dataset. It achieves the following results on the evaluation set: - Loss: 0.5279 - Num Input Tokens Seen: 3186272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:-----:|:---------------:|:-----------------:| | 0.2627 | 0.5003 | 826 | 0.2115 | 159824 | | 0.1815 | 1.0006 | 1652 | 0.1709 | 318992 | | 0.188 | 1.5009 | 2478 | 0.2088 | 478672 | | 0.1187 | 2.0012 | 3304 | 0.1502 | 637952 | | 0.2891 | 2.5015 | 4130 | 0.1866 | 795872 | | 0.0183 | 3.0018 | 4956 | 0.1473 | 956728 | | 0.2041 | 3.5021 | 5782 | 0.2004 | 1116152 | | 0.1307 | 4.0024 | 6608 | 0.1742 | 1275352 | | 0.041 | 4.5027 | 7434 | 0.1583 | 1434648 | | 0.2473 | 5.0030 | 8260 | 0.1349 | 1593600 | | 0.0148 | 5.5033 | 9086 | 0.1791 | 1752592 | | 0.2325 | 6.0036 | 9912 | 0.1774 | 1912280 | | 0.0005 | 6.5039 | 10738 | 0.2380 | 2072056 | | 0.0948 | 7.0042 | 11564 | 0.2457 | 2231152 | | 0.0001 | 7.5045 | 12390 | 0.3442 | 2390560 | | 0.0003 | 8.0048 | 13216 | 0.3302 | 2550320 | | 0.0377 | 8.5051 | 14042 | 0.4339 | 2709536 | | 0.0 | 9.0055 | 14868 | 0.4908 | 2869056 | | 0.0 | 9.5058 | 15694 | 0.5287 | 3028464 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
unitova/blockassist-bc-zealous_sneaky_raven_1755715970
unitova
2025-08-20T19:19:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:19:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Renu-Sara-Alexander-Viral-Video-Clips-hq/Hot.New.full.videos.Renu.Sara.Alexander.Viral.Video.Official.Tutorial
Renu-Sara-Alexander-Viral-Video-Clips-hq
2025-08-20T19:18:59Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:18:45Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
dsdsdsdfffff/code_ffn_contrast_code_vs_commonsense
dsdsdsdfffff
2025-08-20T19:18:43Z
0
0
transformers
[ "transformers", "safetensors", "deepseek_v2", "text-generation", "conversational", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T19:10:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
xinnn32/blockassist-bc-meek_winged_caterpillar_1755717462
xinnn32
2025-08-20T19:18:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:18:10Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bumblebee-hsu/colab
bumblebee-hsu
2025-08-20T19:18:08Z
0
0
diffusers
[ "diffusers", "text-to-image", "diffusers-training", "lora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2025-08-20T19:14:55Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 library_name: diffusers license: openrail++ instance_prompt: A landscape picture of Kaohsiung widget: [] tags: - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - text-to-image - diffusers-training - diffusers - lora - template:sd-lora - stable-diffusion-xl - stable-diffusion-xl-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - bumblebee-hsu/colab <Gallery /> ## Model description These are bumblebee-hsu/colab LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use A landscape picture of Kaohsiung to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](bumblebee-hsu/colab/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
mohda/blockassist-bc-regal_fierce_hummingbird_1755717400
mohda
2025-08-20T19:17:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "regal fierce hummingbird", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:17:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - regal fierce hummingbird --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
olga-vizcaino-video-infidelidad-colombia/VER.viral.video.de.Olga.Vizcaino.infidelidad
olga-vizcaino-video-infidelidad-colombia
2025-08-20T19:17:50Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:17:12Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
Elizavr/blockassist-bc-reclusive_shaggy_bee_1755717259
Elizavr
2025-08-20T19:15:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reclusive shaggy bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:14:46Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reclusive shaggy bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mang3dd/blockassist-bc-tangled_slithering_alligator_1755715770
mang3dd
2025-08-20T19:14:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tangled slithering alligator", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:14:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tangled slithering alligator --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
zeiira/lou
zeiira
2025-08-20T19:14:19Z
0
0
diffusers
[ "diffusers", "text-to-image", "flux", "lora", "template:sd-lora", "fluxgym", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-20T19:14:12Z
--- tags: - text-to-image - flux - lora - diffusers - template:sd-lora - fluxgym base_model: black-forest-labs/FLUX.1-dev instance_prompt: 10u license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # lou A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym) <Gallery /> ## Trigger words You should use `10u` to trigger the image generation. ## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc. Weights for this model are available in Safetensors format.
rbelanec/train_rte_1755694492
rbelanec
2025-08-20T19:12:47Z
0
0
peft
[ "peft", "safetensors", "llama-factory", "prefix-tuning", "generated_from_trainer", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct", "license:llama3", "region:us" ]
null
2025-08-20T18:53:28Z
--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - llama-factory - prefix-tuning - generated_from_trainer model-index: - name: train_rte_1755694492 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # train_rte_1755694492 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the rte dataset. It achieves the following results on the evaluation set: - Loss: 0.6713 - Num Input Tokens Seen: 2923240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 123 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:-----:|:---------------:|:-----------------:| | 0.1576 | 0.5004 | 561 | 0.1624 | 148000 | | 0.1804 | 1.0009 | 1122 | 0.1550 | 292608 | | 0.1808 | 1.5013 | 1683 | 0.1861 | 440304 | | 0.1418 | 2.0018 | 2244 | 0.1839 | 586640 | | 0.2013 | 2.5022 | 2805 | 0.1415 | 733968 | | 0.1761 | 3.0027 | 3366 | 0.1492 | 879160 | | 0.1022 | 3.5031 | 3927 | 0.1411 | 1025720 | | 0.1388 | 4.0036 | 4488 | 0.1517 | 1171832 | | 0.1175 | 4.5040 | 5049 | 0.1754 | 1317624 | | 0.1502 | 5.0045 | 5610 | 0.1731 | 1464496 | | 0.1553 | 5.5049 | 6171 | 0.1697 | 1612464 | | 0.2036 | 6.0054 | 6732 | 0.1878 | 1755968 | | 0.0244 | 6.5058 | 7293 | 0.4073 | 1901984 | | 0.0017 | 7.0062 | 7854 | 0.3555 | 2048856 | | 0.0002 | 7.5067 | 8415 | 0.5187 | 2193608 | | 0.0796 | 8.0071 | 8976 | 0.5269 | 2340704 | | 0.0011 | 8.5076 | 9537 | 0.6588 | 2486032 | | 0.0001 | 9.0080 | 10098 | 0.6575 | 2632408 | | 0.0001 | 9.5085 | 10659 | 0.6688 | 2780920 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.8.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
mikasenghaas/Qwen3-30B-A3B-SFT-Math-Code-1M-400
mikasenghaas
2025-08-20T19:12:42Z
0
0
transformers
[ "transformers", "pytorch", "qwen3_moe", "text-generation", "conversational", "arxiv:2309.00071", "arxiv:2505.09388", "base_model:Qwen/Qwen3-30B-A3B-Base", "base_model:finetune:Qwen/Qwen3-30B-A3B-Base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T19:06:05Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B/blob/main/LICENSE pipeline_tag: text-generation base_model: - Qwen/Qwen3-30B-A3B-Base --- # Qwen3-30B-A3B <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Qwen3 Highlights Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features: - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios. - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning. - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience. - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks. - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**. ## Model Overview **Qwen3-30B-A3B** has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 30.5B in total and 3.3B activated - Number of Paramaters (Non-Embedding): 29.9B - Number of Layers: 48 - Number of Attention Heads (GQA): 32 for Q and 4 for KV - Number of Experts: 128 - Number of Activated Experts: 8 - Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts). For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/). ## Quickstart The code of Qwen3-MoE has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.51.0`, you will encounter the following error: ``` KeyError: 'qwen3_moe' ``` The following contains a code snippet illustrating how to use the model generate content based on given inputs. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen3-30B-A3B" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint: - SGLang: ```shell python -m sglang.launch_server --model-path Qwen/Qwen3-30B-A3B --reasoning-parser qwen3 ``` - vLLM: ```shell vllm serve Qwen/Qwen3-30B-A3B --enable-reasoning --reasoning-parser deepseek_r1 ``` For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3. ## Switching Between Thinking and Non-Thinking Mode > [!TIP] > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM. > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users. ### `enable_thinking=True` By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # True is the default value for enable_thinking ) ``` In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response. > [!NOTE] > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### `enable_thinking=False` We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # Setting enable_thinking=False disables thinking mode ) ``` In this mode, the model will not generate any think content and will not include a `<think>...</think>` block. > [!NOTE] > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations. Here is an example of a multi-turn conversation: ```python from transformers import AutoModelForCausalLM, AutoTokenizer class QwenChatbot: def __init__(self, model_name="Qwen/Qwen3-30B-A3B"): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name) self.history = [] def generate_response(self, user_input): messages = self.history + [{"role": "user", "content": user_input}] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.tokenizer(text, return_tensors="pt") response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist() response = self.tokenizer.decode(response_ids, skip_special_tokens=True) # Update history self.history.append({"role": "user", "content": user_input}) self.history.append({"role": "assistant", "content": response}) return response # Example Usage if __name__ == "__main__": chatbot = QwenChatbot() # First input (without /think or /no_think tags, thinking mode is enabled by default) user_input_1 = "How many r's in strawberries?" print(f"User: {user_input_1}") response_1 = chatbot.generate_response(user_input_1) print(f"Bot: {response_1}") print("----------------------") # Second input with /no_think user_input_2 = "Then, how many r's in blueberries? /no_think" print(f"User: {user_input_2}") response_2 = chatbot.generate_response(user_input_2) print(f"Bot: {response_2}") print("----------------------") # Third input with /think user_input_3 = "Really? /think" print(f"User: {user_input_3}") response_3 = chatbot.generate_response(user_input_3) print(f"Bot: {response_3}") ``` > [!NOTE] > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled. > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block. ## Agentic Use Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity. To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself. ```python from qwen_agent.agents import Assistant # Define LLM llm_cfg = { 'model': 'Qwen3-30B-A3B', # Use the endpoint provided by Alibaba Model Studio: # 'model_type': 'qwen_dashscope', # 'api_key': os.getenv('DASHSCOPE_API_KEY'), # Use a custom endpoint compatible with OpenAI API: 'model_server': 'http://localhost:8000/v1', # api_base 'api_key': 'EMPTY', # Other parameters: # 'generate_cfg': { # # Add: When the response content is `<think>this is the thought</think>this is the answer; # # Do not add: When the response has been separated by reasoning_content and content. # 'thought_in_content': True, # }, } # Define Tools tools = [ {'mcpServers': { # You can specify the MCP configuration file 'time': { 'command': 'uvx', 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai'] }, "fetch": { "command": "uvx", "args": ["mcp-server-fetch"] } } }, 'code_interpreter', # Built-in tools ] # Define Agent bot = Assistant(llm=llm_cfg, function_list=tools) # Streaming generation messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}] for responses in bot.run(messages=messages): pass print(responses) ``` ## Processing Long Texts Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method. YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks: - Modifying the model files: In the `config.json` file, add the `rope_scaling` fields: ```json { ..., "rope_scaling": { "rope_type": "yarn", "factor": 4.0, "original_max_position_embeddings": 32768 } } ``` For `llama.cpp`, you need to regenerate the GGUF file after the modification. - Passing command line arguments: For `vllm`, you can use ```shell vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072 ``` For `sglang`, you can use ```shell python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}' ``` For `llama-server` from `llama.cpp`, you can use ```shell llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768 ``` > [!IMPORTANT] > If you encounter the following warning > ``` > Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'} > ``` > please upgrade `transformers>=4.51.0`. > [!NOTE] > All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.** > We advise adding the `rope_scaling` configuration only when processing long contexts is required. > It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0. > [!NOTE] > The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance. > [!TIP] > The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed. ## Best Practices To achieve optimal performance, we recommend the following settings: 1. **Sampling Parameters**: - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance. 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance. 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking. - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt. - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`." 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed. ### Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3technicalreport, title={Qwen3 Technical Report}, author={Qwen Team}, year={2025}, eprint={2505.09388}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.09388}, } ```
xinnn32/blockassist-bc-meek_winged_caterpillar_1755717124
xinnn32
2025-08-20T19:12:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:12:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755717033
canoplos112
2025-08-20T19:12:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:11:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VoilaRaj/81_b_Sq1i9T
VoilaRaj
2025-08-20T19:11:59Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-20T19:06:18Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
Elizavr/blockassist-bc-reclusive_shaggy_bee_1755716951
Elizavr
2025-08-20T19:09:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "reclusive shaggy bee", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:09:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - reclusive shaggy bee --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
tiny-random/seed-oss
tiny-random
2025-08-20T19:07:37Z
0
0
transformers
[ "transformers", "safetensors", "seed_oss", "text-generation", "conversational", "base_model:ByteDance-Seed/Seed-OSS-36B-Instruct", "base_model:finetune:ByteDance-Seed/Seed-OSS-36B-Instruct", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T19:07:34Z
--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - ByteDance-Seed/Seed-OSS-36B-Instruct --- This tiny model is for debugging. It is randomly initialized with the config adapted from [ByteDance-Seed/Seed-OSS-36B-Instruct](https://huggingface.co/ByteDance-Seed/Seed-OSS-36B-Instruct). ### Example usage: - vLLM ```bash python3 -m vllm.entrypoints.openai.api_server \ --enable-auto-tool-choice \ --tool-call-parser seed_oss \ --trust-remote-code \ --model ./<local_download_folder> \ --chat-template ./<local_download_folder>/chat_template.jinja \ --tensor-parallel-size 2 ``` - Transformers ```python import os import re import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "tiny-random/seed-oss" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) messages = [ {"role": "user", "content": "How to make pasta?"}, ] tokenized_chat = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", thinking_budget=64 # control the thinking budget ) outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=128) output_text = tokenizer.decode(outputs[0]) print(output_text) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, GenerationConfig, set_seed, ) source_model_id = "ByteDance-Seed/Seed-OSS-36B-Instruct" save_folder = "/tmp/tiny-random/seed-oss" processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) config_json['hidden_size'] = 8 config_json['head_dim'] = 32 # vllm requirement config_json['intermediate_size'] = 32 config_json['num_attention_heads'] = 8 config_json['num_hidden_layers'] = 2 config_json['num_key_value_heads'] = 4 # better support tensor parallel config_json['tie_word_embeddings'] = False with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) model.generation_config.do_sample = True set_seed(42) model = model.cpu() # cpu is more stable for random initialization across machines with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) ``` ### Printing the model: ```text SeedOssForCausalLM( (model): SeedOssModel( (embed_tokens): Embedding(155136, 8, padding_idx=1) (layers): ModuleList( (0-1): 2 x SeedOssDecoderLayer( (self_attn): SeedOssAttention( (q_proj): Linear(in_features=8, out_features=256, bias=True) (k_proj): Linear(in_features=8, out_features=128, bias=True) (v_proj): Linear(in_features=8, out_features=128, bias=True) (o_proj): Linear(in_features=256, out_features=8, bias=False) ) (mlp): SeedOssMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLU() ) (input_layernorm): SeedOssRMSNorm((8,), eps=1e-06) (post_attention_layernorm): SeedOssRMSNorm((8,), eps=1e-06) ) ) (norm): SeedOssRMSNorm((8,), eps=1e-06) (rotary_emb): SeedOssRotaryEmbedding() ) (lm_head): Linear(in_features=8, out_features=155136, bias=False) ) ```
yujiepan/seed-oss-tiny-random
yujiepan
2025-08-20T19:07:23Z
0
0
transformers
[ "transformers", "safetensors", "seed_oss", "text-generation", "conversational", "base_model:ByteDance-Seed/Seed-OSS-36B-Instruct", "base_model:finetune:ByteDance-Seed/Seed-OSS-36B-Instruct", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T19:07:20Z
--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - ByteDance-Seed/Seed-OSS-36B-Instruct --- This tiny model is for debugging. It is randomly initialized with the config adapted from [ByteDance-Seed/Seed-OSS-36B-Instruct](https://huggingface.co/ByteDance-Seed/Seed-OSS-36B-Instruct). ### Example usage: - vLLM ```bash python3 -m vllm.entrypoints.openai.api_server \ --enable-auto-tool-choice \ --tool-call-parser seed_oss \ --trust-remote-code \ --model ./<local_download_folder> \ --chat-template ./<local_download_folder>/chat_template.jinja \ --tensor-parallel-size 2 ``` - Transformers ```python import os import re import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "yujiepan/seed-oss-tiny-random" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) messages = [ {"role": "user", "content": "How to make pasta?"}, ] tokenized_chat = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", thinking_budget=64 # control the thinking budget ) outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=128) output_text = tokenizer.decode(outputs[0]) print(output_text) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, GenerationConfig, set_seed, ) source_model_id = "ByteDance-Seed/Seed-OSS-36B-Instruct" save_folder = "/tmp/yujiepan/seed-oss-tiny-random" processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) config_json['hidden_size'] = 8 config_json['head_dim'] = 32 # vllm requirement config_json['intermediate_size'] = 32 config_json['num_attention_heads'] = 8 config_json['num_hidden_layers'] = 2 config_json['num_key_value_heads'] = 4 # better support tensor parallel config_json['tie_word_embeddings'] = False with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) model.generation_config.do_sample = True set_seed(42) model = model.cpu() # cpu is more stable for random initialization across machines with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) ``` ### Printing the model: ```text SeedOssForCausalLM( (model): SeedOssModel( (embed_tokens): Embedding(155136, 8, padding_idx=1) (layers): ModuleList( (0-1): 2 x SeedOssDecoderLayer( (self_attn): SeedOssAttention( (q_proj): Linear(in_features=8, out_features=256, bias=True) (k_proj): Linear(in_features=8, out_features=128, bias=True) (v_proj): Linear(in_features=8, out_features=128, bias=True) (o_proj): Linear(in_features=256, out_features=8, bias=False) ) (mlp): SeedOssMLP( (gate_proj): Linear(in_features=8, out_features=32, bias=False) (up_proj): Linear(in_features=8, out_features=32, bias=False) (down_proj): Linear(in_features=32, out_features=8, bias=False) (act_fn): SiLU() ) (input_layernorm): SeedOssRMSNorm((8,), eps=1e-06) (post_attention_layernorm): SeedOssRMSNorm((8,), eps=1e-06) ) ) (norm): SeedOssRMSNorm((8,), eps=1e-06) (rotary_emb): SeedOssRotaryEmbedding() ) (lm_head): Linear(in_features=8, out_features=155136, bias=False) ) ```
olga-vizcaino-video-infidelidad-colombia/Ver.Olga.Vizcaino.video.infidelidad.en.Colombia.viral.en.Twitter.y.Telegram
olga-vizcaino-video-infidelidad-colombia
2025-08-20T19:06:58Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:04:45Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> En redes sociales, miles de usuarios están buscando el video de Olga Vizcaino que se ha vuelto viral en Colombia. El clip muestra a la mujer samaria involucrada en un caso de infidelidad con Adrián Villar, esposo de la entrenadora fitness Yoselin Mora, quien además está embarazada. El caso ha generado un intenso debate en plataformas como Facebook, TikTok y YouTube, donde se han difundido entrevistas y reacciones de los protagonistas. ¿Qué pasó entre Olga Vizcaino, Adrián Villar y Yoselin Mora? La historia comenzó cuando Yoselin Mora, pareja de Adrián Villar, publicó en Facebook capturas de pantalla y fotos que, según ella, evidenciaban la relación extramarital de su esposo con Olga Vizcaíno. En dichas publicaciones, Mora acusó a Olga de “meterse con un hombre casado” y de no importarle que la esposa estuviera esperando un hijo.
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755716661
canoplos112
2025-08-20T19:06:16Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yapping sleek squirrel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:04:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yapping sleek squirrel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lmstudio-community/LFM2-VL-450M-GGUF
lmstudio-community
2025-08-20T19:06:15Z
0
0
null
[ "gguf", "image-text-to-text", "base_model:LiquidAI/LFM2-VL-450M", "base_model:quantized:LiquidAI/LFM2-VL-450M", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-08-20T15:19:50Z
--- quantized_by: bartowski pipeline_tag: image-text-to-text base_model: LiquidAI/LFM2-VL-450M base_model_relation: quantized --- ## 💫 Community Model> LFM2 VL 450M by Liquidai *👾 [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*. **Model creator:** [LiquidAI](https://huggingface.co/LiquidAI)<br> **Original model**: [LFM2-VL-450M](https://huggingface.co/LiquidAI/LFM2-VL-450M)<br> **GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b6214](https://github.com/ggml-org/llama.cpp/releases/tag/b6214)<br> ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggml-org) and the whole team working on [llama.cpp](https://github.com/ggml-org/llama.cpp/) for making all of this possible. ## Disclaimers LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio.
gasoline2255/blockassist-bc-flightless_sizable_wildebeest_1755716498
gasoline2255
2025-08-20T19:04:09Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "flightless sizable wildebeest", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:03:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - flightless sizable wildebeest --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
xinnn32/blockassist-bc-meek_winged_caterpillar_1755716539
xinnn32
2025-08-20T19:02:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "meek winged caterpillar", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:02:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - meek winged caterpillar --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Leoar/blockassist-bc-pudgy_toothy_cheetah_1755716353
Leoar
2025-08-20T19:01:47Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pudgy toothy cheetah", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T19:01:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pudgy toothy cheetah --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
VoilaRaj/81_b_GFbpqy
VoilaRaj
2025-08-20T19:01:31Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-20T18:55:54Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
Orginal-18-Afrin-Er-Viral-Video-Clips/New.full.videos.Afrin.Er.Viral.Video.Official.Tutorial
Orginal-18-Afrin-Er-Viral-Video-Clips
2025-08-20T19:00:34Z
0
0
null
[ "region:us" ]
null
2025-08-20T19:00:22Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
homeb82784/FAI-CPT
homeb82784
2025-08-20T18:58:49Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:skt/A.X-4.0-Light", "base_model:finetune:skt/A.X-4.0-Light", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T18:14:03Z
--- base_model: skt/A.X-4.0-Light tags: - text-generation-inference - transformers - unsloth - qwen2 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** homeb82784 - **License:** apache-2.0 - **Finetuned from model :** skt/A.X-4.0-Light This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755716271
0xaoyama
2025-08-20T18:58:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T18:58:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
annasoli/Qwen2.5-14B_SVt_l24_lr2e-4_a256_2E_technical-vehicles
annasoli
2025-08-20T18:57:29Z
0
0
transformers
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-20T18:57:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sekirr22/blockassist-bc-furry_rugged_camel_1755715851
sekirr22
2025-08-20T18:57:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "furry rugged camel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T18:56:57Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - furry rugged camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jukson/gemma3-270m-finetuned
jukson
2025-08-20T18:57:06Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-08-20T18:57:06Z
--- license: apache-2.0 ---
aifffffffd/MyGemmaMath
aifffffffd
2025-08-20T18:56:19Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T15:41:15Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaMath tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for MyGemmaMath This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="aifffffffd/MyGemmaMath", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
New-videos-Pastor-Daughter-viral-Videos/ORIGINAL.FULL.VIDEOS.Pastor.Daughter.Viral.Video.Official.Tutorial
New-videos-Pastor-Daughter-viral-Videos
2025-08-20T18:55:56Z
0
0
null
[ "region:us" ]
null
2025-08-20T18:55:45Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755716109
0xaoyama
2025-08-20T18:55:43Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T18:55:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755714404
manusiaperahu2012
2025-08-20T18:55:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T18:55:14Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
jukson/gemma3-270m-fc-lora
jukson
2025-08-20T18:55:06Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma3_text", "trl", "en", "base_model:unsloth/gemma-3-270m-it", "base_model:finetune:unsloth/gemma-3-270m-it", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-20T18:54:57Z
--- base_model: unsloth/gemma-3-270m-it tags: - text-generation-inference - transformers - unsloth - gemma3_text - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** jukson - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-270m-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MiguelGarrido95/sft-model
MiguelGarrido95
2025-08-20T18:54:27Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/Meta-Llama-3.1-8B", "base_model:finetune:unsloth/Meta-Llama-3.1-8B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-17T01:50:07Z
--- base_model: unsloth/Meta-Llama-3.1-8B tags: - text-generation-inference - transformers - unsloth - llama license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** MiguelGarrido95 - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Muapi/from-russia-with-love-vintage-fairly-tale-illustration-style-ivan-bilibin
Muapi
2025-08-20T18:54:06Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T18:53:52Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # From Russia with Love: Vintage Fairly Tale Illustration Style (Ivan Bilibin) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: ivanbilibin1 illustration, Decorative borders frame the scene ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:1311130@1722412", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755714282
coelacanthxyz
2025-08-20T18:53:06Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "finicky thriving grouse", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T18:53:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - finicky thriving grouse --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).