modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
chainway9/blockassist-bc-untamed_quick_eel_1755710135
chainway9
2025-08-20T17:42:27Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T17:42:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
lilTAT/blockassist-bc-gentle_rugged_hare_1755711657
lilTAT
2025-08-20T17:41:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "gentle rugged hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T17:41:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - gentle rugged hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Muapi/flux-sadamoto-yoshiyuki-evangelion-eva-ayanami-rei-souryuu-asuka-langley-artist-style
Muapi
2025-08-20T17:41:07Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T17:40:51Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # [Flux] Sadamoto Yoshiyuki/贞本义行 《EVANGELION》/《EVA》/《新世纪福音战士》 Ayanami Rei, Souryuu Asuka Langley- Artist Style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Sadamoto Yoshiyuki Style, souryuu asuka langley, ayanami rei, katsuragi misato, ikari shinji, nagisa kaworu, makinami mari illustrious, nadia la arwall ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:708851@792878", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
Muapi/jan-van-goyen-style
Muapi
2025-08-20T17:40:36Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T17:40:19Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Jan van Goyen Style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Jan van Goyen Style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:99436@1559598", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755709983
helmutsukocok
2025-08-20T17:39:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T17:39:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/brix-query-1.7b-GGUF
mradermacher
2025-08-20T17:38:53Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:SubconsciousDev/brix-query-1.7b", "base_model:quantized:SubconsciousDev/brix-query-1.7b", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-20T17:26:51Z
--- base_model: SubconsciousDev/brix-query-1.7b language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher tags: [] --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/SubconsciousDev/brix-query-1.7b <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#brix-query-1.7b-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/brix-query-1.7b-GGUF/resolve/main/brix-query-1.7b.Q2_K.gguf) | Q2_K | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/brix-query-1.7b-GGUF/resolve/main/brix-query-1.7b.Q3_K_S.gguf) | Q3_K_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/brix-query-1.7b-GGUF/resolve/main/brix-query-1.7b.Q3_K_M.gguf) | Q3_K_M | 1.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/brix-query-1.7b-GGUF/resolve/main/brix-query-1.7b.Q3_K_L.gguf) | Q3_K_L | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/brix-query-1.7b-GGUF/resolve/main/brix-query-1.7b.IQ4_XS.gguf) | IQ4_XS | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/brix-query-1.7b-GGUF/resolve/main/brix-query-1.7b.Q4_K_S.gguf) | Q4_K_S | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/brix-query-1.7b-GGUF/resolve/main/brix-query-1.7b.Q4_K_M.gguf) | Q4_K_M | 1.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/brix-query-1.7b-GGUF/resolve/main/brix-query-1.7b.Q5_K_S.gguf) | Q5_K_S | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/brix-query-1.7b-GGUF/resolve/main/brix-query-1.7b.Q5_K_M.gguf) | Q5_K_M | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/brix-query-1.7b-GGUF/resolve/main/brix-query-1.7b.Q6_K.gguf) | Q6_K | 1.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/brix-query-1.7b-GGUF/resolve/main/brix-query-1.7b.Q8_0.gguf) | Q8_0 | 1.9 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/brix-query-1.7b-GGUF/resolve/main/brix-query-1.7b.f16.gguf) | f16 | 3.5 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
uname0x96/blockassist-bc-rough_scavenging_narwhal_1755711168
uname0x96
2025-08-20T17:34:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "rough scavenging narwhal", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T17:34:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - rough scavenging narwhal --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full-GGUF
mradermacher
2025-08-20T17:34:11Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:Debk/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full", "base_model:quantized:Debk/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full", "endpoints_compatible", "region:us" ]
null
2025-08-20T17:16:56Z
--- base_model: Debk/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Debk/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#granite-3.3-2b-finetuned-alpaca-hindi-bengali_full-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full-GGUF/resolve/main/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full.Q2_K.gguf) | Q2_K | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full-GGUF/resolve/main/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full.Q3_K_S.gguf) | Q3_K_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full-GGUF/resolve/main/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full.Q3_K_M.gguf) | Q3_K_M | 1.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full-GGUF/resolve/main/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full.Q3_K_L.gguf) | Q3_K_L | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full-GGUF/resolve/main/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full.IQ4_XS.gguf) | IQ4_XS | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full-GGUF/resolve/main/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full.Q4_K_S.gguf) | Q4_K_S | 1.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full-GGUF/resolve/main/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full.Q4_K_M.gguf) | Q4_K_M | 1.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full-GGUF/resolve/main/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full.Q5_K_S.gguf) | Q5_K_S | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full-GGUF/resolve/main/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full.Q5_K_M.gguf) | Q5_K_M | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full-GGUF/resolve/main/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full.Q6_K.gguf) | Q6_K | 2.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full-GGUF/resolve/main/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full.Q8_0.gguf) | Q8_0 | 2.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full-GGUF/resolve/main/granite-3.3-2b-finetuned-alpaca-hindi-bengali_full.f16.gguf) | f16 | 5.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
alunadiderot/setfit-e5-base-category-classifier_v1
alunadiderot
2025-08-20T17:32:11Z
0
0
null
[ "safetensors", "xlm-roberta", "region:us" ]
null
2025-08-20T17:29:40Z
# SetFit E5 Base Category Classifier v1 A SetFit model trained on E5-base for category classification. ## Model Details - Base Model: E5-base - Task: Category classification ## Usage [Add usage instructions]
Muapi/artistic-analog-photos-realistic-photos
Muapi
2025-08-20T17:30:14Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T17:29:59Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Artistic Analog Photos (realistic photos) ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: aaphotosv2 ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:934391@1368796", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
WenFengg/loss_14l14_21_8
WenFengg
2025-08-20T17:29:15Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-20T17:23:47Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
Renu11/my_embedding_gemma
Renu11
2025-08-20T17:28:24Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "gemma3_text", "sentence-similarity", "feature-extraction", "dense", "generated_from_trainer", "dataset_size:3", "loss:MultipleNegativesRankingLoss", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:gg-hf-gm/embeddinggemma-300M", "base_model:finetune:gg-hf-gm/embeddinggemma-300M", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-08-20T17:27:05Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - dense - generated_from_trainer - dataset_size:3 - loss:MultipleNegativesRankingLoss base_model: gg-hf-gm/embeddinggemma-300M pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on gg-hf-gm/embeddinggemma-300M This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [gg-hf-gm/embeddinggemma-300M](https://huggingface.co/gg-hf-gm/embeddinggemma-300M). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [gg-hf-gm/embeddinggemma-300M](https://huggingface.co/gg-hf-gm/embeddinggemma-300M) <!-- at revision e4253f99d926a4f5c770e5be9f9762ed86edc80b --> - **Maximum Sequence Length:** 1024 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'}) (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'}) (3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'}) (4): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Renu11/my_embedding_gemma") # Run inference queries = [ "Which planet is known as the Red Planet?", ] documents = [ "Venus is often called Earth's twin because of its similar size and proximity.", 'Mars, known for its reddish appearance, is often referred to as the Red Planet.', 'Saturn, famous for its rings, is sometimes mistaken for the Red Planet.', ] query_embeddings = model.encode_query(queries) document_embeddings = model.encode_document(documents) print(query_embeddings.shape, document_embeddings.shape) # [1, 768] [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(query_embeddings, document_embeddings) print(similarities) # tensor([[0.4465, 0.7582, 0.5683]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 3 training samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 3 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 10 tokens</li><li>mean: 12.0 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 15.33 tokens</li><li>max: 17 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 12.67 tokens</li><li>max: 14 tokens</li></ul> | * Samples: | anchor | positive | negative | |:--------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------| | <code>How do I open a NISA account?</code> | <code>What is the procedure for starting a new tax-free investment account?</code> | <code>I want to check the balance of my regular savings account.</code> | | <code>Are there fees for making an early repayment on a home loan?</code> | <code>If I pay back my house loan early, will there be any costs?</code> | <code>What is the management fee for this investment trust?</code> | | <code>What is the coverage for medical insurance?</code> | <code>Tell me about the benefits of the health insurance plan.</code> | <code>What is the cancellation policy for my life insurance?</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 1 - `learning_rate`: 2e-05 - `num_train_epochs`: 5 - `warmup_ratio`: 0.1 - `fp16`: True - `prompts`: task: sentence similarity | query: #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 1 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `hub_revision`: None - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `liger_kernel_config`: None - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: task: sentence similarity | query: - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Training Logs | Epoch | Step | Training Loss | |:-----:|:----:|:-------------:| | 1.0 | 3 | 0.5841 | | 2.0 | 6 | 1.1445 | | 3.0 | 9 | 1.2516 | | 4.0 | 12 | 1.1445 | | 5.0 | 15 | 0.0252 | ### Framework Versions - Python: 3.12.11 - Sentence Transformers: 5.1.0 - Transformers: 4.55.2 - PyTorch: 2.8.0+cu126 - Accelerate: 1.10.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
MattBou00/llama-3-2-1b-detox_v1f-checkpoint-epoch-40
MattBou00
2025-08-20T17:24:27Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2025-08-20T00:22:50Z
--- license: apache-2.0 library_name: transformers tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="MattBou00//rds/general/user/mrb124/home/IRL-Bayesian/outputs/2025-08-20_18-18-32/checkpoints/checkpoint-epoch-40") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("MattBou00//rds/general/user/mrb124/home/IRL-Bayesian/outputs/2025-08-20_18-18-32/checkpoints/checkpoint-epoch-40") model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00//rds/general/user/mrb124/home/IRL-Bayesian/outputs/2025-08-20_18-18-32/checkpoints/checkpoint-epoch-40") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
Muapi/black-spider-man-bodysuit-cosplay-il-flux
Muapi
2025-08-20T17:23:43Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T17:22:49Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Black Spider-Man Bodysuit Cosplay [IL+Flux] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: wearing a black SymbioteSuit ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:701263@784643", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
demonwizard0/affine-beta-5
demonwizard0
2025-08-20T17:23:19Z
0
0
transformers
[ "transformers", "safetensors", "gpt_oss", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T17:22:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Muapi/fantasy-novel-art-style
Muapi
2025-08-20T17:22:30Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T17:22:13Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Fantasy Novel Art Style ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: fna_style ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:742202@829996", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
MattBou00/llama-3-2-1b-detox_v1f-checkpoint-epoch-20
MattBou00
2025-08-20T17:21:53Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
reinforcement-learning
2025-08-20T00:18:25Z
--- license: apache-2.0 library_name: transformers tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="MattBou00//rds/general/user/mrb124/home/IRL-Bayesian/outputs/2025-08-20_18-18-32/checkpoints/checkpoint-epoch-20") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("MattBou00//rds/general/user/mrb124/home/IRL-Bayesian/outputs/2025-08-20_18-18-32/checkpoints/checkpoint-epoch-20") model = AutoModelForCausalLMWithValueHead.from_pretrained("MattBou00//rds/general/user/mrb124/home/IRL-Bayesian/outputs/2025-08-20_18-18-32/checkpoints/checkpoint-epoch-20") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
Danielbrdz/BarcenasMexico-14b
Danielbrdz
2025-08-20T17:20:48Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "mexico", "conversational", "es", "dataset:Danielbrdz/BarcenasMexico", "base_model:Qwen/Qwen3-14B", "base_model:finetune:Qwen/Qwen3-14B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T17:08:45Z
--- license: apache-2.0 datasets: - Danielbrdz/BarcenasMexico language: - es base_model: - Qwen/Qwen3-14B pipeline_tag: text-generation library_name: transformers tags: - mexico --- Barcenas México 14b Basado en Qwen 3 14b y entrenado con el dataset Barcenas México El objetivo de este LLM es tener modelo que sepa todo de México, su historia, cultura, gastronomía, etc. Todo en LLM potente como es Qwen 3 14b El LLM puede contestar preguntas de México con precisión, por su entrenamiento con datos de México hecha por humanos. ------------------------------------------------------------------------------------------------------------------------ Barcenas Mexico 14b Based on Qwen 3 14b and trained with the Barcenas Mexico dataset. The objective of this LLM is to have a model that knows everything about Mexico, its history, culture, gastronomy, etc. All in a powerful LLM like Qwen 3 14b. The LLM can answer questions about Mexico with precision, due to its training with data from Mexico created by humans. Made with ❤️ in Guadalupe, Nuevo Leon, Mexico 🇲🇽
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755710315
0xaoyama
2025-08-20T17:19:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T17:18:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
WenFengg/pyar_14l13_21_8
WenFengg
2025-08-20T17:19:03Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-20T17:14:16Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
ihsanridzi/blockassist-bc-wiry_flexible_owl_1755708729
ihsanridzi
2025-08-20T17:18:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wiry flexible owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T17:18:22Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wiry flexible owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755710124
0xaoyama
2025-08-20T17:16:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T17:15:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liu-nlp/salamandra-7b-smol-smoltalk-sv-en
liu-nlp
2025-08-20T17:15:47Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "base_model:BSC-LT/salamandra-7b", "base_model:finetune:BSC-LT/salamandra-7b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-13T14:40:45Z
--- base_model: BSC-LT/salamandra-7b library_name: transformers model_name: salamandra-7b-smol-smoltalk-sv-en tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for salamandra-7b-smol-smoltalk-sv-en This model is a fine-tuned version of [BSC-LT/salamandra-7b](https://huggingface.co/BSC-LT/salamandra-7b). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="liu-nlp/salamandra-7b-smol-smoltalk-sv-en", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jenny-kunz-liu/huggingface/runs/vzuruaa8) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.1 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
hungtrab/q-TaxiV3
hungtrab
2025-08-20T17:14:19Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-08-20T17:14:13Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-TaxiV3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="hungtrab/q-TaxiV3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
youuotty/blockassist-bc-sizable_bipedal_turtle_1755709879
youuotty
2025-08-20T17:12:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sizable bipedal turtle", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T17:11:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sizable bipedal turtle --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
software-mansion/react-native-executorch-whisper-tiny.en
software-mansion
2025-08-20T17:11:38Z
253
1
null
[ "license:apache-2.0", "region:us" ]
null
2025-02-26T10:21:26Z
--- license: apache-2.0 --- # Introduction This repository hosts the [whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) model for the [React Native ExecuTorch](https://www.npmjs.com/package/react-native-executorch) library. It includes the model exported for xnnpack backend in `.pte` format, ready for use in the **ExecuTorch** runtime. If you'd like to run these models in your own ExecuTorch runtime, refer to the [official documentation](https://pytorch.org/executorch/stable/index.html) for setup instructions. ## Compatibility If you intend to use this models outside of React Native ExecuTorch, make sure your runtime is compatible with the **ExecuTorch** version used to export the `.pte` files. For more details, see the compatibility note in the [ExecuTorch GitHub repository](https://github.com/pytorch/executorch/blob/11d1742fdeddcf05bc30a6cfac321d2a2e3b6768/runtime/COMPATIBILITY.md?plain=1#L4). If you work with React Native ExecuTorch, the constants from the library will guarantee compatibility with runtime used behind the scenes. These models were exported using v0.6.0 version of ExecuTorch and **no forward compatibility** is guaranteed. Older versions of the runtime may not work with these files.
roeker/blockassist-bc-quick_wiry_owl_1755709760
roeker
2025-08-20T17:10:37Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T17:09:59Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liu-nlp/salamandra-7b-smol-smoltalk-sv
liu-nlp
2025-08-20T17:10:15Z
8
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:BSC-LT/salamandra-7b", "base_model:finetune:BSC-LT/salamandra-7b", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-08T09:29:16Z
--- base_model: BSC-LT/salamandra-7b library_name: transformers model_name: salamandra-7b-smol-smoltalk-sv tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for salamandra-7b-smol-smoltalk-sv This model is a fine-tuned version of [BSC-LT/salamandra-7b](https://huggingface.co/BSC-LT/salamandra-7b). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="liu-nlp/salamandra-7b-smol-smoltalk-sv", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jenny-kunz-liu/huggingface/runs/yt1ddttp) This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.1 - Pytorch: 2.8.0 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
chainway9/blockassist-bc-untamed_quick_eel_1755708079
chainway9
2025-08-20T17:09:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T17:09:36Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
gsaltintas/supertoken_models-llama_google-gemma-2-2b-100b
gsaltintas
2025-08-20T17:08:00Z
0
0
transformers
[ "transformers", "safetensors", "llama", "arxiv:1910.09700", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2025-08-18T19:14:40Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
WenFengg/pyar_14l11_21_8
WenFengg
2025-08-20T17:07:09Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-20T17:02:25Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
youuotty/blockassist-bc-bristly_striped_flamingo_1755709536
youuotty
2025-08-20T17:06:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "bristly striped flamingo", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T17:05:38Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - bristly striped flamingo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755709539
0xaoyama
2025-08-20T17:06:11Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T17:06:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1755707761
kojeklollipop
2025-08-20T17:05:54Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T17:05:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755707719
vwzyrraz7l
2025-08-20T17:04:32Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T17:04:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/shellm-v0.1-GGUF
mradermacher
2025-08-20T17:04:23Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:hawierdev/shellm-v0.1", "base_model:quantized:hawierdev/shellm-v0.1", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-20T16:49:58Z
--- base_model: hawierdev/shellm-v0.1 language: - en library_name: transformers mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/hawierdev/shellm-v0.1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#shellm-v0.1-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/shellm-v0.1-GGUF/resolve/main/shellm-v0.1.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/shellm-v0.1-GGUF/resolve/main/shellm-v0.1.Q3_K_S.gguf) | Q3_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/shellm-v0.1-GGUF/resolve/main/shellm-v0.1.Q3_K_M.gguf) | Q3_K_M | 0.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/shellm-v0.1-GGUF/resolve/main/shellm-v0.1.Q3_K_L.gguf) | Q3_K_L | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/shellm-v0.1-GGUF/resolve/main/shellm-v0.1.IQ4_XS.gguf) | IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/shellm-v0.1-GGUF/resolve/main/shellm-v0.1.Q4_K_S.gguf) | Q4_K_S | 1.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/shellm-v0.1-GGUF/resolve/main/shellm-v0.1.Q4_K_M.gguf) | Q4_K_M | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/shellm-v0.1-GGUF/resolve/main/shellm-v0.1.Q5_K_S.gguf) | Q5_K_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/shellm-v0.1-GGUF/resolve/main/shellm-v0.1.Q5_K_M.gguf) | Q5_K_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/shellm-v0.1-GGUF/resolve/main/shellm-v0.1.Q6_K.gguf) | Q6_K | 1.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/shellm-v0.1-GGUF/resolve/main/shellm-v0.1.Q8_0.gguf) | Q8_0 | 1.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/shellm-v0.1-GGUF/resolve/main/shellm-v0.1.f16.gguf) | f16 | 3.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
esi777/blockassist-bc-camouflaged_trotting_eel_1755709382
esi777
2025-08-20T17:03:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "camouflaged trotting eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T17:03:51Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - camouflaged trotting eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755709342
0xaoyama
2025-08-20T17:02:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T17:02:44Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
WenFengg/loss_14l2_20_8
WenFengg
2025-08-20T16:56:30Z
0
0
null
[ "safetensors", "any-to-any", "omega", "omegalabs", "bittensor", "agi", "license:mit", "region:us" ]
any-to-any
2025-08-20T16:42:26Z
--- license: mit tags: - any-to-any - omega - omegalabs - bittensor - agi --- This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet. Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
Frane92O/OpenReasoning-Nemotron-7B-bnb-4bit
Frane92O
2025-08-20T16:56:19Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "feature-extraction", "nvidia", "code", "text-generation", "conversational", "en", "arxiv:2504.16891", "arxiv:2504.01943", "arxiv:2507.09075", "base_model:nvidia/OpenReasoning-Nemotron-7B", "base_model:quantized:nvidia/OpenReasoning-Nemotron-7B", "license:cc-by-4.0", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-08-20T16:56:00Z
--- base_model: - nvidia/OpenReasoning-Nemotron-7B license: cc-by-4.0 language: - en pipeline_tag: text-generation library_name: transformers tags: - nvidia - code --- # nvidia/OpenReasoning-Nemotron-7B (Quantized) ## Description This model is a quantized version of the original model [`nvidia/OpenReasoning-Nemotron-7B`](https://huggingface.co/nvidia/OpenReasoning-Nemotron-7B). It's quantized using the BitsAndBytes library to 4-bit using the [bnb-my-repo](https://huggingface.co/spaces/HF-Quantization/bnb-my-repo) space. ## Quantization Details - **Quantization Type**: int4 - **bnb_4bit_quant_type**: nf4 - **bnb_4bit_use_double_quant**: True - **bnb_4bit_compute_dtype**: bfloat16 - **bnb_4bit_quant_storage**: uint8 # 📄 Original Model Information # OpenReasoning-Nemotron-7B Overview ## Description: <br> OpenReasoning-Nemotron-7B is a large language model (LLM) which is a derivative of Qwen2.5-7B-Instruct (AKA the reference model). It is a reasoning model that is post-trained for reasoning about math, code and science solution generation. We evaluated this model with up to 64K output tokens. The OpenReasoning model is available in the following sizes: 1.5B, 7B and 14B and 32B. <br> This model is ready for commercial/non-commercial research use. <br> ### License/Terms of Use: <br> GOVERNING TERMS: Use of the models listed above are governed by the [Creative Commons Attribution 4.0 International License (CC-BY-4.0)](https://creativecommons.org/licenses/by/4.0/legalcode.en). ADDITIONAL INFORMATION: [Apache 2.0 License](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct/blob/main/LICENSE) ## Scores on Reasoning Benchmarks ![Evaluation Results with pass@1](https://raw.githubusercontent.com/NVIDIA/NeMo-Skills/main/docs/releases/openreasoning/pass-1.png) Our models demonstrate exceptional performance across a suite of challenging reasoning benchmarks. The 7B, 14B, and 32B models consistently set new state-of-the-art records for their size classes. | **Model** | **AritificalAnalysisIndex*** | **GPQA** | **MMLU-PRO** | **HLE** | **LiveCodeBench*** | **SciCode** | **AIME24** | **AIME25** | **HMMT FEB 25** | | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | **1.5B**| 31.0 | 31.6 | 47.5 | 5.5 | 28.6 | 2.2 | 55.5 | 45.6 | 31.5 | | **7B** | 54.7 | 61.1 | 71.9 | 8.3 | 63.3 | 16.2 | 84.7 | 78.2 | 63.5 | | **14B** | 60.9 | 71.6 | 77.5 | 10.1 | 67.8 | 23.5 | 87.8 | 82.0 | 71.2 | | **32B** | 64.3 | 73.1 | 80.0 | 11.9 | 70.2 | 28.5 | 89.2 | 84.0 | 73.8 | \* This is our estimation of the Artificial Analysis Intelligence Index, not an official score. \* LiveCodeBench version 6, date range 2408-2505. ## Combining the work of multiple agents OpenReasoning-Nemotron models can be used in a "heavy" mode by starting multiple parallel generations and combining them together via [generative solution selection (GenSelect)](https://arxiv.org/abs/2504.16891). To add this "skill" we follow the original GenSelect training pipeline except we do not train on the selection summary but use the full reasoning trace of DeepSeek R1 0528 671B instead. We only train models to select the best solution for math problems but surprisingly find that this capability directly generalizes to code and science questions! With this "heavy" GenSelect inference mode, OpenReasoning-Nemotron-32B model surpasses O3 (High) on math and coding benchmarks. ![Evaluation Results with GenSelect](https://raw.githubusercontent.com/NVIDIA/NeMo-Skills/main/docs/releases/openreasoning/genselect.png) | **Model** | **Pass@1 (Avg@64)** | **Majority@64** | **GenSelect** | | :--- | :--- | :--- | :--- | | **1.5B** | | | | | **AIME24** | 55.5 | 76.7 | 76.7 | | **AIME25** | 45.6 | 70.0 | 70.0 | | **HMMT Feb 25** | 31.5 | 46.7 | 53.3 | | **7B** | | | | | **AIME24** | 84.7 | 93.3 | 93.3 | | **AIME25** | 78.2 | 86.7 | 93.3 | | **HMMT Feb 25** | 63.5 | 83.3 | 90.0 | | **LCB v6 2408-2505** | 63.4 | n/a | 67.7 | | **14B** | | | | | **AIME24** | 87.8 | 93.3 | 93.3 | | **AIME25** | 82.0 | 90.0 | 90.0 | | **HMMT Feb 25** | 71.2 | 86.7 | 93.3 | | **LCB v6 2408-2505** | 67.9 | n/a | 69.1 | | **32B** | | | | | **AIME24** | 89.2 | 93.3 | 93.3 | | **AIME25** | 84.0 | 90.0 | 93.3 | | **HMMT Feb 25** | 73.8 | 86.7 | 96.7 | | **LCB v6 2408-2505** | 70.2 | n/a | 75.3 | | **HLE** | 11.8 | 13.4 | 15.5 | ## How to use the models? To run inference on coding problems: ````python import transformers import torch model_id = "nvidia/OpenReasoning-Nemotron-7B" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) # Code generation prompt prompt = """You are a helpful and harmless assistant. You should think step-by-step before responding to the instruction below. Please use python programming language only. You must use ```python for just the final solution code block with the following format: ```python # Your code here ``` {user} """ # Math generation prompt # prompt = """Solve the following math problem. Make sure to put the answer (and only answer) inside \\boxed{}. # # {user} # """ # Science generation prompt # You can refer to prompts here - # https://github.com/NVIDIA/NeMo-Skills/blob/main/nemo_skills/prompt/config/generic/hle.yaml (HLE) # https://github.com/NVIDIA/NeMo-Skills/blob/main/nemo_skills/prompt/config/eval/aai/mcq-4choices-boxed.yaml (for GPQA) # https://github.com/NVIDIA/NeMo-Skills/blob/main/nemo_skills/prompt/config/eval/aai/mcq-10choices-boxed.yaml (MMLU-Pro) messages = [ { "role": "user", "content": prompt.format(user="Write a program to calculate the sum of the first $N$ fibonacci numbers")}, ] outputs = pipeline( messages, max_new_tokens=64000, ) print(outputs[0]["generated_text"][-1]['content']) ```` We have added [a simple transformer-based script](https://huggingface.co/nvidia/OpenReasoning-Nemotron-7B/blob/main/genselect_hf.py) in this repo to illustrate GenSelect. To learn how to use the models in GenSelect mode with NeMo-Skills, see our [documentation](https://nvidia.github.io/NeMo-Skills/releases/openreasoning/evaluation/). To use the model with GenSelect inference, we recommend following our [reference implementation in NeMo-Skills](https://github.com/NVIDIA/NeMo-Skills/blob/main/nemo_skills/pipeline/genselect.py). Alternatively, you can manually extract the summary from all solutions and use this [prompt](https://github.com/NVIDIA/NeMo-Skills/blob/main/nemo_skills/prompt/config/openmath/genselect.yaml) for the math problems. We will add the prompt we used for the coding problems and a reference implementation soon! You can learn more about GenSelect in these papers: * [AIMO-2 Winning Solution: Building State-of-the-Art Mathematical Reasoning Models with OpenMathReasoning dataset](https://arxiv.org/abs/2504.16891) * [GenSelect: A Generative Approach to Best-of-N](https://openreview.net/forum?id=8LhnmNmUDb) ## Accessing training data Training data has been released! Math and code are available as part of [Nemotron-Post-Training-Dataset-v1](https://huggingface.co/datasets/nvidia/Nemotron-Post-Training-Dataset-v1) and science is available in [OpenScienceReasoning-2](https://huggingface.co/datasets/nvidia/OpenScienceReasoning-2). See our [documentation](https://nvidia.github.io/NeMo-Skills/releases/openreasoning/training) for more details. ## Citation If you find the data useful, please cite: ``` @article{ahmad2025opencodereasoning, title={{OpenCodeReasoning: Advancing Data Distillation for Competitive Coding}}, author={Wasi Uddin Ahmad, Sean Narenthiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain, Jocelyn Huang, Vahid Noroozi, Boris Ginsburg}, year={2025}, eprint={2504.01943}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2504.01943}, } ``` ``` @misc{ahmad2025opencodereasoningiisimpletesttime, title={{OpenCodeReasoning-II: A Simple Test Time Scaling Approach via Self-Critique}}, author={Wasi Uddin Ahmad and Somshubra Majumdar and Aleksander Ficek and Sean Narenthiran and Mehrzad Samadi and Jocelyn Huang and Siddhartha Jain and Vahid Noroozi and Boris Ginsburg}, year={2025}, eprint={2507.09075}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2507.09075}, } ``` ``` @misc{moshkov2025aimo2winningsolutionbuilding, title={{AIMO-2 Winning Solution: Building State-of-the-Art Mathematical Reasoning Models with OpenMathReasoning dataset}}, author={Ivan Moshkov and Darragh Hanley and Ivan Sorokin and Shubham Toshniwal and Christof Henkel and Benedikt Schifferer and Wei Du and Igor Gitman}, year={2025}, eprint={2504.16891}, archivePrefix={arXiv}, primaryClass={cs.AI}, url={https://arxiv.org/abs/2504.16891}, } ``` ``` @inproceedings{toshniwal2025genselect, title={{GenSelect: A Generative Approach to Best-of-N}}, author={Shubham Toshniwal and Ivan Sorokin and Aleksander Ficek and Ivan Moshkov and Igor Gitman}, booktitle={2nd AI for Math Workshop @ ICML 2025}, year={2025}, url={https://openreview.net/forum?id=8LhnmNmUDb} } ``` ## Additional Information: ### Deployment Geography: Global<br> ### Use Case: <br> This model is intended for developers and researchers who work on competitive math, code and science problems. It has been trained via only supervised fine-tuning to achieve strong scores on benchmarks. <br> ### Release Date: <br> Huggingface [07/16/2025] via https://huggingface.co/nvidia/OpenReasoning-Nemotron-7B/ <br> ## Reference(s): * [2504.01943] OpenCodeReasoning: Advancing Data Distillation for Competitive Coding * [2504.01943] OpenCodeReasoning: Advancing Data Distillation for Competitive Coding * [2504.16891] AIMO-2 Winning Solution: Building State-of-the-Art Mathematical Reasoning Models with OpenMathReasoning dataset <br> ## Model Architecture: <br> Architecture Type: Dense decoder-only Transformer model Network Architecture: Qwen-7B-Instruct <br> **This model was developed based on Qwen2.5-7B-Instruct and has 7B model parameters. <br>** **OpenReasoning-Nemotron-1.5B was developed based on Qwen2.5-1.5B-Instruct and has 1.5B model parameters. <br>** **OpenReasoning-Nemotron-7B was developed based on Qwen2.5-7B-Instruct and has 7B model parameters. <br>** **OpenReasoning-Nemotron-14B was developed based on Qwen2.5-14B-Instruct and has 14B model parameters. <br>** **OpenReasoning-Nemotron-32B was developed based on Qwen2.5-32B-Instruct and has 32B model parameters. <br>** ## Input: <br> **Input Type(s):** Text <br> **Input Format(s):** String <br> **Input Parameters:** One-Dimensional (1D) <br> **Other Properties Related to Input:** Trained for up to 64,000 output tokens <br> ## Output: <br> **Output Type(s):** Text <br> **Output Format:** String <br> **Output Parameters:** One-Dimensional (1D) <br> **Other Properties Related to Output:** Trained for up to 64,000 output tokens <br> Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions. <br> ## Software Integration : <br> * Runtime Engine: NeMo 2.3.0 <br> * Recommended Hardware Microarchitecture Compatibility: <br> NVIDIA Ampere <br> NVIDIA Hopper <br> * Preferred/Supported Operating System(s): Linux <br> ## Model Version(s): 1.0 (7/16/2025) <br> OpenReasoning-Nemotron-32B<br> OpenReasoning-Nemotron-14B<br> OpenReasoning-Nemotron-7B<br> OpenReasoning-Nemotron-1.5B<br> # Training and Evaluation Datasets: <br> ## Training Dataset: The training corpus for OpenReasoning-Nemotron-7B is comprised of questions from [OpenCodeReasoning](https://huggingface.co/datasets/nvidia/OpenCodeReasoning) dataset, [OpenCodeReasoning-II](https://arxiv.org/abs/2507.09075), [OpenMathReasoning](https://huggingface.co/datasets/nvidia/OpenMathReasoning), and the Synthetic Science questions from the [Llama-Nemotron-Post-Training-Dataset](https://huggingface.co/datasets/nvidia/Llama-Nemotron-Post-Training-Dataset). All responses are generated using DeepSeek-R1-0528. We also include the instruction following and tool calling data from Llama-Nemotron-Post-Training-Dataset without modification. Data Collection Method: Hybrid: Automated, Human, Synthetic <br> Labeling Method: Hybrid: Automated, Human, Synthetic <br> Properties: 5M DeepSeek-R1-0528 generated responses from OpenCodeReasoning questions (https://huggingface.co/datasets/nvidia/OpenCodeReasoning), [OpenMathReasoning](https://huggingface.co/datasets/nvidia/OpenMathReasoning), and the Synthetic Science questions from the [Llama-Nemotron-Post-Training-Dataset](https://huggingface.co/datasets/nvidia/Llama-Nemotron-Post-Training-Dataset). We also include the instruction following and tool calling data from Llama-Nemotron-Post-Training-Dataset without modification. ## Evaluation Dataset: We used the following benchmarks to evaluate the model holistically. ### Math - AIME 2024/2025 <br> - HMMT <br> - BRUNO 2025 <br> ### Code - LiveCodeBench <br> - SciCode <br> ### Science - GPQA <br> - MMLU-PRO <br> - HLE <br> Data Collection Method: Hybrid: Automated, Human, Synthetic <br> Labeling Method: Hybrid: Automated, Human, Synthetic <br> ## Inference: **Acceleration Engine:** vLLM, Tensor(RT)-LLM <br> **Test Hardware** NVIDIA H100-80GB <br> ## Ethical Considerations: NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse. For more detailed information on ethical considerations for this model, please see the Model Card++ Explainability, Bias, Safety & Security, and Privacy Subcards. Please report model quality, risk, security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
AnonymousCS/xlmr_immigration_combo19_2
AnonymousCS
2025-08-20T16:52:31Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T16:49:04Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo19_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo19_2 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2556 - Accuracy: 0.9344 - 1-f1: 0.9017 - 1-recall: 0.9035 - 1-precision: 0.9 - Balanced Acc: 0.9267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1751 | 1.0 | 25 | 0.2346 | 0.9229 | 0.8872 | 0.9112 | 0.8645 | 0.9200 | | 0.1856 | 2.0 | 50 | 0.2018 | 0.9422 | 0.9119 | 0.8996 | 0.9246 | 0.9315 | | 0.169 | 3.0 | 75 | 0.2309 | 0.9332 | 0.8992 | 0.8958 | 0.9027 | 0.9238 | | 0.0481 | 4.0 | 100 | 0.2556 | 0.9344 | 0.9017 | 0.9035 | 0.9 | 0.9267 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
yfkang/qwen-7b-instruct-thinking-function_calling-V0
yfkang
2025-08-20T16:50:14Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "sft", "trl", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-08-20T16:49:11Z
--- base_model: Qwen/Qwen2.5-7B-Instruct library_name: transformers model_name: qwen-7b-instruct-thinking-function_calling-V0 tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for qwen-7b-instruct-thinking-function_calling-V0 This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="yfkang/qwen-7b-instruct-thinking-function_calling-V0", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.5.1 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755706710
sampingkaca72
2025-08-20T16:43:36Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T16:43:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
youuotty/blockassist-bc-wise_howling_duck_1755708199
youuotty
2025-08-20T16:43:31Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wise howling duck", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T16:43:21Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wise howling duck --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
LVenn/MyGemmaNPC
LVenn
2025-08-20T16:43:10Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "gemma3_text", "text-generation", "generated_from_trainer", "sft", "trl", "conversational", "base_model:google/gemma-3-270m-it", "base_model:finetune:google/gemma-3-270m-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T15:45:36Z
--- base_model: google/gemma-3-270m-it library_name: transformers model_name: MyGemmaNPC tags: - generated_from_trainer - sft - trl licence: license --- # Model Card for MyGemmaNPC This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="LVenn/MyGemmaNPC", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.21.0 - Transformers: 4.55.2 - Pytorch: 2.8.0+cu126 - Datasets: 4.0.0 - Tokenizers: 0.21.4 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
tuanpro276/Qwen2.5-VL-3B-unsloth-GGUF
tuanpro276
2025-08-20T16:40:51Z
0
0
transformers
[ "transformers", "text-generation-inference", "unsloth", "qwen2_5_vl", "en", "base_model:tuanpro276/Qwen2.5-VL-3B-unsloth-GGUF", "base_model:finetune:tuanpro276/Qwen2.5-VL-3B-unsloth-GGUF", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-20T16:39:34Z
--- base_model: tuanpro276/Qwen2.5-VL-3B-unsloth-GGUF tags: - text-generation-inference - transformers - unsloth - qwen2_5_vl license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** tuanpro276 - **License:** apache-2.0 - **Finetuned from model :** tuanpro276/Qwen2.5-VL-3B-unsloth-GGUF This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
tensorblock/eternis_eternis_anonymizer_merge_Llama-3.2-1B_6jul_-GGUF
tensorblock
2025-08-20T16:40:45Z
0
0
transformers
[ "transformers", "gguf", "TensorBlock", "GGUF", "base_model:eternis/eternis_anonymizer_merge_Llama-3.2-1B_6jul_", "base_model:quantized:eternis/eternis_anonymizer_merge_Llama-3.2-1B_6jul_", "endpoints_compatible", "region:us" ]
null
2025-08-20T16:26:22Z
--- library_name: transformers tags: - TensorBlock - GGUF base_model: eternis/eternis_anonymizer_merge_Llama-3.2-1B_6jul_ --- <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> [![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## eternis/eternis_anonymizer_merge_Llama-3.2-1B_6jul_ - GGUF <div style="text-align: left; margin: 20px 0;"> <a href="https://discord.com/invite/Ej5NmeHFf2" style="display: inline-block; padding: 10px 20px; background-color: #5865F2; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;"> Join our Discord to learn more about what we're building ↗ </a> </div> This repo contains GGUF format model files for [eternis/eternis_anonymizer_merge_Llama-3.2-1B_6jul_](https://huggingface.co/eternis/eternis_anonymizer_merge_Llama-3.2-1B_6jul_). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5753](https://github.com/ggml-org/llama.cpp/commit/73e53dc834c0a2336cd104473af6897197b96277). ## Our projects <table border="1" cellspacing="0" cellpadding="10"> <tr> <th colspan="2" style="font-size: 25px;">Forge</th> </tr> <tr> <th colspan="2"> <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/> </th> </tr> <tr> <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th> </tr> <tr> <th colspan="2"> <a href="https://github.com/TensorBlock/forge" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">🚀 Try it now! 🚀</a> </th> </tr> <tr> <th style="font-size: 25px;">Awesome MCP Servers</th> <th style="font-size: 25px;">TensorBlock Studio</th> </tr> <tr> <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th> <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th> </tr> <tr> <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th> <th>A lightweight, open, and extensible multi-LLM interaction studio.</th> </tr> <tr> <th> <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">👀 See what we built 👀</a> </th> <th> <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style=" display: inline-block; padding: 8px 16px; background-color: #FF7F50; color: white; text-decoration: none; border-radius: 6px; font-weight: bold; font-family: sans-serif; ">👀 See what we built 👀</a> </th> </tr> </table> ## Prompt template ``` Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format. ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q2_K.gguf](https://huggingface.co/tensorblock/eternis_eternis_anonymizer_merge_Llama-3.2-1B_6jul_-GGUF/blob/main/eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q2_K.gguf) | Q2_K | 0.581 GB | smallest, significant quality loss - not recommended for most purposes | | [eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q3_K_S.gguf](https://huggingface.co/tensorblock/eternis_eternis_anonymizer_merge_Llama-3.2-1B_6jul_-GGUF/blob/main/eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q3_K_S.gguf) | Q3_K_S | 0.642 GB | very small, high quality loss | | [eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q3_K_M.gguf](https://huggingface.co/tensorblock/eternis_eternis_anonymizer_merge_Llama-3.2-1B_6jul_-GGUF/blob/main/eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q3_K_M.gguf) | Q3_K_M | 0.691 GB | very small, high quality loss | | [eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q3_K_L.gguf](https://huggingface.co/tensorblock/eternis_eternis_anonymizer_merge_Llama-3.2-1B_6jul_-GGUF/blob/main/eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q3_K_L.gguf) | Q3_K_L | 0.733 GB | small, substantial quality loss | | [eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q4_0.gguf](https://huggingface.co/tensorblock/eternis_eternis_anonymizer_merge_Llama-3.2-1B_6jul_-GGUF/blob/main/eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q4_0.gguf) | Q4_0 | 0.771 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q4_K_S.gguf](https://huggingface.co/tensorblock/eternis_eternis_anonymizer_merge_Llama-3.2-1B_6jul_-GGUF/blob/main/eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q4_K_S.gguf) | Q4_K_S | 0.776 GB | small, greater quality loss | | [eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q4_K_M.gguf](https://huggingface.co/tensorblock/eternis_eternis_anonymizer_merge_Llama-3.2-1B_6jul_-GGUF/blob/main/eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q4_K_M.gguf) | Q4_K_M | 0.808 GB | medium, balanced quality - recommended | | [eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q5_0.gguf](https://huggingface.co/tensorblock/eternis_eternis_anonymizer_merge_Llama-3.2-1B_6jul_-GGUF/blob/main/eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q5_0.gguf) | Q5_0 | 0.893 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q5_K_S.gguf](https://huggingface.co/tensorblock/eternis_eternis_anonymizer_merge_Llama-3.2-1B_6jul_-GGUF/blob/main/eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q5_K_S.gguf) | Q5_K_S | 0.893 GB | large, low quality loss - recommended | | [eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q5_K_M.gguf](https://huggingface.co/tensorblock/eternis_eternis_anonymizer_merge_Llama-3.2-1B_6jul_-GGUF/blob/main/eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q5_K_M.gguf) | Q5_K_M | 0.911 GB | large, very low quality loss - recommended | | [eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q6_K.gguf](https://huggingface.co/tensorblock/eternis_eternis_anonymizer_merge_Llama-3.2-1B_6jul_-GGUF/blob/main/eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q6_K.gguf) | Q6_K | 1.022 GB | very large, extremely low quality loss | | [eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q8_0.gguf](https://huggingface.co/tensorblock/eternis_eternis_anonymizer_merge_Llama-3.2-1B_6jul_-GGUF/blob/main/eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q8_0.gguf) | Q8_0 | 1.321 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/eternis_eternis_anonymizer_merge_Llama-3.2-1B_6jul_-GGUF --include "eternis_anonymizer_merge_Llama-3.2-1B_6jul_-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/eternis_eternis_anonymizer_merge_Llama-3.2-1B_6jul_-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```
Trungdjoon/esg-roberta-base_run_3
Trungdjoon
2025-08-20T16:40:45Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T16:40:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Trungdjoon/esg-phobert-base_run_3
Trungdjoon
2025-08-20T16:40:00Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T16:39:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
thanobidex/blockassist-bc-colorful_shiny_hare_1755706085
thanobidex
2025-08-20T16:35:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "colorful shiny hare", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T16:35:09Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - colorful shiny hare --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
surya-ravindra/tinyllama-medqa-jp-v1-Q4_K_M-GGUF
surya-ravindra
2025-08-20T16:31:46Z
0
0
null
[ "gguf", "trl", "sft", "generated_from_trainer", "llama-cpp", "gguf-my-repo", "base_model:jayeshvpatil/tinyllama-medqa-jp-v1", "base_model:quantized:jayeshvpatil/tinyllama-medqa-jp-v1", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-20T16:31:40Z
--- license: apache-2.0 base_model: jayeshvpatil/tinyllama-medqa-jp-v1 tags: - trl - sft - generated_from_trainer - llama-cpp - gguf-my-repo model-index: - name: tinyllama-medqa-jp-v1 results: [] --- # surya-ravindra/tinyllama-medqa-jp-v1-Q4_K_M-GGUF This model was converted to GGUF format from [`jayeshvpatil/tinyllama-medqa-jp-v1`](https://huggingface.co/jayeshvpatil/tinyllama-medqa-jp-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/jayeshvpatil/tinyllama-medqa-jp-v1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo surya-ravindra/tinyllama-medqa-jp-v1-Q4_K_M-GGUF --hf-file tinyllama-medqa-jp-v1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo surya-ravindra/tinyllama-medqa-jp-v1-Q4_K_M-GGUF --hf-file tinyllama-medqa-jp-v1-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo surya-ravindra/tinyllama-medqa-jp-v1-Q4_K_M-GGUF --hf-file tinyllama-medqa-jp-v1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo surya-ravindra/tinyllama-medqa-jp-v1-Q4_K_M-GGUF --hf-file tinyllama-medqa-jp-v1-q4_k_m.gguf -c 2048 ```
Muapi/adidas-tracksuit-sdxl-flux
Muapi
2025-08-20T16:31:03Z
0
0
null
[ "lora", "stable-diffusion", "flux.1-d", "license:openrail++", "region:us" ]
null
2025-08-20T16:30:41Z
--- license: openrail++ tags: - lora - stable-diffusion - flux.1-d model_type: LoRA --- # Adidas (Tracksuit) [SDXL & Flux] ![preview](./preview.jpg) **Base model**: Flux.1 D **Trained words**: Adidas, wearing a full tracksuit in [a clolor withch u chose]. The tracksuit features a zip-up jacket with a high collar and matching pants.Adidas Logo Both pieces have three white stripes running down the sleeves and along the sides of the pants, a signature design element. The Adidas logo appears on the left side of the jacket, represented in white. ## 🧠 Usage (Python) 🔑 **Get your MUAPI key** from [muapi.ai/access-keys](https://muapi.ai/access-keys) ```python import requests, os url = "https://api.muapi.ai/api/v1/flux_dev_lora_image" headers = {"Content-Type": "application/json", "x-api-key": os.getenv("MUAPIAPP_API_KEY")} payload = { "prompt": "masterpiece, best quality, 1girl, looking at viewer", "model_id": [{"model": "civitai:209918@1051628", "weight": 1.0}], "width": 1024, "height": 1024, "num_images": 1 } print(requests.post(url, headers=headers, json=payload).json()) ```
forkkyty/blockassist-bc-dappled_purring_bobcat_1755707434
forkkyty
2025-08-20T16:30:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "dappled purring bobcat", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T16:30:34Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - dappled purring bobcat --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
youuotty/blockassist-bc-mottled_winged_prawn_1755707424
youuotty
2025-08-20T16:30:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "mottled winged prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T16:30:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - mottled winged prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Jacksss123/net72_uid148
Jacksss123
2025-08-20T16:30:26Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-08-20T16:26:37Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Vasya777/blockassist-bc-lumbering_enormous_sloth_1755707201
Vasya777
2025-08-20T16:27:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "lumbering enormous sloth", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T16:27:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - lumbering enormous sloth --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
vwzyrraz7l/blockassist-bc-tall_hunting_vulture_1755705402
vwzyrraz7l
2025-08-20T16:26:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tall hunting vulture", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T16:26:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tall hunting vulture --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
arianaazarbal/standard_tpr_0.65-20250820_104142-rm-adapter
arianaazarbal
2025-08-20T16:25:52Z
0
0
null
[ "region:us" ]
null
2025-08-20T16:25:23Z
# Reward Model LoRA Adapter Experiment: standard_tpr_0.65 Timestamp: 20250820_104142 This model was trained as part of the deception-evasion-honesty experiments. ## Model Details - **Type**: Reward Model LoRA Adapter - **Experiment Name**: standard_tpr_0.65 - **Training Timestamp**: 20250820_104142
mehmetPektas/speecht5_finetuned_mehmet_tr
mehmetPektas
2025-08-20T16:21:28Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2025-08-20T14:41:18Z
--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: speecht5_finetuned_mehmet_tr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_mehmet_tr This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5817 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7734 | 0.5821 | 100 | 0.7052 | | 0.6915 | 1.1630 | 200 | 0.6429 | | 0.6466 | 1.7451 | 300 | 0.6220 | | 0.6321 | 2.3260 | 400 | 0.5933 | | 0.6095 | 2.9081 | 500 | 0.5817 | ### Framework versions - Transformers 4.55.2 - Pytorch 2.6.0+cu124 - Datasets 4.0.0 - Tokenizers 0.21.4
roeker/blockassist-bc-quick_wiry_owl_1755706771
roeker
2025-08-20T16:21:03Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T16:20:20Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
torchao-testing/opt-125m-Float8DynamicActivationFloat8WeightConfig-v1-0.13.dev
torchao-testing
2025-08-20T16:20:31Z
0
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "torchao", "region:us" ]
text-generation
2025-08-19T23:05:01Z
--- library_name: transformers tags: [] --- ``` model: opt-125m config: Float8DynamicActivationFloat8WeightConfig config version: 1 torchao version: 0.13.dev ``` ``` import torch import io from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig from huggingface_hub import HfApi model_id = "facebook/opt-125m" from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow(), version=1) quantization_config = TorchAoConfig(quant_type=quant_config) quantized_model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=torch.bfloat16, quantization_config=quantization_config, ) tokenizer = AutoTokenizer.from_pretrained(model_id) # Push to hub USER_ID = "torchao-testing" MODEL_NAME = model_id.split("/")[-1] save_to = f"{USER_ID}/{MODEL_NAME}-Float8DynamicActivationFloat8WeightConfig-v1-0.13.dev" quantized_model.push_to_hub(save_to, safe_serialization=False) tokenizer.push_to_hub(save_to) # Manual Testing prompt = "Hey, are you conscious? Can you talk to me?" print("Prompt:", prompt) inputs = tokenizer( prompt, return_tensors="pt", ).to("cuda") # setting temperature to 0 to make sure result deterministic generated_ids = quantized_model.generate(**inputs, max_new_tokens=128, temperature=0) api = HfApi() buf = io.BytesIO() torch.save(prompt, buf) api.upload_file( path_or_fileobj=buf, path_in_repo="model_prompt.pt", repo_id=save_to, ) buf = io.BytesIO() torch.save(generated_ids, buf) api.upload_file( path_or_fileobj=buf, path_in_repo="model_output.pt", repo_id=save_to, ) output_text = tokenizer.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print("Response:", output_text[0][len(prompt) :]) ```
torchao-testing/single-linear-Float8DynamicActivationFloat8WeightConfig-v2-0.13.dev
torchao-testing
2025-08-20T16:20:01Z
0
0
null
[ "region:us" ]
null
2025-08-19T23:10:48Z
``` model: single_linear config: Float8DynamicActivationFloat8WeightConfig config version: 2 torchao version: 0.13.dev ``` ``` import torch import io model = torch.nn.Sequential(torch.nn.Linear(32, 256, dtype=torch.bfloat16, device="cuda")) from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig, PerRow quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow()) quantize_(model, quant_config) example_inputs = (torch.randn(2, 32, dtype=torch.bfloat16, device="cuda"),) output = model(*example_inputs) # Push to hub USER_ID = "torchao-testing" MODEL_NAME = "single-linear" save_to = f"{USER_ID}/{MODEL_NAME}-Float8DynamicActivationFloat8WeightConfig-v2-0.13.dev" from huggingface_hub import HfApi api = HfApi() buf = io.BytesIO() torch.save(model.state_dict(), buf) api.create_repo(save_to, repo_type="model", exist_ok=True) api.upload_file( path_or_fileobj=buf, path_in_repo="model.pt", repo_id=save_to, ) buf = io.BytesIO() torch.save(example_inputs, buf) api.upload_file( path_or_fileobj=buf, path_in_repo="model_inputs.pt", repo_id=save_to, ) buf = io.BytesIO() torch.save(output, buf) api.upload_file( path_or_fileobj=buf, path_in_repo="model_output.pt", repo_id=save_to, ) ```
Arthur-LAGACHERIE/Arthur-LAGAHERIE
Arthur-LAGACHERIE
2025-08-20T16:18:36Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-20T16:18:18Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
rene-contango/cc8054a8-7d65-45d1-b554-34bfc8d8d133
rene-contango
2025-08-20T16:16:03Z
8
0
null
[ "safetensors", "llama", "region:us" ]
null
2025-08-16T14:14:04Z
--- license: apache-2.0 --- # Training Job job_id='4f5963c5-8503-4e5b-96a1-28bbd37f3d03' model='unsloth/Llama-3.2-3B-Instruct' status=<JobStatus.QUEUED: 'Queued'> error_message=None expected_repo_name='cc8054a8-7d65-45d1-b554-34bfc8d8d133' dataset='/tmp/686ce5f44301c466_train_data.json' dataset_type=DpoDatasetType(field_prompt='prompt', field_system=None, field_chosen='chosen', field_rejected='rejected', prompt_format=None, chosen_format=None, rejected_format=None) file_format=<FileFormat.JSON: 'json'> This model was created during a training job but training was interrupted during data preparation phase. No model weights are available. Training was stopped due to time constraints during the dataset tokenization phase.
unitova/blockassist-bc-zealous_sneaky_raven_1755704850
unitova
2025-08-20T16:15:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "zealous sneaky raven", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T16:15:35Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - zealous sneaky raven --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
youuotty/blockassist-bc-tricky_curious_impala_1755706480
youuotty
2025-08-20T16:14:51Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tricky curious impala", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T16:14:42Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tricky curious impala --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Trungdjoon/esg-distilbert-base-multilingual-cased_run_1
Trungdjoon
2025-08-20T16:13:56Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T16:13:12Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755706231
0xaoyama
2025-08-20T16:11:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T16:10:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Vinit/pick_place_blue_marker_policy_diffusion
Vinit
2025-08-20T16:07:41Z
0
0
lerobot
[ "lerobot", "safetensors", "diffusion", "robotics", "dataset:Vinit/pick_place_blue_marker_full", "arxiv:2303.04137", "license:apache-2.0", "region:us" ]
robotics
2025-08-20T16:06:01Z
--- datasets: Vinit/pick_place_blue_marker_full library_name: lerobot license: apache-2.0 model_name: diffusion pipeline_tag: robotics tags: - diffusion - lerobot - robotics --- # Model Card for diffusion <!-- Provide a quick summary of what the model is/does. --> [Diffusion Policy](https://huggingface.co/papers/2303.04137) treats visuomotor control as a generative diffusion process, producing smooth, multi-step action trajectories that excel at contact-rich manipulation. This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot). See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index). --- ## How to Get Started with the Model For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy). Below is the short version on how to train and run inference/eval: ### Train from scratch ```bash python -m lerobot.scripts.train \ --dataset.repo_id=${HF_USER}/<dataset> \ --policy.type=act \ --output_dir=outputs/train/<desired_policy_repo_id> \ --job_name=lerobot_training \ --policy.device=cuda \ --policy.repo_id=${HF_USER}/<desired_policy_repo_id> --wandb.enable=true ``` _Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._ ### Evaluate the policy/run inference ```bash python -m lerobot.record \ --robot.type=so100_follower \ --dataset.repo_id=<hf_user>/eval_<dataset> \ --policy.path=<hf_user>/<desired_policy_repo_id> \ --episodes=10 ``` Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint. --- ## Model Details - **License:** apache-2.0
luciusjones/unlocking-the-latest-coin-master-free-5000-spin-link-unlock-your-spins-today
luciusjones
2025-08-20T16:07:35Z
0
0
null
[ "region:us" ]
null
2025-08-20T16:04:26Z
<a href="https://rewardshere.xyz/coin/master/go/"><img class="alignnone size-full wp-image-8" src="https://watchtvhere.online/wp-content/uploads/2025/08/Coin-Master-free-spins-coins-links.jpg" alt="" width="800" height="600" /></a>
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755705703
0xaoyama
2025-08-20T16:02:15Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T16:02:03Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
chainway9/blockassist-bc-untamed_quick_eel_1755704020
chainway9
2025-08-20T16:01:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "untamed quick eel", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T16:01:16Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - untamed quick eel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sdagsadgd/blockassist-bc-sedate_squeaky_salamander_1755702530
sdagsadgd
2025-08-20T16:01:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sedate squeaky salamander", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T16:00:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sedate squeaky salamander --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Ver-milica-y-angel-david-erome-debut/milica.y.angel.david.erome.debut.angel.david.milica.video
Ver-milica-y-angel-david-erome-debut
2025-08-20T15:59:07Z
0
0
null
[ "region:us" ]
null
2025-08-20T15:58:50Z
<a href="https://tinyurl.com/52jc3rtk" target="_blank" rel="noopener" rel="nofollow"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" /></a>
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755705455
0xaoyama
2025-08-20T15:58:07Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T15:57:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manancode/opus-mt-tc-bible-big-deu_eng_fra_por_spa-bnt-ctranslate2-android
manancode
2025-08-20T15:57:41Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T15:57:25Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-tc-bible-big-deu_eng_fra_por_spa-bnt-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-bnt` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-bnt - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
helmutsukocok/blockassist-bc-loud_scavenging_kangaroo_1755703714
helmutsukocok
2025-08-20T15:57:33Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "loud scavenging kangaroo", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T15:57:30Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - loud scavenging kangaroo --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
TimesLast/TimesLastAI-4B
TimesLast
2025-08-20T15:57:06Z
0
0
transformers
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "base_model:finetune:unsloth/gemma-3-4b-it-unsloth-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-text-to-text
2025-08-20T15:56:52Z
--- base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** TimesLast - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-unsloth-bnb-4bit This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Sayemahsjn/blockassist-bc-playful_feline_octopus_1755704066
Sayemahsjn
2025-08-20T15:54:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "playful feline octopus", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T15:54:25Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - playful feline octopus --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/xlmr_immigration_combo16_3
AnonymousCS
2025-08-20T15:54:31Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-20T15:51:12Z
--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlmr_immigration_combo16_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr_immigration_combo16_3 This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2290 - Accuracy: 0.9357 - 1-f1: 0.9016 - 1-recall: 0.8842 - 1-precision: 0.9197 - Balanced Acc: 0.9228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------:|:-----------:|:------------:| | 0.1625 | 1.0 | 25 | 0.2070 | 0.9306 | 0.8969 | 0.9073 | 0.8868 | 0.9248 | | 0.142 | 2.0 | 50 | 0.2149 | 0.9383 | 0.9016 | 0.8494 | 0.9607 | 0.9160 | | 0.1501 | 3.0 | 75 | 0.2290 | 0.9357 | 0.9016 | 0.8842 | 0.9197 | 0.9228 | ### Framework versions - Transformers 4.56.0.dev0 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4
manancode/opus-mt-tc-bible-big-bat-deu_eng_nld-ctranslate2-android
manancode
2025-08-20T15:54:22Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T15:54:05Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-tc-bible-big-bat-deu_eng_nld-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-tc-bible-big-bat-deu_eng_nld` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-tc-bible-big-bat-deu_eng_nld - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-tc-bible-big-bat-deu_eng_fra_por_spa-ctranslate2-android
manancode
2025-08-20T15:53:52Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T15:53:37Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-tc-bible-big-bat-deu_eng_fra_por_spa-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-tc-bible-big-bat-deu_eng_fra_por_spa` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-tc-bible-big-bat-deu_eng_fra_por_spa - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
liukevin666/blockassist-bc-yawning_striped_cassowary_1755705123
liukevin666
2025-08-20T15:53:25Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T15:53:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
4everStudent/grpo-sft_qwen3-4B-081925
4everStudent
2025-08-20T15:52:33Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "grpo", "arxiv:2402.03300", "base_model:Qwen/Qwen3-4B", "base_model:finetune:Qwen/Qwen3-4B", "endpoints_compatible", "region:us" ]
null
2025-08-19T21:53:53Z
--- base_model: Qwen/Qwen3-4B library_name: transformers model_name: grpo-sft_qwen3-4B-081925 tags: - generated_from_trainer - trl - grpo licence: license --- # Model Card for grpo-sft_qwen3-4B-081925 This model is a fine-tuned version of [Qwen/Qwen3-4B](https://huggingface.co/Qwen/Qwen3-4B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="4everStudent/grpo-sft_qwen3-4B-081925", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/wljorge/cif_generation_with_grpo/runs/726maw3n) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.19.0 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.6.0 - Tokenizers: 0.21.0 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
manancode/opus-mt-tc-bible-big-aav-fra_ita_por_spa-ctranslate2-android
manancode
2025-08-20T15:50:57Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T15:50:41Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-tc-bible-big-aav-fra_ita_por_spa-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-tc-bible-big-aav-fra_ita_por_spa` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-tc-bible-big-aav-fra_ita_por_spa - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
0xaoyama/blockassist-bc-muscular_zealous_gorilla_1755704977
0xaoyama
2025-08-20T15:50:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "muscular zealous gorilla", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T15:50:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - muscular zealous gorilla --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Angel-David-y-Milica-filtrado-video/VER.milica.y.angel.david.debut.video.filtrado.clips.viral.completo.en.twitter.y.telegram
Angel-David-y-Milica-filtrado-video
2025-08-20T15:50:09Z
0
0
null
[ "region:us" ]
null
2025-08-20T15:49:50Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/52jc3rtk" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
manancode/opus-mt-kqn-en-ctranslate2-android
manancode
2025-08-20T15:45:48Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T15:45:37Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-kqn-en-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-kqn-en` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-kqn-en - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
manancode/opus-mt-ko-hu-ctranslate2-android
manancode
2025-08-20T15:44:52Z
0
0
null
[ "translation", "opus-mt", "ctranslate2", "quantized", "multilingual", "license:apache-2.0", "region:us" ]
translation
2025-08-20T15:44:40Z
--- license: apache-2.0 tags: - translation - opus-mt - ctranslate2 - quantized language: - multilingual pipeline_tag: translation --- # opus-mt-ko-hu-ctranslate2-android This is a quantized INT8 version of `Helsinki-NLP/opus-mt-ko-hu` converted to CTranslate2 format for efficient inference. ## Model Details - **Original Model**: Helsinki-NLP/opus-mt-ko-hu - **Format**: CTranslate2 - **Quantization**: INT8 - **Framework**: OPUS-MT - **Converted by**: Automated conversion pipeline ## Usage ### With CTranslate2 ```python import ctranslate2 import sentencepiece as spm # Load the model translator = ctranslate2.Translator("path/to/model") # Load tokenizers sp_source = spm.SentencePieceProcessor(model_file="source.spm") sp_target = smp.SentencePieceProcessor(model_file="target.spm") # Translate source_tokens = sp_source.encode("Your text here", out_type=str) results = translator.translate_batch([source_tokens]) translation = sp_target.decode(results[0].hypotheses[0]) ``` ## Performance This INT8 quantized version provides: - ~75% reduction in model size - Faster inference speed - Maintained translation quality - Mobile-friendly deployment ## Original Model Based on the OPUS-MT project: https://github.com/Helsinki-NLP/Opus-MT
gautamnancy/Emotion_classification
gautamnancy
2025-08-20T15:44:06Z
0
0
null
[ "region:us" ]
null
2025-08-20T15:39:09Z
# RoBERTa-Base Model for Emotion Classification This repository hosts a fine-tuned version of the RoBERTa model for emotion classification tasks. The model has been trained to accurately classify text into six emotion categories, making it suitable for sentiment analysis and emotional content understanding. --- ## Model Details - **Model Name:** RoBERTa-Base for Emotion Classification - **Model Architecture:** RoBERTa Base - **Task:** Emotion Classification - **Dataset:** Hugging Face Emotion Dataset - **Quantization:** Float16 version available - **Fine-tuning Framework:** Hugging Face Transformers --- ## Usage ### Installation ``` pip install transformers torch ``` ### Loading the Model ``` from transformers import RobertaTokenizer, RobertaForSequenceClassification import torch import re # Load model and tokenizer model_path = "emotion-model" # or "quantized-emotion-model" for the quantized version model = RobertaForSequenceClassification.from_pretrained(model_path) tokenizer = RobertaTokenizer.from_pretrained(model_path) # Set device device = 'cuda' if torch.cuda.is_available() else 'cpu' model = model.to(device) ``` ### Prediction Function ``` def predict_emotions(texts, model, tokenizer, device='cpu'): """ Predicts emotion labels for input text(s) using a fine-tuned transformer model. Args: texts (str or List[str]): A single string or list of strings to classify. model: Trained transformer model. tokenizer: Corresponding tokenizer. device (str): 'cpu' or 'cuda'. Default is 'cpu'. Returns: List[str]: List of predicted emotion labels. """ # Ensure model is on correct device model.to(device) # If a single string is passed, convert to list if isinstance(texts, str): texts = [texts] # Preprocess: simple text cleaning def preprocess(text): text = text.lower() text = re.sub(r"http\S+|www\S+|https\S+", '', text) text = re.sub(r'\@\w+|\#', '', text) text = re.sub(r"[^a-zA-Z0-9\s.,!?']", '', text) text = re.sub(r'\s+', ' ', text).strip() return text cleaned_texts = [preprocess(t) for t in texts] # Tokenize inputs = tokenizer(cleaned_texts, padding=True, truncation=True, return_tensors="pt").to(device) # Inference model.eval() with torch.no_grad(): outputs = model(**inputs) preds = torch.argmax(outputs.logits, dim=1).tolist() # Emotion dataset label map label_map = { 0: "sadness", 1: "joy", 2: "love", 3: "anger", 4: "fear", 5: "surprise" } return [label_map[p] for p in preds] ``` ### Example Usage ``` # Example texts sample_texts = [ "I'm so happy about the new job opportunity!", "I can't believe they cancelled my favorite show. This is terrible.", "The sunset over the mountains took my breath away. It was magnificent!" ] # Run predictions results = predict_emotions(sample_texts, model, tokenizer, device) # Show results for text, emotion in zip(sample_texts, results): print(f"Text: {text}\nPredicted Emotion: {emotion}\n") ``` --- ## Performance Metrics - **Accuracy:** 0.94 - **F1 Score:** 0.939736 - **Precision:** 0.941654 - **Recall:** 0.94 --- ## Fine-Tuning Details ### Dataset The model was fine-tuned on the Hugging Face Emotion dataset which contains text labeled with six emotion categories: - sadness - joy - love - anger - fear - surprise ### Training Configuration - **Epochs:** 3 - **Batch Size:** 16 - **Learning Rate:** 2e-5 - **Max Length:** 128 tokens - **Evaluation Strategy:** epoch - **Weight Decay:** 0.01 - **Optimizer:** AdamW ### Quantization A quantized version of the model is available using PyTorch's float16 format to reduce model size and improve inference efficiency. --- ## Repository Structure ``` . ├── emotion-model/ # Full-precision model │ ├── config.json │ ├── model.safetensors │ ├── tokenizer_config.json │ ├── special_tokens_map.json │ ├── vocab.json │ └── merges.txt ├── quantized-emotion-model/ # Quantized model (float16) │ ├── config.json │ ├── model.safetensors │ ├── tokenizer_config.json │ ├── special_tokens_map.json │ ├── vocab.json │ └── merges.txt └── README.md # Model documentation ``` --- ## Limitations - The model may not generalize well to domains outside the fine-tuning dataset. - Emotion detection can be subjective and context-dependent. - The quantized version may show minor accuracy degradation compared to the full-precision model. --- ## Contributing Contributions are welcome! Feel free to open an issue or PR for improvements, fixes, or feature extensions.
salavat/gemma-3-isv-gpt-v5-GGUF
salavat
2025-08-20T15:43:09Z
0
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-20T15:32:54Z
# gemma-3-isv-gpt-v5-GGUF GGUF for model: sergbese/gemma-3-isv-gpt-v5
YeeXuan11/YeeXuan11-distilbert_ner_seed42_loraFalse_r0_lr1e-05_warm0.1_ep3
YeeXuan11
2025-08-20T15:41:04Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-08-20T11:50:28Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
YeeXuan11/distilbert_ner_seed42_loraTrue_r4_lr1e-05_warm0.1_ep5-merged
YeeXuan11
2025-08-20T15:40:42Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-08-20T13:29:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1755702874
sampingkaca72
2025-08-20T15:39:57Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T15:39:53Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
joekraper/my_quantized-qwen
joekraper
2025-08-20T15:39:53Z
0
0
null
[ "safetensors", "text-generation", "base_model:Qwen/Qwen3-1.7B", "base_model:finetune:Qwen/Qwen3-1.7B", "license:apache-2.0", "region:us" ]
text-generation
2025-08-20T14:38:27Z
--- license: apache-2.0 base_model: - Qwen/Qwen3-1.7B new_version: Qwen/Qwen3-1.7B pipeline_tag: text-generation ---
llinguini/medgemma-4b-it-Q4_K_M-GGUF
llinguini
2025-08-20T15:39:41Z
0
0
transformers
[ "transformers", "gguf", "medical", "radiology", "clinical-reasoning", "dermatology", "pathology", "ophthalmology", "chest-x-ray", "llama-cpp", "gguf-my-repo", "image-text-to-text", "base_model:google/medgemma-4b-it", "base_model:quantized:google/medgemma-4b-it", "license:other", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-08-20T15:39:26Z
--- license: other license_name: health-ai-developer-foundations license_link: https://developers.google.com/health-ai-developer-foundations/terms library_name: transformers pipeline_tag: image-text-to-text extra_gated_heading: Access MedGemma on Hugging Face extra_gated_prompt: To access MedGemma on Hugging Face, you're required to review and agree to [Health AI Developer Foundation's terms of use](https://developers.google.com/health-ai-developer-foundations/terms). To do this, please ensure you're logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license base_model: google/medgemma-4b-it tags: - medical - radiology - clinical-reasoning - dermatology - pathology - ophthalmology - chest-x-ray - llama-cpp - gguf-my-repo --- # llinguini/medgemma-4b-it-Q4_K_M-GGUF This model was converted to GGUF format from [`google/medgemma-4b-it`](https://huggingface.co/google/medgemma-4b-it) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/google/medgemma-4b-it) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo llinguini/medgemma-4b-it-Q4_K_M-GGUF --hf-file medgemma-4b-it-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo llinguini/medgemma-4b-it-Q4_K_M-GGUF --hf-file medgemma-4b-it-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo llinguini/medgemma-4b-it-Q4_K_M-GGUF --hf-file medgemma-4b-it-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo llinguini/medgemma-4b-it-Q4_K_M-GGUF --hf-file medgemma-4b-it-q4_k_m.gguf -c 2048 ```
YeeXuan11/distilbert_ner_seed42_loraTrue_r4_lr3e-05_warm0.1_ep5-merged
YeeXuan11
2025-08-20T15:38:59Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-08-20T14:09:31Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
roeker/blockassist-bc-quick_wiry_owl_1755704211
roeker
2025-08-20T15:38:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "quick wiry owl", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T15:37:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - quick wiry owl --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
manusiaperahu2012/blockassist-bc-roaring_long_tuna_1755702090
manusiaperahu2012
2025-08-20T15:31:44Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "roaring long tuna", "arxiv:2504.07091", "region:us" ]
null
2025-08-20T15:31:40Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - roaring long tuna --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
YeeXuan11/your-username-distilbert_ner_seed42_loraFalse_r0_lr3e-05_warm0.1_ep3
YeeXuan11
2025-08-20T15:31:05Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "token-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-08-20T09:13:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]