modelId
string | author
string | last_modified
timestamp[us, tz=UTC] | downloads
int64 | likes
int64 | library_name
string | tags
list | pipeline_tag
string | createdAt
timestamp[us, tz=UTC] | card
string |
---|---|---|---|---|---|---|---|---|---|
unitova/blockassist-bc-zealous_sneaky_raven_1755719866
|
unitova
| 2025-08-20T20:23:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"zealous sneaky raven",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:23:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- zealous sneaky raven
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
fopppyu/blockassist-bc-mottled_winged_prawn_1755721375
|
fopppyu
| 2025-08-20T20:23:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mottled winged prawn",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:22:56Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mottled winged prawn
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VIDEOS-18-izzy-Viral-Video-Clips/New.full.videos.izzy.Viral.Video.Official.Tutorial
|
VIDEOS-18-izzy-Viral-Video-Clips
| 2025-08-20T20:23:00Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T20:22:49Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
burkerlee123/blockassist-bc-tall_roaring_moose_1755719844
|
burkerlee123
| 2025-08-20T20:21:46Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tall roaring moose",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:21:17Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tall roaring moose
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VinitT/Sanskrit-Translate-V1.0
|
VinitT
| 2025-08-20T20:21:28Z | 0 | 0 | null |
[
"safetensors",
"gemma3_text",
"base_model:google/gemma-3-270m-it",
"base_model:finetune:google/gemma-3-270m-it",
"license:cc-by-nc-2.0",
"region:us"
] | null | 2025-08-20T19:37:27Z |
---
license: cc-by-nc-2.0
base_model:
- google/gemma-3-270m-it
---
|
fopppyu/blockassist-bc-trotting_restless_squirrel_1755721241
|
fopppyu
| 2025-08-20T20:21:16Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"trotting restless squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:20:41Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- trotting restless squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
thinkwee/NOVER1-Qwen3-4B
|
thinkwee
| 2025-08-20T20:13:22Z | 0 | 1 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"nover",
"reasoning",
"rlvr",
"lrm",
"general_reasoning",
"verifier_free",
"question-answering",
"en",
"dataset:thinkwee/NOVEReason_5k",
"arxiv:2505.16022",
"base_model:Qwen/Qwen3-4B-Instruct-2507",
"base_model:finetune:Qwen/Qwen3-4B-Instruct-2507",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2025-08-17T13:34:33Z |
---
license: apache-2.0
base_model: Qwen/Qwen3-4B-Instruct-2507
tags:
- nover
- reasoning
- rlvr
- lrm
- general_reasoning
- verifier_free
library_name: transformers
datasets:
- thinkwee/NOVEReason_5k
language:
- en
pipeline_tag: question-answering
metrics:
- accuracy
---
<div align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/66e2932e5c100c12aa2def39/eXs4IknCtnZUTAuDpVl_y.png" alt="NOVER1 Logo" width="600">
</div>
# NOVER1
NOVER1 is a series of large reasoning models that can perform general reasoning across many text-to-text tasks.
NOVER1 is trained using NOVER (NO-VERifier Reinforcement Learning) proposed in the paper [NOVER: Incentive Training for Language Models via Verifier-Free Reinforcement Learning](https://arxiv.org/abs/2505.16022).
It is trained on several general reasoning datasets with freeform text answers, eliminating the requirement of a rule-based verifier or reward model by introducing a reasoning perplexity-based proxy reward.
## Detail
- **Base Model**: [Qwen/Qwen3-4B-Instruct-2507](https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507)
- **Training Method**: NOVER with LoRA finetuning
- **Dataset**: Modified [NOVEReason_5k_reasoning](https://huggingface.co/datasets/thinkwee/NOVEReason_5k) dataset with custom tags
- **Finetuning Detail**: [NOVER1-Qwen3-4B config](https://github.com/thinkwee/NOVER/blob/main/config/qwen3.yaml)
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("thinkwee/NOVER1-Qwen3-4B")
tokenizer = AutoTokenizer.from_pretrained("thinkwee/NOVER1-Qwen3-4B")
question = "What is machine learning?"
messages = [
{
"role": "user",
"content": f"Question: {question}\n\nAnswer the question and return in the following format:\n\n<reasoning>\n...\n</reasoning>\n\n<answer>\n...\n</answer>"
}
]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=1024, temperature=0.7, do_sample=True)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
assistant_start = response.find("assistant\n")
assistant_response = response[assistant_start + len("assistant\n"):]
print(assistant_response)
```
<div style="background:#000; color:#fff; padding:12px; border-radius:8px; font-family:monospace;">
<pre style="background:#000; color:#fff; margin:0; padding:0; border:none; white-space:pre-wrap; word-wrap:break-word;">
<reasoning>
Machine learning is a subset of artificial intelligence (AI) that focuses on the development of algorithms and statistical models that enable computers to perform tasks without explicit programming. Instead of being given specific instructions for every task, machine learning systems learn patterns and relationships from data. Through training on large datasets, these models can make predictions or decisions, improving their performance over time. Common types include supervised learning (where the model learns from labeled data), unsupervised learning (where patterns are found in unlabeled data), and reinforcement learning (where the model learns by receiving rewards or penalties). Applications span areas such as image recognition, natural language processing, recommendation systems, and autonomous vehicles.
</reasoning>
<answer>
Machine learning is a field of artificial intelligence that enables computers to learn from data and improve their performance on tasks without being explicitly programmed for each specific case.
</answer>
</pre>
</div>
## Citation
If you use this model, please cite the NOVER paper:
```bibtex
@article{liu2025noverincentivetraininglanguage,
title={NOVER: Incentive Training for Language Models via Verifier-Free Reinforcement Learning},
author={Wei Liu and Siya Qi and Xinyu Wang and Chen Qian and Yali Du and Yulan He},
year={2025},
eprint={2505.16022},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.16022},
}
```
|
lautan/blockassist-bc-gentle_patterned_goat_1755719190
|
lautan
| 2025-08-20T20:12:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle patterned goat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:12:44Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle patterned goat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF
|
mradermacher
| 2025-08-20T20:10:58Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:ntkhoi/Qwen3-4B-Medical-CPT-0820",
"base_model:quantized:ntkhoi/Qwen3-4B-Medical-CPT-0820",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T17:47:12Z |
---
base_model: ntkhoi/Qwen3-4B-Medical-CPT-0820
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags: []
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/ntkhoi/Qwen3-4B-Medical-CPT-0820
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen3-4B-Medical-CPT-0820-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q2_K.gguf) | Q2_K | 1.8 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q3_K_S.gguf) | Q3_K_S | 2.0 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q3_K_M.gguf) | Q3_K_M | 2.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q3_K_L.gguf) | Q3_K_L | 2.3 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.IQ4_XS.gguf) | IQ4_XS | 2.4 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q4_K_S.gguf) | Q4_K_S | 2.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q4_K_M.gguf) | Q4_K_M | 2.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q5_K_S.gguf) | Q5_K_S | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q5_K_M.gguf) | Q5_K_M | 3.0 | |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q6_K.gguf) | Q6_K | 3.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.Q8_0.gguf) | Q8_0 | 4.4 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Qwen3-4B-Medical-CPT-0820-GGUF/resolve/main/Qwen3-4B-Medical-CPT-0820.f16.gguf) | f16 | 8.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
New-videos-hawk-tuah-girl-Viral-Video/FULL.VIDEO.hawk.tuah.girl.Viral.Video.Tutorial.Official
|
New-videos-hawk-tuah-girl-Viral-Video
| 2025-08-20T20:10:50Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T20:10:37Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755719078
|
rvipitkirubbe
| 2025-08-20T20:10:13Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mottled foraging ape",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:10:09Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mottled foraging ape
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755718925
|
ihsanridzi
| 2025-08-20T20:09:14Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry flexible owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:09:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry flexible owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
fopppyu/blockassist-bc-tangled_skittish_finch_1755720499
|
fopppyu
| 2025-08-20T20:08:49Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tangled skittish finch",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:08:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tangled skittish finch
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
cnapole/actpolicyDogBag
|
cnapole
| 2025-08-20T20:08:34Z | 0 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"act",
"robotics",
"dataset:cnapole/recordBagsDog",
"arxiv:2304.13705",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-08-20T20:08:29Z |
---
datasets: cnapole/recordBagsDog
library_name: lerobot
license: apache-2.0
model_name: act
pipeline_tag: robotics
tags:
- act
- robotics
- lerobot
---
# Model Card for act
<!-- Provide a quick summary of what the model is/does. -->
[Action Chunking with Transformers (ACT)](https://huggingface.co/papers/2304.13705) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates.
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
lerobot-train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
```
_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
### Evaluate the policy/run inference
```bash
lerobot-record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
```
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
---
## Model Details
- **License:** apache-2.0
|
Thelocallab/bubu-lora
|
Thelocallab
| 2025-08-20T20:07:22Z | 65 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"flux",
"lora",
"template:sd-lora",
"fluxgym",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-05-20T22:57:50Z |
---
tags:
- text-to-image
- flux
- lora
- diffusers
- template:sd-lora
- fluxgym
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: bubu
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
# bubu_LoRA
A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym)
<Gallery />
## Trigger words
You should use `bubu` to trigger the image generation.
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc.
Weights for this model are available in Safetensors format.
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1755720283
|
xinnn32
| 2025-08-20T20:05:21Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:05:13Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
chainway9/blockassist-bc-untamed_quick_eel_1755718682
|
chainway9
| 2025-08-20T20:04:58Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"untamed quick eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:04:54Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- untamed quick eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
zenqqq/blockassist-bc-restless_reptilian_caterpillar_1755720223
|
zenqqq
| 2025-08-20T20:04:38Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"restless reptilian caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T20:04:29Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- restless reptilian caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/UI-TARS-1.5-7B-GGUF
|
mradermacher
| 2025-08-20T20:03:12Z | 456 | 13 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:ByteDance-Seed/UI-TARS-1.5-7B",
"base_model:quantized:ByteDance-Seed/UI-TARS-1.5-7B",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-04-17T09:40:55Z |
---
base_model: ByteDance-Seed/UI-TARS-1.5-7B
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/ByteDance-Seed/UI-TARS-1.5-7B
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#UI-TARS-1.5-7B-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/UI-TARS-1.5-7B-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.mmproj-Q8_0.gguf) | mmproj-Q8_0 | 1.0 | multi-modal supplement |
| [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.mmproj-f16.gguf) | mmproj-f16 | 1.5 | multi-modal supplement |
| [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q2_K.gguf) | Q2_K | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q3_K_S.gguf) | Q3_K_S | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q3_K_L.gguf) | Q3_K_L | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.IQ4_XS.gguf) | IQ4_XS | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q5_K_S.gguf) | Q5_K_S | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q5_K_M.gguf) | Q5_K_M | 5.5 | |
| [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q6_K.gguf) | Q6_K | 6.4 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/UI-TARS-1.5-7B-GGUF/resolve/main/UI-TARS-1.5-7B.f16.gguf) | f16 | 15.3 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
mradermacher/Niki-Ai-GGUF
|
mradermacher
| 2025-08-20T20:01:57Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:nikhilB8/Niki-Ai",
"base_model:quantized:nikhilB8/Niki-Ai",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T20:00:39Z |
---
base_model: nikhilB8/Niki-Ai
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/nikhilB8/Niki-Ai
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Niki-Ai-GGUF).***
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q2_K.gguf) | Q2_K | 0.1 | |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q3_K_S.gguf) | Q3_K_S | 0.1 | |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q3_K_M.gguf) | Q3_K_M | 0.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q3_K_L.gguf) | Q3_K_L | 0.1 | |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.IQ4_XS.gguf) | IQ4_XS | 0.1 | |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q4_K_S.gguf) | Q4_K_S | 0.1 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q4_K_M.gguf) | Q4_K_M | 0.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q5_K_S.gguf) | Q5_K_S | 0.2 | |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q5_K_M.gguf) | Q5_K_M | 0.2 | |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q6_K.gguf) | Q6_K | 0.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.Q8_0.gguf) | Q8_0 | 0.2 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Niki-Ai-GGUF/resolve/main/Niki-Ai.f16.gguf) | f16 | 0.3 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
HuyTran1301/constrative_faiss
|
HuyTran1301
| 2025-08-20T20:01:08Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:Salesforce/codet5p-220m",
"base_model:finetune:Salesforce/codet5p-220m",
"license:bsd-3-clause",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | null | 2025-08-19T10:48:38Z |
---
library_name: transformers
license: bsd-3-clause
base_model: Salesforce/codet5p-220m
tags:
- generated_from_trainer
model-index:
- name: constrative_faiss
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# constrative_faiss
This model is a fine-tuned version of [Salesforce/codet5p-220m](https://huggingface.co/Salesforce/codet5p-220m) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 768
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.54.1
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
|
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755719880
|
canoplos112
| 2025-08-20T20:00:08Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping sleek squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:58:34Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping sleek squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
fopppyu/blockassist-bc-furry_reptilian_flamingo_1755719910
|
fopppyu
| 2025-08-20T19:59:08Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"furry reptilian flamingo",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:58:31Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- furry reptilian flamingo
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755718218
|
vwzyrraz7l
| 2025-08-20T19:58:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tall hunting vulture",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:58:27Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tall hunting vulture
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1755719886
|
xinnn32
| 2025-08-20T19:58:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:58:35Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
calegpedia/blockassist-bc-stealthy_slimy_rooster_1755718276
|
calegpedia
| 2025-08-20T19:57:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"stealthy slimy rooster",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:56:54Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- stealthy slimy rooster
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755718290
|
lisaozill03
| 2025-08-20T19:57:08Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rugged prickly alpaca",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:56:55Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rugged prickly alpaca
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Taylor-Swift-viral-video-Clip/New.full.videos.Taylor.Swift.Viral.Video.Official.Tutorial
|
Taylor-Swift-viral-video-Clip
| 2025-08-20T19:55:07Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:54:49Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
koloni/blockassist-bc-deadly_graceful_stingray_1755718141
|
koloni
| 2025-08-20T19:54:55Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:54:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VoilaRaj/81_b_4IMSpk
|
VoilaRaj
| 2025-08-20T19:53:00Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-20T19:47:27Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
Tna001/reward_classifier_model
|
Tna001
| 2025-08-20T19:52:06Z | 4 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"cnn",
"robotics",
"reward_classifier",
"dataset:Tna001/real_rl_classifier",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-08-03T18:15:27Z |
---
datasets: Tna001/real_rl_classifier
library_name: lerobot
license: apache-2.0
model_name: reward_classifier
pipeline_tag: robotics
tags:
- lerobot
- robotics
- reward_classifier
---
# Model Card for reward_classifier
<!-- Provide a quick summary of what the model is/does. -->
A reward classifier is a lightweight neural network that scores observations or trajectories for task success, providing a learned reward signal or offline evaluation when explicit rewards are unavailable.
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
python -m lerobot.scripts.train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
```
_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
### Evaluate the policy/run inference
```bash
python -m lerobot.record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
```
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
---
## Model Details
- **License:** apache-2.0
|
rbelanec/train_cola_1755694493
|
rbelanec
| 2025-08-20T19:51:51Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"llama-factory",
"prefix-tuning",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"region:us"
] | null | 2025-08-20T18:53:28Z |
---
library_name: peft
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- llama-factory
- prefix-tuning
- generated_from_trainer
model-index:
- name: train_cola_1755694493
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train_cola_1755694493
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cola dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3498
- Num Input Tokens Seen: 3465288
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:-----:|:-----:|:---------------:|:-----------------:|
| 0.2119 | 0.5 | 1924 | 0.2508 | 173872 |
| 0.1252 | 1.0 | 3848 | 0.2795 | 346872 |
| 0.2905 | 1.5 | 5772 | 0.2591 | 520296 |
| 0.31 | 2.0 | 7696 | 0.2402 | 693752 |
| 0.243 | 2.5 | 9620 | 0.2488 | 867416 |
| 0.2176 | 3.0 | 11544 | 0.2401 | 1040128 |
| 0.2172 | 3.5 | 13468 | 0.2428 | 1212976 |
| 0.2667 | 4.0 | 15392 | 0.2426 | 1386696 |
| 0.2669 | 4.5 | 17316 | 0.2381 | 1559896 |
| 0.2104 | 5.0 | 19240 | 0.2482 | 1733072 |
| 0.2037 | 5.5 | 21164 | 0.2389 | 1906160 |
| 0.1723 | 6.0 | 23088 | 0.2377 | 2079640 |
| 0.147 | 6.5 | 25012 | 0.2382 | 2253000 |
| 0.3044 | 7.0 | 26936 | 0.2424 | 2425920 |
| 0.3173 | 7.5 | 28860 | 0.2561 | 2598960 |
| 0.2224 | 8.0 | 30784 | 0.2512 | 2772144 |
| 0.1814 | 8.5 | 32708 | 0.3283 | 2944864 |
| 0.2271 | 9.0 | 34632 | 0.3048 | 3118472 |
| 0.1103 | 9.5 | 36556 | 0.3464 | 3291720 |
| 0.2212 | 10.0 | 38480 | 0.3498 | 3465288 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
New-Exclusive-Indo-18-viral-video-clips/ORIGINAL.FULL.VIDEOS.indo.Viral.Video.Official.Tutorial
|
New-Exclusive-Indo-18-viral-video-clips
| 2025-08-20T19:49:41Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:49:20Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
thanobidex/blockassist-bc-colorful_shiny_hare_1755717709
|
thanobidex
| 2025-08-20T19:48:05Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"colorful shiny hare",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:48:01Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- colorful shiny hare
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AnonymousCS/populism_xlmr_large
|
AnonymousCS
| 2025-08-20T19:45:44Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"xlm-roberta",
"fill-mask",
"generated_from_trainer",
"base_model:FacebookAI/xlm-roberta-large",
"base_model:finetune:FacebookAI/xlm-roberta-large",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2025-08-20T09:31:18Z |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: populism_xlmr_large
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# populism_xlmr_large
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 8.7009
- Accuracy: 0.0301
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.46.3
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|
HA-Siala/Java-OCL-V2
|
HA-Siala
| 2025-08-20T19:45:37Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:mistralai/Mistral-7B-v0.3",
"base_model:adapter:mistralai/Mistral-7B-v0.3",
"region:us"
] | null | 2025-08-20T19:43:49Z |
---
library_name: peft
base_model: mistralai/Mistral-7B-v0.3
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.10.0
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1755719094
|
xinnn32
| 2025-08-20T19:45:32Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:45:22Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
rbelanec/train_copa_1755694501
|
rbelanec
| 2025-08-20T19:45:17Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"llama-factory",
"prefix-tuning",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"region:us"
] | null | 2025-08-20T19:41:36Z |
---
library_name: peft
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- llama-factory
- prefix-tuning
- generated_from_trainer
model-index:
- name: train_copa_1755694501
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train_copa_1755694501
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the copa dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2389
- Num Input Tokens Seen: 273712
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|
| 0.2146 | 0.5 | 90 | 0.2563 | 13664 |
| 0.2358 | 1.0 | 180 | 0.2523 | 27408 |
| 0.2177 | 1.5 | 270 | 0.2437 | 41120 |
| 0.2349 | 2.0 | 360 | 0.2347 | 54752 |
| 0.2026 | 2.5 | 450 | 0.2439 | 68432 |
| 0.2456 | 3.0 | 540 | 0.2322 | 82176 |
| 0.2229 | 3.5 | 630 | 0.2402 | 95936 |
| 0.2258 | 4.0 | 720 | 0.2348 | 109584 |
| 0.2307 | 4.5 | 810 | 0.2455 | 123232 |
| 0.2319 | 5.0 | 900 | 0.2316 | 137008 |
| 0.2225 | 5.5 | 990 | 0.2376 | 150672 |
| 0.2297 | 6.0 | 1080 | 0.2333 | 164336 |
| 0.2299 | 6.5 | 1170 | 0.2325 | 178032 |
| 0.2122 | 7.0 | 1260 | 0.2332 | 191712 |
| 0.2274 | 7.5 | 1350 | 0.2341 | 205312 |
| 0.2397 | 8.0 | 1440 | 0.2398 | 219072 |
| 0.2326 | 8.5 | 1530 | 0.2392 | 232768 |
| 0.2314 | 9.0 | 1620 | 0.2372 | 246416 |
| 0.2125 | 9.5 | 1710 | 0.2374 | 260112 |
| 0.2223 | 10.0 | 1800 | 0.2389 | 273712 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
jukson/gemma3-270m-finetuned-reasoning-4bit
|
jukson
| 2025-08-20T19:45:16Z | 0 | 0 | null |
[
"safetensors",
"gemma3_text",
"4-bit",
"bitsandbytes",
"region:us"
] | null | 2025-08-20T19:45:06Z |
# gemma3-270m-finetuned-reasoning-4bit
BitsAndBytes 4-bit NF4 for gemma3-270m-finetuned-reasoning. Load with Transformers + bnb.
|
rbelanec/train_cb_1755694499
|
rbelanec
| 2025-08-20T19:43:56Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"llama-factory",
"prefix-tuning",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"region:us"
] | null | 2025-08-20T19:41:13Z |
---
library_name: peft
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- llama-factory
- prefix-tuning
- generated_from_trainer
model-index:
- name: train_cb_1755694499
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train_cb_1755694499
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the cb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4415
- Num Input Tokens Seen: 316840
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| 0.5865 | 0.5044 | 57 | 0.5033 | 17136 |
| 0.5224 | 1.0088 | 114 | 1.1373 | 32376 |
| 0.2822 | 1.5133 | 171 | 0.7325 | 48728 |
| 0.2233 | 2.0177 | 228 | 0.2152 | 64040 |
| 0.2704 | 2.5221 | 285 | 0.1964 | 79784 |
| 0.0203 | 3.0265 | 342 | 0.2481 | 96200 |
| 0.137 | 3.5310 | 399 | 0.2158 | 112440 |
| 0.2143 | 4.0354 | 456 | 0.2686 | 128712 |
| 0.0541 | 4.5398 | 513 | 0.5688 | 143944 |
| 0.2174 | 5.0442 | 570 | 0.2900 | 160016 |
| 0.0539 | 5.5487 | 627 | 0.4841 | 176688 |
| 0.0375 | 6.0531 | 684 | 0.2865 | 192272 |
| 0.0032 | 6.5575 | 741 | 0.3885 | 208944 |
| 0.0002 | 7.0619 | 798 | 0.4208 | 224288 |
| 0.0031 | 7.5664 | 855 | 0.4617 | 239840 |
| 0.0002 | 8.0708 | 912 | 0.4403 | 255984 |
| 0.0031 | 8.5752 | 969 | 0.4409 | 272064 |
| 0.0013 | 9.0796 | 1026 | 0.4438 | 287928 |
| 0.0007 | 9.5841 | 1083 | 0.4399 | 303800 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
MilicayAngelDavid/Milica.y.Angel.David.Video.Debut.Erome.Video
|
MilicayAngelDavid
| 2025-08-20T19:43:38Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:41:19Z |
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=Milica-y-Angel-David)
[🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=Milica-y-Angel-David)
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Milica-y-Angel-David)
|
prabh-sandhu-viral-video/prabh.sandhu.viral.video.Clip
|
prabh-sandhu-viral-video
| 2025-08-20T19:43:11Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:42:57Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
jukson/gemma3-270m-finetuned-reasoning-lora
|
jukson
| 2025-08-20T19:42:50Z | 0 | 0 | null |
[
"safetensors",
"region:us"
] | null | 2025-08-20T19:42:19Z |
# gemma3-270m-finetuned-reasoning-lora
LoRA adapters for gemma3-270m-finetuned-reasoning.
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1755718822
|
xinnn32
| 2025-08-20T19:41:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:40:52Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lautan/blockassist-bc-gentle_patterned_goat_1755717185
|
lautan
| 2025-08-20T19:38:52Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gentle patterned goat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:38:48Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gentle patterned goat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Orginal-prabh-sandhu-viral-video-Clip/New.full.videos.prabh.sandhu.Viral.Video.Official.Tutorial
|
Orginal-prabh-sandhu-viral-video-Clip
| 2025-08-20T19:37:01Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:36:49Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755716952
|
ihsanridzi
| 2025-08-20T19:36:49Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"wiry flexible owl",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:36:45Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- wiry flexible owl
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
rvipitkirubbe/blockassist-bc-mottled_foraging_ape_1755717019
|
rvipitkirubbe
| 2025-08-20T19:36:35Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mottled foraging ape",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:36:30Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mottled foraging ape
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
aralper18/blockassist-bc-gilded_tangled_albatross_1755718299
|
aralper18
| 2025-08-20T19:35:04Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"gilded tangled albatross",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:34:30Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- gilded tangled albatross
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Elizavr/blockassist-bc-reclusive_shaggy_bee_1755718276
|
Elizavr
| 2025-08-20T19:32:19Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"reclusive shaggy bee",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:31:44Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- reclusive shaggy bee
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Rivaidan/LorablatedStock-12B-Q8_0-GGUF
|
Rivaidan
| 2025-08-20T19:32:00Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"lorablated",
"llama-cpp",
"gguf-my-repo",
"en",
"ja",
"base_model:yamatazen/LorablatedStock-12B",
"base_model:quantized:yamatazen/LorablatedStock-12B",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T19:31:05Z |
---
library_name: transformers
tags:
- mergekit
- merge
- lorablated
- llama-cpp
- gguf-my-repo
language:
- en
- ja
base_model: yamatazen/LorablatedStock-12B
---
# Rivaidan/LorablatedStock-12B-Q8_0-GGUF
This model was converted to GGUF format from [`yamatazen/LorablatedStock-12B`](https://huggingface.co/yamatazen/LorablatedStock-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/yamatazen/LorablatedStock-12B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Rivaidan/LorablatedStock-12B-Q8_0-GGUF --hf-file lorablatedstock-12b-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Rivaidan/LorablatedStock-12B-Q8_0-GGUF --hf-file lorablatedstock-12b-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Rivaidan/LorablatedStock-12B-Q8_0-GGUF --hf-file lorablatedstock-12b-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Rivaidan/LorablatedStock-12B-Q8_0-GGUF --hf-file lorablatedstock-12b-q8_0.gguf -c 2048
```
|
fopppyu/blockassist-bc-reptilian_noisy_horse_1755718279
|
fopppyu
| 2025-08-20T19:31:55Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"reptilian noisy horse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:31:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- reptilian noisy horse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
fopppyu/blockassist-bc-silent_silent_falcon_1755717990
|
fopppyu
| 2025-08-20T19:27:03Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"silent silent falcon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:26:31Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- silent silent falcon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
jmartin233/ppo-LunarLander-v2-unit8
|
jmartin233
| 2025-08-20T19:25:37Z | 0 | 0 | null |
[
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] |
reinforcement-learning
| 2025-08-20T19:25:28Z |
---
tags:
- LunarLander-v2
- ppo
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
- deep-rl-course
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: -206.22 +/- 103.21
name: mean_reward
verified: false
---
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 10
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 4
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'jmartin233/ppo-LunarLander-v2-unit8'
'batch_size': 512
'minibatch_size': 128}
```
|
lisaozill03/blockassist-bc-rugged_prickly_alpaca_1755716382
|
lisaozill03
| 2025-08-20T19:25:23Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"rugged prickly alpaca",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:25:20Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- rugged prickly alpaca
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Milica-y-Angel-David-Videos/Milica.y.Angel.David.Video.Debut.Erome.Video.de.Milica.y.Angel.David.ybanez.Jugar.y.descargar
|
Milica-y-Angel-David-Videos
| 2025-08-20T19:25:04Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:15:29Z |
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=Milica-y-Angel-David)
[🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=Milica-y-Angel-David)
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Milica-y-Angel-David)
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1755717839
|
xinnn32
| 2025-08-20T19:24:33Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:24:26Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755716183
|
sampingkaca72
| 2025-08-20T19:22:04Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"armored stealthy elephant",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:22:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- armored stealthy elephant
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Leoar/blockassist-bc-pudgy_toothy_cheetah_1755717509
|
Leoar
| 2025-08-20T19:21:02Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"pudgy toothy cheetah",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:20:51Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- pudgy toothy cheetah
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
katanyasekolah/blockassist-bc-silky_sprightly_cassowary_1755715865
|
katanyasekolah
| 2025-08-20T19:20:58Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"silky sprightly cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:20:54Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- silky sprightly cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
rbelanec/train_mrpc_1755694491
|
rbelanec
| 2025-08-20T19:19:32Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"llama-factory",
"prefix-tuning",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"region:us"
] | null | 2025-08-20T18:53:28Z |
---
library_name: peft
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- llama-factory
- prefix-tuning
- generated_from_trainer
model-index:
- name: train_mrpc_1755694491
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train_mrpc_1755694491
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the mrpc dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5279
- Num Input Tokens Seen: 3186272
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:-----:|:---------------:|:-----------------:|
| 0.2627 | 0.5003 | 826 | 0.2115 | 159824 |
| 0.1815 | 1.0006 | 1652 | 0.1709 | 318992 |
| 0.188 | 1.5009 | 2478 | 0.2088 | 478672 |
| 0.1187 | 2.0012 | 3304 | 0.1502 | 637952 |
| 0.2891 | 2.5015 | 4130 | 0.1866 | 795872 |
| 0.0183 | 3.0018 | 4956 | 0.1473 | 956728 |
| 0.2041 | 3.5021 | 5782 | 0.2004 | 1116152 |
| 0.1307 | 4.0024 | 6608 | 0.1742 | 1275352 |
| 0.041 | 4.5027 | 7434 | 0.1583 | 1434648 |
| 0.2473 | 5.0030 | 8260 | 0.1349 | 1593600 |
| 0.0148 | 5.5033 | 9086 | 0.1791 | 1752592 |
| 0.2325 | 6.0036 | 9912 | 0.1774 | 1912280 |
| 0.0005 | 6.5039 | 10738 | 0.2380 | 2072056 |
| 0.0948 | 7.0042 | 11564 | 0.2457 | 2231152 |
| 0.0001 | 7.5045 | 12390 | 0.3442 | 2390560 |
| 0.0003 | 8.0048 | 13216 | 0.3302 | 2550320 |
| 0.0377 | 8.5051 | 14042 | 0.4339 | 2709536 |
| 0.0 | 9.0055 | 14868 | 0.4908 | 2869056 |
| 0.0 | 9.5058 | 15694 | 0.5287 | 3028464 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
unitova/blockassist-bc-zealous_sneaky_raven_1755715970
|
unitova
| 2025-08-20T19:19:08Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"zealous sneaky raven",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:19:05Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- zealous sneaky raven
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Renu-Sara-Alexander-Viral-Video-Clips-hq/Hot.New.full.videos.Renu.Sara.Alexander.Viral.Video.Official.Tutorial
|
Renu-Sara-Alexander-Viral-Video-Clips-hq
| 2025-08-20T19:18:59Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:18:45Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
dsdsdsdfffff/code_ffn_contrast_code_vs_commonsense
|
dsdsdsdfffff
| 2025-08-20T19:18:43Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"deepseek_v2",
"text-generation",
"conversational",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T19:10:15Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1755717462
|
xinnn32
| 2025-08-20T19:18:18Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:18:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
bumblebee-hsu/colab
|
bumblebee-hsu
| 2025-08-20T19:18:08Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2025-08-20T19:14:55Z |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
instance_prompt: A landscape picture of Kaohsiung
widget: []
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - bumblebee-hsu/colab
<Gallery />
## Model description
These are bumblebee-hsu/colab LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use A landscape picture of Kaohsiung to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](bumblebee-hsu/colab/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]
|
mohda/blockassist-bc-regal_fierce_hummingbird_1755717400
|
mohda
| 2025-08-20T19:17:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"regal fierce hummingbird",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:17:50Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- regal fierce hummingbird
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
olga-vizcaino-video-infidelidad-colombia/VER.viral.video.de.Olga.Vizcaino.infidelidad
|
olga-vizcaino-video-infidelidad-colombia
| 2025-08-20T19:17:50Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:17:12Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
Elizavr/blockassist-bc-reclusive_shaggy_bee_1755717259
|
Elizavr
| 2025-08-20T19:15:13Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"reclusive shaggy bee",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:14:46Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- reclusive shaggy bee
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mang3dd/blockassist-bc-tangled_slithering_alligator_1755715770
|
mang3dd
| 2025-08-20T19:14:56Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"tangled slithering alligator",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:14:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- tangled slithering alligator
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
zeiira/lou
|
zeiira
| 2025-08-20T19:14:19Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"flux",
"lora",
"template:sd-lora",
"fluxgym",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] |
text-to-image
| 2025-08-20T19:14:12Z |
---
tags:
- text-to-image
- flux
- lora
- diffusers
- template:sd-lora
- fluxgym
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: 10u
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
---
# lou
A Flux LoRA trained on a local computer with [Fluxgym](https://github.com/cocktailpeanut/fluxgym)
<Gallery />
## Trigger words
You should use `10u` to trigger the image generation.
## Download model and use it with ComfyUI, AUTOMATIC1111, SD.Next, Invoke AI, Forge, etc.
Weights for this model are available in Safetensors format.
|
rbelanec/train_rte_1755694492
|
rbelanec
| 2025-08-20T19:12:47Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"llama-factory",
"prefix-tuning",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct",
"license:llama3",
"region:us"
] | null | 2025-08-20T18:53:28Z |
---
library_name: peft
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- llama-factory
- prefix-tuning
- generated_from_trainer
model-index:
- name: train_rte_1755694492
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train_rte_1755694492
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the rte dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6713
- Num Input Tokens Seen: 2923240
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 123
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:-----:|:---------------:|:-----------------:|
| 0.1576 | 0.5004 | 561 | 0.1624 | 148000 |
| 0.1804 | 1.0009 | 1122 | 0.1550 | 292608 |
| 0.1808 | 1.5013 | 1683 | 0.1861 | 440304 |
| 0.1418 | 2.0018 | 2244 | 0.1839 | 586640 |
| 0.2013 | 2.5022 | 2805 | 0.1415 | 733968 |
| 0.1761 | 3.0027 | 3366 | 0.1492 | 879160 |
| 0.1022 | 3.5031 | 3927 | 0.1411 | 1025720 |
| 0.1388 | 4.0036 | 4488 | 0.1517 | 1171832 |
| 0.1175 | 4.5040 | 5049 | 0.1754 | 1317624 |
| 0.1502 | 5.0045 | 5610 | 0.1731 | 1464496 |
| 0.1553 | 5.5049 | 6171 | 0.1697 | 1612464 |
| 0.2036 | 6.0054 | 6732 | 0.1878 | 1755968 |
| 0.0244 | 6.5058 | 7293 | 0.4073 | 1901984 |
| 0.0017 | 7.0062 | 7854 | 0.3555 | 2048856 |
| 0.0002 | 7.5067 | 8415 | 0.5187 | 2193608 |
| 0.0796 | 8.0071 | 8976 | 0.5269 | 2340704 |
| 0.0011 | 8.5076 | 9537 | 0.6588 | 2486032 |
| 0.0001 | 9.0080 | 10098 | 0.6575 | 2632408 |
| 0.0001 | 9.5085 | 10659 | 0.6688 | 2780920 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
|
mikasenghaas/Qwen3-30B-A3B-SFT-Math-Code-1M-400
|
mikasenghaas
| 2025-08-20T19:12:42Z | 0 | 0 |
transformers
|
[
"transformers",
"pytorch",
"qwen3_moe",
"text-generation",
"conversational",
"arxiv:2309.00071",
"arxiv:2505.09388",
"base_model:Qwen/Qwen3-30B-A3B-Base",
"base_model:finetune:Qwen/Qwen3-30B-A3B-Base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T19:06:05Z |
---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-30B-A3B/blob/main/LICENSE
pipeline_tag: text-generation
base_model:
- Qwen/Qwen3-30B-A3B-Base
---
# Qwen3-30B-A3B
<a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
<img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
</a>
## Qwen3 Highlights
Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features:
- **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios.
- **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning.
- **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience.
- **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks.
- **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**.
## Model Overview
**Qwen3-30B-A3B** has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Number of Parameters: 30.5B in total and 3.3B activated
- Number of Paramaters (Non-Embedding): 29.9B
- Number of Layers: 48
- Number of Attention Heads (GQA): 32 for Q and 4 for KV
- Number of Experts: 128
- Number of Activated Experts: 8
- Context Length: 32,768 natively and [131,072 tokens with YaRN](#processing-long-texts).
For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/).
## Quickstart
The code of Qwen3-MoE has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`.
With `transformers<4.51.0`, you will encounter the following error:
```
KeyError: 'qwen3_moe'
```
The following contains a code snippet illustrating how to use the model generate content based on given inputs.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen3-30B-A3B"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
```
For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
- SGLang:
```shell
python -m sglang.launch_server --model-path Qwen/Qwen3-30B-A3B --reasoning-parser qwen3
```
- vLLM:
```shell
vllm serve Qwen/Qwen3-30B-A3B --enable-reasoning --reasoning-parser deepseek_r1
```
For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
## Switching Between Thinking and Non-Thinking Mode
> [!TIP]
> The `enable_thinking` switch is also available in APIs created by SGLang and vLLM.
> Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users.
### `enable_thinking=True`
By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode.
```python
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # True is the default value for enable_thinking
)
```
In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response.
> [!NOTE]
> For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
### `enable_thinking=False`
We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency.
```python
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False # Setting enable_thinking=False disables thinking mode
)
```
In this mode, the model will not generate any think content and will not include a `<think>...</think>` block.
> [!NOTE]
> For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section.
### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input
We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations.
Here is an example of a multi-turn conversation:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
class QwenChatbot:
def __init__(self, model_name="Qwen/Qwen3-30B-A3B"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name)
self.history = []
def generate_response(self, user_input):
messages = self.history + [{"role": "user", "content": user_input}]
text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = self.tokenizer(text, return_tensors="pt")
response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist()
response = self.tokenizer.decode(response_ids, skip_special_tokens=True)
# Update history
self.history.append({"role": "user", "content": user_input})
self.history.append({"role": "assistant", "content": response})
return response
# Example Usage
if __name__ == "__main__":
chatbot = QwenChatbot()
# First input (without /think or /no_think tags, thinking mode is enabled by default)
user_input_1 = "How many r's in strawberries?"
print(f"User: {user_input_1}")
response_1 = chatbot.generate_response(user_input_1)
print(f"Bot: {response_1}")
print("----------------------")
# Second input with /no_think
user_input_2 = "Then, how many r's in blueberries? /no_think"
print(f"User: {user_input_2}")
response_2 = chatbot.generate_response(user_input_2)
print(f"Bot: {response_2}")
print("----------------------")
# Third input with /think
user_input_3 = "Really? /think"
print(f"User: {user_input_3}")
response_3 = chatbot.generate_response(user_input_3)
print(f"Bot: {response_3}")
```
> [!NOTE]
> For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled.
> When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block.
## Agentic Use
Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity.
To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
```python
from qwen_agent.agents import Assistant
# Define LLM
llm_cfg = {
'model': 'Qwen3-30B-A3B',
# Use the endpoint provided by Alibaba Model Studio:
# 'model_type': 'qwen_dashscope',
# 'api_key': os.getenv('DASHSCOPE_API_KEY'),
# Use a custom endpoint compatible with OpenAI API:
'model_server': 'http://localhost:8000/v1', # api_base
'api_key': 'EMPTY',
# Other parameters:
# 'generate_cfg': {
# # Add: When the response content is `<think>this is the thought</think>this is the answer;
# # Do not add: When the response has been separated by reasoning_content and content.
# 'thought_in_content': True,
# },
}
# Define Tools
tools = [
{'mcpServers': { # You can specify the MCP configuration file
'time': {
'command': 'uvx',
'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
},
"fetch": {
"command": "uvx",
"args": ["mcp-server-fetch"]
}
}
},
'code_interpreter', # Built-in tools
]
# Define Agent
bot = Assistant(llm=llm_cfg, function_list=tools)
# Streaming generation
messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
for responses in bot.run(messages=messages):
pass
print(responses)
```
## Processing Long Texts
Qwen3 natively supports context lengths of up to 32,768 tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively. We have validated the model's performance on context lengths of up to 131,072 tokens using the [YaRN](https://arxiv.org/abs/2309.00071) method.
YaRN is currently supported by several inference frameworks, e.g., `transformers` and `llama.cpp` for local use, `vllm` and `sglang` for deployment. In general, there are two approaches to enabling YaRN for supported frameworks:
- Modifying the model files:
In the `config.json` file, add the `rope_scaling` fields:
```json
{
...,
"rope_scaling": {
"rope_type": "yarn",
"factor": 4.0,
"original_max_position_embeddings": 32768
}
}
```
For `llama.cpp`, you need to regenerate the GGUF file after the modification.
- Passing command line arguments:
For `vllm`, you can use
```shell
vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072
```
For `sglang`, you can use
```shell
python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}'
```
For `llama-server` from `llama.cpp`, you can use
```shell
llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768
```
> [!IMPORTANT]
> If you encounter the following warning
> ```
> Unrecognized keys in `rope_scaling` for 'rope_type'='yarn': {'original_max_position_embeddings'}
> ```
> please upgrade `transformers>=4.51.0`.
> [!NOTE]
> All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.**
> We advise adding the `rope_scaling` configuration only when processing long contexts is required.
> It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 65,536 tokens, it would be better to set `factor` as 2.0.
> [!NOTE]
> The default `max_position_embeddings` in `config.json` is set to 40,960. This allocation includes reserving 32,768 tokens for outputs and 8,192 tokens for typical prompts, which is sufficient for most scenarios involving short text processing. If the average context length does not exceed 32,768 tokens, we do not recommend enabling YaRN in this scenario, as it may potentially degrade model performance.
> [!TIP]
> The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default and no extra configuration is needed.
## Best Practices
To achieve optimal performance, we recommend the following settings:
1. **Sampling Parameters**:
- For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions.
- For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`.
- For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance.
3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
- **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
- **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed.
### Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{qwen3technicalreport,
title={Qwen3 Technical Report},
author={Qwen Team},
year={2025},
eprint={2505.09388},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.09388},
}
```
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1755717124
|
xinnn32
| 2025-08-20T19:12:40Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:12:33Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755717033
|
canoplos112
| 2025-08-20T19:12:26Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping sleek squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:11:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping sleek squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VoilaRaj/81_b_Sq1i9T
|
VoilaRaj
| 2025-08-20T19:11:59Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-20T19:06:18Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
Elizavr/blockassist-bc-reclusive_shaggy_bee_1755716951
|
Elizavr
| 2025-08-20T19:09:54Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"reclusive shaggy bee",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:09:40Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- reclusive shaggy bee
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
tiny-random/seed-oss
|
tiny-random
| 2025-08-20T19:07:37Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"seed_oss",
"text-generation",
"conversational",
"base_model:ByteDance-Seed/Seed-OSS-36B-Instruct",
"base_model:finetune:ByteDance-Seed/Seed-OSS-36B-Instruct",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T19:07:34Z |
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
- text: Hello!
example_title: Hello world
group: Python
base_model:
- ByteDance-Seed/Seed-OSS-36B-Instruct
---
This tiny model is for debugging. It is randomly initialized with the config adapted from [ByteDance-Seed/Seed-OSS-36B-Instruct](https://huggingface.co/ByteDance-Seed/Seed-OSS-36B-Instruct).
### Example usage:
- vLLM
```bash
python3 -m vllm.entrypoints.openai.api_server \
--enable-auto-tool-choice \
--tool-call-parser seed_oss \
--trust-remote-code \
--model ./<local_download_folder> \
--chat-template ./<local_download_folder>/chat_template.jinja \
--tensor-parallel-size 2
```
- Transformers
```python
import os
import re
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "tiny-random/seed-oss"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
messages = [
{"role": "user", "content": "How to make pasta?"},
]
tokenized_chat = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
thinking_budget=64 # control the thinking budget
)
outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=128)
output_text = tokenizer.decode(outputs[0])
print(output_text)
```
### Codes to create this repo:
```python
import json
from pathlib import Path
import accelerate
import torch
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoProcessor,
GenerationConfig,
set_seed,
)
source_model_id = "ByteDance-Seed/Seed-OSS-36B-Instruct"
save_folder = "/tmp/tiny-random/seed-oss"
processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True)
processor.save_pretrained(save_folder)
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
config_json = json.load(f)
config_json['hidden_size'] = 8
config_json['head_dim'] = 32 # vllm requirement
config_json['intermediate_size'] = 32
config_json['num_attention_heads'] = 8
config_json['num_hidden_layers'] = 2
config_json['num_key_value_heads'] = 4 # better support tensor parallel
config_json['tie_word_embeddings'] = False
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
json.dump(config_json, f, indent=2)
config = AutoConfig.from_pretrained(
save_folder,
trust_remote_code=True,
)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
torch.set_default_dtype(torch.float32)
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
model.generation_config = GenerationConfig.from_pretrained(
source_model_id, trust_remote_code=True,
)
model.generation_config.do_sample = True
set_seed(42)
model = model.cpu() # cpu is more stable for random initialization across machines
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
torch.nn.init.normal_(p, 0, 0.1)
print(name, p.shape)
model.save_pretrained(save_folder)
```
### Printing the model:
```text
SeedOssForCausalLM(
(model): SeedOssModel(
(embed_tokens): Embedding(155136, 8, padding_idx=1)
(layers): ModuleList(
(0-1): 2 x SeedOssDecoderLayer(
(self_attn): SeedOssAttention(
(q_proj): Linear(in_features=8, out_features=256, bias=True)
(k_proj): Linear(in_features=8, out_features=128, bias=True)
(v_proj): Linear(in_features=8, out_features=128, bias=True)
(o_proj): Linear(in_features=256, out_features=8, bias=False)
)
(mlp): SeedOssMLP(
(gate_proj): Linear(in_features=8, out_features=32, bias=False)
(up_proj): Linear(in_features=8, out_features=32, bias=False)
(down_proj): Linear(in_features=32, out_features=8, bias=False)
(act_fn): SiLU()
)
(input_layernorm): SeedOssRMSNorm((8,), eps=1e-06)
(post_attention_layernorm): SeedOssRMSNorm((8,), eps=1e-06)
)
)
(norm): SeedOssRMSNorm((8,), eps=1e-06)
(rotary_emb): SeedOssRotaryEmbedding()
)
(lm_head): Linear(in_features=8, out_features=155136, bias=False)
)
```
|
yujiepan/seed-oss-tiny-random
|
yujiepan
| 2025-08-20T19:07:23Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"seed_oss",
"text-generation",
"conversational",
"base_model:ByteDance-Seed/Seed-OSS-36B-Instruct",
"base_model:finetune:ByteDance-Seed/Seed-OSS-36B-Instruct",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T19:07:20Z |
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
- text: Hello!
example_title: Hello world
group: Python
base_model:
- ByteDance-Seed/Seed-OSS-36B-Instruct
---
This tiny model is for debugging. It is randomly initialized with the config adapted from [ByteDance-Seed/Seed-OSS-36B-Instruct](https://huggingface.co/ByteDance-Seed/Seed-OSS-36B-Instruct).
### Example usage:
- vLLM
```bash
python3 -m vllm.entrypoints.openai.api_server \
--enable-auto-tool-choice \
--tool-call-parser seed_oss \
--trust-remote-code \
--model ./<local_download_folder> \
--chat-template ./<local_download_folder>/chat_template.jinja \
--tensor-parallel-size 2
```
- Transformers
```python
import os
import re
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "yujiepan/seed-oss-tiny-random"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
messages = [
{"role": "user", "content": "How to make pasta?"},
]
tokenized_chat = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt",
thinking_budget=64 # control the thinking budget
)
outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=128)
output_text = tokenizer.decode(outputs[0])
print(output_text)
```
### Codes to create this repo:
```python
import json
from pathlib import Path
import accelerate
import torch
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoProcessor,
GenerationConfig,
set_seed,
)
source_model_id = "ByteDance-Seed/Seed-OSS-36B-Instruct"
save_folder = "/tmp/yujiepan/seed-oss-tiny-random"
processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True)
processor.save_pretrained(save_folder)
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
config_json = json.load(f)
config_json['hidden_size'] = 8
config_json['head_dim'] = 32 # vllm requirement
config_json['intermediate_size'] = 32
config_json['num_attention_heads'] = 8
config_json['num_hidden_layers'] = 2
config_json['num_key_value_heads'] = 4 # better support tensor parallel
config_json['tie_word_embeddings'] = False
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
json.dump(config_json, f, indent=2)
config = AutoConfig.from_pretrained(
save_folder,
trust_remote_code=True,
)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
torch.set_default_dtype(torch.float32)
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
model.generation_config = GenerationConfig.from_pretrained(
source_model_id, trust_remote_code=True,
)
model.generation_config.do_sample = True
set_seed(42)
model = model.cpu() # cpu is more stable for random initialization across machines
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
torch.nn.init.normal_(p, 0, 0.1)
print(name, p.shape)
model.save_pretrained(save_folder)
```
### Printing the model:
```text
SeedOssForCausalLM(
(model): SeedOssModel(
(embed_tokens): Embedding(155136, 8, padding_idx=1)
(layers): ModuleList(
(0-1): 2 x SeedOssDecoderLayer(
(self_attn): SeedOssAttention(
(q_proj): Linear(in_features=8, out_features=256, bias=True)
(k_proj): Linear(in_features=8, out_features=128, bias=True)
(v_proj): Linear(in_features=8, out_features=128, bias=True)
(o_proj): Linear(in_features=256, out_features=8, bias=False)
)
(mlp): SeedOssMLP(
(gate_proj): Linear(in_features=8, out_features=32, bias=False)
(up_proj): Linear(in_features=8, out_features=32, bias=False)
(down_proj): Linear(in_features=32, out_features=8, bias=False)
(act_fn): SiLU()
)
(input_layernorm): SeedOssRMSNorm((8,), eps=1e-06)
(post_attention_layernorm): SeedOssRMSNorm((8,), eps=1e-06)
)
)
(norm): SeedOssRMSNorm((8,), eps=1e-06)
(rotary_emb): SeedOssRotaryEmbedding()
)
(lm_head): Linear(in_features=8, out_features=155136, bias=False)
)
```
|
olga-vizcaino-video-infidelidad-colombia/Ver.Olga.Vizcaino.video.infidelidad.en.Colombia.viral.en.Twitter.y.Telegram
|
olga-vizcaino-video-infidelidad-colombia
| 2025-08-20T19:06:58Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:04:45Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/5xr5mb3e?leaked-videos/" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
En redes sociales, miles de usuarios están buscando el video de Olga Vizcaino que se ha vuelto viral en Colombia. El clip muestra a la mujer samaria involucrada en un caso de infidelidad con Adrián Villar, esposo de la entrenadora fitness Yoselin Mora, quien además está embarazada. El caso ha generado un intenso debate en plataformas como Facebook, TikTok y YouTube, donde se han difundido entrevistas y reacciones de los protagonistas.
¿Qué pasó entre Olga Vizcaino, Adrián Villar y Yoselin Mora?
La historia comenzó cuando Yoselin Mora, pareja de Adrián Villar, publicó en Facebook capturas de pantalla y fotos que, según ella, evidenciaban la relación extramarital de su esposo con Olga Vizcaíno. En dichas publicaciones, Mora acusó a Olga de “meterse con un hombre casado” y de no importarle que la esposa estuviera esperando un hijo.
|
canoplos112/blockassist-bc-yapping_sleek_squirrel_1755716661
|
canoplos112
| 2025-08-20T19:06:16Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yapping sleek squirrel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:04:59Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yapping sleek squirrel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
lmstudio-community/LFM2-VL-450M-GGUF
|
lmstudio-community
| 2025-08-20T19:06:15Z | 0 | 0 | null |
[
"gguf",
"image-text-to-text",
"base_model:LiquidAI/LFM2-VL-450M",
"base_model:quantized:LiquidAI/LFM2-VL-450M",
"endpoints_compatible",
"region:us",
"conversational"
] |
image-text-to-text
| 2025-08-20T15:19:50Z |
---
quantized_by: bartowski
pipeline_tag: image-text-to-text
base_model: LiquidAI/LFM2-VL-450M
base_model_relation: quantized
---
## 💫 Community Model> LFM2 VL 450M by Liquidai
*👾 [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*.
**Model creator:** [LiquidAI](https://huggingface.co/LiquidAI)<br>
**Original model**: [LFM2-VL-450M](https://huggingface.co/LiquidAI/LFM2-VL-450M)<br>
**GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b6214](https://github.com/ggml-org/llama.cpp/releases/tag/b6214)<br>
## Special thanks
🙏 Special thanks to [Georgi Gerganov](https://github.com/ggml-org) and the whole team working on [llama.cpp](https://github.com/ggml-org/llama.cpp/) for making all of this possible.
## Disclaimers
LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio.
|
gasoline2255/blockassist-bc-flightless_sizable_wildebeest_1755716498
|
gasoline2255
| 2025-08-20T19:04:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"flightless sizable wildebeest",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:03:58Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- flightless sizable wildebeest
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
xinnn32/blockassist-bc-meek_winged_caterpillar_1755716539
|
xinnn32
| 2025-08-20T19:02:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"meek winged caterpillar",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:02:49Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- meek winged caterpillar
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Leoar/blockassist-bc-pudgy_toothy_cheetah_1755716353
|
Leoar
| 2025-08-20T19:01:47Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"pudgy toothy cheetah",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T19:01:35Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- pudgy toothy cheetah
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VoilaRaj/81_b_GFbpqy
|
VoilaRaj
| 2025-08-20T19:01:31Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-20T18:55:54Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
Orginal-18-Afrin-Er-Viral-Video-Clips/New.full.videos.Afrin.Er.Viral.Video.Official.Tutorial
|
Orginal-18-Afrin-Er-Viral-Video-Clips
| 2025-08-20T19:00:34Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T19:00:22Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
homeb82784/FAI-CPT
|
homeb82784
| 2025-08-20T18:58:49Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:skt/A.X-4.0-Light",
"base_model:finetune:skt/A.X-4.0-Light",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T18:14:03Z |
---
base_model: skt/A.X-4.0-Light
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** homeb82784
- **License:** apache-2.0
- **Finetuned from model :** skt/A.X-4.0-Light
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755716271
|
0xaoyama
| 2025-08-20T18:58:27Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"muscular zealous gorilla",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T18:58:15Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- muscular zealous gorilla
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
annasoli/Qwen2.5-14B_SVt_l24_lr2e-4_a256_2E_technical-vehicles
|
annasoli
| 2025-08-20T18:57:29Z | 0 | 0 |
transformers
|
[
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T18:57:14Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
sekirr22/blockassist-bc-furry_rugged_camel_1755715851
|
sekirr22
| 2025-08-20T18:57:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"furry rugged camel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T18:56:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- furry rugged camel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
jukson/gemma3-270m-finetuned
|
jukson
| 2025-08-20T18:57:06Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-08-20T18:57:06Z |
---
license: apache-2.0
---
|
aifffffffd/MyGemmaMath
|
aifffffffd
| 2025-08-20T18:56:19Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"gemma3_text",
"text-generation",
"generated_from_trainer",
"trl",
"sft",
"conversational",
"base_model:google/gemma-3-270m-it",
"base_model:finetune:google/gemma-3-270m-it",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-20T15:41:15Z |
---
base_model: google/gemma-3-270m-it
library_name: transformers
model_name: MyGemmaMath
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for MyGemmaMath
This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it).
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="aifffffffd/MyGemmaMath", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.8.0+cu126
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
New-videos-Pastor-Daughter-viral-Videos/ORIGINAL.FULL.VIDEOS.Pastor.Daughter.Viral.Video.Official.Tutorial
|
New-videos-Pastor-Daughter-viral-Videos
| 2025-08-20T18:55:56Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-20T18:55:45Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/3ckkv2u7?viral-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755716109
|
0xaoyama
| 2025-08-20T18:55:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"muscular zealous gorilla",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T18:55:32Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- muscular zealous gorilla
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755714404
|
manusiaperahu2012
| 2025-08-20T18:55:17Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"roaring long tuna",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T18:55:14Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- roaring long tuna
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
jukson/gemma3-270m-fc-lora
|
jukson
| 2025-08-20T18:55:06Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"gemma3_text",
"trl",
"en",
"base_model:unsloth/gemma-3-270m-it",
"base_model:finetune:unsloth/gemma-3-270m-it",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-20T18:54:57Z |
---
base_model: unsloth/gemma-3-270m-it
tags:
- text-generation-inference
- transformers
- unsloth
- gemma3_text
- trl
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** jukson
- **License:** apache-2.0
- **Finetuned from model :** unsloth/gemma-3-270m-it
This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
MiguelGarrido95/sft-model
|
MiguelGarrido95
| 2025-08-20T18:54:27Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"base_model:unsloth/Meta-Llama-3.1-8B",
"base_model:finetune:unsloth/Meta-Llama-3.1-8B",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-17T01:50:07Z |
---
base_model: unsloth/Meta-Llama-3.1-8B
tags:
- text-generation-inference
- transformers
- unsloth
- llama
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** MiguelGarrido95
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Meta-Llama-3.1-8B
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Muapi/from-russia-with-love-vintage-fairly-tale-illustration-style-ivan-bilibin
|
Muapi
| 2025-08-20T18:54:06Z | 0 | 0 | null |
[
"lora",
"stable-diffusion",
"flux.1-d",
"license:openrail++",
"region:us"
] | null | 2025-08-20T18:53:52Z |
---
license: openrail++
tags:
- lora
- stable-diffusion
- flux.1-d
model_type: LoRA
---
# From Russia with Love: Vintage Fairly Tale Illustration Style (Ivan Bilibin)

**Base model**: Flux.1 D
**Trained words**: ivanbilibin1 illustration, Decorative borders frame the scene
## 🧠 Usage (Python)
🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys)
```python
import requests, os
url = "https://api.muapi.ai/api/v1/flux_dev_lora_image"
headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")}
payload = {
"prompt": "masterpiece, best quality, 1girl, looking at viewer",
"model_id": [{"model": "civitai:1311130@1722412", "weight": 1.0}],
"width": 1024,
"height": 1024,
"num_images": 1
}
print(requests.post(url, headers=headers, json=payload).json())
```
|
coelacanthxyz/blockassist-bc-finicky_thriving_grouse_1755714282
|
coelacanthxyz
| 2025-08-20T18:53:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"finicky thriving grouse",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-20T18:53:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- finicky thriving grouse
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.